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Abstract

Visual recognition systems are often limited to the object categories previously trained
on and thus suffer in their ability to scale. This is in part due to the difficulty of acquiring
sufficient labeled images as the number of object categories grows. To solve this, earlier
research have presented models that uses other sources, such as text data, to help classify
object categories unseen during training. However, most of these models are limited on
images with a single label and most images can contain more than one object category,
and therefore more than one label. This master’s thesis implements a model capable of
classifying unseen categories for both single- and multi-labeled images.

The architecture consist of several modules: A pre-trained neural network that gen-
erates image features for each image, a model trained on text that represents words as
vectors, and a neural network that projects the image features to the dimension native to
the vector representation of words. On this architecture, we compared two approaches
to generate word vectors using GloVe and Word2vec, with different vector dimensions
and on spaces containing different numbers of word vectors. The model was adapted to
multi-label predictions comparing three approaches for image box generation: YOLOv2,
Faster R-CNN and randomly generated boxes. Here each box represents a section of the
image cut out and this approach was chosen to fit each label to a one of these boxes.

The results showed that increasing the word vector dimension increased the accu-
racy, with Word2vec outperforming GloVe, and when adding more words to the word
vector space the accuracy dropped. In the single-label scenario the model achieves sim-
ilar results to existing models with similar architecture. While in the multi-label sce-
nario, the model trained on boxes generated by Faster R-CNN and predicted on random
generated boxes had highest accuracy, but was not able to outperform comparative al-
ternatives. The architecture gives promising results, but more investigation is needed
to answer if the results can be improved further. The code for this thesis is publicly
available at Github: https://github.com/thomasSve/Msc_Multi_label_
ZeroShot.
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Sammendrag

Systemer for bildegjennkjenning er ofte begrenset til å kun gjennkjenne objektene sys-
temet tidligere har trent på og sliter når de blir presentert nye usette objekter. Dette er
tildels fordi det er vanskelig å få tak i tilstrekklig treningsdata i form av bilder, etterhvert
som antall objektkategorier øker. Tidligere løsninger har vist at maskinlæringsmodeller
kan bruke andre kilder, for eksempel tekstdata, for å hjelpe til å klassifisere nye usette
objekter. Tidligere modeller har stort sett hatt begrensingen at de bare kan behandle
bilder hvor hvert bilde har en klasse tilknyttet til den, for eksempel kun katt eller hund.
Siden mange bilder kan ha flere objekter per bilde, for eksempel både katt og hund, pre-
senterer vi i denne masteroppgaven et system som kan klassifisere bilder med både én
og flere klasser.

Systemets arkitektur består av flere moduler: et ferdigtrent nevralt nettverk som
genererer egenskapsvektorer av bildene, en tekstmodell som representerer ord som vek-
torer, og et nevralt nettverk som reduserer bildets egenskapsvektor til en vektor i lik
dimensjon som ordvektoren. Vi har i denne oppgaven testet to ulike systemer for å
generere ordvektorer, med navnet GloVe og Word2vec. Systemet ble tilpasset til å kunne
klassifisere bilder med flere objekter, der vi sammmenligner tre ulike fremgangsmåter
for å generere bokser av bilder: YOLOv2, Faster R-CNN og tilfeldig plasserte bokser.
Her representerer hver av boksene et utsnitt av et bilde hvor hver boks er tilknyttet et
objekt.

Resultatene vi fikk, viser det at å øke dimensjonen på ordvektorene ga bedre re-
sultater, at Word2vec presterte bedre enn GloVe og ved å øke antall ordvektorer ble
resultatene dårligere. I eksperimentet hvor hvert bilde er tilknyttet kun en klasse, fikk vi
likt resultat som eksisterende forskning. I det andre eksperimentet, hvor bildene hadde
flere klasser, så vi at modellen trent med Faster-R-CNN og klassifisert med tilfeldige
bokser hadde best resultat. Dette systemet presterte ikke bedre enn eksisterende syste-
mer. Arkitetkuren gir lovende resultater, men mer forskning må til for å kunne si om
resultatene kan forbedres. Koden ligger åpent på Github: https://github.com/
thomasSve/Msc_Multi_label_ZeroShot.
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Chapter 1

Introduction

As the amount of data increases, so does the motivation to use this data in an intelligent
way in order to extract knowledge from it. Much progress has been made by develop-
ing machine learning models that can represent and solve complex tasks. The reasons
for this are two-fold: we have a lot more computing power, but we also have more la-
beled data. One of the issues with these models, is that they are limited on the classes
they are trained on and for each class a machine learning model requires a large set of
well-labeled samples to train from. As a result, when building recognition systems for
categories one cannot expect to be able to build systems that can recognize all natural
categories.

It has been estimated that humans can categorize 30,000 object categories [3], and
also many more sub-categories, such as breeds of dogs [4]. As each category needs a
large amount of samples to get a good result, training a model to categorize so many
visual categories would require millions or billions well-labeled training images. There-
fore, numerous models for reducing necessary numbers of training images have been de-
veloped, so-called one-shot learning [5] or few-shot learning, as well as models for clas-
sifying classes with no training samples, known as Zero-Shot Learning (ZSL) [6, 7, 8].

Motivated from the humans ability to recognize new objects only from having a de-
scription, ZSL tries to train a classifier that can classify unseen objects. For example, a
child can simply recognize a zebra without ever have seen one before if she has seen a
horse and told a zebra is a horse but with black and white stripes. ZSL uses a similar ap-
proach and consists in recognizing new categories, by providing a high level description
of the unseen category and relate this description to previously learned categories.

ZSL is especially important in domains where there are many categories and the
cost of labeling each category with enough samples is too high. In addition a major
challenge when scaling in object recognition systems is the lack of annotated images
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1.1 Task Description

for real-world categories. With ZSL the need for annotated images is reduced, as some
object categories can be left unannotated and still be recognizable for the model. ZSL
have been tested for various problems such as image-tagging [6, 7, 9] and brain activity
measurements [8].

Most of the research in ZSL has focused on single-label problems where each image
only has one category connected to it, for example an image only containing a dog
or a cat. However, most images can be labeled with more than one label, known as
a multi-label problem, where the image can contain for instance both a cat and a dog.
When working with multi-label problems in ZSL a classifier can use the knowledge from
known objects to classify unknown objects. For example, if an image consists of two
known objects and one unknown, this can help the model to classify the unknown object
by using information about the image it already has. For instance, zebras live in certain
habitats and if the classifier already can label the habitat shown in the image, it can be
easier to label the unseen zebra using the already known information.

This thesis will investigate how ZSL can be solved for both single-label and multi-
label problems. In the multi-label problem, in our proposed solution we have made the
assumption that each of the labels in an image can be connected to different areas on that
image. Therefore this image is split into a set of boxes, where these boxes are labeled
with one label each. For example, with an image containing both a dog and a cat we
propose to split this image into boxes where some of them show the cat, while others
show the dog. This will reduce the problem from a multi-label to a single-label and
will follow similar techniques as with single-label ZSL to make predictions on unknown
objects.

1.1 Task Description

The task of this thesis is to train an image-recognition classifier to be able to classify
unseen classes. The ultimate task is to train a classifier that can take large amounts of
images and classify tens of thousands new labels without having to annotate them first.
This is however a very complex task, so the focus will be on a smaller, yet large, task
where the experiments are run on a smaller set of unseen labels. The research project will
also investigate how knowledge about words learned from large text corpus can help the
classifier predict new object-classes on images, and if a classifier is able to successfully
predict multi-label Zero-Shot Learning.
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Chapter 1. Introduction

1.2 Goal and Research Questions

Goal Investigate Zero-Shot Learning techniques in multi-label scenarios.

Research Question 1: How can the knowledge from text be used to help an image-
classifier predict unseen classes?

We will investigate if and how well knowledge from text can be used to help an
image-classifier predict new unseen object-classes.

Research Question 2: How does our Zero-Shot learning model scale when increasing
the number of available classes?

Many of the existing ZSL models focuses on a small set of data, and on a limited
amount of unseen labels. We want to investigate how the model scales when increasing
the number of unseen labels, and also when increasing the number of labels possible to
predict on.

Research Question 3: How can Zero-Shot learning be applied to multi-label scenarios?

As most real-world images can consist of more than one object, this research ques-
tion investigates if a ZSL can predict unseen labels for multi-label problems.

1.3 Thesis Outline

Readers who are interested in the implementation can jump directly to chapter 4, De-
sign & Implementation, and continue from there. Chapter 2, Background, is written for
readers who would like to gain knowledge with the technologies used in the thesis. The
complete outline of the thesis is:

• Ch. 2 Background, introduces the different approaches used to solve Zero-Shot
Leaning. The chapter gets the reader up to speed on important subjects that builds
up the thesis.

• Ch. 3 Related Work, describes related work and looks at papers that have tried to
solve similar problems earlier, and the approached used.

• Ch. 4 Design & Implementation, explains the implementations used and gives a
thorough explanation of the designed architecture.

3



1.3 Thesis Outline

• Ch. 5 Experiments & Results, experiments with the implementations to investi-
gate the research goal and questions. The chapter contains multiple experiments,
testing different scenarios, data and language models before reporting the results.

• Ch. 6 Discussion, discusses the results reported in Chapter 5.

• Ch. 7 Conclusion, concludes on the results produced and the discussions of these.
It reviews the research goal and questions and suggest future work.

4



Chapter 2

Background

This chapter serves as an introduction to Zero-Shot Learning and the techniques used to
approach this. It is important to have some familiarity with these subjects to follow the
thesis, as they builds up the domain of the thesis.

2.1 A brief introduction to Artificial Intelligence

Artificial Intelligence (AI) has been referred to by Shapiro [10] as a sub-field in com-
puter science that focuses on constructing machines or systems that can display intelli-
gent behavior that is commonly called intelligent behavior. However, defining the term
intelligence can be hard and debated by researchers. The overall research goal of AI is to
create technology that enable computers to perform a range of different tasks. Examples
are perception tasks, learning tasks, language processing tasks, planning, knowledge and
many more including general intelligence. General Intelligence is a term used when an
AI-machine combines various sources and methods to create a machine intelligence that
exceeds human ability in most cases. Currently AI has the classified capabilities to un-
derstand human speech, compete in high strategic game (such as Chess and Go) and
control vehicles (self-driving cars). AI is a large field that can be related to many prob-
lems and tasks and our focus lies within the subfields of Computer Vision and Natural
Language Processing.

The field of Computer Vision (CV) deals with how computers can get a high-level
understanding of digital images or videos. In other words, give computers the ability to
see and understand in the same way as the human visual system [11]. It is a sub-problem
within machine perception that involves around tasks where you use the input from
sensors (such as cameras and microphones) to understand the world. While CV focuses
on vision, Natural Language Processing (NLP) focuses on language and the interaction
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2.2 The Concept of Zero-Shot Learning

between computer and human languages. The field of NLP works with speech and
written text and this thesis will focus on a set of techniques that maps words into high-
dimensional vectors, known as word embedding (section 2.6).

2.2 The Concept of Zero-Shot Learning

In Zero-Shot Learning (ZSL) a model is trying to predict classes unseen to a classifier.
Figure 2.1 shows how ZSL works in practice. During training time the classifier is
trained on one set of classes, and during test time new classes are introduced.

(a) Non Zero-Shot Learning approaches (b) Zero-Shot Learning approaches

Figure (2.1): Here you can see a venn diagram visualization the ZSL approach. In most cases
illustrated in figure a, the model is trained on all sets of classes, so-called seen classes, while in
ZSL some classes are unseen to the model during training and first introduced during testing.

