
Influence of yield surface curvature on the macroscopic yielding and ductile
failure of isotropic porous plastic materials

Lars Edvard Bryhni Dæhli∗, David Morin, Tore Børvik, Odd Sture Hopperstad

Structural Impact Laboratory (SIMLab), Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491
Trondheim, Norway

Abstract

Numerical unit cell models of an approximative representative volume element for a porous ductile solid are utilized to investigate
differences in the mechanical response between a quadratic and a non-quadratic matrix yield surface. A Hershey equivalent stress
measure with two distinct values of the yield surface exponent is employed as the matrix description. Results from the unit cell
calculations are further used to calibrate a heuristic extension of the Gurson model which incorporates effects of the third deviatoric
stress invariant. An assessment of the porous plasticity model reveals its ability to describe the unit cell response to some extent,
however underestimating the effect of the Lode parameter for the lower triaxiality ratios imposed in this study when compared
to unit cell simulations. Ductile failure predictions by means of finite element simulations using a unit cell model that resembles
an imperfection band are then conducted to examine how the non-quadratic matrix yield surface influences the failure strain as
compared to the quadratic matrix yield surface. Further, strain localization predictions based on bifurcation analyses and imperfection
band analyses are undertaken using the calibrated porous plasticity model. These simulations are then compared to the unit cell
calculations in order to elucidate the differences between the various modelling strategies. The current study reveals that strain
localization analyses using an imperfection band model and a spatially discretized unit cell are in reasonable agreement, while the
bifurcation analyses predict higher strain levels at localization. Imperfection band analyses are finally used to calculate failure loci
for the quadratic and the non-quadratic matrix yield surface under a wide range of loading conditions. The underlying matrix yield
surface is demonstrated to have a pronounced influence on the onset of strain localization.

Keywords: Ductile failure; Unit cell; Porous plasticity; Strain localization; Bifurcation analysis; Imperfection band
analysis; Third deviatoric stress invariant

1. Introduction

The loading paths exerted on arbitrarily positioned material elements in real structural components are rarely
proportional (Dæhli et al., 2016). Metal alloys that have a face-centred cubic (FCC) crystal lattice, such as aluminium-
based alloys, are known to display a curved yield surface (Hosford, 1972, 1996), thus imposing a dependence upon the
third principal invariant of the stress deviator. The curvature of the yield surface is judged to influence the resulting
plastic flow and deformation path, especially when the stress state is allowed to change throughout the loading stage.
For instance, in the vicinity of a yield surface corner, rather small changes in the stress state may cause abrupt changes
in the strain path of the material. This may in turn trigger localized deformations in the material body which either aids
or initiates, and thus influence, the ductile failure process.

An abrupt change from a smoothly varying deformation path into a localized straining mode is a frequent observation
for metal alloys subjected to large deformations. Such localization modes may result from small material non-
uniformities, such as microvoid-containing bands, or from the decrease in work hardening and material softening of
ductile solids when the plastic deformations are sufficiently large. Anand and Spitzig (1980) reported on incipient shear
band formation even for positive, although small, work hardening levels in the case of plane deformation specimens
under both tension and compression. But even if the material does not exhibit pronounced material softening, localized
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deformation may emerge due to a mismatch in material properties across some imperfection inside the material
(Rudnicki and Rice, 1975; Rice, 1976; Needleman and Rice, 1978). If the imperfection contains a weaker material,
which not necessarily holds true for any type of material but is assumed in the current study, the deformations will
concentrate inside the band. Progression of the well-known ductile failure mechanism by void nucleation, growth and
coalescence may then proceed rapidly inside the concentrated deformation zone which is why such strain localization
phenomena are frequently used to define macroscopic failure.

Clausing (1970) conducted both uniaxial tension and plane strain tension experiments, and showed that ductility is
markedly reduced in plane strain tension. This observation was also later supported by the experimental and numerical
work of Hancock and Brown (1983). The difference in ductility between the plane strain and axisymmetric tension
specimens was found to be around 70% for low-hardening steels, and only about 20% for high-hardening steels. This
implies the dependence of work hardening on the strain localization process. Further, the triaxiality ratio is different
in the two test specimens, and initially ∼ 70% higher in the plane strain tension specimen. The hydrostatic tensile
stress may accordingly play a crucial role for the change in the ductility, since the stress triaxiality is known to greatly
influence the ductile fracture strain (McClintock, 1968; Rice and Tracey, 1969; Hancock and Mackenzie, 1976; Koplik
and Needleman, 1988; Hopperstad et al., 2003). However, a potential dependence of the yield function upon the
deviatoric angle is also deemed important since the plane strain tension test corresponds to generalized shear while the
uniaxial tension test corresponds to generalized tension.

Even though earlier studies had predicted a monotonously increasing fracture strain with decreasing stress triaxiality
ratio, the experiments of Bao and Wierzbicki (2004) on an aluminium alloy displayed a non-smooth and non-
monotonous evolution of the fracture strain with respect to the stress triaxiality ratio. Their study fuelled the idea of
other decisive factors for ductile failure, possibly related to the deviatoric stress state. The dependence of the ductile
failure strain upon the deviatoric stress state through the third deviatoric stress invariant, or the Lode parameter, was
later demonstrated by the experimental work of Barsoum and Faleskog (2007a) using carefully designed double-notched
tubular tension-torsion specimens made from Weldox steel alloys. Similar tension-torsion experiments using slightly
different specimen geometries were later conducted by Haltom et al. (2013), Papasidero et al. (2014) and Scales et al.
(2016). These studies unanimously demonstrate combined effects of the stress triaxiality and the Lode parameter on the
equivalent strain at failure for ductile metal alloys. A noteworthy observation is that the fracture strain decreases with
increasing triaxiality ratio for a given fixed Lode parameter. However, in tracing a plane stress path on the fracture locus
this may lead to the non-monotonous evolution observed by Bao and Wierzbicki (2004) due to the Lode dependency.
Also, the influence of the Lode parameter is greater for low triaxiality ratios, while it diminishes as the stress triaxiality
increases for which the pronounced hydrostatic tensile stress facilitates ductile failure by void growth and coalescence.

The aforementioned studies, indicating the Lode dependence of ductile failure, were conducted under globally
proportional loading conditions. There is however no guarantee that the local stress state where failure initiates
corresponds to proportional loading, which is also indicated in the cited papers, and deviations from the global
proportional path typically emerge well before failure initiates. Papasidero et al. (2015) have shown the effects of
non-proportional loading paths in a hybrid experimental-numerical study on an aluminium alloy. The issue was also
addressed in a recent paper by Gruben et al. (2017) in which the local loading paths were imposed in imperfection band
analyses (Rice, 1976) either in a proportional or a non-proportional manner. Their results show prominent differences
in the resulting failure strain. Moreover, recent unit cell studies (Benzerga et al., 2012; Dæhli et al., 2016; Thomas
et al., 2016) elucidate that non-proportional loading paths greatly alter the onset of void coalescence, and thus the
resulting ductility predictions, for the same strain-averaged state of stress. This implies that not necessarily all the
differences obtained for the fracture strain in experiments can be attributed to the Lode parameter determined from the
globally proportional loading path. One should consequently exert some caution in interpreting experimental results
on a quantitative basis. To quantify the effects of the Lode parameter, detailed micromechanical studies using finite
element unit cell models have been conducted under prescribed proportional states of stress (Barsoum and Faleskog,
2007b, 2011; Dunand and Mohr, 2014; Bomarito and Warner, 2015; Wong and Guo, 2015). These studies explicitly
account for a shear deformation mode, and conditions are sought which minimize the resulting equivalent strain to
failure. The numerical results clearly indicate that ductile failure is Lode dependent, which is now a well-established
observation in the literature, and that stress states close to generalized shear generally yields lower ductility. This is in
accord with the experimental studies using various test specimens. It should be noted that in the unit cell studies cited
above, von Mises plasticity is assumed which does not display any intrinsic Lode effects. Thus, to study how the Lode
dependence associated with the non-quadratic yield surface of the matrix material combine to the effects due to the
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stress state is largely unexplored in terms of unit cell simulations. This serves as one of the motivations for the current
investigation.

Recent experimental works of Morgeneyer et al. (2014, 2016) using compact-tension specimens made from
aluminium alloys with low and high work hardening show that narrow bands of concentrated deformation form already
at small deformations. They discuss that these strain bands could originate from heterogeneities of the material
microstructure, which is plausible due to the discrete nature of polycrystals at this scale. Moreover, Morgeneyer et al.
(2016) conducted two-dimensional plane strain simulations where soft zones were randomly positioned in the cross
section of the test specimen to approximate a distribution of soft grains. These simulations displayed slant bands
already at early loading stages which gives impetus to the idea of shear bands originating from material heterogeneities.
However, they further argued that the regularity of the strain bands and their intermittent activity, which are captured
by the soft zone model, imply that material heterogeneity is more unlikely, and the true source of the strain band
emergence still remains to be disclosed. As reported in their paper, microvoids inside the band grow and rotate to align
with the band orientation. But these effects were not detected before a rather large deformation was imposed which
indicates the sequence of events for the ductile failure process. Although one should be cautious in extrapolating such
experimental findings to arbitrary loading conditions, it seems that in some circumstances strain localization occurs
prior to the ductile damage process. Ductile failure subsequently takes place inside the strain band due to void growth,
rotation and shearing of the voids, and final coalescence along the band. Evidence that substantiates such observations
was also provided by Tekoğlu et al. (2015) who studied this by means of finite element unit cell simulations under a
wide range of proportional stress states. They report that void coalescence is preceded by strain localization on the
macroscopic scale, which in their study was associated with the peak equivalent stress. This observation pertains to all
the examined stress states reported in their study. However, the onset of strain localization and void coalescence was
almost coincident for stress triaxialities below unity.

Even if the true origin of the localized strain bands is yet to be clarified, the recent findings of Morgeneyer et al.
(2014, 2016) substantiate the use of imperfection band analyses in the spirit of Rice (1976) containing a voided band
within the material. Since the band width is much greater than the characteristic dimensions associated with the
microscopic voids (Morgeneyer et al., 2016), we may approximate this strain band as a dilutely voided band. To this
end, porous plasticity models are employed to describe a material which exhibits damage softening due to the growth
of microvoids. The Gurson model (Gurson, 1977) is widely used to model porous ductile solids and in its original form,
it governs the macroscopic yielding of an aggregate of spherical voids embedded in an isotropic rigid-perfect plastic
matrix governed by the J2 flow theory. Previous studies (Hosford, 1972, 1996) have shown that many metal alloys
frequently used in structural applications, which indeed includes aluminium alloys, are more accurately described by
non-quadratic yield surfaces in which the magnitude of the stress state, defined by some tensor norm, changes with the
deviatoric angle. Since this paper sets out to explicitly investigate such effects on the ductile failure predictions, and
bearing in mind the analysis framework adopted, a suitable extension of the Gurson model including a dependence
upon the third deviatoric stress invariant must be employed.

The Gurson model has been extended in a variety of ways over the past decades, see for instance a recent review
paper by Benzerga et al. (2016). However, it seems that relatively few studies have been devoted to accounting for an
isotropic non-quadratic matrix yield surface. Cazacu and Stewart (2009) included tension-compression asymmetry in
the porous plasticity model using the same approach as Gurson (1977), which consequently introduces effects of the
third deviatoric invariant, although in a slightly different form than that addressed in this paper. Later, a Tresca matrix
description was included by Cazacu et al. (2014), but due to inherent difficulties arising in the homogenization problem,
this model pertains only to axisymmetric loadings. Limitations to such stress states are too restrictive for the current
application. Moreover, the yield surfaces for metal alloys are usually situated between the Tresca and the von Mises
yield surfaces, and a more adequate matrix formulation should take this aspect into account. In the current work, we will
adopt a heuristic approach to incorporate a Lode dependency in the Gurson framework. The resulting model follows
along the same lines as the modification proposed by Doege and Seibert (1995) for a plastically anisotropic matrix.
This extended version of the Gurson model was also recently used by Gruben et al. (2017). We note, however, that a
usual assumption in the derivation of porous plasticity models, which was also used by Gurson (1977), is to disregard a
coupling term (Cazacu and Stewart, 2009) between the deviatoric and mean strain rate components. This essentially
renders the porous plasticity model on the same form as the one adopted in the current study. Recently, Soare (2016)
and Benallal (2017) incorporated a matrix description governed by the Hershey yield criterion (Hershey, 1954; Hosford,
1972) in the upper-bound limit analysis of a hollow sphere. Soare (2016) derived an approximated macroscopic yield
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function using a numerical approach, while Benallal (2017) obtained the yield criterion in a parametric form based on a
rigorous upper-bound analysis.

