
Three-dimensional numerical modeling
of water flow in a rock-blasted tunnel

Mari Vold

Civil and Environmental Engineering

Supervisor: Nils Reidar Bøe Olsen, IBM

Department of Civil and Environmental Engineering

Submission date: July 2017

Norwegian University of Science and Technology

Three-dimensional Numerical Modeling of
Water Flow in a Rock-Blasted Tunnel

Mari Vold

July 2017

Abstract

Climate change leads to more intense precipitation in Norway. NVE
requires all bypass tunnels have sufficient capacity for bypassing flood
water. The hydro-power industry needs a method for establishing tun-
nel capacity, such as computing a friction factor. Friction factor for
rock-blasted tunnels have yet to be studied thoroughly. This thesis de-
scribes a method for finding friction factors for Litjfosstunnelen using
numerical models. Three turbulence models are tested and compared;
k-Epsilon, k-Omega and k-Omega SST. For otherwise identical setups
k-Epsilon converges better than the other two. k-Epsilon yields larger
Darcy friction factors than k-Omega and k-Omega SST in general.
Grids with more cells yield larger friction factors than a coarse mesh
(with one exception). Grid independence is not reached.

1

Samandrag

Klimaendringar fører til meir intens nedbør i Noreg. NVE stiller krav om at
flomavledningstunnellar skal ha tilstrekkeleg kapasitet for å ta unna flomvat-
net. Vassdragsbransjen treng ein metode for å finne m̊al p̊a tunnelkapasitet,
eitt slikt mål er ein friksjonsfaktor. Friksjonsfaktorar for r̊asprengde tun-
nellar har enno ikkje blitt inng̊aande studert. Denne masteroppg̊ava brukar
numeriske modellar for å finne friksjonsfaktorar i Litjfosstunnellen. Tre tur-
bulensmodellar er testa og samanlikna; k-Epsilon, k-Omega og k-Omega SST.
For elles like oppsett konvergerer k-Epsilon betre enn dei andre to. k-Epsilon
gir ogs̊a generelt høgare Darcy-friksjonsfaktorar. Finare grid gir høgare frik-
sjonsfaktorar enn grove grid (med eitt unntak). Griduavhengigheit er ikkje
n̊add.

2

This master’s thesis was written at the Department of Civil and Environ-
mental Engineering at the Norwegian University of Science and Technology
(NTNU) under supervision of Nils Reidar Olsen. The thesis is part of a re-
search project which aims to find friction factors in rock-blasted tunnels. The
research project is a collaboration between the department, Trønderenergi,
BKK, the Research Council of Norway and the Norwegian Water Resources
and Energy Directorate (NVE). Selected tunnels are scanned using laser tech-
nology, and the geometry data can then be used to build physical models or
create meshes for numerical computations. The physical models are tested
in a hydraulic laboratory, where friction loss, velocities and turbulence are
measured. The main objective for this thesis was to find friction factors for
Litjfossen using three-dimensional numerical models in the open source CFD
program OpenFOAM.

The work started in February 2017, apart from a visit to the tunnel at Litj-
fossen the day it was scanned (august 30th, 2016). The work has consisted of
study of relevant literature and trial and error using the CFD software. Con-
siderable help has been provided from Radek Maca at CFD Support, Ltd.
An amount of time was invested in studying C++ programming, in order to
better understand the workings of OpenFOAM. A better choice would be to
study turbulence modeling or numerical mathematics.

I send my thanks to all who have contributed with their knowledge, patience
and enthusiasm.

Trondheim
July 17, 2017

Mari Vold

3

Contents

1 Introduction 8
1.1 Background . 8
1.2 Computational Fluid Dynamics (CFD) and turbulence modeling 9
1.3 Litjfossen . 10
1.4 Lab model as foundation for CFD setup 12

2 Theory 16
2.1 Flow properties . 16
2.2 Governing equations . 17
2.3 Numerical solution . 19

2.3.1 The SIMPLE Method 19
2.3.2 Under-relaxation . 20
2.3.3 Numerical schemes . 22

2.4 Turbulence modeling . 22
2.4.1 k-ε . 25
2.4.2 k-omega and k-ω SST (shear stress transport) 28

3 Implementation 31
3.1 0 . 32
3.2 constant . 34

3.2.1 polyMesh . 34
3.2.2 triSurface . 34
3.2.3 transportProperties . 35
3.2.4 turbulenceProperties 35

3.3 system . 36
3.3.1 blockMeshDict . 36
3.3.2 snappyHexMeshDict 37
3.3.3 Time, iteration and write control 39
3.3.4 decomposeParDict . 39
3.3.5 fvSchemes . 41
3.3.6 fvSolution . 44

3.4 Workflow . 44

4 Post-processing 48
4.1 Pressure loss . 48
4.2 Friction factors . 49

4

4.2.1 Darcy friction factors 49
4.2.2 Manning Strickler values 52

5 Verification and validation 54
5.0.1 Errors . 55
5.0.2 Grid Convergence Indicator 55
5.0.3 Uncertainties . 56

6 Conclusion 58

5

List of Tables

1 Geometry data for lab and numerical model 15
2 Case file structure . 31
3 Boundary conditions in OpenFOAM 34
4 Size, cells, time and quality data for tunnel mesh 38
5 Friction factors . 51
6 Friction factors averaged between sections 51
7 Head-loss data . 52
8 Convergence reached for modelling setups 54
9 Grid convergence indicators 56

6

List of Figures

1 Litjfossen. Notice the ridge-back ceiling 11
2 Lab model construction. [11][12] 12
3 Concept figure for lab model windows [11] 14
4 Lab model windows before installation [11] 15
5 The SIMPLE algorithm flowchart 21
6 Layering near wall in turbulent flow [5] 24
7 Constants used for turbulent kinetic energy and dissipation

rate equations . 26
8 k-Omega SST in OpenFOAM: Constants for turbulent kinetic

energy and specific dissipation rate equations 30
9 Header in velocity file U . 32
10 Dimensions and internal field, p 32
11 Boundary fields, k . 33
12 Dimensions and internal field, p 35
13 Dimensions and internal field, p 36
14 Mesh at inlet . 38
15 Iteration and write control in controlDict 40
16 decomposeParDict . 41
17 Numerical schemes in fvSchemes 43
18 Numerical solver controls in fvSolution 45
19 Pressure increase in downstream direction 50

7

1 Introduction

1.1 Background

Climate change is likely to lead to more extreme rainfalls and flood events
in Norway. The Norwegian Water Resources and Energy Directorate repre-
sents the authorities in preventing flood events from becoming a danger to
the public. NVE set requirements for a bypass tunnel’s capacity and have
the authority to demand expansion of a tunnel if the capacity is too small
[1]. A tunnel expansion is expensive, which gives the industry an incentive
to find new ways to prove that their tunnel’s capacity already fulfills NVE’s
requirements.

Tunnel capacity depends on, among other things, the friction loss, which can
be estimated by a friction factor. A popular and frequently used friction
factor is the Manning Strickler value, M, known from the Manning Strickler
equation:

Q = MAR
2/3
h I1/2 (1)

This equation has been used for lack of a better practical alternative. Man-
ning Strickler friction factors are empirical and have complicated dimensions,
thus they must be scaled from model to prototype. CFD and lab studies pro-
duce result and measurements that can be used to compute a dimensionless
friction factor, the Darcy friction factor, in addition to Manning Strickler
friction factors. The Darcy friction factor, denoted fD, is known from the
Darcy Weißbach equation:

∆p

L
= fD

ρ

2

U2

D
(2)

Numerical modeling can be much more cost effective than physical model
tests, but NVE does not accept these results as proof for adequate tun-
nel capacity. The results must be validated. A comparison between lab
model measurements and CFD results is therefore very interesting, and tun-
nel roughness is a field where research and data is scarce. This gives the
research community motivation to initiate studies. The combined interests

8

from hydropower developers, government and the department made this re-
search project possible and laid the foundation for this thesis.

