
Automatic Document Timestamping

Kristoffer Berg Gumpen
Øyvind Nygard

Master of Science in Computer Science

Supervisor: Kjetil Nørvåg, IDI

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

Abstract

When searching for information, the temporal dimension of the results is an important fac-
tor regarding the information quality. Using temporal intent as a condition when searching
for information is a field that is gaining increasing interest. When we search for informa-
tion on search engines, such as Google, we have the option to use time of creation as a part
of the search criteria. Unfortunately, when searching on the web we have no guarantee
that the timestamps for the results corresponds to the actual date the content was created.
Since the timestamps provided on the Internet can not be trusted it would be of great use
if there existed a method for timestamping documents without knowing the actual date
of creation. In this thesis, we have presented and implemented some existing approaches
to this problem, modified them and added some parameters for tweaking and fine tuning
the results. These approaches are so called content based approaches, and they use sta-
tistical analysis on the textual contents of documents in a collection in order to predict a
document’s time of origin. In order to evaluate our implementation, we have performed
extensive experiments and compared our results with results achieved in earlier research.

Sammendrag

Når man søker etter informasjon vil den temporale dimensjonen av resultatene være en
viktig faktor med hensyn til informasjonskvaliteten. Å bruke temporalitet når man søker
etter informasjon er et felt hvor interessen vokser. Dersom man søker etter informasjon
på søkemotorer, som Google, kan man velge å bruke opprinnelsesdato som en del av
søkekriteriet. Uheldigvis, når man søker på internett har man ingen garanti for at datostem-
plingen for resultatene korresponderer med den faktiske datoen innholdet ble opprettet.
Grunnet det faktum at denne datostemplingen ikke er til å stole på ville det vært til stor
hjelp dersom det fantes en metode for å tidsbestemme dokumenter uten å vite deres fak-
tiske opprinnelsesdato. I denne oppgaven har vi presentert og implementert noen allerede
eksisterende metoder for å løse dette problemet, gjort endringer på dem og lagt til param-
etere for å finjustere sluttresultatet. Disse metodene er såkalte innholdsbaserte metoder,
og bruker statistisk analyse på det skriftlige innholdet av dokumenter i en samling for å
predikere opprinnelsestiden for et dokument. For å kunne evaluere vår implementasjon har
vi utført omfattende eksperimenter og sammenlignet våre resultat med allerede oppnådde
resultat fra tidligere studier.

Preface

This thesis is written by Kristoffer Gumpen and Øyvind Nygard, and is the product of our
final year at the Norwegian University of Science and Technology with specialization in
Databases and Search at the Department of Computer and Information Science.

We would like to gratefully thank our supervisor and Professor Kjetil Nørvåg for his
contributions and for being available and helpful. He has given us constructive feedback
and provided invaluable guidance during the period of writing this thesis.

Table of Contents

Abstract i

Sammendrag iii

Preface v

Table of Contents ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Formulation . 2
1.3 Research Questions . 2
1.4 Contributions . 2
1.5 Project Outline . 3

2 Related Work 5
2.1 Temporal Language Models . 5
2.2 Burstiness . 6
2.3 Content Based Dating Approaches . 8

3 Preliminaries 11
3.1 Document Representation . 11

3.1.1 Bag of Words Model . 11
3.1.2 K-Shingles . 12

3.2 Semantic-based Preprocessing and Stop Word Removal 12
3.2.1 TF-IDF . 13
3.2.2 Part-Of-Speech Tagging . 13
3.2.3 Named Entity Recognition . 13

3.3 Jaccard Similarity . 14
3.4 All Pairs Similarity Search . 14

3.4.1 LSH and MinHash . 15

vii

3.5 Term Burstiness . 15
3.6 All Maximal Scoring Subsequences Problem 16

4 Document Dating 19
4.1 Normalized Log Likelihood Ratio (NLLR) 19
4.2 Temporal Entropy . 20
4.3 MaxEnt Document Dater . 21
4.4 BurstySimDater . 22

5 Approach 23
5.1 Finding Index Terms . 23
5.2 Precomputing the Top-k Most Similar Documents 24
5.3 Precomputing Bursty Intervals . 25
5.4 Oracle Berkeley DB . 26
5.5 Weighting the Documents . 26

5.5.1 Burstiness . 26
5.5.2 Top-k . 29
5.5.3 Jaccard Scores . 29

5.6 Estimating the Interval . 30

6 Experimental Setup 31
6.1 Datasets . 31
6.2 Parameters . 32

6.2.1 Top-k Value . 32
6.2.2 Time Frame Length . 33
6.2.3 Document Weighting . 33
6.2.4 Threshold . 33

6.3 Evaluation Metrics . 33
6.3.1 Accuracy . 33
6.3.2 Mean Error . 34
6.3.3 Fraction of Dataset Estimated 34

6.4 Experiments . 34

7 Results and Evaluation 37
7.1 Overview . 37

7.1.1 Accuracy . 38
7.1.2 Mean Error . 40

7.2 Parameters . 40
7.2.1 Top-k Value . 40
7.2.2 Time Frame Length . 41
7.2.3 Document Weighting . 42
7.2.4 Threshold . 43

7.3 Data Preprocessing . 43

8 Conclusion and Future Work 47
8.1 Conclusion . 47
8.2 Future Work . 49

8.2.1 Parallelization . 49
8.2.2 Single Document BurstDater . 49
8.2.3 Document Clustering . 50

Bibliography 53

Appendix 57

Chapter 1
Introduction

In this chapter we will give an introduction to our thesis. Section 1.1 explains the mo-
tivation behind our work, Section 1.2 provides a definition of the problem we are trying
to solve, Section 1.3 defines the research questions we are trying to answer, Section 1.4
summarizes our contribution to the field of research and Section 1.5 outlines the structure
of our report.

1.1 Motivation

In the area of information retrieval, taking the temporal dimension into account when
searching for documents is a field that is of increasing interest and importance. In [24],
Metzger identifies the timeliness of search results as one of five key aspects when it comes
to determining a document’s quality. Currently, search engines such as Google provides
the user with the possibility of specifying which time they want documents from. Unfor-
tunately the user will have no guarantee that the resulting documents’ timestamps corre-
sponds to the actual time the documents were written. This is because the timestamps are
collected from the documents’ meta data which is often corrupted as a result of the size
and dynamic nature of the web. These timestamps could be the date that the content was
uploaded from another source to the website, the date for the last time the website article
was updated and so on. This gives a need for alternative, more sophisticated approaches
for determining the age of a document. Under the assumption that documents describing
the same events have lexical similarities and in most cases originate from the same time
period [29], several researchers have tried to come up with methods that analyze textual
similarities in documents with the purpose of determining a document’s age. These sort
of methods are referred to as content-based approaches. There is yet to be seen a content-
based approach for document timestamping that is precise enough and scales well enough
to be applied on web search engines. If such a method were to exist, it could be used to
automatically detect a query’s temporal intent as well as ensuring that returned documents
originate from the desired point in time.

1

1.2 Problem Formulation
The problem presented in this thesis is the problem of incorrectness and ambiguity of tem-
poral information in meta data describing documents. This problem is of importance for
anyone who uses information retrieval systems. If this problem was to be resolved it could
ensure higher relevance in search results, because it would be possible to predict the tem-
poral intent of the query as well as the time of origins from the result documents. More
specifically, this paper will explore and evaluate existing approaches for timestamping
documents by looking at term burstiness [17]. Here, a bursty interval for a term is a time
period where the term exhibits atypically high frequencies. The underlying assumption for
such a method to work is that as events change, the text used to describe documents will
change as well [29]. This means that the terms used to describe a given event should be
simultaneously bursty in the time frame around the event’s time of origin. This assumption
applies particularly for news document collections, since news documents mostly describe
current events. In addition the paper will explore a method that solely relies on lexical
similarity between documents as well as different techniques for preprocessing the docu-
ments to be used for dating. Finally we are going to explore how the accuracy of the dating
algorithm can be increased by adding a threshold for dating the documents.

1.3 Research Questions
From the problem definition, this thesis will answer the following research questions:

RQ1 : What impact does the preprocessing of the dataset have on the final result when
timestamping different documents?

RQ2 : When deciding the timestamp for a document by comparing it to similar doc-
uments, how will using different weighting methods for the reference documents
alter the results?

RQ3 : What will be the optimal number of documents to use for comparing when decid-
ing a timestamp for the query document?

RQ4 : Can we achieve a fair trade off between accuracy and the fraction of the dataset
estimated by introducing a threshold?

To be able to answer these research questions we have implemented the burstySimDater
described in [14]. We have modified it so that the program is able to receive different kinds
of input and parameters which can be used as comparison to the original algorithm. We
have run several experiments with both different datasets as well as the different parame-
ters we wanted to explore. The results have been evaluated, discussed and compared, both
with earlier work and with each other.

1.4 Contributions
The contributions of our project can be summarized as follows:

• Our own implementation of the the burstySimDater method [14].

• Our own dating method, that slightly outperforms the burstySimDater method [14]
in terms of accuracy.

• An extensive experimental evaluation on how different preprocessing techniques af-
fect the result of both the the burstySimDater method and our own approach. Addi-
tionally we experiment on the influence of other parameters regarding these methods
(Chapter 6.2.1).