The number of studies devoted to examine combined effects of the third deviatoric stress invariant and the hydrostatic
stress using an extended porous plasticity model seems to be limited. Mear and Hutchinson (1985) investigated the
onset of strain localization in dilutely voided solids for which kinematic hardening was included in the Gurson model.
This introduces effects of yield surface curvature in the constitutive model which were shown to have a pronounced
influence on the ductile failure strain, at least in the range of stress states employed in their calculations. Specifically,
pure kinematic hardening led to a substantial decrease in the failure strain as compared to pure isotropic hardening.
Similar investigations were undertaken by Tvergaard (1987) and Tvergaard and Van Der Giessen (1991), although these
studies also extend the porous plasticity model to include effects of void nucleation and plastic spin, respectively. In
agreement with the study of Mear and Hutchinson (1985), their results also demonstrate that the yield surface curvature
affects the ductility with a purely kinematic hardening model leading to the lowest localization strain.

More studies have been devoted to bifurcation analyses and imperfection band analyses to address effects of either
the Lode parameter or the hydrostatic stress separately. Yamamoto (1978) included an imperfection band with a
material governed by the Gurson model and demonstrated the pronounced influence of introducing an imperfection
rather than associating the localization strain to a bifurcation in the constitutive model. Needleman and Rice (1978)
examined the ductility limits for a variety of constitutive models, both in the form of bifurcation and imperfection
band analyses. In particular, they introduced vertex effects in the yield description by using the J2 deformation theory,
which are demonstrated to reduce the resulting failure strain estimates such that they are more in line with experiments.
Furthermore, they employ the Gurson model inside the imperfection band, along similar lines as Yamamoto (1978),
and provide numerical evidence for similar effects of including either vertex effects or dilatational effects inside the
band material. They did not, however, combine the two effects. Also, they report numerical data which clearly show
that, in the imperfection band analyses, similar trends can be obtained with various types of imperfections by tuning the
imperfection parameters properly. This introduces some arbitrariness in the imperfection band analyses. In the present
work, we believe that an imperfection band governed by the Gurson model is physically motivated by the experimental
findings in Morgeneyer et al. (2014, 2016), at least on a qualitative basis. However, the strain localization analyses
are known to be sensitive to the constitutive model, which must be properly validated in order to substantiate its use.
An alternative is to explicitly resolve the approximated microstructure of the voided band material. This has been
approached in a number of studies over the past two decades, initiated by the works of Barsoum and Faleskog (2007b).
However, it seems that the recent work by Tekoğlu et al. (2015) is the only unit cell study that is in direct accordance
with the imperfection band model of Rice (1976). Even though such models are superior in that they capture the true
evolution of the voids, given an assumption of their initial size, shape and distribution, they are very costly in terms of
computational time. For isotropic materials, in which the orientation of the imperfection band remains parallel with the
intermediate principal stress direction, this may be tractable, but in the general case for anisotropic materials this still
represents a major computational challenge.

The current paper intends to address effects of the yield surface curvature on strain localization in porous ductile
solids. Non-quadratic yield functions are often employed to describe the homogenized material response of polycrystals
and it is therefore of great importance to account for their effects on the predicted ductility. Further, we will address
the calibration of a heuristic extension of the Gurson model from unit cell simulations that accurately describes an
approximated microstructure of the porous material. Numerical calculations using a unit cell approach to the strain
localization problem will be compared with bifurcation and imperfection band analyses. This work is purely based on a
numerical approach, without any attempt to compare the results with experiments, and will treat a fictitious model
material. As such, it does not give any quantitative predictions for strain localization, but it offers full control of the
approximated material structure and the imposed stress state, which is crucial in order to assess the effects of varying
the constitutive features of the material.

The paper is organized as follows. In Section 2, we present the stress state parameters that are used throughout the
paper. Section 3 presents the constitutive relation for the matrix material. The evolution of the approximated material
microstructure determined by numerical unit cell calculations is presented in Section 4. The porous plasticity model is
described in Section 5 along with the calibration procedure. Strain localization analyses using both unit cell models
and the bifurcation and imperfection band analyses are presented in Section 6. The paper is summarized in Section 7
with some concluding remarks.
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2. Stress state description

We will impose various proportional stress states throughout these analyses. To ease this task, we define the stress
state by some appropriate parameters. Let an arbitrary stress state, denoted P in Figure 1a, be expressed in the principal
stress space with the principal stresses written as the sum of a deviatoric and hydrostatic part according to

σI =

√
2
3

r cos (θ) + σh (1a)

σII =

√
2
3

r cos
(
θ −

2π
3

)
+ σh (1b)

σIII =

√
2
3

r cos
(
θ +

2π
3

)
+ σh (1c)

Here, r =
√
σ′ : σ′ =

√
2J2 is the magnitude of the deviatoric stress state σ′ in the deviatoric plane, σh = I1/3 is the

hydrostatic stress, while θ is the deviatoric angle. Figure 1a shows an illustration of the principal stress space and
Figure 1b shows a corresponding sketch of the deviatoric plane. The second principal deviatoric stress invariant and the
first principal stress invariant are denoted J2 and I1, respectively. Note that the deviatoric angle is the angle spanned
between the direction of the stress point and a projected base vector along the direction of σI in the deviatoric plane, as
inferred from Figure 1b. Also, the principal stress components are assumed to be ordered according to σI ≥ σII ≥ σIII
which formally means that 0◦ ≤ θ ≤ 60◦.

P

(a)

P

(b)

Figure 1: Illustration of a stress point P in (a) the principal stress space and (b) the deviatoric stress plane. The deviatoric and
hydrostatic parts of the stress vector are indicated in the figure and the hydrostatic axis is denoted by eh. The depicted ellipse, being
a circle in the deviatoric plane, describes stress points with the same stress triaxiality ratio T . GT, GS, and GC refer to generalized
tension, shear and compression, respectively.

In the following, we will use the stress triaxiality T and the Lode parameter L to govern the stress state. The stress
triaxiality is defined from the hydrostatic stress σh and the equivalent von Mises stress σvm

eq on the form

T =
σh

σvm
eq

=
I1

3
√

3J2
(2)

To describe the deviatoric stress state, the Lode parameter is defined as a ratio between the principal stress components
which reads

L =
2σII − σI − σIII

σI − σIII
(3)

A relation between the Lode parameter and the third deviatoric stress invariant J3 = det(σ′) is provided by the two
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equations

L =
√

3 tan
(
θ −

π

6

)
(4a)

cos (3θ) =
3
√

3
2

J3
3
√

J2
(4b)

From the definition of the Lode parameter, it follows that L = −1, 0, and 1 correspond to θ = 0◦, 30◦, and 60◦,
respectively. From the above it is clear that the Lode parameter is not affected by the hydrostatic stress and is thus
exclusively linked to the deviatoric stress state. We note that Lode parameters L = −1, 0, and 1 represent states of
generalized tension (GT), shear (GS), and compression (GC), respectively, which will be often referred to throughout
this paper.

3. Matrix constitutive formulation

The constitutive relations for the matrix material are formulated in a corotational framework. Hence, the corotated
macroscopic stress σ̂ and rate-of-deformation d̂ tensors read

σ̂ = RT · σ · R (5a)

d̂ = RT · d · R (5b)

where σ and d are the Cauchy stress tensor and the rate-of-deformation tensor, respectively, referring to a fixed global
basis. The orthogonal rotation tensor R defines the transformation between the local material basis and the fixed
global basis. In the implicit finite element (FE) solver Abaqus/Standard, the corotational formulation corresponds to
an update of the local basis using the material spin tensor w such that Ṙ = w · R. The corotated elastic and plastic
rate-of-deformation tensors, respectively d̂e

and d̂p
, follow directly from the additive decomposition d = de + dp.

The elastic response is governed by the rate form of the generalized Hooke’s law in terms of the corotated stress
rate ˙̂σ and the corotated elastic rate-of-deformation d̂e

, namely

˙̂σ =
E

1 + ν
d̂′e +

E
3 (1 − 2ν)

tr (d̂e
)1 (6)

where d̂′e and tr (d̂e
) are respectively the deviatoric and volumetric parts of d̂e

. The second order identity tensor is
denoted by 1, the elastic constants E and ν refer to the elastic modulus and Poisson’s ratio, respectively. The two elastic
constants are listed in Table 1.

The plastic response is governed by a rate-independent plasticity formulation which incorporates effects of the third
deviatoric stress invariant J3. The yield function defining the interior and the periphery of the elastic domain reads

φ (σ̂, p) = σeq (σ̂) − σM (p) ≤ 0 (7)

The equivalent stress is given by (Hershey, 1954; Hosford, 1972)

σeq (σ̂) =

(
1
2

[
(σI − σII)m + (σII − σIII)m + (σI − σIII)m]) 1

m

(8)

in terms of the ordered principal stress components. The yield surface exponent m dictates the curvature of the yield
surface. For FCC metals, such as aluminium-based alloys, a yield surface exponent value m = 8 is often employed
(Hosford, 1996). In the current study, we will use the yield surface exponent values m = 2 and m = 8 to enforce a
quadratic and a non-quadratic matrix yield surface, respectively. The corresponding yield surfaces are depicted in the
deviatoric stress plane in Figure 2. We note that m = 2 renders the equivalent stress given by Equation (8) equal to the
von Mises stress, and the matrix yielding is consequently not affected by the third deviatoric stress invariant J3. The
yield surface exponent m = 8 describes a yield surface lying in-between the Tresca and the von Mises yield surfaces,
and is thus affected by the deviatoric angle.
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σII

σIσIII

m = 2 m = 8

Figure 2: Yield surfaces for exponents m = 2 and m = 8 depicted in the deviatoric stress plane.

The matrix flow stress σM is governed by an isotropic work-hardening rule on the form

σM = σ0 + Q
(
1 − exp (−Cp)

)
(9)

where σ0 denotes the initial yield stress, Q and C are material constants, and p is the accumulated plastic strain. The
adopted values of the material parameters are purely generic, but deemed realistic parameters for low work-hardening
aluminium alloys. These are listed in Table 1. The plastic strain rate is taken to be power conjugate to the matrix flow
stress. Accordingly, the accumulated plastic strain is evaluated from

p =

t∫
0

ṗdt̄ =

t∫
0

σ̂ : d̂p

σM
dt̄ (10)

where d̂p
is the corotated plastic rate-of-deformation tensor, defined by the associated flow rule as

d̂p
= λ̇

∂φ (σ̂, p)
∂σ̂

= λ̇
∂σeq (σ̂)
∂σ̂

(11)

Using the expression for plastic power and invoking the yield criterion φ (σ̂, p) = 0, we obtain

ẇp = σ̂ : d̂p
= σeqλ̇ = σM ṗ ⇒ λ̇ = ṗ (12)

Note that we have used that σeq (σ̂) is a first order homogeneous function with respect to the stress tensor σ̂ to arrive at
the second equality. The loading/unloading conditions are given by the relations

φ ≤ 0, λ̇ ≥ 0, φλ̇ = 0 (13)

Table 1: Generic material parameters used for the matrix material.

E [GPa] ν σ0 [MPa] Q [MPa] C

70 0.3 100 100 10

A material user subroutine (UMAT) was employed to implement the constitutive relations in the finite element
framework. The return map algorithm used herein is based on a semi-implicit update of the stress increment (Belytschko
et al., 2000) in which the plastic moduli are not updated throughout the increment. To ensure accuracy of the
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computations, we employed a substepping scheme in which the strain increment fed to the material subroutine was
always kept smaller than a given tolerance value. For the matrix material, the strain increments were constrained by

∆t
√

d̂′ : d̂′ ≤ 0.05
σ0

E
(14)

where ∆t is the time increment, and σ0 and E are material parameters listed in Table 1.

4. Numerical calculation of the RVE response

The mechanical response of an approximate representative volume element (RVE) for the porous ductile solid is
examined in this section by means of unit cell calculations. A brief overview of the model is given prior to an exposition
of relevant results from the numerical simulations.

