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 5 

We present experimental data from MARIN on a bottom-fixed offshore wind turbine mounted on a monopile in 6 

intermediate water depth subjected to severe irregular wave conditions. Two models are analysed: the first model is 7 

fully flexible and its 1st and 2nd eigenfrequencies and 1st mode shape are representative of those of a full-scale turbine. 8 

This model is used to study the structural response with special focus on ringing and response to breaking wave events. 9 

The second model is stiff and is used to analyse the hydrodynamic excitation loads, in particular the so-called secondary 10 

load cycle. The largest responses are registered when the second mode of the structure is triggered by a breaking wave 11 

on top of a ringing response. In such events, the quasi-static response accounts for between 40 and 50% of the total load, 12 

the 1st mode response between 30 and 40%, and the 2nd mode response up to 20%. A statistical analysis on the 13 

occurrences and characteristics of the secondary load cycle shows that this phenomenon is not directly linked to ringing. 14 

 15 
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1. Introduction 18 

Over their lifetime, many bottom-fixed offshore wind turbines will encounter steep or breaking waves that might produce large 19 

structural responses. A number of offshore wind farms are planned or being developed in the North Sea, in water depths 20 

between 20 and 50 m (Ho et al., 2016). At these depths, interaction with the sea bottom enhances the wave nonlinearity, 21 

increasing the likelihood of breaking waves (Dalrymple and Dean, 1991). When designing the support structure of an offshore 22 

wind turbine for a specific site, the industry has to assess the maximum expected response that the structure will experience 23 

over its lifetime (so-called Ultimate Limit State (ULS) analysis, DNV, 2014a; DNV, 2014b; IEC, 2009).  24 

 25 

Under ULS conditions, experiments have shown that the natural period of the structure can be suddenly excited by non-breaking 26 

waves whose fundamental period lies far from the structure’s eigenperiod (Marthinsen et al., 1996; Stansberg et al., 1995; 27 
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Welch et al., 1999). This phenomenon, called ‘ringing’, is characterized by a fast build-up of transient resonant vibrations (only 28 

a few oscillations; Chaplin et al., 1997) and a much slower decay (Natvig and Teigen, 1993). In the case of a monopile type of 29 

support structure such as the one studied in this paper, ringing occurs during the passage of steep waves whose height is of the 30 

same order of magnitude as the diameter of the cylinder and whose fundamental period is around 3 times the natural period of 31 

the structure. Figure 1 shows an illustration of a ringing event. The bending moment has been filtered to show only the response 32 

of the first mode of the structure (this procedure is explained in section 4). After the passage of a very steep wave, the first 33 

mode gets suddenly excited and then decays slowly. 34 

 35 

 36 

Figure 1. Illustration of a ringing event. A surface-piercing vertical cylinder is exposed to a steep wave, and the 37 

bending moment is measured at the sea bottom. The 1st mode is suddenly triggered and slowly decays, which is a 38 

typical characteristic of ringing events. 39 

 40 

The ringing phenomenon started gaining attention in the 1990s when it was first observed on model tests of the Hutton and 41 

Heidrun TLP offshore oil and gas platforms, and then on the deep water concrete towers of the Draugen and Troll A platforms 42 

(Natvig and Teigen, 1993). Recently, the increase in size of offshore wind turbines combined with the limitation of the blade 43 

tip velocity has led to decreasing natural frequencies of the support structure down to a level where the 3rd harmonic of large 44 

waves (i.e. three times the fundamental frequency) coincides with the first structural natural frequency. This intensifies the risk 45 

of ringing response when subjected to extreme storms (see  Suja-Thauvin et al., 2014). In addition to higher order hydrodynamic 46 

loads, breaking wave events have been a major concern for offshore structures. Both de Ridder et al. (2011) and Bredmose et 47 

al. (2013) carried out experiments on a bottom-fixed responding structure (as opposed to a stiff structure) whose characteristics 48 

were similar to those of an idling extra-large wind turbine (i.e. with the blades completely pitched to feather to limit the 49 

aerodynamic loading) and found that breaking waves could lead to extreme accelerations of the nacelle.  50 
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 51 

The main objective of this paper is to examine the process of maximum response of monopile offshore wind turbines under 52 

extreme stochastic sea states, in particular assessing the importance of the second mode of the structure and the characteristics 53 

of the measured excitation. In order to do so, we analyse data from experiments carried out in the Maritime Research Institute 54 

Netherlands (MARIN). The tests were performed within the project Wave Impact on Fixed structures (WiFi JIP). The 55 

characteristics of the model used for the experiment are those of an idling 4 MW bottom-fixed offshore wind turbine mounted 56 

on a monopile. These tests were performed with both a flexible and a stiff model in order to be able to measure the response 57 

and the excitation of the structure.  Here, we focus on the measured excitation and response rather than on the wave kinematics. 58 

A correct understanding of the most important physical effects is an important first step in developing and validating 59 

engineering models which incorporate the relevant nonlinearities in the wave kinematics and in the wave-structure interaction.   60 

 61 

In addition to the response analysis, we examine the phenomenon known as “secondary load cycle”, or SLC,  which appears 62 

as a rapid and high frequency increase of the excitation force, as Grue et al., (1993) described from their experiments. An 63 

occurrence of a SLC (sometime referred to as ‘hydraulic jump’) is highlighted in Figure 2. The SLC typically occurs about one 64 

quarter wave period after the main peak of the excitation force (Grue and Huseby, 2002) and lasts for about 15% of the wave 65 

period (Grue et al., 1993). 66 

 67 

 68 

Figure 2. Occurrence of secondary load cycle, visible on the excitation force (circled in black). 69 