• Experiments with different thresholds for estimating the timestamp of a document
and how it affects the number of documents estimated.

1.5 Project Outline
The remainder of our thesis is organized as follows:

Chapter 2 - Related Work: Presents the underlying theory behind the related work re-
garding our thesis.

Chapter 3 - Preliminaries: Provides an explanation of the various concepts and tech-
niques used in the implementation.

Chapter 4 - Document Dating: Describes different content-based dating methods in de-
tail.

Chapter 5 - Approach: Explains our approach to implementing the document dating sys-
tem.

Chapter 6 - Experimental Setup: Introduces the data sets that we used for testing and
describes the different parameters/factors tested as well as describing the setup for our ex-
periments.

Chapter 7 - Results and Evaluation: Evaluates and discusses how different factors af-
fected the results.

Chapter 8 - Conclusion and Future Work: Provides a concluding summary of the thesis.
Additionally, this chapter describes some propositions regarding further work.

Chapter 2
Related Work

In this chapter we will provide a survey on previous work that are of significance regarding
our project. This includes previous work done on temporal laguage models, which is
described in Section 2.1, and burstiness, which is described in Section 2.2 as well as an
explanation of work done on content based dating algorithms given in Section 2.3.

2.1 Temporal Language Models

In [29], Shaparenko et al. make the following assumption: ”There is an implicit assump-
tion that as real-world events change, the text used in the documents will change as well”.
Under this assumption there has been proposed several approaches to modeling the trends
of term usage over time. Among the first to investigate which kind of statistical models
are appropriate for modeling the temporal dimension of term usage we have Swan and
Jensen [31]. They presented a system named TimeMines that automatically selects the
most significant topics from a time-tagged news corpus. They achieved this by using sim-
ple contingency tables to determine if a term is significant for a given time. A term is here
defined as significant if it occurs noticeably more frequent at a given time. Later, studies
by Li and Croft [20] and Diaz and Jones [4] explore the use of statistical language models
for modeling the temporal dimension of term usage. Li and Croft experimented with a
number of TREC ad-hoc queries, analyzing the relationship between time and relevance.
During this experiment they observed that documents that are relevant for a specific query
tend to originate from the same time frame. Diaz and Jones [4] made similar observations
when they experimented with using temporal profiles of queries in order to improve pre-
diction of precision. By using the temporal features of a query, they indeed managed to
improve prediction of the query’s average precision. The findings by Diaz and Jones [4]
and Li and Croft [20] substantiates that there is a correlation between the terms used in
documents and the creation time of documents. For a more detailed overview of the topic
see [10].

5

2.2 Burstiness

A central problem in text data mining is to derive meaningful structure from document
streams that arrive continuously and chronologically over time. Streams such as e-mails
and news articles are natural examples where the documents can be characterized by topics
that appear, grow in intensity, and then fade away. A burst, or a ”burst of activity”, can
be viewed as a time period where e.g. a word or collection of words exhibit an atypically
high frequency. Identifying such bursts can prove to be useful in the area of topic detection
and tracking (TDT). In [13], Kleinberg proposes a formal approach for modeling such
”bursts”. The goal is to model these ”bursts” in such a way that they can be efficiently
and robustly identified, and can provide an organizational framework for analyzing the
underlying content [13]. Kleinberg’s method is based on a Hidden Markov Model and
uses an infinite-state automaton, where bursts appear naturally as state transitions. The
resulting algorithms proved to be highly efficient, and return a nested representation of the
set of bursts which can be used do establish a hierarchical structure on the overall stream.

More recently Lappas et al. [17] proposed a different algorithm for using burstiness
to search for document sequences. Instead of using a Hidden Markov Model, as in [13],
the algorithm is based on the method by Ruzzo et al. [27] for solving the All Maximal
Scoring Subsequences Problem. In [17], two algorithms are proposed. The first algorithm
MAX-1 simply considers the occurrences of terms over the timeline generating scores
with respect to a baseline (e.g. average occurrence), and applies the algorithm proposed by
Ruzzo et al. [27] on the scores. The second algorithm MAX-2 bases itself on the MAX-1
algorithm, but instead of terminating after computing the initial set of bursty intervals I , it
reapplies MAX-1 on I . This way the MAX-2 algorithm captures a second level of bursty
intervals when the event was particularly popular and extensively covered in the news.
These intervals cover typically when the event first occurs or recent development causes it
to reappear on the front pages of the newspapers. The MAX-1 method uses the all maximal
scoring subsequences algorithm described in section 3.6 and the pseudocode for the MAX-
2 method is shown in Algorithm 1. Applying multiple iterations of MAX-2 could be used
to obtain a hierarchical structure of bursty intervals, but as demonstrated by Lappas et al.
in [17] a single iteration is enough to capture the burstiness patterns of events. In the same
article Lappas et al. also provide extensive experiments comparing MAX-1 and MAX-2
with Kleinberg’s [13] method KLEIN. These experiments include comparing the different
methods’ abilities regarding document ranking, interval ranking and index statistics. Table
2.1 shows the results that these methods achieved for interval ranking. In the experiment
they used the three different methods to evaluate queries from a manually composed list of
major events. The goal was to identify the interval that is closest to the actual date of the
event. As seen from the results both MAX-1 and MAX-2 produces reasonable intervals
for the evaluated query. Expectedly, MAX-2 gives shorter intervals, commonly spanning
a few days or weeks around the actual date. KLEIN produced intervals similar of that to
MAX-1, but failed to identify intervals for some of the queries. Since finding intervals
in which events occur is the application of these methods that are relevant to our thesis,
we will not go into details on the other two experiments in [17]. However it is worth
mentioning that MAX-2 and KLEIN achieved similar results regarding both document
ranking and index statistics.

Actual Date MAX-1 Max-2 KLEIN

Jan 17 1900 5 Jan - 3 Apr (1900) 5 Jan - 26 Jan (1900) 5 Jan - 23 Jan (1900)
June 30 1900 25 Jan - 12 Jul (1900) 1 Jul - 12 Jul (1900) 1 Jul - 12 Jul (1900)
Jul 29 1900 15 Jul - 19 Aug (1900) 30 Jul - 5 Aug (1900) -
Sep 8 1900 3 Sep - 10 Mar (1900/01) 9 Sep - 6 Oct (1900) 10 Sep - 14 Sep (1900)
Jan 22 1901 5 Oct - 17 Mar (1900/01) 28 Dec - 8 Feb (1900/01) -
May 3 1901 24 Apr - 29 Jul (1901) 27 Apr - 20 May (1901) 4 May - 23 May (1901)
Jun 11 1903 11 Jun - 25 Oct (1903) 12 Jun - 25 Jun (1903) 12 Jun - 19 Jun (1903)
July 20 1903 5 Jul- 4 Jan (1903/04) 7 Jul - 22 Jul (1903) 20 Jul - 22 Jul (1903)
Dec 30 1903 22 Dec - 20 Aug (1903/04) 31 Dec - 26 Jan (1903/04) 31 Dec - 17 Jan (1903/04)
Feb 7 1904 19 Jul - 20 Mar (1903/04) 5 Feb - 20 Feb (1904) 8 Feb - 20 Feb (1904)

Mar 31 1904 1 Apr - 6 Apr (1904) 3 Apr - 5 Apr (1904) 1 Apr - 6 Apr (1904)
Jun 15 1904 14 May - 30 Oct (1904) 16 Jun - 20 Jun (1904) -
Jun 16 1904 20 Mar - 30 Oct (1904) 17 Jun - 31 Jul (1904) 20 Jun - 23 Jun (1904)
Feb 1 1908 2 Feb - 20 Feb (1908) 2 Feb - 11 Feb (1908) -
Jul 25 1909 5 Mar - 10 Nov (1909) 19 Jun - 8 Aug (1909) 18 Jul - 27 Jul (1909)
Dec 28 1909 28 Nov - 28 Oct (1908/09) 26 Dec - 18 Jan (1908/09) -

Table 2.1: Predicted Intervals for Major Events [17].

Algorithm 1 MAX-2
Input: I: Set of first-level maximal intervals for Yt
Output: I ′: Set of second-level maximal intervals for Yt

1: I ′ ← ∅
2: for every interval I ∈ I do
3: I ′ ← I ′∪MAX-1(I) // MAX-1 returns 1st level intervals
4: return I ′

2.3 Content Based Dating Approaches
The concept of document dating has been studied in several domains and it is growing in
importance. Several Information retrieval applications such as computing document rel-
evance and labeling search queries with temporal profiles depend on knowledge of when
documents were posted. Another area of importance is processing historical and heritage
collections of text [2]. Previous approaches have tried to address the problem by looking
for linguistic constructs with clear temporal interpretations (e.g the mention of a date or
time). However these may not refer to relevant time frames which makes it hard to es-
timate a publishing date for the given document. An improvement to this is to consider
the entire vocabulary of a document in order to identify its timestamp. Although such
statistical content-based methods have shown some promising results automatic document
timestamping has still proven to be a tough problem. A main reason for this is that many
documents do not contain temporal information in their content which make them useless
for testing and training purposes [14].

