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Regularized Nonlinear Moving Horizon Observer

with Robustness to Delayed and Lost Data
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Abstract

Moving horizon estimation provides a general method fotesestimation with strong theoretical convergence
properties under the critical assumption that global smhst are found to the associated nonlinear programming
problem at each sampling instant. A particular benefit of dpproach is due to the use of a moving window
of data that is used to update the estimate at each sampktantn This provides robustness to temporary data
deficiencies such as lack of excitation and measuremeng naigl the inherent robustness can be further enhanced
by introducing regularization mechanisms. In this paperstuely moving horizon estimation in cases when output
measurements are lost or delayed, which is a common situatieen digitally coded data are received over low
guality communication channels or random access netwbft&difications to a basic moving horizon state estimation
algorithm and conditions for exponential convergence efdktimation errors are given, and the method is illustrated

by using a simulation example and experimental data fromftalare oil drilling operation.

Index Terms

State Estimation; Parameter Estimation; Nonlinear Systdegularization; Wireless communication; Commu-

nication errors; Persistence of Excitation.

. INTRODUCTION

We consider the state estimation problem of nonlinear éisetime systems, where a least-squares state estimation
problem can be formulated by numerically minimizing a prbpeeighted least-squares criterion defined on a finite
data history window, subject to the nonlinear model equat@nd possibly other constraints, [1]-[4]. This leads to

a so-called nonlinear Moving Horizon State Estimator (NMJHEompared to well-known sub-optimal nonlinear
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state estimators such as the Extended Kalman Filter (EKifesempirical studies [5] show that the NMHE can
perform better in terms of accuracy and robustness. In fabile the EKF summarizes the past history in the
current state estimate and its covariance estimate, an NigddtEmake direct use of the past data history when
updating the state estimate since the update is based ondawimoth current and historical measurement data in
the least-squares numerical optimization criterion thaat also account for state constraints. The NMHE's robust
performance is a particular advantage since the EKF is basedarious stochastic assumptions on noise and
disturbances that are rarely met in practice, and in contibimavith nonlinearities, initialization errors and model
uncertainty, which may lead to unacceptable performandae@EKF in some applications.

The analysis of convergence of NMHE typically makes assionptof uniform observability, [1]-[4]. However,
uniform observability is a restrictive assumption thatikglly not to hold in certain interesting and important state
estimation applications. This is in particular true for ®oombined state and parameter estimation problems, when
the data may not be persistently exciting [6], [7], for syssethat are detectable but not observable [6], or when
data are missing due to digital data communication errorshése cases the robustness and graceful degradation
of the NMHE algorithm will strongly benefit from regularizah mechanisms, as shown in [7]-[9] for cases when
the system is detectable but the data are not persistertiiingx These papers provide results and guidelines about
the choice of terms and weighting matrices in the movingzwericost function in order to achieve regularization
when data are not persistently exciting, based on mongodhinformation contents using the singular value
decomposition. This leads to different tuning criteriarthag. [2] where similarities in formulation between the
NMHE and EKF are exploited to propose the choice of weightiragrices.

The present paper continues the line of research presemt§d-[10], and specifically considers situations
when output data may be missing or delayed at some samplatgnits. The objective of the paper is to suggest
modifications in assumptions and MHE cost function formatataccompanied with a convergence analysis and
guidelines for design and tuning to gracefully degradegrarance when necessary in such cases. While the above
mentioned references makes the assumption that the systBruetectable and data aM-exciting in order to
establish estimator convergence, in the present paper mergee the assumption of data beiNeexciting to data
beingN-informative. In simple terma\-informative data are characterized by a sufficient numbeneasurements
being available in arlN-window with the input beingN-exciting such that the state can be uniquely determined
from the available measurements.

Missing or delayed data may result due to unreliable digibmhmunication, either on noisy point-to-point links or



in communication networks that share a communication chlatmthe latter case, corruption of data may typically
be due to data collisions in a random access protocol, orfémé:ce on a wireless (radio) communication channel
that may invalidate digital data in the absence of erroreming coding and decoding. Such data corruption may
lead to delayed data in the case when the communicationqmioitecludes automatic re-transmission of lost data,
or loss of data when no such quality-of-service mechanismsitilized when erroneous data are rejected. Severe
dropout rates or delays can result as a consequence of ketagestion problems if, for example, re-transmissions
due to dropouts are allowed to escalate. We can give thretigabexamples where very high dropout probabilities
could happen for significant time periods:

« Wireless communication in industrial environments or nmldbotics, within a non-stationary environment
characterized by moving metal, no line of sight, radio cleriading, external electromagnetic interference,
and other factors [11]. Depending on the implemented padsognd communication technology, this may lead
to severe data losses or delays for periods of time that mayepend the window of an estimator. This may
be a fairly frequent situation in some environments and cadptured by the Gilbert-Elliot channel model.

« Several industrial networks working at the controller leskare critical real-time data at update rates down
to 100 ms are based on UDP multicast over wired Ethernet.r8efslure modes have been documented
causing so-called network storm where retransmissionsaokgis across different network segment causes
severe overloads of the network with severe data losseq,1€]g Root causes could be configuration errors or
component faults in network nodes that causes unwanteahsstiission of data packets that eventually may
overload the network and lead to congestion. Other formsoofyestions in industrial automation networks
may also lead to severe losses or delays.

« In underwater acoustic communication in networks of autoos underwater vehicles the channel has highly
time-varying properties and the environment can in somegd® very noising, leading to severe loss
probabilities or latency [13].