ZSL is an extreme case of transfer learning. Transfer learning, also known as
learning to learn or inductive transfer, shares with ZSL the aim of extracting knowledge
from a set of sources that can be applied in future tasks. It is often used when very
good knowledge of one task is available, but little information of the second task. For
example, if you want to build an accurate heart disease classifier, but lack enough data.
Then, if you have a huge amount of data for other related diseases, you might want to use
this data to help build a heart disease classifier. When output of one type of algorithm
helps to either increase accuracy, or reduce training time, of another algorithm you have
a successful transfer learning. For further reading, we recommend reading the extensive
survey in the work of Pan and Yang [12].

Transfer learning is often associated with domain adaptation. Both domain adapta-
tion and transfer learning refers to a situation where what has been learned in one setting
is exploited to improve generalization in another. The difference however is that with
domain adaptation, the task remains the same between each setting, while the input dis-
tribution is different [13]. One example here is when analyzing user reviews, a predictor
could be trained to predict positive or negative review for a media content page, and
is later used to analyze comments about for example electronics. The domain here is
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Chapter 2. Background

slightly different, and some style or vocabulary is different from the two, but the end
goal or task is the same.

2.2.1 One-Shot Learning

A concept that is very similar to ZSL is One-Shot Learning (OSL). While ZSL aims to
predict unseen classes, OSL tries to learn new classes using as few examples as possible
and aims to learn these classes with only one example. For example, a child is shown
a zebra once and told that is a zebra, and is able to recognize it later. Typically similar
approaches is used in both OSL and ZSL, using various versions of transfer learning.
[5, 14]

2.3 Artificial Neural Network

Artificial Neural Networks (ANNs) mimics the neural networks in the brain, and was
first introduced by McCulloch and Pitts [15] in 1943. ANNs are built up by neurons and
synapses, where neuron activation is based on the incoming synapses. Weights are stored
in the synapses which changes value when introduced to new examples during training,
but unchanged during test time. A neuron in ANN can have multiple input and output
synapses and the activation of a neuron is determined by an activation function, which
can be for example the sigmoid function as demonstrated in figure 2.1. The sigmoid
function can be used to calculate the probability of class y in datapoint x [16]. This
function is typically used in binary class problems to see if a class is there or not. In
multi-class problems it is common to use softmax, which can be thought of as a extension
of the sigmoid function. This function makes it so that all probabilities sums up to one
for the multi-class problem and can therefore be threated as true probabilities [17].

y = σ(WTx) =
1

1 + exp(WTx)
(2.1)

Looking at figure 2.1, we can see how to calculate the output of the network, where
the incoming dataX and the weightsW calculates the probability of the output, σ(WTX),
called forward pass [16]. While linear classifiers can be used in some simple contexts, it
can not be used for more complex problems, because most problems are too complex to
be solved linearly. The solution to this is to build a neural network consisting of multi-
ple nodes (neurons), and in newer networks millions of nodes. This means that a simple
neural network can ANN looks something like in figure 2.2.
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2.3 Artificial Neural Network

Figure (2.2): Fully connected neural network

Figure 2.2 shows one of the most common neural networks, called the fully con-
nected neural network. ANN is built up of many layers where the middle layers are
called hidden layers. Each node in the layer contributes to getting the answer. When
the network guesses the wrong answer under training, the weights in the network are
changed and iterates backwards from the output to check the error contribution of each
weight, δEtotal

δwij
[16]. This is done using the algorithm called backward propagation

which is more effective than performing many forward passes to measure the error. In
2.3 the weights are visualized in a 3D space where error is the the y-axis (vertical) and
the weights the other axis. This is to illustrate that model gradually learns by calculating
the slope to reduce the error, where the lowest error here is the bottom of the slope.

−1

1
−1

1

1

2

Figure (2.3): Gradient descent in a 3D weight space.
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2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are similar to simple Artificial Neural Net-
works (ANNs), as they are based on many on the key concepts in ANNs. This includes,
but is not limited to concepts like forward- and backward-propagation we introduced
earlier in section 2.3. Introduced by LeCun et al. in 1999, CNNs was first used in image
recognition, but have also been applied to other applications such as sentence classifica-
tions. A CNN consist of a sequence of layers, mainly Convolution Layer, Pooling Layer
and a Fully-Connected Layer all stacked together.

The Convolution Layer is the core building block in CNN and is comprised of a set
of independent filters. Using images as an example, a filter slides over an image and
takes the dot product between the filter and a of input image, as shown in figure 2.4.
For each dot product taken, the result is a scalar that together forms a new convoluted
picture smaller than the original, called feature map. Each of the filters correspond to the
weights in an ANN and over time these filters will change during training, and different
filters learns to detect different parts of an images, such as edges of an image. CNN uses
the two concepts parameter sharing and local connectivity. In parameter sharing, the
weights are shared between the neurons in a feature map, which makes it possible for
the network to detect i.e edges over the entire image. Local connectivity is the concept
where each neurons are only connected to a subset of the input image, which makes
sense because close pixels often correlate. Going deeper with more convolution layers,
the filters are doing dot products to the input of the previous convolution layers.

Another building block in CNN is the pooling layer, that reduces the size of the rep-
resentation to reduce the amount of parameters in the network. A pooling layer operates
on each feature map independently. In the end of the architecture, a CNN usually has a
fully-connected layer that works the same way as in a simple ANN explained in section
2.3. This can be used together with a softmax function to get the probability for which
object is inside the picture.

For a more comprehensive and visualization of the layers in a CNN we recommend
reading the paper by Zeiler and Fergus [19].
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Figure (2.4): Showing a illustration for a filter that slides over the input data.

2.5 Object Detection Framework

A Object Detection Framework (ODF) tries to detect all instances of objects such as
people, cars and cats inside an image. Typically only a small number of objects are
presented in an image, but with a large number of possible locations. A ODF tries to
detect the locations of these objects reported in terms of bounding boxes as shown in
figure 2.5. Two ODFs are Faster R-CNN [1] and You Only Look Once (YOLO) [2],
which are considered to be the current state-of-the-art.

Presented by Ren et al. [1] in 2015, Faster R-CNN is an object detection framework
based on deep CNNs, which includes a Region Proposal Network (RPN) and an Object
Detection Network. The RPN is trained end-to-end to generate region proposals, which
are used by the object detection network for detection. Further the two networks are
merged into one single network by sharing the convolutional features with the RPN
telling the detection network where to look, and the detection network predicting the
classes.

10
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Figure (2.5): Object detection example using YOLOv2 [2].

While Faster R-CNN combines a region proposal network with a object detection
network, YOLO uses a single neural network to do both region proposal and detection.
By looking at the entire image, it manages to increase the speed and also helps under-
stand the full context of the picture. The original YOLO reported to be much quicker
than Faster R-CNN, but suffered a little in terms of accuracy. However, recently in 2016,
Redmon and Farhadi released an updated version of YOLO that claims to outperform
Faster R-CNN on both speed and accuracy. This new model, YOLOv2 [2] outperforms
Faster R-CNN while still making predictions for 67 images a second, in contrary to the
5-15 images a second in Faster R-CNN.

2.5.1 Non-Maximum Suppression

When working with object detection frameworks, the ODF can often report boxes that
overlaps. A way to calculate the overlapping boxes and remove boxes that overlap too
much is to use an edge thinning technique called Non-Maximum Suppression [20]. Non-
Maximum Supression is demonstrated in figure 2.6, where boxes that overlap too much
are removed.

Figure (2.6): Illustration of Non-Maximum Supression in ODFs removing the overlapping boxes.
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2.6 Word embedding

Word Embedding is the name for a set of language modelling and feature learning tech-
niques in Natural Language Processing (NLP) where words or phrases are mapped to
high-dimensional vectors (from 50 to 1000 dimensions), also known as word vectors.
Using a large corpus of text, such as Wikipedia, a good word embedding can success-
fully place words with similar meaning close together in the vector space.

2.6.1 Word2vec - Word to Vector

One of the most common word embedding models is Word2vec [21]. It was introduced
by Mikolov et al. in 2013 and is a collection of two algorithms: CBOW and Skip-Gram.
CBOW and Skip-Gram uses both a single hidden layer, fully connected neural network.
Which means they are not in the definition of deep learning due to the simplicity of the
networks. The algorithms focuses on efficiency, so it can be able to train on large amount
on data. The algorithms in Word2vec are built up from three layers:

1. Embedding layer: Multiplies the index vector with a word embedding matrix to
generate word embedding.

2. Intermediate layer: One fully-connected layer that produce an intermediate repre-
sentation of the input.

3. Softmax layer: Final layer that produces the probability distribution.

Continuous Bag-Of-Words - CBOW

In Continuous bag-of-words (CBOW) a sliding window goes over the text, and uses the
central word in focus as target and the n words before and after as context. The context
words form the input layer. Each word is encoded in one-hot form, so if the vocabulary
size is V, then each one of these words will have V-dimensions with one element set
to one and the rest to zero. These context words are fed in the fully-connected neural
network, with a single hidden layer.
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Figure (2.7): Figure illustrating how CBOW learns. [22]

Figure 2.7 shows how the CBOW model receives a window with the surrounding
words as input with the center word as target. The objective with the training is to maxi-
mize the conditional probability of observing the target word given the input words. As
an example, consider the sentence: ”the quick brown fox jumped over the lazy dog”. Us-
ing n=2 and target word ”fox”, the input words becomes [”quick”, ”brown”, ”jumped”,
”over”]. The model now wants to maximize the probability of getting ”fox” as the out-
put. Doing this over a large corpus, creates a vector space where the words that have
similar meaning are close together.

The other algorithm in Word2vec, Skip-Gram, flips the CBOW algorithm around
and uses the centre word to predict the surrounding words around. This algorithm is
explained in depth in the paper by Goldberg and Levy [23] that uses the Skip-Gram with
negative sampling.

2.6.2 GloVe - Global Vectors for Word Representation

Released in 2014 by Pennington et al., GloVe [24] is a neural word embedding model
that is based on counting. First, GloVe creates a large matrix of co-occurrence infor-
mation for each word, meaning it counts how often a word (row) occurs in context of
another word (column). Next, the GloVe performs dimension reduction on the matrix
where it tries to find the lower-dimensional representation that can explain most of the
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variance in the higher-dimension. This leads to GloVe taking a large amount of mem-
ory while computing, but in return it trains quicker than Word2Vec and can also re-use
the co-occurrence matrix to quickly factorize the word vectors into any chosen dimen-
sions, whereas Word2vec needs to retrain the network from scratch after changing the
embedding dimension.

2.7 Evaluation metrics

After a model has made predictions on the test set, there are many different ways to
measure the quality. These metrics variate if measured for a multi-label or single-label
scenario. In a multi-label scenario, each sample can have any number of true labels
associated with it (e.g. both cat and dog). While in single label, each sample have only
one true label (only dog or cat).

2.7.1 Flat Hit Precision

To measure the performance for single-label experiments where there is top-k predicted
labels for each image, flat hit @k is one of the metrics used. Here the metric gives full
score as long as the correct label is in the top-k predictions. Given an example where
the correct label (ground truth) is 1 and the predicted values are [4, 2, 3, 4, 6, 1]. Here
when measuring top-3, it will return incorrect as 1 is not among the first three values.
However, if measuring top-6 it will return correct and full score as the label is in top-k.
Meaning the orders of the predicted values do not matter when using Flat hit @ k.

