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Abstract

Experimental data and numerical simulations of tensile tests on four different aluminium alloys are used to investigate the effect of
loading path on ductile fracture. Micromechanical studies are undertaken by the use of axisymmetric unit cells. Stress triaxiality
is extracted from the critical element in numerical simulations of smooth tensile tests and used as input in the subsequent cell
simulations. The stress triaxiality evolution of the unit cell is prescribed as either i) strain-averaged values or ii) continuous functions
of equivalent strain in order to examine possible effects of loading path on ductile fracture properties. Results from these simulations
clearly demonstrate the importance of non-proportional loading paths on the predicted ductility of the aluminium alloys used in this
investigation. The micromechanical model is finally used to estimate initial porosity values such that failure strain values from the
tensile experiments are replicated in unit cell simulations. Both the conventional J2 flow theory and the Gurson-Tvergaard porous
plasticity model are used in simulations of smooth and notched tensile specimens, and the results are compared with experimental
data. Simulation results for the smooth tensile specimens are in good correspondence with experiments for both descriptions of
plastic flow. Simulations of notched tensile specimens with the J2 model are shown to overestimate the tensile stress. This deficiency
is not remedied by the inherent softening behaviour of the Gurson-Tvergaard model. However, the Gurson-Tvergaard model is seen
to predict the ductility quite well for all the tensile specimens and aluminium alloys examined in this paper.

Keywords: Ductile fracture; Non-proportional loading; Aluminium alloys; Micromechanics; Unit cell modelling;
Gurson-Tvergaard model

1. Introduction

Material ductility is often decisive for practical applications, such as energy absorbing structures, where structural
components are deformed extensively leading to large plastic deformations. However, the material should not be
severely damaged or fracture during these deformation processes, which must be accounted for in the design phase of
such structures. Predictive descriptions of ductile failure are of utmost importance in this regard.

Ductile fracture of metal alloys has been subject to many studies over the past decades and is known to occur
by nucleation, growth and coalescence of voids. The voids either pre-exist within the material (Toda et al., 2014) or
nucleate at material inclusions due to decohesion of the matrix-particle interface or particle cracking (Maire et al.,
2011). Proper modelling of the ductile damage process on the structural level requires consideration of the underlying
mechanisms on a microscopic level. Damage models and associated failure criteria have been proposed (see e.g.
Cockcroft and Latham (1968); Johnson and Cook (1985)) throughout the vast literature on ductile failure. Another
approach is to use constitutive models that somehow reflect the microstructural evolution during plastic deformation. A
widely used and reputable model was proposed by Gurson (1977) and later modified by Tvergaard (1981), the latter
being referred to as the Gurson-Tvergaard (GT) model.

Micromechanical finite element models are frequently used to investigate ductile fracture mechanisms since the early
numerical unit cell studies by Needleman (1972) and Tvergaard (1981, 1982). This modelling framework is attractive
due to its relatively simple formulation and ability to examine the underlying failure mechanisms. Moreover, these
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models may be used for homogenization purposes and to calibrate constitutive relations that account for microstructural
parameters, such as the GT model. A great number of studies have been devoted to calibrate porous plasticity models
based on results from micromechanical simulations. Faleskog et al. (1998) employed unit cell models to fine-tune the
qi parameters of the GT model. Kim et al. (2004) and Bomarito and Warner (2015) have addressed the applicability of
a homogenized material model in situations where the loading path varies with deformation. These loading paths are
referred to as non-proportional.

Numerous numerical investigations have been carried out over the past few decades to study the influence of
various microstructural parameters on plastic flow localization and ductile fracture properties. Void shape effects were
investigated by, among other authors, Søvik and Thaulow (1997) and Steglich et al. (2008) under axisymmetric loadings.
These studies demonstrate that the ductile failure strain is lower for oblate voids than for prolate voids. Steglich et al.
(2008) investigated void distribution, or void spacing, effects for an Al2024 alloy by varying the unit cell aspect ratio.
Their results show that, under the assumption of an axisymmetric stress state, the material ductility is reduced when the
voids are closely packed in the direction normal to the major principal stress. Other studies have been devoted to the
effect of particle inclusions on ductile fracture to account for void nucleation (Xu and Needleman, 1993; Steglich and
Brocks, 1997).

Ductile fracture properties have shown marked dependence on the stress state. This was clearly demonstrated
in the work of Bao and Wierzbicki (2004) where the failure strain for a 2024-T351 aluminium alloy was found as
a non-monotonous, non-smooth function of the stress triaxiality based on results from various material experiments
under global proportional loading. A local maximum of the failure strain was obtained for an average stress triaxiality
of about 0.4, while a local minimum was found for a pure shear stress state. Barsoum and Faleskog (2007a) also
reported a similar relation between fracture strain and stress triaxiality from combined tension-torsion experiments on
Weldox steel. A great number of experimental studies have later been conducted (see e.g. Gao et al. (2009); Dunand
and Mohr (2011); Faleskog and Barsoum (2013); Haltom et al. (2013); Roth and Mohr (2015)) to assess material
ductility of different metal alloys under global proportional loading. These studies unanimously demonstrate that the
fracture strain is dependent upon the applied stress state, both in terms of the deviatoric and hydrostatic stress. Many
numerical studies have addressed the issue of plastic localization and ductile failure under proportional loading using
unit cell models subjected to a wide range of stress states (Barsoum and Faleskog, 2007b, 2011; Dunand and Mohr,
2014; Tekoğlu et al., 2015). It has also become customary to generate fracture loci based on results from numerical
analyses under controlled states of stress (see e.g. Gao and Kim (2006); Gao et al. (2010)). However, these studies are
based upon proportional loading and do not account for the fact that the loading path may change substantially during
typical deformation processes.

The influence of non-proportional loading on plastic flow and anisotropy has been addressed in previous studies, see
e.g. Khan (1990) and Achani et al. (2009). Similar efforts have been made in studies predicting forming limit curves of
sheet metals (Chow et al., 2001; Reyes et al., 2008). Ductile fracture properties during non-proportional stress or strain
paths have also been addressed more specifically. Marini et al. (1985) performed an experimental study on load path
dependence using various notched tensile specimens cut out from larger pre-strained tensile specimens. A non-linear
damage rule based on the Rice-Tracey model, accounting for the change in loading path, gave results consistent
to their experiments. Effects of pre-strain on ductile fracture resistance were studied numerically by Eikrem et al.
(2008) in conjunction with the so-called reel-lay process of pipelines, which demonstrated that plastic pre-strain cycles
influence the fracture resistance upon further loading. Recently, Papasidero et al. (2015) conducted tension-torsion
experiments on an 2024-T351 aluminium alloy where the ratio between tension and torsion could be adjusted to obtain
both proportional and non-proportional global loading paths. Their experimental results show that ductility is reduced
for pre-tension while the opposite is true for pre-compression, the latter being confirmed also for dual phase steel sheets
by Marcadet and Mohr (2015). Elaborate micromechanical investigations on non-proportional loading were not carried
out until rather recently. Vadillo and Fernández-Sáez (2009) performed axisymmetric unit cell simulations where the
stress triaxiality was allowed to change continuously with the effective strain imposed to the unit cell. This seems to be
the first unit cell study on non-radial load cases. Also, Zhang and Skallerud (2010) investigated effects of pre-strain on
void coalescence using micromechanical simulations. Their findings demonstrate that pre-strain reduces the failure
strain, and that this effect is dependent upon the initial void shape, oblate voids being most susceptible to pre-strain
effects. The influence of non-proportional loading paths on the fracture locus of ductile materials was later examined in
a numerical study by Benzerga et al. (2012), clearly illustrating the non-uniqueness of fracture strain values for given
average stress triaxialities. These numerical results were revisited experimentally by Basu and Benzerga (2015), using
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both unstrained and pre-strained notched tensile specimens. The experimental and numerical fracture loci were in
qualitative agreement. A recent paper by Yu et al. (2016) addresses loading path effects for generalized stress states and
demonstrates that variations of both the stress triaxiality and the Lode parameter with deformation are significant for
the resulting fracture loci.