With the increasing use of networks and wireless commuioicatvith frequency spectrum being a limited resource,
this is likely to be an increasing challenge in the future gec-physical systems are becoming reality to an
increasing extent. Robust estimation with data dropoutnisnaportant challenge due to the increasing use of
wireless sensor networks and networked control architestu

Although various modifications of the Kalman-filter have bekeveloped to handle missing data, e.g. [14]-[19],

the purpose of the present paper is to investigate the useboft (regularized) NMHE in order to harvest the



benefits of updating estimates based on a window of data. Asfedies in this direction have been reported in
the literature. The use of time-stamps on the measuremep®posed in [20] in order to effectively manage the
moving horizon data buffer when there is asynchronous samgind lost and delayed data that may arrive out
of sequence. In [21], it is proposed a NMHE strategy that kemdropped measurement packets by choosing the
window size different at each sample to ensure that a suffi¢@nstant) number of measurement packets are used
in each state estimate update. A potential drawback of fhisaach is that it assumes that all sensors send their
data in a common packet (i.e. either all measurements wila@able in a given sample, or none). Moreover, the
computational complexity may increase with the increasimgdow size due to lost packets, and it may be more
challenging to implement in real time due to inherent vasiad in computational complexity. In the present paper,
we therefore work with a fixed window size, and allow differelata packets from individual sensors. It should
also be mentioned that moving-horizon versions of the din&alman-filter have been proposed, [22], [23], which
could be a useful starting point for modifications to accomdaie delayed or lost data, and nonlinear models.
We consider moving horizon state and parameter estimatibich in its simplest form may be viewed as the
inversion of a set of nonlinear algebraic equations for thknown states and parameters [1]. Lost output data
corresponds to less algebraic equations, or equivalemiye unknown variables (the unknown measurements)
and may potentially lead to an originally well-posed invensproblem becoming ill-posed or ill-conditioned due
to the lost data. We therefore utilize the regularized mgwviorizon estimator in order to provide diagnostic
information and achieve graceful degradation of the esomé#n particular, diagnostic information from a singular
value decomposition of the Hessian-like matrix will be pdad by the estimator in order to determine which lost
data items contributes most to the estimation uncertaingrror. This will be used in an adaptive weighting scheme
in the MHE cost function in order to reduce the impact of nasethe estimates of un-excited state components.
There are potential industrial applications of state eatiiom in the presence of lost and delayed data is extensive.
In this paper we study an application in oil well drilling, etfe digital communication is an essential technology in
the automatic and remotely controlled drill floor machined anud circulation system. The prevailing technologies
include the use of UDP and TCP/IP protocols on Ethernet fertigh-level top-side control network that links
various Programmable Logic Controllers (PLCs) and infdiamasystems, together with reliable industrial fieldbus
technology at lower level control, although there is coesatble interest in the use of wireless sensor networks
for monitoring, [24]. An important area of research and depment is the use of downhole sensors, where

digital communication to the top-side control and monitgrisystem is essential. Due to the harsh environment



the communication over several kilometers through the filled rotating drilling string is highly challenging.
Mud pulse telemetry, which modulates a digital signal asguees pulses in the drilling fluid (mud), can achieve
a few bits per second communication capacity from the diilitd the top while drilling, and is the conventional
technology, e.g. [25]-[27]. Wire pipe technology is emeggiand promises kbit/s communication capacity, [28],
[29] and offers considerable advantages over transmigsfia@bectromagnetic fields through the drill pipe [30]. A
common challenge of all these approaches are communicagi@ility and corruption of data due to noise and
external disturbances on the communication system, [32], [The estimation of bottom hole pressure is important
to implement pressure control strategies for managed yreskilling, well control, and monitoring of influx of
reservoir fluids that is essential for the safety and peréoroe of the drilling operation, e.g. [33], [34]. The use of
nonlinear MHE has been proposed for such applications, [BBhout considering in detail the effects of missing
and delayed data.

The main contributions of the paper are the nonlinear MHBEblerm is formulated in Section |l for the case of
lost and delayed data, the conditions for convergence obthie estimates in Section Ill, an adaptive weighting
scheme introduced in Section IV in order to facilitate regiziation and tuning of graceful degradation in cases the

noisy data are not persistently exciting, and an experiateatse study from oil well drilling found in Section VI.

II. NONLINEAR MOVING HORIZON ESTIMATION PROBLEM WITH MISSING DATA
A. Problem Formulation

Consider the following discrete-time nonlinear system:

X1 = (%, ) (1a)

Yo = h(x%;, u), (1b)

wherex, € X C R%, iy € U C R™ andy; = (ytl,ytz,...,ytny)T € RY are respectively the state, input and measurement
vectors, and is the discrete time index. Thid + 1 horizon measurements of outputs and inputs until tinage

denoted as

Yt—N U N

Yt—N+1 Ut—N+1
Yt>.< = . s Ut = . . (2)

Wt Ut




We consider the case when output data may be delayed or ledbdunreliable communication. This formulation
handles both lost and delayed data, since delayed data carséed into the data buffet* and the quality
indicators of past data can be updated when delayed dave arithin the same sample as new data. For gfgajg
being unavailable at time we use the convention that the quality indicaﬁﬁﬁkt =0 and the valueyLk may be
meaningless at timg, otherwiseq%’j_k’t = 1. The quality indicators are assumed to be available indtion to the
moving horizon observer. This is a reasonable assumptioce & can be implemented based on standard protocols
with error-detection codes such as checksums, and outdgetide by time-stamps or sequence numbers.

To expressy;* as a function of_n andU;, note from (1b) that the following algebraic map is formath{1):

h(X-nN,U-nN)

h(f (X—N,U_N), Ut
Y =HMX-n,Ut) = H(%-n) = o) NH). ' ®)

ACFCF( o F (%o Uk, )s U 1))

When all the input and output data are available such thaNtirdormation vector;" = col(Y*,U;) is available at

time t, the observer problem is to reconstrugty as a function ofly*. This is considered as an inverse problem,
whose solution properties depend on the functipnif an inverse mapping dfi; exists, is unique, and continuous
as a function ofy;* then this inverse problem is well-posed according to thendtefhs of Tikhonov and Arsenin
[36], commonly formulated as a uniform observability prapgl]—[4].

If the quality indicatorq%’j_k’t =0 thenytj_k shall be viewed as unknown, which means that the correspgndi

equation in (3) should be removed or given zero weight. Wendafi= QYY" and

. 1 -t
Q = dlag<q¥—N7tvqtyiN7t""’q{:y ’q‘y;y) '

such that the elements &f are zero when the corresponding data is unavailable, andmefate (3) to give zero

weight on equations corresponding to missing data:

Yo = Q'H (x—n,Ur), )

In addition the problem may also be ill-posed or ill-conalited due to lack of persistence of excitation as considered
in [7]. In order to take into account such data deficiencies,consider at timé the following moving horizon

observer formulation that minimizes

I Ns XNy = Y — QH(Rno)lIR + 1% — DY He(Re w1 + 1%t —Rnelfy (5)



with respect tax_nt and subject to
X-nt € X (6)

whereR,W > 0 andS > 0 are symmetric time-varying weight matrices @d= 1 — QY. The weighted Euclidean
norm is defined afx||p = v XT Pxfor vectorsx and some symmetric matri> 0. LetJ° = ming_ J(Re—Nt: %Nt ),

andx . be the associated optimal estimate. It is assumed that thiera gstimator is determined as

XNt = f()zto—N—l,t—buthfl% (7

and the a priori estimated output is defined as
Y; = D{ H(%-nyp)- (8)

It is remarked that the optimization variable n is the state at the beginning of the horizon. Due to knowleufge
the mappindH;(+), this uniquely defines the state estimates at the entiredrorincluding the current state estimate
%+ that is usually the main target of estimation. It is furthemarked that the formulation can be extended with
process noise (as in [2], [4]) or a Kalman-filter correcteddictor for pre-filtering of the a priori estimate (as in
[37], [38]) in order to reduce the estimator's sensitivityrhodel errors and disturbances. For simplicity, we leave
out this extension in the present paper.