A physical model of Litjfosstunnelen is being built at the time of writing. It
was originally meant to produce measurement results already around Easter,
2017, which would have enabled the author of this thesis to compare CFD
and physical model results. Unfortunately, the lab model was delayed by sev-
eral months. The assignment was therefore tweaked to comparing turbulence
models instead. The turbulence models used are the most popular and well-
documented two-equation models available, namely the k-Epsilon, k-Omega
and k-Omega SST models. To ensure that the results are still comparable to
lab model measurement in the future, the setup has been adapted to the lab
model wherever possible. Details on the setup are further described in the
following.

1.2 Computational Fluid Dynamics (CFD) and turbu-
lence modeling

Only the simplest of flows can be described and solved using analytical equa-
tions, but modern day engineering includes more complex geometries and a
great variety of flow conditions. These flow problems are solved numerically
using the Navier Stokes equations. These equations were derived in the early
19th century, but are only recently put into extensive use. This is because
of the exponential growth in computational power over the last decades.

The union of mathematics, hydraulics and computer science is called compu-
tational fluid dynamics, CFD. In other words, it is an interdisciplinary science
which requires vast knowledge in each field to completely comprehend the
joint methods, especially for complex flow problems with high turbulence.
Turbulence modelling is difficult, because of the turbulence closure prob-
lem. Turbulence models require assumptions to close the system of governing
equations (Navier Stokes and Reynolds stress equations). The complexity of
turbulence has inspired statements such as Werner Heisenberg’s

”When I meet God, I am going to ask him two questions: Why relativity?
And why turbulence? I really believe he will have an answer for the first.”

9

With these humbling words in mind, it does not stop us from trying. There
are numerous turbulence models available, the choice of which is a challenge
for an engineer. Models are developed for specific flow conditions and use a
series of case-specific constants that may not apply to every flow problem.
The user should always be conscious of this and other sources of error and
uncertainty in CFD. Models, methods and algorithms must be chosen care-
fully so that they suit the problem at hand, and CFD results should always
be controlled, verified and validated.

The open-source CFD software used in this thesis is called OpenFOAM. It
is a popular tool and affords complete control with every entry in the pro-
gram. With great freedom comes great responsibility. Only more experienced
CFD analysts should try to change program code, but programming skills
are useful also for the novice, because it makes it easier to implement one’s
case and find their own errors in input. The source code also contains infor-
mation about the program that is only briefly documented elsewhere, if at
all. OpenFOAM has no graphical user interface, but the dictionaries/scripts
are intuitively constructed and solutions can be visualized in post-processing
tools. One such tool is ParaView which is included in OpenFOAM download.

1.3 Litjfossen

The tunnel in question for this thesis is called Litjfosstunnelen. It is clearly
affected by its environment. The tunnel is blasted in a mountain with weak-
ness zones in a semi-regular pattern at a skew angle relative to the tunnel
axis. This contributes to irregularity and roughness which is clearly visible
in Figure 1.

As the figures imply, the whole geometry is skewed because of these weakness
zones, which is suspected to lead to secondary flows in the tunnel.

10

Figure 1: Litjfossen. Notice the ridge-back ceiling

11

Figure 2: Lab model construction. [11][12]

1.4 Lab model as foundation for CFD setup

The lab model geometry is made from laser scanned data scaled by a factor
of 1/15. The model is 8 meters long and roughly 40 centimeters in diameter.
The lab model will be tested for different discharges, whereas this thesis is
focused on one likely discharge (0, 1m3/s) within the range [0− 0, 2m3/s] of
what the lab can supply. The temperature in the lab is approximately 20◦C.
Although the water temperature will initially be a bit lower, it is expected to
reach room temperature after circulation through the model, therefore 20◦C
is used to set water viscosity, ν = 1, 0034x10−6.

To find friction factors, head loss will be measured in the lab. Pressure is
measured at several locations, giving pressure loss data. Velocities will be
measured using PIV technology (Particle Image Velocimetry) at a few spe-
cific locations. Other measurements are dependent on available equipment
in the future and other factors that are unknown to the author, and are
therefore not featured in this thesis.

The lab model is installed so that the flow field at the inlet will be as uniform
as possible. The water is recirculated through a pipe (this ensures steady-
state conditions), and there is a sharp bend before the inlet. Flows in sharp

12

bends are typically pushed to the outer wall, which works against the aim of
having uniform flow at the inlet. Steering wings are placed inside the pipe
bend to prevent this effect. This is meant to induce very turbulent flow and
thereby an even distribution of velocity immediately after the bend. The flow
then enters a so-called honeycomb filter. Each cell in this filter is too small
for turbulent eddies of significant size to pass, therefore the flow will be less
turbulent when it leaves the filter, enters the following expansion tract and
continues into the tunnel. This justifies a uniform fixed velocity boundary
condition for the inlet. Since water is viscous, the BC at the tunnel wall is
set to a uniform value of 0 in all directions (u=0). This is also called the
no-slip condition. The outlet BC for water is set to zero gradient.

Pressure measurements will be done by drilling 20-25 small holes in the tun-
nel walls (including ceiling and floor) at a cross-section. The holes will be
interconnected via tubes (one tube to rule them all). Consequently there is
only one combined pressure measurement for a cross-section, and it serves as
a main value for the pressure at this location. Corresponding mean values
for what the author hopes are the same cross-sections are computed from the
numerical modeling data and used when finding the Darcy friction factors.

Absolute pressures are of no interest and will not be measured in the lab. For
this type of flow the head loss will remain constant over time, or close to it.
In other words, head loss deviations are negligible. Pressures are also com-
puted as gauge pressures in the numerical model, which makes it unnatural
to specify absolute pressure values at boundaries. The easiest way to choose
boundary conditions (abbreviated BCs for a large part of the following text)
for such a case is to use a zero gradient BC at one inlet/outlet boundary
and a uniform value of zero at the other. However, since the pressure dis-
tribution is unlikely to be uniform in the lab model, a boundary condition
called fixedMean is used instead, which means the pressure distribution can
be non-uniform, but the mean value is set to a chosen value of, say, zero. This
is practical because it makes it easy to find absolute pressures by adding a
reference pressure value, should it turn out to be interesting after all. BC
against the tunnel wall is zero gradient.

As mentioned, velocity measurements in the lab will be done using laser

13

Figure 3: Concept figure for lab model windows [11]

technology called Particle Image Velocimetry (PIV). This is a technique that
shoots laser beams into a flow section of interest while simultaneously taking
pictures with high frequency. The lab model is not transparent, so window
pairs are built into the tunnel geometry. One of the pair is located at the
side/wall and the other at the bottom/floor. The one at the side is for the
laser beams to shoot through, and the one at the bottom is for the camera to
take pictures through. This window is smooth, while the laser beam window
has the same shape as the wall which it replaces, with a few exceptions:

• There are smooth, horizontal lines cut into the window where the laser
beam is meant to shoot through. This is to prevent scattering of the
beams.

• The window’s surface is visibly cut from a coarse triangle mesh, while
the rest of the tunnel is cut using higher resolution mesh.

There are some limitations to this approach. Most important is the size of
the windows, which is not large enough to map the entire section. As a re-
sult, near wall conditions fall out of scope. This does not mean that near wall
conditions are not interesting in the CFD analysis, but they loose priority
and tempt the author to postulate that k-Epsilon and k-Omega SST data
will look very much alike, since the main difference between the two is indeed
in how they model near wall conditions.

14

Figure 4: Lab model windows before installation [11]

Geometry Data
Size Symbol Value Source
Diameter D 0,422m Lab model
Hydraulic diameter Dh 0,422m Dh = Aw/Pw
Cross-section area A 0,159m2 A = r2(π/2 + 2)
Length L 8m Lab model

Table 1: Geometry data for lab and numerical model

Some specifics from the lab geometry are show in Table 1.