Even though tensile specimens are exposed to proportional loading globally, the specimen may locally experience
non-proportional loading after the onset of diffuse necking (Bao and Wierzbicki, 2004; Gao et al., 2011). This is
caused by geometric constraint effects and the degree of non-proportionality varies with initial geometry of the tensile
specimen. The load is in general closer to a proportional state in notched tensile specimens than in smooth tensile
specimens (Basu and Benzerga, 2015). A material element occupying the centre of a smooth tensile specimen, where
the ductile fracture process initiates in a typical cup-cone fracture, is especially prone to develop stress states that
change with deformation. This indicates that local load path changes might be important to account for in the numerical
unit cell simulations in order to examine ductile fracture properties properly.

Results from previous experimental studies have revealed a nearly linear relationship between the tensile failure
strain and the initial yield stress of various aluminium alloys (Lloyd, 2003; Liu et al., 2011). Similar results have
also been reported in recent studies for the aluminium alloys considered in the present work (Westermann et al.,
2014; Pedersen et al., 2015) and for 6xxx aluminium alloys (Hannard et al., 2016). In the present study, the scaling
of the failure strain with the initial yield stress of the material is investigated by micromechanical simulations. A
large experimental database is available from previous studies on various aluminium alloys (Westermann et al., 2014;
Pedersen et al., 2015), which serves as the background material for this numerical study.

First, the influence of various microstructural parameters on the ductility of four aluminium alloys is examined by
the use of unit cell simulations. Specifically, effects of varying void volume fraction, void shape, and void distribution
are elucidated, in addition to the effects of void nucleation due to particle decohesion. Both proportional and non-
proportional loading paths are assigned to the unit cell based on selected results from numerical simulations of smooth
tensile tests. The benefit of this approach is that the applied boundary conditions are in accordance with those expected
to emerge locally in tensile experiments, which are widely used to assess material properties. We find that the loading
path significantly alters the ductility of the investigated materials. Also, the various microstructural parameters that we
examine are seen to scale the fracture strain curves obtained from unit cell simulations. Second, the GT model is used
to simulate tests on smooth and notched tensile specimens and to validate its applicability for the investigated materials.
The correspondence with experimental data is better for the smooth specimens than for the notched specimens, for
which the global response is overestimated. Despite the inconsistencies in the stress-strain response for the notched
specimens, the onset of failure is seen to be within acceptable agreement when the material response is governed
by the GT model. Lastly, the initial porosity will be calibrated from unit cell simulations to provide similar failure
strain values as in the tensile experiments. These calibrated porosities are then used in an additional series of tensile
specimen simulations with the GT model. We found that the fitted porosity values only led to minor improvements on
the stress-strain curves, but improved the ductility predictions of the GT model for all the materials and specimens
investigated in this study.

2. Materials and experiments

Material data from tensile experiments carried out on four aluminium alloys in a previous study by Pedersen et al.
(2015) are used in all numerical simulations throughout this paper. In the subsequent sections, the materials are referred
to as Al0.2Fe, Al0.8Fe, Al1.2Mn, and AlMgSi. Details regarding the chemical composition of the materials can be
found in recent papers dealing with the experimental procedure (Westermann et al., 2014; Pedersen et al., 2015) and
will not be repeated here. The aluminium alloys were provided as DC-cast (direct chilled) extrusion ingots produced at
Hydro Aluminium R&D Sunndal. Before testing, the alloys were homogenized and subjected to a two-stage processing
route consisting of i) extrusion, and ii) cold rolling and recrystallization.

The experimental program that forms the basis of the present work consists of triplicate quasi-static tensile tests
performed on smooth and notched axisymmetric specimens oriented along the rolling direction of the alloys (Pedersen
et al., 2015). The spread between parallel tests was negligible for all materials. A two-term Voce work-hardening rule
on the form

σM = σ0 +

2∑
i=1

Qi
(
1 − exp(−Ci p)

)
(1)

3



0.0 0.4 0.8 1.2 1.6 2.0
p

0

80

160

240

320

σ
M

[M
Pa

]

Al0.2Fe
Al0.8Fe
Al1.2Mn
AlMgSi

(a)

0.0 0.4 0.8 1.2 1.6 2.0
εl

0.0

0.3

0.6

0.9

1.2

r-
va

lu
e

Al0.2Fe
Al0.8Fe
Al1.2Mn
AlMgSi

(b)

Figure 1: Figure showing the (a) work-hardening curve and (b) the r-values for representative tensile tests on smooth specimens of
each material.

was subsequently fitted to material data from experiments on the smooth tensile bars. Symbols σM and p denote the
material flow stress and the accumulated plastic strain, respectively, the latter being defined by

p =

∫ t

0

√
2
3

Dp : Dpdt (2)

where Dp is the plastic rate-of-deformation tensor. The resulting material parameters are repeated in Table 1 for
convenience and will be used throughout this paper. Work-hardening curves for the four aluminium alloys are shown
in Figure 1a. Pedersen et al. (2015) reported excellent correspondence between the fitted work-hardening rule and
the experimental data. It is noted that the calibrated work-hardening curves are valid also for large strains, since
experimental data from the tensile tests up to material failure, defined as the maximum of the true tensile stress-strain
curve, were used in the calibration process.

Table 1: Yield strength and work-hardening parameters of the four aluminium alloys.

Material σ0 [MPa] Q1 [MPa] C1 Q2 [MPa] C2

Al0.2Fe 28.26 28.05 37.31 86.26 2.41
Al0.8Fe 40.96 31.50 37.79 97.89 2.22
Al1.2Mn 51.15 48.51 27.98 115.49 1.77
AlMgSi 85.31 92.33 19.03 124.04 2.72

Figure 1b shows the r-values, defined as the ratio between transverse strain components, against the longitudinal
strain (εl) from representative tensile experiments for each of the four aluminium alloys. These results indicate that
the Al1.2Mn, and AlMgSi alloys are quasi-isotropic after the second processing step (Pedersen et al., 2015). For
the Al0.2Fe and Al0.8Fe alloys the r-value is not unity, and the alloys cannot be considered isotropic in that sense.
However, the orientation distribution functions for the Al0.2Fe alloy and Al0.8Fe alloys show a maximum intensity of
5.1 and 7.9, respectively, indicating that these alloys have a weak crystallographic texture.

3. Numerical models

A combination of numerical models will be used in this study; i) tensile specimen models on the macroscopic scale,
and ii) unit cell models on the microscopic scale. All numerical models are developed within a finite element (FE)
framework using the implicit solver of the commercial software Abaqus 6.13 (Abaqus, 2013).
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Figure 2: Sketch of the geometry and the corresponding FE model for the smooth tensile specimen. The figures show (a) geometry
of smooth specimen, and (b) mesh used for spatial discretization. The transition mesh applied in the specimen shoulder is shown in
the magnified view. All units are in mm.