The work of De Jong et al. [9] is among the first that addresses content-based docu-
ment dating. The authors propose a language model where the timeline is pre-segmented
into fixed intervals and then builds a model for each of these intervals. Based on this the
model selects an interval which is most likely to be the temporal origin of the query docu-
ment. The idea is that words may be obscured by language evolution and usage and that a
language model may be able to detect similarities between semantics in documents and se-
mantic trends over a time span. In the paper, two approaches are used. In the first approach
the normalized log likelihood ratio is computed between each document in the reference
corpus and the query document. From this, the publication date from the top-k documents
are used to build a temporal profile from which the query document’s time partition is
decided. In the second approach the word frequencies from all documents belonging to a
time partition is summed up and a temporal language model for each time partition is built
beforehand. The undated documents are then compared directly to the model.

In [11] and [12] Kanhabua and Nørvåg propose a method for document dating that
extends the one proposed by De Jong et al. They propose the reference collection to be
preprocessed based on its semantic, and apply a term-weighting scheme based on their
previous work on temporal entropy [11]. Such preprocessing techniques can be Part-of-
Speech Tagging, Collocation Extraction, Word Sense Disambiguation, Concept Extraction
and Word Filtering. To improve the accuracy further the authors also propose to add word
interpolation, temporal entropy and external search heuristics from Google Zeitgeist.

Chambers [2] proposes a discriminative model which outperforms the previous ones
proposed by De Jong and Kanhabua. It combines both a Maximum Entropy classifier,
as well as defining rules for processing temporal linguistic features. The method learns
different constraints based on time expressions in the document. E.g. a sentence like ”The
Planetarium does not open until February 2000” should remove all future years beyond
2000 from consideration and a constraint that says ”This document was likely written
before 2000” should be learned. The limitations of Chambers’ method is that it only
works for year predictions because of the ambiguity of the temporal linguistic features
that refers to months or days.

The different methods mentioned thus far all have the same limitations. They require
a pre-segmentation of the timeline into fixed intervals. In [14], Kotsakos et al. propose

Time Frame Length NLLR[9] MaxEnt[2] BurstySimDater[14]
1 month 18 - 23.4
3 months 24 - 32
6 months 25 36 40

1 year 38.4 48.6 49.8

Table 2.2: Precision (%) for NYT10 Dataset [14].

a method that has no such requirements and can handle intervals of arbitrary length. The
method considers the lexical similarity of a query document with documents in a reference
corpus as well as the burstiness of terms over time. The motivation for using burstiness
as a factor to decide a document’s timestamp is that when an event occurs, terms that
are characteristic for the given event appears more frequently in the media recording its
progress. Term burstiness is computed for the overlapping terms between the query doc-
ument and a document from the top-k most similar documents from the reference corpus
and a weight is given to the reference document. All the weights from the top-k most
similar documents are summed up for all the different time intervals possible and the one
with the highest score is the one predicted as the publication date for the query document.
In addition to providing a dating method that reports non-fixed periods of time, Kotsakos
et al. [14] also provide an extensive experimental evaluation comparing their own method
to the solutions proposed in [9] and [2] (Table 2.2).

Chapter 3
Preliminaries

This chapter provides general information on the techniques that we have used in our
project. Section 3.1 explains different ways of representing documents while Section 3.2
describes preprocessing of documents. Sections 3.3 and 3.4 describe the Jaccard similarity
measure and all pairs similarity search respectively. Section 3.5 explains the burstiness of
terms and, finally, an overview of the all maximal scoring subsequence problem is given
in Section 3.6.

3.1 Document Representation
The representation of a document is how the information is stored and used to represent
its content. The representation should consider what tasks that are to be performed on the
documents. In addition, the representation should also be able to compress the documents
which makes computation easier.

3.1.1 Bag of Words Model
Due to its simplicity, efficiency, and often surprising accuracy, the bag of words model is
one of the most common fixed-length vector representations for text. In a bag of words
model each document is treated as an unordered set of words. With this model a document
can be represented as a vector, where the vector size is equal to the size of the vocabulary
in the corpus and each entry corresponds to a word. The entries in the vector could be
binary (word present or not), the number of occurrences of the word or the term frequency.
Consider the following three documents:

D1 : ”President Donald Trump has very nice hair”

D2 : ”Donald Trump has small hands”

D3 : ”Small hands are very nice”

11

From these three documents (after a simple stop word removal) we may have the vocabu-
lary:

V = {donald, hair, hands, nice, president, small, trump, very }

and the bag of words binary vector representations are as follows:

~D1 = {1, 1, 0, 1, 1, 0, 1, 1}

~D1 = {1, 0, 1, 0, 0, 1, 1, 0}

~D1 = {0, 0, 1, 1, 0, 1, 0, 1}

The bag of words model has some critical drawbacks. One major drawback is the problem
of sparsity in the vector representation of the documents. Consider a corpus consisting of
hundred thousands of documents with over a million distinct terms. Using a naive bag of
words approach to represent the collection would include generating hundred thousands
of 106-dimensional vectors where only a small fraction of the entries are non-zero values.
Another limitation to the bag of words approach is that it only considers single words.
As pointed out by Le et al. [18] bag of words models does not take the word order into
consideration and have very little sense about the semantics of the words.

3.1.2 K-Shingles

A k-shingle (or k-gram) for a document is a sequence of k tokens that appear in the docu-
ment. Tokens can be characters, words etc. depending on the application. As an example
one could have a look at the document:

D1 : ”knowledge is important”

If we set k = 2 we will get the set of bigrams which is:

D1(bigrams) = {knowledge is, is important}

This way you will get more information about the collocation and the context of the terms.
The k-shingles can also be represented as vectors as shown for the bag of words model in
Subsection 3.1.1.

3.2 Semantic-based Preprocessing and Stop Word Removal

Preprosessing is extremely important when it comes to text mining. One might even say
it is defined by these elaborate preparatory techniques because it is so dependent on them.
One well known technique is stop word removal. Stop words are common words of the
language that usually do not contribute to the semantics of the document. They add little
information to the document and removing these will lead to a reduction of the size [6].

3.2.1 TF-IDF
TF-IDF, short for term frequency-inverse document frequency, is a numerical value in-
tended on reflecting the importance of a term within a given document as described in [6].
In information retrieval, TF-IDF is a widely used technique for identifying the index-terms
in documents. The TF-IDF score of a term t within a document d is calculated as the prod-
uct of the term frequency of t in d and the logarithmically scaled inverse document fre-
quency of t in the entire document collection. Here the term frequency of t is the number
of occurrences of term t in document d, and the inverse document frequency is the number
of documents in the collection divided by the number of documents where term t occurs.
The idea behind using the TF-IDF weighting scheme is to reward terms that occur frequent
within a document, while penalizing words that occur in many documents. This way the
TF-IDF score gives a measure as to how well a given term is suitable for distinguishing a
given document from other documents (idf), while at the same time making sure that the
term represents the content of the document (tf).

idft = log(
N

dft
) (3.1)

tf−idft,d = tft,d × idft (3.2)

3.2.2 Part-Of-Speech Tagging
Part-of-speech (POS) tagging is the process of assigning a word with a label that corre-
sponds to its syntactic class. By using POS tagging in the data preprocessing stage it is
possible to eliminate a significant amount of stop words. The underlying assumption is
that words of interest (words describing an event) for the most part belong to word classes
such as nouns, verbs and adjectives. This way, using POS tagging could help with increas-
ing the accuracy when it comes to determining a document’s date [11]. To apply POS
tagging, there exist a number of available tools such as the Stanford Core Nlp toolkit [22]
which is the one we used in our implementation. This is a JVM based annotation pipeline
framework, which provides most of the common core natural language processing steps.
This includes pre-trained models for POS tagging and an API for using them.

3.2.3 Named Entity Recognition
Named Entity Recognition is the process of identifying named entities in text and assign-
ing each entity with a label that corresponds to its type, such as ”Person”, ”Location”,
”Organization” etc. Identifying the terms that separates a given event from another is an
important factor when detecting the topics from another. This is why it would seem like
a good idea to look at the named entities in the documents, since a combination of these
could be unique for different events. Although this intuitively seems like a good idea,
observations made by Kumaran et al. [16] show that the utility of named entities can be a
double edged sword. This is because the same named entities are often used in many dif-
ferent contexts. To overcome this issue, named entities can be used with a combination of
keywords from the documents that you can find by using other methods, such as TF-IDF

(3.2.1). This way it is possible to capture both the entities the documents describe, as well
as the the context.

3.3 Jaccard Similarity
The Jaccard Similarity is a measure that can be used to describe the similarity between
two documents q and d. It is computed as the quotient of the overlap and the union of their
respective vocabularies. [14]

Jaccard(q, d) =
q ∩ d
q ∪ d

(3.3)

The pseudocode for computing the Jaccard similarity between documents is given in Al-
gorithm 2.