15

2 Theory

2.1 Flow properties

To ensure that computation time is not wasted on calculating properties
of immaterial value, a number of assumptions are made to help reduce the
complexity of a flow problem. These assumptions are practical and common,
although not entirely accurate:

• The fluid is NEWTONIAN, meaning that the shear stress is directly
proportional to the rate of strain

• The fluid is ISOTROPIC

• The system is in THERMODYNAMIC EQUILIBRIUM (used in deriva-
tion of Navier Stokes)

Other assumptions are more case specific. In some cases where the geom-
etry can be repsresented in two dimensions, for instance, the flow problem
can be solved in 2D. For this case the geometry requires three-dimensional
representation. Consequently, so does the flow. The following assumptions
are reasonable for Litjfosstunnelen [3] [2]:

• The flow is ONE-PHASE: There is only water and no other fluid in
this flow

• The flow is STEADY-STATE: There is no change in time, only space.
This seems absurd for a turbulent flow, but using Reynolds averaging,
where velocity is computed as the sum of a mean and fluctuating value,
one can say that the flow is steady if the mean velocity is constant.

• The flow is (FULLY) TURBULENT: (There is no transition zone.)
This can be established through a quick study of Reynolds numbers.
With the geometry, discharge and temperatures from section 1, the
Reynolds number is larger than 260000.

• The fluid is INCOMPRESSIBLE: Water density, ρ, is constant over
time and space. Flow can be solved without consideration of the energy
equation.

16

This calls for caution. All CFD results must be regarded as incorrect to a
degree, and sources of error must be accounted for. As demonstrated, they
are numerous. Sources of error and uncertainty are discussed in section 5.

2.2 Governing equations

The most successful way of discretising a flow problem is by using the control
volume method, also called the finite volume method or Eulerian approach.
As the name implies, the problem is divided into control volumes and conser-
vation laws of physics are applied on this volume. The governing equations
are

• The continuity equation (conservation of mass)

• The momentum equation (Newton’s second law)

• Reynolds transport theorem

Reynolds transport theorem is applied to the governing equations to trans-
form them into Eulerian form. [3]

Conservation of mass
Conservation of mass means that the amount of mass stays constant over
time. Therefore, if there is mass flow through a volume, then the rate of
accumulation within that volume equals the net efflux. In vector notation:

∂ρ

∂t
+ div(ρu) = 0 (3)

This is also called the continuity equation for a compressible fluid in an
unsteady flow. For an incompressible fluid the continuity equation reduces
to

div(u) = 0 (4)

or, in differential form

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (5)

17

Reynolds transport theorem
The rate of change of a general property φ per unit volume can be expressed
in a similar way as the rate of change of mass per unit volume (equation 3)

∂ρφ

∂t
+ div(ρφu) = ρ

Dφ

Dt
(6)

In words: The rate of change of property φ equals the sum of the rate of
increase of φ in the control volume and the net efflux.

The momentum equation
Once Reynolds transport theorem is established, it can be applied to New-
ton’s second law to calculate the rate of change of momentum using the
control volume approach.

ΣF =
d(Momsys)

dt
(7)

Using

Momsys = mv = ρV v (8)

The sum of forces on the volume is the sum of pressure, gravity (and other
body forces), shear and normal stress forces. [3] Applying Reynolds transport
theorem to Newton’s second law on a three-dimensional infinitesimal control
volume yields the differential Navier-Stokes equation in three-dimensions for
laminar flow [4]:

∂Ui
∂t

+ Uj
∂Ui
∂xj

=
1

ρ

∂

∂xj

(
− Pδij − ρν

(
∂Ui
∂xj

+
∂Uj
∂xi

))
(9)

This case is turbulent, which means there are velocity fluctuations and extra
shear stresses to attend to, called Reynolds stresses. Velocity is modelled
as the sum of a mean value and a fluctuating value, u=U+u’. A slightly
different version of Navier-Stokes emerges

∂Ui
∂t

+ Uj
∂Ui
∂xj

=
1

ρ

∂

∂xj

(
− Pδij − ρuiuj

)
(10)

18

using the Boussinesq approximation for the Reynolds stress (turbulent stress)
term on the right side:

−ρuiuj = ρνT

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− 2

3
ρkδij (11)

yielding, after insertion and rearrangement, the Reynolds-averaged Navier-
Stokes equation for turbulent flow [4]

∂Ui
∂t

+ Uj
∂Ui
∂xj

=
1

ρ

∂

∂xj

[
−
(
P +

2

3
k
)
δij − ρνT

∂Ui
∂xj

+ ρνT
∂Uj
∂xi

]
(12)

The transient term on the left is of course zero for a steady-state case, leaving
the convective term alone on the left side. P represents pressure, k is kinetic
energy, and the two remaining terms represent diffusion (turbulent stress)
and viscous stresses. δij is the Kronecker delta, which is necessary for the
formula to give the right result for normal Reynolds stresses.

2.3 Numerical solution

The governing equations combined leave a closed system with an equal num-
ber of equations and unknowns. What remains now is a procedure for solving
these equations numerically. OpenFOAM’s solver for incompressible steady-
state turbulent flow is called simpleFoam, and solves the flow using the SIM-
PLE algorithm.

2.3.1 The SIMPLE Method

SIMPLE, Semi-Implicit Method for Pressure-Linked Equations, starts with
a (preferably qualified) guess of initial and boundary conditions for the pres-
sure field. The guessed value is denoted with an asterisk, p*. p* is applied
to the discretised momentum equations in order to calculate velocities, ui*.
These velocities are denoted and treated as guessed values.

19

The continuity equation is used to express a correction to the pressure, p’.
Guessed and correction values are summed to obtain the actual pressure.
Similarly, velocity corrections are added to ui*:

p = p ∗+p′ (13)

ui = ui ∗+u′i (14)

After pressure and velocities are corrected, the other discretised transport
equations are solved. This concludes one iteration. The process is repeated
using the corrected pressure and velocities as initial guesses for the next it-
eration. This continues until some convergence criterion has been fulfilled.
There may be different criteria for different flow properties. Convergence
criteria for this thesis are discussed in section 2.3.3. A flowchart for the SIM-
PLE method from Versteeg & Malalasekera [2] is shown below.

There are several versions of this algorithm, such as the SIMPLE revised
or SIMPLER method, which calculates the pressure field directly through a
discretised equations for pressure. [2] Nevertheless, only the original SIM-
PLE method was used for this thesis as it is the foundation for the chosen
OpenFOAM solver simpleFOAM.

2.3.2 Under-relaxation

The SIMPLE method is prone to instabilities. One way to prevent this is by
introducing under-relaxation coefficients, αφ, for the pressure and velocity
corrections. An under-relaxation coefficient is a factor between 0 and 1 that
is used to dampen corrected values.

pnew = p ∗+αpp
′ (15)

unew = αuu+ (1− αu)u(n−1) (16)

Now, even if the solution oscillates the amplitude is reduced, which may
stop the solution from oscillating or diverging. However, this will also lead
to slower convergence. The optimum relaxation coefficient in dependent on
mesh, flow problem and iteration method and is hard to predict. [2]

20

Figure 5: The SIMPLE algorithm flowchart

21

2.3.3 Numerical schemes

The most important fundamental properties of discretisations schemes are:

• Conservativeness: The amount of a property entering a cell face from
one side is the same as the amount leaving the same face on the other
side.

• Boundedness: Property value at a point is within the range spanned
by its boundaries

boundaryV alueMIN < valueAtNode < boundaryV alueMAX (17)

• Transportiveness: The influence on a cell’s value of a property φ from
its neighbouring cells depends on the relation between convection and
diffusion in the flow. This relation is called the Peclet number, Pe.
Influence from a neighbouring cell should be biased according to the
Peclet number.