4.1. Unit cell model

The RVE is defined as a cube with a spherical centred void. Thus, we approximate the material microstructure
by a uniform distribution of equally spaced spherical voids embedded in an isotropic Hershey matrix defined by the
constitutive model outlined in Section 3. In the numerical simulations, we use the yield surface exponents m = 2 and
m = 8, which offer the possibility to examine the effects of J3 on the approximated microstructural behaviour governed
by the unit cell response. The main purpose of these unit cell calculations is to evaluate the void growth for a variety
of stress states using either a quadratic or a non-quadratic yield surface. To this end, the unit cell is loaded by the
principal stress components, thus precluding any macroscopic shear stress. Symmetry conditions are further exploited
by modelling only 1/8 of the entire RVE which significantly reduces the computational cost of the analyses. Figure 3a
illustrates the chosen RVE and Figure 3b shows the corresponding discretized unit cell model.

Periodic and homogeneous boundary conditions are assigned to the unit cell by restricting the external boundaries to
remain straight throughout the analyses, as required from symmetry considerations. Nonlinear kinematical constraints
on the nodal displacements of the unit cell were utilized to control the imposed stress state. These were implemented
by enforcing work equivalence in a fictitious node, and the degrees-of-freedom of that node are used to constrain the
unit cell boundaries by the use of a Multi-Point Constraint (MPC) user subroutine. We will not outline the method
in this section, as it is presented in a more general form in Section 6.1 and Appendix A. Also, the method is detailed
in other studies, see for instance Faleskog et al. (1998), Kim et al. (2004), Wong and Guo (2015), Liu et al. (2016),
or Dæhli et al. (2017). However, we note that this procedure allows the specification of a given macroscopic loading
path and that proportional loading paths were imposed to the unit cell for which the stress triaxiality T and the Lode
parameter L, as defined in Equations (2) and (3), were assigned prescribed values.

The initial unit cell geometry is given by the edge lengths L1 = L2 = L3 = 2L̄, where L̄ is the dimension of the
edges employed in the 1/8 model. For a spherical void, we have that R1 = R2 = R3 = R̄ and the initial void volume
fraction is then defined by

f0 =
Vv

VRVE
=
π

6

(
R̄
L̄

)3

(15)

where Vv and VRVE denote the volume of the void and the RVE, respectively. An initial void content of f0 = 0.005 was
utilized in all calculations. The chosen void volume fraction is deemed representative for the content of the primary
void-nucleating particles in typical aluminium alloys (Westermann et al., 2014). We note that initial voids are assumed
throughout this study, which is only a reasonable approximation under moderate and high stress triaxiality ratios and
for a particle-matrix interface that is relatively weak. Both these assumptions are considered to be realistic for the
materials and stress states employed herein.

Implicit FE simulations were conducted using Abaqus/Standard 6.13 (Abaqus, 2013). A mesh convergence
study was carried out on beforehand to ensure a converged unit cell response. The details of that study is omitted
here for the sake of brevity. Based on the mesh refinement study, we chose a unit cell configuration consisting of
approximately 2000 linear 8-node solid elements. We employed selectively reduced integration (C3D8 in Abaqus) to
reduce susceptibility towards volumetric locking of the finite elements, which could represent a numerical problem for
the nearly incompressible matrix behaviour displayed under predominant plastic loading.
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Figure 3: Illustration of the unit cell model showing (a) the adopted RVE, and (b) the spatially discretized FE model.

4.2. Unit cell results
In the current work, we prescribed proportional stress states governed by T = 2/3, 1, 5/3, and 3 for which the

Lode parameter was assigned five different values L = −1, −1/2, 0, 1/2, 1. Thus, a total number of 20 distinct stress
states was considered for each yield surface exponent. Macroscopic response curves for the unit cell in terms of the
equivalent von Mises stress Σvm

eq and void volume fraction f are plotted in Figures 4 and 5 in the case of m = 2 and
m = 8, respectively, against an equivalent von Mises strain given by

Evm
eq =

√
2
3

E′ : E′ (16)

where E′ denotes the deviatoric part of the macroscopic logarithmic strain tensor. These curves pertain to all the
imposed stress states listed above. The range of stress states covered in the calculations is quite extensive, encompassing
moderate to high levels of stress triaxiality and crossing the entire set of admissible Lode parameters. It should be duly
noted that we have not included stress states in the low stress triaxiality range as this would lead to void collapse and
render the unit cell analyses incompatible with the porous plasticity model to be presented in Section 5.

Figures 4a and 4b show results for the quadratic (m = 2) matrix description. From these numerical data it is
apparent that, even in the case of a quadratic matrix yield surface, the Lode parameter affects the predicted unit cell
response. This has been demonstrated in a number of studies throughout the literature (see for instance Zhang et al.
(2001); Kim et al. (2004); Gao et al. (2010)). In particular, we should note the successive reduction in void growth rate
as the Lode parameter increases which means that void growth is most rapid for L = −1 while it is slowest for L = 1.
Thus, states of generalized tension promote rapid void growth leading to coalescence, while states of generalized
compression prolongs the void growth process. This is related to the evolution of the void shape which is ellipsoidal in
the general case, with the shape of the ellipsoid being dictated by the deviatoric stress state. However, such growth rate
effects are diminishing with increasing levels of stress triaxiality, for which the influence of the stress deviator fades
out, resulting in a nearly spherical void growth governed by the hydrostatic tensile stress. We also note that for the
highest stress triaxiality, the void evolves into an oblate form rather than a prolate form even for generalized tension.
This, admittedly somewhat anomalous, effect was first noticed by Budiansky et al. (1982) in an analytical treatment of
an isolated spherical void embedded in a non-linear viscous material subjected to axisymmetric loading and was later
observed in finite element unit cell calculations by Koplik and Needleman (1988) and Becker et al. (1989).

If we turn to the results for the non-quadratic (m = 8) matrix yield surface shown in Figures 5a and 5b, we observe
even greater effects of the Lode parameter, and thus the third deviatoric principal stress invariant. In accordance with
the results obtained using the quadratic yield surface, states of generalized tension give the most rapid void growth.
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Figure 4: Unit cell results for the yield surface exponent m = 2 represented by (a) the equivalent stress and (b) the void growth
plotted against the equivalent von Mises strain.

Also, the difference in the void growth between states of generalized tension and generalized compression are similar to
what we observe for the quadratic yield surface, at least qualitatively. In fact, this is intuitive by inspection of the yield
surfaces shown in Figure 2 since the deviatoric angles θ = 0◦ and θ = 60◦, or equivalently L = −1 and L = 1, exhibit the
same stress magnitude and flow direction at yielding for both m = 2 and m = 8. Consequently, their global behaviour
should to some extent be preserved when different yield surface exponents are imposed. However, by looking at Figures
5a and 5b, we infer that the void growth rate is not successively decreasing with increasing Lode parameter for the
non-quadratic yield surface. The state of generalized shear gives the slowest void growth in this case, which is quite
different from what we observe for the quadratic yield surface. Clearly, this must be related to matrix J3 dependence
since this is the only difference between the two sets of unit cell calculations. But to exactly predict how this Lode
dependency will influence the macroscopic behaviour of the unit cell is quite challenging because the unit cell is also
affected by the Lode parameter through the heterogeneity imposed by the void. The interplay between these two effects
is not easily envisaged in advance and detailed numerical calculations like the unit cell simulations conducted herein
are necessary to reveal their combined effect.

A potential explanation for the slower void growth in generalized shear for the non-quadratic yield surface has
already been discussed by Steglich et al. (2010) and Shinohara et al. (2016) in the case of a plastically anisotropic
matrix material. From Equation (2), we see that for any given triaxiality ratio T , the magnitude of the hydrostatic stress
Σh is determined from the radius of the yield surface through

Σh = Σvm
eq T =

√
3
2

rT (17)

Hence, when the stress triaxiality is kept constant, the hydrostatic stress scales with the radius of the yield surface.
When m = 2 or m = 4, the matrix yield surface reduces to a circle in the deviatoric plane, but for all other yield
surface exponent values the matrix yield surface is dependent upon the deviatoric angle. This means that r will change
according to the Lode parameter or the deviatoric angle, which is readily confirmed by inspecting the yield surfaces
shown in Figure 2. In the case of the non-quadratic yield surface, r is smaller for generalized shear states than for
generalized axisymmetric stress states. The hydrostatic stress consequently has a minimum for generalized shear
loading (L = 0). Since the hydrostatic tensile stress is the main driving force for void expansion (Rice and Tracey,
1969), this could be the main reason for the rather large differences observed in the void growth between the quadratic
and the non-quadratic yield surface.
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Figure 5: Unit cell results for the yield surface exponent m = 8 represented by (a) the equivalent stress and (b) the void growth
plotted against the equivalent von Mises strain.

To investigate this matter in more detail, we define a new measure of stress triaxiality (Steglich et al., 2010;
Shinohara et al., 2016) which accounts for the underlying matrix description, namely

T ∗ =
Σh

Σeq
=

Σh

Σvm
eq

Σvm
eq

Σeq
= T

Σvm
eq

Σeq
(18)

Keeping this ratio, rather than T , fixed in the unit cell simulations imposes the same external hydrostatic stress to the
unit cell. Figure 6 compares the void growth in the case of generalized shear for the two different stress triaxiality
definitions in the case of the two lower stress triaxialities. Results for the quadratic yield surface are also shown in the
figure for comparison, but we note that the redefined stress triaxiality ratio T ∗ has no effect in this case since the radius
of the yield surface is constant in the deviatoric plane. From the displayed results we find that the void growth rate is
increased when T ∗ is employed, however not enough to conform with the void growth for the quadratic yield surface.
This implies that there is another persistent source for the observed discrepancies in the void growth between m = 2
and m = 8.

Let us now turn to Figures 7a and 7b, which show comparisons between the porosity evolution using the quadratic
(dashed lines) and the non-quadratic (solid lines) matrix yield surface in the case of T = 2/3 and T = 3, respectively,
for generalized tension, shear, and compression states. We readily observe that the spread between the response curves
for different Lode parameters is much more extensive for the non-quadratic yield surface, as displayed in Figure 7a
for the lower triaxiality ratio. This is a manifestation of the combined J3 effects due to the void shape evolution and
the matrix description through the yield criterion. On the contrary, the influence of the J3 parameter is essentially
negligible for the high triaxiality value, although a bit more spread is observed for m = 8. This illustrates the dominant
effect of the hydrostatic tension in these calculations, as seen from Figure 7b, which is far more protrusive than the
deviatoric (J3) effect induced by the matrix.

Before proceeding to the next section, another observation is definitely worth a remark. The numerical data
presented throughout this section show that the quadratic matrix yield surface gives the most rapid void growth for
generalized tension and that the void growth was successively decreasing with increasing Lode parameter. Although
this trend is not displayed by the non-quadratic matrix yield surface, still the generalized tension state seems most
favourable for void growth. This effect is even more prominent for the lower stress triaxiality ratios. Nahshon and
Hutchinson (2008) introduced a shear modification of the Gurson model which has received considerable attention over
the past years. Their model employs a void growth term that scales with the deviatoric angle, or the Lode parameter,
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Figure 6: Comparison of void growth curves for the two triaxiality measures T and T ∗ at two levels of stress triaxiality. The plotted
curves pertain to generalized shear states represented by the Lode parameter L = 0.
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Figure 7: Comparison of void growth in simulations with m = 2 (dashed lines) and m = 8 (solid lines) for (a) T = 2/3 and (b)
T = 3.

such that void growth is accelerated in generalized shear and unaltered in generalized tension and compression, the
shape of the scaling being parabolic in terms of the Lode parameter. The unit cell calculations conducted in the present
study suggest that such a shear modification should scale the void growth differently as a function of the Lode parameter
since there is a large difference between generalized tension and generalized compression. This might serve as an
appropriate remedy for the assumed spherical void growth in the Gurson model.

5. Porous plasticity model

The porous plasticity model (PPM) is presented in the following along with the calibration procedure and results
from the calibration to unit cell data from the previous section. No attempt is made to derive rigorous upper-bound
estimates in the spirit of the work by Gurson (1977) in the case of the PPM for a Hershey matrix description. To
account for the influence of the third deviatoric stress invariant J3 on the plastic yielding of the matrix, we rather modify
the Gurson model heuristically by replacing the von Mises equivalent stress with the Hershey equivalent stress. Such
modifications of porous plasticity models have been proposed previously in the literature (Doege and Seibert, 1995;
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Bron and Besson, 2006; Besson, 2010; Steglich et al., 2010; Gruben et al., 2017) and is also used in a recent study by
Dæhli et al. (2017).

