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BACKGROUND 
 
Development of Mobile Mapping System (MMS) began in the late 1980s and is constantly 
growing. Thanks to continuous developments in both scanning and positioning technologies, 
Mobile Mapping Systems are gaining more and more importance in many applications. Differ-
ent solutions are available on the market with different technical specifications. Terrestrial 
MMS technology goes back to the 90's when the first experiments showed the potential of 
mobile mapping for GIS applications. Ultimately, this gave birth to commercial operating sys-
tems used for example for 3D mapping of road, railways, city and coastal areas. There are, 
nowadays, different commercial MMS technologies, showing the best example of sensor in-
tegration for optimal acquisition of 3D georeferenced spatial data. One example is the 
Optech Lynx Mobile Mapping System operated by TerraTec. 
 
The georeferencing of data from the remote sensing system, e.g. a laser point cloud, is based 
on the position and orientation of the platform of the Mobile Mapping System. The naviga-
tion sensors collect data about the platform's position and orientation. A Kalman filter can 
be used to utilize this information and estimate a trajectory of the platform. The trajectory is 
the path described by the platform's movements in space. 
 
The estimation of the trajectory based on the sensor data works well and can give results 
with an accuracy of a few centimetres in areas with GNSS signals from multiple satellites. In 
areas with high buildings, trees or other obstacles, the loss of GNSS signals can, however, 
lead to an accuracy of the trajectory that is significantly worse.  
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TASK DESCRIPTION 
 
In large mobile mapping projects, there are high demands on both accuracy of the data and 
efficiency in data collection and processing. Estimation of trajectory is performed using a well-
known problem in robotic mapping called “Simultaneous Localization And Mapping (SLAM)”. SLAM 
is the problem of creating a map of an unknown environment at the same time as positioning the 
trajectory in this environment. The purpose of this thesis is to investigate the efficiency of SLAM in 
the post-processing of mobile mapping data.  
  
The thesis should contain a description of the theory of mobile mapping systems, including the 
hardware and software packages used. As a result of the thesis, based on the collected data in the 
field, the student should comment on the achievable accuracy improvement by introducing SLAM in 
the post-processing of mobile mapping data.  
 
Potential methods for re-calculating the trajectory of the platform (Optech Lynx Mobile Mapping 
System in this study) in the case of GNSS satellite signal loss in mobile mapping system should be 
investigated.  
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Abstract

In areas where GNSS satellite signals become weak or unavailable a period of time,
accuracy of the positioning of mobile mapping systems based on aided inertial
navigation can be drastically reduced. This can be problematic in, for instance, city
areas with high buildings, forests and tunnels. An increased number of terrestrial
land surveyed points can be necessary to get a sufficiently good accuracy of the
estimated trajectories in these areas, which makes the process more time and work
consuming.

In mobile mapping, laser scanners are typically used to gather information about
the surroundings, but they can also be used to find information about relative
movement of the mobile mapping system. Taking advantage of Simultaneous Lo-
calization And Mapping (SLAM), the observations from the laser scanner can be
used to aid inertial navigation when calculating the trajectory. Including SLAM in
re-calculation of the trajectory can be done to improve the positioning accuracy of
it. The improved trajectory can, in turn, be used to improve accuracy of the point
cloud.

Potential methods for including SLAM have been developed and tested in this
thesis. The first method presented is used to improve global consistency of the
trajectory by the use of back-end SLAM. This is done by using loop closure events.
The second method uses incremental observations to improve local consistency of
the trajectory by the use of front-end SLAM.

A software package has been developed for transforming point cloud observations
from TerraMatch to information that can be used in the SLAM algorithms as
part of the trajectory calculation in TerraPos. A relative point cloud observation
in TerraMatch is linked to the other point cloud observations of the same feature.
The developed methods use this information to perform data association in SLAM.

The methods have been tested in GNSS denied areas in the point cloud. Both the
presented methods show an improved accuracy and precision of the trajectory by
the use of SLAM to re-calculate it. Tests of the method using back-end SLAM
show that the method has the potential to improve the trajectory when a part of
the trajectory with low precision overlaps a part with high precision. Identification
and removal of systematic errors was found to be important in the incremental
observations used for the front-end SLAM method.
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Sammendrag

Støttet treghetsnavigasjon kan brukes til posisjonering av bilb̊aren laserskanning
(mobile mapping). I omr̊ader der GNSS-signaler blir utilgjengelige, kan nøyaktigheten
p̊a posisjonering av trajektorien til bilen bli betraktelig redusert. Dette kan være
problematisk i for eksempel byomr̊ader med høye bygninger, skogomr̊ader og tun-
neler. I slike omr̊ader kan det være nødvendig å øke antall landm̊alte punkter for
å f̊a tilstrekkelig god nøyaktighet p̊a posisjoneringen, noe som gjør prosessen mer
tid- og arbeidskrevende.

I bilb̊aren laserskanning brukes laserskannerne typisk til å samle inn informasjon
om omgivelsene, men de kan ogs̊a brukes til å finne informasjon om den relative be-
vegelsen til bilen. Ved å benytte SLAM (Simultaneous Localization And Mapping),
kan observasjoner fra laserskanningen brukes til å støtte treghetsnavigasjonen. Bruk
av SLAM i beregning av trajektorien til bilen kan forbedre nøyaktigheten til trajek-
torien. Den forbedrede trajektorien kan deretter brukes til å forbedre nøyaktigheten
av punktskyen fra laserskanningen.

I denne masteroppgaven er to potensielle metoder for å utnytte SLAM i etterpro-
sessering av data fra bilb̊aren laserskanning utviklet og testet. Den første metoden
benytter seg av back-end SLAM og s̊akalte �loop closure events�, der trajektorien
krysser seg selv, for å forbedre den globale nøyaktigheten til trajektorien. Den and-
re metoden utnytter inkrementelle observasjoner i front-end SLAM for å forbedre
den lokale nøyaktigheten til trajektorien.

Et program er utviklet for å transformere punktskyobservasjoner fra TerraMatch til
informasjon som kan brukes i SLAM-algoritmene brukt for å beregne trajektorien
til bilen i TerraPos. En relativ punktskyobservasjon i TerraMatch er knyttet til de
andre punktskyobservasjonene av samme objekt. Denne informasjonen brukes til å
gjøre dataassosiering i SLAM.

Metodene er testet i deler av punktskyen der GNSS observasjoner ikke er tilgjen-
gelig. Begge de presenterte metodene viser en forbedret nøyaktighet og presisjon
p̊a trajektorien til bilen ved bruk av SLAM for å beregne trajektorien. Testing
viser at n̊ar en del av trajektorien som har lav presisjon overlapper en del som
har høy presisjon, har metoden som bruker back-end SLAM potensiale til å for-
bedre nøyaktigheten til trajektorien. Identifisering og fjerning av systematiske feil
fra de inkrementelle observasjonene seg å være viktig for den metoden som bruker
front-end SLAM.
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Chapter 1

Introduction

1.1 Mobile Mapping

Mobile Mapping is the process of collecting geospatial data from a vehicle in mo-
tion. A Mobile Mapping System (MMS) is composed of a navigation system, giving
a position for each period of time, and a remote sensing system, collecting infor-
mation about the system’s environment. Usually, the navigation system includes
an Inertial Navigation System (INS), Global Navigation Satellite System (GNSS)
and an odometer. The remote sensing system can consist of advanced cameras and
laser scanners.

Development of Mobile Mapping System (MMS) began in the late 1980s and is
constantly growing. Thanks to continuous developments in both scanning and
positioning technologies, Mobile Mapping Systems are gaining more and more im-
portance in many application fields. Puente et al. [2013] review different solutions
available on the market with a comparison of their technical specifications. Terres-
trial MMS technology goes back to the 1990s when the first experiments showed the
potential of mobile mapping for GIS applications [El-Sheimy, 1996]. Ultimately,
this gave birth to commercial systems used for example for 3D mapping of road,
railways, city and coastal areas. Nowadays, there are different commercial MMS
technologies, showing the best example of sensor integration for optimal acquisi-
tion of 3D georeferenced spatial data. One example is the Optech Lynx Mobile
Mapping System operated by TerraTec.

Georeferencing of data from the remote sensing system, e.g. a laser point cloud,
is based on position and orientation of the platform (vehicle) of the Mobile Map-
ping System. Navigation sensors collect data about the platform’s position and
orientation. A Kalman filter can be used to utilize this information to estimate a
trajectory of the platform. The trajectory is the path described by the platform’s
movements in space. TerraPos can be used to calculate the trajectory by the use of

1



Chapter 1. Introduction

a Kalman filter. TerraPos is a software system developed by the company TerraTec
AS.

Estimation of trajectory based on sensor data works well and can give results
with an accuracy of a few centimeters in areas with GNSS signals from multiple
satellites. However, in areas with high buildings, trees or other obstacles, the loss of
GNSS signals can lead to an accuracy of the trajectory that is significantly worse.

The point cloud is generated based on the calculated trajectory and raw laser data.
This means that errors and drift in the trajectory in many cases can be seen by shift
and rotations in overlapping parts of the point cloud. Tie points are point features
than can be identified in multiple overlapping parts of the point cloud. Point cloud
observations can be used to measure the shift and rotation of overlapping parts of
the point cloud. Point cloud observations can be found by the software packages
TerraScan and TerraMatch developed by the company Terrasolid OY. Adjustments
based on the errors estimated from the point cloud observations can also be made
in these software packages.

Tie point observations are defined by a vector from the trajectory to the tie points
at time of scanning. Tie point observations can be introduced in the Kalman filter
when calculating the trajectory in TerraPos. Including tie point observations can
reduce drift and increase accuracy of the trajectory. When doing this, the estima-
tion of trajectory corresponds with the Simultaneous Localization And Mapping
(SLAM) problem from robotic mapping. SLAM is the problem of creating a map
of an unknown environment while finding the trajectory in this environment.

Many SLAM algorithms focus on estimating discrete map features, so-called land-
marks. In landmark-based SLAM it is essential for landmark observations to be
linked to the correct landmark. Observations of the same landmark in the point
cloud need to be of the same position in the scanned terrain. This is called the
data association problem in SLAM. Point cloud observations in TerraMatch are
linked to a feature in the terrain. Thus, the data association can be done by the
information from point cloud observations in TerraMatch.

Optimal landmark-based SLAM algorithms are computationally demanding, par-
ticularly for a high dimensional system state (i.e., with many landmarks). Efficient
use depends on a careful selection of landmarks.

The SLAM functionality in TerraPos can utilize tie point observations and in-
cremental point cloud observations in a re-calculation of the trajectory. Thus,
information collected by the laser scanner can be used to aid localization of the
platform and increase accuracy of the trajectory.