Pe =
F

D
=

ρu

Γ/δx
(18)

For pure diffusion, Pe− >0, for pure convection, Pe− >∞

To use an everyday comparison: Shopping for numerical schemes is just like
any other shopping: It is difficult to get it all in one product. Desirable
characteristics can be mutually exclusive, such as second-order accuracy and
boundedness. Also, quality costs. Sometimes the best is simply too ex-
pensive, in this context meaning that the time of computation cannot be
afforded. That being said, a scheme can perform well enough as long as it
suits the problem in question, even if it is only first-order accurate or has poor
transportiveness. For instance, the central differencing scheme is adequate
for a pure diffusion case, but has poor transportiveness when Pe increases. [2]

The schemes in this case a chosen to try to reach second-order accuracy.
Schemes are specified in fvSchemes, as described in section 3.3.5.

2.4 Turbulence modeling

Turbulence is generated by shear in the flow, which creates eddies. This
typically happens near a solid boundary, like a wall. Eddies transport mass,

22

momentum and energy across the flow, resulting in a rapid exchange of these
properties and an even distribution of them. Compared to laminar flow equa-
tions there are additional shear stresses in turbulence equations (turbulent
shear stress or Reynolds stresses), due to the the mixing of high and low
velocity flow. Similar to laminar flow, velocities decrease from the main flow
to the wall, but the main flow makes up more of the flow cross-section and
the gradient is steeper towards the wall for turbulent flow. Turbulence pro-
duction is high for these steep gradients. It is common to separate the flow
into layers characterized by their dominating stresses. In the main flow or
outer region, turbulence stresses dominate. Closer to the wall, viscous and
turbulence stresses both affect the flow, while viscous stresses dominate and
kill turbulence in the viscous sub-layer. Dimension analysis gives relations
between flow velocity and distance from the wall that are shown below.

u+ = y+ (19)

using definitions for dimensionless u+ and y+ from the law of the wall:

u+ =
U

uτ
= f

(
ρuτy

µ

)
= f(y+) (20)

where U is velocity in meters per second, uτ is shear velocity and y is dis-
tance from the wall. This linear relation holds for the innermost part of the
viscous sub-layer. Adjacent to this layer is a buffer region, where viscous
and turbulence stresses both affect the flow. The buffer region is a transition
before the so-called log-law layer where turbulent stresses take over:

u+ =
1

κ
ln(Ey+) (21)

where κ is the Von Karman constant (=0.4) and E=9.8 for smooth walls.
The relations above are illustrated in figure 6. Notice that, at the wall, ve-
locities relative to the wall are zero for viscous flows. This is called the no-slip
condition and is used in election of boundary conditions for velocity at the
wall.

Turbulence eddies near the wall are generally anisotropic, because of the
wall’s restrictions on flow velocity direction. Farther from the wall, or where

23

Figure 6: Layering near wall in turbulent flow [5]

there is less shear, turbulence is more isotropic. Many turbulence models are
unable to catch anisotropic turbulence. This is a challenge in CFD. Never-
theless, mean flow is often of most interest, therefore these models are still
widely used.

A problem in turbulence modelling is to get a closed set of equations, and
turbulence models are often categorized according to the number of extra
transport equations they solve to close the set. Reynolds stress models, solv-
ing as many as seven extra equations, are considered more physically correct
than Reynolds averaged models, which solve two extra equations. Neverthe-
less, two-equation models are popular for their adequate performance paired
with low computational costs. In general, turbulence models should be cho-
sen that are developed for a similar type of flow to the problem at hand.
Unfortunately, there is not one in particular for rock-blasted tunnels. The
choice of turbulence models for this thesis was therefore based on popularity,
documentation, existing OpenFOAM implementation and simplicity so as to
keep the scope within reasonable bounds for a master’s thesis. All models
used are Reynolds averaged models. [2]

24

2.4.1 k-ε

The k-Epsilon model focuses on turbulent kinetic energy and how it is affected
by turbulence mechanisms. Analogous to the derivation of Navier-Stokes for
turbulent flow using the sum of a mean and a fluctuation velocity, turbulent
kinetic energy is modelled as the sum of a mean (K) and turbulent (k) kinetic
energy:

k(t) = K + k (22)

The k-Epsilon model solves two partial differential equations, one for the
turbulent kinetic energy, k, and one for the rate of dissipation of turbulent
kinetic energy, ε. The Reynolds stresses are solved using Boussinesq (see
derivation of Navier-Stokes equation in chapter 2.2 Governing equations).
Model equations as shown in Versteeg & Malalasekera [2] are listed below .

Turbulent kinetic energy equation

∂(ρk)

∂t
+ div(ρkU) = div

[
µt
σk
gradk

]
+ 2µtSij.Sij − ρε (23)

Dissipation rate

∂(ρε)

∂t
+ div(ρεU) = div

[
µt
σε
gradε

]
+ C1ε

ε

k
2µtSij.Sij − C2ερ

ε

k
(24)

Eddy viscosity

µt = ρCµ
k2

ε
(25)

divided by density:

νt = Cµ
k2

ε
(26)

25

Figure 7: Constants used for turbulent kinetic energy and dissipation rate
equations

OpenFOAM implementation
Turbulent kinetic energy equation

D

Dt
(ρk) = ∇(ρDk∇k) +Gk −

2

3
ρ(∇u)k − ρε+ Sk (27)

Dissipation rate

D

Dt
(ρε) = ∇(ρDε∇ε) +

C1Gkε

k
− (

2

3
C1 +C3,RDT)ρ(∇u)k−C2ρ

ε2

k
+ Sε (28)

where Dk represents dissipation and Gk represents generation of turbulent
kinetic energy.

Initialization
Initial and boundary conditions for k and ε are set using these initialization
equations:

k =
3

2
(I|uref |)2 (29)

ε =
C0.75
µ k1.5

L
(30)

where I is turbulence intensity, uref is a reference velocity (typically flow
mean velocity), Cµ is a constant of 0.09 and L is a reference length scale.
According to Versteeg and Malalasekera [2], the reference length scale L is
L = 0.07l, where l is a characteristic length. The characteristic length for

26

Litjfosstunnelen is the hydraulic diameter: l = Dh.
There is no standard approach for initializing turbulence intensity for a
rough tunnel, unless there are measurements available. The value is there-
fore guessed, based on a qualitative categorization from CFD-online wiki
[9]. This source suggests a turbulence intensity of 5-20% for high-turbulence
cases, which Litjfosstunnellen is likely to be. A value of 10% was chosen,
quite arbitrarily. This might be a bit low, especially for k-Omega. This will
be discussed later. k and ε are initialized

k = 0.00593331[m2/s2]
ε = 0.00254224[m2/s3]

Weaknesses
A drawback for this model is its underlying assumption that the eddy viscos-
ity, νT is isotropic, which makes it fail in complex flows due to its inacurate
predictions.[2]

Boundary conditions
The inlet, internal field and outlet boundary conditions for k and epsilon are
relatively straight-forward. At the inlet, a distribution based on initialization
equations are given. At the outlet there should be a zero gradient boundary
condition. An initial distribution in the internal field/free stream is given if
available, otherwise a zero gradient condition is given here too. One option
is to use the same free stream distribution as inlet distribution for a uniform
field, and that is the approach used in this case. Initialization is based on
available data or guesswork. The experience of the CFD analyst will make a
difference. Initialization values for k and epsilon are typically small, but it is
important they not be set to zero, or the denominator in the eddy viscosity
equation is zero.
The most complicated boundary conditions are at the wall, and these are
Reynolds number dependent. For high Reynolds numbers, the log-law is
valid and the following wall functions relating shear stress, mean velocity, k
and epsilon, are useful for a smooth wall:

k =
u2τ√
Cµ

(31)

ε =
u3τ
κy

(32)

27

in addition to equation 21. [2] There are also wall functions available for
rough walls, but as previously mentioned, the roughness of the lab model
was undecided when this thesis was written. To make a random roughness
guess was deemed no better than using smooth wall functions for the tunnel.
It would only bring the solution closer to lab results by a lucky strike, and
increased accuracy should not come for the wrong reasons. A third reason
for using smooth wall functions is the roughness element size. The roughness
elements are large, and will probably affect the flow much more than the
(probably small) surface roughness would.