3.1. Tensile specimens

Three different tensile specimen geometries are used in the present study; one smooth specimen geometry and
two different notched specimen geometries with initial notch radii of R = 2.0 mm (R2.0) and R = 0.8 mm (R0.8),
respectively. Due to the axisymmetry of the tensile specimens and the presumed quasi-isotropic properties of all
aluminium alloys considered in this work, the tensile specimens were modelled using axisymmetric finite element
models. Symmetry conditions were employed, such that only the upper half of the tensile specimens was modelled.
The geometry of all three tensile specimens used in the study and their corresponding finite element model are shown
in Figures 2-4.

The material response of the tensile specimens was modelled in a hypoelastic-plastic framework using two different
yield descriptions; the conventional J2 (von Mises) flow theory, and the GT model accounting for material softening
due to void growth. The J2 flow theory is given by the yield function

φ = σeq − σM ≤ 0 (3)

while the GT model is described by the yield function

Φ =

(
Σeq

σM

)2

+ 2q1 f cosh
(

3
2

q2
Σh

σM

)
−

(
1 + q3 f 2

)
≤ 0 (4)

where Σeq =
√

3J2 is the macroscopic equivalent stress, σM is the matrix material flow stress, Σh = Σkk/3 is the
hydrostatic stress, f is the porosity, and qi are the material parameters introduced by Tvergaard (1981). In both
descriptions of plastic flow, we use the associated flow rule and isotropic hardening corresponding to the two-term
Voce rule given by Equation (1) with the material parameters listed in Table 1. Note that for an associated flow rule, the
plastic rate-of-deformation tensor is determined from

Dp = Λ̇
∂Φ

∂Σ
(5)

5



R2.0
90

Ø10

Ø6

(a) (b)

Figure 3: Sketch of the geometry and the corresponding FE model for notched tensile specimen with notch radius R = 2.0 mm. The
figures show (a) geometry of specimen, and (b) mesh used for spatial discretization. The transition mesh applied in the notch region
is shown in the magnified view. All units are in mm.
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Figure 4: Sketch of the geometry and the corresponding FE model for notched tensile specimen with notch radius R = 0.8 mm. The
figures show (a) geometry of specimen, and (b) mesh used for spatial discretization. The transition mesh applied in the notch region
is shown in the magnified view. All units are in mm.
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where Λ̇ is the plastic parameter. In the case of J2 flow theory, the accumulated plastic strain is calculated from Equation
(2). When the GT model is used, only the matrix material contributes to plastic dissipation. Thus, the accumulated
plastic strain in this case is calculated from

p =

∫ t

0

Σ : Dp

(1 − f )σM
dt (6)

The evolution of porosity with continued plastic deformation is in the GT model governed by void growth according to

ḟ = (1 − f ) trDp (7)

We note that void coalescence is not accounted for in the GT model and the porous plasticity modelling undertaken in
the present paper is only concerned with the void growth phase. However, void coalescence criteria that are in the spirit
of the unit cell calculations are proposed in literature (see e.g. Benzerga and Leblond (2010) and references therein)
and recently developed on rigorous grounds (Benzerga and Leblond, 2014).

To compare the results with experiments (Pedersen et al., 2015), the tensile stress-strain response is determined
using the total force and diameter reduction data extracted from numerical simulations of the tensile specimens. The
true stress and logarithmic strain are evaluated from

σt =
4F
πD2 , εl = 2 ln

(D0

D

)
(8)

where F is the tensile force, and D0 and D correspond to the reference diameter and the current diameter of the
minimum cross-section of the specimen, respectively. Note that these relations presume that the cross-section remains
circular and that plastic deformation is isochoric. Also, we should note that the true stress defined by Equation (8) is a
net axial stress, which after necking deviates from the equivalent stress due to lateral stress components.

The loading path applied to the unit cell (described in the Section 3.2.1) is governed by the stress triaxiality
evolution obtained in the critical element of the smooth tensile specimen. The stress triaxiality is given on the usual
form

T =
σh

σeq
(9)

In the unit cell study, the stress triaxiality will be applied either as an averaged value or as a continuous function of the
equivalent strain. To this end, the strain-averaged stress triaxiality value is determined from

T̄ =
1
εc

eq

∫ εc
eq

0
Tdεeq (10)

where εeq =

√
2
3ε
′ : ε′ is an equivalent strain measure, ε′ is the deviatoric strain tensor, and εc

eq denotes the equivalent
strain at material failure. In the smooth tensile tests, material failure is assumed to coincide with the point of maximum
true stress (Pedersen et al., 2015). The corresponding logarithmic strain is referred to as failure strain and determined
from εc

l = εl

(
dσt
dεl

= 0
)
. We note that final fracture of the tensile specimens occurs shortly after the point of maximum

true stress, which implies that this point may be assumed as the onset of void coalescence in the middle part of the
specimen. Hence, we define the coalescence strain in the smooth tensile simulations (εc

eq) as the value of the equivalent
strain in the critical element when the logarithmic strain (as calculated from the latter relation in Equation (8)) in the
neck of the simulated specimens reaches the experimental value (Pedersen et al., 2015). In the case of axisymmetric
models, the equivalent strain reduces to

εeq =
2
3
|εrr − εzz| (11)

since εrr = εθθ. The equivalent strain in the critical element is thus evaluated by extracting the logarithmic strain
components in longitudinal and radial direction from the simulation and use of Equation (11). The application of a
constant stress triaxiality value corresponds to a proportional loading path. In analyses where non-proportional loading
paths are assigned to the unit cell, a 10th-order polynomial is fitted to the stress triaxiality evolution in the critical
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Figure 5: Illustration of the axisymmetric unit cell with (a) void, and (b) particle. The loading is applied by prescribing the
displacement ũ in the dummy node located outside the cell.

element. Thus, the stress triaxiality is a continuous function of the equivalent strain on the form

T (εeq) = a0 +

10∑
i=1

aiε
i
eq (12)

where a0, a1, ... , a10 are constants to be determined in the curve fit procedure.

3.2. Unit cell

Representative volume elements (RVE) are widely used to examine the material response on an intermediate
scale, often referred to as a mesoscopic scale. In the present study, axisymmetric unit cells are used to approximate a
periodic distribution of material elements containing spheroidal voids or particles, as illustrated in Figures 5a and 5b,
respectively. Note that the axisymmetric RVE is not a true periodic structure. However, these types of unit cell models
have been extensively used in literature, see e.g. Tvergaard (1982), Becker et al. (1989), Koplik and Needleman (1988),
Brocks et al. (1995, 1996), and Søvik and Thaulow (1997).

Due to symmetry conditions only the upper half of the unit cell is modelled, as illustrated in Figure 5. The geometry
of the unit cell is defined by the void aspect ratio w, cell aspect ratio λ, and the void volume fraction f , with initial
values given by

w0 =
R2

R1
, λ0 =

L2

L1
, f0 =

2R2
1R2

3L2
1L2

(13)

Prescription of w0, λ0 and f0 uniquely defines the initial cell geometry. These parameters will be varied separately in a
parameter study presented in Section 4.2 to elucidate their effects on the ductility.

The cell boundaries are constrained to remain straight throughout the analyses. Thus, the macroscopic true strain
components applied to the unit cell are determined from

E11 = ln
(

l1
L1

)
, E22 = ln

(
l2
L2

)
, E33 = E11 (14)

where li and Li denote the current and reference lengths of the unit cell along the coordinate axes xi, respectively, while
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the latter relation derives from the axisymmetric conditions. An equivalent strain measure is defined such that

Eeq =
2
3
|E22 − E11| (15)

The hydrostatic stress and the von Mises equivalent stress are readily expressed in terms of the macroscopic Cauchy
stress components

Σh =
2Σ11 + Σ22

3
, Σeq = |Σ22 − Σ11| (16)

where the condition that Σ11 = Σ33 has been invoked. Note that the macroscopic stress and strain rate components are
equal to their corresponding volume averaged quantities (Hill, 1967).