 70 

Occurrences of SLCs have been extensively reported for steep waves in experiments in infinite water depths (see Chaplin et 71 

al., 1997; Grue et al., 1993; Grue and Huseby, 2002; Stansberg et al., 1995; Welch et al., 1999). Grue and Huseby (2002) also 72 

summarized the experimental data from those papers to establish a trend of occurrences of the SLC. One of their conclusions 73 
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is that flow separation effects might reduce the likelihood of SLCs on small cylinders, and they suggest that for experimental 74 

analysis of the SLC the 𝛽-number should be larger than 15 000 (𝛽 = (2𝑅)2 𝜈𝑇⁄ , with 𝑅 the cylinder radius, 𝑇 the local period 75 

of the wave, and 𝜈 the kinematic viscosity of the water). For the events presented in this paper, the longest wave corresponds 76 

to 𝛽 ≈ 19 000 and the Keulegan-Carpenter number is approximately 5, which places us in what they describe as cylinders of 77 

moderate size.  78 

 79 

There has been a lot of work published around the relevance of the SLC for ringing responses. Grue and Huseby (2002) used 80 

the experimental data of the above-mentioned papers to show that SLCs and ringing responses are correlated, and state that 81 

“The secondary load cycle gives an important contribution to build-up of resonant body responses […]”. High speed 82 

photography from the experiments of Chaplin et al. (1997) and Rainey and Chaplin (2003) was used by Rainey (2007) to 83 

conclude that “the rapid loading cycle causing the “ringing” vibration is traceable to local wave breaking around the cylinder 84 

[…]”. However, in a recent study, Paulsen et al. (2014) investigate the SLC numerically by solving the two-phase 85 

incompressible Navier-Stokes equations and conclude that “[…] the secondary load cycle is thus an indicator of strongly 86 

nonlinear flow rather than a direct contributor to the resonant forcing”. This agrees with earlier findings from Krokstad and 87 

Solaas (2000), where a study of the phasing between the SLC and the ringing response led them to conclude that “The hydraulic 88 

jump [i.e. secondary load cycle] has no direct connection with the non-linear behaviour of the ringing force […]”. 89 

 90 

The paper is organized as follows: in section 2 we describe the experimental set up and the models used during the tests and 91 

section 3 gives a simple justification of how to estimate slamming events from video recording. Section 4 presents the analysis 92 

of the response of the flexible structure. Section 5 combines results from the stiff and the flexible structure to establish the link 93 

between secondary load cycle and ringing events. Conclusions of this study are drawn in section 6.  94 

2. Presentation of the model test 95 

The model tests were carried out at 1:30.6 scale, and Froude scaling was applied in order to correctly generate gravity waves. 96 

For the considered model and wave conditions, inertia forces dominate compared to viscous forces (DNV, 2014a; DNV, 2014b; 97 

IEC, 2009) and the effects of the Reynolds number mismatch are not examined here. All the values given in the paper are full-98 

scale unless specified otherwise. 99 

2.1. Test facilities 100 

The tests were performed at the shallow water basin of MARIN, a 220 m long and 15.8 m wide wave flume (model scale) with 101 

constant water depth. One end of the flume was equipped with a piston-type wave-maker, consisting of a flat plate forced into 102 

horizontal translational motion by an electrical actuator. The wave maker includes 2nd order wave generation techniques that 103 

enable a correction for the difference between the oval motion of water particles in shallow/intermediate waters and the 104 
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horizontal motion induced by the flat plate. It is possible to suppress parasitic wave generation using this technique (see 105 

Schäffer, 1996). On the other side of the flume, an absorbing parabolic beach was fitted in order to minimize wave reflection. 106 

Two pits were dug into the ground approximately 65 m (model scale) from the wave maker, and the two models were mounted 107 

onto two 6-component force frames solidly anchored into the pits. Figure 3 shows the layout of the experiment. No aerodynamic 108 

loading was modelled during the tests. 109 

 110 

 111 

Figure 3. Top and side view of the experimental set-up (values are given both in full and model scale). 112 

2.2. Physical models 113 

2.2.1. Flexible model 114 

A flexible model of an extra-large bottom-fixed offshore wind turbine mounted on a monopile was built according to typical 115 

dimensions of a 4 MW turbine. The model is composed of two cylindrical sections of diameters 7 m and 5.5 m, linked via a 116 

conical section (see Figure 4). This gives a diameter at the mean sea level of 5.8 m. The pile goes 10.1 m below seabed at a 117 

water depth of 27 m and extends up to 87 m above the mean sea level, for a total length of 124 m. The rotor-nacelle assembly 118 

is modelled by a mass of 278 tons placed at the top of the tower.  119 

 120 
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 121 

Figure 4. Characteristics of the flexible model (values are given both in full and model scale). 122 

Special emphasis was put on achieving correct 1st and 2nd eigenfrequencies and the 1st mode shape. Table 1 gives the 123 

eigenfrequencies and damping values derived from hammer tests in water (Bunnik et al., 2015), and Figure 5 shows the targeted 124 

and obtained mode shapes of the flexible model. Due to physical restrictions in the laboratory, it is not straightforward to 125 

exactly match all mode shapes. The largest discrepancies occur at hub height which has little influence on the response to 126 

hydrodynamic loads. The obtained deflections at the mean sea level and down to the sea bed are seen to be acceptable.  127 

 128 

The measured 3rd and 4th mode characteristics are also shown in Table 1 but they are not representative of the full-scale wind 129 

turbine. More details about the physical meaning of the 3rd and 4th mode are given in section 4.4. 130 
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 131 

 132 

 133 

Figure 5. Dimensionless mode shapes. Blue colour represents the obtained mode shapes and red colour represents the 134 

targeted ones. 135 

 136 

Table 1. Achieved frequencies and damping ratios of the flexible model (obtained from hammer tests). 137 

 1st mode 2nd mode 3rd mode 4th mode 

Eigenfrequency [Hz] 0.29 1.21 3.11 7.24 

Damping (% of critical) 1.1 1.1 2 2 

 138 

The damping for the first and second modes is found to be 1.1% of the critical damping. For the first mode, this is somewhat 139 

lower than the damping ratios measured on similar idling full-scale wind turbines (1.7 to 2.8% depending on the wind speed, 140 