2



Chapter 1. Introduction

1.2 Research Objective

In large mobile mapping projects, there is high demand for data accuracy and
for efficient data collection and data processing. A previous study [Løv̊as, 2016]
indicated that re-calculating the trajectory using SLAM algorithms in TerraPos
can increase accuracy of the trajectory. This, in turn, can improve accuracy of the
point cloud.

An efficient method for using SLAM in post-processing of mobile mapping data
is needed for it to be usable on a large scale. For it to be efficient, it needs to
limit both computational cost and the need for man hours in processing. The
objective of this thesis is to find potential methods for re-calculating the trajectory
in TerraPos using information from the point cloud found in TerraMatch.

Identification of bottlenecks and possibilities for integration of TerraPos and Ter-
raMatch are investigated. Point cloud observations will be found in TerraMatch.
Information from TerraMatch will be transformed to information in a format that
can be utilized in TerraPos to re-calculate the trajectory. Lastly, a method for
adjusting the point cloud by the re-calculated trajectory is investigated.

The proposed methods will be tested with real data sets, to see whether they have
potential to increase accuracy in areas where the accuracy of the original trajectory
is not sufficiently high. A typical accuracy demand for mobile mapping projects is
0.05m.

3
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Chapter 2

Fundamentals of Mobile
Mapping

This chapter will present the theoretical background of mobile mapping. Naviga-
tion theory, scanning methods and Kalman filtering used in the processing the data
will be described in detail. Camera technology has not been used in this study and
is not discussed.

2.1 Common Concepts

A tie point is a point that does not have known coordinates, but that can be
identified by two or more overlapping parts of the laser point cloud. Tie points are
called landmarks in the SLAM paradigm.

Overlapping parts of the point cloud are scanned at different times. Points in the
point cloud are connected to a point in the trajectory by a time stamp.

A tie point observation is an observation of a tie point. It is defined by a vector
from the trajectory to the tie point.

Point cloud observations are offsets and rotations found between overlapping parts
of the point cloud.

5



Chapter 2. Fundamentals of Mobile Mapping

2.2 Aided Inertial Navigation

An Inertial Navigation System (INS) is used to track position and orientation of
the mobile mapping system, i.e. the system’s pose. The INS filters data from the
sensors in the Inertial Measurement Unit (IMU) resulting in position, velocity and
orientation of the system relative to a starting pose.

The IMU consist of high rate sensors that typically have an update frequency of
tens to a few hundred hertz. Low rate sensors like GNSS, with a typical update
rate of one to ten hertz, can be utilized to aid the INS.

A problem with the INS is that errors accumulate over time. The INS continuously
adds the measured change to the last calculated position. Accuracy in measure-
ments will be reduced not only by errors in the changes from the last measurement,
but also by the errors in measuring changes between positions before that. Exter-
nal sensors are needed to get a good starting state of the system and are helpful
to limit errors and drift. GNSS measurements are often used to give position up-
dates. An odometer mounted in a wheel can provide updates based on measured
along-track distance traveled. [Dudek and Jenkin, 2008]

2.2.1 Coordinate Frames

In aided inertial navigation several different sensors are used to make a navigation
solution. The sensors make observations in different coordinate frames. Hence,
keeping track of the various coordinate frames is necessary for sensor fusion. To
transform coordinates from one coordinate frame to another, rotation and trans-
lation between frames is needed. This section defines some relevant coordinate
systems [Farrel, 2008]:

An Inertial Frame (i-frame) is a reference frame that is non-accelerating relative
to inertial space. The origin of an inertial frame is arbitrary and the axis may
point in any three mutually perpendicular directions. The Earth Centered Inertial
(ECI) frame is an example of a (nearly) non-accelerating frame, with origin of the
frame in the mass center of Earth.

Earth Frame (e-frame) is an Earth Centered Earth Fixed (ECEF) frame and moves
and rotates with the Earth. The origin of the frame is in the Earth’s center of mass.
The x-axis points towards the intersection between the equator and the prime
meridian, the z-axis points in the direction of the Earth’s rotation axis defined
by the Conventional Terrestrial Pole and the y-axis completes the right-handed
orthogonal coordinate system.

Body Frame (b-frame) is a frame that is rigidly attached to the vehicle of interest.
The x-axis points in the forward direction of the platform (vehicle), the z-axis
points to the bottom of the platform and the y-frame completes the right-handed
orthogonal coordinate system. The rotations around the x-, y- and z-axis are
named roll (φ), pitch (θ) and heading (ψ) respectively. This frame can be used
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for relating the navigation system to other sensors on the platform, e.g. a laser
scanner.

Figure 2.1: Roll, pitch and heading on aircraft [Oxford Technical Solutions, 2014]

Sensor Frames (s-frame) is an orthogonal right-hand system, realized by the triad
of accelerometers and gyroscopes in the INS.

Geographic Frame (g-frame) is a North East Down (NED) frame and is defined
locally on Earth. The x-axis points towards North and y-axis towards East. The
z-axis points towards the center of Earth. The end result of the trajectory and
point cloud from mobile mapping is often given in this coordinate system.

2.2.2 IMU

The IMU consists of three accelerometers and three gyroscopes. Together these
sensors make relative observations of position and orientation of the IMU.

Observation equations for gyroscopes and accelerometer are given in the follow-
ing paragraphs. Subscript denotes coordinate frame of measurement. Superscripts
describe the coordinate frame the observations is given in. ωses describes angular
velocity measured in s-frame relative to e-frame, parametrized in s-frame (super-
script).

Gyroscopes are used to measure angular velocity, i.e. change in orientation. A gyro-
scope measures angular velocity around a single axis, so three gyroscopes mounted
orthogonal to each other are needed to keep track of 3-dimensional motion.

Observation equation of gyroscopes [Farrel, 2008]:

ωses = ωsis − Cseωeei (2.1)

where ωses is rotation of body relative to the Earth, ωsis is the gyroscope observation,
Cse is a Directional Cosine Matrix (DCM) transforming from e-frame to s-frame
and ωeei is the Earth rotation.
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Three accelerometers mounted orthogonal to each other are used to find kinematic
force acting on the platform. Specific force, acceleration relative to free-fall, is what
is measured by the accelerometers. Specific force is the combined effect of kinematic
acceleration and other forces acting on it, e.g. the gravity. Thus knowledge of local
conditions, which can be found by gravitation models, is required to find kinematic
force. The output from accelerometers is usually velocity increments in s-frame.

Observation equation of accelerometers [Farrel, 2008]:

r̈ees = Cesf
s
is − 2Ωeieṙ

e
es + Cegg

g
es (2.2)

where r̈ees is acceleration of the sensor in e-frame, Ces is a DCM transforming from
s-frame to e-frame, fsis is observed specific force, 2Ωeieṙ

e
es is the Coriolis effect and

Cegg
g
es is gravity transformed to e-frame.

Information typically wanted from the INS is orientation and position. Orienta-
tion is obtained by integrating the angular velocity. The INS usually integrates
acceleration once, giving velocity as output. To calculate position, the velocity
is integrated once more. Hence, any residual vector of acceleration will lead to a
quadratic error in position. The specific force is measured in s-frame, and trans-
formed to e-frame before integration. Thus, orientation errors will result in a rapid
growth in position errors. Biases in angular velocity and acceleration leads to drift
in INS estimations, which leads to estimations done by the INS alone only giving
good results for a period of seconds or minutes.

External information can be used to aid the INS and reduce drift of the system.
One example of this is zero velocity updates, where the system is standing still for
a period of time. This information can be used to reduce drift in velocity of the
system. When it is standing still, the only force acting on the system is gravity.
Thus, a zero velocity update can be used to estimate roll and pitch and improve
alignment of the IMU.

2.2.3 GNSS

Position can be found by measurements from Global Navigation Satellite System
(GNSS) and can be used to aid the INS. GNSS is a term for satellite navigation
systems with global coverage. There are multiple systems operating today. The
original system is the American Global Positioning System (GPS). GLONASS is
a Russian version of a GNSS. The Chinese BeiDou and European Galileo are both
under construction and have some working satellites. They are planned to be
globally operative in 2020 [BeiDou Navigation Satellite System, 2017] [ESA, 2017].
Many GNSS receivers today use signals from several systems.

A number of monitoring stations worldwide track position of the satellites, and this
information is used to estimate their orbits. Precise ephemerides is post-processed
information about orbit parameters for satellites. An orbit accuracy of 0.025m can
be achieved for GPS by precise ephemerides [IGS, 2017].
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GNSS satellites transmit a signal, and code and carrier phase of the signal can be
used to find distance between the satellite and the receiver. Code measurements
use the time from the signal was transmitted till it reaches the receiver to calculate
distance between them. Measurements of carrier phase are more precise and are
used for applications with higher demands on accuracy. Distance from multiple
satellites to a receiver can be used to estimate position of the receiver, see figure
2.2.

Figure 2.2: Resection of 3 satellites [Skogset and Norberg, 2014]

Clear sight from the GNSS receiver to satellites is needed. The signal cannot
go through thick trees, mountains or buildings. In these environments, it can be
problematic to get signal from enough satellites to be able to estimate a position of
the receiver. Another problem in environments like these is multipath, happening
when the signal does not arrive at the receiver by a direct path. The cause of this
can be reflecting surfaces near the receiver, like a building or a car. See figure 2.3.

Figure 2.3: Illustration of multipath [Hofmann-Wellenhof, Lichtenegger and Wasle,
2008]

Poor geometry of satellites can decrease the accuracy of the estimated position of
the receiver. When satellites used for measurements are well spread out seen from
the receiver, there is good geometry of satellites. Bad geometry happens when
the satellites are close together. This can, for instance, be a problem when high
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buildings limit the view of the sky. Position Dilution Of Precision (PDOP) is
a measure of 3-dimensional satellite geometry. The higher the PDOP-value, the
lower the accuracy of position estimation.

Time in GNSS is given by a GPS week number and Time of Week (TOW). TOW
is given as seconds since the GPS week started.

Carrier Phase Measurement

In carrier phase measurements, change of phase in the carrier phase of the signal
received from the satellite and the receiver-generated replica of the signal is mea-
sured. This gives a fraction of a cycle and defines a fractional part of the distance
between satellite and receiver (given by the wavelength of the signal). This frac-
tional part of the distance can be measured with high precision. In addition to
this, an initial number of whole cycles is needed to get the entire distance. The
initial number of whole cycles is unknown, and this number is called the ambiguity
in this thesis. Once the ambiguity is solved, distance between satellite and receiver
is known.