3.2.1. Controlling the macroscopic loading path
Different methods of maintaining a proportional stress state have been proposed in the literature, see e.g. Lin et al.

(2006). In this work, we will adopt a method to control the macroscopic stress state on the unit cell which is based on
application of appropriate kinematic boundary conditions. This method was first proposed by Faleskog et al. (1998) in
the case of plane strain conditions with constant in-plane biaxial stress ratios. Kim et al. (2004) recast the method in an
axisymmetric form. Vadillo and Fernández-Sáez (2009) have extended the method to account for non-proportional
loading paths. The objective of the method is to control the stress state in a dummy node where a uniaxial stress state
prevails. A brief overview of the method will be given below.

The ratio between the stress components is introduced on the form

ρ =
Σ11

Σ22
(17)

such that the stress triaxiality given by Equation (9) can be expressed as

T =
Σh

Σeq
=

1 + 2ρ
3 |1 − ρ |

, Σ22 ≥ 0 (18)

using the expressions found in Equation (16). Consequently, from a prescription of the stress triaxiality level, the stress
ratio is explicitly calculated using

ρ =
3T − 1
3T + 2

(19)

in the case of generalized tension where ρ ≤ 1 when T > − 2
3 , which encompasses all relevant stress triaxiality levels in

the present study.
The total deformation power of the unit cell may be expressed as (Hill, 1967)

Ẇd = VΣi jĖi j = 2VΣ11Ė11 + VΣ22Ė22

= P1Ė11 + P2Ė22 (20)

where V denotes the total volume of the cell in the current configuration. Generalized force terms P1 = 2VΣ11 and
P2 = VΣ22 have been introduced for notational convenience. Hence, the ratio between the generalized force components
are

ψ =
F1

F2
=

2Σ11

Σ22
= 2ρ (21)

The generalized force components may now be recast in vector form

P =

[
P1
P2

]
= P2

[
ψ
1

]
(22)

Appropriate displacement boundary conditions are applied in a transformed coordinate system in which the
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macroscopic stress state is uniaxial. To this end, a coordinate transformation is introduced such that

P = QP̃, Ė = Q ˙̃E (23)

where Q is an orthonormal tensor on the form (Faleskog et al., 1998; Kim et al., 2004; Vadillo and Fernández-Sáez,
2009)

Q =

[
β2 β1
−β1 β2

]
(24)

The coefficients are expressed in terms of the stress ratios on the form

β1 =
ψ√

1 + ψ2
, β2 =

1√
1 + ψ2

(25)

The global strain rate components are given by

Ė11 =
l̇1
l1

=
u̇1

L1 + u1
, Ė22 =

l̇2
l2

=
u̇2

L2 + u2
(26)

Consequently, the displacement rates on the unit cell boundaries are determined from

u̇1 = (L1 + u1) Ė11 = (L1 + u1)
[
β2

˙̃E11 + β1
˙̃E22

]
(27)

u̇2 = (L2 + u2) Ė22 = (L2 + u2)
[
−β1

˙̃E11 + β2
˙̃E22

]
(28)

These equations constitute a set of non-linear constraints that govern the macroscopic loading of the unit cell. In order
to obtain a uniaxial stress state in the dummy node, the boundary conditions are given on the form

P̃1 = 0, ˙̃E22 = ˙̃E0 (29)

In the finite element procedure with Abaqus/Standard, this can be accomplished by assigning a non-zero displacement
(ũ2 = ũ) to the second degree-of-freedom in a dummy node, as shown in Figure 5. The other degrees-of-freedom of
the dummy node are allowed to move arbitrarily such that the stress state remains uniaxial. A Multi Point Constraint
(MPC) user subroutine (Abaqus, 2013) is used to drive the deformation of the unit cell boundaries according to the
non-linear constraints in Equations (27) and (28). Note that in simulations where the stress triaxiality changes with the
equivalent strain, described by Equation (12), the stress ratio given in Equation (19) changes accordingly throughout
the simulation and is updated in the MPC routine.

3.2.2. Cohesive properties of particle-matrix interface
Void nucleation by particle debonding is important for material ductility and toughness, as demonstrated by Xu and

Needleman (1993). In order to investigate the effects of particle decohesion on ductile fracture on a microscopic level,
unit cells with a particle embedded in the matrix material are modelled to represent a homogeneous distribution of
spheroidal particles. A cohesive surface interaction property is used for the particle-matrix interface. The behaviour of
the cohesive surface is approximated by an uncoupled bilinear traction-separation law. This type of cohesive behaviour
has also been employed by Segurado and Llorca (2005), Suh et al. (2009), and Williams et al. (2012). Decohesion of
the matrix-particle interface is governed by an energy criterion on the form

Γc =
1
2

t0
effδ

c
eff (30)

where t0
eff

and δc
eff

are effective values of traction and separation at onset of damage and total failure, respectively. The
decohesion energy Γc is an input parameter in the finite element model. For details regarding the cohesive surface
model, we refer the reader to Section 37.1.10 of the Abaqus Analysis Users Manual (Abaqus, 2013).

We note that other investigations, e.g. Xu and Needleman (1993) and McVeigh et al. (2007), use an exponential
traction-separation law to describe the cohesive behaviour in the normal direction at the particle-matrix interface.
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This is in accordance with atomistic calculations of binding-energy-separation for different metals and bimetallic
surfaces (Rose et al., 1981, 1983; Ferrante and Smith, 1985). The choice of using a linear traction-separation law in
the present study is motivated by the lack of experimental data for the cohesive properties of the interface between
iron-rich primary particles and the aluminium matrix material. We believe that the particle shape and the roughness
of the interface layer have large influence on the interface properties. This is related to the scale at which we model
the problem. The mesoscopic scale represents an intermediate level that involves a huge amount of individual atoms,
and their bulk characteristics might not resemble those of the individual atoms. We are not certain that the bilinear
traction-separation law is a realistic model for the particle-matrix interface, but it offers a fairly simple way of studying
possible effects of void nucleation. An overview of various cohesive zone models and studies where these have been
employed is given by Chandra et al. (2002).

4. Results and discussion

The numerical work conducted in this paper is divided into three parts:

1. Simulations of smooth tensile tests with the J2 flow theory have been used to extract the loading path from the
critical element.

2. Proportional and non-proportional loading paths are assigned to the unit cell in order to examine the ductility of
the four studied aluminium alloys. Onset of void coalescence is chosen as an appropriate measure of ductility
and is defined as the point where the global unit cell deformation shifts into a uniaxial straining mode.

3. The J2 flow theory and the GT model are used in simulations of smooth and notched tensile specimens. Results
from these simulations are then compared with experimental data from Pedersen et al. (2015) to assess their
predictive capabilities.

Results obtained in the different parts of the study are presented sequentially in the next sections. The implicit finite
element solver Abaqus/Standard 6.13 was used in all simulations.

4.1. Smooth tensile specimens with J2 flow theory
The local loading path of the specimen cannot be found from experimental data and it is necessary to rely

on numerical simulations of the experiments for local measurements of field quantities within the material body.
Specifically, we extract the local loading and deformation history from the critical element located in the middle of the
specimen where the fracture initiates in a typical cup-cone fracture. This corresponds to the lower leftmost element of
the meshed model shown in Figure 6a. Since smooth tensile tests are commonly used to assess material properties, such
as ductility, only numerical simulations of smooth tensile specimens are used to extract loading paths for subsequent
application in unit cell simulations. To this end, we use the numerical model of the smooth tensile specimen presented
in Section 3.1. We used an approximate element size of 0.1 mm in the gauge section of the specimen, and the local
quantities from these simulations are then understood as averaged over a number of grains. The resulting mesh is
shown in Figure 2b. Quadratic elements with reduced integration (CAX8R) were employed in all simulations.