Damgaard et al., 2013; Damgaard and Andersen, 2012; Shirzadeh et al., 2015). As a result, the obtained responses are expected 141 

to be slightly conservative, but previous research suggests that the damping is more important for the decay of the response 142 

than for the maximum values (Bachynski and Moan, 2014; Schløer et al., 2016). 143 
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2.2.2 Stiff model 144 

A stiff model was also constructed, whose geometry is the same as the flexible model but extended only up to the expected 145 

maximum wave run-up. The objective of having a non-responding model was to be able to measure the hydrodynamic 146 

excitation.  147 

 148 

Ideally, the 1st eigenfrequency of the stiff model should be as high as possible, such that it responds as little as possible to the 149 

hydrodynamic loading. The obtained fundamental eigenfrequency was 1.8 Hz (full-scale value). Figure 6 shows the smoothed 150 

spectrum of the measured wave elevation of one of the studied sea states (with a spectral peak period TP = 10 s, see section 151 

2.3). The wave spectrum does not contain significant energy at or above 0.4 Hz, i.e. one-third of the eigenfrequency of the stiff 152 

model, so 2nd and 3rd order excitation loads are not expected to excite significant response.  153 

 154 

Figure 6. Example of an incoming wave spectrum. 155 

During the tests, it was observed that the stiff model was nonetheless responding at times in its 1st mode. The loads measured 156 

on the stiff model can therefore not be taken as the excitation loads because they contain the dynamic amplification of the 1st 157 

mode of the structure. In order to remove the response from the stiff model from the measured response and keep only the 158 

excitation loads, a low-pass 6th order Butterworth filter was applied with a cut-off frequency at 1.2 Hz. This simple technique 159 

brings a major limitation: loads from breaking waves typically have very short durations, so by removing high frequencies 160 

from the excitation loads, the load contribution from breaking waves is potentially removed as well. The data from the stiff 161 

model therefore cannot be used to study slamming loads, but it can be used to examine 2nd and 3rd order loads.  162 

 163 
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2.2.3 Data acquisition 164 

Foundation loads: Both models were placed on a 6 component measurement frame that enabled recording of forces and 165 

moments at the seabed. 166 

Wave probes: 4 resistance-type wave probes were placed around the models to measure the wave elevation. One of the wave 167 

probes (marked with a red cross in Figure 3) was placed between the 2 models, at 2.4 m (model scale) from both of them 168 

(corresponding to around 13 diameters). It is expected that this wave probe is far enough from the models to not be affected by 169 

radiated and diffracted waves. 170 

Video recording: Most sea states were recorded with two above-water cameras, one for each model. These video recordings 171 

are used to visually check whether a wave has broken when a large response of the structure was recorded (see section 3). 172 

Accelerations: both models were fitted with accelerometers along their length. In the present study, those accelerometers were 173 

used to confirm that the flexible monopile only experienced significant displacement in the wave direction and to derive its 174 

mode shapes. 175 

 176 

The wave elevations, loads and accelerations were recorded at a sampling rate of 200 Hz (model scale value), resulting in a 177 

time step of 5 ms in model scale, or 0.028 s in full scale. 178 

2.3 Sea states 179 

During the experiments, different irregular sea states were generated following a JONSWAP spectrum (Hasselmann et al., 180 

1973). The JONSWAP spectrum describes sea conditions that are likely to occur for severe sea states in the North Sea and is 181 

typically recommended by the standards for ULS analysis (DNV, 2014a; DNV, 2014b; IEC, 2009). Table 2 shows the sea 182 

states that are analysed in this paper. For each sea state, only one realization was performed. Each sea state is characterized by 183 

a spectral peak period 𝑇𝑃 and a significant wave height 𝐻𝑆. All sea states were realized with a spectral peak enhancement factor 184 

of 3.3.  185 

 186 

We define an average wave steepness 𝑠𝑃 for irregular seas based on (DNV, 2014b): 187 

𝑠𝑃 =
𝑘𝑃𝐻𝑠

2𝜋
 (1) 188 

where 𝑘𝑃 is an average wave number obtained from 𝑇𝑃 from the dispersion relationship (DNV, 2014b uses a linear dispersion 189 

relationship but we here apply eq (1) in Kirby and Dalrymple, 1986, which is based on 2nd order theory). For the analysed 190 

spectral peak periods, at the considered water depths, sea states with a steepness larger than 0.059 are not possible (DNV, 191 

2014b). The average steepnesses used in this paper are well below this limit. 192 

 193 
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In addition, we calculate an averaged Ursell parameter 𝑈𝑟 for the presented sea states. The Ursell parameter is typically defined 194 

for regular waves, but here we use the method given by Stansberg (2011) to calculate an average value for irregular seas: 195 

𝑈𝑟 =  
𝑘𝑝𝐻𝑠

2(𝑘𝑝ℎ)
3 (2) 196 

 197 

where ℎ is the water depth. The average Ursell numbers thus calculated are well below the classical limit of 0.33, above which 198 

2nd order wave kinematic models are no longer valid and fully non-linear models are suggested. 199 

 200 

Table 2. Selected sea states. 201 

𝐻𝑆 𝑇𝑃 𝑠𝑃 𝑈𝑟 

5.89 10 0.043 0.070 

6.18 10 0.045 0.074 

5.81 10.93 0.038 0.088 

 202 

To give an indication of what these sea states represent in terms of return period, the 𝐻𝑆-𝑇𝑃 graph based on the metocean 203 

conditions at the Dogger Bank Creyke Beck B site is given in Figure 7 (see Frimann-Dahl, 2015). The yellow and blue lines 204 

correspond to 1-year and 5-year return period sea states, respectively, and the sea states are indicated with asterisks. More sea 205 

states than the ones analysed in this paper were run, but they are not presented here as they did not produce large responses of 206 

the structure. 207 

 208 

Figure 7. Contour lines for the metocean conditions at the Dogger Bank Creyke Beck B site. The asterisks represent 209 

the studied sea states. 210 
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When carrying out ULS analysis, the standards commonly used by the industry in the North Sea (DNV, 2014a; DNV, 2014b; 211 