2.7.2 Mean Average Precision

To measure the results in single-label and multi-label problems where the order of the
top-k predicted values matter, Mean Average Precision is commonly used. To measure
Mean Average Precision (MAP) the average precision for each prediction is calculated
before measuring the mean. In other words, the mean for Average Precision (AP) is mea-
sured, hence the name Mean Average Precision. AP is a way to calculate the precision
of for the k predictions, and is defined by the equation:

ap@k =

n∑
j=1

P (k)

min(m,n)
(2.2)

where P (k) is the precision for the k-th item in the list and equals 0 when the k-
th prediction is an incorrect one; m is the number of ground truth labels and n is the
number of predictions. Take for example a test where the correct labels are [1, 2, 3, 4,
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5] and the predicted values are [6, 1, 7, 4, 2]. Here 1, 4 and 2 are correct with some
incorrect predictions in between. With AP@2 only the two first predictions matter: 6
and 1. First is wrong, so precision@1 is 0. Second is correct, so precision @2 is 0.5,
which gives AP@2 = (0 + 1/2)/2 = 0.25. If the two predicted values changed order,
then AP@2 = (1/1+0)/2 = 0.5. This means, the orders the predicted labels do matter
on the results, note however if all the predictions are correct the order does not matter.
After calculating the Average Precision for all samples, the Mean Average Precision is
measured:

MAP@k =

N∑
i=1

ap@ni
N

(2.3)

Which in the end gives a way to measure the quality of the predictions for both
single-label and multi-label problems, where the order of the predictions matter.

2.7.3 Average Cosine Similarity

To be able to interpret how far away or close on average the model is from the ground
truth, we would like to introduce average cosine similarity, that has the range [−1,+1].
This gives an intuitive understanding of how good or bad the model is in a range that is
easily interpretable. The cosine similarity is:

d(P,GT ) =

n∑
i=1

PiGTi√
n∑
i=1

P 2
i

√
n∑
i=1

GT 2
i

(2.4)

Where P is the vector of the predicted label, and GT is the vector of the ground truth
label for the image. After calculating the cosine similarity, average cosine similarity is:

avg cosine similarity =

∑N
0 d(P,GT )

N
(2.5)

N here represents the number of calculated cosine similarities. For example doing
this for all missed predictions means that N is the number of missed predictions in total.
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Chapter 3

Related Work

This chapter will go through previous work related to Zero-Shot Learning (ZSL). It will
look at papers that have tried to solve similar problems earlier, and the approaches used.

3.1 Zero-Shot Learning

The problem of Zero-Shot Learning has received an increasing interest as it tries to solve
the need for expensive annotating of training data for large scale recognition problems.
Researchers have reported some promising results, but have mostly been tested on a
small set of unseen labels [25, 26, 27, 28, 29, 30, 31].

As one of the first to work with ZSL on a larger set of unseen labels, Frome et al.
[6] presented in 2013 a model to do ZSL prediction with a set of 1000 seen classes and
up to 20000 unseen classes. Their joint model, known as DeVISE [6], is initialized
from two pre-trained neural network models, one language embedding model and one
Convolutional Neural Network (CNN) as visual model. The last softmax layer from
the pre-trained CNN is removed and outputs a 4096-D representation of each image, an
added projection layer now maps this representation into the 500- or 1000-D represen-
tation native to the language model. Next a loss function is added to compare the two
vectors, the word vector from the language model and the vector representation of the
image.

Inspired by DeVISE [6], Norouzi et al. [9] presented ConSE. ConSE kept the last
softmax layer in the visual model and considers the top T of the model. Then, the
convex combination of the semantic vectors of these predictions is computed, which
corresponds to the projection layer used by DeVISE. Also, while the DeVISE [6] model
fine-tune the pre-trained CNN model, ConSE [9] kept the pre-trained model intact with-
out training it any further.
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3.2 Multi-label Zero-Shot Learning

All of the papers introduced in the previous section are limited to single-labeled prob-
lems. As most images can be labeled with more than one label, a few researchers have
tried solving Zero-Shot Learning for multi-label problems.

One of the first to present a solution to the multi-label ZSL was Fu et al. [33]. With
the lack of a dataset containing examples to learn co-occurrence the conventional way,
they used transductive learning to exploit a label correlation at test time from the Skip-
Gram model. They implemented two versions where one used nearest neighbor search
for the matching label and the other used the knowledge from the known labels to find
closest match. They successfully applied their strategy to previous mentioned models
such as DeVISE, which made these models able to solve multi-label problems.

Ren et al. [34] introduced in 2015 a model with architecture similar to DeVise and
ConSE, but for multi-label problems. They used the object detection framework Fast
R-CNN [35] to generate boxes for each objects in the images and thus able to change
a multi-label problem into a single-label problem. Inspired by the work of Frome et al.
[6], each of the generated boxes are mapped to a semantic vector space using a single
projecting layer. This produced promising results for multi-label ZSL, but with room for
improvements.

Zhang et al. [32] presented in 2016 two different models inspired by the single-label
solutions DeVISE and ConSE. One used a linear classification and the other used a
neural network with four layers that maps the image representation from a pre-trained
CNN into a 300-D representation native to the language model. In the neural network
solution they use a loss function to train with both negative and positive feedback. This
means that they train with both the correct ground truth labels as well as incorrect labels,
to estimate the word vector in the language model. They implemented and tested various
models, including ConSE [9]. They reported getting higher accuracy than the multi-label
version ConSE with both the linear and neural network version solution.

Although there exist some papers on multi-label ZSL, it is not a problem that has
been extensively studied.

3.3 Word Embedding Space

Most existing papers use a pre-trained language model that embeds words to word vector
spaces. These models are trained on large amount of text, typically using Wikipedia
articles trained with Word2vec [21] (see: [6, 9, 33, 7]) or GloVe [24] (see: [34]).

Akata et al. [27] did a comprehensive comparison of Word2vec and GloVe learned
from a bird specific corpus, Wikipedia and also with or without a hierarchical embed-
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ding. The results shows that combining output embeddings from text with a hierarchies
such as WordNet [36] to build a semantic space is significantly better than only using a
single embedding.

Also, a systematic comparison of Word2vec and GloVe was done in the work of
Baroni et al. [37]. This paper compared the two models on textual score such as semantic
relatedness and synonym detection, and concluded that the predictive model Word2vec
scores higher than the counting model GloVe.

One issue with using Wikipedia to train the word vector space is that the space will be
trained for textual data and the relationship between the words will mainly be based on
textual relationship. For example, in images cup and table often appears together, which
may not always be the case in articles. Giving cup and table a different relation in visual
context compared to textual. A solution to this may be hard as there is significantly less
resources describing the visual world, compared to the textual.

The different ZSL models uses different loss functions to train their models. These
varies between hinge-loss [6, 34], cosine similarity [9] and euclidean distance [38, 27].

3.4 Deep Convolutional Neural Networks

The big breakthrough with deep Convolutional Neural Network (CNN) came in 2012
when Krizhevsky et al. presented AlexNet [39]. They won the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [40] that same year and revolutionized the way
computer vision challenges are solved. Every year after AlexNet, a CNN architecture
have won ILSVRC with a top-1 accuracy going from 54% with AlexNet in 2012 to 80%
using Inception-V4 [41] in 2016. Inception-V4 [41] is the forth version of GoogLeNet
[42], the ILSVRC 2014 winner from Szegedy et al. from Google.

Many of the existing Zero-Shot Learning (ZSL) models uses a deep CNN model as
visual model. Either the last softmax layer is removed and the feature from the last layer
is used to project the representation of the image to the dimension of the semantic space
[6, 32, 34], or the softmax layer is kept intact as in ConSE [9].

A pre-trained AlexNet was the chosen model by both DeVISE [6] and ConSE [9],
and with the advances in CNN, Ren et al. [34] replaced AlexNet with GoogLeNet [42]
in 2015. Today, both the AlexNet and GoogLeNet architectures are out of date, and
upgrading to a current state-of-the-art CNN architecture would be a logical step to take
to improve vision tasks in general.
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Chapter 4

Design & Implementation

This chapter introduces the architecture designed used to investigate the research ques-
tions. The chapter starts giving a general overview over the architecture, and explains
throughout the rest of the chapter the choices for the implementation and how the archi-
tecture varies for different scenarios.

4.1 The general model architecture

Figure 4.1 presents the designed solution. The design is inspired by different ideas that
we have combined together to investigate if it can outperform state-of-the art in the field
of ZSL.

The model works differently for a single-label problem compared to a multi-label
problem. When working with multi-label data sets the model will split the image into a
set of boxes, where each box runs separately through the rest of the model. After pre-
dicting for each box, the model counts and returns the labels that had highest number of
predictions. This approach is inspired by the work of Ren et al. [34] that uses the object
detection framework Fast R-CNN to generate the boxes. Our model have implemented
box generating with both the option of using a object detection framework, but also have
the option of generating boxes randomly. These two different approaches will be com-
pared against eachother in the experiments. The reason to split the data into a set of
boxes is because when working with multi-label, it is uncertain which parts of the pic-
ture belongs to which label. For example having a picture of both a cat and a dog gives
the labels cat and dog, but will not say where the different objects are located, which is
something we try to solve by using a model trained on single-label to help select label
for box.

In both the multi-label and single-label case the image or sub-pictures are fed into
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a CNN model to extract image features. Most of the CNN models mentioned in related
work uses either AlexNet or GoogLeNet architecture to generate the image features.
With image recognition significantly improved with newer models, we have chosen to
use the state-of-the-art CNN architecture Inception-v3 implemented in Keras [43]. We
believe by utilizing a state of the art CNN, this can help us improve the perfmance of
our ZSL model, because we get better features extracted. The model has been trained on
the ImageNet Large Visual Recognition Challenge - ILSVRC [40] using the data from
2012. Inception-v3 is an upgraded version of the GoogLeNet architecture, and have
improved the top-5 error from 6.67% to 3.46% on ILSVRC. Similar to the architecture
of Ren et al. [34] the top layers are removed, making the model return 2048-D features,
which is the result after the average pooling. The inception-v3 layers are frozen during
training, meaning they will have the same weights before training as afterwards.

Inspired by the work of Zhang et al. [32] the design contains a four layered fully
connected network that projects the 2048-D features to the dimension native to the lan-
guage model, which is either 50-D, 150-D and 300-D. This network have the exact same
layers Zhang et al. [32] and dimensions, but with the exception of the dropout layer hav-
ing 50% dropout instead of 30%. Setting the dropout higher was chosen to prevent the
model from over fitting.

In a sense, we have mixed together ideas from different papers that we hope can
enable us to make predictions for both single-label and multi-label scenarios. The ar-
chitecture has variations for each of these scenarios which are described in the next
sections.

4.2 Single-label scenarios

Figure 4.2 shows the architecture when training the model on single-label data that is
strongly inspired by the work of Zhang et al. [32] and Frome et al. [6]. A projecting
network is trained to map image-features extracted from a pre-trained inception-v3 to
the native dimension of the language model. This is done by retrieving a word vector
of the label using a pre-trained language model, and compare this word vector to the
projected one from the projection network. The loss function then reports a loss that the
projection network tries to minimize. This means that during training only the projection
network is trained, while both the pre-trained inception-v3 and language model stays the
same.

When testing on a single-label scenario the model returns the closest labels to the
predicted word vector as shown in figure 4.3. The model first extracts image-features
from inception-v3 and these features are passed through the projection network which
outputs a predicted word vector. The words closest to this predicted vector is returned
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as the top-k result ranked after closest word first.

Figure (4.2): Showing the behavior when training the model on a single-label dataset.

Figure (4.3): Showing the behavior when testing the model on a single-label problem. Here
k = 5, meaning the model returns the closest 5 labels to the predicted vector.