2.4.2 k-omega and k-ω SST (shear stress transport)

The k-Omega model has much in common with the k-Epsilon model. Like
k-Epsilon it focuses on turbulent kinetic energy and solves an equation for k.
The eddy viscosity, however, is defined a little differently, using a different
length scale and the turbulence frequency ω = ε/k:

µt =
ρk

ω
(33)

dividing by density

νt =
k

ω
(34)

The second equation solves for turbulence frequency or turbulence specific
dissipation rate, ω. As the equations show, a larger omega leads to a lower
eddy viscosity, which might enhance solution stability.

Boundary conditions
k-Omega’s best feature compared to k-Epsilon is better behaviour for near
wall flow. The solution is also not very sensitive to wall boundary condi-
tions. Free stream, on the other hand, can prove problematic when ω− >0,
see equation 33 and 34. The solution is also assumption dependent, which is
a source of uncertainty.

The third model tested in this thesis is the k-Omega SST model, a hybrid
of k-Epsilon and k-Omega. The intention was to combine the best features
from k-Epsilon and k-Omega:

28

• assumption insensitivity for internal field

• near wall robustness

k-Omega SST uses k-Omega equations near the wall and k-Epsilon equations
in the inertia dominated flow farther from the wall. Model equations from
OpenFOAM for k-Omega SST are shown below.

Turbulence specific dissipation rate

D

Dt
(ρω) = ∇(ρDω∇ω)+

ργG

νt
− 2

3
ργω∇u−ρβω2−ρ(F1−1)CDkω+Sω (35)

Turbulent kinetic energy

D

Dt

(ρk) = ∇(ρDk∇k) + ρG− 2

3
ρk∇u− ρβ∗ωk + Sk (36)

Turbulent viscosity, limiter

νt = a1
k

max(a1ω, b1F23S)
(37)

The turbulent viscosity is a limiter to prevent accumulation of turbulence
in stagnation regions. it limits the production of k. For details on this, see
OpenFOAM documentation online. [7]

Initialization

k =
3

2
(I|uref |)2 (38)

ω =
k0.5

CµL
(39)

29

Figure 8: k-Omega SST in OpenFOAM: Constants for turbulent kinetic
energy and specific dissipation rate equations

The initialization for k is the exact same as for k-Epsilon. Using the same
reference length scale L as for k-Epsilon, the following value for ω is found:

ω = 28.9731599[m/s2]

30

3 Implementation

With data from the lab model and a basic theory foundation, the case is now
ready to be implemented in OpenFOAM. The recommended procedure is to
copy a tutorial case with flow conditions similar to one’s problem and adapt
the necessary files. Within tutorials there is a folder for incompressible flow
problems, categorized by solver. Flow properties, assumptions and numerical
method lead to the simpleFoam folder, containing flow problems solved by
the SIMPLE method.

tutorials − > incompressible − > simpleFoam − > caseFolder

There are three folders in a case, 0, constant and system. Case file struc-
ture can be seen in table 2. Bold face indicates folder, normal text indicates
text-file. Examples of text-files are included in the attachments.

Initial and boundary conditions are defined in the 0/fileName files. Each
transport property has a file with a logical name. The boundaries themselves
are defined in the mesh dictionaries, blockMeshDict and snappyHexMesh-
Dict. Numerical schemes are defined in fvSchemes, solver controls and under-
relaxation are specified in fvSolution. Time and write control are specified
in controlDict. Details are described under case folder sub-sections.

Case folder
0 constant system
U transportProperties blockMeshDict
p turbulenceProperties controlDict
k polyMesh decomposeParDict
epsilon triSurface fvSchemes
omega - Litjfossen.stl fvSolution
nut meshQualityDict

snappyHexMeshDict

Table 2: Case file structure

31

3.1 0

Boundary and initial conditions are already found, and need only be im-
plemented in OpenFOAM. As previously stated, this is done in each flow
property’s own file in the 0 folder. This file belongs to a given class, like
volVectorField for vectors (velocity) and volScalarField for scalars (pressure,
k, etc), denoted in the header of the file.

Figure 9: Header in velocity file U

After the file header, the property dimensions are defined. Below is an ex-
ample from a pressure (p) file, where the dimensions are m2/s2. Two slashes
are used to insert comments. The internal field is then specified and given a
uniform value of zero.

Figure 10: Dimensions and internal field, p

32

If this were a velocity file, the number would be replaced by a parenthesis
with separate values for u, v and w: (u v w).

Below the internal field, the boundary fields are listed. An example from a
k file is shown below. All boundaries, namely inlet, outlet and tunnel are
listed and given a boundary condition type and, if suitable, a value. Bound-
ary conditions have logical type names in OpenFOAM, so the meaning is
intuitive. A complete overview of boundary conditions for all properties is
shown in table 3.

Figure 11: Boundary fields, k

Wall functions
OpenFOAM offers pre-defined wall functions for smooth and rough walls.
The functions used in this case are kqRWallFunction for k, epsilonWallFunc-
tion for epsilon, omegaWallFunction for omega and nutWallFunction for tur-
bulence viscosity.

33

OpenFOAM Boundary Conditions
Property Inlet patch Outlet patch Tunnel wall
U [m/s] fixedValue (0

0.6 0)
inletOutlet fixedValue (0 0 0)

p [m2/s2] zeroGradient fixedMean
(0.0)

zeroGradient

k fixedValue
(0.0059)

zeroGradient kqRWallFunction

ε fixedValue
(0.00254)

zeroGradient epsilonWallFunction

ω fixedValue
(28.973)

zeroGradient omegaWallFunction

νT calculated calculated nutWallFuction

Table 3: Boundary conditions in OpenFOAM

3.2 constant

3.2.1 polyMesh

This folder is initially empty. When mesh is generated, mesh files are written
and stored here. Most of there files are not as readable as other files, as they
are filled with mesh data and not words: The largest files contain separate
digits for each and every cell. For this case, that means more than 2 million
entries. For checking mesh process and quality, it is better to write a log-file
for a utility called checkMesh. This outputs number of cells, faces, checks
for skewness and more.

3.2.2 triSurface

This folder is only needed for cases with complex geometries. This is where
the complex geometry file is stored, in this case an STL file with scanned
data from Litjfossen. Other geometry files can also be used, the reader is
referred to OpenFOAM documentation for details on permissible file types.

34

3.2.3 transportProperties

There are two entries in transportProperties. The first is a transport model,
which for our case is the Newtonian transport model. Below is the kinematic
viscosity, ν, denoted nu, with dimensions and value. Given the lab water
temperature of 20◦ C, the kinematic viscosity is set to 1.0034e-06 [m2/s].

Figure 12: Dimensions and internal field, p

3.2.4 turbulenceProperties

Turbulence model implementation in OpenFOAM is surprisingly simple once
the initialization of turbulence properties is done. First, a simulation type
is specified, like Reynolds Average Simulation (RAS). A subdivision corre-
sponding to the chosen simulation type follows, including name of turbulence
model and on/off switches for turbulence and coefficient printing. Figure x
shows turbulenceProperties for k-Epsilon for our case.