IEC, 2009) recommend assessing sea states corresponding to 50-year return storms. The sea states considered in this paper 212 

correspond to generally much lower sea states, as illustrated by Figure 7, which is a limitation of this study. More extreme sea 213 

states were later tested with the same experimental set-up and will be included in future work. 214 

It should also be noted that the wind conditions for the analysed sea states have not been determined. For the present paper and 215 

in the experiments, the turbine is assumed to be idling, which is likely not to be the case under the studied wave conditions. On 216 

an idling turbine, aerodynamic damping is usually small compared to an operating turbine  (Shirzadeh et al., 2015) which 217 

makes 1st mode oscillations due to ringing decay slower than on an operating turbine (Bachynski and Moan, 2014; Schløer et 218 

al., 2016). This means that the ringing events observed during the experiments would decay faster if the turbine was operating. 219 

3 Use of video recording to detect slamming on the flexible structure 220 

Loads from breaking waves have been a major concern in the design of offshore structures over the past decades. We define 221 

‘slamming loads’ for this paper using the explanation provided by Sarpkaya (1979): we consider a cylinder of radius 𝑅 fixed 222 

to the sea bottom that we divide vertically into strips of length 𝑑𝑧. We assume now that a vertical wall of incompressible water 223 

parallel to the cylinder with a control volume of constant mass per unit length 𝑀 approaches a strip at a velocity 𝑢0, the mass 224 

of water has then a horizontal momentum per unit length 𝑝 = 𝑀𝑢0. The duration of the impact being very short (Faltinsen, 225 

1990; Sarpkaya, 2010) compared to the eigenperiod of the structure, it is reasonable to assume that, during the impact, no 226 

significant response will occur (according to classical structural theory, see for example Biggs, 1964) and that the cylinder will 227 

thus behave as a stiff structure. If we neglect nonconservative forces, the momentum of the water will remain constant during 228 

penetration. After the breaking wave has impacted the structure, because the fluid is in motion in the vicinity of the cylinder, a 229 

positive 2D added-mass term 𝑚𝑎 appears, thus reducing the velocity to 𝑢 and giving a new equation for the momentum 𝑝 =230 

𝑀𝑢0 = (𝑀 + 𝑚𝑎)𝑢. Here 𝑚𝑎 is taken as the high-frequency asymptote for the added mass (Faltinsen, 1990). Figure 8 231 

illustrates the terms defined here, with the expression of the momentum 𝑝 before and after impact. We can calculate the 232 

horizontal force using Newton’s second law:  233 

 234 

𝑑𝐹 =
𝑑𝑝

𝑑𝑡
𝑑𝑧 = ((𝑚𝑎 + 𝑀)

𝑑𝑢

𝑑𝑡
+ 𝑢

𝑑𝑚𝑎

𝑑𝑡
) 𝑑𝑧 (3) 235 

 236 

The first term of the above equation, proportional to the acceleration of the fluid, is the classical added mass load (see for 237 

example Faltinsen, 1990). The second term incorporating the time derivative of the added mass is the so-called slamming load 238 

𝑑𝐹𝑠𝑙𝑎𝑚. If the latter is non-negligible compared to the former, the event is considered a slamming event. 239 

 240 
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Figure 8. Breaking wave on circular cylinder before impact (left) and after impact (right). 241 

 242 

 243 

This derivation provides a good mathematical understanding of slamming but is of little use in practice because the evaluation 244 

of the time-varying added mass is rather complex (Sarpkaya, 2010). However, it provides a way to visually check whether 245 

slamming loads occur. In order to have a large slamming force on a cylinder strip, we need to have a large velocity 𝑢 in the 246 

horizontal direction and a rapidly changing two-dimensional added mass in the horizontal plane. For the considered monopile, 247 

the most suitable situation for slamming loads to occur is when a breaking wave impacts on the cylinder. 248 

 249 

Under these conditions, most of the momentum of the water in motion will be in the horizontal direction. When the water 250 

particles impact the cylinder, they are restricted in the horizontal direction by the incoming water on the back side and by the 251 

cylinder itself on the front side. In order to conserve the total momentum, these particles must be deflected and ejected upwards 252 

and sideways, which gives a good visual indication of whether a slamming load has occurred. In the present paper, video 253 

recordings of the experiments are used to check whether slamming has occurred using the above hypothesis. Figure 10a,b show 254 

two such events. 255 

 256 
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4 Maximum response analysis 257 

This section deals with the response of the flexible model and only data measured on this model is used here. Here and in the 258 

rest of the paper, the term ‘response’ corresponds to the bending moment of the flexible model taken at the seabed. A positive 259 

bending moment corresponds to the structure being deflected in the direction of the wave propagation. Since the amplitude of 260 

the moment is what is relevant to the design of a monopile rather than its direction, we compare absolute values of those 261 

moments. We therefore refer to ‘maximum’ or ‘highest’ moments even when the moment is negative.  262 

 263 

In order to study the influence of different modes on the response of the structure, the measured bending moment in the 264 

frequency domain was split into responses around different frequencies corresponding to the eigenfrequencies of the system. 265 

Figure 9 below is the result of such decomposition performed on one of the events studied in this paper. The sum of the quasi-266 

static, 1st and 2nd mode responses equal the total response. This figure enables us to assess the relative importance of the 267 

responses of different modes of the structure. 268 

 269 

 270 

Figure 9. Example of decomposition of the response around the eigenfrequencies of the structure. 271 

4.1 Maximum responses 272 

In this section, the two events with the largest responses of all three sea states (named event 1 and event 2 and shown in Figure 273 

10a,b respectively) are analysed in detail. Table 3 gives the characteristics of these two events. The trough-to-trough period is 274 

measured for each event and used to calculate the wave number 𝑘 based on 2nd order theory (calculated with eq (1) in Kirby 275 

and Dalrymple, 1986), and 𝜂𝑚 is the maximum wave elevation of the given event. The trough-to-trough period rather than the 276 
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up- or down-crossing period was chosen because this type of wave is typically approximated by embedded stream function 277 

waves in design practices. The embedding process commonly uses the trough-to-trough period (Rainey and Camp, 2007). 278 