5.1. Model formulation

The constitutive relations for the porous plasticity model are formulated in a corotational framework, as described
for the matrix material in Section 3. The macroscopic corotated stress and rate-of-deformation tensors read

Σ̂ = RT · Σ · R (19a)

D̂ = RT · D · R (19b)

Capital letters are used in the following to designate homogenized tensor quantities that act on the material element.
Further, an additive split of the macroscopic rate-of-deformation into elastic and plastic parts is assumed, such that
D̂ = D̂e

+ D̂p
.

The yield function governing the homogenized response of the voided aggregate reads (Gurson, 1977; Tvergaard,
1981, 1982)

Φ
(
Σ̂, σM, f

)
=

(
Σeq

σM

)2

+ 2q1 f cosh
(

3
2

q2
Σh

σM

)
− 1 − (q1 f )2 ≤ 0 (20)

where Σeq denotes the macroscopic Hershey equivalent stress in the form of Equation (8), and Σh is the macroscopic
hydrostatic stress. As in the original Gurson model, f denotes the void volume fraction, and σM is the matrix flow stress
governed by Equation (9) in the present formulation. The model parameters qi were introduced by Tvergaard (1981) to
obtain better correspondence to numerical results obtained with unit cell simulations, and these are determined in the
calibration process.

The associated flow rule is adopted, such that the plastic part of the macroscopic rate-of-deformation is given by

D̂p
= Λ̇

∂Φ

∂Σ̂
(21)

where Λ̇ is the plastic multiplier. An expression for the void growth rate is calculated from matrix incompressibility
(Gurson, 1977)

ḟ = (1 − f ) tr (D̂p
) (22)

in which tr (D̂p
) coincides with the plastic volumetric rate-of-deformation. This relation is implicitly influenced by the

Lode parameter, or equivalently J3, due to the adopted equivalent stress measure and the yield criterion. The relation
between the matrix equivalent plastic strain rate and the plastic multiplier is determined from the plastic power

Σ̂ : D̂p
= (1 − f )σM ṗ ⇒ ṗ =

Λ̇

(1 − f )σM
Σ̂ :

∂Φ

∂Σ̂
(23)

The elastic response is governed by the hypoelastic formulation given in Equation (6) which is assumed to be
unaffected by the microscopic voids. This assumption is quite justified for the low content of voids that are typically
found in commercial aluminium alloys, even more so since the elastic deformations are small when compared to their
plastic counterparts. As for the matrix description used in the unit cell simulations, the elastic parameters and the
material parameters governing the work-hardening rule are given in Table 1. Both yield surface exponents m = 2 and
m = 8 are employed herein. The constitutive relations are completed by the loading/unloading conditions which are
given by

Φ ≤ 0, Λ̇ ≥ 0, ΦΛ̇ = 0 (24)

Temporal integration of the rate-constitutive equations was carried out using a semi-implicit return map algorithm
(Belytschko et al., 2000) which was implemented using a UMAT subroutine in Abaqus/Implicit. A substepping scheme
was employed to enforce sufficient accuracy of the integration procedure, and the strain increment fed to the material
subroutine was constrained by

∆t
√

D̂ : D̂ ≤ 0.05
σ0

E
(25)
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where ∆t is the analysis time increment, and σ0 and E are the material parameters listed in Table 1. Note that the total
corotated rate-of-deformation tensor D̂ is used to define an effective strain increment, since the PPM is compressible. A
numerical evaluation of the consistent tangent moduli was utilized due to the complexity associated with developing
these moduli analytically.

5.2. Calibration

The optimization software LS-OPT (LS-OPT, 2017) is utilized to calibrate the PPM. To this end, the unit cell
data obtained in Section 4.2 were used as target curves. In the optimization procedure, the Tvergaard parameters qi

were varied in order to obtain the best fit to the numerical data by the use of a sequential domain reduction algorithm.
Residuals in both equivalent stress and void volume fraction as function of the equivalent strain were minimized in the
calibration by the use of a least-square method. The optimized material parameters are listed in Table 2.

Table 2: Set of qi parameters found from the optimization process.

m q1 q2

2 1.426 0.853
8 1.449 0.857

Comparative curves between the unit cell model and the PPM are shown in Figure 8 in the case of T = 2/3 and
T = 5/3. Figures 8a and 8b demonstrate that the PPM does not exhibit any J3 dependency when the yield surface
exponent is set to m = 2, which is recognized from the fact that all Lode parameters give exactly the same response.
This corresponds to using the von Mises equivalent stress, for which the yield function in Equation (20) is known to
lack the ability to display the Lode effects associated with the void shape evolution that are observed in the unit cell
calculations. In the case of the non-quadratic matrix, we see from Figures 8c and 8d that the PPM is affected by the
Lode parameter. However, the Lode dependency imposed by the Hershey equivalent stress measure is seen to induce
symmetric response with respect to generalized tension and compression. This is consistent with the yield surfaces
depicted in Figure 2, but not in line with the Lode dependence displayed in the unit cell simulations.

In terms of the stress-strain curves, see Figures 8a and 8c, we find that the void-induced softening is a bit too
pronounced in the PPM for the low stress triaxiality ratios. This observation applies to both matrix descriptions, with
the exception of L = −1 for the matrix with m = 8. By considering the corresponding void growth curves, this is
quickly unravelled since the void growth is seen to be somewhat faster in the PPM up to rather large strains. The trend
is opposite for the higher stress triaxiality ratio, where the void-induced softening in the PPM is less than in the unit cell
calculations. This is related to the observation that the void growth is slower for the PPM for all the deviatoric stress
states and yield surface exponents for the higher stress triaxialities, which prolongs the stable mechanical response
phase and delays the onset of softening. When we employ qi parameters different from unity, we deviate from the
original Gurson model which is the exact solution in the hydrostatic limit. For the sets of qi parameters listed in Table 2,
the void growth rate is reduced as compared to the original Gurson parameters q1 = q2 = 1. This is the reason why the
correspondence between the curves is deteriorated for increased traxiality levels. The fact that we are not able to obtain
a set of qi parameters that provides the same accuracy for all stress states implies that the PPM itself is not sufficiently
refined to give an adequate representation to the approximated microstructure, meaning the unit cell calculations. The
competition between the evolution of the void shape and the purely spherical void expansion is important in that regard,
which might be remedied by using phenomenological extensions of the Gurson model (Nahshon and Hutchinson,
2008; Xue, 2008) or more advanced porous plasticity models that account for spheroidal and ellipsoidal void shapes
(Gologanu et al., 1993; Madou and Leblond, 2012a,b) in the limit analysis.

We note that the values of the parameters obtained in the optimization process are largely dependent upon the
stress states included in the calibration. If only the generalized tension analyses L = −1 are included, the resulting
qi parameters yield conservative estimates of the void growth. The opposite holds true if only L = 1 is considered.
Since the employed PPM itself is not able to replicate the unit cell response for all stress states in terms of both
void growth and equivalent stress, it can be argued that the qi parameters should be calibrated from stress states that
are most likely to be obtained in the application domain. Also, a potential remedy for some of the discrepancies
observed in Figure 8 is to calibrate qi for different Lode parameters separately, meaning that qi = qi(L). We note that
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Figure 8: Comparison between results obtained with the unit cell (dashed lines) and the PPM (solid lines) with the optimized set of
qi parameters. The plotted curves pertain to generalized tension, shear, and compression, for stress triaxialities T = 2/3 and T = 5/3.
Results are shown for both yield surface exponents (a,b) m = 2 and (c,d) m = 8.

this introduces a stress state dependency in the qi parameters and it must be ensured that the plastic dissipation is
non-negative. Previous studies in the literature (see for example Vadillo and Fernández-Sáez (2009) or Bomarito and
Warner (2015)) have introduced a stress dependency in the qi parameters to enhance the predictions of the Gurson
model under non-proportional loading paths.

6. Strain localization analyses

Strain localization is in many cases a reliable indicator for when ductile failure occurs, since intense straining in a
very constrained region is usually quickly followed by local crack initiation and propagation. In the following, we will
employ three approaches to model strain localization. The first method is based on unit cell calculations in which a
shear mode is included to account for band orientations that differ from the macroscopic principal stress directions.
The second and third methods are based on bifurcation analysis and imperfection band analysis, respectively, following
the work of Rice (1976). Both methods are presented separately in the first two subsections, while numerical results
are presented and compared in the subsequent subsections. We note that the stress triaxiality ratios considered herein
will be confined to T ≥ 2/3. As briefly mentioned in Section 4.2, this choice is made since the Gurson model is better
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suited for calculations in the range of intermediate and high stress triaxialities. However, low stress triaxialities are of
great interest in the context of ductile failure and yield even greater effects of the Lode parameter.

6.1. Unit cell approach to strain localization analyses
To study strain localization by the use of unit cell simulations, we have employed a modelling framework that

follows the treatments presented in Barsoum and Faleskog (2007b), Barsoum and Faleskog (2011), Dunand and Mohr
(2014), and Wong and Guo (2015). A brief overview of the model and its finite element implementation in the implicit
solver Abaqus/Standard are given in the following. We note that the purpose of conducting such unit cell analyses in
the present study is to make comparisons to the more computationally efficient strain localization analyses for which
the theoretical foundation is given by Rice (1976).

6.1.1. Unit cell model
It has been demonstrated in a number of studies that accounting for a shear deformation mode greatly influences

the localization strain. Rudnicki and Rice (1975) and Perrin and Leblond (1993) showed that, for isotropic materials,
localization will always occur in the plane parallel to the intermediate principal stress direction nII. In order to facilitate
such analyses, we prescribe an angle α between the major principal stress direction nI and the band unit normal n. This
angle is referred to as the band angle in the sequel. We note that in the current work, the band angle is kept constant
throughout the loading, which is not in complete agreement with the framework of the imperfection band analysis.
However, the difference induced by this fixation of the band orientation is deemed rather small in this range of triaxiality
ratios, as also indicated by the results in Dunand and Mohr (2014) using both fixed and rotating bands. In the finite
element model, the localization plane is taken to be parallel with the reference base vector e3, and thus Σ33 = ΣII and
Σ13 = Σ23 = 0. Figure 9a illustrates the governing problem in which the deformations localize in a narrow voided band.

To reduce the computational cost of the unit cell simulations, we have made use of the symmetry condition along
the direction nII and only modelled half the unit cell. The initial unit cell geometry is then given by edge lengths
equal to L1 = L2 = L̄, while L3 = L̄/2. The radius of the void R̄ is determined such that the corresponding void
volume fraction has an initial value of f0 = 0.005, in accordance with the porosity imposed in the unit cell simulations
conducted previously. Homogeneous and periodic boundary conditions are imposed to the unit cell. The unit cell edges
are thus subjected to the kinematic boundary conditions

u1

(
L̄
2
, X2, X3

)
= u1

(
−

L̄
2
, X2, X3

)
+ U1 (26a)

u1

(
X1, L̄, X3

)
= u1 (X1, 0, X3) + U4 (26b)

u2

(
X1, L̄, X3

)
= u2 (X1, 0, X3) + U2 (26c)

u3 (X1, X2, 0) = −
U3

2
(26d)

u3

(
X1, X2,

L̄
2

)
= 0 (26e)

where the displacement components Ui govern the homogeneous deformation and are illustrated in Figure 9b. In the
finite element model, some nodes need to be constrained by imposing a zero displacement in order to prevent rigid body
motion (see Figure 9b). The remaining nodes on the unit cell boundary are subjected to linear kinematic constraints
to fulfil the periodicity requirement. In addition, the two unit cell edges with normal e3 are constrained to remain
plane in accordance with the assumption that a material element inside the localization band will only develop in-plane
shear stress components. More specifically, the middle section of the unit cell, which cuts through the void, defines a
symmetry plane and is consequently fixed throughout the analyses. The opposing edge is prescribed the displacement
−U3/2 along the global base vector e3 such that the total displacement of the unit cell along e3 is U3. An illustration of
the unit cell model is presented in Figure 9b.