Table 2: The 0.2% proof stress, logarithmic strain at failure in smooth tensile tests and corresponding equivalent strain values
extracted from the critical element, and the averaged stress triaxiality values for the four aluminium alloys.

Material σ0.2 [MPa] εc
l εc

eq T̄

Al0.2Fe 30.69 1.766 1.832 0.661
Al0.8Fe 43.69 1.713 1.780 0.651
Al1.2Mn 54.20 1.541 1.659 0.608
AlMgSi 89.15 1.279 1.412 0.624

The diameter reduction in the neck and the total reaction force of the specimen were extracted from the simulations.
True stress and logarithmic strain were further calculated from these values using the expressions in Equation (8). As
mentioned in Section 3.1, Pedersen et al. (2015) defined failure strain as the value of logarithmic strain at the point of
maximum true stress, denoted εc

l in Table 2. In the simulations of the smooth tensile specimens, we use these failure
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strain values to define material failure. At the same instant we also extract the equivalent strain in the critical element,
denoted εc

eq. This value is referred to as the coalescence strain and defines the local effective deformation of an RVE
located in the middle part of the tensile specimen. Failure strain and coalescence strain values for the different materials
are given in Table 2. A representative deformed mesh for the Al0.2Fe alloy at the onset of material failure is shown in
Figure 6a.

The evolution of stress triaxiality with equivalent strain in the critical element was extracted from the simulations.
Note that since the elements contain four integration points, the stress and strain components are volume averaged over
these integration points. The stress triaxiality and equivalent strain are calculated from the volume averaged stress and
strain quantities. This volume averaging procedure is invoked so that the unit cell model represents the entire critical
element. Strain-averaged stress triaxiality values for the different aluminium alloys were calculated from Equation (10)
by numerical integration. The corresponding values are given in Table 2. A 10th-order polynomial of the form given in
Equation (12) was fitted to the numerical data to represent the non-proportional loading applied to the unit cell. Figure
6b shows that the polynomial describes the stress triaxiality evolution from the simulations perfectly. We also observe
a similar evolution of stress triaxiality for the Al0.2Fe, Al0.8Fe, and Al1.2Mn alloys. This is possibly because their
strain hardening properties are relatively similar, which may be inferred from Figure 1a. The AlMgSi alloy is seen
to develop higher stress triaxiality levels at lower equivalent strain, which is most likely caused by geometric finite
strain effects, as discussed by Pardoen (2006). The AlMgSi alloy hardens faster than the other three alloys for small
values of plastic strain, but reaches flow stress values close to the saturation value for moderate plastic strain. As the
hardening rate diminishes, a sharper neck develops in the tensile specimen. In turn, this increases the stress triaxiality
in the necked region due to the imposed geometric constraint. The Al0.2Fe, Al0.8Fe, and Al1.2Mn alloys harden more
slowly in the beginning, however maintaining a higher work-hardening rate for larger values of plastic strain. Thus,
the hardening capacity is somewhat increased for these three alloys, promoting a more diffuse neck and lowering the
stress triaxiality levels in the necked region. This geometric effect also influences the predicted ductility of the tensile
specimens, which is apparent from the failure strain values presented in Table 2.

(a)
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0.7
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Figure 6: Figure showing (a) representative deformed mesh with fringes of equivalent plastic strain for the Al0.2Fe smooth tensile
specimen at the onset of material failure, and (b) the stress triaxiality evolution from the critical element in the smooth tensile
simulations plotted against the equivalent strain. Curves from the simulation and from the fitted polynomial are shown for all four
aluminium alloys.
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Figure 7: Mesh used in analyses with f0 = 0.001, w0 = 1 and λ0 = 1. Note that this mesh contains a particle (indicated by
blue color) whereas in most simulations the particle is replaced by a void. A magnified view of the mesh refinement along the
particle/matrix interface is also shown.

4.2. Micromechanical simulations

Proportional and non-proportional loading paths corresponding to the critical element in smooth tensile specimens
were applied in a series of unit cell simulations. The mesh depended slightly on the initial geometry of the specimen,
but the number of elements was approximately 10.000 in all simulations. Linear axisymmetric elements with selectively
reduced integration (CAX4) were used in all analyses. Figure 7 shows the mesh for an initial cell geometry defined
by f0 = 0.001, w0 = 1 and λ0 = 1. A particle is included in this model to show the particle mesh, as indicated by the
blue-tinted region. A magnified view of the particle-matrix interface is presented to illustrate the mesh refinement
applied in this part of the model.

Table 3: Elastic properties of the matrix and particle materials.

Material E [GPa] ν

Matrix 70 0.3
Particle 210 0.3

The matrix was modelled as an isotropic elasto-plastic material governed by the J2 flow theory with associative
flow and isotropic hardening, described by the two-term Voce rule in Equation (1) using material parameters from
Table 1. Elastic properties for the matrix material are found in Table 3. In simulations where void nucleation has
been examined, we exchanged the void in the unit cell model with a particle. The particle was modelled as an elastic
inclusion with the initial aspect ratio set to unity (w0 = 1). Elastic properties for the particle are listed in Table 3. A
small-sliding contact formulation was used on the particle-matrix interface. These simulations adopt a cohesive surface
definition for the particle-matrix interface behaviour, as described in Section 3.2.2. The cohesive surface properties
were chosen such that a specific surface energy of Γc = 50 J/m2 was obtained when the matrix detaches from the
particle. Specifically, we set the normal and shear traction components for damage initiation to values of t0

n = 100 MPa
and t0

s = 20 MPa, respectively, which facilitates earlier onset of damage in shear. This is merely a choice we made in
order to avoid numerical problems and is not based on physical evidence. Viscous regularization was employed in all
analyses including a particle to preclude convergence difficulties. The regularization coefficient was set to µ = 1 · 10−5

s (Abaqus, 2013). We note that the debonding energy of the cohesive surface is on the same order of magnitude as that
used by Bonfoh and Lipinski (2007) in their study of ductile damage by particles debonding in an aluminium alloy
reinforced by SiC particles.
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Figure 8: Figure showing the unit cell in the undeformed configuration and at the onset of void coalescence for the AlMgSi alloy.
Fringes of equivalent plastic strain are plotted for (a) proportional loading, and (b) non-proportional loading. Note that the scale is
different between the two since the proportional loading leads to greater extension of the unit cell. Figure (c) shows the transverse
strain E11 against the longitudinal strain E22 in unit cell simulations (a) and (b). The onset of coalescence is marked by a cross.

Onset of void coalescence is assumed to occur as the unit cell deformation shifts to a uniaxial straining mode,
which has been suggested by a number of authors (see e.g. Koplik and Needleman (1988) or Kim et al. (2004)).
The evolution of transverse strain with longitudinal strain from unit cell simulations for the AlMgSi alloy under
proportional and non-proportional loading is shown in Figure 8c, where the onset of void coalescence is marked by a
cross. The equivalent strain at the onset of the uniaxial straining mode is denoted coalescence strain throughout this
paper when results from unit cell simulations are presented and discussed. Deformed configurations of the AlMgSi
alloy, with fringes of equivalent plastic strain, just after the onset of void coalescence are shown in Figures 8a and 8b
for proportional and non-proportional loading, respectively.