The cost function (5) consists of three terms. The first temigims the errors between the measured and predicted
outputs on the horizon in a least squares sense. The thirdgenalizes the difference between the state estimate
at the beginning of the horizon and the one-step-aheadqteeldfa priori) state estimate using the open loop model
and the previous optimal state estimate, [4]. As discussgd]j this term has a regularizing and low-pass filtering
effect on the state estimate at it allows the estimate toadkgto an open loop model estimate when the first term is
not sensitive to some combinations of estimated statesatiticplar, for detectable systems where a sub-system is
not observable, the third term ensures that the unobsergidiles are updated according to the stable sub-system’s
open loop model. Moreover, when data are not persistentiitieg such that the first term is not sensitive to the
state estimate, the weighting of the third term means thagxaited states are estimated in an open loop fashion.
The second term is less conventional, and introduced inraodput some weight on open loop estimates in cases
when output measurements are not available. This term sl&wors in the data to be weighted against errors in

the model. As will be shown in Section lll, convergence carebblished also when this term has zero weight



(§ =0) such that this term should be considered optional althatugnight be useful to improve practical estimator

accuracy in the presence of noise, model errors and missiteg d

IIl. CONVERGENCE

Before we state the sufficient conditions for convergencéhefstate estimatg_‘n; that minimizes the MHE
cost function, we need to introduce some concepts and defisitFollowing [1], the system (1) isl-observable

if there exists a-function ¢ such that for allx;,x, € X there exists a feasibld; € UN*1 such that
& (I[x1 — X2|[*) < ||H (x1,Ur) — H(x2,Uy) %,

The inputU; and the outpu¥;* with the measurement qualiy is said to beN-informativefor the N-observable

system (1) at time if there exists &K-function ¢; that for all x;, X%, € X satisfies

9t (IIxe — el [?) < 1IQH (x1,Up) — Q/H (2, Up) 2.

Systems and data satisfying these properties at all timantshave properties similar to uniformly observable
systems and allow convergence results to be derived. On ttiexr dband, when a system is nNtobservable,
it is not possible to reconstruct exactly all the state congods from theN-information vector due to lack of
information. However, in some cases one may be able to recohexactly at least some components, based on
theN-information vector, and the remaining components can tenstructed asymptotically. This corresponds to the
concept of detectability, where we suppose there existoadowte transfornT : X — D CR™, d=col(§,2) =T (x)

such that the following dynamics are equivalent to (1),

Et+l — Fl(Etaztyut) (9a)
z1=F(z,u) (9b)
Ve =9(z, W), (9c)

The vectoré € R% contains un-observable state variables, are@lR™ contains observable state variables. Similar

to H(-), the following algebraic map can be formulated [1]:

9(z-N;U-N)
Y = Glan.U) = Gi(a-) = ARl e o) (10)

I(F(F(- - Fo(z—N, U—N), ), te—1) , W)




andy; = QfG(zt,N,Ut). Before we extend the definition df-informativeness tdN-detectable systems, we introduce
the concept of incremental input-to-state stabilidyg9 for the unobservable sub-system (9a) as in [10]. In order
to be able to show exponential convergence of the estiméti®e ain-observable states, they must, by assumption,
converge exponentially in an open-loop fashion when theseofable state estimates converge exponentially.
Although similar assumptions could be made (such as cdidracr global exponential stability of the un-perturbed
un-observable sub-system) they would lead to very siméatits, and we chose the present formulation in order
to use a similar analysis method as in [9], [10].

A continuous functionV (&}, &2,Pg) = [|&} — Etz||§,é with P; = P; >0 is called a quadratidlSSLyapunov
function for the systend; 1 = F1(&:,z,u) if the following holds:

. V(0,0,P) =0.

« There exist a symmetriQ; > 0 and symmetri, > 0,Z; > 0, such that for any!, &% and any couple of

Input S|gnalsut ut Zt th
V(E&H,Etil,Pé)—V(ftl,EtZ,Pg) (Et 7Et 7QE)+V( Ut zu +V Ztl th zz (11)

The inputU; and the outpul;* with the measurement qualit®) is said to beN-informativefor the N-detectable
system (1) at time if

(1) there exists a coordinate transfofim X — ID that brings the system in the form (9);

(2) the inputU; and outputy;* with the measurement qualityy is N-informative for theN-observable sub-system
(9b)-(9c) at timet.

(3) the sub-system (9a) has a quadr@i&SLyapunov function (11).

As shown by the following result, for arbitrary choices §f> 0 andW > 0 there exists a sufficiently large
R: > 0 such that the observer estimation erepry = %N —>A<§’_N7t converges exponentially to zero, under some
conditions.

Theorem 1:Suppose the following assumptions hold
(A1) The functionsf andh are twice differentiable, and the functioRg, F, andg are twice differentiable.

(A2) T(x) is continuously differentiable and bounded away from siagty for all x € X such thafT ~1(x) is well
defined.
(A3) The inputU; and outputY;* with the measurement qualit® are N-informative for allt > O for the N-

detectable system (1).
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(A4) The signalay, y; andx are bounded.
(A5) The setX is closed, convex, and controlled invariang. f(x,u) € X for all x € X and the controly € U
for all t > 0.
(A6) For any colé1,z1) € D and colé,,2) € D, then colé1,2) € D, col(é,z) € D.
Then for any§ > 0 andW > O there exists a sufficiently large weight matf > 0 such that for any initial a
priori estimatexon € X the observer error converges exponentially to zero.

Proof: Given in the appendix. [ |

We remark that the closed sEtis chosen by the user primarily in order to represent physigastraints on the
state estimates, although its choice may be limited due lidityaof the model or assumptions that must hold on
this setX. With the choiceX = R" we get a global exponential convergence result. In othees;abke region of
attraction of the estimate will not be global, but limited the setX.