The volume averaged deformation gradient may be determined from

F =
1

V0

∫
V0

∂x
∂X

dV0 =
1

V0

∫
S 0

x ⊗ n0 dS 0 (27)
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(a) (b)

Figure 9: Unit cell model for strain localization into a narrow band. Figure (a) shows the governing strain localization problem with
the principal stress components applied to a material block where a band of localized deformation emerges. The band orientation
is indicated by the angle α and the band normal n. Figure (b) illustrates the unit cell loading configuration of a material element
located inside the presumed localization band. Boundary conditions are implied in the illustration. Note that a fictitious node is used
to impose the appropriate boundary conditions defined by the displacement vector Ũ.

where X and x refer to material positions in the reference and current configurations, respectively, V0 and S 0 are the
volume and surface area in the reference configuration, and n0 is the unit surface normal of the unit cell boundaries in
the reference configuration. The latter equality follows by the use of the gradient theorem. We employ a fixed Cartesian
basis spanned by the base vectors ei for both the reference and the current configurations. With reference to Figure 9b,
the deformation gradient may be written on matrix form according to

[F] =



1 +
U1

L1

U4

L2
0

0 1 +
U2

L2
0

0 0 1 +
U3

L3


(28)

All the macroscopic kinematic tensors presented in the following are evaluated from this volume averaged deformation
gradient.

The macrosopic rate-of-deformation D of the unit cell is determined from the symmetric part of the velocity
gradient L = Ḟ · F−1, such that

D =
1
2

(
L + LT

)
=

1
2

(
Ḟ · F−1 + F−T · ḞT

)
(29)

For the current task, it is beneficial to recast D in vector form. Thus, we write

{D} =


D11
D22
D33

2D12

 =

{
U̇1

l1

U̇2

l2

U̇3

l3
−

U4U̇1

l1l2
+

U̇4

l2

}T

(30)

where li = Li + Ui denote the current unit cell dimensions. This vector is further related to the global displacement
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rates U̇ i applied to the unit cell boundaries via a linear transformation

{D} = [T] ˙{U} =



1
l1

0 0 0

0
1
l2

0 0

0 0
1
l3

0

−
U4

l1l2
0 0

1
l2




U̇1
U̇2
U̇3
U̇4

 (31)

This relation will prove useful in the implementation of the MPC routine used to control the global stress state imposed
to the unit cell. The details of this procedure are given in Appendix A.

The stress triaxiality T and Lode parameter L given in Equations (2) and (3), respectively, may be expressed
uniquely in terms of the principal stress components. Further, we introduce principal stress ratios on the form

ψII =
ΣII

ΣI
and ψIII =

ΣIII

ΣI
(32)

where ψIII ≤ ψII ≤ 1 due to the ordering of the principal stress components. Using Equations (2) and (3), the stress
triaxiality and Lode parameter may be written as functions solely of the principal stress ratios

T =
1 + ψII + ψIII

3
√

1 − ψII − ψIII − ψIIψIII + ψ2
II + ψ2

III

(33a)

L =
2ψII − (1 + ψIII)

1 − ψIII
(33b)

Thus, the prescription of T and L offers the ability to uniquely define the stress state in terms of the principal stress
components. Note that Equation (33a) imposes a restriction on the major principal stress according to ΣI > 0. If we
now solve Equation (33a) for ψII, insert this value into Equation (33b) and use the minimum of the two possible roots
of the resulting expression for ψIII, we find the inverse relations on the form

ψII =
1
2

(ψIII (1 − L) + 1 + L) (34a)

ψIII =
9T 2

(
3 + L2

)
+

(
9 − L2

)
− 18T

√
3 + L2

9T 2 (
3 + L2) − (3 − L)2 (34b)

Although T and L uniquely defines the principal stress state, given in terms of the principal stress components
Σi and the corresponding principal directions ni, the stress components in the plane spanned by base vectors e1 and
e2 may take on an infinite number of values depending upon the band angle α. To express the relation between the
principal stress space and the stress state in the reference basis spanned by the unit vectors ei, we employ the angle α
between the major principal stress component ΣI and the stress component Σ22. Further, we define a set of stress ratios
ρi between the stress components Σi j on the form

ρ2 =
Σ22

Σ11
, ρ3 =

Σ33

Σ11
, ρ4 =

Σ12

Σ11
(35)

With reference to Figure 9b, we note that the principal directions are given by the unit vectors

nI =


sinα
cosα

0

 , nII = e3 =


0
0
1

 , nIII =


cosα
− sinα

0

 (36)
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Thus, the stress tensor may be expressed in both the global basis ei and the principal basis nk such that

Σ = Σi jei ⊗ e j =

III∑
k=I

Σknk ⊗ nk (37)

By performing the transformation from the principal stress space into the reference basis of the unit cell, we obtain a
relation between the stress components Σi j and the principal stress components Σk. This may be conveniently expressed
in matrix form as

[Σ] =

ΣI sin2 α + ΣIII cos2 α (ΣI − ΣIII) cosα sinα 0
(ΣI − ΣIII) cosα sinα ΣI cos2 α + ΣIII sin2 α 0

0 0 ΣII

 (38)

Introducing the principal stress ratios defined in Equation (32), the stress components applied to the unit cell are further
expressed in terms of ΣI, ψII, and ψIII according to

Σ11 =
(
sin2 α + ψIII cos2 α

)
ΣI (39a)

Σ22 =
(
cos2 α + ψIII sin2 α

)
ΣI (39b)

Σ33 = ψIIΣI (39c)
Σ12 = cosα sinα (1 − ψIII) ΣI (39d)

Thus, we may finally determine the stress ratios ρi, given by Equation (35), as functions of the principal stress ratios ψi

and the angle α

ρ2 =
cos2 α + ψIII sin2 α

sin2 α + ψIII cos2 α
(40a)

ρ3 =
ψII

sin2 α + ψIII cos2 α
(40b)

ρ4 =
cosα sinα (1 − ψIII)

sin2 α + ψIII cos2 α
(40c)

6.1.2. Controlling the macroscopic loading path
We first note that Equations (40a)-(40c) combined with Equations 34a and 34b give the opportunity to prescribe

the stress ratios ρi for given values of the stress triaxiality T , Lode parameter L, and band angle α. This enable us to
control the macroscopic stress state imposed to the unit cell by some suitable numerical procedure.

In order to control the average state of stress imposed to the unit cell, it was proposed by Faleskog et al. (1998)
to transform the stress state of the unit cell into a hypothetical space in which a uniaxial state of stress prevails. This
is realized by introducing a new set of degrees-of-freedom to which the boundary conditions are imposed, and then
drive the deformation of the unit cell by appropriate nonlinear kinematic constraints. These degrees-of-freedom are
incorporated through a fictitious node, as shown in Figure 9b, and the nonlinear kinematic constraints are enforced
through an MPC user subroutine in Abaqus/Standard. We have reviewed this procedure in Appendix A in the case
of four displacement components, which reduces to the method used in Section 4 when α = 0◦ or α = 90◦. An
interpretation of the degrees-of-freedom involved in the constraints is provided in Figure 9b. For other expositions of
the method, the reader is referred to Barsoum and Faleskog (2007b, 2011), Dunand and Mohr (2014), or Wong and
Guo (2015).
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6.1.3. Localization indicators
To determine the onset of strain localization, a localization indicator is often taken on the form (Needleman and

Tvergaard, 1992; Barsoum and Faleskog, 2007b, 2011; Dunand and Mohr, 2014)

ξF =
||Ḟb||

||Ḟo||
>> 1 (41)

where ||Ḟb|| and ||Ḟo|| are tensor norms of the time derivative of the deformation gradient. With reference to Figure 9a,
the norm ||Ḟb|| corresponds to the rate of the deformation gradient across the assumed band, while ||Ḟo|| is the rate of the
deformation gradient outside the assumed band where the deformation is homogeneous. The latter reduces towards
zero as the strains localize and the localization indicator then approaches infinity. This is an appropriate definition
of strain localization in the imperfection band analyses. To evaluate the rate of the deformation gradient inside and
outside the imperfection band in the unit cell simulations, we extracted the nodal displacements u1 and u2 from the
yellow and red nodes in Figure 10. The yellow nodes were used to calculate the deformation gradient across the band,
while the red nodes were used to approximate the deformation gradient outside the imperfection band. We note that the
deformation along base vector e3 is uniform due to the imposed symmetry condition, and the corresponding component
of the deformation gradient F33 is then identical inside and outside the imperfection band.

Figure 10: Overview of the nodes that are used to extract the displacement information needed to evaluate localization criteria ξF

and ξD.

The localization criterion based on ξF is not always reliable in the unit cell simulations because the displacement at
the unit cell boundaries across the band may be relatively uniform even if the void has expanded to such a degree that
void coalescence is unavoidable. This is a prominent observation for generalized compression states, defined by L = 1,
where the voids might be found to nearly impinge the unit cell edges but still not trigger localization as defined from
Equation (41). We employed a localization criterion according to ξF > 5 in the current study. The value of ξF is quite
influential on the predicted failure strain for generalized compression states, and some stress states may accordingly
not give strain localization using this localization criterion.

In an attempt to account for even more local measurements, which presumably triggers the localization criterion
also for generalized compression, we define an alternative localization indicator on the form

ξD =
||Dl||

||Do||
>> 1 (42)

Here, ||Dl|| denotes an effective rate-of-deformation calculated from the average deformation gradient inside the
intervoid ligament while ||Do|| is the effective rate-of-deformation evaluated from the deformation gradient in the
homogeneously deformed region outside of the band. This may be interpreted as a criterion based on the averaged
strain rate between adjacent voids located inside the assumed imperfection band. The nodal displacements of the blue
nodes in Figure 10 are used to calculate Dl, while the displacements of the red nodes are used to evaluate Do. We note
that this criterion will be sensitive to small changes in the nodal displacements inside the ligament since it is averaged
only over a small region which is quite heavily deformed. Also, it is highly mesh dependent, which requires more
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attention from the user. In the present study, we chose a localization indicator value of ξD > 5.
Inspired by the work of Wong and Guo (2015) and Liu et al. (2016), we also employed a third localization indicator

in the current work. Instead of being defined in terms of kinematic nodal quantities, which are presumably quite
influenced by the mesh refinement, this localization criterion is based on energy considerations. Thus, localization is
governed by both stress and strain quantities of the unit cell volume, and is not as mesh dependent as the two other
localization indicators defined by Equations (41) and (42). The macroscopic elastic and plastic deformation power
contributions are given by

Ẇe
d =

∫
V

σ : de dV (43a)

Ẇp
d =

∫
V

σ : dp dV (43b)

By introducing the ratio between the elastic and the plastic work rate, we use the localization indicator on the form
(Wong and Guo, 2015; Liu et al., 2016)

ξW =
Ẇe

d

Ẇp
d

(44)

Strain localization is in the current work defined as ξW = 0, which implies a state of neutral loading (Wong and Guo,
2015). Due to the time discretization, this criterion is not expected to be exactly satisfied, and we have then used the
first negative value. We also note that this criterion matches the predictions of Equations (41) and (42) rather well
for some loading situations. However, it is generally more conservative, but also more readily evaluated for states of
generalized compression.

We note that other localization criteria may also be used. For instance, Tvergaard (2012) and Bomarito and Warner
(2015) used the peak stress as an indicator for when failure will occur. In the paper by Tekoğlu et al. (2015), they defined
macroscopic localization from the point of maximum equivalent stress, while localization due to void coalescence
was defined as the instant when the ratio between maximum and minimum plastic strain rate at the void surface first
exceeded a threshold value. The variety of localization indicators used throughout the literature indicates that there is
still no consensus on how to define the point of failure.

6.2. Imperfection band approach to strain localization

The framework of the strain localization analyses presented herein was set by Rice (1976). We will use the porous
plasticity model proposed in Section 5 with the qi parameters determined in Section 5.2 to govern the dilutely voided
material with an initial porosity of f0 = 0.005. An illustration of the model is shown in Figure 11. In this paper we will
conduct analyses both in the sense of a bifurcation in the porous plasticity model, for which the material is everywhere
the same, and using an initial non-uniformity where the material outside the band reduces to the Hershey material
description. A recent paper by Gruben et al. (2017) has employed the same implementation of the imperfection band
analysis as the one used herein to investigate strain localization in sheets made from two advanced high-strength steels.

Compatibility requirements entail that the displacements only vary with the coordinate X̄ = X · n0 in the direction
of the band normal across the imperfection band. The rate of the deformation gradient inside the band then reads (Rice,
1976; Needleman and Rice, 1978)

Ḟb = Ḟo + q̇0 ⊗ n0 (45)

where Ḟo is the rate of the deformation gradient imposed to the bulk material, q̇0 denotes the rate of the deformation
non-uniformity across the band and n0 denotes the band normal in the reference configuration. In the case of a pure
shear band q̇0 is orthogonal to the normal n0 whereas for a purely dilatational band it is parallel.