4.3 Multi-label Scenarios - Generate image boxes

Working with multi-label data set, the model can be trained in two different approaches.
One that randomly generates a set of boxes for each image and one using a Object
Detection Framework (ODF).
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4.3.1 Multi-label training

Figure (4.4): Suggested solution to train multi-label Zero-Shot Learning using by generating
boxes

When training the model for a multi-label problem, the model first loads a network
trained on a single-label data set. Then the model generates a set of boxes for each
image, as shown in figure 4.4. Each of these boxes are separately sent through the
network that generates projected vectors. Now the network will have a set of labels and
a set of vectors each representing a box. The number of labels for each sample varies,
so the model compares each label to the vector representations, and chooses the closest
vector for each label. To enable the model to select the correct boxes, it depends on
using a model pre-trained on the single-label data using the implementations in section
4.2. The only difference between the two multi-label implementations is how the image
boxes is generated, but all other aspects of the network are similar.

Training on a multi-label scenario the model also only trains the projected network,
meaning the model will work the same way as the single-label scenario and can be used
to make predictions for both single-label and multi-label problems.

4.3.2 Multi-label testing

When making multi-label predictions the model loads the pre-trained weights, either just
single-label weights or with weights that is tuned on multi-label data. The model makes
a prediction for each of the boxes generated, and returns the labels in descending order
with the highest occurring labels first.
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Figure (4.5): Suggested solution to test multi-label Zero-Shot Learning using by generating boxes

For example, if the model generated 30 boxes where 20 predicted Dog, 5 predicted
Cat and 5 predicted Horse the top-3 predicted list would return Dog, Cat and Horse.
Looking at figure 4.5 we can see an example of this, where it ends up with predicting
Bull, Person, Sand in this order because Bull had the most predictions.

4.3.3 Random image boxes

One of the approaches to generate the boxes for multi-label ZSL is to randomly generate
boxes for each image as demonstrated in figure 4.6a and figure 4.6b. These boxes are
generated using three different sizes of the image with and height: 1/2, 1/3, and 1/4. For
each of the sizes 10 boxes are generated, which means the algorithm always returns 30
generated boxes in total.
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(a) Original picture for illustrative purposes (b) Same picture with the boxes - 30 boxes

Figure (4.6): Showing an example of how the picture could be cut. W and H corresponds to width
and height.

4.3.4 Using Object Detection Framework (ODF)

Inspired by Ren et al. [34] the second approach for solving multi-label ZSL is to use a
Object Detection Framework (ODF). The model has implemented to use boxes gener-
ated by both Faster R-CNN [1] and YOLOv2 [2]. Using two different ODFs we want to
compare which one performs the best, and with two different frameworks there is natu-
rally a higher chance for at least one of them giving a high score. The YOLOv2 model
is already trained on a total of over 9000 objects, while Faster R-CNN we have trained
ourselves on the ILSVRC [40] 2015 detection data set, which has 200 object classes.

The Faster R-CNN generates in total 2000 boxes for each image, and gives a score
to each box on objectiveness. The model selects the top 100 boxes with highest score
and uses Non-Maximum Suppression 1 [20] (section 2.5.1) to remove boxes that overlap
too much.

Using YOLOv2, we have reduced the threshold for generating boxes to 0.01 to make
sure YOLOv2 generates boxes for all images. The same approach was used where the
top 100 boxes with highest score are selected with Non-Maximum Suppression, with
the threshold set to 0.5, to remove overlapping boxes. Now the model will be left with
an unequal number of boxes ranging from 5 around 30, and for each of the boxes the
projection network predicts a word vector and the closest label is returned.

1Non-Maximum Suppression code used: https://github.com/rbgirshick/
py-faster-rcnn/blob/master/lib/nms/py_cpu_nms.py. Downloaded: 10th of May
2017
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4.4 Language Model

A Zero-Shot Learning (ZSL) model relies on the existence of a set of labeled seen classes
and a knowledge about how these classes are semantically related to the unseen classes.
The seen and unseen classes together generate together a higher dimensional vector
space, called semantic space. By doing so, a classifier is able to predict an unseen class
using the semantic space and the knowledge from the seen classes.

There are different ways of creating such a semantic space, one common way is
to use high level attributes. For example a zebra could have the attributes tail, stripes,
animal, etc. Collecting these attributes is however a very costly approach as they are
manually collected by humans, therefore we have chosen to train a language model
using the word embedding (section 2.6) techniques GloVe [24] and Word2vec [21]. The
benefit with word embedding is that it can take a large corpus of unannotated text and
train a model that puts similar words close together in a word space.

4.4.1 Training language models

The language models are trained using a large text corpus from the English Wikipedia.
To train the language models the original GloVe code from Stanford [44] and Word2vec
with Gensim [45] was used. A large xml file containing the whole English Wikipedia
was downloaded2, where we used the tools presented by Mudge [46] to transform the
xml files to one large text document containing only the relevant information. Doing this
extracted the relevant parts of the XML and then generated multiple files containing the
relevant parts. Next a python script was used to combine these files into one to transform
this into one large text document where each article is on one line. Before training, the
text corpus had to be processed to make sure to include compound words like ”police
station” and ”garage door”. This was a crucial step that made sure that the text corpus
had words that only makes sense together, such as the ones mentioned. To connect these
compound words, we connected words with underscore ( ) when there was two or more
consecutive nouns after each other3. This text document was used to both train GloVe
and Word2vec, and these models contain exactly the same words.

GloVe and Word2vec was trained with window size 15 and vocab min count 5. The
iterations over the dataset was left at standard on glove and Word2vec, which was 15
for GloVe and 5 for Word2vec.

2The wikipedia dump can be located at https://dumps.wikimedia.org/enwiki/ where we
have used enwiki-20160820-pages-articles.xml. Downloaded: 15th September 2016

3The code for connecting compound words can be located here: https://github.com/
RaRe-Technologies/gensim/issues/881 Downloaded: 13th of March 2017
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4.4.2 Predicting word vectors

The projected network will generate a vector with dimension native to the language
model. To find the word vectors closest to this vector, we use Approximate Nearest
Neighbor Oh Yeah (ANNOY) [47], developed by Spotify. ANNOY uses euclidean dis-
tance to search for closest vectors, and it is also common to use cosine similarity. Since
we are only interested in ranking the vectors by closest word and not the actual calcu-
lated distance/similarity both the euclidean distance and cosine similarity will return the
same ranking order when the vectors are l2-normalized. This is because euclidean dis-
tance acts as a decreasing version of cosine distance, which means the most similar in
cosine similarity is also the closest in euclidean distance.

In figure 4.7 we can see that euclidean distance and cosine similarity yields the same
space, in the normalized case. If these two were different, we would expect two different
t-SNE representations of their space.

29



4.4 Language Model

(a) t-SNE: Cosine similarity

(b) t-SNE: Euclidean distance

Figure (4.7): Showing t-SNE [48] figure where two spaces is computed with different metrics,
euclidean and cosine similarity.
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4.5 Technical information

4.5.1 Deep learning frameworks - Keras and Tensorflow

With the growing interest in deep learning, many new frameworks have been developed
for developing neural networks. From these we have chosen to use Keras [43] as our
main framework, with Tensorflow [49] as backend. Keras gives us a level of abstraction
that makes it easier to develop prototypes, as well as a big community around it. With
Tensorflow as backend, the library uses CUDA technologies to boost the performance
significantly by using GPU during training of the neural network.

Keras also has a Inception-v3 model pre-trained on the ImageNet data that we have
used in the implementation.

4.5.2 Hardware specification

When working with large data and deep neural networks, a big issue is computing power.
We used two personal computers, each running with Titan X Pascal GPU. The architec-
ture is large, and takes a large amount of space on the GPU and RAM. Having the Titan
X Pascal GPU and a memory card with a total of 32GB RAM has significantly reduced
compute time, and thus helped making this thesis possible.

The datasets presented in section 5.1 are stored locally on each of the computers,
requiring about 1 TB of space divided over multiple hard disks and SSDs. This also
includes the language models which is around 30GB in one file and the text file after
preprocessing of around 10GB.
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Chapter 5

Experiments & Results

This chapter has experiments on the implementation to investigate the research goal
and questions, before reporting the result. The chapter contains multiple experiments,
for different scenarios, data and language models. To evaluate the proposed model, we
conduct experiments on two main tasks: One single-label Zero-Shot Learning (ZSL) and
different approaches to multi-label ZSL. Each experiment is described and presented
with a goal. The goals are connected to one or several hypotheses each, which we will
conclude if met or not.

5.1 Datasets overview

As the architecture is designed for both single-label and multi-label problems, there is
a need to use datasets to fit these scenarios. We have downloaded datasets available
publicly for research purposes, chosen on background of sizes and which datasets are
used by related work.

Table 5.1 gives an overview of the datasets we have chosen to use. The selection of
datasets are chosen from what similar papers have used.

Table 5.1: Class and size of images of popular Zero-Shot Learning datasets

Datasets
# of

images
# of

classes
Multilabel
problem

ImageNet ILSVRC15 DET [40] 456,567 200 No
ImageNet ILSVRC15 CLS-LOC [40] 1,281,167 1000 No
Nus-Wide [50] 269,648 5018 Yes
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5.2 Normalization Layer test

The ImageNet datasets are collected and organized according to the WordNet [36]
hierarchy. ImageNet has two different datasets which are provided by Stanford Vision
Lab from Stanford University. ImageNet DET is a dataset where bounding boxes are
provided for each image and has bounding boxes for 200 different classes. ImageNET
CLS-LOC is a dataset with one class per image and it has 1000 different classes.

The NUS-WIDE dataset is a collection of images and their associated tags from
Flickr, with a total of 5018 tags. It was collected by the National University of Singapore
and in our multi-label experiment we have selected to use only the 1000 most popular
tags and a selected 81 concepts list.

5.2 Normalization Layer test

The goal for this test was to determine whether or not normalization should be used in
our last layer of the projection part of the network. Zhang et al. [32] used normaliza-
tion to compare the word vectors with the projected image to vector space. Therefore
we wanted to conduct an experiment to see if the normalization was important for our
results.

Table 5.2: Results for ImageNet1k single label prediction k = 10, without l2-normalization after
last layer.

Loss MAP@10 (%) Flat hit@10 (%)

Cosine similarity 5.10 17.50
Euclidean distance 1.70 4.70
Hinge 3.60 13.50
Squared hinge 1.50 4.10

Table 5.3: Results for ImageNet1k single label prediction k = 10, included l2-normalization after
last layer.

Loss MAP@10 (%) Flat hit@10 (%)

Cosine similarity 5.30 17.10
Euclidean distance 5.10 17.90
Hinge 5.00 17.00
Squared hinge 5.30 18.10

Table 5.3 and table 5.2 shows that the predicting results are significantly better when
adding normalization before the loss function. The reason cosine similarity reports sim-
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ilar result for with and without normalization is because Keras automatically normalizes
the data when using cosine similarity. After adding normalization the loss functions pre-
dict more similar results with squared hinge being slightly better. The experiments after
this will use l2-normalization.

Note: This experiment was done before we had made our language model include
compound words. This is the reason the MAP and flat hit is not the same to the single
label experiment later.

5.3 Selecting parameters

The parameters were selected early in the experimentation. With the experiments being
large and each one taking days to complete, there was not enough time to adjust them
to test with many different parameters. Only a small experiment was run between loss
functions to decide which one was the most optimal one, where the best was chosen for
the main experiments.

5.3.1 Optimization and learning rate

The selected optimizer used by the experiments is the Adaptive Moment Estimation
(Adam) [51]. Adam optimizer is known to be a stable optimizer as it prevents over
fitting and leads to convergence faster. The learning rate, η, was set to η = 0.002, which
is the default in Keras [43] when using Adam.