 279 

Figure 10 shows these two events side to side. The figures from top to bottom correspond to the measured response and wave 280 

elevation, the frequency decomposition (as shown in Figure 9), the continuous wavelet transform (cwt) of the measured 281 

response, and snapshots of the cylinder at the time of wave impact. Responses from the 3rd and 4th modes of the structure have 282 

been removed by low-pass filtering, see section 4.4. Even though the contribution of these modes has been removed, we still 283 

refer to this filtered response as ‘total response’. 284 

 285 

Table 3. Events with maximum bending moments. 286 

Event Sea state Max [𝑀𝑁𝑚] Time [𝑠] Period [𝑠] 𝜂𝑚 [𝑚] 𝑘 [𝑚−1] 

1 𝐻𝑆 = 5.89 𝑚, 𝑇𝑃 = 10𝑠  -145 8848 7.80 6.61 0.0599 

2 𝐻𝑆 = 6.18 𝑚, 𝑇𝑃 = 10 𝑠 -130 6246 8.13 7.57 0.0550 

 287 

For these events, the maximum response is measured when a steep and breaking wave passes the structure (see Figure 10c,d). 288 

The wave excites the 1st mode of the structure, which starts oscillating and decays in similar fashion to the ringing phenomenon 289 

described in section 1.  As shown in Figure 10e,f , the structure also oscillates in its 2nd mode, but in a different way than the 290 

1st mode response: the 2nd mode resonant oscillations occur suddenly after the breaking wave has passed, whereas the 1st mode 291 

response experiences a build-up over one wave period and then slowly decays. The influence of the second mode is studied in 292 

more detail in the following section. 293 

 294 

The cwt plots of Figure 10g,h also show that the structure responds at the frequency of the wave (about 0.1 Hz for the selected 295 

events) and that its 1st and 2nd modes are triggered (respectively at 0.29 and 1.21 Hz). The snapshots of Figure 10a,b indicate 296 

that the wave breaks at the cylinder. As explained in the previous section, the water particle ejection visible in the photographs 297 

is characteristic of slamming events.  298 

  299 
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 300 

 301 

Event 1 

 
a. Snapshot of event 1 

Event 2 

 
b. Snapshot of event 2 

 
c. Response and wave elevation of event 1 

 
d. Response and wave elevation of event 2 

 
e. Response decomposition of event 1 

 
f. Response decomposition of event 2 

 
g. Cwt of event 1 

 
h. Cwt of event 2 

Figure 10. Characteristics of the largest and 2nd largest measured responses, respectively Event 1 and 2. 302 

 303 
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In addition to the two events shown in Figure 10, the 21 events with the largest responses were analysed. For all events it was 304 

found that the 1st and 2nd mode responses were triggered after the passage of a steep and breaking wave, as described above. 305 

The characteristics of these 21 events are given in Table 5. 306 

 307 

Previous work done by Suja-Thauvin et al. (2016) and further developed by Suja-Thauvin and Krokstad (2016), showed that 308 

the first mode response of a similar structure can be explained solely by 2nd and 3rd order hydrodynamic excitation loads, 309 

without the need to account for slamming loads. We apply their findings to the present study to conclude that the ringing 310 

response observed for large events is mainly due to 2nd and 3rd order hydrodynamic loads and not to slamming loads. However, 311 

as their work is done on a one degree-of-freedom system, it does not include any consideration of the 2nd mode of the structure.  312 

4.2 Contributions to the total response 313 

In this section, we analyze the contribution of the different modes of the structure to the total response. To do so, we decompose 314 

the response as shown in Figure 9 and Figure 10c,d and evaluate the value of the response at different modes at the instant of 315 

maximum total response. Their relative importance for events 1 and 2 is given in Table 4. Moments (here and in the rest of the 316 

paper) are given within an accuracy of 3%. 317 

 318 

Table 4. Different contributions to the maximum load. 319 

Event Total moment [MNm] % quasi-static % 1st mode % 2nd mode 

1 -145 41.1 41.6 17.2 

2 -130 48.3 33.2 18.5 

 320 

Figure 11 offers a graphical interpretation of table 4 for the 21 largest events. This figure shows the different contributions to 321 

the total response: quasi-static response accounts for between 40 and 60%, 1st mode response accounts for between 30 and 40% 322 

and the second mode contributes up to 20%. The numerical values for each event are given in Table 5. 323 
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 324 

 325 

Figure 11. Decomposition of the largest responses into quasi-static, 1st and 2nd mode response. The red circles 326 

correspond to events where no secondary load cycle was observed (see section 5). 327 

These observations suggest, as was also found in de Ridder et al. (2011), that not taking into account the 2nd mode of the 328 

structure when assessing ULS leads to underestimation of the total response. For these 21 events, we also note that the 329 

maximum response is negative, i.e. it corresponds to the structure moving against the wave propagation direction.  330 

  331 
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 332 

Table 5. Characteristics of the 21 highest recorded responses. 𝑻, 𝜼𝒎, 𝑯 and 𝒌 correspond to the trough-to-trough 333 

wave period, the crest elevation, the wave height and the wave number, respectively. 334 

Event 

Max 

[𝑀𝑁𝑚] 

Contribution to total moment [%] 