Observation equation for GNSS carrier phase is [Misra and Enge, 2012]:

φ = ρ+ c(δtR − δtS) + T − I + λN + εφ (2.3)

where φ is phase measurement expressed in range, ρ is geometrical distance between
receiver and satellite, c is speed of light, δtR and δtS is clock bias of receiver and
satellite, T and I are atmospherical delays of the signal caused by the troposphere
and the ionosphere respectively, λ is carrier wavelength, N is ambiguity and εφ is
other errors.

As there are errors in both the clock in the satellite and in the receiver, the clock
offsets need to be estimated along with the ambiguity.

Differential GNSS

If the position of a GNSS receiver is known, the combined effect of all errors
affecting the calculated distance between each satellite and this receiver can be
estimated. The basic idea of Differencial GNSS (DGNSS) is to make these error
estimates available for other GNSS receivers and use them to improve their position
estimates. DGNSS has a potential accuracy of 5mm + 1ppm when used in post-
processing analysis [Statens Kartverk, 2009].

Single difference is typically done by two receivers observing the same satellite at
the same time, given by equation 2.4 and visualized by the orange dotted lines in
figure 2.4.
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∆φiab = (ρib − ρia)

+ c((δtR
i
b − δtRia)− (δtS

i

b − δtS
i

a))

+ ((T ib − T ia)− (Iib − Iia))

+ (λN i
b − λN i

a)

+ (εφ
i
b − εφ

i
a)

≈ (ρib − ρia) + c ∗ (δtR
i
b − δtRia) + (λN i

b − λN i
a) + εφ

i
ab

(2.4)

If the baseline between receiver a and b is short, the clock and orbit errors of the

satellite are the same for both receiver observations, giving δtS
i
b − δtS

i
a = 0. Short

baselines also reduce tropospheric and ionospheric errors, as the signals have gone
nearly the same way through the atmosphere. This gives T ia ≈ T ib and Iia ≈ Iib.

Figure 2.4: Illustration of DGNSS

Double difference is the difference between to single differences observed at the
same time, visualized by the orange and the green dotted lines in figure 2.4, given
by equation 2.5. Two receivers and two satellites are used. Receiver clock errors
are observed twice and can be differenced out. This is often used as a base for
estimating the ambiguity.

∇∆φijab = ∆φjab −∆φiab

≈ ρijab + λN ij
ab + εφ

ij
ab

(2.5)
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Integer Ambiguity Resolution

Ambiguity resolution is the process of resolving the unknown number of N to an
integer value in carrier phase measurements. The ambiguity is then said to be
resolved, or fixed (the fix solution). Getting the wrong fix will cause an error in
estimated distance between satellite and receiver. Fixing N with an error of one
cycle will give an error of typically 0.20m.

The LAMBDA (Least-Squares AMBiguity Decorrelation Adjustment) method is
one of several methods for resolving integer ambiguities, and the method used in
TerraPos. The LAMBDA method is shortly described in the following paragraphs
[Misra and Enge, 2012]:

The first step is a weighted least-squares estimation, using a set of double difference
carrier phase measurements for different satellites. The weighted least-squares
criterion takes correlation among the double differences into account. The result
of this estimation is real-valued numbers of ambiguities. The real-valued number
are called float solutions.

The next step is to define the search space for integer ambiguities. The boundary
for the search space is an ellipsoid defined by the variance matrix, centering the
float solution. Due to high correlation between ambiguities in GNSS, the ellipsoid
is usually extremely elongated. A transformation that decorrelates the ambiguities
as much as possible is done to make the search space more spherical. The search
is then carried out to find the integer ambiguities.

The last step is validation of the ambiguity solution. This is important, since
fixed solutions should only be used if there is enough confidence in this solution.
Validation of the ambiguity is still an open problem. Further discussion of it can
be found in [Verhagen, 2005].

2.2.4 Odometer

Another sensor used to aid positioning by the INS is an odometer, also called a
Distance Measurement Indicator (DMI). The odometer is a sensor that performs
distance measurements. This can be done by counting number of revolutions for
a wheel on the vehicle. The odometer can be used to limit along-track position
errors. Errors and drift in odometer measurements can for instance come from
incorrect estimation of wheel size, wheel slippage and compaction of the wheel or
ground.

The odometer can give zero velocity updates, mentioned in section 2.2.2, informing
the system of when it is standing still, which is helpful to reduce drift in the IMU.
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2.3 Laser Scanning

Laser scanning is a surveying technique that uses laser to measure distance to a
point on a surface. Laser scanners can collect a large amount of points on every
second, making it an efficient surveying method. A set of laser points is called
a point cloud. Data in a point cloud can be used to extract information about
the scanned surface. It can also be used for visualization purposes. If images are
collected along with the point cloud, the points can be colored by the images, giving
a colored 3-dimensional model of the scanned area.

The coordinates of the scanned points is given in a local coordinate frame defined
relative to the laser scanner. To get coordinates in another frame, the relation
between the two frames has to be established. In most cases a 3D translation
and rotation is sufficient. In terrestrial laser scanning, the scanner stands still
on the ground while scanning, thus all points in the same scan are scanned from
the same position. In mobile (mapping) and airborne laser scanning, the scanner
is constantly moving, either on ground or in the air, making it more difficult to
position the scanner at each point of time.

As mentioned in chapter 2.2, aided INS can be used to reconstruct the trajectory of
the platform in mobile mapping. An estimated pose for the laser scanner is found
for each point in time by the trajectory and translation and rotation between the
local laser scanner coordinate frame and b-frame. The rotation (the boresight)
and the translation between the two frames need to be determined by calibration.
Errors in calibration cause systematic errors in the point cloud

There are different methods of laser scanning used in mobile mapping. The laser
scanners used in this project uses time-of-flight, or Light Detection and Ranging
(LIDAR), measurements, where a laser pulse is sent out and and the time it takes
for it to return from the scanned surface is used to calculate the distance.

Another method is phase measurement, where a constant constant beam of laser
light that is emitted from the scanner is utilized. The beam consists of laser light
of alternating frequencies. The scanner then measures the phase shift in the laser
light when it returns to the scanner after its reflection on an object’s surface. This
is used to calculate distance. To get an unambiguous range, the range is limited
to the phase delay of one complete sine wave. This typically gives a maximum
operating range of 100 m. The operating range is shorter than for time-of-flight
scanning, but the precision is higher.

2.3.1 Time-of-Flight Measurement

In time-of-flight measurements, the laser scanner sends out a laser pulse, the pulse
hits a surface and reflects back to the laser scanner. The range (distance), ρ, to
the reflecting surface can be calculated based on the time, t, it takes from the
laser pulse leaves the scanner till it comes back and the speed of light in vacuum,
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c, corrected by a refractive index that depends on air temperature, pressure and
humidity, n, see equation 2.6, [Vosselman and Maas, 2010].

ρ =
c

n

t

2
(2.6)

The range, ρ, and orientation, θ, to the point on the surface were the laser pulse
was reflected, gives a point in the local laser scanner coordinate system. Different
scanner mechanisms are used to move the laser pulse over the area to be scanned.
An oscillating or rotating mirror directing the pulse across the area is a commonly
used mechanism.

The area the laser pulse covers when reflecting on an object, its footprint, is not
infinitely small, see formula 2.7, [Vosselman and Maas, 2010]. This results in an
angular uncertainty of the reflected point. w is the radius of the laser beam at the
contour of 13.5% of peak intensity. z in the distance from the beam waist location
at its minimum radius ω0 to the reflection point and z0 is distance from the focusing
lens to the beam waist location at its minimum radius. λ is wavelength of the laser
source and n is the refractive index.

w(z) = ω0(1 + (
λ(z − z0)

nπω2
0

)2)1/2 (2.7)

Part of the pulse can be reflected and part of it continue on and be reflected later,
giving multiple returns. This can be helpful, giving more information about the
terrain, for instance when scanning a tree. When scanning from the air, the first
return of the laser beam may come from the canopy of a tree, the second from a
branch and a last return form the ground. Figure 2.5 shows the difference between
the first and the last return in a city area.

Figure 2.5: Image visualizing first return (left) and last return (right) in a city area
scanned from air [Horemuz, 2015]

Larger footprint of the laser pulse reduces the accuracy of the reflected point.
Increased distance between the scanner and the object to be scanned, gives a larger
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footprint. If the laser pulse reflects on a sloping surfaces the footprint will also be
larger.

A measure of level of detail in point clouds in density. With higher point density,
it is easier to define features in the point cloud. Number of laser pulses sent out
per second, speed of the spread mechanism of pulses and distance from scanner
to the surface to be scanned are parameters affecting density. In mobile mapping,
velocity of the platform also affects the density.

As the points in a point cloud are given in 3-dimensional space, objects can be
identified by their geometry or shape. This makes it possible to measure the size
and volume of objects in the point cloud. The intensity of points can also be used
to identify features in the point cloud. Intensity of a point is a measure of the
strength of the return of the laser pulse that generated the point. It is a relative
measure, partly dependent on the reflectiveness of the material of the reflecting
surface and the incidence angle of the laser pulse. Intensity of the points is useful
for visualization, see figure 2.6, and can be used for identifying features in the point
cloud.

Figure 2.6: Point cloud from mobile mapping with all points in white color (left
image) and points colored by their intensity (right image)

Multipath can cause problems in laser scanning. This happens when the laser
pulse hits more than one surface before returning to the scanner. Because the pulse
travels a longer distance than straight back to the scanner, the resulting laser point
will appear further away from the scanner than the surface it represents. Other
errors can be systematic and caused by imperfections in instrument manufacture
and assembly.
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2.3.2 Scan Matching

To get better coverage and accuracy of an area, parts of it are often scanned
more than one time, giving overlap between the different scans. When scanning is
performed while the scanner is standing still, at least three well-distributed points,
that can be identified in both scans, are needed to match the two scans. This
process can be called scan matching. The task is to find the link between the
different scans and then transforming all points by that link.

Strip Adjustment

In airborne and mobile laser scanning, the scanner is constantly moving, and this
movement is estimated by the trajectory. The laser points are linked to the trajec-
tory by a time stamp, the vector from the laser scanner to the point and the vector
from the trajectory to the laser scanner. The accuracy of the point cloud cannot be
better than the accuracy of the trajectory. In areas with sufficient GNSS signals,
the point cloud generated by the trajectory, can be quite good. Offsets and orien-
tation errors between strips, the overlapping parts of the points cloud, can however
often be found. Strip adjustment can be done to reduce errors and increase the
accuracy of the point cloud. Offsets between strips can be caused by a number of
reasons, e.g. trajectory drift (errors in position and orientation), boresight error
and errors caused by laser scanner.