The key assumption is (A3) which requires that the systeMr@etectable and the data adeinformative, which
means that there is a sufficient number of exciting measurtsrere available. This means that the NMHE is
inherently robust to delayed and lost data, provided thatatmount of missing data is not too large compared to
the window sizeN. In [21], it was proposed to handle lost data by online adaptaf the window sizeN in order
to guarantee that the window of informationNsinformative at each time step. While increasing the windize
N will generally improve robustness, it may still not be dable to do so. The two main reasons are increased
computational complexity of the online nonlinear prograand increased degree of filtering of the estimate that
may be undesired if operating in a non-stationary or highhyetvarying environment that requires that the state
estimator adapts quickly to rapidly changing parameters.

In this paper, we take into account that violation of the agstion of N-informative data may be expected, and
the robustness of the NMHE algorithm to such data deficiemeylme further enhanced using an adaptive weight

selection algorithm as described in Section V.

IV. ADAPTIVE WEIGHTING AND FURTHER ROBUSTNESS

This section provides some further regularization medrasiand tuning guidelines to ensure robustness and
graceful degradation when significant amounts of measurtsrege delayed or lost. First, we provide a character-
ization of the requirements on the weight matRx based on Theorem 1 for the case when the assumptions are

fulfilled.
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Proposition 1: Define the following matrixes

10 .
rtflzrtfl(Xt*Nflv)ztp—N—Lt—l):A a_XT((l_S)thNfl‘i’Sxto—N—l,t—l)ds

1T _
A=T Of (AT SA+W)er Y,
~0 Y ! a 50
W = th(thN>X{—N7t) =Q /0 E(H((l_s)xth‘}'SXt—N,UUt)ds
where/; and ©; are defined in Lemma 2 in the Appendix. For a suitable scalar0, matrix = = =T >0, and

matrix P, = P2T > 0 for allt > 0, if the weight matrixR; is chosen such that the following matrix inequalities hplds

wheren = [On,xn;; In,),

N WTRWI T > Py, (12a)
aQ 0
d SITHA, (12b)
0 P—az,

then the observer error is exponentially stable.

Proof: See Appendix. [ |
Fulfillment of eq. (12a) at all time instantsrequires that¥; has full rank, which is guaranteed by data being
N-informative. Eq. (12a) ensures that the chosen Lyapunoction decreases at each time instant. This is a
sufficient condition that may not be necessary, and it mayufiécient that the Lyapunov function "decreases in

average” as commonly exploited when using the concept dfigience of excitation. Intuitively, it is therefore
reasonable to believe that some stability and convergerepies can still be achieve if this assumption is mildly
violated, assuming that there are "enough measurementgevage”. Due to the second and third terms in the cost
function, the estimator functionality degrades to an opaplobserver in such cases, with selectivity such that the
available measurements are still fully utilized in sitoas with partial measurements being available (like one of
two outputs available). As discussed in [7], these regedgion mechanisms may be sufficient in cases when the
system is open loop asymptotically stable. However, whersytstem is marginally stable (e.g. by joint identification
of parameter® with a state augmentation of the model wih= 0), or unstable, the open loop integration of the
model in the estimator may lead to drifting estimates. Ascdbed in [39]-[42], the use of directional updating
based on a decomposition of the information matrix can bel useprevent updating of combinations of state
variables for which no information exists in the data. Effely, this prevents drifting estimates due to noise

and model errors that would otherwise be the dominant dyiforce of the estimate updates. Following [7] we
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implement an adaptive (directional) weighting algorithging the singular value decomposition. We define the data

guality-weighted Jacobian-like matrix

. . 0 .
W = Wi (RN RN ~ QIE(H (RN Ut (13)

Note that in the nonlinear MHE formulation, the matt¥ RW; plays a similar role as a weighted information
matrix, and for small error§e_n||, the approximation accuracy may be expected to be good.

Consider a singular value decomposition (SVD) [43]
W, = UGSV, (14)

The singular values are the diagonal elements of the m&triAny singular value that is zero (or close to zero)
indicates a state component is either not observable othibatata are not sufficiently informative (or only weakly
informative). Moreover, the corresponding row of ¥ematrix will indicate which components cannot be estimated.
The Jacobian has the structural property that its rank wilhb larger than diifz) = n,, due to certain components
being unobservable. Whether the dataMsmformative may therefore be monitored through the rolsostputation

of the rank of the Jacobian matrix using the SVD. One may seddg and gracefully degrade the performance of
the observer to an open loop observer for those state comfmofee which the data are ndt-informative, while

the other state components are updated using the data. 3oeptinis objective, we propose to choégesuch that,

R=RR, with R=+/B%S;,U' (15)

wheref > 0 is a scalar, and the thresholded pseudo-invé,fg—;t diag(0,...,0,1/0t 1,..., 1/0t ) whereao 1, ..., Gty
are the singular values larger than some thresjpoaidO, and the zeros correspond to small singular values whose
inverse is set to zero [43]. Then we have

WIRW, = BD, (16)

whereD = diag(0,...,0,1,...,1). For N-informative input andp > 0 sufficiently small, [7], such choice d% also
satisfies thath{ R.®; = 81 > 0 which clearly satisfies (12a) for sufficiently large The problem becomes to find
a suitable such that (12) holds. Since ineq. (12b) may give a conseevébundP, and the matrix'; may be
hard to compute, a qualitative guideline is to chofse 0 sufficiently large. A largg3 contributes to fast speed of
convergence, while robustness to measurement noise mtakdre into consideration and will be a primary reason

why 8 should not be chosen too large.
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Scaling of the model equations and variables is instrunhémtéhe approach since the thresholded singular value
decomposition is used to determine directions in the pat@mspace that should be updated based on data, and
those that are not to be updated due to lack of informatiorartter to allow a direct comparison of the (scalar)
singular values, all variables need to be scaled apprepyidiumerical robustness and simplification of the tuning
are other good reasons for scaling. Determining the scédictprs is usually done in two steps. First, rough scaling
in order to account for different physical units, e.g. scalleto a range 0-100. Second, some fine tuning of the
scaling in order to maximize the performance of the obsergis usually requires an iterative procedure with
some trial and error having in mind the importance of theviitilial variables in a given application.