From Equation (45) it is understood that the difference in stress rate between the inside and the outside of the
imperfection band is only a function of the X̄-coordinate along the normal direction n0. Thus, in the reference
configuration, continuing a state of equilibrium requires that

n0 · Ṅb = n0 · Ṅo (46)
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where Ṅb and Ṅo are the nominal stress rates inside and outside the band, respectively. Equations (45) and (46) are the
two governing equations of the imperfection band model, in addition to the constitutive laws that describe the material
response to deformation. These may just as well be formulated in the current configuration using the spatial kinematic
and kinetic tensors, as for instance done in the work by Yamamoto (1978). In the following, we will formulate the
equations in an updated reference configuration (updated Lagrangian description) which is taken to instantaneously
coincide with the current configuration (Nahshon and Hutchinson, 2008; Haddag et al., 2009). Note that this is entirely
equivalent to a formulation in the current configuration, as shown by Rudnicki and Rice (1975).

Figure 11: Illustration of the imperfection band model representing a weak discontinuity in the otherwise uniformly deformed
material. Quantities with subscript ”o” denote the material outside of the imperfection band, whereas quantities with subscript ”b”
refer to the material inside the band.

In the updated Lagrangian formulation, the compatibility condition expressed by Equation (45) is formulated in
terms of the velocity gradient L, such that

Lb = Lo + q̇ ⊗ n (47)

and the connection between the rate of the nominal and Cauchy stress tensors reduces to

Ṅ = Σ̇ − L · Σ + tr (L) Σ (48)

The objective Jaumann stress rate
∇J
Σ is used to define the rate-constitutive equations

∇J
Σ= Cep : D = Cep : L (49)

where Cep is the elasto-plastic tangent stiffness (Needleman et al., 1992). The time derivative of the Cauchy stress may
then be written in terms of the Jaumann stress rate according to

Σ̇ =
∇J
Σ + W · Σ − Σ ·W (50)

Substituting this expression in Equation (48) yields

Ṅ =
∇J
Σ −D · Σ − Σ ·W + tr (L) Σ (51)
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Inserting Equation (49) and using the relations 2D = L + LT and 2W = L − LT gives

Ṅ = Cep : L −
1
2

(
L + LT

)
· Σ −

1
2
Σ ·

(
L − LT

)
+ tr (L) Σ (52)

The nominal stress rate may then be rewritten
Ṅ = Ct : L (53)

where
Ct

i jkl = Cep
i jkl −

1
2

(
Σikδ jl + δikΣ jl + δilΣ jk − Σilδ jk

)
+ Σi jδkl (54)

and δi j denotes the Kroenecker delta.
Equation (46) is now given by

n · Ct
b : Lb = n · Ct

o : Lo (55)

Using Equation (55) in combination with Equation (47), this is recast in its final form(
n · Ct

b · n
)
· q̇ = n ·

(
Ct

o − Ct
b

)
: Lo (56)

Strain localization is defined by det
(
n · Ct

b · n
)

= 0, which implies that q̇ is not uniquely defined. We note that the
bifurcation case is retrieved when Ct

b = Ct
o and the problem is then reduced to solving the equation

det
(
n · Ct · n

)
= 0 (57)

where Ct is the tangent operator governing the constitutive response (see Equation (53)). The velocity non-uniformity
q̇ is evaluated by the use of a fixed-point iteration procedure whenever det

(
n · Ct

b · n
)
> 0. Details regarding the

numerical implementation are given in a paper by Morin et al. (2017).
In the numerical analyses, the velocity gradient outside the imperfection band Lo is prescribed such that the stress

triaxiality T and the Lode parameter L are kept fixed to prescribed levels. Details regarding this procedure may be
found elsewhere in the literature, see for instance Nahshon and Hutchinson (2008) or Dæhli et al. (2017). Both the
quadratic (m = 2) and the non-quadratic (m = 8) matrix yield surface descriptions are employed. In the case of the
bifurcation analyses presented in Section 6.4, the material both inside and outside the imperfection band corresponds
to the porous plasticity model presented in Section 5 with an initial porosity of f0 = 0.005. In conjunction with the
imperfection band analyses presented in Section 6.4 and 6.5, all calculations are performed with a material imperfection
governed by the porous plasticity model using an initial porosity of f0 = 0.005 inside the band. In the imperfection
band analyses, the material outside the band is sound and thus f = 0 in the bulk material.

6.3. Strain localization predictions with the unit cell approach

Unit cell simulations were conducted for a range of proportional stress states to examine differences between
a quadratic and a non-quadratic matrix yield surface on strain localization. Specifically, we imposed stress states
corresponding to stress triaxialities T = 2/3, 1, 5/3, and 3 for generalized shear states L = 0. We also ran simulations
with the Lode parameters L = ±1,±3/4, ±1/2, and ±1/4 for a stress triaxiality of T = 1. A number of band orientations
α were used to estimate a minimum failure strain for a given stress state. However, due to the computational demand
associated with these simulations, we set the minimum difference between two successive band angles to ∆α = 2.5◦

and the exact minimum of the failure strain is consequently not likely to be captured. The results are, however, deemed
to be quite close to the ”true” minimum obtained from a very refined band resolution since the differences between
failure strain values in the proximity of the critical orientation were found to be rather small. This may be inferred from
Figure 12.

The failure strain values obtained with the energy-based localization criterion, defined by ξW = 0 in Equation (44),
are shown in Figure 12 against the imposed band angle for a Lode parameter L = 0. Figure 12a pertains to T = 2/3
and 1, whereas Figure 12b corresponds to T = 5/3 and 3. These analyses imply that strain localization occurs in a
direction close to 45◦ for the two lowest stress triaxiality levels regardless of the yield surface exponent, whereas the
angle of the localization band is somewhat lower for the higher triaxialities. The latter observation implies a transition
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Figure 12: Failure strain values under generalized shear for different band orientations α imposed to the unit cell in the finite
element calculations. Comparisons between quadratic and non-quadratic matrix yield surfaces are made for (a) the lower stress
triaxialities and (b) the higher stress triaxialities. Localization predictions using the three different indicators are shown in (c) for
m = 2 and (d) for m = 8 for stress states governed by T = 1 and L = 0.

from shear-dominated failure to a failure mode governed by void growth and coalescence as the stress triaxiality ratio
is increased. Also, since nearly all the examined orientations α yield roughly the same failure strain level for the
highest stress triaxiality, this implies that increasing triaxiality leads to a more diffuse localization mechanism due to
the arbitrariness of the band inception. The band formation is then presumably more progressive and an increased
amount of damage softening can be sustained after the onset of localization and prior to material failure. This is
substantiated by the numerical analyses conducted by Tekoğlu et al. (2015), for which the onset of strain localization
and void coalescence are seen to coincide only for T < 1 whereas the onset of coalescence is increasingly delayed for
higher T . Under such circumstances the difference between strain localization at the macroscopic level, as captured by
the model framework of Rice (1976), and the more local process of void coalescence seems more prominent.

Another observation worth a remark is that the strain at localization is lower for the quadratic yield surface than
for the non-quadratic counterpart in the case of generalized shear loading (L = 0). This is somewhat contradictory to
what is reported in the literature (Needleman and Rice, 1978; Mear and Hutchinson, 1985; Tvergaard, 1987; Tvergaard
and Van Der Giessen, 1991), where a higher curvature of the yield surface usually expedites localization. To the best
knowledge of the authors, this effect seems largely unexplored in the literature using unit cell calculations. If we
consider the differences obtained in terms of the void growth in Section 4.2 for generalized shear (see Figure 7a), this
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result may follow from intuition since accelerated void growth is judged favourable for early failure. A potential reason
for this observation was discussed in Section 4.2 based on the difference in radius of the yield surface between the two
yield surface exponents. Since this difference is at its peak for generalized shear, and we in these calculations use the
triaxiality ratio defined in Equation (2), the resulting macroscopic hydrostatic stress for m = 8 is lower than for m = 2
by a few percent. We refer to Figure 2 to see the differences between the two yield surfaces.

A comparison between the failure strain levels using the three different localization indicators for a loading state
T = 1 and L = 0 have been included in Figures 12c and 12d. We see that either of the three localization indicators are
generally in good agreement in terms of the critical band orientation, which means that they all predict the same failure
mode. It is also seen that the magnitude of the failure strain varies more with the band angle for indicators ξF and ξD
than for the energy-based indicator ξW. However, it should be noted that for the critical band orientation, the three
localization indicators more or less coincide under the given loading condition (T = 1 and L = 0).

Figure 13a shows equivalent stress-strain curves (blue lines) and porosity-strain curves (red lines) for the critical
band orientation αc = 35◦ in the case of a stress state corresponding to T = 1 and L = −1. Three deformed
configurations of the finite element model are shown in the Figures 13b and 13c for each of the two yield surface
exponents m = 2 and m = 8, respectively, to give an indication of the void shape and size at the various localization
predictions. We observe a pronounced difference between the failure strain levels obtained using the three different
localization indicators for this stress state. The energy-based indicator seems overly conservative in terms of ductile
failure prediction under the given stress state. However, it matches very well with the onset of macroscopic softening,
which is also an instability associated with loss of uniqueness. These results demonstrate that ductility predictions are
in general highly sensitive to the indicator which is used even if the failure mode, defined by the critical orientation αc,
is similar. This is important to keep in mind if such analysis methodologies are to be used for material characterization
and determination of failure loci. An interesting observation is that all localization indicators predict instability when
the void content is rather low ( fc ∼ 2% − 4%).

Before we proceed with a comparison between the unit cell, the bifurcation analyses, and the imperfection band
analyses, we note that the results presented in Figures 12 and 13a show that the quadratic matrix yield surface gives the
lowest failure strain for the generalized shear states L = 0, while the opposite holds true for the generalized tension
state L = −1. Thus, we observe a change in whether the quadratic or the non-quadratic matrix yield surface gives the
lowest failure strain depending on the Lode parameter. The ductile failure process is indeed Lode dependent (see for
example Barsoum and Faleskog (2007a,b)) and the intrinsic J3 dependency of the matrix material interplays with the
Lode effects emerging due to the spatial heterogeneity introduced by the void and the void shape evolution. Again, we
turn to the void growth curves to find a potential explanation for this behaviour. From Figure 7a, we readily see that the
void growth is more rapid for m = 8 than for m = 2 when L = −1, while the opposite holds true for L = 0. We also
alluded to a pronounced influence of the Lode parameter on the void growth in Section 4.2. The same observation is
made from the unit cell simulations of the band model for the generalized tension state, as seen from the porosity-strain
curves shown in Figure 13a. This is one of the reasons why the ductility is reduced for m = 8 under generalized tension.
We will come back to this observation when discussing results from the imperfection band analyses. However, the
argumentation is then somewhat different.