There are multiple algorithms made for matching overlapping strips from mobile
mapping and airborne laser scanning. The general procedure is usually:

1. Find connection between the scans/strips to match; trajectory position offsets
(dx, dy, dz) and orientation errors droll, dpitch, dheading)

2. Adjust point cloud according to offsets and errors found
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2.4 Kalman Filter

Kalman filtering is an important computational tool in mobile mapping. The
Kalman filter is used for state estimation. It combines the information in a con-
tinous noisy model of the dynamics of the system, see equation 2.8, with a series
of noisy measurements and a measurement model, see equation 2.9 [Brown and
Hwang, 2012]. By this, estimates of the state tend to be more accurate than
estimates by a single measurement alone.

ẋ = Fx+Gu (2.8)

zt = Htxt + vt (2.9)

x is the state vector, u is a vector forcing function whose components are white
noise, z is the noisy measurement vector, v is the measurement noise vector and
F,G,H are known matrices.

The Kalman filter is an implementation of the Bayes filter under the assumtion
of linear and gaussian models. If this is the case, the Kalman filter is the opti-
mal state estimation algorithm [Farrel, 2008]. The Kalman filter has a number
of applications, for instance in navigation, robot motion planning and trajectory
optimization. It is useful for sensor fusion.

The discrete Kalman filter is divided into two steps; the time update state and
the measurement update step, executed at each time step t. At each time step,
the gaussian estimation of the state is represented by mean, xt and covariance, Pt.
Equations 2.10 to 2.14 describe the discrete Kalman filter algorithm and is based
on [Brown and Hwang, 2012].

In the time update step, also called the prediction step, the state of the current
time step is estimated, x̃t, see equation 2.10. This estimation is done based on the
best estimate of the previous state x̂t−1 and the state transition model, Φ. The
state transition model describes how the system state evolves by itself.

Equation 2.11 gives an estimate of the covariance matrix of the state before any
measurements are done, P̃t. It describes the uncertainty of the estimate of the
state vector. It is based on the covariance matrix of the previous best estimate of
the system state, P̂t−1, the state transition model, Φ, and the process noise Qt−1.
Φ and Q are computed based on F and G.

x̃t = Φt−1x̂t−1 (2.10)

P̃t = Φt−1P̂t−1ΦTt−1 +Qt−1 (2.11)

In the measurement update step, measurements done by the sensors at time t,
zt, are used to improve the estimation of the state vector found by the prediction
step, giving the best estimate of the state vector at time t, x̂t. Equation 2.12 to
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2.14 describes the measurement update. Ht is the design matrix, giving the ideal
connection between the measurement and the state vector at time t, and Rt is the
measurement noise.

Kt = P̃tH
T
t (HtP̃tH

T
t +Rt)

−1 (2.12)

x̂t = x̃t +Kt(zt −Htx̃t) (2.13)

P̂t = (I −KtHt)P̃t (2.14)

The Kalman gain, Kt, describes the relative uncertainty between the predicted
estimated state found in the prediction step and the sensor observations. It is used
to find a weighted sum of them. The lower the uncertainty in a sensor is, the more
the system will trust the sensor observation and the estimate will be pushed toward
this instead of the predicted estimate. With high gain, more weight is put on the
measurements. With low gain, more weight is put on the system model prediction.
Low gain smooths out more noise, but decreases responsiveness of the the system.

The latest prediction is based only on the last predicted state. All necessary in-
formation from previous observations is stored in the last prediction. This reduces
the memory needed to run the filter.

When running the Kalman filter in post-processing, it is possible to run it both
forwards and backward. By doing this, the state at a given time will be estimated
by all other observations, both observations before and after the observation at the
given time.

As discussed in section 2.2.2, the INS consists of a high rate sensors with high
short-time stability, but drifts over time. The GNSS is a low rate sensor and has
biases in a short period of time, but high long-time stability. Hence, the INS and
GNSS are complementary sensors. The INS is used to predict the system state
and GNSS measurements are used to correct the measurements.

Extended Kalman Filter

If the models are not linear, the Extended Kalman Filter (EKF) can be used. In
this implementation, the models describing the dynamics and measurements of the
system are linearised at each point in time to estimate the linear case, and the
Kalman filter is then used.

Complementary Kalman Filter

In a Complementary Kalman Filter, the dynamics model does not estimate the
system state, but system errors. What enters the Kalman filter is the difference be-
tween the INS observations and observations from aiding sensors, e.g. the GNSS.
The actual state dynamics do not enter the system. The complementary Kalman
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filter is an effective means to obtain a linear system and to avoid complex filter
tuning [Kjørsvik, 2010]. See the flowchart describing the process in figure 2.7.

Figure 2.7: Flowchart of the Complementary Kalman filter process. Adapted from
figure 1 in [Kjørsvik, 2010]

Delayed-State Filter

The delayed-state filter takes advantage of the relationship between current mea-
surements and the past state of the system, see the measurement equation in 2.15.
Delayed measurements can come from a vision system, e.g. incremental observa-
tions from laser scanning. A detailed explanation of the delayed-state filter can be
found in [Brown and Hwang, 2012].

zt = Htxt + Jtxt−1 + vt (2.15)

Because of the xt−1 term in the measurement equation, it does not fit the usual
Kalman filter. The measurement update step is thus changed to the following
equations:
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Kt = (P̃tH
T
t + Φt−1Pt−1J

T
k )L−1

k (2.16)

z̃t = Htx̃t + Jtxt−1) (2.17)

x̂t = x̃t +Kt(zt − z̃t) (2.18)

P̂t = P̃t −KtLtK
T
t (2.19)

where L is the residual covariance given by:

Lt = HtP̃tH
T
t +Rt + JtPt−1ΦTt−1H

T
t +HtΦt−1Pt−1J

T
t + JtPt−1J

T
t (2.20)

20



Chapter 3

Simultaneous Localization
And Mapping

Simultaneous Localization And Mapping (SLAM) is a computational problem
widely used in estimation in the robotics community. This chapter will present
the principles of SLAM and discuss the theoretical background for the methods
presented and tested in this thesis. The robot discussed in this chapter represents
the platform in mobile mapping. Landmarks in this chapter correspond to the
concept of tie points in this thesis.

3.1 Basic Concepts

The SLAM problem is the problem of estimating a map of an unknown envi-
ronment while keeping track of the robots pose relative to the map [Thrun and
Leonard, 2008]. The map can be used to limit the errors in state estimation and
aid the INS measurements.

The SLAM problem can be explained as follows [Thrun and Leonard, 2008]. A
robot starts at a known position, x0. Relative measurements given by equation 3.1
are made to measure how the robot moves. The movement of the robot is uncertain.
This makes the position of the robot at time t, xt, gradually more difficult to
determine, see figure 3.1. The trajectory of the robot is given by equation 3.2. ut
describes the motion between the time t and t− 1.

ut = u1, u2, u3, ..., ut (3.1)

x1:t = x0, x1, x2, ..., xt (3.2)
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Figure 3.1: Figure showing growth of uncertainty as the robot moves. Estimated
pose is a black dot with the uncertainty of the estimated pose as an orange ellipse.
The larger the uncertainty ellipse is, the less certain the estimation of the robot’s
pose is.

As the robot moves, it senses its environment, m. Under the assumption that only
one measurement, z, is done at each point in time, equation 3.3 gives the sequence
of measurements. Examples of sensors are cameras and laser scanners.

zt = z1, z2, z3, ..., zt (3.3)

Measurements of the environment, z1:t, and movement of the robot, u1:t, are used
to perform mapping, recovering of the map m, and localization, recovering of the
position of the robots x1:t. This gives the equation of the full SLAM problem, see
equation 3.4. Two models are needed to solve the SLAM problem; a mathematical
model that relates the sensor measurements, ut, to position of the robot, xt, and
a model that relates measurements, zt, to the environment, m, and the robot
location, xt.

p(x1:t,m|z1:t, u1:t) (3.4)

The alternative to the full SLAM problem is online SLAM, see equation 3.5. In
online SLAM, only the current position of the robot is of interest, not the entire
trajectory. Online SLAM can for instance be used by autonomous robots. They
need to know where they are and how they can move next.

p(xt,m|z1:t, u1:t) (3.5)
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3.1.1 Landmark-based SLAM

The assumption in landmark-based SLAM is that the environment contains a num-
ber of point landmarks that can be sensed by the robot. By the use of observations
from a laser scanner, the landmark’s positions can be found by range and direction
from the robot.

Loop closure events are used to get global consistency in a map. A robot relying
on relative measurements interprets the world as an ”infinite corridor”, see the
left image in figure 3.2. A second observation of a landmark in the environment
gives a loop closure event. By this, information of the corridor intersecting itself is
obtained. Thus, the real topology of the environment is found. This can be seen
in the right image in figure 3.2 where the second observation of landmark A and B
is used for loop closure events. [Cadena et al., 2016]

Figure 3.2: The left map is built from relative measurements from point A to point
B. The right map is build using SLAM with loop closure events, estimating the
real topology in the map [Cadena et al., 2016]

Loop closure events can also reduce the uncertainty of the robot’s state. If a
landmark is observed at the beginning of a robot’s trip, uncertainty of both the
robot and the landmark will be quite low. After some time, uncertainty of the
robot’s pose has grown, and the same landmark is sensed again, see figure 3.3.
The robot’s pose can then be corrected by the observed range and direction to the
landmark, which reduces uncertainty of the robot’s position. This does not only
improve uncertainty of the estimated robot’s pose, but of all landmark estimations.
Information that helps localize the robot propagates through the map [Thrun,
Burgard and Fox, 2005].
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Figure 3.3: Figure showing how uncertainty of the robot pose is affected by loop
closure. Compared to figure 3.1, where no landmark observations are included,
it can be seen that the error growth is reduced by observing the landmark (blue
star) twice. Estimated pose is a black dot with the uncertainty of the estimated
pose as an orange ellipse. The larger the uncertainty ellipse is, the less certain the
estimation of the robot’s pose is.

One of the main sources of algorithm failures in SLAM is data association [Cadena
et al., 2016]. Data association matches measurements done by the robot to land-
marks in the environment. Erroneous data association degrades the quality of state
estimation and makes it harder to detect outliers later on. Landmark detection and
validation is known as the data association problem in SLAM

3.1.2 SLAM paradigms

The Extended Kalman Filter (EKF) SLAM is the earliest formulation of SLAM
and has been applied to a large number of navigation problems. The algorithm
can only handle a limited number of landmarks before getting very computationally
demanding, but it is suitable for integration with systems with multiple sensors.