4.2.1. Comments on matrix strain hardening effects
Initially, constant stress triaxiality levels of T = 0.58, 0.65, 1.0 and 1.5 were maintained for all four alloys to

elucidate effects of strain hardening under identical loading situations. The unit cells were modelled with a pre-existing
void in these analyses and an initial cell geometry corresponding to f0 = 0.001, w0 = 1, and λ0 = 1. Coalescence strain
values obtained from the unit cell simulations are compared with corresponding coalescence strain values extracted
from the critical element in simulations of the smooth tensile specimen. This is shown in Figure 9. We remark that
the presented coalescence strain values from the smooth tensile specimen simulations are the equivalent strain values
extracted from the critical element at material failure, as discussed in Section 4.1. The dashed lines, referred to as
failure strain curves throughout this paper, represent linear best-fit curves to the coalescence strain values as functions
of the 0.2% proof stress. Failure strain curves from experimental data for the aluminium alloys used in the present
study were presented in a previous study by Pedersen et al. (2015).

The results presented in Figure 9 show that the failure strain curves obtained from unit cell simulations with constant
stress triaxiality levels are nearly flat. This indicates that the ductility of the four aluminium alloys is hardly affected
by material strain hardening when the stress triaxiality is kept fixed for all materials. Hence, the intrinsic effect of
strain hardening on the predicted ductility is low. However, it is important to bear in mind that strain hardening directly
influences the flow stress and plastic localization. Increased work-hardening capacity delays the void coalescence
process and smooths out plastic strain gradients. As discussed in Section 4.1, the stress triaxiality level is linked to
this geometric finite strain effect imposed by the necking down of the intervoid ligament. Stress triaxiality has been
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Figure 9: Failure strain curves from unit cell simulations under constant stress triaxiality compared with experimental data.

shown to greatly influence the ductility in a vast number of studies (see e.g. Bao and Wierzbicki (2004)). Since the
global stress triaxiality level of the unit cell is kept fixed, it is expected that the difference in work-hardening capacity
of the alloys causes the spatial stress and strain fields to differ between the various aluminium alloys. Specifically,
a larger work-hardening capacity decreases the void growth rate. However, the effects of these local fluctuations of
the field variables within the unit cell seem less important for the predicted ductility than the geometric finite strain
effect, which is precluded by maintaining a fixed stress triaxiality level. With this in mind, we remark that this result
should not be interpreted as evidence of the ductile fracture properties being independent of the work-hardening from a
macroscopic perspective. However, it suggests that fracture loci computed from unit cell simulations using a wide
range of proportional stress states might appear similar even though the materials differ substantially in terms of tensile
properties.

4.2.2. Proportional loading path
We applied the strain-weighted stress triaxiality values from the smooth tensile simulations, given in Table 2, to

the unit cell. The reference values for the cell geometry are f0 = 0.001, λ0 = 1, and w0 = 1, with a pre-existing void
contained in the model. Four separate parameter studies were carried out to investigate the effect of the microstructural
parameters on ductile failure.

Linear failure strain curves and coalescence strain values for the different alloys are shown in Figure 10. As readily
observed, all parameters essentially affect the ductility in the same manner by effectively shifting the failure curves.
More interesting, however, is their slope. From the experimental data, we see that the largest coalescence strain is
obtained for Al0.2Fe, with monotonically decreasing values for the Al0.8Fe, Al1.2Mn, and AlMgSi alloys. The trend
is opposite in the unit cell simulations, where Al1.2Mn has the largest coalescence strain value, and the AlFe alloys are
least ductile. In light of the average stress triaxiality values from Table 2, this is not very surprising since larger stress
triaxiality values lowers the ductile fracture strain.

These erroneous results can obviously be remedied in a number of ways by changing the microstructural parameters
appropriately. However, scanning electron micrographs show quite similar particle distributions in all the aluminium
alloys considered here (Pedersen et al., 2015). Additionally, rather small differences in particle size were found between
the different alloys. We do not exclude the possibility that closer examination of the alloy microstructure might suggest
a set of unit cell parameters that gives conforming predictions of ductility, but based on the current experimental data
it is deemed unlikely to obtain a set of microstructural parameters that remedy the faulty predictions of the unit cell
model under proportional loading.

From Figure 10d, we observe that the difference between simulations with and without a particle for the AlFe and
AlMgSi alloys is rather small, whereas it is more prominent for the Al1.2Mn alloy. Since the average stress triaxiality
for the Al1.2Mn alloy is the lowest obtained for all materials considered, this might indicate that the void nucleation
process by particle decohesion is sensitive to the stress state, at least for stress triaxialities in the applied intermediate
range. When the triaxiality is reduced, the resistance to matrix contraction imposed by the particle is greater, causing
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Figure 10: Failure strain curves from unit cell simulations using proportional loading paths compared with experimental failure
strain data. Effects of (a) void size, (b) cell aspect ratio (void spacing), (c) void aspect ratio (void shape), and (d) void nucleation by
particle decohesion. The reference unit cell contained a pre-existing void and was represented by f0 = 0.001, λ0 = 1, and w0 = 1.
Results for the reference cell are indicated by red lines and circle markers.

a larger discrepancy between simulations with and without a particle. Another possible explanation is that for the
lowest stress triaxiality value, the matrix slides along the particle surface to a greater extent that for slightly larger stress
triaxialities. This might lead to a violation of the adopted small-sliding contact formulation. Also, we must emphasize
that the difference between unit cell predictions with and without a particle is highly dependent upon the nucleation
criterion and cohesive surface parameters used in the simulations. A stronger cohesion would certainly yield greater
difference in the predicted failure strains.

4.2.3. Non-proportional loading path
Based on the findings in the preceding section, it seems reasonable to assume that there are other mechanical

sources of influence, potentially more decisive for ductility, on a microscopic level. In this regard, we find the
recent investigations by Vadillo and Fernández-Sáez (2009), Zhang and Skallerud (2010), and Benzerga et al. (2012)
particularly interesting. Since a change of loading path significantly alters the ductile fracture strain, it is expected that
the continuously changing loading path exerted on a material element located in the middle section during necking
plays a key role in the resulting ductility of the material.

A non-proportional loading path was prescribed to the unit cell. This was obtained by allowing the imposed
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Figure 11: Failure strain curves from unit cell simulations using non-proportional loading path from tensile simulation. Effects of
(a) void size, (b) cell aspect ratio (void spacing), (c) void aspect ratio (void shape), and (d) void nucleation by particle decohesion.
The reference unit cell contained a pre-existing void and was represented by f0 = 0.001, λ0 = 1, and w0 = 1. Results for the
reference cell are indicated by red lines and circle markers.

macroscopic stress triaxiality to vary according to the polynomial given in Equation (12) using kinematic constraints
defined through an MPC subroutine, as described in Section 3.2.1. The triaxiality polynomials for the different alloys
are shown graphically in Figure 6b. Thus, the macroscopic loading applied to the unit cell boundaries was identical to
that experienced by the critical element in the smooth tensile simulations under the assumption of the J2 flow rule.
This allows us to study the void evolution and underlying ductile fracture mechanism by void coalescence in detail
for a realistic loading path, and investigate its influence on the predicted ductility of the different aluminium alloys.
The reference cell geometry was modelled with a pre-existing void and microstructural parameters corresponding to
f0 = 0.001, λ0 = 1 and w0 = 1. A parameter study was performed, analogous to that undertaken with proportional
loading in Section 4.2.2.