5.3.2 Batch Size

The batch size defines the number of samples that will be propagated through the net-
work each iteration. The batch size effects how quickly a network trains, and how ac-
curate the estimation of the gradient is. With a larger batch size the network typically
trains quicker, but requires more memory. With smaller batch sizes the models typically
gives less accurate estimations of the gradient, while using less memory than larger batch
sizes. Since our model is quite large and requires a lot of memory, the batch size was
set to 32. Batch size of 32 is a common number in many applications and is also Keras’
default value.

5.3.3 Loss function

Selecting the loss function in any machine learning problem can be a crucial part and
effect the result greatly. As the model proposed is trying to map features from an image
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5.3 Selecting parameters

to a dimension native to the language model, a loss function that calculates the distance
or similarity between two continuous vectors is needed. All of the experiments described
are time consuming, and can not be trained for all different loss functions. Therefore,
four different loss functions were tested on a small experiment to decide which loss
function will be used. These four were: cosine similarity, euclidean distance, hinge and
squared hinge.

The small experiment uses the language model trained on GloVe in 300-dimensions,
and uses the same dataset and split as described in section 5.4.1. It is tested on a space
containing only unseen classes (the space showed in figure 5.1).

Table 5.4: Results for four different loss functions. Trained on ImageNet 1k, and tested on a space
with only unseen labels with different values of k.

Loss MAP@k (%) Flat hit @k (%)

1 2 5 10 1 2 5 10

Cosine similarity 12.0 14.5 17.0 18.3 12.0 17.0 26.0 35.8
Euclidean distance 12.3 14.9 17.6 18.9 12.3 17.5 27.3 36.7
Hinge 11.3 13.9 16.5 17.8 11.3 16.5 26.0 35.8
Squared hinge 13.3 16.0 18.4 19.6 13.3 18.6 27.4 37.0

Table 5.4 shows that squared hinge outperforms the other tested loss functions by a
small margin. Based on this, squared hinge is chosen as the loss function for all later
experiments in the thesis.

5.3.4 Iterations and Stopping criterion

Traditionally one iteration, or one epoch, is having the model train on all samples in
the training set one time. However, when working with a large number of samples the
experiments uses a fixed number of batches for each iterations. This number is set to
5000, meaning the models train on the total of 5000 * 32 images per iteration. At the
start of each iteration the training set is shuffled, making the order of the image-list
random.

The number of iterations can either be set to a fixed number or decided from a stop-
ping criterion. As it can be hard to know when a model has reached its full potential,
it can be hard to select a fixed number of iteration. Therefore a stopping criterion has
been chosen. After each iteration, the model is tested against a validation set containing
20,000 images. Testing on the validation set reports a validation loss, when the valida-
tion loss has not changed over three iterations, the model stops training. Also, the model
is saved each time the validation loss is improved, in case the training fails to complete.
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5.4 Experiment 1 - Single-label Zero-Shot Learning

5.4.1 Description

This experiment will use the ImageNet ILSVRC15 CLS-LOC [40] dataset, which as
described in section 5.1, contains 1.2 million images with a total of a 1000 classes.
Following the same instructions as Mensink et al. [52] the experiment will split the data
set into a seen set of 800 classes and an unseen set of 200 classes, which are randomly
selected. Before starting the experiment, the classes that do not exist in the language
model needs to be removed. As all the language models are trained on the same corpus
of text, they contain the same words but it is not a guarantee that they contain all the
class names in ImageNet 1k.

The experiment seeks to investigate how increasing the dimensions of the language
models will effect the result. The language models are trained using both GloVe and
Word2vec, and these will be trained on three different dimensions: one 50-dimension,
150-dimension and a 300-dimension space. As a result, six different models will be
trained. Each of which will make predictions for two spaces, one containing only unseen
classes and another containing both unseen and seen classes.

Figure 5.1 and figure 5.2 shows a t-SNE [48] representation of the two different
prediction spaces using the 300-dimension GloVe. As the spaces are originally in 300-
dimensions it can be hard to visualize as a 2-D figure, but using the dimension reduction
technique t-SNE [48] the figures demonstrates how the unseen space contains less words
and therefore contains less noise.
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Figure (5.1): 2-D representation of the GloVe 300-dimension vector space for the words in the
unseen set using the dimension reduction technique t-SNE [48].

Figure (5.2): 2-D representation of the GloVe 300-dimension vector space containing the words
from both unseen and seen set using the dimension reduction technique t-SNE [48].
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5.4.2 Goal of the experiment

This experiment will test if our proposed architecture can get good results when predict-
ing single-label Zero-Shot Learning. A similar experiment was run by Frome et al. [6]
in their model DeVISE, where they had a Flat hit@5 accuracy of 31.8% when predicting
on the 200 unseen classes and 9.0% when the model could predict on both unseen and
seen classes. This experiments aims to get similar results as theirs, and by this it seeks
to demonstrate that the architecture returns promising results before applying it to the
multi-label problem.

The experiment will investigate how the architecture scale both with language model
dimensions and number of classes the model can predict on. Testing different language
model algorithms the experiment seeks to find out if GloVe or Word2vec is best suitable
for our ZSL architecture.

Hypothesis 1: We hypothesize that our implementation will be able to predict un-
seen labels for the single-label problem, with similar results as Frome et al. [6].

Hypothesis 2: The experiment will test how different dimensions of the language
model algorithms will effect the result. Having higher dimensions in language models
enables them to store more information, and will return better result.

Hypothesis 3: Increasing the word space with more words will generate more noise
for the model and the model will suffer to predict the correct unseen label.

5.4.3 Results

Table 5.5 shows the result for single-label Zero-Shot Learning. A total of 185 classes
did not have a word vector in the language models and was removed. This left a total of
815 classes in the dataset, 651 classes in the seen set and 164 in the unseen. The amount
of images was reduced from 1.2 million to 1,051,219 images, where 839,930 images in
the training set and tested on 211,289 images with unseen classes.

In table 5.5 the predict space column shows which words were inside each space.
In the language model column, w2v is short for Word2vec. The results are measured in
MAP and Flat Hit, described in section 2.7. With k = 5 the model returns the 5 closest
labels to the predicted vector, and calculates the score. Increasing k will make the model
return more proposals, and the chance for the correct one to be among these is naturally
higher.

The table 5.5 shows that the Word2vec algorithm is best suitable to use as language
model. With Word2vec outperforming GloVe in all the scenarios. Also, increasing the
dimension of the language model clearly improved accuracy for both Word2vec and
GloVe.

From the two spaces, as expected the unseen space had significantly better result
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Table 5.5: Results for ImageNet1k single label prediction measured with different values of k and on two predict spaces (which words are available to
predict on) using different language models in different dimensions. In the language model column, the names first describes the language model method
before the dimension. For example, GloVe-50D is trained with GloVe and represented in a space with 50-dimensions.

Predict Space
(# Candidate labels)

Language model MAP@k (%) Flat hit @k (%)

1 2 5 10 1 2 5 10

Seen+Unseen GloVe-50D 0.26 0.78 1.42 2.02 0.26 1.30 3.89 8.42
(651+164) GloVe-150D 0.12 1.46 3.22 3.89 0.12 2.79 9.25 14.41

GloVe-300D 0.03 2.11 3.84 4.71 0.03 4.19 10.86 17.47
Word2vec-50D 0.45 1.75 3.1 3.77 0.45 3.06 8.14 13.21
Word2vec-150D 0.13 1.82 3.78 4.73 0.13 3.52 10.8 17.99
Word2vec-300D 0.04 2.31 4.40 5.44 0.04 4.58 12.30 20.18

Unseen GloVe-50D 3.48 5.45 7.80 8.98 3.48 7.43 16.26 25.37
(164) GloVe-150D 10.41 12.50 14.70 15.89 10.41 14.59 22.71 31.81

GloVe-300D 12.01 15.04 17.80 19.00 12.01 18.07 28.51 37.17
Word2vec-50D 9.01 11.27 13.83 15.24 9.01 13.54 23.05 33.8
Word2vec-150D 14.34 17.34 20.19 21.72 14.34 20.33 30.95 42.37
Word2vec-300D 15.42 18.9 21.86 23.13 15.42 22.38 33.0 42.66
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Figure (5.3): Flat hit@5 accuracy distributed among all classes using Word2vec in 300-D vector
space as language model.

than the space containing both the unseen classes and seen classes. More words create
more noise and might have been one of the main reasons the results dropped so much
when adding seen classes to the space. However, this would mean a model needs to be
told if the object is unseen first which is unrealistic in most real world applications.

Figure 5.3 sorts the score distributed for each class. With flat hit @5 and on predicted
space including seen and unseen labels, a total of 70 classes reported to miss on every
sample, reporting a accuracy of 0%. While on the unseen space, this is reduced to 25.
However on both of the spaces there is a large difference between the classes with some
classes missing on every sample, and some classes reporting a hit accuracy higher than
90%.

Comparative results

The results are compared against 4 alternatives in table 5.6, where flat hit@5 is used.
As we removed some classes from both the seen and unseen set the results can not be
compared directly, but gives us a good overview of where the results should be.

Also as we learned from figure 5.3 some classes got very high score, while some
missed on every sample. With the unseen and seen split being random, being lucky with
the split can also effect the results.
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Table 5.6: Comparative results measured in flat hit@5

Model Unseen Unseen+seen

ConSE [9]1 28.5% -
DeViSE [6]1,2 31.8% 9.0%
Mensink et al. [52]1,2 35.7% 1.9%
Zhang et al. [53]1 60.7% -

Ours (table 5.5) 33.0% 12.3%
1 Results not reproduced by us, but reported by Zhang

et al. [53].
2 Results also reported by Frome et al. [6].

5.4.4 Was the goal met?

The goal (see section 5.4.2) for this experiment was to show that our ZSL architecture
managed to predict single-label ZSL with expected results. In terms of the hypotheses
the results show:

Hypothesis 1: The results show that the architecture is able to predict unseen labels
for a single-label problem with similar results as DeVISE [6]. The best model manages
a Flat hit score of 42.66 % on the unseen space when using k = 10, on Word2vec with
300 dimensional vectors.

Hypothesis 2: Increasing the dimension of the language models clearly improved
the result as expected. With Word2vec in 150-dimensions reporting an Flat hit@5 accu-
racy of 30.95 % and 300-dimensions 33.0 %.

Hypothesis 3: Having a predicting space only containing the unseen labels did sig-
nificantly improve the results, which is not surprising. Introducing more labels intro-
duces more noise and do generally lead to a worse result and was not surprising.

In summary, the goal was met with expected results which provide a good basis for
the multi-label experiment.

5.5 Experiment 2 - Multi-label Zero-Shot Learning

For the multi-label scenario we have split the experiment into two parts. One experiment
where the trained model on the single-label data is used directly to predict for multi-label
and one experiment that tunes the pre-trained model from experiment 1 on multi-label
data before testing.

The experiments loads the model from experiment 1 that reported highest score,
which table 5.5 shows is trained using Word2vec with 300 dimensions. The weights
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from this model are loaded to the projection network for all models in this experiment.
Following the same configuration as Zhang et al. [32], the 81 concept tags in NUS-

WIDE [50] will be used as unseen set with the most frequent 1000 Flickr tags forms the
seen set. A total of 75 tags are shared with the 81 concept and 1000 tags, resulting in a
seen set with the remaining 925 tags.

Same as in experiment 1 in section 5.4, the experiments will also predict for two
different spaces, having one with only unseen classes and one with both unseen and
seen classes. As this is a multi-label scenario, an image can contain multiple objects
resulting in objects containing both unseen and seen labels. For example, if an image
contains both cat and dog where cat is an unseen label and dog is seen, the vector space
with only unseen labels will only contain cat and cat will be the actual label. For the
vector space containing both unseen and seen, cat and dog will be kept as labels, which
means that if the model is able to predict the seen label but fails to predict the unseen,
the model will still get points for the seen label.