Graph-based SLAM uses a graphical representation of the SLAM problem. Land-
marks and robot locations are thought of as nodes in a graph, and an arc links
consecutive pairs of nodes. Arcs also exist between locations and landmarks. The
main limiting factor in EKF SLAM is the covariance matrix, which grows with a
larger state vector and takes space and update time. The update time in graph-
ical models is constant. Performing optimization of the graph can, however, be
expensive. [Thrun and Leonard, 2008]

The EKF SLAM is what is implemented in TerraPos and used for the work in
this thesis. Thus, this method will be discussed further in the next section.
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3.2 Extended Kalman Filter SLAM

In addition to estimating the robot’s pose, xt, the EKF SLAM algorithm estimates
position of all landmarks. By this, the coordinates of all landmarks are added to
the state vector in the EKF. Hence, the state vector grows, see equation 3.6 for es-
timation in 3-dimensional space. x, y, z, φ, θ, ψ is pose of the robot, m1,x,m1,y,m1,z

is position of the first landmark, mn,x,mn,y,mn1,z is position of the nth landmark
and n is number of landmarks.

xt = (x, y, z, φ, θ, ψ,m1,x,m1,y,m1,z, ...,mn,x,mn,y,mn1,z) (3.6)

The more landmarks that are included in the estimation, the more complex the
estimation will be. This means that finding as few landmarks as possible while
maintaining an improved uncertainty in the estimation is ideal. It is also important
not to add landmarks that will not be observed multiple times to the state vector.
If they are not seen again, they will not contribute to the estimation.

A key limitation of the EKF SLAM is the necessity of careful landmark selection.
This often makes it necessary to either select only perceptual distinctive landmarks
or to keep landmarks far away from each other, reducing the chance of confusing
them with each other. [Thrun, Burgard and Fox, 2005]

Both observations of landmarks, back-end SLAM, and incremental tie point obser-
vations, front-end SLAM, can be utilized in EKF SLAM. The observation types
are complementary and are well suited to aid the INS.

3.2.1 Back-end SLAM

Back-end SLAM takes advantage of the loop closure effect in landmark-based
SLAM, see section 3.1.1. The objective is to aid global localization of the trajec-
tory.

Landmark observations give position and orientation updates for the robot pose
directly. Thus, integration of measurements is not needed and this limits drift in
the observations.

3.2.2 Front-end SLAM

Front-end SLAM takes advantage of incremental observations from for instance
a visual sensor, to aid the pose estimation in the Kalman filter. The front-end
module extracts relevant features from sensor data and measures relative change.
When this is done with a visual sensor, e.g. laser scanner or camera, it is called
visual odometry. It corresponds to the estimated ”corridor” in the left image in
figure 3.2. The measurements from the visual odometer can be used to aid local
localization of the trajectory, but even small errors will cause drift.
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The visual odometer gives updates as position increments. Position increments
need to be integrated (summed) once to give position, which is what we are inter-
ested in. This leads to some drift in the observations.

Observations from the visual odometer are not as prone to drift as accelerometers,
where double integration is needed, but the precision of a visual odometer obser-
vations is lower. The frequency of visual odometer is typically somewhere between
the frequency of INS measurements and GNSS measurements. Because of this,
the effect of the visual odometer measurements is complementary to the effect of
INS measurements and GNSS measurements.
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Data Collection and
Post-Processing

The platform (vehicle) used for data collection and software used to post-process
collected data is presented in this chapter. Two methods using SLAM is post-
processing of mobile mapping data will be presented.

4.1 Optech Lynx Mobile Mapping System

The Optech Lynx MMS operated by TerraTec consist of several instruments and
sensors used to produce accurate data. The INS and its sensors is mounted inside
the vehicle. The odometer is mounted in the left rear wheel. Two laser scanners
using LIDAR technology and the GNSS antenna can be seen mounted on the
roof of the vehicle in figure 4.1. The scanners spin diagonally of the car’s driving
direction. Having two scanners increases coverage. Objects can be scanned both
before the car passes the object from one scanner and from the other scanner when
it has passed. Both laser scanning and imaging can be done by this mobile mapping
system. For the 360 degree image, a ladybug camera system is mounted on top
of the car. It consists of 6 cameras that take images in different directions. Only
laser data is used for mapping in this study.

The Optech Lynx MMS is a multi-purpose system and can be applied to a number
of different projects. Examples are mapping of road, rail road and coastal areas.

27



Chapter 4. Data Collection and Post-Processing

Figure 4.1: The Optech Lynx MMS seen from behind

4.1.1 Technical Specifications

System specification for Optech Lynx MMS is found in table 4.1 below.

Table 4.1: Technical Specification of Optech Lynx MMS
Frequency (points/sec/scanner) 600.000 Hz
Laser points per second 1.200.000
Measuring method Time-of-flight
Number of returns 4
Range (with 10% reflection) 250 m
Scanner frequency 250 Hz per scanner
Field of view 360◦ x 2
GNSS/IMU Applanix AP60 (POS/LV 610)
Update frequency raw IMU data 200 Hz
Update frequency raw GNSS data 5 Hz
360 camera, Ladybug 5 30 Megapixels
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4.1.2 Error Budget of Measurements

As mentioned in section 2.2.3, DGNSS has a potential accuracy of 0.005m+ 1ppm.
In this project, only baselines shorter than 10km are used, which gives 0.015m as
a potential accuracy for the longest baselines.

The system specification of Applanix AP60, which is the GNSS-inertial system for
continuous mobile positioning used in the Optech Lynx MMS, gives an RMS of
a post-processed trajectory of 0.02 − 0.05m in position, 0.005deg is roll and pitch
and 0.015deg in heading [Trimble, 2017]. This is given both in the case without
GNSS outages and with a 60s GNSS outage.

Problems arise when GNSS signals are vacant for a longer period of time. As
mentioned in 2.2, this due to GNSS observations being used as external aid to
support inertial navigation and reduce drift. Examples of areas where this can be
an issue are tunnels, city areas with high buildings and forest roads.

The laser observations of the Optech Lynx MMS has a precision of the range of
0.005m. Absolute accuracy of observations done by the system is 0.05m [Teledyne
Optech, 2017]. This accuracy is given under the assumption of a post-processed
trajectory from good GNSS data (PDOP< 4), aid from odometer and 10m range.
In the case of poor or lost GNSS, the performance is expected to degrade.
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4.2 Software

The flowchart in figure 4.2 describes the process of post-processing mobile mapping
data without SLAM. The steps of trajectory processing, point cloud generation
and point cloud observations is explained in the following sections.

Figure 4.2: Flowchart describing method of post-processing without SLAM.
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4.2.1 TerraPos - Trajectory Processing

TerraPos is a TerraTec software made for GNSS/INS post-processing and was
used in this thesis. Navigation data from the mobile mapping system can be used
to calculate a trajectory of the platform’s position and orientation. In mobile
mapping, raw data from the INS, GNSS and odometer is typically used. In this
project, data from GNSS reference stations with short baselines to the trajectory
were used to perform DGNSS. Precise ephemerides were used to get the most
accurate data about satellites, and this was downloaded in TerraPos.

An Extended Complementary Kalman filter was used to combine raw data from
different sensors to one trajectory. Output from TerraPos is a smoothed trajectory
and additional information about it. This additional information includes quality
of the trajectory, accuracy of positions, number of satellites, baselines and so on.

TerraPos supports Simultaneous Localization And Mapping (SLAM) in the esti-
mation. Tie point observations can be used to get a loop closure effect by back-end
SLAM. Incremental tie point observations can be used to aid positioning by front-
end SLAM.

4.2.2 Optech LMS - Point Cloud Generating

The point cloud is generated based on the trajectory computed in TerraPos and
raw laser data from the mobile mapping system. Optech Lidar Mapping Suite
(LMS) is used to do this in this study. The output from LMS is a point cloud in
.las-files in a user specified g-frame. The generation of .las-files is a time-consuming
process.

4.2.3 TerraMatch - Point Cloud Observations

Terrasolid software packages TerraScan and TerraMatch can be used for point cloud
processing and matching. Overlapping parts of a point cloud can be used to find
misalignment angles and location errors.

Strip adjustment is explained in section 2.3. The process of strip adjustment in
TerraMatch can be divided into three steps:

1. Find point cloud observation by the difference between strips. This can be
done by tie line observations. If points with a known position are available,
the difference between the strips and the known points can also be found.

2. Model the errors in the system (dE, dN, dD, droll, dpitch, dheading) by the
observations found.

3. Adjust the point cloud by the error models found.
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Tie line observations is a collective name for different types of observations such
as surface, lines and points that can be observed in the point cloud in TerraMatch.
The information of tie line observations can be saved in a binary tie line file (.til-
file).

A surface line observation is a representation of a surface, for instance of flat ground
or a vertical wall. Surface line observations are 1-dimensional relative observations
and can be used to find the shift and rotation between two (or more) representations
of the same surface from different points in time.

Surface line observations can be searched for automatically in TerraMatch. These
observations can be found efficiently with a limited amount of work required from
the user. Classification of the point clouds can be done by e.g. range, distance
from trajectory, intensity, return number and geometry of points. It is possible to
perform search for surface lines in only a specific class, limiting the search area to,
for instance, the road surface and reducing the computational time of the search.

Figure 4.3 and 4.4 shows examples of surface line observations. Several options are
available for adjusting the surface line search, e.g. distance between each surface
line observation (both in distance and time), the size of the surface the surface line
represents, distance from scanner and search area.

Another type of tie line observation that can be found in TerraMatch is XYZ
observations. XYZ observations are observations of point features that can be
identified in the point cloud and need to be found manually by the user. Examples
of point features that can be used are centers of manholes and corners of road
markings. These observations are 3-dimensional. XYZ observations can also be
saved in a .til-file.

Figure 4.3: Surface lines (blue) on flat ground, shown from above. (TerraMatch)
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Figure 4.4: Observations of a surface line on flat ground, shown from the side. An
offset between the first observations (blue) and the second observation (yellow) can
be seen. (TerraMatch)

4.3 Introducing SLAM in Post-Processing

Two methods for re-calculating the trajectory based on point cloud observations
have been developed. One method using back-end SLAM and one method using
front-end SLAM. The general procedure of post-processing is similar for both of
them and is described in the flowchart in figure 4.5. This general procedure is
based on the procedure without SLAM presented in figure 4.2.

The first step was to process the trajectory in TerraPos. Based on the trajectory,
the point cloud was generated in LMS. The point cloud and trajectory were then
imported into TerraMatch.

The next step was to make point cloud observations in TerraMatch. The 1-
dimensional surface line observations can be searched for automatically in Ter-
raMatch, making it a suitable observations type. Tie line observations were used
for both methods. These observations are given in a .til-file.