Time [𝑠] 
Sea state 

HS - TP 

𝑇 [s] 𝜂𝑚 [𝑚] 𝐻 [𝑚] 𝑘 [𝑚−1] 
Quasi-static 1st mode 2nd mode 

1 -145 41.1 41.6 17.2 8848 5.89 m – 10 s 7.82 6.61 9.32 0.0599 

2 -130 48.3 33.2 18.5 6246 6.18 m – 10 s 8.15 7.57 10.6 0.055 

3 -127 51.1 35.1 13.7 1046 5.89 m – 10 s 8.76 8.06 11.96 0.0492 

4 -111 52.2 37.6 10.2 3132 6.18 m – 10 s 7.24 6.65 9.02 0.0664 

5 -110 48.8 36.7 14.5 6962 6.18 m – 10 s 9.34 6.33 9.67 0.0474 

6 -103 49.2 37.3 13.5 10688 5.89 m – 10 s 7.57 5.85 8.45 0.0642 

7 -98.2 60.2 34.0 5.8 340 6.18 m – 10 s 8.62 6.43 9.53 0.0527 

8 -97.0 56.8 35.5 7.7 6961 5.89 m – 10 s 9.29 7.4 10.23 0.0465 

9 -95.7 59.2 31.4 9.4 4217 5.81 m – 10.93 s 7.96 6.52 8.57 0.0587 

10 -88.6 51.8 46.1 2.1 6482 5.89 m – 10 s 8.82 6.12 9.51 0.0516 

11 -88.6 61.3 32.9 5.8 8748 5.89 m – 10 s 7.63 5.67 8.3 0.064 

12 -86.3 47.5 42.1 10.4 4514 5.81 m – 10.93 s 10.59 6 8.64 0.0405 

13 -86.0 58.2 33.0 8.9 6685 6.18 m – 10 s 7.96 5.83 8.01 0.0599 

14 -85.7 58.2 34.9 6.9 5293 6.18 m – 10 s 8.71 7.08 10.06 0.0511 

15 -85.1 67.8 29.6 2.6 6245 5.89 m – 10 s 8.71 6.57 10.09 0.0518 

16 -83.6 61.8 30.6 7.6 6562 5.89 m – 10 s 8.46 5.79 8.53 0.0551 

17 -83.2 60.2 35.1 4.8 8583 5.89 m – 10 s 7.43 7 9.54 0.0633 

18 -82.5 48.7 39.9 11.4 8616 5.81 m – 10.93 s 10.14 5.69 7.74 0.0431 

19 -81.6 60.6 33.3 6.1 2304 6.18 m – 10 s 7.13 4.67 6.5 0.073 

20 -80.9 60.2 30.8 9.0 9499 5.89 m – 10 s 8.12 6.09 8.82 0.0578 

21 -80.1 70.5 267.0 2.5 11492 5.81 m – 10.93 s 10.06 7.18 10.41 0.0421 

 335 

It should be noted that Table 5 only shows the characteristics of the individual waves that occur at the same time as the 336 

maximum response. However, a wave with a given height could produce less response than a wave with smaller height if, for 337 

the latter case, the structure was already responding to a previous wave. This “memory effect” is relevant for dynamic systems 338 
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with low damping. Peng et al. (2013) showed that wave groups could produce larger responses than individual regular waves 339 

with the same characteristics as the largest wave of the wave group. 340 

4.3 Physics of the second mode response 341 

Figure 12 shows the full time series of the 2nd mode response of sea state HS = 6.18 m and TP = 10 s. In this plot, independent 342 

peak occurrences of 2nd mode response higher than half of the standard deviation of the quasi-static response have been marked 343 

with a red dot. From comparison with the video recordings, it appears that these large second mode responses only occur when 344 

a breaking wave hits the cylinder. Indeed, as pointed out by Hallowell et al. (2015), loads from breaking waves have two 345 

characteristics that make them especially relevant when analysing 2nd mode motion: 346 

- They have a very short duration (as shown for instance by Wienke and Oumeraci, 2005) compared to 1st, 2nd or 3rd 347 

order loads (Suja-Thauvin and Krokstad, 2016). With such a duration, according to classical structure theory (see for 348 

example Biggs, 1964), these loads have the potential to trigger significant 2nd mode response. 349 

- They are concentrated around the free water surface, where 2nd mode shape displacement is the highest (see Figure 350 

5) whereas loads from non-breaking waves are distributed between the free surface and the sea bed. 351 

 352 

 353 

Figure 12. Response of the structure in its 2nd mode. A zoom of the 2nd mode response of event 1 is also shown. The 354 

red line corresponds to half of the standard deviation of the quasi-static response. 355 

 356 
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This visual check was performed for all sea states mentioned in this paper, and it was consistently found that responses of the 357 

2nd mode above the selected threshold corresponded to breaking wave events. We therefore suggest that large 2nd mode 358 

responses only occur when a wave breaks at the cylinder. However, it should be noted that not all breaking wave events produce 359 

such a large response in the 2nd mode. 360 

 361 

The empirical cumulative distribution function of the 2nd mode response is given in Figure 13 in terms of exceedance 362 

probability. Exceedance probabilities for total and the quasi-static response are also shown for comparison. There is a 363 

qualitative difference between the 2nd mode response and the other responses: for the main part of the observations (for an 364 

exceedance probability higher than about 3% for the most severe sea states or even than 0.5% for the mildest sea state), the 365 

probability of exceedance curve of the 2nd mode response follows a linear variation (in the logarithmic plot). For lower 366 

exceedance probabilities, the 2nd mode response significantly increases. This sudden change in the slope of the probability of 367 

exceedance curve is not visible for the total or the quasi-static response. 368 

 369 

In order to explain this observation we compare the 2nd mode response to the quasi-static response. A given wave produces a 370 

quasi-static response proportional to the wave particle acceleration for an inertia-dominated structure such as the one presented 371 

here. The quasi-static response is therefore roughly linear in terms of wave steepness. The 2nd mode, however, is only triggered 372 

by breaking waves, which means that below a certain steepness threshold, no 2nd mode response is expected, but past this 373 

threshold the 2nd mode gets excited and large responses will occur. This confirms the non-linear behaviour of 2nd mode response 374 

and shows that there will be a large number of outliers in the peak distribution. 375 

 376 

In addition, the excess kurtosis gives a good indicator of the behaviour of the outliers of a given distribution. The excess kurtosis 377 

(calculated for each sea state using all data points) is calculated by Matlab® with the following formula: 378 