5.5.1 Experiment 2.1 - Tune model on multi-label dataset

This experiment tunes the pre-trained model from experiment 1 on multi-label data. We
will run one experiment following the random boxes generation implementation from
section 4.3.3 and two experiment using a ODF from section 4.3.4. The ODF experiments
will test the two ODFs Faster R-CNN [1] and YOLOv2 [2]. These two are trained on
different data, with YOLOv2 model being pre-trained on 9000 objects and Faster R-
CNN trained ourselves on the ILSVRC [40] 2015 detection data set with 200 object
classes.

5.5.2 Experiment 2.2 - Test single-label model directly on multi-
label data

This experiment will test if a model trained on a single-label data set can be used to
predict for multi-label ZSL. The experiment uses the model trained in experiment 1 that
followed the description in section 5.4.1.

The experiment seeks to investigate if the model can be trained on a single-label data
and later make predictions for multi-label problems using the different box generators
only for testing.

5.5.3 Goal of the experiment

The purpose of this experiment is to demonstrate that by splitting an image into a set of
boxes, the architecture can also predict for multi-label ZSL, both predicting multi-label
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after training for a single-label data.
Hypothesis 1: The model tuned on multi-label data (section 5.5.1) will outperform

the one only trained on single-label images in section 5.5.2.
Hypothesis 2: Using a Object Detection Framework (ODF) will outperform the

randomly generated boxes. This because the boxes will have more success in finding
the objects in each image. Among the two different ODFs YOLOv2 [2] will outperform
Faster R-CNN [1].

5.5.4 Results

Table 5.8 shows the result for multi-label ZSL. Same as in experiment 1, classes that did
not have a word vector in the language models was removed. In NUS-WIDE, only 5 out
of the 925 and none of the 81 concept classes missed a word vector. A total of 78,530
images was tested for both unseen and seen+unseen prediction space. The results are
measured in MAP (section 2.7.2) with different k-values and one value, gt, where the k
value is equal to the number of possible predicted words.

In addition to measuring the results in MAP we added missed average cosine. Missed
average cosine calculates cosine similarity between every missed labels and its ground
truth. With this we want to measure not only hit-miss ratio, but also how far away each
missed prediction was the ground truth.

The table shows that tuning the model on a ODF using the details from section 4.3.4
and making predictions using the random box generator in section 4.3.3 have highest
accuracy. When training the model with random boxes, the results are even worse com-
pared to not tuned at all.

Comparative results

The results from table 5.8 are compared against three alternatives in table 5.7, that are
all reported by Zhang et al. [32]. Our best model did not perform better than Fast0Tag
by Zhang et al. [32], but had similar results to the multi-label ConSE reported by Zhang
et al. [32].
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Table 5.7: Comparative results measured in MAP@gt,
our results compared to the ones listed by Zhang et al.
[32]. gt is the number of possible words predicted.

Model Unseen Unseen+seen

ConSE [9] 32.4% 12.5%
Fast0Tag - linear [32] 40.1% 18.8%
Fast0Tag - ANN [32] 42.4% 19.1%

Ours (table 5.8) 33.0% 11.1%
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Table 5.8: Results for multi-label ZSL tested on the NUS-WIDE [50] dataset. We have made predictions for both unseen and seen space, and
with a model trained on single-label with the description from section 5.5.2 and one following section 5.5.1 where the single-label model is tuned
on multi-label data. The multi-label model is both trained and tested with a box generator, while the single-label model is only tested using
the designated box generator. With k value equal to gt it sets k value equal to the number of candidate labels in the prediction space, 1001 for
seen+unseen and 81 for unseen.

Predict Space
(# Candidate labels)

Tuned
on multi-label

Box generator MAP@k (%) missed Avg. Cosine3

1 2 5 10 gt

Seen + unseen No Random generator 8.70 5.46 3.00 2.50 3.24 0.26355
(920 + 81) No Faster R-CNN 0.76 0.60 0.43 0.39 0.39 0.23806

No YOLOv2 0.62 0.45 0.21 0.15 0.14 0.24769
Yes Random generator 1.47 1.93 1.60 1.35 1.27 0.22845
Yes Faster R-CNN1 4.53 3.36 2.07 1.51 1.34 0.25725
Yes Faster R-CNN2 30.29 28.71 31.23 32.79 11.13 0.32489
Yes YOLOv21 3.37 3.26 2.30 1.59 1.39 0.29646
Yes YOLOv22 26.48 17.72 10.18 8.17 7.73 0.33408

Unseen No Random generator 11.86 10.23 11.04 11.82 10.48 0.19299
(81) No Faster R-CNN 2.46 2.72 3.67 4.56 4.77 0.17813

No YOLOv2 1.65 1.72 1.71 1.70 1.70 0.17166
Yes Random generator 2.31 3.22 4.48 5.18 5.21 0.16872
Yes Faster R-CNN1 9.97 7.97 7.30 7.33 7.33 0.17489
Yes Faster R-CNN2 31.45 22.96 14.39 11.76 32.95 0.22316
Yes YOLOv21 12.06 9.01 8.13 8.16 8.16 0.22409
Yes YOLOv22 25.85 23.42 25.03 26.16 26.23 0.23475

1 Trained and tested with ODFs.
2 Trained with ODFs, but tested with random generator.
3 Range [−1,+1], where 1 is most similar. Calculated closest ground truth label for each missed prediction.
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5.5.5 Was the goal met?

The goal (see section 5.5.3) for this experiment was to train and test a model in multi-
label ZSL.

In terms of the hypotheses the results show:
Hypothesis 1: Tuning the data on multi-label as described in section 4.3.1, did not

always improve the results. Using the random boxes approach reported a worse result
compared to the weights from single-label. However, training using the ODF approach
did improve the model.

Hypothesis 2: The ODF outperformed the randomly generated boxes when training
on the ODF boxes. However, generating random boxes outperformed ODF when mak-
ing predictions. Comparing YOLOv2 and Faster R-CNN, the results showed that Faster
R-CNN performed better during training, while YOLOv2 performed better during pre-
diction.

These are surprising results, and the gap between the models that reported high ac-
curacy and the ones that missed was large.
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Chapter 6

Discussion

In this chapter we discuss and analyze the results from chapter 5. The chapter tries to
explain what the results might mean, how valuable they are and why. We discuss these
results in terms of the research questions introduced in section 1.2.

6.1 Language models & prediction spaces

The first experiment tested different techniques for single-label ZSL and compared these
to find the best suitable model to train in our multi-label scenario.

Using Word2vec with 300-dimensions has the highest accuracy, with a 3 % higher
flat hit@5 accuracy compared to the 150-dimension model. This indicates that increas-
ing the dimension improves the accuracy and it would be interesting to train a 500- and
1000 dimensional language model, as Frome et al. [6] did in their model, to see if the ac-
curacy continued to improve. Frome et al. [6] also used the Skip-Gram algorithm while
we used CBOW, and since Mikolov et al. [22] reported that Skip-Gram got slightly bet-
ter results on the semantic relatedness, we have suggested to test Skip-Gram in future
work (section 7.2).

In our experiments, Word2vec outperformed GloVe and with GloVe considered a
count based method, our results supports the work of Baroni et al. [37], where they
concluded that Word2vec was better than count based methods in terms of semantic
relatedness. In our experiment, even the Word2vec model trained on 150 dimensions
outperformed the best GloVe model of 300 dimensions.

The language models used are all trained on the same text corpus, the English
Wikipedia. When making predictions for images, it is natural to assume that having
a language model based on image descriptions would outperform the English Wikipedia
corpus. For example, cup and table may occur often together in an image, but may not
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be the case in a textual context and is therefore not considered close in the language
model. Not able to locate a large enough image description database, we have not been
able to train a language model on image descriptions or tune the Wikipedia model with
image descriptions.

The results from chapter 5 display quantitative results on the experiments. However,
a more in depth analysis is needed to see what the models predict to understand how
well they work. When working with a large number of sample images, it is impossible
to look at every single prediction to analyze them. Therefore we have in table 6.1 chosen
to take a few random samples from experiment 1 and used the best scored model to make
predictions, and try to make sense of these.

Table 6.1 shows the input image with the five closest words to the predicted vector
for the unseen and seen+unseen spaces. When all the seen labels are removed from
the predicted space, the unseen labels are pushed up. So when showing a picture of a
hen, the model predicts the seen label cock as top-1 and with hen as the closest word
to cock, this gets pushed up as the closest word to the predicted vector when removing
seen labels. The same happens when making a prediction on the input image of a leaf
hopper, the correct label is not in top-5 when including the seen labels, but jumps up as
the third closest label when removing all seen labels.

Removing the seen labels from the prediction space is however an unrealistic sce-
nario. This is because in most cases a model do not know if the object is unseen or seen
before making a prediction, to enable it to predict on only unseen words it would need
to be able to tell that this is a new object. For example, when a child sees a zebra for the
first time, it may be able to tell that it has never seen one before and that even if it may
look like a horse it is not. Having a similar approach where the model could tell if it had
seen the object before could enable the possibility to only predict on unseen words.

This means that even if our model have a high accuracy for predicting on only unseen
labels, it may still be a poorly generalized model as we are letting the model cheat by
removing noise from all the seen labels. Also the noise depends on the number of unseen
labels we have chosen to include. In our experiments, we have chosen to let the unseen
words be a set of chosen words we want to make predictions on. One could choose to
include all the words available in the language model that would create way more noise
and perhaps even make the flat-hit score go down to zero when calculating top-10.

For all the five examples included in table 6.1 the first predicted word in the un-
seen+seen space is a seen label. Looking at table 5.5 the model has a flat hit @ 1
accuracy of only 0.45 % for the seen+unseen space. This may mean that the model al-
most never predicts an unseen word, but only make a guess to what seen label it looks
most similar to, which in return may mean that the results will always be limited on the
language model and relies on visual similar objects to be placed together in the language
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Table 6.1: Top-5 results for five randomly selected images from the ImageNet competition. The
correctly annotated labels have a checkmark Xbeside it. Best viewed in colors.

Images Seen (blue)
+ unseen (red) Only unseen

Figure (6.1): Hen

1. Cock

2. Hen X

3. Magpie

4. Goose

5. Lion

1. Hen X

2. Lion

3. Ox

4. Kelpie

5. Baboon

Figure (6.2): Ocarina

1. Pencil sharpener

2. Safety pin

3. Screwdriver

4. Plunger

5. Sock

1. Plunger

2. Washer

3. Power drill

4. Wine bottle

5. Pickup

Figure (6.3): Ox

1. Plow

2. Tractor

3. Ox X

4. Shovel

5. Water buffalo

1. Ox X

2. Kelpie

3. Tripod

4. Upright

5. Samoyed

Figure (6.4): Leaf hop-
per

1. Leaf beetle

2. Damselfly

3. Dragonfly

4. Lacewing

5. Vulture

1. Dragonfly

2. Wolf spider

3. Leaf hopper X

4. Weevil

5. Marmoset

Figure (6.5): Police
van

1. Ambulance

2. Stretcher

3. Oxygen mask

4. Fire engine

5. Police van X

1. Oxygen mask

2. Police van X

3. Crash helmet

4. Forklift

5. Pickup
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model.

With the results for experiment 1, we saw in figure 5.3 that classes had a large dif-
ference in accuracy. With some classes having high accuracy, some average and some
very low. Table 6.2 shows the five classes with highest score on this experiment with
their closest seen labels. These labels might give answers to why some classes reported
very good accuracy. The best scored label is ’space bar’ that has a flat hit score of 95.69.
’Space bar’ refers to the space bar on the computer keyboard which also is the closest
seen label. It is natural to assume that having a seen label that is both visually similar
and also the closest word vector to the unseen will create an accuracy that is high, for
example the model predicts computer keyboard as first prediction and then space bar
will be picked up already when estimating top-2 words. Looking at the actual predicted
labels, the model predicts typewriter keyboard and computer keyboard in 787 and 208
samples which also are the closest labels to space bar in the language model.