A software package was developed for this thesis for transforming information in
the .til-file from TerraMatch, to an observation type and a format that TerraPos
can read and utilize.

All data and choices made for the original calculation of the trajectory were kept
for the re-calculation of the trajectory. This was done by cloning the subproject
for the original trajectory in TerraPos. The file containing information extracted
from the point cloud observations was added to the subproject. The trajectory was
then re-calculated.

The re-calculated trajectory could have been used in LMS to generate a new point
cloud, but this would make the process too time-consuming for it to be a valid
option to the currently used processing procedure. This was solved by finding the
difference between the original and re-calculated trajectory in TerraPos. The differ-
ence, defined by dE, dN, dD, droll, dpitch, dheading for each second of the trajectory,
was exported to a .tms-file. The .tms-file was then applied to the point cloud in
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TerraMatch by the tool Apply corrections. It adjusts the point cloud to fit the
re-calculated trajectory.

Figure 4.5: Flowchart describing method of post-processing using SLAM.
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4.3.1 Back-End SLAM

The software package developed by the author of this thesis reads the .til-file and
creates a .POS-file with tie point observations. The .POS-file can be added to
TerraPos and used when re-calculating the trajectory. This was done to take ad-
vantage of the loop closure effect in back-end SLAM. Back-end SLAM is described
in section 3.2.1.

The software package can make tie point observations from both surface line ob-
servations and XYZ observations from TerraMatch. The process of transforming
the two point cloud observations types to tie point observations is presented in the
following sections.

The EKF SLAM algorithm in TerraPos does not have to take the data association
problem into account, as data association is done in TerraMatch. Surface line
observations are associated with a tie line, and XYZ observations are associated
with a 3-dimensional point feature.

Normal Vector Observations

Surface line observations in TerraMatch are 1-dimensional observations of offset
between strips. A normal vector from the first surface line observation to the next
observation of the same surface represents the direction of this offset, regardless
of the angle of the scanned surface. The direction of the normal vector gives the
direction of adjustment for strips and trajectory. The procedure for extracting tie
point observations from the surface line observations is described in the following
paragraphs.

Surface line observations are defined by start and end point of the line in the .til-
file. This information was used to find the center of the first observation of each
surface line. The normal vector was found from the other observations of the same
surface line to the center of the first observation, see figure 4.6.

Figure 4.6: Normal vector observation found by two observations of the same
surface line. Information written/drawn in orange is found by the software package.
Information in blue is given from TerraMatch.
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In addition to the normal vector, it was necessary to find the vector from the
trajectory to the observation, see figure 4.7. Without this information, it would be
hard to know whether the offset comes from drift in position or orientation of the
platform.

To find the vector from the trajectory to the observation, the position of the trajec-
tory at the time of observation was found. The time of the tie line observations was
given in the .til-file from TerraMatch. TerraPos can output trajectory information
at given points in time. Hence, a .txt-file with TOW of all surface line observations
was created. Event tool in TerraPos was used to read the .txt-file with observations
times (events) and output trajectory information for the events. The vector from
the trajectory to the observations was then calculated.

Figure 4.7: Tie point observation from surface line observation. Information of
surface line observation given by TerraMatch in blue and the information calculated
by the software package for the normal vector observations in orange.

The .POS-file with 1-dimensional tie point observations contained type of obser-
vation, time of observation, vector from trajectory to observation and unit vector
of normal vector giving the direction of correction, as well as reference system
coordinates and height were given in.

XYZ Observations

XYZ observations are 3-dimensional point cloud observations of overlapping strips.
As these observations need to be found manually in TerraMatch, it is a more time-
consuming process than the automatic tie line search. The benefit of relative XYZ
observations is that by only one observation, corrections in all three directions is
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obtained. It is possible to develop automatic search algorithm for finding XYZ
observations, but this was not the scope of this study.

The tie point observation, in this case, is the vector from the trajectory to the
observation, visualized in orange in figure 4.8. The equivalent vector for the second
observation is also needed. The information given from TerraMatch and TerraPos
is shown in blue in figure 4.8 and includes trajectory position, the vector from the
scanner to the observation and position of the observations.

Figure 4.8: Tie point observation from XYZ observation. Information of XYZ
observation given by TerraMatch in blue and the information calculated by the
software package for in orange.

4.3.2 Front-End SLAM

The second method developed for using SLAM in re-calculation of trajectory is
based on front-end SLAM. This method is based on incremental height obser-
vations, providing the height of the trajectory based on incremental point cloud
observations in TerraMatch. Incremental height observations are used as a visual
odometer. Front-end SLAM and visual odometer is described in section 3.2.2.

The same method can be applied to incremental observations in north and east
direction, provided it is possible to get continuous observations from TerraMatch.
Such observations can be found in areas with many large buildings close to the
road or in tunnels but were not available for this study.
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Incremental Height Observations

Incremental height observations used for this thesis were generated from difference
in height observed by scanner 1 and scanner 2, dz. The scanners were mounted so
that they scanned in different directions at given times, see figure 4.9. Because of
the angle between them, the position that was observed by scanner 1 at time t1 is
scanned by scanner 2 at time t2 = t1 + dt. If the observation of height is not the
same by scanner 1 at t1 and scanner 2 at time t2, there must be some error in the
system, e.g. systematic error or drift in the estimated trajectory.

Figure 4.9: The angle between scanner 1 (sensor A) and scanner 2 (sensor B) cause
a time gap between the observations of the same position by different scanners
[TerraTec AS, 2016]

Pairs of surface line observations by scanner 1 and scanner 2 with a short time
between were found by an automatic search for surface line observations in Terra-
Match. This gave a large number of incremental surface line observations. For the
testing done, surface line observations were found on flat horizontal surfaces, which
in this case was the road surface. By using surface line observations of the road,
continuous observations were possible. An example of this can be seen in figure
4.10.
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Figure 4.10: A part of the test area used with surface line observations in blue
(TerraMatch)

The .til file with surface line observations from TerraMatch was used to make an
.obs-file listing all incremental surface line observations found. For each observa-
tion, time t1 of scanning the point from scanner 1 and time t2 of scanning the same
point from scanner 2 was given. The incremental observation dz = zt1 − zt2 was
also given. Additionally, height of the trajectory at t1 and t2 was provided.

In a world with no other errors than drift, the sum of observations in the time
increments would equal the total drift. This is usually not the case in practice.
There is a number of systematic errors in the system. A systematic error of a
few millimeters for all increments will lead to a large error in observed drift in
the system. As an example, a systematic error of 0.001m in all observations and
observations every 0.25sec will cause a drift of 0.24m in only a minute. Thus,
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systematic errors needed to be identified and removed.

Time between observations from scanner 1 and 2, dt = |t1 − t2|, was not constant.
It is dependent both on speed, orientation of the vehicle and distance from the
trajectory to the observations in y-direction in b-frame (left/right of the car).

Least-square estimation was done to get a constant dz for each time increment.
The estimation was done based on the incremental surface line observations in the
.POS-file corrected for systematic errors. Time increments of 0.25s were used for
the estimation. Smaller time increments would have given a finer resolution, but
also made it harder to find connections of height observations between all time
increments.

Estimated trajectory height was used to make a .txt-file with incremental height
observations and standard deviation of these heights for each time increment. As
time increments are 0.25s long, there are 4 estimates per second. The .txt-file
with incremental height observations was added to TerraPos as a visual odometer
to aid positioning, by the use of the delayed-state filter described in section 2.4.
Interpolation of height estimates had to be done to fit the time of the discrete
update step in the Kalman filter in TerraPos. The trajectory was then re-calculated.
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Numerical Investigations

The new methodology using SLAM that is developed in this study was tested in
an area in Stockholm. Data from the suburb Bromma was used as a test area, see
figure 5.1. Scanning was done on May 17th, 2016 with the Optech Lynx MMS.
Results are presented in this chapter.

Figure 5.1: Map showing the location of the test area ( c© OpenStreetMap)

Problematic areas in mobile mapping are areas where GNSS fix cannot be achieved
for a longer period of time. This can be because GNSS signals are blocked by
high buildings, trees or a tunnel. As mentioned in 2.2, this leads to drift in INS
measurements as they are not aided by GNSS observations. Because of the drift,
it can difficult to achieve an accuracy under 0.05m.
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To simulate an area without good GNSS coverage, test trajectories were made
by removing GNSS observations for a period of time in the calculation of the
trajectory. By doing this, a reference trajectory could be obtained by including
GNSS observations throughout the trajectory period.

The reference trajectory was used as a reference to evaluate the effect of re-
calculating the trajectory using SLAM. This was done by comparing the original
trajectory and the re-calculated trajectory to the reference trajectory.

Other than the removal of GNSS observations in a part of the test trajectories, all
trajectories were calculated using the same raw data and settings. Before and after
the period without GNSS observations, GNSS observations were available in the
calculation of the trajectory. Hence, the drift in position and orientation is small
at the beginning and end of the period without GNSS observations.

5.1 Back-End SLAM

5.1.1 Test Area

Back-end SLAM is used to get a loop closure effect. Thus, a part of the trajectory
with a loop was chosen for testing, see figure 5.2.

Figure 5.2: The left image shows the test area. The right image shows the part
where there is overlap close up. The blue part of the trajectory does not have
GNSS observations. (TerraMatch)
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GNSS observations were included for the pink strip, but removed for the blue strip
in figure 5.2. The blue strip starts at TOW 206472 and ends at TOW 206584,
which makes the part without GNSS observations 113 seconds long.

To see the effect of loop closure, tie point observations were found in the part where
the pink and blue strip overlaps. This area was scanned at two different periods
of time, once when the platform was in the pink part of the trajectory and later
when it was on the blue part. The hypothesis was that the pink strip with higher
accuracy could be used to improve the positioning in the blue strip, were GNSS
observations were removed.

Difference between the original test trajectory and the reference trajectory can be
seen in figure 5.3. Difference in north direction was 0.143m at its largest. In east
direction, it was 0.157m. The largest difference in down direction was 0.074m. It
can be seen that the difference approaches zero at the beginning and end of the
period without GNSS observations. The zero velocity update in the middle of the
test period reduces drift.

Figure 5.3: Difference in meters between original test trajectory and reference
trajectory. The part without GNSS observations is gray, zero velocity updates are
shown in blue (TerraPos)

Standard deviation of the reference trajectory in the test period is given in figure
5.4. The standard deviation was approximately 0.03m in down direction and 0.01−
0.02m in north and east direction.
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Figure 5.4: Standard deviation in meters of the position of the reference trajectory
in the test area (TerraPos)

5.1.2 Results

As described in chapter 4.3, tie point observations can be made from different
point cloud observations. The tie point observations are different implementations
of similar observations, and they are expected to give similar results.