Results from unit cell simulations with non-proportional loading are plotted in Figure 11. Again, the failure strain
in the experiments (Pedersen et al., 2015) are represented by the equivalent strain at material failure extracted from the
critical element in the smooth tensile specimen simulations. A non-proportional loading path is seen to significantly
influence coalescence strains and the associated failure strain curves. The slope of the failure strain curves are now, at
least in an approximate sense, similar to the experimental data. From these results, we may also appreciate the fact that
our reference model seems to be in good correspondence with the experimental data, as indicated by the red dashed
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curves with circular markers in Figures 11a-11d.
Similar effects of varying the microstructural parameters as in Section 4.2.2 are also observed during non-

proportional loading. The failure strain curves are effectively shifted up and down by changing the initial cell
geometry. However, the difference between coalescence strain in simulations with and without particle for the Al1.2Mn
alloy is now seen to be of the same order as for the other alloys. In general, the presence of a particle is seen to have
greater effect on the unit cell predictions during non-proportional loading, by effectively reducing the coalescence
strain values. This is ascribed to the resistance against matrix contraction when a particle is included, facilitating a
more rapid coalescence process for the non-proportional loading paths when the stress triaxiality increases. However,
we again remark that these results are sensitive to the adopted cohesive surface formulation.

An observation worth mentioning is that the coalescence strains for the AlFe and Al1.2Mn alloys are almost
identical. This is in contradiction to the experimental data, where the AlFe alloys have comparable ductility while the
Al1.2Mn alloy has lower ductility. This discrepancy is explained by the similar stress triaxiality evolution obtained in
the critical element for these three alloys. However, their microstructure is taken to be similar in these analyses, which
is not correct from a metallurgical point of view. This suggests that slightly different microstructure parameters, e.g.
initial porosity f0, should be used, which in turn could yield better correspondence with the experimental data.

A final conclusion may be drawn from these simulations. Changes in loading path during deformation have large
impact on the predicted ductility, causing an earlier onset of void coalescence by internal necking of the intervoid
ligament. These effects might be important to take into consideration, especially when unit cell simulations are used to
generate fracture loci for given materials.

4.3. Smooth and notched tensile specimens with J2 and GT material descriptions

Motivated by the findings from unit cell simulations with non-proportional loading, we find it interesting to assess
the performance of the widely used GT model in terms of ductile fracture prediction capabilities. To this end, we
performed simulations of smooth and notched tensile specimens similar to those used in Pedersen et al. (2015). Work-
hardening of the matrix material was described by a two-term Voce rule with the material parameters found in Table
1. Comparisons are made with simulations using a J2 flow theory material description with similar work-hardening
parameters. In numerical simulations using the GT model to account for material softening, an initial porosity of
f0 = 0.001 was used to match the reference values from the unit cell study in Section 4.2.3. Material parameters
q1 = 1.5, q2 = 1.0, and q3 = q2

1 were employed in all simulations, in accordance with the values initially proposed by
Tvergaard (1982).

Figures 12a-12d show the true stress-logarithmic strain response for all four materials. Results from the numerical
simulations of smooth and notched tensile specimens with notch radii R = 2.0 mm and R = 0.8 mm, using J2 flow
theory (dashed lines) and the GT model (dotted lines), are presented and compared with the experimental data (solid
lines). The smooth tensile tests are well replicated by both material descriptions for all four alloys. This is expected,
since data from the smooth tensile tests were used to calibrate the work-hardening model. However, results from the
notched specimen simulations reveal that the true stress values calculated from the numerical analyses are larger than
the corresponding values from the experiments. Greatest difference is obtained for the R0.8 notched specimens with
J2 flow theory. In the case of the Al0.8Fe alloy, the true stress at material failure in the FE simulation is about 15%
higher than the tensile test. The Al0.2Fe and Al1.2Mn alloys both have a maximum difference in true stress of about
10% at material failure, whereas the AlMgSi alloy yields practically conforming stress-strain curves in simulations and
experiments. The over-estimation of the stress level in simulations of notched tensile specimens has been discussed
in previous studies and may be attributed to a possible pressure dependency of plastic yielding (see e.g. Spitzig and
Richmond (1984); Wilson (2002); Bai and Wierzbicki (2008)), a dependence of the third invariant of the stress deviator
J3 (see e.g. Bai and Wierzbicki (2008)), or plastic anisotropy effects (see e.g. Fourmeau et al. (2011)) related to the
imposed notch constraint. In this regard, using the GT porous plasticity model to account for material softening causes
minor improvements on the predicted stress-strain curves. This indicates that the void induced pressure dependency of
the GT model is not sufficient to correct the predicted response of the notched tensile specimens. Since the stress state
is assumed to be axisymmetric, corresponding to a constant Lode parameter, any effects of a potential J3 dependence
are not captured. This was also verified by running notched specimen simulations with a high-exponent Hershey yield
function. These simulations gave similar response as the adopted J2 flow theory, but the results are not presented in
this paper for the sake of brevity. Thus, we believe that the observed discrepancies are most likely due to weak plastic
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Figure 12: True stress-logarithmic strain curves evaluated from diameter reduction. Solid lines correspond to the experimental data,
dashed lines to simulations with the J2 flow theory, and dotted lines to simulations with the GT yield function. Each subfigure shows
plots for smooth, R2.0 and R0.8 notched specimens. The materials are (a) Al0.2Fe, (b) Al0.8Fe, (c) Al1.2Mn, and (d) AlMgSi. All
simulations with the GT model were carried out using an initial porosity of f0 = 0.001.

anisotropy. The r-values shown in Figure 1b indicate moderate anisotropic behaviour for the AlFe alloys. This could
explain, at least for these two alloys, the deviation in the notched stress-strain curves.

The GT model improves the predicted material response in the vicinity of material failure for all materials. In
the case of smooth tensile specimens, the onset of material softening is seen to be well captured by the GT model
for the Al1.2Mn and AlMgSi alloys, while conservative estimates are obtained for both AlFe alloys. For the notched
specimens, conservative estimates of material failure are obtained for the AlFe and Al1.2Mn alloys, while slightly
non-conservative estimates are obtained for the AlMgSi alloy.

Since the loading paths applied to the unit cell were found from simulations of smooth tensile specimens using the
J2 flow theory, it is interesting to see how the stress triaxiality evolves in corresponding numerical analyses using the
GT model. Figure 13 shows the evolution of stress triaxiality in unit cell simulations with non-proportional loading and
from the critical element of the smooth tensile specimens using both J2 and GT material descriptions. The porosity
evolution of the critical element in the GT simulations, i.e. void growth, is also presented. All curves are plotted
up to the point of material failure, thus up to equivalent strain values of εc

eq from the respective analyses. Figures
13a-13d clearly indicate that the loading paths observed by a material element in the middle section of the smooth
tensile specimen are similar up to large values of equivalent strain. However, in the proximity of material failure the
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Figure 13: Comparison of stress triaxiality evolution (left ordinate axis T ) from unit cell simulations (dotted line) and smooth
tensile specimen simulations using both J2 (dashed line) and GT (solid line) yield functions. In simulations with the GT model, the
initial porosity was f0 = 0.001 for all four materials. The porosity evolution (right ordinate axis f ) in the GT simulations is also
plotted. Data points up to material failure are included.

stress triaxiality first increases slightly, then decreases abruptly when the GT model is used, except for the AlMgSi
alloy. This is directly related to the fact that the AlMgSi alloy is the only material yielding a non-conservative global
response. Thus, if these loading paths were prescribed to the unit cell instead of those from the J2 analyses, the onset
of void coalescence might be altered, yielding different coalescence strain values. This indicates that there are some
ambiguities associated with the extraction of local field quantities from numerical simulations, even when the global
response coincides. We note that the curves for the J2 material and the unit cell are seen to coincide, which means that
the boundary conditions of the unit cell were properly prescribed. We believe the explanation for the observed drop in
stress triaxiality is related to a local bifurcation within the critical element. The two integration points closest to the
middle section of the specimen are more constrained than the outer two, making them more favourable for void growth
and plastic volumetric deformation. In turn, a localization occurs within the element, relieving the outer two integration
points from hydrostatic stress, while softening occurs very rapidly in the two heavily constrained integration points.
This causes the stress triaxiality to decrease on average within the element.