Algorithm 2 Naive Method for Precomputing the Top-k Most Similar Documents
Input: Set of documents D
Output: List of most similar documents J

1: J ← ∅
2: for q ∈ D do
3: Sq ← number of terms in q
4: for d not equal q ∈ D do
5: Sd ← number of terms in d
6: I ← number of intersecting terms in q and d
7: JacSim← I

Sq+Sd−I
8: J ← J ∪ JacSim
9: Return J

3.4 All Pairs Similarity Search
Solving a similarity search problem where one is interested in all pairs of objects whose
similarity is above a specified threshold is required in many real-world applications. Such
applications can be query refinement for web search by finding all pairs of similar queries
based on the similarity of the search result of those queries [28], coalition detection for
identifying coalitions of click fraudsters [23] and so on. This problem is a generalization
of the well-known nearest neighbor problem and there has been done a lot of work on
this subject, with many recent works considering various approximation techniques [3,
5, 7, 8]. On the other hand, in [1] Roberto J. Bayardo et al. propose a few methods
which do not resort to approximation or discarding of frequent features. These includes
building an inverted list index of the input vectors dynamically, exploiting the threshold
during indexing and/or during matching, exploiting a specific sort order etc. The biggest
challenge when performing all pair similarity search between documents in large corpora
is the problem of high dimensional and sparse data.

3.4.1 LSH and MinHash

One of the problems of comparing documents is that they are simply too large. We need
a representation of a document to be smaller so that it can be compared even faster. For
this it is possible to use a set of MinHash signatures. Now that the documents are much
smaller we are able to do the comparison a lot faster, but another problem that we might
enter is that the document collection also is too large. To solve this problem one can use
a function f(S1, S2) that tells whether S1 and S2 is a pair of elements whose similarity
must be evaluated, a candidate pair. The function aims to extract and return almost all
the pairs that have a similarity measure that is higher than a given threshold and almost
none that have a similarity measure that is below, resulting in a set of candidate pairs that
is a lot smaller than the original set of pairs. To decide whether or not two documents is a
candidate pair the signature matrix is split into b bands with r rows each. Then Each band
of a document is hashed into a bucket. If there are two or more documents in the same
bucket the combination of these are candidate pairs. J. Leskovec also shows the probability
that signatures between S1, S2 agree in one row as well as further analysis in [19].

3.5 Term Burstiness

A term is defined as bursty in periods where it exhibits atypical high frequencies. A more
formal definition of term burstiness is presented in the terms of numerical discrepancy by
Lappas et al. in [17]. In order to define term burstiness we first need to present the general
definition of numerical discrepancy. The numerical discrepancy is defined in Equation 3.4.
Here we have that P is a set of points distributed over random locations in [0, 1]d, where
d is the number of dimensions on the plane. For any region R in [0, 1]d we have that µ(R)
is the Euclidean measure of R ∩ [0, 1]d and µp(R) is the discrete measure |R ∩ P |/|P |.

Dp(R) = |µ(R)− µp(R)| (3.4)

Since we are interested in finding bursty intervals of terms over the timeline, R is reduced
to a one-dimensional interval I (e.g. d = 1). The discrepancy of I is calculated by taking
the absolute value of the difference between its length and the ratio of points from P that
fall within I (Equation 3.5). Here, µ(I) represents the baseline that is the expected fraction
of points to fall within I , while µp(I) represents the observed fraction.

Dp(I) = |µ(I)− µp(I)| =
∣∣∣∣len(I)− |P ∩ I||P |

∣∣∣∣ (3.5)

Regarding term burstiness, the set of points P is represented as the total frequency of a
term over the entire document’s sequence. When it comes to the baseline µ(I), it can
either be pre-defined or based on the underlying distribution. Lappas et al. [17] point out
out that you can not assume that the entire data set can be accurately described by a single
distribution. Instead they define the baseline as follows:

µ(I) =
len(Yt[l : r])

m
(3.6)

Here we have that Yt[l : r] is the frequency sequence for a term t and m is the length
of the time series. Additionally, Lappas et al. [17] define µp(I) as the frequency of term
t observed within interval Y [l : r] divided by the total frequency of t throughout the
sequence:

µp(I) =

∑r
i=l yti∑m
j=1 ytj

(3.7)

By putting Equations 3.6 and 3.7 into Equation 3.5, we get:

Dp(I) =

∣∣∣∣ len(Yt[l : r])m
−
∑r

i=l yti∑m
j=1 ytj

∣∣∣∣ (3.8)

Equation 3.8 defines the numerical discrepancy of terms over the timeline, but is of little
value for measuring term burstiness. This is because it gives positive values for observa-
tions that are either greater or less than the baseline. Instead, we would like a measure
that gives positive values only for uncommonly high frequency observations. Thus, given
a term t and an interval [l : r] on the timeline, Lappas et al. [17] define the burstiness of t
in [l:r] as:

B(t, [l : r]) =

(∑r
i=l yti∑m
j=1 ytj

− len(Yt[l : r])

m

)
(3.9)

3.6 All Maximal Scoring Subsequences Problem
Finding all maximal scoring subsequences is often an important task in analyzing e.g.
protein sequences or as we are going to be using it, finding burstiness of terms over a given
period of time. When using it to find bursty intervals the subsequences can not overlap
because either the union or the intersection of the two would have higher discrepancy than
one of the two, creating a contradiction as discussed in [17]. Thus, the problem can be
translated into the problem of finding all non-overlapping contiguous subsequences having
the greatest total score given a sequence of real numbers. In [27] Ruzzo et al. presented
a linear time algorithm that finds all maximal scoring subsequences. In the paper they
also provide mathematical proofs for the correctness of their algorithm. The input for
the algorithm is a list of real numbers read from left to right and the algorithm maintains
both the cumulative total of the scores and a certain ordered list I1, I2,. . . , Ik−1 of disjoint
subsequences. For each subsequence Ij , it records the cumulative total Lj of all scores
up to but not including the leftmost score of Ij , and the total Rj up to and including the
rightmost score of Ij . A positive score is incorporated in its own subsequence and the
algorithm then checks to see if extending the subsequence will make a new subsequence
with higher score. As described in [27] this is done as follows:

1. The list is searched from right to left for the maximum value of j satisfyingLj < Lk.

2. If there is no such j, then add Ik to the end of the list.

3. If there is such a j, and Rj ≥ Rk, then add Ik to the end of the list.

4. Otherwise (i.e., there is such a j, butRj < Rk), extend the subsequence Ik to the left
to encompass everything up to and including the leftmost score in Ij . Delete subse-
quences Ij , Ij+1, . . . , Ik−1 from the list (none of them is maximal) and reconsider
the newly extended subsequence Ik (now numbered Ij) as in step 1.

Figure 3.1 An example of the algorithm from [27]. Bold segments indicate score se-
quences currently in the algorithm’s list. The left figure shows the state prior to adding the
last three scores, and the right figure shows the state after.

This algorithm can be used to identify high-burstiness intervals for different terms where
the input is the frequency sequence of the term over a given timeframe subtracted by the
average frequency of the term. This average makes up the term’s baseline which is the
expected value of its occurences. An uncommonly high frequency observation will give a
high score while a frequency observation lower than expected will give a low (negative)
score.

An example of the algorithm can be seen in Figure 3.1. In this case the algorithm runs
through a sample input with the scores (4,−5, 3,−3, 1, 2,−2, 2,−2, 1, 5). After reading
the last three scores, the last subsegments are extended to encompass these scores as well.
In the process the algorithm creates a new segment, I5 containing the value 1 (tenth iput)
and then merge I3, I4 and I5 into a new I3 as the last score arrives.

Chapter 4
Document Dating

In this section we will provide a more detailed overview of previously proposed document
dating techniques. In Section 4.1 we will explain the technicalities behind the NLLR uni-
gram model proposed in [9]. Then, in Section 4.2, we will explain the Temporal Entropy
weighting scheme described in [11]. In Section 4.3 we will describe the principles behind
the MaxEnt document dating method proposed in [2]. Finally, in Section 4.4, we will
explain the burstySimDater method given by Kotsakos et al. in [14].

4.1 Normalized Log Likelihood Ratio (NLLR)

When comparing a query to a document collection it is of great importance to use a good
metric for comparison. De Jong et al. [9] propose to use the normalized log likelihood ratio
presented by Kraaij et al. [15]. For a query Q, a document D and a background corpus C,
the log likelihood ratio of Q given D is defined as follows:

LLR(Q|D) = log
P (Q|D)

P (Q|C)
=

n∑
i=1

c(Q, τi) log
(1− λ)P (τi|D) + λP (τi|C)

P (τi|C)
(4.1)

Here, n is the number of terms in Q, τi is a term in Q, c(Q, τi) is the number of times τi
occurs in Q and λ is a smoothing parameter. For each term in the query, the LLR model
gives a measure of the degree of surprise there is to see the term given the document model
compared to the degree of surprise given the background model. The scores in equation
4.1 depend on the query length. This can easily be normalized by dividing the scores by
the query length, which gives the normalized log likelihood (NLLR):

NLLR(Q|D) =

n∑
i=1

c(Q, τi)∑n
i=1 c(Q, τi)

log
(1− λ)P (τi|D) + λP (τi|C)

P (τi|C)
(4.2)

19

By applying the NLLR formula (equation 4.2) to our problem we get the following for-
mula, which finds the time partition that best suits a given document:

NLLR(D|p) =
∑
w∈D

tf (D,wi)∑n
i=1 c(D,wi)

log
(1− λ)P (wi|p) + λP (wi|C)

P (wi|C)
(4.3)

In equation 4.3 we have thatD is the query document, p is a given time partition, tf (D,w)
is the term frequency of wordw in documentD,

∑n
i=1 c(D,wi) is the number of words/length

of document D, P (w|p) is the likelihood of term w appearing in partition p and P (w|C)
is the likelihood of term w appearing in the background corpus C.