If a distinct object in the overlapping area exists, e.g. a manhole, a 3-dimensional
tie point can be useful, as only one tie point is needed to get offset in all directions.
This tie point type is based on XYZ observations in TerraMatch and will need
to be found manually. If there are both horizontal and vertical surfaces (both in
north and east direction), normal vector observations work well and can be found
automatically. This was available by the road and buildings in the overlapping area
in figure 5.2. Thus, 1-dimensional tie point observations made from normal vector
observations are used in the tests presented.

Tests were done to investigate how many tie points should be included and whether
or not to include tie point observations with a long range. Finally, a discussion on
the benefit of this method when the overlapping strips both either have or do not
have GNSS available is included.
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Include tie point observations with a long range?

As discussed in section 2.3, errors grow as range (distance) from the scanner to the
scanned surface grows. Tests were done to investigate if only tie point observations
with a short range should be included. 2 tie points were included in down direction
(height) and 2 in north and east direction for the test. The point cloud observations
from TerraMatch used to compute the 4 tie point observations are given in table
5.1. The ones marked in yellow have a range larger than 10m.

In the first test, only tie point observations with a range shorter than 10m were
included. Tie point 1 and 2 are from a vertical wall, giving tie point observations
in north and east direction. Tie point 3 and 4 are from the ground, giving tie point
observations in down direction.

Table 5.1: Point cloud observations from TerraMatch. Observations with a range
longer than 10m are marked in yellow.

Tie point TOW dNE dN
1 205852.0 0.002 -
1 206419.0 0.009 -
1 206501.0 0.176 -
1 206563.8 0.018 -
2 205853.3 0.001 -
2 206409.8 0.023 -
2 206502.1 0.161 -
2 206508.3 0.150 -
2 206560.4 0.016 -
3 206408.9 - -0.007
3 206510.1 - +0.039
3 206559.5 - +0.031
4 206413.1 - -0.003
4 206561.6 - +0.021

The result of the first test is visualized in figure 5.5 by the difference between the
re-calculated test trajectory and the reference trajectory. Dark green vertical lines
show the time of observations used and the gray area is the part without GNSS
observations.
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Figure 5.5: Difference in meters between re-calculated test trajectory and reference
trajectory when including only point cloud observations that were closer to the
scanner than 10m. (TerraPos)

When comparing the difference in figure 5.5 with the original test trajectory in
figure 5.3, it can be seen that tie point observations closer than 10m lead to an
improvement in down direction (the green line) in this test. The difference from
the reference trajectory was reduced from a maximum of 0.074m in down direction
in the original test trajectory to 0.017m in the re-calculated test trajectory.

The difference from the reference trajectory in east and north direction did not
show any improvement. Tie point observations in table 5.1 give the reason for
this. The error in position in the overlapping area (the white rows) was only a
couple of centimeters in north and east direction. These tie point observations did
not provide the Kalman filter any information about the large drift between them.
This drift can be seen in the tie point observations that have a larger range, with
an offset of 0.150− 0.180m.

A second test was done with all observations in table 5.1. The yellow observations
were scanned from approximately 30m away, introducing more errors in the ob-
servations. However, these observations give information about drift between the
overlapping parts of the trajectory. The result of the test is visualized in figure
5.6. The dark green vertical lines represent the time of tie point observations. It
can be seen that there are some additional tie point observations (between TOW
206490 and 206520) compared to the first test. These tie point observations were
made between the periods of time where the platform was in the overlapping part
of the trajectory.
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Figure 5.6: Difference between re-calculated test trajectory and reference trajectory
when including observations further away than 10m. (TerraPos)

Maximum differences were reduced to approximately 0.05−0.06m in east and north
direction. The results of this test indicate that including observations that are done
far away can be helpful, even when observations are likely to have larger errors.

Another effect worth noting is that the part of the trajectory with a low precision
was the part that was mostly affected by adjustments. The part of the trajectory
that was estimated with INS aided by GNSS observations did not change much
by the re-calculation of the trajectory with the point cloud observations.
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What is the effect of more tie points?

A large number of tie point observations can be computed from point cloud ob-
servations in TerraMatch. TerraPos can only benefit from one observation per
second, limiting number of possible observations. The number of tie points that
can be handled by the SLAM algorithm in TerraPos is also limited. As mentioned
in 3.2, each tie point is added to the state vector in the Kalman filter, meaning
that a large number will have a negative impact on processing time. Hence, it is
of interest to investigate how the effect of adjustment changes with the number of
tie points.

Four test trajectories were introduced for testing this, all with a different number
of tie points, see table 5.2. Both tie point observations with short and long ranges
were included.

Table 5.2: Test trajectories with different number of tie points
Test Number of Number of

trajectory tie points north-east tie points height
1 0 0
2 1 1
3 2 2
4 4 3

The result of the re-calculated test trajectories can be seen in figures 5.7 to 5.9.
Figure 5.7 shows difference between test trajectories and reference trajectory in
north direction in blue. Figure 5.8 shows the same in east direction in red. Figure
5.9 visualizes difference in down direction in green.

Results from all test trajectories indicate that tie points used to aid positioning in
areas without GNSS observations give a better accuracy of the trajectory, than not
to include them. This can be seen by the fact that test trajectory 1 had the largest
difference to the reference trajectory. To include 2-4 tie points seemed to be better
than to include 1 tie point (test trajectory 2) in this test, but the improvement was
not significant. The difference between including 2 (test trajectory 3) and 3-4 tie
points (test trajectory 4) was very small in this test. Results indicate that 2-3 tie
points are beneficial for about 2 minutes without GNSS observation.
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Figure 5.7: Difference in north bdirection between test traj. and ref. traj.

Figure 5.8: Difference in east direction between test traj. and ref. traj.

Figure 5.9: Difference in down direction (height) between test traj. and ref. traj.
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Figure 5.10 shows standard deviation of test trajectory 4 in the part without GNSS
observations. It was at its maximum 0.126m for north, 0.094m for east and 0.101m
for down direction. For test trajectory 3 the same values were between 0.094m and
0.160m and for test trajectory 2, 0.130m to 0.225m. For test trajectory 1, the
standard deviation was 0.240m for north, 0.340m for east and 0.420 for height at
its largest. Thus, precision of the trajectory was improved also between the times
of the tie point observations. It can be seen that the standard deviation was lower
where there were tie point observations. This result indicates that more tie points
are preferred for higher precision.

Figure 5.10: Standard deviation in meters of test trajectory 4. Vertical green lines
indicate tie point observations. (TerraPos)
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Beneficial for other cases?

What has been tested so far is a loop where standard deviation is low is one part
of the trajectory and high when this area is passed again. The position of the
tie point observation from the part of the trajectory with high precision is used
to correct the part with low precision. The two alternatives to this case, are two
overlapping parts of the trajectory that both have high or low precision.

If two parts of the trajectory with low precision is overlapping, the likelihood of
the mean being significantly closer to the correct solution in not very high. With
a larger number of tie point observations of each tie point, one could make the
assumption that the tie point observations would be normally distributed and that
the mean would be close to the true value, but in mobile mapping, the number
of observations is normally not that high. Another issue is unmodeled systematic
errors affecting all tie point observations the same way. This has been tested
with tie points in a tunnel [Johnsbr̊aten, 2015]. Unmodeled systematic errors from
gravity in the tunnel led to errors in down direction dragging in the same direction
for all tie point observations. Because of this, aid from tie points did not improve
the solution.

If two parts of the trajectory with high precision is overlapping, offset between the
two is likely to be small. A test was done to investigate how the effect of adjustment
with tie point observations in back-end SLAM would affect the trajectory in this
case. To test this, GNSS observations were included for both the pink and the
blue part of the test trajectory in figure 5.2. Thus, the original test trajectory
for this test was the same as the reference trajectory. The offsets found by tie
point observations in TerraMatch for this trajectory were small, ranging from a
few millimeters to a couple of centimeters.

The difference between the re-calculated test trajectory and the reference trajectory
is visualized in figure 5.11. Without external reference data, there is no way do
know which one of the re-calculated test trajectory and the reference trajectory
is more similar to the true trajectory in this test. The difference between them
was within 0.02m. Offset in all directions was within the standard deviation of
the reference trajectory, given in figure 5.4. This indicates that including tie point
observations when the trajectory of both has high precision does not corrupt the
estimation.

Standard deviation of the re-calculated test trajectory, see figure 5.12, was similar
to the standard deviation of the reference trajectory, see figure 5.4. The standard
deviation was however reduced in parts where there were tie point observations. In
the part between TOW 206490 and 206520, the standard deviation is reduced from
about 0.015m in north and east direction and 0.025−0.030m in down direction for
the reference trajectory to 0.013m and 0.017 respectively for the re-calculated test
trajectory. This indicates that tie points increase the precision of the estimation,
even when there are GNSS observations aiding the INS in both observations of
the tie point.
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Figure 5.11: Difference in meters between the re-calculated test trajectory with
GNSS observations throughout the trajectory and the reference trajectory. The
light blue vertical lines indicate tie point observations. (TerraPos)

Figure 5.12: Standard deviation in meters of trajectory with GNSS observations
throughout the trajectory and the reference trajectory. The light blue vertical lines
indicate tie point observations. (TerraPos)
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5.2 Front-End SLAM

5.2.1 Test Area

Front-end SLAM utilizes incremental height observations to aid the inertial naviga-
tion. Thus, a road with continuous point cloud observations was found, see figure
5.13.

Figure 5.13: Test area with the trajectory shown as the blue line (TerraMatch)

GNSS observations in the time period 205775-205950 (GPS TOW) was removed
for the test trajectory used for the front-end SLAM test, giving a period of 2 min-
utes and 55 seconds without GNSS observations. Difference between the original
test trajectory and the reference trajectory was found and is visualized in figure
5.14. Difference in down direction is at the most 0.15m (the green line), while
the original test trajectory in north and east direction (the blue and the red line)
has maximum differences of 0.2 − 0.4m. Zero velocity updates were done short
time before and after the removal of GNSS observations, improving estimation of
orientation before and after the test period. Standard deviation for the reference
trajectory in the test area is given in figure 5.15.
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Figure 5.14: Difference in meters between original test trajectory (without incre-
mental observations) and reference trajectory. The part without GNSS observa-
tions is gray, zero velocity updates are shown in blue (TerraPos)

Figure 5.15: Standard deviation in meters of the position of the reference trajectory
in test area (TerraPos)
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Surface line observations were collected every 0.25 seconds, and each surface line
represented an area of 0.5 ∗ 0.25m on the road surface. Only observations within
10m of the trajectory in y-direction in b-frame (right/left of the platform) and
0.5m from the road surface in z-direction in b-frame (up/down from the platform)
were included. This resulted in observations by scanner 1 and scanner 2 in 15515
surface lines in the test area.