35

Figure 13: Dimensions and internal field, p

3.3 system

3.3.1 blockMeshDict

Mesh generation in OpenFOAM is controlled through mesh dictionaries. It
starts with a background mesh defined in blockMeshDict. The background
mesh envelopes the complex geometry. blockMeshDict lets the user specify

• scaling factor

• vertices

• blocks

• edges

36

• boundaries

• cell size

The background mesh for Litjfosstunnelen consists of one single block with
hexahedral cells of uniform size (except the finest mesh, where lengths in x, y
and z direction differ by a fraction of a millimeter). The mesh is orthogonal.

3.3.2 snappyHexMeshDict

blockMeshDict is enough for simple geometries, but a rock-blasted tunnel is
not such a one. As mentioned in section 3.2.2, the complex geometry file
is placed in constant/trisurface. The mesh dictionary for this geometry
is on the other hand placed in systemt, and is called snappyHexMeshDict.
This dictionary dictates the utility snappyHexMesh, which snaps the existing
background mesh cells to the tunnel surface and throws out unnecessary cells.
snappyHexMeshDict also controls features such as

• layering

• refinement

• patch type

• expansion ratio

• meshing iterations

• mesh quality controls

• ... and much more

The snappyHexMesh utility costs quite a lot of computation power/time for
fine mesh, but finishes quickly for coarser mesh. See table 4 below. Once
the mesh in finished, it should be studied in paraview, a post-processing tool
that is described more thoroughly later. A visual presentation is very helpful
when assessing mesh quality. An example of a fine mesh with one refinement
layer at the wall can be seen in figure 14. Notice that cells in the refine-
ment layer are not necessarily hexahedral. For the second finest mesh with
6898414 cells, about 1.6 million of them were prisms. Using the checkMesh
utility will give detailed mesh quality data.

37

snappyHexMesh details
Cell size Number of cells Time CheckMesh
50 138257 60 OK
25 719579 250 OK
12,5 3930613 1216 Failed 1
10 6898414 2160 Failed 1
8 12481472 4000 Failed 1

Table 4: Size, cells, time and quality data for tunnel mesh

Figure 14: Mesh at inlet

38

If near-wall conditions were of particular interest, several refinement layers
could have been added. The characteristic cell length is halved for each re-
finement layer. If possible, snappyHexMesh will avoid making skew faces.
For such a large mesh it is however hard to avoid. The failed mesh checks for
finer meshes are all because of a single face with max skewness approximately
0.1 above the limit. This is within reasonable deviation, particularly since it
is only one face in a mesh of 3.9 million cells or more.

3.3.3 Time, iteration and write control

To define where to start and stop a solution, when to output data and in
which format and with what precision, the user modifies the controlDict fie.
An example from a k-Omega test run is shown in Figure 15. Entries are
made for transient solvers and include words like startTime and deltaT. For
the steady-state solver simpleFoam, the time step deltaT is not really a time
step. If deltaT is 1 and endTime is 2000, this means that the simulation will
stop after 2000 iterations (unless convergence criteria are met prior to this).
A deltaT of 0.1 and endTime of 200 is also a setup for 2000 iterations. The
only difference between the two is the time step continuity error. In all other
respects, the solutions are identical.

If a solution oscillates and needs more iterations than expected to converge,
it is easy to change the setup without having to restart the entire simulation.
Set runTimeModifiable to true, increase endTime value and make sure that
the entry for startFrom is latestTime. Then, when the solver utility is entered
in terminal, it will pick up from the latest iteration.

3.3.4 decomposeParDict

To speed up simulations a case can be split up into sub-domains and run
on several cores in parallel, as many as the computer offers or as many is
available to the user through a cluster. This process is called decomposition.
There are many ways to do this too, the method used is called scotch and is

39

Figure 15: Iteration and write control in controlDict

40

Figure 16: decomposeParDict

recommended by OpenFOAM. Decomposition method and number of avail-
able CPU’s are specified in deomposeParDict. The numberOfSubdomains
entry is the number used in the utility command. it is important to remem-
ber the code-word parallel, or the problem will run on just one core even if
it is decomposed. A decomposeParDict is show in Figure 16. When the sim-
ulation is converged, the case can be reconstructed using the reconstructPar
utility.

3.3.5 fvSchemes

In OpenFOAM, numerical schemes are specified in the fvSchemes file. It
contains the following subcategories:

• timeScheme: first and second time derivatives.

• gradSchemes: gradient ∇ schemes

41

• divSchemes: divergence ∇• schemes

• laplacianSchemes: Laplacian ∇2 schemes

• interpolationSchemes: cell to face interpolations of values

• snGradSchemes: surface normal schemes: component of gradient nor-
mal to a cell face

• wallDist: distance to wall calculation, where required

Schemes can be specified differently for each property, or default schemes can
be chosen to apply to all properties. Regardless, there is only one discreti-
sation scheme available, that is the standard for finite volume discretisation:
The Gaussian integration, for which an interpolation scheme must be
specified. There are many interpolation schemes to chose from, both gen-
eral and convection-specific. The convection-specific schemes require a flux
field entry and sometimes (for TVD schemes) a coefficient, but the general
schemes do not.
Interpolation schemes greatly affect the numerical behaviour of the solution.
used in this case:

• Gauss linear. The linear interpolation scheme is equivalent to the cen-
tral differencing scheme. It is second-order accurate, but is unbounded,
can ’wiggle’ and has poor transportiveness for high Peclet numbers. In
this case it is used for all gradient schemes

• Guass linearUpwind. This is the linear upwind differencing scheme
(LUD). Numerical behaviour: 1st/2nd order, bounded.

• Gauss limitedLinear. This is the limited linear differencing scheme. It is
a TVD (Total Variation Diminishing) scheme and requires a coefficient.
1 is generally recommended for best convergence. Numerical behaviour:
1st/2nd order, bounded. This group of schemes is specially developed
to avoid oscillation and unphysical values for turbulent flow. It is used
for turbulence properties k, epsilon and omega.

Examples are shown in figure 17. Note that this is not a complete fvSchemes
file!

42

Figure 17: Numerical schemes in fvSchemes

43

3.3.6 fvSolution

Specifics for the numerical solution (solver controls) are found in fvSolution.
This file contains solvers for all properties of interest, namely all that have
their own file in 0. Residual controls for the case specific algorithm are also
specified here, in addition to relaxation factors for each property. For this
thesis, velocity relaxation factors of 0.9 were used for the coarsest mesh and
most well-behaved turbulence model, k-Epsilon. All other properties were
given a relaxation coefficient of 0.6. For finer meshes using k-Omega, the so-
lution did not converge in 2000 iterations and velocity relaxation factors were
lowered to 0.8. This adjustment was not successful. k-Omega SST was even
less convergent, which initially lead to an adjustment of boundary conditions
to prevent recirculation at the outlet (from zeroGradient to inletOutlet). A
lowering of the velocity relaxation coefficient from 0.9 to 0.7 was also tested.

For most setups, residuals were as shown in Figure 18. The header and some
solver controls were excluded from this figure, but can be studied in detail
in the attachments. For some of the later setups, the residualControl for p
was set to the same value as for the other properties. These simulations did
not converge, but that is more likely because of other problems (oscillation)
in k-Omega and k-Omega SST.

[6]

3.4 Workflow

When the implementation is complete, the case is ready to be run. Each step
is executed using OpenFOAM utilities, commands in terminal with names
corresponding to their funtions in OpenFOAM. It is always good practice to
make sure a case is ”clean” before running it. There are two important clean-
ing functions, one that deletes all mesh files from constant/polyMesh and
one that deletes output folders. (Output folders appear when a simulation
is running, according to specified write controls in controlDict. Their names
correspond to a time step or iteration number.)

The next step is to create the mesh. First the background mesh defined in
blockMeshDict, then the final mesh for the tunnel geometry. When the mesh-

44

Figure 18: Numerical solver controls in fvSolution

45

ing is done, mesh quality is checked using checkMesh utility as mentioned in
section 3.3.2. Meshing is followed by decomposition. Before simpleFoam is
run it can be beneficial to use a utility called potentialFoam (potentialFlow
must be included in fvSolution for this to be available), which initializes
fields to a better initial condition. This can help the SIMPLE algorithm in
converging faster.