4.4. Calibration process based on initial porosity

The last part of this study aims at presenting a possible calibration process using a combination of micromechanical
analyses and tensile simulations. It is noted that material data for the work-hardening must be obtained in advance.
Again, polynomials fitted to the evolution of stress triaxiality with equivalent strain (see Section 3.1) from the smooth
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Figure 14: Coalescence strain values obtained by changing initial porosity f0 in order to conform with the experimental data. The
results shown are (a) coalescence strain against 0.2% proof stress, and (b) coalescence strain against initial porosity.

Table 4: Constants obtained from a curve fit of numerical results for coalescence strain at different initial porosity levels to a power
law function, as given by Equation (31). The last row shows values of initial void volume fraction f0 from unit cell simulations that
conforms with coalescence strain values determined from the experimental data.

Material A B C f0

Al0.2Fe -4.876 0.0557 5.037 0.0005
Al0.8Fe -4.419 0.0651 4.535 0.00075
Al1.2Mn -5.420 0.0493 5.582 0.0015
AlMgSi -2.888 0.1580 2.524 0.0025

tensile simulations are used as input in the unit cell analyses, similar to the procedure in Section 4.2.3. A parameter
study on the initial porosity ( f0) is carried out such that the coalescence strain values obtained from the unit cell
simulations match the corresponding equivalent strain values from the smooth tensile specimens given in Table 2.

A number of f0-values are applied to the unit cell in the search for initial porosities yielding similar coalescence
strains as those obtained from the smooth tensile specimen simulations. Note that this gives different f0-values for the
different alloys. The resulting initial porosities are given in Table 4. Linear failure strain curves and corresponding
coalescence strain values from the parameter study are shown in Figure 14a. Each of these curves yields conforming
coalescence strain for one of the materials.

In the process of finding appropriate values of f0 for the different alloys, it might be interesting to determine an
empirical relation between coalescence strain and initial porosity for the different materials. To this end, we assume
that the relation may be described using a power law on the form

εc
eq = A f B

0 + C (31)

where A, B, and C are constants that need to be found by an appropriate curve fitting procedure. For this purpose, we
used a least-square approach. The resulting functions and numerical data are plotted in Figure 14b and the calibrated
constants are given in Table 4. The main observation is that the empirical relations are similar for the AlFe and Al1.2Mn
alloys, which is caused by their comparable ductility in unit cell simulations.

In the last part of this study, we used the initial porosities given in Table 4 in simulations of smooth and notched
tensile specimens with the GT model. The true stress-logarithmic strain curves are shown in Figure 15, where the
experimental data and results from simulations with initial porosities of f0 = 0.001 are plotted for comparison. Results
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from the different tensile simulations are in general enhanced using the calibrated porosity values. Moreover, all
simulations yield conservative predictions of material failure, which is important in structural design. However,
predictions for the Al1.2Mn alloy and the R0.8 notched AlMgSi specimen are impaired. Also, the over-estimated true
stress values are not remedied by using the calibrated f0-values. This implies that a simple calibration process, purely
based on changing the initial porosity of the material, is not sufficient to accurately predict the material behaviour in
terms of tensile stress-strain response. Certainly, if even feasible, this would require to use a very large initial porosity
with the undesired effect of impairing the ductility predictions of the plasticity model. This indicates that the GT
model is not sufficiently refined to capture all aspects of the ductile failure process properly, since fair predictions of
one response parameter comes at the expense of weak predictions of another response parameter. Other models are
proposed in the literature that might enhance the results both in terms of stress-strain response and ductility predictions
(see e.g. Benzerga and Leblond (2010)).
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Figure 15: True stress-logarithmic strain curves evaluated from tensile tests and numerical simulations. Solid lines correspond to
experimental data, dashed lines to simulations with the GT model and constant initial porosity of f0 = 0.001, and dotted lines to
simulations with the GT model and the calibrated f0-values found in Table 4. Each subfigure shows plots for smooth, R2.0 and R0.8
notched specimens. The materials are (a) Al0.2Fe, (b) Al0.8Fe, (c) Al1.2Mn, and (d) AlMgSi.

Although much focus has been directed towards the deficiencies of the GT model in the numerical simulations
carried out in this study, we should also take care to note that the GT model greatly enhances numerical predictions as
compared with the J2 flow theory. The material softening is, broadly speaking, quite well captured by the GT model for
all four aluminium alloys with the true stress decreasing rapidly as the plastic flow localizes in the necking region. In
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addition, the logarithmic strain at material failure is in fair agreement with values extracted from experiments, yielding
good predictions of the material ductility.

We lastly mention that efforts could be made towards calibrating the microstructural parameters of the GT model
(qi) to yield better correspondence with unit cell simulations. A number of previous papers have dealt with such
calibration processes. Notable contributions are studies by Faleskog et al. (1998) and Kim et al. (2004). Also, in a recent
study by Bomarito and Warner (2015) non-homogeneous loading paths are taken into account when homogenizing
micromechanical simulation results using a Gurson constitutive model. This was done by allowing q1 and q2 to be
functions of the stress triaxiality and Lode parameters. However, these types of calibrations seem highly problem
dependent, and might yield inaccurate predictions when applied to other arbitrary deformation paths that often emerge
in structural problems. Also, such procedures do not necessarily guarantee the convexity of the yield surface.

5. Concluding remarks

Results from unit cell simulations carried out in the present study demonstrate that non-proportional loading greatly
influences ductility. This implies that fracture loci obtained by keeping the loading state proportional are most likely
unable to yield accurate predictions of ductile failure, unless the deformations imposed to a material body causes a
nearly proportional loading state. This is rarely the case in structural applications. Also, the demonstrated loading path
dependence makes it more difficult to generate specific fracture loci, since an infinite number of loading paths can be
assigned to obtain the same average stress state. Each of these loading paths would probably yield a unique fracture
locus.

Numerical simulations of smooth tensile specimens were in good correspondence with experiments for both the
J2 flow theory and the GT model, where the latter model also yielded fair predictions of the ductility. However, we
were not able to obtain an accurate true stress-logarithmic strain response with neither the J2 yield function nor the
GT model in numerical simulations of the notched tensile specimens, presumably due to weak plastic anisotropy. In
the case of the GT model, the overall predictions of material softening and ductility were in general acceptable. The
proposed calibration process, based on a parameter study using the initial porosity, did not remedy the deficiencies
observed in the global response of the notched tensile specimens. However, the overall predictions for all materials
were enhanced, and conservative predictions of failure were obtained for all tensile specimens used in this study. This
suggests that a more refined material model, taking several microstructural parameters into account, should be used.

It is realized that the experimental failure strain for the different aluminium alloys also could have been replicated
by changing other microstructural parameters. As seen from the figures presented in Section 4.2, all four parameters
investigated in this study can be changed such that coalescence strains conform with the experimental data. However,
in the porous plasticity model used in this paper, only the void volume fraction is accounted for. Thus, it was natural to
use this microstructural parameter in a preliminary attempt to model the ductile fracture process on a global scale.
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