For inputs that are ndi-informative, the parametgr > 0 may be tuned in order to enhance robustness of the
algorithm such thaR gives zero weight on state combinations for which there sufficient information. The
qualitative guideline is that increasgdwill require a higher degree of information in order to uggastimates and
thereby improve robustness to noise, missing data and mouwartainties at the cost of convergence speed. The
choice ofp may require extensive simulation and experimental testinge the primary objective of the thresholded
SVD is to avoid undesired parameter estimator drift due taeh@rrors under conditions characterized by lack
of excitation or too little available data. It may also reguie-tuning of the weights i and some re-scaling of
variables in order to tune the responses of the individuedrpater estimates.

The 2nd term in the NMHE criterion, weighted wifh, is introduced to allow simulated output data to be used
as a substitute when real measurements are not availaldeel@ments of§ are tuning parameters that should
increase with the confidence in the model, increase with areatent noise levels, but should usually be less than
R since real measurements should be trusted more than sgdutaasurements.

Clearly, the choice of window sizd is important for the performance of the algorithm. Theresaeeral effects
involved. First, an increased window sikewill lead to a high degree of low-pass filtering in the MHE. Jtias
the benefits that effects of uncertainties such as noiseimgisiata and model errors are reduced, while the main
drawbacks are reduced speed of convergence and increasgditational load. Moreover, for a given application
there is a minimunN < n that is necessary in order to achidNeobservability of the system. It should be remarked
that increasingN is not the only option for increasing the degree of low-pdsariing within the MHE, as increasing
the weights inlW{ will also have this effect.

We mention that the diagnostic information resulting fradme singular value decomposition could potentially

be used to prioritize re-transmission requests for ctititzta while less important data need not be requested to
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be re-transmitted. This contributes to the overall objectf greedy use of communication capacity in order to

improve overall communication performance in terms ofriaje power consumption, and data integrity.

V. SUMMARY OF ALGORITHM

In summary, the estimation algorithm consists of the follgysteps

1) Initialization: N, W, S, Xon. X, B, p

2) Acquire new data, and stack into the moving window vedtgrandY;* and associated quality indicato@y
andD{ =1-Qf..

3) Generatey; according to (4) and; according to (8).

4) Compute the approximation df; according to (13) using numerical finite difference appmaions or
analytical expressions.

5) Compute the SVD o®¥;, cf. (14) and [43].

6) ComputeR; according to (15).

7) Solve the nonlinear programming problem with objectivadtion (5) and constraints (6) using a numerical
solvers (such as NPSOL that was used in the examples) forptiated state estimate_n.

8) Update the a priori estimate according to (7), and retaratép 2 for the next update.

VI. EXAMPLES

A simulation example is first used to illustrate the main gleghile the performance of the approach is evaluated
using experimental data from an offshore oil well drillingesation in the second example. In the examples we
use the NPSOL sequential quadratic programming algorithsotve the nonlinear MHE problems. Matlab is used

for simulation and other computations, with the TOMLAB irfiteee to NPSOL.

A. Example 1 - mixed state and parameter estimation

Consider the following system

X1 = —4X1 + Xo (17&)
Xo = —Xo + X3U (l7b)
% =0 (17¢)

Y= %oV (17d)
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It is clear thatx; is not observable, but corresponds todESS system, whilex, and x3 are observable state
variables. It is also clear that our ability to exactly corgxs from measured input and output data will depend
on the excitationu, while x; is uniformly observable. One may think ®f as a parameter representing an unknown
gain on the input, where the third state equation is an autatien for the purpose of estimating this parameter.
The same observability and detectability properties hotdte discretized system with sampling intersal= 0.1s.

It is easy to see that the sub-system (17a) has a quadi&®-Lyapunov function.

In the example, the inputi is discrete-time white noise, which is highly exciting. émkndent uniformly
distributed measurement noisec [—0.05,0.05 is added to the output. Different scenarios are generated by
simulating different percentages of lost output measurgsmeA window sizeN = 8 was chosen. This window
is larger than the theoretical minimum, which was found t@rove the robust performance of the method. The
criterion weight parameters are set§o= 0.11 andW = 0.7I, and use the adaptive weighting law (15) to define
R: usingB = 10. This tuning was made as a trade-off between fast resgonkeensitivity to noise. The threshold
0 = 0.01 was tuned to avoid drifting estimates during periods wigufficient measurements.

We evaluate the NMHE performance using the root mean squese e

1/2
RMSE = <1 S HaHZ)
M 2, ’

whereg is the estimation error at timg andM = 100 is the length of the simulation run. The simulation resul
with different measurement loss probabilities, and theaye ofRMSEof state estimates, are shown in Table | for
20 different initial states. Table Il shows the results of#d by the method in [19], where the Extended Kalman
Filter (EKF) is implemented with mechanisms to handle imi&ent observations. For the EKF, it is assumed that
the disturbance standard deviation i9167 and the same initial estimates were used in the EKF an¢iE®NM
From Table | and Table I, it can be concluded that the acquohiche proposed NMHE method is better than the
implemented EKF.

Figure 1 shows the estimates of these two methods with the gaitial state estimate when the probability of
missing data is 80%. From Figure 1, it can be observedxhastimated by the EKF is updated only when new
measurements become available, which leads to a somevawatrassponse. On the other hand, estimated by
the proposed NMHE is updated at each time step due to the windaata, which results in improved accuracy
compared to the implemented EKF. It takes on average aro@mds5to compute the state estimate with the NMHE

method at each step, while the computation time of the EKRasirad 5 ms. Although these computations are
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made in Matlab on a standard PC without any attempt to opgirtiz implementation for computational efficiency,
we believe their ratio is a fairly valid indicator of their mputational performance ratio.

The results shows that performance degrades gracefully,fairly small reduction in estimation accuracy up to
about 30 % loss probability. Even at 80 % loss the estimatogsgiobust estimates with performance degradation

of a factor less than 5.

Loss Probg%) 0 2 5 10 20 30 50 70 80

RMSE of x1 0.0605 | 0.0605 | 0.0604 | 0.0604 | 0.0603 | 0.0603 | 0.0601| 0.0618 | 0.0715

RMSE of xp 0.0097 | 0.0098 | 0.0118 | 0.0155 | 0.0216 | 0.0285| 0.0326 | 0.0364 | 0.0375

RMSE of x3 0.0149| 0.0153 | 0.0158 | 0.0176 | 0.0203 | 0.0238 | 0.0517 | 0.0653 | 0.0746
TABLE |

EXAMPLE 1: THE ESTIMATION ERRORS OF THE PROPOSEMHE.