The main event is next, using the utility simpleFoam to solve the flow prob-
lem. Notice the extra code for parallel simulation and log files. A log file
comes in very handy in post-processing and should always be written for the
solver. Log files can also be made for checkMesh and other utilities.

If the case converges, the sub-domains are reconstructed. The processing is
done, and the results can be post-processed and visualized. paraView is the
software used for this thesis. The last command opens the case in paraView.
Another option is to type paraFoam. The author’s experience is that this is
slower than the alternative listed below.
List of commands in order of appearance

• foamCleanPolyMesh

• foamCleanTutorials

• blockMesh

• snappyHexMesh -overwrite

• checkMesh

• decomposePar

• mpirun -np 8 potentialFoam -writep -parallel

• mpirun -np 8 simpleFoam -parallel > log | tail -f log

• reconstructPar

• touch case.foam | paraview case.foam

Gnuplot can be used to plot results from the simulation. This has not been
done to a great extent for this thesis, since this kind of presentation looses a

46

lot of information compared to 3D visualizations. Still, it is a great tool for
checking for oscillations in the solution, and qualifies for a workflow list as
well:

• gedit log

• foamLog log

• gnuplot

• set logscale y

• plot ’logs/filename’ using 1:2 with lines

• — OR: plot ’logs/filename’ u 1:2 w l

• reset

• exit

47

4 Post-processing

4.1 Pressure loss

The initial goal was to find pressure loss from one cross-section to another
using mean pressure values for each section. Some post-processing can be
executed in Terminal using OpenFOAM utilities, but this is cumbersome
compared to post-processing software with graphical user interface. Also, a
visual presentation of data has several advantages, like immediate intuitive
perception and effectiveness (one picture says more than a thousand words).
Also it is more practical, which lowers user threshold. The list of advan-
tages goes on, but there is reason for caution. The human mind is suscepti-
ble to accepting nonsensical results with no physical meaning, only because
the colorful presentation ”looks professional” or ”looks reliable”. The user
should therefore approach visual post-processing with humility and insight
into human weaknesses. With the right mindset, the benefits can readily be
harvested.

When the solution is loaded in paraView, the first step is to make a slice for
the cross-section of interest. This is done by applying a slice filter. The user
specifies orientation and origin of the slice. When the slice is applied, a flow
property can be chosen. The properties must be checked off in boxes in the
menu to the left, and will appear in a drop-down menu on the toolbar. For
pressure p and velocity U, there are two different alternatives, one is a point
value and one is a cell value. If the point value is chosen, cell values are inter-
polated to make a smoother visualization of the property. This can introduce
some errors, but is perfectly fine for making pictures. However, if the mesh
is fine, the difference will not be as clear, and one might as well chose the
cell presentation instead. Cell presentation uses each cell’s actual value from
the solution, and does not introduce interpolation errors. Warning: The slice
itself will cut cells! If mathematics filters are applied to a slice, there will
be interpolation effects on the results! This won’t have dire consequences
unless there are very steep gradients present, but is an important thing to
be conscious of.

48

4.2 Friction factors

4.2.1 Darcy friction factors

There is an OpenFOAM utility called patchAverage which calculates the av-
erage of a property on a pre-defined patch. For this case it could be inlet and
outlet, for instance. This gives more accurate results than paraView meth-
ods, but with the drawback of only being applicable to patches. paraView
slices can be applied anywhere. The filter used for finding cross-section/slice
average values is called Integrate Variables. It does not give the average value
directly, but integrates any property of the users choosing over the area of
the slice (or other shape) it is applies to, and also returns the area of the
cross-section. The average can then be found by dividing integrated variables
by cross-section area.

∫
pdA

A
= paverage (40)

When the average value for different cross-sections are found, the difference
can be inserted into the rearranged Darcy Weißbach equation:

fD =
∆p

ρ

2

L

D

U2
(41)

where L is the distance between the cross-sections and D is a characteristic
length, in this case the hydraulic diameter. Three slices are chosen for this
case, at 4, 6 and 7 meters downstream of the inlet.

There is a downside to this very simple approach, being that the hydraulic
diameter is not constant, and neither is the velocity. A quick analysis us-
ing the given hydraulic diameter from the lab and the corresponding main
velocity gave negative pressure loss from cross-section 6 to cross-section 7.
This is also visibly in a plot with rescaled legend for pressures in paraView,
see Figure 19. Cross-section at 4m has highest pressures, while the lowest
pressures are at 6m. This calls for a more thorough investigation.

49

Figure 19: Pressure increase in downstream direction

Total loss is found through the energy equation [3](
p1
γ

+ α1
U2
1

2g
+ z1

)
+ hp =

(
p2
γ

+ α2
U2
2

2g
+ z2

)
+ ht + hL (42)

Cancelling zi, hp and ht and rearranging yields an equation for head-loss hL

hL =

(
p1
γ

+ α1
U2
1

2g

)
−
(
p2
γ

+ α2
U2
2

2g

)
(43)

which relates to the head-loss Darcy Weißbach equation

fD = hL
2g

L

D

U2
(44)

50

The mean pressures and velocities are found using Integrate Variables like
before. Inserted into equations above, the head loss is found. There is still
the matter of choosing a representative U and Dh for the head loss form of
Darcy Weissbach. The mean hydraulic diameter in the lab model is used
for Dh. The corresponding mean velocity U was therefore also used for the
sake of consistency. The remaining input needed for the Darcy Weißbach
equation is head-loss (equation 43).

The finest mesh for each turbulence model was used to find friction factors
for the three cross-sections 4-6, 4-7 and 6-7 meters downstream of inlet shown
in Table 5.

Darcy Friction Factors fD
Section k-Epsilon k-Omega k-Omega SST
4-6 0,0499 0,0503 0,0477
4-7 0,0459 0,0458 0,0401
6-7 0,0379 0,0369 0,0250
fD,mean 0,0446 0,04433 0,0376

Table 5: Friction factors

Friction factors are also found for other grids. A spread-sheet is attached
with details. Averaged friction factors are shown in table 6.

Averaged friction factors
Grid k-Epsilon k-Omega k-Omega SST
3,33cm 0,04308 0,04237 0,03761
1,67cm 0,04487 0,04433 not found
0,83cm 0,04506 not found not found
0,53cm 0,04459 not found not found

Table 6: Friction factors averaged between sections

A more accurate approach than the one described here would be to use cross-
sections in immediate proximity of each other. For a discrete case like this,
they could not be less than one cell-length apart. The deviations for A and
U would then be small, and the friction factor applies in that location alone.

51

Pressure and velocity for head-loss equation, k-ε, fine mesh
Slice 4m Slice 6m Slice 7m

p/ρ[m2/s2] 0,085392 0,025957 0,038419
U [m/s] 0,600874 0,621546 0,570834
A [m2] 0,132192 0,127888 0,139230
p/γ[m] 0,008539 0,002645 0,003916
U2/2g[m] 0,018402 0,019690 0,016608

Table 7: Head-loss data

This could also be done for a large number of cross-sections to find the Darcy
friction factor throughout the tunnel as a function of y (flow direction). An
implementation of this is not complicated in theory. Data from slices i par-
aView can be imported to a spread-sheet, and the operations are readily
available given the simplicity of the mathematics.

This approach would also have been used for this thesis were it not for the
memory needed to load so many slices in paraView. In an attempt to make
800 slices over the 8 meters of the tunnel, the program aborted. An image
of 80 slices and integrated variables data can be found in attachments.

