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Figure B.5.10 Portal frame with fixed supports and hinged corners, subject to a horizontal load in the top left corner, with 
the corresponding support reactions, bending moment diagram, and deformed shape, respectively. The pinned corners 
transfer no moment to the beam, and with no bending in the beam there can also be no axial force in the columns. The 
columns essentially act as two individual cantilever beams, resisting the overturning moment entirely by the fixed moment 
at the base. 

 

Stiff beam frame 

 
Figure B.5.11 Fixed base portal frame where the beam is significantly stiffer than the columns subject to a horizontal load in 
the top left corner. 

 

If we now consider a frame where the beam is much stiffer than the columns, we can apply 

the same logic in and see that an increase in the beam stiffness relative to the columns results 

in the bending moment diagram of Figure B.5.12. 
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  Normal frame                                                                   Stiff beam frame 

Figure B.5.12 Bending moment diagrams for the normal and stiff beam frame, respectively. Note the increased moment in 
the beam and reduced moment at the column base for the stiff beam frame. Also note that the change in moment 𝛥𝑀 for 
both frames is equal, because the columns are subject to the same shear force H/2. 

 

We can understand that an increase in stiffness for the beam relative to the columns is the 

same as a reduction in column stiffness relative to the beam, and we can thus conclude that 

by increasing the beam stiffness, 

• The bending moment at the base and in the column is decreased 

• The bending moment at the corners and in the beam is increased 

• The vertical support reactions, and by extension the axial force in the columns, 

are increased 

As the beam tends towards infinite stiffness, the rotation at the corners will tend towards 

zero, which means the restraining moment MYC will become equal to the base moment MYA, 

i.e. 

𝑘𝑏 → ∞⟹ 𝑀𝑌𝐶 → 𝑀𝑌𝐴 (B. 11) 

Where 𝑘𝑏 is the beam’s bending stiffness. This is analogous to a loading condition for the 

column equal to the bottom row of Figure B.5.1, see also Figure B.5.13.   
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Figure B.5.13 Deformed shape for an infinitely stiff beam frame. The figure shows how the column behaviour is identical to 
the case shown in the bottom row of Figure B.5.1, with the beam restraining the top end of the column like a fixed support.  

 

One stiff column frame 

 
Figure B.5.14 Fixed base portal frame where the left column is significantly stiffer than the right column and the beam, 
subject to a horizontal load in the top left corner.  

 

Applying what we have learned so far in this chapter, we can also understand how the force 

distribution in the frame changes if we make one column much stiffer than the other. Let us 

consider the frame shown in Figure B.5.14, where column A is much stiffer than column B. If 

we assume the axial deformation of the beam is negligible, then we realize that each column 

must be subject to the same lateral sway at the column ends, Δ. As we stated in section 0, 

and as we see from equation (B.3), the base moment in each column is directly proportional 

to the stiffness of the columns. This means that column A must be subject to a greater base 

moment than column B, proportional to the relative stiffness of A and B. Let us illustrate by 
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assuming the second moment of area for column A is twice that of column B, i.e. 𝐼𝐴 = 2𝐼𝐵 =

2𝐼. Then we see that the base moment in A must be twice that of B. 

 𝑀𝑌𝐴 = 𝑏
𝐸𝐼𝐴
𝐿2
𝛥 = 2𝑏

𝐸𝐼

𝐿2
𝛥,𝑀𝑌𝐵 = 𝑏

𝐸𝐼𝐵
𝐿2
𝛥 = 𝑏

𝐸𝐼

𝐿2
𝛥 ⟹ 𝑀𝑌𝐴 = 2𝑀𝑌𝐵 (B. 12) 

However, we have not considered the end rotation of each column. The stiff column will 

restrain the left corner rotation more than the weak column restrains the right corner, which 

means that the end rotation of column A must be smaller than the end rotation of column B. 

This will reduce the moment of column A relative to column B, such that 𝑀𝑌𝐵 ≤ 𝑀𝑌𝐴 ≤

2𝑀𝑌𝐵. 

So far, we have assumed the shear in each column is the same, but in the case with one 

column stiffer than the other, we can assume that the shear force in column A is greater than 

in B. Thus, the change in moment for column A will be greater than the change in moment 

for column B, see equation (B.9). Due to vertical equilibrium, the vertical reaction forces must 

still be equal and opposite. Figure B.5.15 shows the frame with relative magnitude of reaction 

forces, and Figure B.5.16 shows the resulting bending moment diagram compared with the 

normal frame. 

 

Figure B.5.15 Reaction forces for a fixed base portal frame where the left column is significantly stiffer than the right 
column and the beam, subject to a horizontal load in the top left corner. The size of the arrows for the support reactions 
indicate their relative size, i.e. the left shear force is greater than the right, likewise for the moment. The vertical reactions 
are equal in magnitude, thus the vertical arrows are the same size. 
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                             Normal frame        Frame with stiff left column 

Figure B.5.16 Bending moment diagrams for the normal frame and the stiff left column frame, respectively. The left column 
carries greater moments both at the base and at the corner than the right. Note the total change in moment from the base 
to the corner is greater for column A than column B, due to column A carrying a larger shear force. 