This is also true for the four other labels in the table 6.2, for example a dragonfly
looks very similar to a damselfly, and 1157 times the model predicted damselfly as top-1
when showing an image of a dragonfly which will naturally give a precise top-5 with
dragonfly being very close in the language model. Another example of this is when
making prediction for the dog breed entlebucher. Here the model predicts appenzeller in
most cases, which is visually a very similar dog breed to entlebucher, and even humans
might struggle to spot the difference.

The table also list sunglasses with sunglass as most predicted. However, sunglass is
not listed as the closest label to sunglasses, but when switching the roles and listing the
closest labels to sunglass the word sunglasses did come up as closest label. Meaning,
when sunglass is closest word to predicted vector, sunglasses will appear as top-1. This
indicates that even if word A have word B as closest neighbor, word B does not necessary
list word A as closest neighbor. Meaning small changes in a word vector might have a
huge impact on the predicted word.

Looking from the other end of the scale, table 6.3 have randomly picked five unseen
labels that have reported zero in accuracy. In the first example peacock is placed close
together with other birds in the language model, but when making predictions the model
fails to predict a word that has peacock as top-5 closest. This can be as simple as even
if the birds closest to peacock are semantically similar, they may not be visually similar
enough for the model.

In another example, both parking meter and a odometer have similar purpose and
meanings. However, having never seen a parking meter before, the model fails to recog-
nize this for every sample in the test set. For 727 images of a parking meter, the model
predicts that it is seeing an abaya, a cloak worn by some women in the Muslim commu-
nity. An abaya and a parking meter does not have remotely similar meanings to humans,
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Table 6.2: The five unseen labels with highest flat-hit score on top-5 prediction, with the vector
space containing both unseen and seen labels. Top-1 actual predicted column shows what was
predicted as top-1 and the number of times in parentheses.

Unseen label Score Closest seen labels
in Language model

Top-1 Actual predicted
(# predicted)

Space bar 95.69

1. Computer keyboard

2. Joystick

3. Typewriter key-
board

4. Menu

5. CD player

1. Typewriter keyboard
(787)

2. Computer keyboard
(208)

3. Desktop computer (10)

4. Screen (6)

5. Monitor (2)

Dragonfly 93.53

1. Damselfly

2. Lacewing

3. Hummingbird

4. Ladybug

5. Amphibian

1. Damselfly (1157)

2. Fly (61)

3. Ant (12)

4. Lacewing (8)

5. Harvestman (6)

Entlebucher 89.84

1. Appenzeller

2. Affenpinscher

3. Miniature pinscher

4. Malinois

5. Weimaraner

1. Appenzeller (1147)

2. Bluetick (38)

3. Rottweiler (34)

4. Microphone (14)

5. Beagle (7)

Assault rifle 85.91

1. Rifle

2. Revolver

3. Holster

4. Half track

5. Barrel

1. Rifle (1091)

2. Military uniform (97)

3. Revolver (26)

4. Holster (9)

5. Scabbard (4)

Sunglasses 82.99

1. Trench coat

2. Cowboy hat

3. Wig

4. Sweatshirt

5. Bow tie

1. Sunglass (1007)

2. Seat belt (36)

3. Bow tie (14)

4. Safety pin (13)

5. Trench coat (9)
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Table 6.3: Five unseen labels with a flat-hit@5 accuracy of 0.0, with the vector space containing
both unseen and seen labels. Top-1 actual predicted column shows what was predicted as top-1
and the number of times in parentheses.

Unseen label Score Closest seen labels
in Language model

Top-1 Actual predicted
(# predicted)

Peacock 0.0

1. Magpie

2. Toucan

3. Ostrich

4. Partridge

5. Cock

1. Damselfly (216)

2. Indigo bunting (155)

3. Cock (140)

4. Leaf beetle (125)

5. Flatworm (84)

Parking meter 0.0

1. Odometer

2. Stopwatch

3. Tow truck

4. Vending machine

5. Cash machine

1. Abaya (727)

2. Safety pin (59)

3. Ashcan (53)

4. Binoculars (33)

5. Sweatshirt (29)

Coffeepot 0.0

1. Ladle

2. Spatula

3. Stove

4. Strainer

5. Tub

1. Water jug (495)

2. Espresso maker (424)

3. Stove (62)

4. Pitcher (50)

5. Cocktail shaker (27)

Waffle iron 0.0

1. Dough

2. Pretzel

3. Rotisserie

4. Wok

5. Spatula

1. Chest (202)

2. Spatula (117)

3. Safety pin (83)

4. Dutch oven (45)

5. CD player (42)

Horse cart 0.0

1. Minibus

2. Minivan

3. Limousine

4. Jeep

5. Garbage truck

1. Jinrikisha (360)

2. Plow (238)

3. Barrel (144)

4. Tractor (100)

5. Shovel (47)
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and this shows how the model can be way off when it comes to some predictions.
While the model sometimes make predictions that are way off, it can also make

wrong predictions that still can be considered good guesses. For example, with the
coffeepot images the model has predicted water jug and espresso maker often as the
top-1 predicted. Both of these have similar purpose as a coffeepot, and are also visually
similar. However, the language model does not have coffee pot in the top-5 closest word
for either of these. The same happens with the horse cart images, where the model
predicts jinrikisha as top-1 in 360 samples. A Jinrikisha and a horse cart looks similar,
and have also similar purposes where one is dragged by a human and the other by horses.
One might suggest that this indicates a poorly trained language model that does not have
the vector representation of these two words closer together.

Table 6.2 and table 6.3 indicates together that being lucky with the unseen and seen
split will have a high impact on the results, and that unseen labels relies on the model
having trained on labels that are visually similar and also close together in the language
model space.

The architecture performs similar results to the alternatives in table 5.6. Transform-
ing an image into a vector that fits the language model proves to be possible and giving
sensible results. However, it may be hard to tell if these results can be further improved
using the same architecture proposed here or if the results always will be limited on the
limitations mentioned in this section. With many aspects and networks merged together,
the architecture might always be as weak as its weakest model or network.

6.2 Multi-label scenarios

We argued that training the model on a single-label experiment first would enable us to
train on multi-label data by generating boxes for each image to connect these to labels.
The expectation was that using a ODF to generate these boxes would outperform the
randomly generated boxes, however the results shows that the randomly generated boxes
for prediction clearly outperforms the ODFs. During training the models trained on
ODF generated boxes was significantly better than the random generated. Using random
generation during training actually made the model perform worse than using the model
trained on single-label directly.

In an attempt to answer why the random generated boxes performed so well during
predictions we have in figure 6.6 gathered the generated boxes for random, YOLOv2 and
Faster R-CNN for one image in the NUS-WIDE dataset. In this figure, YOLOv2 has a
few very small boxes that tries to detect small objects, but also larger boxes trying to
detect larger objects. Comparing Faster R-CNN and the randomly generated boxes it is
hard to tell them apart as they both seem to have large boxes that together cover the full
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(a) Boxes generated by Faster R-CNN (b) Boxes generated by YOLOv2

(c) 30 boxes generated randomly (d) Original picture

Figure (6.6): A comparison of YOLOv2, Faster R-CNN and the randomly generated boxes for an
image in the NUS-WIDE dataset.

image. By looking closely at these two one might notice that the randomly generated
boxes looks more squared than the Faster R-CNN boxes. Still, even if these are slightly
different this should not be an answer in itself to the big difference in the accuracy.

We also noticed that some of the boxes generated by Faster R-CNN covers a large
part of the image while the random boxes overlap more, and are also more evenly dis-
tributed over the entire image. This might be one of the reasons random bounding boxes
performed better during prediction. From figure 6.6 we notice that YOLOv2 and Faster
R-CNN fails to make boxes that successfully cover the objects in the image. A well-
trained object detection framework should be able to recognize and detect objects, and
especially the person.

Even if we can find some differences between the approaches, this is not enough to
conclude why the accuracy is so different. A more thorough investigation is needed to
fully answer this, and even if the examples in figure 6.6 may indicate a different pattern
between the approaches, it is impossible to conclude the behavior based on a single
image, especially considering there are 78,530 images in the the test set and 156,585
images in the training set.

The ODFs was also tested without using Non-Maximum Supression (NMS) (de-

56



Chapter 6. Discussion

scribed in section 2.5.1) to see if keeping more boxes would increase the accuracy. When
evaluating these results we got slightly worse results as when using NMS, and concluded
that this could not give an answer to why random boxes predicted better than ODFs.

While the random boxes performed well during prediction, the model fails to train
on them. One of the reasons might be that only the boxes that fit best to a label are used
which may fit better for the ODF boxes where a few might match the labels. This is,
however, guesses and as with the prediction scenario, it is hard to find an answer to these
behaviors without more investigation.

Our solution is based on the principle that each image contained objects connected
to a region of the image where each of these were labeled, but in the NUS-WIDE data
we noticed that some of the labels are not object focused. For example, an image could
be labeled city, London and England which are all three different labels in NUS-WIDE,
but not necessarily three different objects. Having an image of London could return all
those three labels, but they are not connected to certain regions of the image, but rather
the context of the full image in itself. This is demonstrated in table 6.4, where we have
collected some random images and their predictions for both unseen and seen+unseen
spaces using the model trained on Faster R-CNN and tested with random boxes.

The building in figure 6.9 is labeled with historic, historical and history. These labels
are not connected to three different regions of the image, but may refer to the building
having a historical value. This is three different labels with similar meanings and having
the model predicting one of them correctly may indicate a well-trained model, but will
not give full score as two are missing. One way of getting all the three tags could be to
have co-occurrence statistics also when making predictions, this way the model could
spot that if it predicted one of them, the two others often follows. This co-occurrence
statistics could be calculated using the labels from the training set, which might improve
the model and have added it for future work (section 7.2).

Animal is listed as the only ground truth label in figure 6.7 and the model receives
full score when predicting only unseen, with animal listed as the first prediction. When
making prediction for unseen+seen the model has a score of zero, although some of the
predictions are good guesses. For example, the model predicts animals, rocks, wildlife
and goat, but none of these are listed as ground truth.

With animals in the predicted list, and animal in the ground truth this also shows
another challenge when validating the predictions. Both plural and singular forms of the
same words are listed as two different labels, and when predicting one form with the
other being ground-truth, it will be counted as a wrong prediction. This is seen many
places in table 6.4, with words such as cloud/clouds, building/buildings, tree/trees and
animal/animals. This may or may not be considered a limitation, depending how strict
we want to be when validating. One may want to keep the difference between the plural
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Table 6.4: Multi-label predictions for five randomly selected images from the NUS-WIDE test
set, predicted using the model with highest MAP@gt accuracy in table 5.8 (trained on Faster R-
CNN, predicted with random boxes). The correctly annotated labels have a checkmark Xbeside it.
The seen labels are marked in blue and unseen in red. Ground truth refers to the actual label-tags
in the NUS-WIDE data, labeled by humans. When predicting on the unseen space, only the red
unseen ground truth labels are valid.