6.4. Comparison between the different modelling strategies
To the best knowledge of the authors, direct comparisons of unit cell calculations with bifurcation and imperfection

band analyses are yet not available in the literature. However, many studies employing either the former (Barsoum
and Faleskog, 2007b, 2011; Dunand and Mohr, 2014; Bomarito and Warner, 2015; Wong and Guo, 2015) or the
latter (Rudnicki and Rice, 1975; Rice, 1976; Yamamoto, 1978; Needleman and Rice, 1978; Mear and Hutchinson,
1985; Tvergaard, 1987) line of approach have previously been conducted. But considering the computational expense
associated with the unit cell simulations, it is of great interest to make quantitative comparisons to the bifurcation
and imperfection band analyses, which are of much less computational demand. To get an idea of the difference in
computational time, one unit cell simulation takes about 1 hour running in parallel on 12 CPUs. Approximately 10
band angles must be imposed to determine the critical band angle with decent accuracy. This number multiplied by
the number of investigated stress states amounts to roughly 5 days of continuous computation for each yield surface
exponent using the unit cell approach. In comparison, strain localization analyses using the bifurcation or imperfection
band models are conducted in a few minutes with a much higher resolution of the imposed band angles. The use
of imperfection band analyses thus reduces the effort associated with generating failure loci that subsequently can
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Figure 13: Unit cell results for T = 1 and L = −1 at the critical band angle αc = 35◦. Equivalent stress-strain (blue) and
porosity-strain (red) curves are shown in (a), while deformed configurations of the unit cell are shown for (b) m = 2 and (c) m = 8
with fringes of accumulated plastic strain at the analysis step corresponding to failure using the three different localization indicators.

be used to calibrate and validate numerical models for ductile failure to be used in full-scale simulations. Also, we
can potentially gain more insight into the critical conditions for ductile failure since a much greater range of loading
conditions can be examined. This argument seems even more important for plastically anisotropic solids where the
critical band is arbitrarily oriented in space, and no a priori assumption of alignment with the intermediate principal
stress direction can be made. At this point, however, we must assess the predictive capabilities and limitations of the
employed constitutive model, since this influences the failure strain predictions - more so for the bifurcation analysis
than for the imperfection band analysis. In fact, Needleman and Rice (1978) showed that relatively similar results can
be obtained using various imperfection band materials by a suitable tuning of the constitutive parameters, the most
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decisive factor being the introduction of the imperfection itself.
Figure 14 compares numerical results from various imposed stress states using imperfection band analyses and

unit cell simulations. Results from bifurcation analyses are included in Figures 14a and 14b, showing the failure
strain as function of the stress triaxiality ratio for generalized shear. The bifurcation analyses always provide the
upper bound to the failure strain and are seen to give fairly high estimates of the failure strain when compared to the
imperfection band analyses and the unit cell calculations. It has been previously reported (Rice, 1976; Needleman
and Rice, 1978; Yamamoto, 1978) that, even with a constitutive formulation accounting for damage softening, strain
localization predictions based on bifurcation analyses greatly overestimate the ductility. Further, the agreement between
the imperfection band analyses and the unit cell calculations for the generalized shear states is remarkable. This
holds true for all the localization indicators, which are more or less conforming, as was also indicated by the results
presented in Figure 12c and 12d. We note that the conformity between the unit cell calculations and the imperfection
band analyses is somewhat deteriorated for the higher triaxialities, and it seems that as the hydrostatic stress starts to
dominate, the unit cell predictions are actually approaching those of the bifurcation analyses. Now, we should remark
that a bifurcation of the homogenized material model is highly susceptible to variations in the constitutive parameters,
for example qi in the yield function given by Equation (20). These parameters were calibrated from unit cell simulations
conducted for a large number of stress triaxialities and Lode parameters, and the goodness-of-fit between the porous
plasticity model and the unit cell varies for each stress state, as indicated by the curves in Figure 8. Moreover, the
porous plasticity model as it stands is not capable of accounting for void shape effects, which are obviously inherent to
the unit cell model. Effects of void-induced softening under shear loadings can be heuristically included in the Gurson
model, see for instance Nahshon and Hutchinson (2008). Also, Gurson-type models that incorporate general ellipsoidal
voids, thus including effects of void shape and also orientation by some suitable update of the principal void axes,
have been published (Madou and Leblond, 2012a,b). Attempts to assess the influence of such extensions on the strain
localization are not pursued in the current work.

Turning to the results for T = 1 and varying the Lode parameter, shown in Figures 14c and 14d, we find that the
Lode parameter is quite influential for the agreement between the unit cell calculations and the imperfection band
analyses. In the range of biaxial tension, meaning positive Lode parameters L > 0, the failure strains evaluated from
the bifurcation approach are inaccurate. We consequently restrict the discussion to results from the imperfection
band analyses in the following. The difference between the localization predictions for the unit cell model using the
three indicators is seen to greatly vary with the Lode parameter. For stress states close to generalized shear, the three
indicators are quite similar and in close agreement with the imperfection band analyses. For stress states in the vicinity
of the two generalized axisymmetric states L = ±1, the difference is more pronounced and the localization indicator
ξW yields the most conservative estimates of the ductility. This observation is most prominent for loading conditions
close to generalized compression L ≈ 1. Also, the variation with the Lode parameter is not qualitatively similar to the
imperfection band analyses using ξW as the criterion for failure. The failure loci from the unit cell model are brought in
closer agreement to the imperfection band model if either of the two indicators ξF and ξD are employed. In these cases,
the unit cell results are qualitatively similar to the imperfection band analyses in the sense that they are more affected
by the Lode parameter. A comment worthwhile in this respect is that ξD is quite sensitive to the value chosen to define
localization, which is set to ξD > 5 in the current work, and that it also depends upon the mesh size used in the intervoid
ligament. Since this indicator compares an equivalent strain rate evaluated in the region between adjacent voids to
the equivalent strain rate in the homogeneously deformed region, it may trigger localization prior to the energy-based
criterion which intuitively should set the limit for when localization can possibly occur. As such, the corresponding
results should be interpreted with some caution. However, the use of ξD gives an indication of localization within
the unit cell due to excessive void growth and subsequent coalescence when the global deformation of the unit cell
otherwise suppresses a macroscopic instability. This scenario is encountered for generalized compression states using
the stress triaxiality ratios investigated herein. This is elucidated by the results in Figure 14c where L = 1 does not
permit the indicator ξF to be evaluated. It can of course be discussed whether such a stress state can be referred to
as having an instability, but it will nonetheless lead to void coalescence which inevitably causes macroscopic crack
formation and fracture.

Although some differences persist between the unit cell simulations and the imperfection band analyses, they are
indeed rather similar from a qualitative point-of-view. The motivation for comparing the two modelling approaches
resides in the qualitative results, and we do not intend nor expect them to exactly conform. However, judging by the
results in Figure 14, the imperfection band analyses seem to capture the unit cell response rather well. We will then use
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Figure 14: Comparison between failure strain determined from the unit cell simulations, the bifurcation analyses, and the
imperfection band analyses. Results are shown for (a) m = 2 and (b) m = 8 in the case of generalized shear loading and various
triaxiality ratios, and (c) m = 2 and (d) m = 8 for T = 1 and a number of Lode parameters.

the imperfection band model to further examine the influence of yield surface curvature on strain localization in the
following.

6.5. Strain localization predictions using imperfection band analyses

Based on the notion that the imperfection band model gives a reasonable representation of the strain localization
phenomenon for a spatially discretized band material, a large number of simulations were carried out using the two
yield surface exponents m = 2 and m = 8 to study aspects of the matrix yield description on the failure strain. All
calculations are performed with a material imperfection governed by the yield function in Equation (20) with an initial
porosity of f0 = 0.005 and with a sound material outside the band.

6.5.1. Effects of non-quadratic yield surface on failure strain
Figures 15a and 15b show the predicted failure loci for the quadratic and the non-quadratic yield surface in the case

of stress triaxialities T = 2/3, 1, 5/3, and 3 under a variety of Lode parameters. The effect of the Lode parameter is
quite pronounced for the lower stress triaxialities, and the results show that the material is most susceptible to strain
localization under loading conditions close to generalized shear regardless of the yield surface exponent. If the stress
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triaxiality is increased, the non-uniformity of the velocity field is approaching the normal to the imperfection band,
meaning that q̇ in Equation (47) becomes parallel to n. This causes the deformations to localize in a dilatational mode
for which stress states closer to generalized tension seem most critical, as seen from Figure 15b. This is actually in
close agreement with the void growth rates from the unit cell results in Section 4.2, for which L = −1 resulted in
the most rapid expansion of voids. We may infer from Figure 15b that the shift towards a dilatational band occurs
earlier for m = 8, indicating that the Lode dependency of the matrix material facilitates such a transition. A puzzling
effect is that the quadratic matrix yield surface is the most conservative in terms of failure strain for loading conditions
approximately in the range −1/2 ≤ L ≤ 1/2. This range narrows down as the triaxiality decreases, however m = 2 still
yields the lowest failure strain for stress states around L = 0, although the relative difference in this case is rather small.
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Figure 15: Failure strain levels pertaining to (a) T = 2/3 and 1, and (b) T = 5/3 and 3 for m = 2 and m = 8 against the Lode
parameter.

As we also indicated in previous sections, differences for stress states around generalized shear might stem from the
definition of the stress triaxiality. This was elucidated in terms of void growth rates in Section 4.2, although the effects
of introducing a different triaxiality measure were not significant enough to yield conforming void growth for the two
matrix descriptions. This gives an indication of the interplay between the intrinsic (matrix description) and extrinsic
(void evolution) Lode effects. To assess the influence of the triaxiality definition, we have employed the redefined
triaxiality ratio given by Equation (18) in a new set of strain localization calculations. Figures 16a and 16b show the
results for (a) various stress triaxialities under generalized shear conditions, and (b) for various Lode parameters under
constant stress triaxialities. By comparing results for T and T ∗ in these figures, we see that the use of a triaxiality ratio
that is consistent with the equivalent stress measure gives similar failure strains for the quadratic and the non-quadratic
matrix yield surface under stress states close to L = 0. However, marked differences prevail in the axisymmetric range
of stress states, which follows directly from the fact that the two triaxiality definitions are identical for L = ±1. We
should note that these results do not necessarily entail that it is recommended to use T ∗ rather than T , and we do not
advocate using the former instead of the latter. However, they serve to demonstrate that this definition has an effect on
the failure predictions.

From the results presented in Figures 15a and 15b we perceive that the non-quadratic matrix yield surface displays
a flatter failure locus in terms of the Lode parameter than the quadratic matrix yield surface, at least for the stress
triaxialities T = 2/3, 1, and 5/3. The failure strain is lower for a larger set of Lode parameters and the Lode effect
is correspondingly more prominent for the quadratic matrix yield surface than for the non-quadratic. Intuitively, the
intrinsic Lode dependency would be expected to cause greater differences in the failure strain as the macroscopically
applied deviatoric angle (or Lode parameter) changes because both the flow direction and the magnitude of the stress
deviator are altered. However, these results suggest that the strain at localization is less influenced by the Lode
parameter when the matrix yield surface is non-quadratic.

To shed some light on this matter, Figure 17 shows the stress state obtained inside the band as the material outside
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Figure 16: Comparison between failure strains for m = 2 and m = 8 using the two different triaxiality measures T and T ∗. Figure
(a) pertains to L = 0 and (b) for various Lode parameters at fixed triaxiality.

the band is proportionally stressed. Figures 17a and 17b show the change of the Lode parameter Lb inside the band as
function of the accumulated plastic strain po of the bulk material in the case of macroscopic triaxialities T = 2/3 and
T = 1, respectively. Figures 17c and 17d show similar results, but pertain to the stress triaxiality inside the band Tb.
We readily infer from these data that the stress state inside the band deviates from the proportional state outside the
band and becomes non-proportional due to the requirements of compatibility and equilibrium across the band interface.
In terms of the Lode parameter, the stress state inside the band moves towards the most favourable state for localization,
the one yielding least ductility, regardless of the externally imposed stress state. When the band encounters a stress
state that satisfies det

(
n · Ct

b · n
)

= 0, the localization condition is met. As seen from the results in Figure 17, the
critical state inside the band seems to be governed by a Lode parameter close to generalized shear Lb ≈ 0 for the given
triaxiality levels. Since the non-quadratic matrix yield surface exhibits a high curvature close to the axisymmetric stress
states (see Figure 2), it shifts more readily towards the favourable stress state for strain localization. The failure strain
values are consequently reduced for m = 8 compared to m = 2, and the failure loci appear less Lode sensitive for the
non-quadratic matrix yield surface. Moreover, we see from Figures 17c and 17d that the stress triaxiality is evolving
quite differently depending upon the externally imposed stress state. An interesting effect is that the triaxiality inside
the band is increasing for the generalized tension state (L = −1) while it decreases for generalized compression (L = 1).
Since an increased hydrostatic stress inevitably accelerates void growth, this leads to reduced failure strain values for
L = −1 compared to L = 1. This effect, in addition to that of the Lode parameter already mentioned, causes skew
failure loci which are observed in this study (see Figures 14c, 14d and 15). This is in accordance with other studies
(Barsoum and Faleskog, 2007b, 2011; Dunand and Mohr, 2014) using unit cell models. We emphasize that both the
non-proportionality of the Lode parameter and of the stress triaxiality influence the macroscopic failure strain. Also,
it should be remarked that a larger difference in failure strain between L = ±1 could have been obtained if the void
growth from the porous plasticity model was in better correspondence to that obtained from the unit cell calculations in
Section 4.2, since this would accelerate damage for generalized tension compared to generalized compression.

6.5.2. Influence of the porous plasticity parameters on the predicted failure strain
The qi parameters determined from the calibration in Section 5.2, see Table 2, are different for the two yield surface

exponents. Since these parameters influence the material response, we should elucidate their effects on the predicted
failure strains and whether this alters the conclusions made in the previous section. To this end, we imposed the
parameters of the original Gurson model (q1 = q2 = q3 = 1) in the imperfection band analyses. In the following, we
present only results for a triaxiality of T = 1.