The more accurate approach would require a local characteristic length. The
characteristic length for a cross- section is

Dh =
Aw
Pw

(45)

where Aw is wetted area of cross-section and Pw is wetted perimeter. In-
tegrate Variables filter in paraView finds cross-section area, as described,
while the perimeter is found by applying a slice filter only to the wall and
not the internal field. Integrate Variables (point data) will now give the
circumference.

4.2.2 Manning Strickler values

Head-loss can also be used to find Manning Strickler values, see equation 1.
An example is shown below.

52

I =
hL
L

(46)

values for I are available in the spread-sheet attachment. For k-Epsilon,
they range from I=0,00205 to I=0,0215, the latter being closest to the finest
resolution result of I=0,0213. I=0,0213 is used for this example. Using
geometry and flow data as presented above, the Manning Strickler value
becomes:

Mm =
Q

AR
2/3
h ∗

√
I

=
0, 1

0, 159 ∗ (0, 211)2/3 ∗
√

0, 00213
= 36, 6[m1/3/s] (47)

for the lab model.

53

5 Verification and validation

The two dominating criteria for a successful simulation result are

• convergence

• grid independence

Convergence is, as previously stated, reached when a pre-defined criterion
for error/residuals is satisfied. As the reader can see in Table 8, convergence
reached for modelling setups, not all test cases have converged. This can
mean that convergence criteria are too strict, making convergence unlikely, or
that the solution would converge given more time and iterations, or that the
solution is oscillating/divergent. A residual plot for the first non-convergent
k-Omega test case revealed that there were oscillations. The author was not
able to detect why, or to stop it from happening, but these measures were
tested in an unsuccessful effort to make the case more convergent:

• Changing the outlet boundary condition, from zeroGradient to in-
letOutlet for velocity, to prevent recirculation at the outlet. This
boundary works as a zeroGradient BC if there is no recirculation.

• Increasing the number of iterations to 3-4000

• Lower the under-relaxation factor. This was described in section 3.

CFD Model Setups
Grid cell size k-Epsilon k-Omega k-Omega SST
3,33 cm Yes Yes Yes
1,67 cm Yes Yes Yes
0,83 cm Yes Yes No
0,67 cm Yes No No
0,53 cm Yes No No

Table 8: Convergence reached for modelling setups

54

5.0.1 Errors

As previously stated, numerical solutions to complex flow problems are al-
ways erroneous, to a degree. Even if this weren’t so, there is no use expecting
perfect solutions from a CFD analysis. A CFD analyst must accept errors
while simultaneously making an effort to reduce them. Sources of error are
divided in three

• Numerical errors

• Code errors

• Human errors

Human errors are not only possible, but probable for complex cases. A
decimal point deviation can make a great impact on a solution. Problem
discretisation introduces errors, which may be reduced by mesh refinement
and time-step reduction, but only for those who can afford the expense of
it. There can be errors in the program code, and computational science is
limited in that a digital number is represented by a finite number of digits,
which results in round-off errors. It is unreasonable and insensible to spend
time and computational power on an infinite number of iterations when the
error, or residual, is small enough for the results to be useful in practice.
Therefore, it is better to use some convergence criterion, a delimiter for
when the solution is ”close enough” to the correct solution. A small sum of
absolute values of residuals is a typical convergence indicator. The change in
error from one mesh to another can be estimated using GCI, see section 5.1.2.

5.0.2 Grid Convergence Indicator

To find whether or not a simulation is grid independent, one must have at
least to different grids to compare, preferably more. The first method used
in this thesis is described in course material for TVM4155, Numerical Mod-
elling and Hydraulics by Olsen (2017) [8]. The equations below are slightly
rewritten for disambiguation.

GCICF =
1, 25eCF

rCF
(48)

55

eCF =

∣∣∣∣ΦF − ΦC

ΦF

∣∣∣∣ (49)

rCF =
hc
hf

(50)

where Φ is a result from the simulation. The result of interest here is the
Darcy friction factor, so this is the value substituted for Φ. rCF is the grid
cell relation between the grids under investigation. These are preferably a
mean value computed from all cells in a mesh. For heuristics case, the cell
size of the background mesh was used in this case, since they are hexahedral
cells of equal length in all three planes. The exception is the finest mesh, but
deviations are very small and a mean value for each cell instead of for the
entire mesh was used in this case.

Grid Convergence Indicator
Grid k-Epsilon k-Omega
0,53-0,67 cm 0,0495 not converged
0,67-0,83 cm 0,0211 not converged
0,83-1,67 cm 0,0499 0,05526

Table 9: Grid convergence indicators

5.0.3 Uncertainties

As established in section 1, the results from this thesis cannot be validated
until measurements from the lab are in place. Therefore this is merely a brief
qualitative discussion on sources for uncertainty i CFD modelling. The main
sources are

• input uncertainty: geometry, BCs and fluid properties

• physical model uncertainty

Input uncertainty for this case is most likely associated with turbulence prop-
erties, k, ε and ω, since the other properties are based on an actual setup

56

an not poor initialization guesswork by an inexperienced turbulence analyst.
Since convergence was not reached despite efforts described in section 5.1,
it would be interesting to see what initialization would do to the solution.
As mentioned, k-Omega is more sensitive to initialization than k-Epsilon. A
more qualified choice of turbulence intensity is suggested.

The geometry of the CFD model will be slightly different from the lab model
because of the windows, roughness and a general smoothing of the surface.

Fluid properties in the CFD model are simplified compared to the real world,
as described in section 1.
The boundary conditions should be quite suitable for this case.

57

6 Conclusion

As shown in Table 8, k-Epsilon performs best by far of the three turbulence
models that were teste in this thesis. Instabilities in k-Omega and k-Omega
SST resulted in oscillations, and model setup tweaks did not result in conver-
gence. That being said, the convergent k-Omega and k-Omega SST setups
give results for friction factors that are in the same order of magnitude as
k-Epsilon. General flow patterns are similar. Darcy friction factors and a
model Manning Stricklef value are computed. Darcy friction factors in k-
Epsilon are generally higher than for the other models. Mesh refinement
leads to higher friction factors with one exception(Table 6). Within the tun-
nel, section 4-6 (meters downstream from inlet) generally yield higher friction
factors than section 6-7. This is a general feature and does not depend on
turbulence model. Grid independence is not reached, with a GCI of 5̃% for
comparison of the two finest grids.

Further investigation is advised. Suggestions to modifications include initial
conditions for ω and interpolation schemes to avoid wiggles in the solution.
Friction factors should be compared to physical model study for validation.

58

All attachments are submitted separately on a transportable storage device.

59

References

[1] Lovdata, 2017 https://lovdata.no/dokument/SF/forskrift/2009-12-18-
1600

[2] H. K. Versteeg, W. Malalasekera, 2007, An Introduction to Computational
Fluid Dynamics, Pearson Educational Limited, 2nd edition

[3] C. T. Crowe, D. F Elger, B. C. Williams, J. A. Roberson, 2010, Engi-
neering Fluid Mechanics, John Wiley & Sons, Inc., 9th edition

[4] N. R. B. Olsen, 2012 Numerical modelling and hydraulics, Department of
Hydraulic and Environmental Engineering (NTNU), 5th edition

[5] CFD Support Ltd., 2017, OpenFOAM Training by CFD Support

[6] OpenFOAM, 2017, http://openfoam.com/documentation/user-guide/

[7] OpenFOAM, 2017, http://openfoam.com/documentation/cpp-
guide/html/guide-turbulence-ras-linear-eddy-viscosity-models.html

[8] N. R. B. Olsen, 2017 Numerical modelling and hydraulics, Department of
Hydraulic and Environmental Engineering (NTNU), 3rd edition

[9] CFD-online, 2017, https://www.cfd-online.com/Wiki/

[10] Radek Maca, 2017 Personal communication

[11] NTNU, 2016-2017, Lab model research associates

[12] Sintef, 2016-2017, Lab model production associates

60