 379 

𝑘1 =
1

𝑛
∑ (𝑥𝑖−�̅�)4𝑛

𝑖=1

(
1

𝑛
∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1 )
2 − 3 (4) 380 

 381 

where 𝑛 is the number of samples, 𝑥 is the set of data points and �̅� is the average of 𝑥. A large excess kurtosis means that the 382 

distribution produces a large number of outliers and that their value will be more extreme than for a normal distribution. For 383 

the presented sea states, the 2nd mode response has a very large excess kurtosis compared to the total and quasi-static responses, 384 

as shown in Table 6. This confirms what was suggested in the previous paragraph, i.e. that the extremes of the 2nd mode 385 

response lie far from the rest of observations.  386 

 387 

 388 



 

21 

 

 389 

 390 

Table 6. Excess kurtosis of the measured wave (𝑾𝒎𝒆𝒂𝒔), of the total (𝑴𝒕𝒐𝒕), quasi-static (𝑴𝟎) 1st mode (𝑴𝟏) and 2nd 391 

mode (𝑴𝟐) moments. 392 

 𝑊𝑚𝑒𝑎𝑠  𝑀𝑡𝑜𝑡 𝑀0 𝑀1 𝑀2 

𝐻𝑆 = 6.18 𝑚,  𝑇𝑃 = 10 𝑠 -0.0543 0.787 0.0667 3.83 190 

𝐻𝑆 = 5.89 𝑚,  𝑇𝑃 = 10 𝑠 0.0538 0.915 0.185 4.91 147 

𝐻𝑆 = 5.81 𝑚,  𝑇𝑃 = 10.93 𝑠 0.0020 0.370 0.0704 1.10 33.3 

 393 

 394 
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Figure 13. Empirical exceedance probability curve for response moments. 395 
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4.4 3rd and 4th modes 396 

The previous analysis considered measured responses after filtering out the 3rd and 4th mode. However, these modes are in fact 397 

present and they contribute to the total measured response. As exemplified in Figure 14 (a zoom of event 2), structural modes 398 

higher than the 2nd mode influence the response. These modes decay quickly after the slamming impact.  399 

 400 

 401 

Figure 14. Zoom of the response of event 2. The difference between the two curves is due to modes higher than 2nd. 402 

 403 

Figure 15 shows a zoom of the wavelet plot for event 2 (the scaling of the colours has been changed compared to Figure 10 for 404 

clarity). This plot shows that the 3rd and 4th modes, respectively at 3.11 and 7.24 Hz are also excited by the breaking wave but 405 

that their influence is limited compared to the 2nd mode response at 1.21 Hz.  406 

 407 

Figure 15. Zoom of the cwt plot of the unfiltered measured response of event 2. 408 
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The 3rd and 4th modes on the model were not tuned to fit the modes of a full-scale wind turbine, so the response at these modes 409 

is not representative of that of a full-scale wind turbine. Further analysis of the influence of higher modes is needed to assess 410 

their influence on the total response of an offshore wind turbine, and whether not including 3rd and 4th modes might lead to 411 

non-conservative results. 412 

 413 

5 Secondary load cycle analysis 414 

In this section we use data measured on the stiff model and on the flexible model. Both models were in the basin at the same 415 

time and experienced the same sea states. 416 

5.1 Occurrences in the present study 417 

The secondary load cycle (SLC) appears as a rapid and high-frequency variation in the excitation force. Figure 16 shows an 418 

occurrence of a SLC together with the definitions of its magnitude (𝐹𝑆𝐿𝐶) and the peak-to-peak force (𝐹𝑃𝑃). The SLC ratio is 419 

defined as 𝐹𝑆𝐿𝐶/𝐹𝑃𝑃 (Grue and Huseby, 2002). 420 

 421 

 422 

Figure 16. Example of a secondary load cycle occurrence with the definitions of the magnitude and 423 

the peak-to-peak force. 424 

 425 

The occurrences of SLCs are found by analysing the force measured by the stiff structure. As explained in section 2.2.2, this 426 

measured force is first low-pass filtered at a frequency of 1.2 Hz to remove the response of the structure, giving the time-series 427 
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obtained in Figure 16. Grue et al. (1993) state that the SLC has a duration of about 15% of the wave period. For the present 428 

experiments, this corresponds to durations of about 1.5 s. The cut-off frequency is about twice the expected frequency of the 429 

SLC; it is therefore expected that the SLC is not removed or significantly altered by the filtering. A visual check of the excitation 430 

force time series is performed on each of the events selected hereafter to ensure they correspond to SLCs.  431 

 432 

For each of the three sea states, the 25 occurrences of SLCs with the highest magnitudes are kept and plotted in the 𝑘𝑅 − 𝑘𝜂𝑚 433 

plane in Figure 17. Our observations of SLCs are within the same range as those reported by Grue and Huseby, (2002) where 434 

they report SLCs for 0.1 < 𝑘𝑅 < 0.21 and 0.2 < 𝑘𝜂𝑚 < 0.33. They analysed the SLC phenomenon based on experiments 435 

carried out in deep water, whereas the experiments of the present paper were performed in finite water. It should be noted that 436 

due to finite water, we observe SLC for waves steeper than those reported in Grue and Huseby (2002). This is the only 437 

noticeable difference between SLC occurrences in deep water and finite water. 438 

  439 

 440 

 441 

Figure 17. Occurrences of secondary load cycle in the 𝒌𝑹 - 𝒌𝜼𝒎 plane. The 25 largest occurrences (i.e. with highest 442 

magnitudes) of each of the 3 sea states are kept. 443 

 444 

5.2 Link with maximum responses 445 

The correlation between SLC and ringing responses was examined in the present experiments. For each of the 75 occurrences, 446 

the response of the structure in its 1st mode is analysed: the maximum of the 1st mode response (measured on the flexible 447 
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structure) occurring immediately after the SLC is normalized by dividing it by the excitation moment (measured on the stiff 448 

structure). The obtained result is plotted as a function of the SLC ratio in Figure 18. 449 

 450 

Figure 18 shows that the highest 1st mode amplifications are not provoked by the largest SLC ratios. Breaking waves usually 451 

provoke large 1st mode amplification, but as explained previously, there is no causality link between the two phenomena: both 452 

are a consequence of a wave being very steep.  453 

 454 

 455 

Figure 18. Correlation between the secondary load cycle ratio and the 1st mode amplification. The 25 largest 456 

occurrences (i.e. with highest magnitudes) of each of the 3 sea states are kept. 457 