As seen from Figure 18, the qi parameters have only a moderate influence on the failure strain predictions. However,
they seem to have a somewhat larger effect for the non-quadratic yield surface, although the difference is modest
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Figure 17: Variation of band quantities as function of the equivalent plastic strain outside the band po. The parameters Lb and Tb

denote the Lode parameter and the stress triaxiality inside the band. Figures (a) and (b) pertain to the Lode parameter, while (c) and
(d) show the stress triaxiality.

also for this matrix description. This might be related to the fact that the calibrated q1 was slightly larger for m = 8
than for m = 2. The relative change is thus greater for the non-quadratic matrix yield surface which causes the
deviation in the results. In agreement with the failure curves from the previous section, we find that the quadratic yield
surface gives the lowest failure strain values around generalized shear whereas the non-quadratic is considerably more
prone to localization as the magnitude of the Lode parameter is increased. Moreover, for all the loading cases shown,
the calibrated model parameters yield the most conservative results in terms of failure strain. Hence, in addition to
providing the best representation of the unit cell response in Section 4.2, these calibrated parameters are also favourable
from an engineering perspective when estimating the failure loci. Note that this conclusion applies only to the original
Gurson parameters and will certainly not hold for any given set of qi parameters. In general, we have from Equation
(22) that

ḟ = 3Λ̇ (1 − f ) f
q1q2

σM
sinh

(
3
2

q2
Σh

σM

)
(58)

The hyperbolic sine term will reduce the void growth rate when q2 is lowered. But we infer that an increase of the
product q1q2 tends to accelerate the void growth. However, since ḟ also depends upon the stress state, the situation is not
as simple as determining whether the increase of q1q2 outweighs the decrease due to sinh(q2). A detailed explanation
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for the difference obtained between the original and the calibrated set of qi parameters in terms of the failure loci is
rather involved and outside the scope of this paper. We believe that the difference can be broadly attributed to the
changes in the stress path inside the imperfection band. However, the main message to be conveyed from the results
displayed in Figure 18 is that the failure loci do not change much if the parameters q1 = q2 = 1 are used instead. Thus,
the conclusions drawn from the results reported herein are deemed valid also for other sets of realistic qi parameters.

7. Concluding remarks

A yield function incorporating effects of the third deviatoric stress invariant has been used to study the influence of
a non-quadratic matrix yield surface on the overall yielding and strain localization in porous ductile solids. The results
presented herein demonstrate that the intrinsic Lode dependency arising from a non-quadratic matrix yield surface has
pronounced influence on the evolution of the approximative microstructure and the strain localization predictions.

Finite element simulations of an approximate material microstructure using a reduced unit cell model were
conducted to examine the influence of a non-quadratic matrix yield surface on the resulting void evolution and
macroscopic stress-strain response. The numerical results conclusively show that effects of the Lode parameter (or
J3) on the void growth and the mechanical response are persistent even when the matrix is Lode independent. When
the matrix description is governed by the quadratic yield surface, the generalized tension states promote higher void
growth rates, which were seen to successively decrease with increasing Lode parameter. The interplay between the
Lode dependency of the matrix constitutive model and the Lode dependency resulting from the void evolution had
pronounced influence on the response of the approximated RVE when a non-quadratic matrix yield surface was adopted.
The generalized tension states still resulted in most rapid void growth, but the void growth rates were not monotonously
decreasing with the Lode parameter for the non-quadratic yield surface. A redefined stress triaxiality ratio which
incorporates the adopted equivalent stress measure was found to adjust the void growth to some extent for generalized
shear states, but the effect was not sufficient to regain the monotonous decrease of the void growth rate with Lode
parameter observed for the quadratic matrix yield surface.

A heuristic extension of the Gurson model in which the Hershey equivalent stress replaces the usual von Mises
equivalent stress was proposed and calibrated from the unit cell results. The porous plasticity model was seen to
account for the influence of the Lode parameter on the stress-strain and the porosity-strain curves. However, the
Lode effects of the porous plasticity model were not sufficient to render the results similar to those from the unit cell
calculations. Specifically, the porous plasticity model is not able to discern between states of generalized tension and
generalized compression, which differ greatly in the unit cell calculations. In this regard, it is concluded that effects of
void distortion must be included in the porous plasticity model, since the influence of the deviatoric stress state on the
void shape evolution is also an apparent deficiency for a Lode-insensitive matrix formulation caused by the spherical
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RVE used in the derivation of the Gurson model (Gurson, 1977). We note that such extensions of the Gurson model
have already been made available in the literature using a different RVE (Gologanu et al., 1993; Madou and Leblond,
2012a,b) and by using a shear modification of the void growth equation (Nahshon and Hutchinson, 2008; Xue, 2008).

Strain localization analyses using the unit cell model revealed the prominent effects of a non-quadratic matrix yield
function on the resulting failure strain. As a function of the Lode parameter, the failure strain exhibits a transition
from the quadratic to the non-quadratic yield surface being more prone to strain localization. In the case of loading
conditions close to generalized shear, we observed that the quadratic matrix yield surface led to earlier localization,
whereas generalized tension states promote earlier strain localization for the non-quadratic yield surface. The difference
in failure strain between the two yield surface exponents was much greater for the generalized tension state than for
generalized shear loadings. Moreover, we showed that the prediction of strain localization using unit cell calculations is
quite dependent upon the adopted localization indicator. This effect was more apparent for the generalized axisymmetric
states, whereas in the case of generalized shear all three localization indicators employed herein predicted nearly the
same failure strain.

Direct comparisons between the unit cell simulations, the bifurcation analyses, and the imperfection band analyses
were made. Although the similarities between the different modelling strategies depended greatly upon the localization
indicator used for the unit cell model, we found rather good agreement between the unit cell simulations and the
imperfection band analyses on a qualitative basis. The bifurcation analyses, on the other hand, were found to
overestimate the onset of strain localization. However, at high stress triaxiality levels, the strain localization predictions
using the unit cell simulations were approaching the bifurcation analyses under generalized shear loading.

Strain localization analyses covering a wide range of stress states were undertaken by using imperfection band
analyses. In the case of generalized shear states, the matrix with the quadratic yield surface is more susceptible to
strain localization. However, we found that using a stress triaxiality ratio that incorporates the adopted equivalent stress
measure gave conforming failure strain levels between the two yield surface exponents under generalized shear loading
states on the entire stress triaxiality range 2/3 ≤ T ≤ 3 investigated herein. As the deviatoric stress state approaches
generalized tension or generalized compression, the non-quadratic matrix yield surface gave the lowest failure strain.
Whether the material with the quadratic or the non-quadratic yield surface first undergo strain localization was found to
depend upon the stress triaxiality. For the lowest stress triaxialities, the non-quadratic matrix yield surface led to earlier
localization for nearly all the Lode parameters, whereas the opposite holds true for the highest stress triaxiality. The
failure strain was shown to exhibit a minimum around generalized shear for the lower stress triaxiality ratios, while
the minimum shifted somewhat towards L = −1 for increasing triaxiality values. Moreover, the failure strain was
conclusively higher for generalized compression than for generalized tension, which causes non-symmetric failure
loci. This effect was disclosed by considering the drift of the stress state inside the band towards a favourable state
for localization, for which generalized tension states always reached the critical condition sooner than generalized
compression states.
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Appendix A. Kinematic constraints to control stress path of unit cell model

The numerical procedure to impose nonlinear kinematic constraints which enable user control of the prescribed
stress path will be reviewed herein. In the current exposition, the details for load control of a unit cell involving three
normal deformation components and one shear component are presented, and the framework thus encompasses all
relevant stress states for this study. Similar treatments have already been given by Barsoum and Faleskog (2007b, 2011),
Dunand and Mohr (2014), and Wong and Guo (2015). We note that this method may be extended to include more
degrees-of-freedom in order to study arbitrary band orientations, which is deemed important for anisotropic materials.

In the following, quantities (◦̃) refer to the transformed basis related to the new set of degrees-of-freedom, while
quantities (◦) are used in conjunction with the reference basis ei. To this end, we recast the macroscopic rate-of-
deformation and the macroscopic stress tensors in vector form according to

{D} =


D11
D22
D33

2D12

 , {Σ} =


Σ11
Σ22
Σ33
Σ12

 (A.1)

Under the assumption of homogeneous boundary conditions, the Hill-Mandel condition (Hill, 1963, 1967; Mandel,
1966) entails that the deformation power of the unit cell can be determined from the volume averaged Cauchy stress
and rate-of-deformation, namely

Ẇd = VΣ : D = V{Σ}T {D} = V{Σ}T [T]{U̇} = {P}T {U̇} (A.2)

where the relation between the displacement rates and the rate-of-deformation in Equation (31) has been invoked and a
force vector on the form {P} = V[T]T {Σ} has been introduced for convenience.

Let us further impose a linear transformation of the nodal displacement rates at the boundary U̇ according to

{ ˙̃U} = [A]{U̇} (A.3)

The equivalence of the work rate expressed in the two coordinate systems then yields

Ẇd = {P}T {U̇} = {P̃}T { ˙̃U} (A.4a)

⇒ {P̃} = [A]−T {P} = V[A]−T [T]T {Σ} (A.4b)

Specifically, we let the matrix product [Q] = [T][A]−1 define an orthogonal matrix, which then has the properties
[Q]T [Q] = [1] and det [Q] = 1. Accordingly, we may write

{P̃} = V[Q]T {Σ} (A.5)

In order for a uniaxial loading state to prevail in the fictitious node, we choose a generalized force vector on the
form

{P̃} = P̃ {1 0 0 0}T (A.6)

in the transformed coordinate system. Now, let the transformation matrix [Q] be written in terms of the linearly
independent column vectors {qi}, such that

[Q] = [q1 q2 q3 q4] (A.7)

Since [Q] is orthogonal, we must have that {qi}
T {qi} = 1 and {qi}

T {q j} = 0 with i , j and i, j = 1, 2, 3, 4. Note that
there is no summation over indices in these relations. From Equation (A.5), we have that

V{Σ} = [Q]{P̃} = {q1}P̃ (A.8)
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The components of this expression read

VΣ11 = Q11P̃, VΣ22 = Q21P̃, VΣ33 = Q31P̃, VΣ12 = Q41P̃ (A.9)

If we employ the stress ratios introduced in Equation (35), we find that

VΣ22 = Vρ2Σ11 = ρ2Q11P̃ = Q21P̃ (A.10a)
VΣ33 = Vρ3Σ11 = ρ3Q11P̃ = Q31P̃ (A.10b)
VΣ12 = Vρ4Σ11 = ρ4Q11P̃ = Q41P̃ (A.10c)

Thus, the relations between the four entries Qi1 from Equation (A.5) are given by

Q21 = ρ2Q11, Q31 = ρ3Q11, Q41 = ρ4Q11 (A.11)

We then readily obtain

{q1}
T {q1} = Q2

11

(
1 + ρ2

2 + ρ2
3 + ρ2

4

)
= 1 ⇒ Q11 =

1√
1 + ρ2

2 + ρ2
3 + ρ2

4

=
1
ρ0

(A.12)

and the first column is given by

{q1} =
1
ρ0

{
1 ρ2 ρ3 ρ4

}T
(A.13)

The remaining matrix components Qi j are found from a Gram-Schmidt orthogonalization process where the mutually
orthogonal unit vectors {q2}, {q3}, and {q4} are calculated using {q1} as the reference unit vector. We note that an
explicit transformation matrix was proposed by Wong and Guo (2015).

With the transformation [Q] established, the nodal velocities at the unit cell boundaries are found by inverting
Equation (A.3)

{U̇} = [A]−1{ ˙̃U} = [T]−1[Q]{ ˙̃U} (A.14)

This matrix equation provides nonlinear kinematic constraints which were implemented in the implicit finite element
solver Abaqus/Standard using a Multi-Point Constraint (MPC) user subroutine. The constraint equations were solved
by a mid-point algorithm in the numerical implementation and the resulting stress triaxiality and Lode parameter were
checked to remain according to the prescribed values throughout the unit cell analyses. The boundary conditions
prescribed to the fictitious node are then governed by

Ũ1 > 0 ∧ P̃2 = P̃3 = P̃4 = 0 (A.15)

where Ũ1 is the user-defined end displacement value of the fictitious node, and the transformed force components
P̃i,1 = 0 are used as constraints in the numerical procedure. The remaining nodal displacements in the fictitious
node are in general non-zero, and must remain unspecified when the boundary conditions are prescribed to fulfil the
nonlinear kinematic constraints.
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