Images Seen
+ unseen Only unseen Ground truth

Figure (6.7)

horses, snow, dog,
rocks, deer, nature,
europe, animals,
wildlife, africa,
mexico, desert,
eyes, rabbit, goat,
landscape

animalX, elk,
reflection, dog,
cow, mountain,
tree, horses, bear,
snow

animal, stone, iran,
interestingness,
closeup, river,
singing

Figure (6.8)

clouds, skyX,
blue, boat, base-
ball, scenery, oil,
winter, landscape,
germany

clouds, skyX, soc-
cerX, surf, reflec-
tion, sunsetX

rainbow, soc-
cer, sky, sunset,
football, explore,
stadium, argentina

Figure (6.9)

buildingsX,
cloudsX, tree,
germany, archi-
tectureX, europe,
palace, paris,
hawaii

flags, buildingsX,
cityscapeX, tower,
mountain, train

cityscape, clouds,
buildings, sky,
building, brown,
storm, hiking,
art, sky, scenery,
illinois, historic,
architecture,
historical, history,
march, brick, walk,
public, structure,
red

Figure (6.10)

mountainX,
clouds, sky, tree,
lakeX, blue, vol-
cano, animals,
winter, nature,
trees, underwater,
landscape

mountainX, sky,
clouds, snow, tree,
lakeX

mountain, glacier,
fox, lake, sunset,
pink, cloud
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and singular, and reward the model only when it predicts the correct form, which makes
our measurements correct.

In an attempt to answer how close the misses are to the ground truth, missed average
cosine similarity is calculated in table 5.8. These results displays how the models with
higher MAP accuracy also have higher average cosine similarity score, which indicates
how close the missed predictions are to the ground truth. The models reports a lower
average cosine for the missed labels when only including the unseen labels compared to
including seen also, meaning a more precise vector is needed to make correct prediction
for unseen and seen. This is, as mentioned in section 6.1, due to noise when including
more words. The predicted words can be very similar to the actual word, but with all the
noise it fails to have the correct word in the top-k predicted. This could also mean that
when the model predicts on only the unseen labels it makes larger mistakes and therefore
also naturally get a lower average cosine similarity.

From table 6.4 we can also see that the number of ground truth labels can variate a
lot, with figure 6.9 having a total of 22 labels and 7 labels in figure 6.10 when including
both unseen and seen. We calculated that the average number of labels connected to
each image was at 7.78 and the average number of predicted labels was 11.01. This
shows that the model predicts more labels than ground truth, but with the added voting
the model will return the most occurred labels first.
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Figure (6.11): Demonstrates how the average precision variate depending on the number of
ground truth labels (gt), for space including both seen+unseen. Using the model trained on Faster
R-CNN with predictions on random boxes.

Using the model trained on Faster R-CNN and predicted with random boxes, figure
6.11 shows how ground truth and average precision correlates. The average precision
seems to have highest score when images have around five ground truth labels, and from
there it gets lower and lower as the image have more labels connected to it. An example
of this can be seen in figure 6.9 where the model fails to predict most of the 22 ground
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truth labels.
Overall, with the approach chosen to solve the multi-label scenario, we realize that

the NUS-WIDE data might not have been the best dataset to train or test on. Our archi-
tecture may have higher accuracy for ZSL if trained and tested on a data where the labels
are more object focused. On data with object oriented labels, each image will have the
same amount of labels as objects and could help our model make the connection between
label and image-box and increase the training and prediction accuracy.

Our model performed worse than the comparative alternatives, and as we followed
the same unseen and seen split as Zhang et al. we expected similar results. This shows the
limitations of our architecture, however with further experimenting the accuracy might
improve, bringing us closer to their result.

6.3 Limitations

In this section we will go through the limitations of our thesis, why we have such limi-
tations and also what that could potentially decrease our limitations.

• Looking at the datasets NUS-WIDE and Imagenet, we only introduced 81 and
200 unseen labels. To enable our model to be used in a real-life situation it needs
to also be tested on a larger number of unseen labels, and our results show that
our architecture is not prune to noise, and adding more words in the language
model decreases the accuracy. If including all the words from the language mod-
els, meaning all words from Wikipedia, the accuracy would likely drop a lot or
approach zero. One suggestion to solve this is to train the model on a larger set of
object categories and test it on an even larger set of unseen classes.

• The image labels in NUS-WIDE are tags from Flickr, which means it can be quite
noisy with both bad labeled data and labels. Therefore performing ZSL on another
dataset is needed to further investigate our architecture.

• Our architecture relies on the labels for the images can be connected to a certain
object in these images. Some words, such as countries and history, can be hard to
connect to a certain object and thus suffer from this. This could be fixed training
the model on different data where each of the labels are object focused.

• The language model uses text from the English Wikipedia, and is relates words
in a textual relationship. Meaning, words that are semantically similar, are placed
close together. However, since our problem focuses on visual objects, some ob-
jects that are visually similar are not necessary semantically similar. A suggestion
for improving this could be to train these models on image descriptions.
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• With the architecture being complex, and with a large amount of training and
testing data. The architecture has not been tested with many different parameters.
For example, only one optimizer was tested and the batch size was kept constant
at 32. In future work, we suggest to test the model on a variety of parameters.

• Same as with the parameters, our projection network have a fixes number of layers
and hidden units. Different number of layers and hidden units might give different
score, and investigating the architecture to find the most optimal network would
also help with the results.

• In our experiments we have trained Word2vec using the CBOW algorithm. How-
ever, Word2Vec also contains another algorithm, Skip-Gram, that in some cases
have reported better score than the CBOW, and thus have we included Skip-Gram
for future work.
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Conclusion

Through developing a model capable of predicting unseen objects for single- and multi-
label images, we have learned that these models still have a long way to go before being
able to recognize new objects the same way human does, especially if expecting the
model to predict correctly on the first guess. We have also learned that sometimes it
can be hard to validate such a model as the model might make a good guess, but if the
guess does not correspond to the ground truth label, the label made by humans, it will
be counted as a miss.

With the goal to investigate Zero-Shot Learning techniques in multi-label scenarios,
we presented in section 1.2 three research questions that we investigated. In terms of
these, the results shows:

Research Question 1: How can the knowledge from text be used to help an image-
classifier predict unseen classes?

To investigate this research question, we trained language models on two different al-
gorithms and in different dimensions. These models were trained using the English
Wikipedia as text-corpus and the results indicate that knowledge from text can be used
to solve a ZSL problem. However, some words seems to be easier to predict than others,
which can indicate that the knowledge from text can only be used to a certain extent and
that it will be limited on the text corpus the language models are trained on.

In our experiments, increasing the language model dimensions improved the accu-
racy, and it would be interesting to investigate with even higher dimensions to see if the
accuracy continues to improve or if it flattens.

Research Question 2: How does our Zero-Shot learning model scale when increas-

63



7.1 Contributions

ing the number of available classes?

The ZSL model suffered when increasing the number of words possible for the model
to predict on. This suggest that when increasing the number of words available to the
model, it generates noise for the model which makes it harder to predict correctly.

Research Question 3: How can Zero-Shot learning be applied to multi-label sce-
narios?

As the results indicates, making prediction for multi-label scenarios in ZSL can be suc-
cessful when splitting the image into a set of boxes and using the knowledge from a
model pre-trained on single-label ZSL to choose a correct label for the given box. How-
ever, this requires that the labels for each image is connected to a specific object on that
image. We learned from our experiments that this is not always the case, with labels
focusing on the full context and not objects.

When making these boxes, we have learned that the best approach for training a
model is not necessarily the best approach for making predictions. Our results showed
that randomly generated boxes performed well for making predictions, but when training
on with this approach the model suffered a drop in the accuracy.

Overall the answers to the research questions have positive indications, but still needs
further research in more scenarios and on different data before giving a concluding an-
swer. This thesis only gives indicative answers and is not able to tell if the results can be
further improved using the same architecture or approach, or if the accuracy flattens.

7.1 Contributions

The following bullets describe the main contributions of our thesis:

• We combined two ZSL architectures and can now predict both multi-label and
single-label. We updated the CNN to the state-of-the-art network inception-v3.
To generate bounding boxes for the multi-label experiments we used three differ-
ent approaches: randomly placed bounding boxes, and the two different ODFs:
YOLOv2 and Faster-RCNN.

• We performed experiments to choose the best performing language model and to
choose the best performing dimension. We also ran one experiment to choose
between four different loss functions.

• We believe that in the future ZSL systems can be used in for example search
technology or automatic tag generation on social media. This could help a user
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to search in a visual manner instead of by image name and the system does not
need to see all tags it suggests. Multi-label ZSL is quite new, and is not ready
to be put into production yet, but to push the system even further we have made
some suggestions of future work. We have made our code available at https:
//github.com/thomasSve/Msc_Multi_label_ZeroShot.

• We performed tests on the models with language spaces containing different num-
ber of candidate labels, with one space containing only the unseen labels and the
other including the seen with the unseen.

7.2 Future Work

As work with the system has progressed and the results have been analyzed, ideas for
future work have appeared. All the experiments took a long time to complete, and with
limited time we had to stop experimenting to finish writing the thesis. These ideas are
presented in the following bullets:

• Higher dimensional language models reported higher accuracy, and it would be
interesting to train a language model with more than 1000 dimensions to see if the
accuracy continued to increase.

• Train the Word2vec model using the Skip-Gram algorithm instead of CBOW as
Skip-Gram has been the chosen algorithm among the two in related papers, and it
could improve the language model further.

• Test the model on a different multi-label dataset than NUS-WIDE that focuses
more on object categories rather than tags. The NUS-WIDE labels is tags ex-
tracted from Flickr and therefore it has quite noisy labels. A possible multi-label
dataset to try is open images [54] provided by Google.

• Experiment with different parameters such as different batch sizes and optimizers.
As our neural network architecture was large and took a large amount of RAM on
the GPU memory, we used a batch size of 32 which is standard in Keras. Further
experimenting with higher batch sizes such as 64 or even higher might give better
results. Choosing the right optimizer is also important, so running experiments to
determine the optimizer for the network might further increase the results.

• Experiment with different numbers of layers for the projection network and also
the dimension of the neural networks. For this thesis, the projection network used
the same neural network architecture except the last layer that had different di-
mensions depending on the language model dimension.
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7.2 Future Work

• Try changing the loss function to one similar as used by Zhang et al. [32] since it
reported better results. The loss function used by Zhang et al. accepted positive
and negative feedback, which means that the network can be trained with both
correct labels and wrong labels. This might yield better vectors and makes sense
to try to push the accuracy of the model even further.

• In the multi-label scenario, include co-occurrence statistics for test set. This could
help the model combine the predicted labels with co-occurrence statistics to in-
clude words that often occur together. For example cup and table might often
occur together in the image labels, but not the language model, and this could po-
tentially help the model. One thing to investigate in the future would be to train
the language model on a different text corpus than the English Wikipedia. The
language model could be trained on a collection of image descriptions or labels.
Possibly train it first on the full English Wikipedia, before tuning it on the im-
age descriptions set or image labels. This could possibly help the training to get
classes that occur often together closer, even if this is not the case in Wikipedia.
This way we hope to generate language models that puts words for objects that
are visually similar closer together, instead of relying on the textual similarity.

• Flip the model around and change the projection network to project the word
vector to the image features instead of image features to word vector. This would
mean that the input of the projection network would be the word vector label,
that was now projected to the dimension native to the image features. It would
be interesting to see if this flipped approach would result in a higher score, as the
image features have a higher dimension.

• To get better results it would be interesting to use an ensemble of a number of CNN
architectures to extract features. In our architecture we used the inception-v3 with
weights pre-trained on ImageNet [40]. Since the release of this architecture, newer
architectures have been released that report having a higher accuracy. Combining
multiple models into an ensemble with both different CNN architectures, but also
different projection layers would most likely yield a higher accuracy. This would
require a lot of computation time and was therefore not possible during this thesis.
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