4.2 Temporal Entropy
In order to achieve good results it is important to use a good term weighting scheme.
A naive choice would be to simply use the raw term frequencies. However this would
result in a lot of noise in the language model, since meaningless stop words would be
overrepresented. Kanhabua et al. [11] propose a term weighting scheme concerning tem-
porality called temporal entropy (TE), where terms are selected based on their entropy or
noise measure. The idea is inspired by a term selection method presented by Lochbaum et
al. [21]. The advantage of using a term weighting scheme such as entropy is that it gives a
measure as to how well a term is suited for separating a document from other documents.
Additionally, it also captures the importance of the term within the document. The entropy
of a word wi is defined as follows:

Entropy(wi) = 1 +
1

logND

∑
d∈D

P (d|wi)× logP (d|wi) (4.4)

In equation 4.4 we have that: P (dj |wi) =
tf(wi,dj)∑ND

k=1 tf(wi,dk)
, ND is the total number of

documents in a collection D and tf(wi, dj) is the frequency of a word wi in a document
dj . Kanhabua et al. [11] defines temporal entropy as a measure as to how well a term is
suitable for separating a time partition from other time partitions as well as indicating how
important a term is within in a specific partition. They define temporal entropy as follows:

TE(wi) = 1 +
1

logNP

∑
p∈P

P (p|wi)× logP (p|wi) (4.5)

Similarly to equation 4.4, we have in equation 4.5 that: P (pj |wi) =
tf(wi,pj)∑NP

k=1 tf(wi,pk)
, NP

is the total number of partitions in a corpus P, and tf(wi, pj) is the frequency of wi in
partition pj . By modifying the score measure in [9], Kanhabua et al. [11] proposes the
following score measure:

ScoreTE(di, pj) =
∑
w∈di

TE(w)× P (w|di)× log
P (w|pj)
P (w|C)

(4.6)

Using the score measure defined in Equation 4.6 for classifying documents could prove
to be advantageous since it applies higher weights to terms that occur in few partitions,
which in turn should result in a higher score for partitions where such terms appear.

4.3 MaxEnt Document Dater
The two techniques discussed so far can be viewed as token-based classifiers where the
learners solely rely on the observed frequencies of unigrams in order to assign a query
document with a time partition. Although they manage to capture and utilize some of the
temporal information in a document collection, Chambers et al. [2] point out that they do
not consider richer time-based features such as typed dependency, verb tense, verb path or
named entities. Instead Chambers et al. propose to use such features in order to learn and
enforce time constraints on the query document. The key idea is to identify features such
as ”until February 2000”, which in this case is a year mention that excludes documents
written in year 2000 or later, and use these to narrow down the possible candidate time
partitions. The authors define three core relations:

1. Before Timestamp: M < T

2. After Timestamp: M > T

3. Same as Timestamp: M == T

Here T is the document timestamp’s year and M is the year mention. In order to clas-
sify year mentions Chambers et al. [2] use a MaxEnt classifier that labels mentions with
relations. Regarding the document classifier, they introduce the following technique for
mapping the relations to individual year predictions:

Pyear(y|d) =
1

Z(Td)

∑
t∈Td

PY (rel(val(t)− y)|t) (4.7)

rel(x) =


before if x < 0

after if x > 0

simultaneous otherwise
(4.8)

Here we have that Td is the set of mentions in document d. A MaxEnt classifier is repre-
sented by PY (R|t) for a time mention t ∈ Td and possible relations R. The mapping of
this distribution over relations to a distribution over years is defined by Pyear(y|d) where
val(t) is the integer representation of the year mention and Z(Td) is the partition func-
tion. The rel(val(t)− y) function determines if the year mention t overlaps the predicted
year for the document’s ”unknown” timestamp y. Finally Chambers et al. [2] define a
joint model by combining the unigram model from Section 4.1 with their own constraint
classifier with the following linear interpolation:

P (y|d) = λPdoc(y|d) + (1− λ)Pyear(y|d) (4.9)

Here we have that y is a year, d is the query document and λ is a real number between 0
and 1 that sets the level of impact between the two summands in the equation.

4.4 BurstySimDater
In [14] Kotsakos et al. propose a method for dating documents called burstySimDater.
This is a content-based document dating algorithm which considers both lexical similarity
as well as burstiness of the terms throughout the dataset. To achieve this it studies the
terms in the New York Times Annotated Corpus to compute the burstiness of the differ-
ent terms. The intervals of when each term is bursty are stored and used later for deciding
the publishing date for a given query document. The Jaccard similarity for every pair of
documents is also precomputed and stored for later use. The paper studied other similarity
measures as well such as cosine similarity, but concluded that the Jaccard similarity mea-
sure was the best suited. When a query document is to be dated a K-fold cross-validation
process is started and a given number of documents from the training set is selected for
comparison. To find the best number of documents selected the authors ran a few different
tests and decided to go for 10, which means that the 10 most lexical similar documents ac-
cording to the Jaccard similarity measure when compared to the query document are used.
For each of these top 10 documents the intersecting words with the query document are
extracted for burstiness evaluation. Now, for each of the intersecting words, if the training
document is dated in the same interval the given term is bursty a weight of 1 is added to
the document. After all the terms are evaluated the weight is normalized by dividing it by
the number of intersecting terms. Finally the weighted documents are analyzed and the
interval of a given length containing the highest sum from the weight of the documents
dated in this interval is used for dating the query document. The accuracy for the method
is computed and a correct answer is given for each document where the actual publishing
date is within the estimated interval. The pseudocode for the burstySimDater is given in
Algorithm 3.

Algorithm 3 BurstySimDater
Input: reference corpus D, bursty intervals B, query document q, max time frame length
l
Output: time frame of q

1: S ← top-k most similar documents to q from D
2: WS ← ∅
3: for d ∈ S do
4: wd ← 0
5: Y ← d ∩ q
6: for x ∈ Y do
7: wd ← wd + |{I ∈ B(x) : t(d) ∈ I}|
8: wd ← wd/|Y |
9: WS ←WS ∪ {wd}

10: AS ← (d ∈ S,WS)
11: I ← getMaxSumInterval(A, l)
12: Return I

Chapter 5
Approach

This chapter provides a detailed overview of our approach to realizing a content based
document dating system. This includes a description of how we selected index terms,
given in Section 5.1, and how we precomputed the top-k most similar documents and the
bursty intervals, given in sections 5.2 and 5.3 respectively. A description of the database
used to store this information is given in Section 5.4. The different methods for weighting
the documents are explained in Section 5.5 and finally Section 5.6 describes how the final
interval for the documents is estimated.

5.1 Finding Index Terms
A large portion of the text in documents consists of stop words. These are ”meaningless”
words, such as ”he”, ”is”, ”a”, ”to” etc, that do not incorporate the topic of the document
and can not be used efficiently for distinguishing documents from another. Not only do
stop words act as noise when comparing documents, they also make the comparison more
computationally heavy. This is because they constitute a large portion of both the vocabu-
lary and the total volume, which results in higher dimensional document representations.
Therefore we had to implement some means of stop word removal. There exist several
well known techniques for stop word removal, or keyword filtering. The techniques we
chose to explore were TF-IDF, POS tagging and Named Entity Recognition. TF-IDF is
proven to be an efficient and simple algorithm for identifying relevant words in a doc-
ument [26]. The key idea behind TF-IDF is to reward terms that occur frequent within
a documents while at the same time penalizing terms that occur frequent throughout the
corpus, as described in Section 3.2.1. For each term in each document we calculated the
TF-IDF score and then reduced the documents to only containing a fraction of its highest
scoring terms. This fraction is called the keyword density. To calculate the TF-IDF scores
we had to index each term in the corpus with the number of documents in which the term
appeared and generate indices for each document with its terms and the occurrence of
the term within the document. Then we could simply join the two indices and apply the
TF-IDF formula. Regarding POS tagging, we found index terms by filtering out specific

23

parts of speech. This was done by using the Stanford Core NLP toolkit [22]. In addi-
tion to using POS tagging to find index terms, we also used Named Entity Recognition
to identify meaningful terms. In order to recognize the named entities in the corpus we
used the Stanford Core NLP’s Conditional Random Field Classifier [22]. The model we
used was a pre-trained 4-class model that classifies char sequences as either person, orga-
nization, location or misc. Since the named entities are char sequences, not single terms,
we tried an approach where we removed all white-spaces from the named entities so that
the system would regard a named entity as a single term. However this turned out to be a
poor idea, since char sequences such as ”Barack Obama” and ”President Obama” would
be considered as two different entities. Hence, we ended up using a simple BOW-model
for the named entities assuming that most of the co-occurences could be captured when
looking for simultaneous bursts.