Another correlation that was explored is the time of occurrence of the SLC against the 1st mode response amplification. The 458 

time of occurrence is defined as the time between the maximum of the excitation force and the maximum of the SLC, and is 459 

normalized by the wave period. Again, there is no clear trend between the time of occurrence and the 1st mode amplification. 460 

 461 
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 462 

Figure 19. Correlation between the time of occurrence of the secondary load cycle and the 1st mode amplification. The 463 

25 largest occurrences (i.e. with highest magnitudes) of each of the 3 sea states are kept. 464 

In addition, some events did not present a SLC but a ringing type of response was still visible in the bending moment (these 465 

events are marked with a red circle in Figure 11). Figure 20 shows events 3 and 4 (respectively 3rd and 4th highest total 466 

responses) in detail. No SLC was seen in the measured excitation for either event. However, the lower plots of Figure 20 clearly 467 

show a resonant response of the structure around its first eigenfrequency, characteristic of ringing responses. 468 

  

Figure 20. Large response events with no visible secondary load cycle. The response is measured on the flexible model 469 

while the excitation is measured on the stiff one. 470 

 471 

These observations suggest that in the present experiment, the SLC is not a necessary load attribute to generate ringing response. 472 

This statement has important implications in terms of what is necessary to accurately model the response of offshore wind 473 

turbines in ULS conditions. Faltinsen et al. (1995) and Malenica and Molin (1995) developed third-order hydrodynamic models 474 

based on a perturbation approach (with the wave steepness as the perturbation parameter) in order to model ringing events. 475 

These models, as was shown in Paulsen et al. (2014), cannot depict the SLC because it is a phenomenon of even higher order. 476 
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However, as discussed in this paragraph, the SLC is not required in the excitation force to produce ringing responses, meaning 477 

that these models that cannot predict SLCs can still potentially predict ringing responses, as seen for deep water (Gaidai and 478 

Krokstad, 2014).  479 

 480 

6 Conclusions 481 

Experimental data of a bottom-fixed offshore wind turbine mounted on a monopile and subjected to extreme weather conditions 482 

in finite water are analysed in this paper. Two models of the support structure are presented: one is a fully flexible model whose 483 

1st and 2nd eigenfrequencies and 1st mode shape were tuned to fit those of a full scale 4 MW wind turbine and the other one is 484 

a stiff model with the same dimensions as the flexible model. Both models were in the tank at the same time and therefore 485 

experienced the same incoming waves. 486 

 487 

The flexible model is used to study the bending moment response at the seabed of the structure in ULS conditions. Over the 488 

whole set of experiments, the 21 events with largest responses are analysed and the bending moment is decomposed into 489 

response around the 2nd eigenfrequency, response around the 1st eigenfrequency (which highlights ringing responses) and quasi-490 

static response. It is found that for every event, in addition to the quasi-static response, the structure experiences ringing and 491 

that its second mode is triggered, contributing to up to 20% of the total response. In line with what was found in Suja-Thauvin 492 

and Krokstad (2016) and by comparing the bending moment time series with video recordings, the conjecture is made that 493 

ringing responses are induced by 2nd and 3rd order hydrodynamic loads and that the 2nd mode is excited by slamming loads. 494 

The 2nd mode response exhibits behaviour qualitatively different than the total response or the quasi-static response. By 495 

analysing the excess kurtoses of the 2nd mode response of different sea states and the exceedance probability, it is shown that 496 

there are more outliers with more extreme values in the 2nd mode response than in the total or quasi-static response. 497 

 498 

The excitation force is obtained by measuring the force at the stiff structure. This enables study of the phenomenon known as 499 

secondary load cycle, where shortly after the passage of a steep wave, a high frequency increase of the excitation force occurs. 500 

It has been conjectured in previous work that the secondary load cycle could be a cause of ringing responses. In the present 501 

paper, however, no correlation is found between the characteristics of secondary load cycles and ringing responses. 502 

Furthermore, some events with a strong ringing response do not present a secondary load cycle in the excitation force, indicating 503 

that the secondary load cycle is not a necessary load attribute to trigger ringing responses. 504 

 505 

There are several important limitations to the present work, which is based on a limited number of experimental realizations at 506 

1:30 scale. In addition to the limitations and uncertainties associated with small-scale testing and wave generation, this study 507 

only deals with one pair of values for 1st and 2nd eigenfrequencies. With the current trend of rotors getting larger (Ho et al., 508 
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2016), it is expected that the mass and moment of inertia on top of the tower will increase differently, thus changing the ratio 509 

of 1st over 2nd eigenfrequency. This could potentially change the relative contributions of the 1st and 2nd mode responses to the 510 

total response and therefore modify Figure 11. A more detailed assessment of this phenomenon is left for further studies. The 511 

presence of the 3rd and 4th mode in the response, and the use of visual detection of slamming also represent limitations in the 512 

present work. Furthermore, the sea states considered here are not associated with a 50-year return period. As such, the 513 

considered conditions are not necessarily representative of typical ULS assessment, and the assumption of an idling turbine 514 

may not be correct. Finally, memory effects (i.e. the fact that the response to one wave depends on the response to previous 515 

waves) are not studied in this paper. As explained in section 4.2, wave groups can produce larger responses than individual 516 

regular waves with the same characteristics as the largest wave of the wave group. 517 

 518 

This study explains the mechanism of large responses in ULS conditions for offshore wind turbines and shows the necessity of 519 

having both a non-linear hydrodynamic load model and a slamming model for the excitation loads, and at least 1st and 2nd 520 

structural modes accurately represented. The finite water conditions make it likely that more and steeper breaking waves will 521 

occur at the support structure of the turbine compared to deep water. In order to account for the phenomena described in this 522 

paper, a common practice in the industry is to simulate the wave kinematics using the stream function theory (Rienecker and 523 

Fenton, 1981) and adding a slamming model on top of it. This model will be studied in depth in future work. 524 

 525 
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