Loss Probg%) 0 2 5 10 20 30 50 70 80

RMSE of x; 0.0702 | 0.0704 | 0.0704 | 0.0705| 0.0701 | 0.0701| 0.0709 | 0.0716 | 0.0721

RMSE of x; 0.0226 | 0.0247 | 0.0284 | 0.0359 | 0.0416 | 0.0459 | 0.0511 | 0.0571| 0.0588

RMSE of x3 0.0728 | 0.0863 | 0.1236 | 0.1316 | 0.1320 | 0.1474| 0.1645 | 0.2026 | 0.2080
TABLE Il

EXAMPLE 1: THE ESTIMATION ERRORS OF THEEKF.

B. Example 2 - Estimation of Bottom Hole Pressure during Gall\Brilling

In this example, we here implement the proposed approacktimate the bottom hole pressure (BHP) during
a Managed Pressure Drilling (MPD) operation. MPD is a drijliprocess used to precisely control an annular
pressure profile throughout the well bore, cf. Figure 2. Thlirdy fluid (commonly called mud) is pumped down
the rotating drillpipe. At the drill bit at the bottom of theole the fluid is allowed to flow through the drill bit
as it rotates to make the hole, and circulate back to the wg thirough the annulus. The purpose of this flow is
twofold. First, it removes cuttings from the drilling at th®ttom hole, and second, it provides a pressure in the
well that acts as a barrier against uncontrolled inflow ofrbgdrbons that might occur if an oil or gas reservoir is
penetrated. The pressure should be controlled accuraté#linthe range between the pore pressure of the reservoir

and the fracture pressure, beyond which the drilling fluid/roause damage to the well bore, using the choke or
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back-pressure pump. The circulation of the drilling fluidalnvolves some top-side processing in order to remove

foreign elements from the fluid before it is circulated.

To model the MPD drilling system for use in the estimator, vee & simplified model developed in [44]. The

parameters used in the example are given in Table Ill.

FUMP CHOKE

[ ’__"' —

q;)ruu;} > I E[ ; Y
Py ‘ \ P,
{i} e {0

BACKPRESSURE PUMP

DRILLSTRING

ANNULLIS v

v
— —
DRILL BIT Pt

Fig. 2. A simplified drawing of the MPD drilling system.

The MPD system can be described as

Pc = Fa (qb — Qe+ Oback+ Va) (18a)

Pp = B—(q —Gp) (18b)
p Vy pump )

. 1

0o = M (Pp—Pc— Alq%ump— A2(0ke — Gback)” + (0 — Pa)gh), (18c)

with the parameter = My + My with My = paf dx andMq = pdf

hole, ppit (also called bottom hole pressure - BHP), depends on theecpmssure, pump pressure, frictional loss

pressure and hydrostatic pressure, which is given as

M My Mg M Md M
Poit = Va Pp+ 1y Pet A2 — Oback)® — Va)\l(ﬁum;ﬂr (Pt Vapd)gh. (19)

In this example, it is assumed that the parameierd, are unknown. With this parametrization one has to expect
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Parameters | Description Unit
Va Annulus volume m3
Vy Drill string volume me
Ba Bulk modulus of fluid in annulus bar
By Bulk modulus of fluid in drill string bar
Pc Choke pressure bar
Pp Pump pressure bar
b Flow rate of the bit m/s
e Flow rate of the choke m/s
Oback Flow rate of the backpressure pump | m®/s
Qpump Flow rate of the pump m/s
M Friction parameter of drill string bars’/mb
A2 Friction parameter of annulus bars’/mb
Pa Density mud in annulus kg/m®
Od Density mud in drill string kg/m®
g Acceleration of gravity m/s
h Vertical depth of the bit m
la Length of annulus m
Ly Length of drill string m
Aa Cross sectional area of annulus m2
A4 Cross sectional area of drill string 13
Poit Bottom hole pressure bar
TABLE Il

MODEL VARIABLES.

that the model is over-parameterized such that the pemsistef excitation condition (and uniform observability)
will not hold. This challenging parametrization is chosarorder to illustrate the power of the proposed method,
and in particular that the algorithm will accurately detdw information content of the available data at any time
and adapt the weights accordingly when usigdefined by (15). Therefore, the proposed NMHE algorithm is
applied to the combined state and parameter estimatiorgmolby considering the parameterg A, as augmented

states)\l =0, and)\z = 0. The constraints on the states and estimations are given as
pCZO> ppZQ %ZO, A1207 A2207 pbitZO- (20)

Some parameters such@simp Oc, dback Pa, Pd; N, a, L4, Pc and pp can be measured by sensors while drilling. These
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are available at; = 1 s sampling rate from the top-side instrumentation and dglimud logging system. Then

the corresponding states, inputs and outputs and timengadisturbances are given as

- - h
Pc
Pa
Pp
Pd Pc .
X= qb , U= ) y: ) W:Va, (21)
Gpump Pp
A1
Oc
A2
) ) i Oback i

whereV, = Ah is a known input.

The available data consists of an experimental time ser@a fan MPD drilling operation in the North Sea.
The input signals are shown in Figure 3. Some of the measumsnage noisy and also contain outright errors in
some places. There are several uncertainties in drillirgratfpn due to missing and inaccurate configuration data
(inaccurate well profile plan compared with that actual eebd). Normally 5 bar difference between true BHP and
estimated BHP is to be expected in many cases.

The window size is chosen &= 10. We choose the tuning parameters of the cost functio &s0.01l and
W = 0.3I, and utilize the SVD-based adaptive weighting law with tgnparameterg = 0.1 andp = 0.001 to
defineR;. The state variables are scaled with factors for pc, 0.1 for pp, 1 for gy, and 0001 for bothA; and
A2. These tuning parameters were found after some trial arudt grrorder to achieve a satisfactory combination
of fast estimation and high robustness to uncertaintiet siscnoise and data losses. Our experience is that the
performance is not very sensitive to the choice of tuningapeaters.

In the base case all data points are available, while diffedata sets with different loss probabilities were
generated by randomly and independently picking out a iceparcentage of the data points. Table IV shows the
different measurement loss probabilities and RMSE betweessurements and the estimations duting = 1650s.
Table V shows the accuracy of the implemented EKF, [19],datiing that better accuracy in estimating the BHP
is achieved with the NMHE method. The average computatioe tis around 400 ms at each step for the NMHE
method, while it takes 30 ms for EKF. Although these compaomstare made in Matlab on a standard PC without any
attempt to optimize the implementation for computatiorfiiency, we believe their ratio is a fairly valid indicator
of their computational performance ratio. Comparison @& #tcuracy between estimates and experimental data

with data loss probabilities in the range of 0-70 % are shawRigures 4 - 8.