5.2 Precomputing the Top-k Most Similar Documents
To be able to run the program several times with different parameters we needed it to termi-
nate within reasonable time. Computing the Jaccard similarity between all documents, one
pair at a time, is an all pairs similarity method which, for a dataset of more than 800,000
documents, would take too long. Therefore, we decided to precompute this value for all of
the documents. This way we could simply look up the k most similar documents in a map
stored on disk, instead of having to compute the similarities from scratch for each query
document. For our dataset the naive double for-loop Jaccard similarity algorithm was not
able to scale. Hence, we needed a more sophisticated approach. First we tried to estimate
the similarities by using MinHash-LSH, but unfortunately this did not give precise enough
estimates. We suspect that the reason behind this is that the syntactic similarity between
the documents in the collection we used are typically low. This means that in order to
find the topmost similar documents we need to look at the lower decimals in the Jaccard
similarity values. Therefore we need very precise, if not exact, estimates for similarities.
However, if we were working on a different collection, such as a twitter stream or query
logs where the documents are very short which in turn gives a higher probability of high
similarity between best matches, it would be likely that MinHash-LSH would give sat-
isfying estimates. To be able to do the all pairs similarity computation we had to find a
different way of representing the documents. We ended up creating a document model for
all the different documents containing a set of all the terms from the document as well as a
field holding the GUID of the document. We then proceeded by creating a list with all the
document models, docModels, and a hashmap of each of the documents’ size according
to its termcount, with the document’s GUID as key, docSizes. From the document models
we created a new hashmap with all the distinct terms from the dataset as keys holding the
GUIDs for all the documents containing the given term, termCatalogue. By using a single
for-loop we can iterate through the documents and by scanning termCatalogue we are able
to compute the number of intersecting words between the query documents and all oth-
ers. In addition we discard all the documents that do not have any intersecting terms with
the query documents to make the set on which the Jaccard similarity is to be computed
smaller. Now we could compute the Jaccard similarity for each document in reasonable
time with some simple calculations and then sort them by values to find the most similar

ones. This information was stored in our database to be used later.

5.3 Precomputing Bursty Intervals
To save more time when running the program we decided to precompute the bursty inter-
vals for each distinct term in the document collection as well. For this task we created an
overview for all of the terms and all their respective timestamps (i.e. publication dates and
occurences of all the documents containing the given word) and gave each term a score
based on how many times it was used for any given day throughout the time span of the
document collection. To be able to find when a term has uncommonly high frequency
observations we defined a baseline which we subtracted from the scores. The baseline we
used was the average frequency of the term.

The algorithm for calculating the bursty intervals would read the scores of each term
from left to right (i.e. from the earliest publication date to the last) and keep track of the
maximal scoring subsequences in an ordered list I1, I2, ..., Ik−1 calculated so far. Further
the algorithm would generate the bursty intervals as described earlier and in [27].

The output from the method was also stored in our database as a key-value pair with
the term as key and its bursty intervals as its value. In addition to producing the inter-
vals we also used a plotting tool to be able to visualize the frequency of different words
throughout the time span. We plotted both the frequency of the word as well as the scores
after the baseline was subtracted. The plots for the word ”earthquake” and ”richter” in a
collection of New York Times articles from 1987 are shown in Figure 5.1. These are two
words that are often used in the same context and as you can see from the figure, they are
spiking around the same time frames. The large spike between day 250 and 300 is most
likely related to the Whittier Narrows Earthquake, which took place in Southern Califor-
nia October 1st 1987 and left 8 casualties as well as major material damage. This example
visualized how a collection of words can have a simultaneous ”burst” of activity and then
fade out over time.

After all the bursty intervals for the distinct words in the dataset were computed we
wanted to create the bursty intervals from the MAX-2 algorithm to capture the second level
of bursty intervals. When computing these we would run the algorithm for finding bursty
intervals within each of the intervals already found for a given term and then concatenate
all the results into a final list of bursty intervals. This second burstiness level pertains to
smaller intervals when the event was particularly popular and extensively covered in the
news. This would typically be the first time an event made the headlines, or, in the context
of a newspaper, when new developments bring it back to the front page. The different
outputs from both the MAX-1 and MAX-2 algorithm is compared in Table 5.1 where the
first column marks the timestamp of when Christmas Eve (i.e. December 24th) occurs over
the timespan of the NYT10 dataset. The second and third column represent an interval that
spans this timestamp from its respective burstiness algorithm. As we can see, the results
from the MAX-2 algorithm is narrower and more concentrated around the actual time of
the event. For the MAX-1 algorithm we see that there is even an interval spanning over
the three first christmases, probably because the term frequency for christmas was lower
at the end of the timespan. We also included a plot for the term frequency of the word
christmas subtracted by the baseline to be able to visualize the different intervals better.

Event timestamp MAX-1 MAX-2
358 297 - 1103 318 - 374
724 297 - 1103 682 - 738

1089 297 - 1103 1060 - 1102
1454 1406 - 1468 1431 - 1456
1819 1767 - 1838 1795 - 1820
2185 2148 - 2195 2171 - 2187
2550 2505 - 2561 2530 - 2551
2915 2869 - 2930 2906 - 2917
3280 3223 - 3300 3258 - 3281
3646 3601 - 3650 3626 - 3647

Table 5.1: The different intervals from the MAX-1 and MAX-2 algorithms spanning the timestamp
of christmas each year.

This plot can be seen in Figure 5.2

5.4 Oracle Berkeley DB

For storing the precomputed data we wanted to use a simple database which offered key-
value storage and ended up choosing Oracle’s Berkeley DB. It uses simple function-call
APIs for data access and management and the Oracle Berkeley JE version is implemented
in Java [25]. In this way we got to put all the information from the Jaccard similarity
results as well as the information of the bursty intervals into one file each instead of, for
instance, having over a million files with the burstiness of each term.

5.5 Weighting the Documents

When we use the most similar documents from the test set to decide the time frame of the
query document we want the ones that are considered more important to have more impact
on the final decision. To be able to do this we give each document a weight and for each
possible time frame we add all the weights of the documents within the given time frame.
The time frame with the highest score will be our estimate of the time frame where we find
the timestamp of the query document. The way we compute the document weights have a
lot of impact on the end result and we chose to try a few different models.

5.5.1 Burstiness

The model that is similar to the one that is used in [14] is the one we call burstiness. For
each document in the top-k most similar documents the intersection of words with the
query document is extracted. For each of these words we analyze its burstiness and if the
timestamp of the test-document is within a range where the word is bursty we add 1 to the

Figure 5.1 The top picture shows the term frequency of the word earthquake throughout
the timespan of the NYT1987 dataset, while the bottom picture shows the term frequency
of the word richter.

Figure 5.2 Plot of term frequency for the word christmas subtracted by the baseline.

Figure 5.3 An example of how the burstiness is computed for the test-documents. In this
case, the three documents d2, d3, d4 will be given the highest score since they overlap with
the most bursty intervals of the considered terms [14].

weight of the document. After all the words in the intersection is analyzed we normalize
the weight by dividing it by the number of terms in the intersection.

To visualize how the burstiness affects the weights of the different documents, the
example in Figure 5.3 gives a conceptual view of the approach. Say that a given query
document q discusses a fire in the Jackson theater in Chicago. The seven most lexical
similar documents to q: d1, d2, d3, d4, d5, d6 and d7 and a subset of the intersecting words
are shown in the figure. Further the bursty intervals of each of these words are also shown.

The weight for any of the documents in the test set will be the normalized number of
bursty intervals from the intersecting words with the query document that is bursty in its
date of creation. The pseudocode of this computation can be seen in Algorithm 3.

5.5.2 Top-k

A different model, and perhaps the easiest one is giving each of the top-k most similar
documents the weight 1. The result from using this method will be the time frame where
the highest amount of the most similar test-documents are written. In other words, the
algorithm choose the time frame of the query document to be around the same time the
largest portion of the top-k most similar documents are written.

5.5.3 Jaccard Scores

The results from the top-k model proved to be promising and we decided to do a variation
of this. Instead of giving all the k most similar documents the weight 1 we gave them their
Jaccard score as weight so that the most similar document will have more impact than, say,
the twentieth most similar document.

5.6 Estimating the Interval
The output of the program is an interval, or time frame, in which the program finds it most
likely that the query document is published. The interval is of length l and will be the in-
terval throughout the timeline with the highest sum of document weights. To compute this
we create a list where the index corresponds to a timestamp in the timeline of the dataset
and the value is the sum of the weights of all documents published on the corresponding
date (index). Using this list we go through every possible time frame throughout the list
and add the values of all the corresponding timestamps. The start date of the interval and
the sum of weights are stored and compared to the next time frame. If the new sum of
weights is higher, then store the new sum and the start date of the corresponding time
frame. Otherwise compare the next time frame. Finally the suggested time frame will be
the start and end date of the interval of length l with the highest sum of document weights.
Pseudocode for this is given in Algorithm 4.

Algorithm 4 Estimating the timeframe
Input: List with the scores for every timestampW , max timeframe length l
Output: Start date of estimated interval d

1: max← 0
2: currentStart← 0
3: d← 0
4: for v ∈ W do
5: Score←

∑currentStart+l
i=currentStart vi

6: if Score > max then
7: max = Score
8: finalStart = currentStart

9: currentStart++

10: Return d

Chapter 6
Experimental Setup

In this chapter we will describe our experimental setup. In Section 6.1 we will describe the
different datasets we derived using different preprocessing techniques. Then, in Section
6.2 we will describe the different parameters that can influence the results. In Section
6.3 we define our evaluation metrics. Finally, in Section 6.4 we will describe how we
conducted our experiments.