 

 

Figure B.5.17 Relationship between bending stiffness ratio, Iratio = Istrong/Iweak, and the ratio of base moments, corner 
moments, and shear forces for the strong column compared to the weak column, respectively. The black dashed-dotted line 
indicates a 1-to-1 relationship. The base moment and shear force ratios are approximately equal to 0,616 and 0,366 times 
the stiffness ratio, respectively. The corner moment ratio levels off and remains constant at about 1,4 the bending stiffness 
when the strong column becomes 4 or more times stiffer than the weaker column. 
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Figure B.5.17 shows a plot of how the moment and shear force magnitudes vary with column 

stiffness ratio Iratio = Istrong/Iweak. The base moment ratio is calculated by dividing the base 

moment of the strong column by the base moment of the weak column. Likewise for the 

corner moment and shear force ratios. 

As we can see from the figure, both the base moment and shear force ratios vary 

approximately linearly with the stiffness ratio. We also see that there is less than a 1-to-1 

correlation between the base moment ratio and the stiffness ratio, as we would expect. 

When column A is almost 6 times stiffer than column B, it is subject to a base moment about 

4 times greater than B, and a shear force 3 times as large. The trendline for the base moment 

data points approximately follows the relationship base moment ratio = 0,616𝐼𝑟𝑎𝑡𝑖𝑜, which 

means that the end rotation moment reduces the base moment ratio by almost 40%. The 

shear force ratio is approximately equal to 0,366𝐼𝑟𝑎𝑡𝑖𝑜. The corner moments level out at a 

ratio of around 1,4 when the stiffness ratio becomes greater than 4, implying that increasing 

the stiffness ratio further past this point will not change the relative size of the corner 

moments at each end of the beam.   

Summary of findings 

To summarize this chapter, we can report the following findings about a simple portal frame 

• Increasing column stiffness will increase the base moment of the column and reduce 

moments in the beam. It will also reduce the axial forces in the columns. 

• Increasing beam stiffness will decrease the base moment of the column and increase 

moments in the beam. It will also increase the axial forces in the columns. 

• The shear force and base moment distribution in a column is linearly correlated with 

its relative stiffness compared to the other column. 

• The axial force in one column must always be equal and opposite to the axial force in 

the other column. 
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We also now understand that in general, the stiffer a beam or column is, the more moments, 

and thus stresses, it will attract relative to other structural members. Figure B.5.18 

summarizes the behaviour of the portal frames that we have investigated in this chapter. 

 

Figure B.5.18 Simple portal frames with varying relative beam and column stiffnesses, standing on fixed supports, subject 
to a horizontal point load in the top left corner, and their corresponding support reactions, bending moment diagrams and 
deformed shapes, respectively. 
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C. Skybridge mass omission 

Modal mass, 𝑚𝑒, is a function of mass per meter at any given height, 𝑚(𝑧) [kg/m], see 

equation (3.14):  

𝑚𝑒 =
∫ 𝑚(𝑧) ∙ 𝛷2(𝑧) 𝑑𝑧
ℎ

0

∫ 𝛷2(𝑧) 𝑑𝑧
ℎ

0

 

Therefore, we see that it depends on the link mass and location along the height of the 

towers. As mentioned before, to calculate 𝑚𝑒, 𝑚(𝑧) is obtained from Robot. The way Robot 

handles the vertical axis in building modelling is assigning height segments into stories, in our 

case 40 stories at 4 meters each. All model objects that are inside this 4m envelope belong to 

that storey, and Robot then returns the total mass of all objects in that storey. That way we 

find the mass along the building height for every 4m intervals, essentially giving us the value 

of 4 ∙ 𝑚(𝑧) at these heights, which we can easily convert to 𝑚(𝑧) by dividing by 4. However, 

when plotting the mass for each storey against the height for a structural model with a truss 

link over the top 3 stories (i.e. ℎ′ = 160m), it was found that the mass for certain stories were 

differing from other identical stories, see Figure C.15.19, which they should not. 

Upon investigating this model, it was found that Robot had incorrectly assigned structural 

objects belonging to other storeys to storey 28, causing an increase in mass for storey 28 and 

subsequent decrease in mass for the other storeys affected, see Figure C.25.20. Attempts to 

remedy this proved to be unsuccessful, as fixing one storey would cause another to break. 

Equally unfortunate was the fact that this had happened for all the other model 

permutations. Not being able to solve this problem, it was decided to neglect the mass of the 

skybridge entirely, and rather use the mass distribution for the twin towers without any 

skybridge. This way it was possible to ensure that all model permutations remained equally 

unaffected by this modelling error. Unfortunately, it also means that the mass of the 

structural links had to be ignored when calculating the dynamic load, and more importantly, 

the building peak acceleration.  
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Figure C.15.19 Mass per storey for the base model and the model with a truss link at h' = 160m. The mass distribution for 
the base model is correct, with equal mass for storeys with equal member sizes. The mass distribution for the truss model is 
incorrect. This can be seen around storey 28, which has a much higher mass than the floors above it, even though they 
contain the same structural elements. 

 

 

Figure C.25.20 Example of the storey assignment in Robot for twin towers connected by a truss bridge. To the left: only the 
contents of storey 36 showing. This storey and its objects are assigned correctly, as evidenced by none of the visible objects 
being outside the envelope of storey 36. To the right: only the contents of storey 28 showing. The objects in this storey are 
assigned incorrectly, with walls belonging to storeys up to storey 32 showing as being a part of storey 28. 
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