1650

21

L 1648

0017

o 006

0.017

o 006

0.015
0

1646
0

20

400

600

800

1000 1200

1400

1600

0.015
0

20

400

600

1000 1200

1400

20

40

600

20

40

600

1000 1200

1400

1600

/

20

40

600

1000 1200

1400

20

40

Fig. 3. Example 2: Input measurements.

600

800

1000 1200

1400

1600



) _pcwithO%dataloss probabilty | | | |
Q_U 20& — ], by measiremets o
0 \ \ 1 | \ \ \

0 200 400 600 800 1000 1200 1400 1600
I
200 | | _ppwith 0% dataloss probatlty— | | |
Q_Q 100 —, by measLrements / .
0\ | | | — | | |
0 200 400 600 800 1000 1200 1400 1600
t
30 ——BHPyith 09 i
il With 0% data loss probabilty |
T B0F ——BHP by memories -
0 : : : : | | |
0 20 400 600 800 1000 1200 1400 1600
I
005k \ \ | | | | | ]
o
Jla \ \ \ | \ / \ \ \
0 20 400 600 800 1000 1200 1400 1600
t
010"
| | | | | | | |
<150 | ]
\ \ \ \ \ \ \ \
1
0 20 400 600 800 1000 1200 1400 1600
t
10
4 | | | | | | | |
PA¥ |
0 \ \ \ \ \ \ \ \
0 20 400 600 800 1000 1200 1400 1600

Fig. 4. Example 2: Loss probability being 0%.



0 _pcwith 10% data loss probabilty ‘ ‘ | |
Q.O zok — D, by measurements j__,._..,
0 \ i i 1 i [ \ \

0 200 400 600 800 1000 1200 1400 1600
t
20 | | _ppwith 10% data loss probabilty | | | |
Q_Q 0k — pp by measurements / _
0\ | | | ] L | | |
0 200 400 600 800 1000 1200 1400 1600
t
0 300 —— BHP with 103 data oss probaty | 1
L ‘k — BHP by memores —r/__/__ -
0 : : : : | | |
0 200 400 600 800 1000 1200 1400 1600
t
05k \ \ \ \ \ \ \ [
ol
La | | | | il | |
0 200 400 600 800 1000 1200 1400 1600
t
010"
\ \ \ \ \ \ \ \
H
re Lo[ L— -
\ \ \ \ \ \ \ \
1
0 200 400 600 800 1000 1200 1400 1600
t
)

4 | | | | | | | |
PA¥ ]
0 \ \ \ \ \ \ \ \

0 200 400 600 800 1000 1200 1400 1600

Fig. 5. Example 2: Loss probability being 10%.

23



— vith 30% data loss probabilty ‘

40
Q.O ZOK by mesuemeni
T \ \ i \
0 | | ‘ o | |
0 200 400 600 800 1000 1200 1400 1600
I
20 | | _ppwith 30% data loss probabifty | | |
Q_Q 100 —, by meastrements / -
0 \ \ \ P \ \ \
0 200 400 600 800 1000 1200 1400 1600
t
0 . " ‘
il ——BHP with 30% data loss probabilty
M —— BHP by memoies
0 : : : : | | |
0 200 400 600 800 1000 1200 1400 1600
I
0 | | | | | | | =
o
ok | J 1 | il | |
0 200 400 600 800 1000 1200 1400 1600
t
110
| | | | | | | |
<1 A, ]
{ \ \ \ \ \ \ \ \
0 200 400 600 800 1000 1200 1400 1600
t
)
t | | |
PA¥ ]
: : : : : N 1 :
0 200 400 600 800 1000 1200 1400 1600

Fig. 6. Example 2: Loss probability being 30%.

24



0 7pcwith 50% data loss probabilty ‘ ‘ ‘ ‘
Q.O ZOK —— D, bymeasuremens
0 % | ; ; i | |
0 200 400 600 800 1000 1200 1400 1600
I
20 | | _ppwith 0% data loss probailty - | | |
Q i
g W0 —ppbymeasurements M
0 \ | \ \ | |
0 200 400 600 800 1000 1200 1400 1600
t
0 — ,
il BHP with 50% data loss probabilty |
) —— BHP by memories
i : : : : | | |
0 200 400 600 800 1000 1200 1400 1600
t
e | | | | | | | ]
&
s | | | | M | |
0 200 400 600 800 1000 1200 1400 1600
t
010"
3 | | | | | | | |
"o i
< l'LL'
\ \ \ \ \ \ \ \
1
0 200 400 600 800 1000 1200 1400 1600
t
110
t | | |
<L ]
0 l l l l l nﬁ.f% : —t—
0 200 400 600 800 1000 1200 1400 1600

Fig. 7. Example 2: Loss probability being 50%.

25



10 _pcwith 70% data loss probabilty | | | |
Q_‘-’ 0 — P,y measuemens
0 * \ t 'v‘ﬂ:\"" [ \ \
0 200 400 600 800 1000 1200 1400 1600
I
0 | | —— 7, it T0t gl oss bty | | |
Q i
g 10 ‘ | _ppbymeasurements ég/ | | |
0
0 200 400 600 800 1000 1200 1400 1600
t
] ST n
0 BHP with 70% data loss probabilty \
T % —— BHP by memories
i - : : — | | |
200 400 600 800 1000 1200 1400 1600
t
005k \ | | | | | | [
o
0 | L | | e (/ | | |
0 200 400 600 800 1000 1200 1400 1600
t
010"
| | | | | | | |
4
<1 N 1
\ \ \ \ \ \ \ \
1
0 200 400 600 800 1000 1200 1400 1600
t
)
t | | |
Ny ]
< 0 1 1 1 1 | r\f‘r — ;
0 200 400 600 800 1000 1200 1400 1600

Fig. 8. Example 2: Loss probability being 70%.

26



27

Loss Probg%) 0 2 10 30 50 70

RSME (bar) ofpc 0.1274 0.1297 0.1285 0.3870 0.3858 0.8559

RSME (bar) ofpp 0.2071 0.2179 0.2192 0.3386 0.4149 0.9396

RSME (bar) of pyi;(BHP) 0.9905 0.9923 1.0092 1.1889 1.4067 1.4824
TABLE IV

EXAMPLE 2: THE ESTIMATION ERROR OF THE PROPOSEMHE.