6.1 Datasets
For our experiments, we used The New York Times Annotated Corpus. This is a docu-
ment collection which contains over 1.8 million articles written and published by the New
York times between 1/1/1987 to 6/19/2007 and its corresponding metadata. The text in
the corpus is formatted in the News Industry Text Format (NITF) developed by the Inter-
national Press Telecommunications Council. NITF is an XML specification that provides
a standarized representation for the content and structure of news articles. The New York
Times Annotated corpus also provides Java code for extracting information from the news
articles.

From the The New York Times Annotated Corpus we derived seven different data
sets, spanning either one or ten years, generated using three different preprocessing tech-
niques. An overview of the datasets before preprocessing are listed in Table 6.1 and our
resulting datasets after preprocessing are listed in Table 6.2. Here, the NYT data sets was
generated using POS tagging for stop word removal. Just as in Lappas et al. [14] we chose
to only keep verbs, nouns and adjectives. A comparison of the NYT10 used in [14] and
our NYT10 dataset can be seen in Table 6.3. Regarding the ”Keywords”-data sets, we
used TF-IDF to identify and filter out stop words. Here we chose to only keep the 20%
(keyword density of 0.2) most significant terms in each document. This fraction was set
by looking at the occurrences of obvious stop words, such as ”a”, ”to”, ”are”, ”this” etc.,
versus various levels of keyword density. The NYT10-06d dataset was created by filtering
out the 60% most significant terms in the NYT10 dataset by using TF-IDF. The last pre-
processing technique we experimented with was Named Entity Recognition. Intuitively,

31

Year(s) #Docs # Distinct Terms # avg Distinct Terms per Document
1987-1996 887,556 8,033,464 272

1987 106,103 1,544,019 245

Table 6.1: Dataset before preprocessing.

Dataset #Docs #Days # Distinct Terms # avg Distinct Terms Stopword Removal

NYT1987 106,103 365 224,338 168 POS tagging
NYT10 887,553 3653 692,090 168 POS tagging

NYT10-0.6d 887,553 3653 692,008 174 POS tagging & TF-IDF
Keywords1987 106,103 365 242,018 105 TF-IDF
Keywords10 887,553 3653 750,429 110 TF-IDF

NamedEntities1987 106,103 365 152,828 33 NER-tagging
NER-Keywords1987 106,103 365 238,937 76 NER-tagging

Table 6.2: Description of datasets used.

named entities, such as persons, locations and organizations, are imperative when describ-
ing events. Thus using named entities to approximate a document’s time of origin could
prove to be beneficial. In addition to make a data set only consisting of named entities, we
also made a data set (NER-Keywords1987) by combining named entities and keywords.
In this data set we extracted all named entities from the documents and then filtered out
the top 10% most significant terms from the remaining text by using TF-IDF.

6.2 Parameters

When running the algorithm and trying to find the optimal setup there are a few parameters
to be tweaked and tested. To be able to receive the best results possible these parameters
should be tuned and optimized.

6.2.1 Top-k Value

The number of documents selected by the Jaccard similarity function is a parameter that
may have a lot of impact on the result. We have chosen to call the parameter k, where
k documents are selected from the test set which are considered to be the most similar
compared to the query document. Our assumptions are that the k should not be too large
and values between 5-100 should be tested.

Dataset #Docs #Days # Distinct Terms
NYT10 from [14] 665,741 3650 1,036,204

NYT10 in our implementation 887,553 3653 692,090

Table 6.3: Comparison of the NYT10 dataset used in [14] and NYT10 used in our implementation.

6.2.2 Time Frame Length
The time frame length is the length of the interval in which we estimate the query document
to have been published in. Naturally a longer time frame gives a higher probability for the
algorithm to produce correct results. As a default the time frame for a dataset over one
year is one month and the time frame for a dataset over 10 years is one year. This means
that randomly guessing time intervals should produce respectively 100 ∗ (1/12) = 8.33%
and 100 ∗ (1/10) = 10% accuracy. Other time frames should also be tested for evaluating
the results of the algorithm e.g. three months over ten years.

6.2.3 Document Weighting
How the different weights for each document is computed is described in Section 5.5.
Choosing between these may have a lot of impact on the end result and can be interesting
to compare. From [14] the burstiness weighting is used and we want to see how the other
proposed weighting methods compare to this one.

6.2.4 Threshold
The threshold is a limit as to how certain the system needs to be before assigning a time
frame to a document. The value of the threshold is defined as a real number between 0 and
1. The way that we use the threshold is given in Equation 6.1. Here the the fraction of the
scores within the estimated interval over all the scores assigned over the timeline needs to
be larger than the given threshold value.

scores(interval)

scores(timeline)
> Threshold (6.1)

6.3 Evaluation Metrics
In this section we will define the metrics that our evaluation is based upon. These are
respectively the accuracy, mean error and fraction of dataset estimated.

6.3.1 Accuracy
The program gives a time frame in which it estimates the query document to have been
published within. This is either correct, if the query document is in fact published in
the estimated time frame, or wrong if it is published any time other than within the time
frame. The number of times the program estimates correct divided by the total number of
documents to be dated gives the accuracy shown in equation 6.2.

Accuracy =
correct

correct+ wrong
(6.2)

Here correct is the number of documents where the time frame is correctly estimated and
wrong is the number of wrongly estimated documents.

6.3.2 Mean Error
The accuracy gives a kind of black and white image of how the algorithm performs. It is
only giving us information about when the program either does something right or wrong.
When the program is not able to estimate the right time frame for a query document it
is interesting to know how much off it is. Does the program miss by just a few days, or
is it totally off? To get some insight to this we calculate the mean error metric which
says something about how many days before or after the estimated time frame the query
document is actually written. The results of all the wrongly estimated documents are
added up by how far they are off and divided by the number of wrong estimates as given
in Equation 6.3.

MeanError =

∑n
i=0 |publicationDatei − (intervalStarti +

l
2)| −

l
2

n
(6.3)

Here i is a document which publication date is not in the estimated time frame and n
is the total number of wrongly estimated documents. The publicationDatei is the query
document’s actual publication date, intervalStarti is the start date of the estimated time
frame and l is the length of the interval.

6.3.3 Fraction of Dataset Estimated
This evaluation metric is only used when the tests for a given threshold is run. When
setting a threshold for the level of certainty the algorithm requires before estimating an
interval it is interesting to know the number of documents that the algorithm renders in-
conclusive. This is why we decided to keep track of the fraction documents that are being
dated when using the threshold. This also gives an idea of the trade off for a higher accu-
racy.

6.4 Experiments
To our understanding there are four main factors that can influence the accuracy of the
system. These are the value of the k-parameter, the preprocessing technique, the weighting
scheme used and the threshold value. In order to test the impact that different values for
the k-parameter has on the system, we simply ran the method using different values for
k, ranging from low values to high values. In addition we also ran experiments to see
the k-parameter’s degree of impact on the different data sets, as well as k’s impact when
using different weighting schemes. Since completing a run takes a lot of time, we decided
that testing enough values for k to find a decisive break point (the optimal value) was not
feasible regarding the time-constraints of our thesis. Although we did not run experiments
for finding an optimal k it is interesting to see how large values for k performs compared to
smaller values. Therefore, we chose to do runs with k varying from 5 to 30 with intervals
of 5 and then one run for k = 100. Regarding the threshold, we ran tests with threshold
values ranging from 0 to 1. Here we reported the accuracy and the fraction of the dataset
that was estimated. Finally we ran tests with four different time frame lengths in order

to evaluate how our system performs on different levels of granularity. The time frame
lengths we ran tests on was respectively 1 month, 3 months, 6 months and 1 year. In
all of our runs we used 10-fold cross validation, where 10% of the documents served as
documents with unknown timestamps and the remaining 90% of the documents served as
the reference corpus. We also ran these tests on the different datasets constructed by using
different preprocessing techniques as well as with the different approaches to computing
the weights as described in Section 5.5.

Chapter 7
Results and Evaluation

In this chapter we will present the results from our experiments. These include test runs
with the different datasets, weighting methods, time frame lengths, threshold and different
numbers for k when choosing the k most similar documents. In Section 7.1 we will present
an overview of our results using the evaluation metrics defined in the previous chapter.
Then, in Section 7.2 we will evaluate and reason about how different parameters affect
the results. Finally, in Section 7.3 we will discuss the influence of different preprocessing
techniques.

7.1 Overview

time frame Length NLLR [9] MaxEnt [2] BurstySimDater [14] Burstiness Jaccard Scores
1 month 18 - 23.4 18.1 23.2
3 months 24 - 32 26.3 31.7
6 months 25 36 40 33.5 39.3

1 year 38.4 48.6 49.8 42.0 49.2

Table 7.1: Accuracy (%) for NYT10 dataset.

As we see from Table 7.1 the results from the previous burstySimDater is noticeably
better than our method for estimating the publication date of a query document. One pos-
sible explanation for this is the difference in the datasets shown in Table 6.3. The fact that
our dataset is 33.3% larger may have a lot of impact on the final result. Given that we do
not know which documents are removed we can not say this for sure. For some documents
it is more difficult to estimate the publication date, using a content-based algorithm, than
for others due to their lack of content and relevant temporal features. If the majority of the
removed documents fall into this category a result with higher accuracy is not surprising.
Other factors that may apply is the preprocessing of the datasets and/or different restric-
tions for finding the bursty intervals e.g. the baseline. When running through the tests of

37

Dataset Weighting Accuracy
NYT1987 Burstiness 31.9%
NYT1987 JaccScores 34.9%

Keywords1987 Burstiness 31.8%
Keywords1987 JaccScores 34.0%
Keywords1987 Top-k 31.0%

NamedEntities1987 Burstiness 21.6 %
NamedEntities1987 JaccScore 23.6 %
NER-Keywords1987 Burstiness 25.9 %
NER-Keywords1987 JaccScores 27.4 %

Table 7.2: Results from running the different dating algorithms on different datasets with k = 10
and l = 30.