5.2.2 Systematic Errors

The test trajectory was re-calculated with incremental height observations made
from the surface line observations found in TerraMatch. The resulting trajectory
still had a large difference to the reference trajectory, see the dashed line in figure
5.18. The improvement was expected to be larger. Hence, systematic errors in the
system that could affect the improvement were investigated.

In an attempt to find systematic errors and sources of the errors, several dif-
ferent parameters were investigated. In figure 5.16, correlation between dz =
zObsByScanner1 − zObsByScanner2 and distance from scanner 1 in y-direction is vi-
sualized. These observations will sometimes be positive and sometimes negative,
depending on which scanner scanned the point first. Observations more than 10m
from the trajectory were not included, as observations further away are more sen-
sitive to other errors, and in this test, only systematic errors were of interest. In a
system without systematic errors, one would expect the median of the observations
of differences to be approximately zero in all distances from the scanner, but this
is clearly not the case in the plot.

Figure 5.16: Correlation between the median of dz between observation of scanner
1 and scanner 2 and the range from scanner 1 to the observation in y-direction
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Figure 5.17 shows correlation between dz = zObsByScanner1 − zObsByScanner2 and
distance from scanner 1 to the surface line observation. dz is expected to be
approximately zero in a system without systematic errors also for this case. The
plot shows that this was not the case and that the trend is not even linear.

Figure 5.17: Correlation between the median of dz between observation of scanner
1 and scanner 2 and the distance from scanner 1 to the observation

These tests could indicate that there was more that one systematic error in the
system, which makes it harder to identify the exact causes of them.

A model describing the systematic error by the trend of systematic errors found
by the distance to the scanner was made and applied to the observations.

5.2.3 Results

Figure 5.18 shows difference between the test trajectories and the reference trajec-
tory. The dashed line is showing the test trajectory without aid from GNSS or
incremental height observations. This line is the same as the green line in figure
5.14. The dotted line shows the trajectory aided by incremental height observations
that are not corrected for systematic errors.

The solid line in figure 5.18 is the result of applying correction for systematic
errors to the incremental height observations. The trajectory with incremental
height measurements corrected by systematic errors is no more than 0.03m from
the reference trajectory. The result from this test indicates that including incre-
mental observations that are corrected for systematic errors improves accuracy of
the trajectory.
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Figure 5.18: Difference in meters in down direction between test trajectories and
reference trajectory

Standard deviation of the test trajectory was reduced from 0.995m (see figure 5.19)
in down direction without incremental height observations to 0.058m (see figure
5.20) with incremental height observations corrected for systematic errors. The
achieved standard deviation is not far from the one for the reference trajectory,
given in figure 5.15. This indicates improvement in trajectory calculation by intro-
ducing incremental height observations.

Incremental height observations can be helpful in areas where the standard devi-
ation is low. It would have been interesting to test both back-end and front-end
SLAM together, but in the loop used for testing in back-end SLAM, laser scan-
ning was not made for the entire loop (see figure 5.2), so this was not possible. To
take advantage of front-end SLAM in mobile mapping it is important to scan for
longer periods of time.

This observation type can be helpful where tie point observations are affected by
unmodeled systematic errors, for instance in tunnels. The INS is affected by the
gravity, and this can lead to drift, but incremental height observations based on
point cloud observations will not be affected in the same way.
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Figure 5.19: Standard deviation in meters of the position of the test trajectory
before adjustment

Figure 5.20: Standard deviation in meters of the position of the re-calculated test
trajectory (incremental observations corrected for systematic errors)
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Summary and Conclusion

It was of interest to develop potential methods to introduce SLAM in post-processing
of mobile mapping data. These methods should require a limited amount of extra
man hours and computational cost compared to not using SLAM. To do this, point
cloud observations were produced in TerraMatch and then transformed to obser-
vations that could be utilized in re-calculating the trajectory in TerraPos. Finally,
a method for applying adjustments from the re-calculated trajectory to the point
cloud was developed.

The positioning of the mobile mapping system used for this study is done by aided
inertial navigation. Measurements made by the INS drifts over time. Thus, an
accuracy of the trajectory of a few centimeters cannot be maintained for long
by the INS itself. Measurements from GNSS and an odometer are used to aid
the INS. The INS measurements are more accurate than measurements made by
GNSS, but GNSS measurements do not drift over time and maintain long-time
stability.

In areas where GNSS observations are not available, drift of the INS is still a
problem. This can, for instance, happen in city areas with high buildings, under
trees and in tunnels, which all are areas commonly mapped by mobile mapping
systems. To limit the need for adjustment points from terrestrial land surveying,
another type of measurement is needed to aid the INS.

SLAM is the problem of estimating a map of an unknown environment while
estimating the system’s position in this environment. Laser scanner measurements
can be used to get information about relative movement of the platform of the
mobile mapping system. This can help positioning of the platform using SLAM
algorithms. When a tie point, a point features in the environment, is observed
more than once, the tie point observations can be used aid the INS. Keeping track
of what tie point a tie point observation belongs to, is known as data association.
Detection and validation of the correct tie point for observations is crucial in many
SLAM algorithms. Point cloud observations from TerraMatch are used to obtain
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tie point observations with the correct data association. Point cloud observations
are found automatically in TerraMatch, and a software package was developed to
transform them to tie point observations that can be used when re-calculating the
trajectory by the EKF SLAM algorithm implemented in TerraPos.

Generation of point clouds is a time-consuming process. Thus, re-generating the
point cloud to get an adjusted one was not an option. This was solved by finding
the difference between the original and the re-calculated trajectory. This difference
can be applied to the point cloud in TerraMatch, achieving an adjusted point cloud.

Back-end SLAM takes advantage of the loop closure effect. Loop closure events
happen when tie point observations of the same tie point are made with some
time between them. The effect of loop closure is improved global consistency in
the map, as well as reducing uncertainty in the trajectory. Relative surface line
observations can be automatically found in TerraMatch and transformed to tie
point observations that can be utilized in TerraPos.

Front-end SLAM uses incremental height observations obtained from the time
difference between scanning the same point by laser scanner 1 and 2. These obser-
vations work as a visual odometer and are used to improve local consistency in the
map. Height observations were chosen as it is possible to get continuous point cloud
observations of the road surface. Observations in north and east direction would
also be beneficial, and could, for instance, be made in an area with continuous
buildings near the road or in a tunnel.

For the testing done, poor GNSS coverage was simulated by removing the GNSS
measurements for a period of time.

Results from back-end SLAM

An area with a loop in the test area was found. Half of the loop had GNSS
measurements included in estimation of the trajectory, in the other half GNSS
measurements were removed.

The first test done investigated how point cloud observations with a long range
from the scanner to the scanned surface would contribute to the estimation. Tie
point observations with long ranges are more sensitive to errors. It was found that
regardless of this, tie point observations with long ranges improved the re-calculated
trajectory in tests done.

The second parameter investigated was how many tie points should be used in
an overlapping area. Tests were done with 0-3 tie points. The result of the test
done indicated more tie points gave a better accuracy of the trajectory and re-
duced the standard deviation of it. However, the difference between 2 and 3 tie
point was small, indicating that the effect of more than 2 tie points is not high
in periods without GNSS observations for 113 seconds. Maximum difference from
the reference trajectory for the part without GNSS observations was reduced from
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0.15m in north and east direction and 0.07m in down direction to 0.05m and 0.02m
respectively after adjustment.

Results of the tests done show that the part of the trajectory without GNSS
observations was mostly affected by tie point observations, while the part of the
trajectory with GNSS observations remained similar to the original trajectory.

The effect of this method is not likely to be high if all tie point observations for
a tie point have low precision. The effect is likely not to be that high for only tie
point observations with high precision either. The test done for this case indicated
that the difference between including the observations and not is small. It was seen
that the standard deviation was reduced where there were tie point observations
aiding the positioning.

Results from front-end SLAM

GNSS observations were removed for 2 minutes and 55 seconds. Incremental height
observations found by the difference between point cloud observations by scanner
1 and scanner 2 were used to test this method.

It was found that removal of systematic errors in the system was important to get
an improvement by incremental height observations. Even small systematic errors
in incremental tie point observations will lead to drift.

Results from the test done showed improvement of accuracy of the trajectory.
Without incremental observations, the difference between the test trajectory and
the reference trajectory 0.15m at the largest. When incremental observations cor-
rected for systematic errors were used in the trajectory re-calculation, the largest
difference was reduced to 0.03m.

Conclusion

Two methods of introducing SLAM in trajectory calculation have been introduced
by this thesis. Tests done on both the method using front-end SLAM and the
method using back-end SLAM show an improved accuracy and precision of the
trajectory compared to not using SLAM in the post-processing. Tests are done
with a period of 2-3 minutes without GNSS observations and show a potential
accuracy of 0.02 − 0.03m in height for both methods. This is sufficiently good in
many mobile mapping projects.

The methods lead to some extra work in post-processing but have the potential to
reduce the need for points from terrestrial land surveying. Further investigation is
needed to test the methods in different types of areas and projects to figure out
when the use of back-end and front-end SLAM is reasonable.
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6.1 Further work

In back-end SLAM, only one tie point observations each second can be included
in the estimation in TerraPos. If the overlapping area used to collect tie point ob-
servations for loop closure is small, for instance crossing roads, it may be difficult
to get a sufficient amount of 1-dimensional surface line observations to make mul-
tiple tie point observations for all directions. Algorithms to automatically make
3-dimensional point cloud observations could be beneficial in this case and should
to be developed. Support for multiple tie point observations each second is another
possible improvement.

To have automatic methods for collecting incremental point cloud observations for
north and east direction would be beneficial. Potential surfaces are curbstones,
buildings and painted lines on the road. There is functionality to get observations
of painted lines in the road in TerraMatch, but it was not tested as there were no
such lines in the test area used for this study. To get vertical surface lines from
buildings is also possible in TerraMatch. It is however preferred to have continuous
observations when using incremental observations to aid the INS, and this can
be difficult with buildings. It could be done in dense city areas, where there are
buildings close to the road. Tunnels are likely to benefit from front-end SLAM
and observations of both the road and walls can be made.

A method for finding systematic errors in the mobile mapping system and laser
scanners is needed to make the method automatic. This might be information that
can be periodically found by calibration and used when processing data from the
system.

62



Bibliography
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