Loss Probg%) 0 2 10 30 50 70

RSME (bar) ofpc 0.0847 0.0894 0.1136 0.1748 0.3471 0.8285

RSME (bar) ofpp 0.3592 0.3647 0.4082 0.4829 0.7403 1.3260

RSME (bar) of pyit (BHP) 1.1963 1.2015 1.3137 1.4689 1.9167 2.1025
TABLE V

EXAMPLE 2: THE ESTIMATION ERROR OF THEEKF.

VIlI. CONCLUSIONS

The use of nonlinear moving horizon estimation are stud@dapplications where output data may be lost or
delayed due to unreliable digital communication. The dbation of the paper are nonlinear MHE formulations and
weight selection methods that ensures robustness modifisaising regularization. The regularizing mechanisms
are stabilizing terms in the cost function that ensureseajtdalegradation to an open loop observer, and a SVD-
based weight selection method that avoids drift of estimateen data are not informative and the dynamic model
of the plant does not have strong enough internal open loalplisg. Simulation and experimental results from
an oil well drilling application shows that the performanufethe nonlinear MHE degrades gracefully even when

output measurements are lost with a probability above 50 %.

APPENDIX

Lemma 1:Define the matrix

. 19 .
O =02 ) = Q | 5619z n+2 i Uds
ThenQ!RQ; > 0 for all t and
X > [lz2-N—Z nillgrra (22)

Proof: Using the fact that the system (1a)-(1b) can be transformsdgul, there existdi_n = T(X-n),

d}o_Ni =T(X_n.) and d:_m = T(X%-n,) such that in the new coordinates, the system is in the forn9ay-(9c).
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Note that the first term in the right-hand side of express®nirf the new coordinations can be rewritten as
1Y — QY H (R Nt>Ut)||§t =[|Q/G(z_n,U) _QtYG(ig)fN,tvut)Hth'
From Proposition 2.4.7 in [45],
Q'G(z-n,Ut) — Q'G(Z N Ut) = (N — % ny)-
and we have
QY G(z—n,Ut) — QY G(Z 1, U = 12— —chN,tngthRtQt-

Taking zero as the lower bound on the rest terms of (5), we2@t Since the data amd-informative, the matrix
Q; has full rank andQ{ R Q; > 0 for all t. [

Lemma 2:Define the matrices

A = De (XNt Xe-N) / - (L =9)%-ng+5%-N,Up)ds
Ot = Ot (R-N-14-1:X-N-1) / (1- 9K N_14-1FS%-N-1,li—N-1)dS
Then
¥ < ||XFN*1_)zto—N—17t—1||étT(AtT3At+\M)@t- (23)

Proof: We know thatxn € X is a feasible solution at time From the optimality of” \;, we haveJ® <
J(%-n;%—ny). Then considering the cost functiahix_n;X—n.), we have[|Y; — QY H (x_n,Uy) || = 0. Like the

proof of Lemma 1, the second term in the right-hand side ofesgion (5) can be rewritten as
1% = DY H (%e—n,Up)[[§ = [1DYH (%, Ut) = DYH (N, U&= [1%-n = XNl laT s

Similarly,

XNt — %N = O (RN 11— X N-1)-

Then, the terms of the right-hand side of expression (5) eawititten as (23). |

Proof of Theorem 1:

Consider a Lyapunov functiovi(s ) = ||s!|[3, +||$?|[3,, wheres; = col(s!, &%), PL.= aP;,a >0 andP, = P] > O for

allt > 0. Then it is easy to show th¥lt's) > 0 andV (0) =0 for allt > 0. Lets' = & N — ft{Nﬁt, f=z_n —2?4\1.1- In
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the followingV (s-n) —V(s-n-1) < 0,Vs_n # 0 for someW,S andR; is shown. Sinc&X is controlled invariant,
then x_n; € X is a feasible solution. From (A6), we know that C&ELNi,?{{N’t) is also a feasible solution.
Considering the cost function of the MHE problem, it is cléfaat co(f_t,m,?g,\,’t) is also an optimal solution,
since the first term does not depend on the unobservable siatethe second term is zeic. fto_Nvt = E_t—NJ-

Since (A3) holds, we know that

2 2 z 2 2
ISH1B, — 1S allg, = 18-~ — &—ntllB, — IS 1113,
2 2 2
< s 4] |an +|€4| las, + |U-N-1—Un-1]|g5,

_ T —aQ¢ 0
=S-1 S-1
0 az;
SinceQ; has full rank (Lemma 1) and there always exists a ld&ge 0 such that 6< P, < QTR Q;. From lemma

1 and 2, we know that
2 2 2
H§HP2 < |‘§HQ{|—RIQt < HQ_J'HG;F(AITSAH-W:)@{

From Proposition 2.4.7 in [45k 1 =T 161, and we havé|s||3, < [|s-1/|3, =S 1M1 Then,

—UQE 0
V(s)-V(s-1) <53 s—1+ 8 aAs-1— |15 4llB,
0 az;
—UQE 0
= S[T—l Stfl‘i'S[T_l/\tStfl-
0 aX,+-P

Sincel|At],]|©x]],||T't|| are bounded, there always exist a sufficiently large weighirimR; and a suitabler such

that for allt >0, a >0, § >0, W >0, and

QIRQ: > P, (24a)
aQ 0
¢ STHA, (24b)
0 P—-azz;
where= = =T > 0. Then we hav®/ () —V(s-1) < —||s—1/|2, which implies that is exponentially stable. Since

(A2) holds, it is easy to obtain that the error dynamics iscexgntially stable.
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Proof of Proposition 1:

Since (A1)-(A2) hold, from Proposition 2.4.7 in [45], we leav
Yo — QY H (R N Ut) = W (XN — Ny
Y; — QFG(ZO_N,t,Ut) =Q(z-N—Z Ny)-
SinceYt — QVH (%_n . Ut) =% — QI G(Z_,Ur),
Wi (%N — )zlofN,t) =Q(z-N— 2tofN,t) =Qn(ch-n— (itofN,t) =QiNTe(X%-N— )ZlofN,t)'

Then we have¥; = Qnly = Qi = lPtlTlnT. Therefore, from the proof the Theorem 1, for some chdsew,

the condition to findR becomes

aQ 0
Y WTRWITINT > P, ¢ >=+MN, a>0. (252)
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