Dataset Weighting Accuracy
NYT10 JaccScores 49.2%
NYT10 Burstiness 42.0%

Keywords10 JaccScores 49.5%
Keywords10 Burstiness 45.3%
NYT10-0.6d Burstiness 42.9%

Table 7.3: Results from running the different dating algorithms on different datasets with k = 10
and l = 365.

different datasets, preprocessing methods and weighting techniques we discovered that, in
our case, the Jaccard weighting score gave better results than burstiness. The comparison
can be seen in Table 7.4. When using the Jaccard weighting score on the Keywords10
dataset with an interval of 1 year and k = 20 we received the best results, and it also
slightly outperformed the burstySimDater from [14].

7.1.1 Accuracy

The accuracy is computed as the fraction of correct estimations over the total number of
estimated documents, as described in section 6.3.1. Table 7.2 and 7.3 list the results that
we achieved for the different datasets, described in Table 6.2, with k = 10 using two
different weighting techniques. The complete list of results for different values of k can
be found in Table 8.2. In addition to running experiments for different values of k, we
also wanted to see how our implementation performed regarding different values for l, e.g.
the estimated time frame length. Figure 7.1 shows the results that we achieved for this
experiment. The percentage points is computed as the achieved accuracy subtracted by the
expected accuracy of a random guess. The red column in the figure represents the results
achieved by Kotsakos et al. [14], which we chose to include for comparison.

Figure 7.1 Percentage points achieved for l = {1 month, 3 months, 6 months, 12 months}
over 10 years.

Figure 7.2 Mean error using different weighting schemes.

7.1.2 Mean Error
To be able to see the development for the mean error over the different values of k for the
burstiness and Jaccard score weighting methods a visualization is given in figure 7.2. The
plots correspond to the runs that were done on the Keywords10 dataset with l = 365. The
mean error is calculated for the documents which the algorithm fails to estimate an interval
in which it is published and show the average number of days the algorithm misses by.

7.2 Parameters
In this section we will discuss and reason about how the parameters explained in Section
6.2 affected the results.

7.2.1 Top-k Value
As described in Section 6.2.1 the k-parameter is the number of the topmost similar docu-
ments from the reference corpus that are used for estimating the time interval. Figure 7.3
shows the plot of the reported accuracy using different values for k. Here we ran tests with
k = 5, k = 10, k = 15, k = 20, k = 30 and k = 100. As you can see in the plot, the
k-value had a larger impact for the NYT10-dataset than for the Keywords10-dataset. As
seen in Table 6.2, from Section 6.1, the NYT10-dataset contains 692,090 distinct terms and
each document contains an average of 168 distinct terms, while the Keywords10-dataset
contains 750,429 distinct terms with an average of 110 distinct terms in each document.
This means that each document in the Keywords10-dataset on average contains a smaller

Figure 7.3 Comparison of the accuracy for different values of k (number of most similar
documents selected).

fraction of the vocabulary than in the NYT10-dataset. Additionally, the terms used to
represent each document in the Keywords10-dataset is selected using TF-IDF and thus
the documents in this dataset are bound to be more unique than in the NYT10-dataset,
where the documents are filtered by POS tagging. Hence, it makes sense that the similar-
ity value for the k-most similar documents for larger values of k are typically lower in the
Keywords10-dataset and will therefore have a lower impact on the final result. Figure 7.3
consitutes this by showing that the accuracy for the NYT10-dataset drops as the value for
k grows, while the accuracy for the Keywords10-dataset stays the same.

7.2.2 Time Frame Length

When running the program, the length of the time frame can vary depending on how pre-
cise the results need to be. The trade off for adjusting the interval length to span over
a smaller time frame is the decrease in accuracy as we can see in Table 7.4. Figure 7.4
shows the plot of our reported accuracy from runs with different time frame lengths using
different preprocessing techniques and weighing schemes. Here the red line is the results
achieved by Kotsakos et al. [14]. As seen in the plot, using TF-IDF preprocessing and Jac-
card similarity as document-weights produces nearly identical results as the ones presented
in [14]. In addition, one can see that all the lines have very similar slopes. This means that
the differences in accuracy for different time frames between the runs are typically low.
Following these observations we find it unlikely that the deviation in our results and the
results in [14] lies in the way we implemented the algorithm. We find it more likely that
the differences could lie in the data preprocessing or in the way we computed the bursty

time frame Length BurstySimDater [14] Jaccard Scores
1 month 23.4 24.1
3 months 32 33.0
6 months 40 40.9

1 year 49.8 50.2

Table 7.4: Results from Kotsakos’ burstySimDater compared with the results from out method using
the Keywords10 dataset, k = 20 and Jaccard score weighting scheme.

Figure 7.4 Accuracy for different values of l (time frame-length).

intervals or maybe in both. Regarding the reported accuracy for different granularities of
time one can see that the accuracy grows as the time frame length increases. Obviously,
this is because it is more likely that the topmost document originate from the same time
frame for larger time frame lengths. In addition to increased accuracy, the achieved per-
centage points also grows with the time frame length. This shows that the methods perform
relatively better for larger time intervals.

7.2.3 Document Weighting

As we see from Table 8.2 in the Appendix the best result was received when using the
Jaccard score weighting scheme on the Keywords10 dataset with k = 20. Overall our
Jaccard score method received a better accuracy for all the different datasets and values
for k. We wanted to compare this weighting scheme using the dataset and k that gave the
best results in our experiments with the burstySimDater from [14] to see how our results
compared to it. From Table 7.4 we see that for all the different time frame lengths, our
method received a higher accuracy than the burstySimDater. What is interesting is that

Threshold Accuracy Fraction of dataset estimated
0.3 52.0 % 93.1 %
0.4 60.2 % 71.7 %
0.5 70.7 % 50.1 %
0.6 80.2 % 34.3 %
0.7 87.0 % 23.1 %
0.8 91.6 % 14.8 %
0.9 94.4 % 8.5 %

Table 7.5: Result from running the algorithm with different threshold. The parameters used are
k = 10 and l = 365 and are run on the Keywords10 dataset with the Jaccard score weighting
method.

the burstySimDater already uses the Jaccard similarity measure to compute the top-k most
similar documents but does not use this measure further. Instead the top-k documents, 10
in this case, are analyzed to find the burstiness of their terms and calculate a weight based
on this calculation. In our case, we achieved better results by using the Jaccard similarity
score directly to give the documents their weights. Additionally, as seen in Figure 7.2,
using the summed Jaccard weights gives a lower mean error than the burstiness weighing
scheme.

7.2.4 Threshold
When running the tests with different threshold values we decided to keep track of how
many documents the algorithm discarded and how many documents the publishing date
was estimated for. We represent this information as a fraction of how many documents,
out of the ones to be dated, that the program decided to actually date. This means that
if a document has a lower score for its estimated interval than the given threshold it is
discarded and nothing happens. If the sum is above the threshold then the algorithm will
return its estimated time frame for the document. The results from these tests can be
seen in table 7.5. In Figure 7.5 we see how the accuracy and the fraction of the dataset
for which an interval is estimated change when the threshold increases. The number of
documents that are being discarded increases drastically as the criteria gets stricter. At
the cost of discarding half of the results the accuracy is increased to 70.7 % and if one
needs the accuracy to be over 90 % approximately 85 % of the dataset can not be dated.
Finding a desired threshold really depends on the application and how important it is that
the publishing date is correct. The fact that the system achieves over 90 % accuracy for
large threshold values substantiates the assumption that there often is a strong correlation
between the lexical similarity of documents and their origin of time.

7.3 Data Preprocessing
The different preprocessing techniques had some impact on the results. From the results
presented in Table 8.2 in the Appendix we see that the dataset that scored the best among

Figure 7.5 Accuracy and fraction of dataset estimated when using different values for
threshold.

the datasets spanning over 10 years was the Keywords10 dataset. A brief sample of the
results can also be seen in Table 7.3 as well as figures 7.1 and 7.3. The Keywords10
dataset used only simple TF-IDF for stop word removal keeping 20% of the terms for
each document. As comparison the NYT10 dataset which was used in the burstySimDater
in [14] used POS tagging to remove stop words. For the runs of the datasets spanning
1 year (1987) we hade a few more datasets to compare. As well as the NYT1987 and
Keywords1987 we also wanted to analyze two datasets utilizing the named entity tagger,
namely NamedEntities1987 and NER-Keywords1987. When comparing the different runs
on these datasets both the NYT1987 and the Keywords1987 dataset received pretty similar
results.The latter of these seems to perform a bit better with the increasing of k. The scores
from the NamedEntities1987 dataset showed a much lower accuracy. The intuition behind
using named entities was to capture the essence of the events described in the documents.
However, as pointed out in [16], using the utility of named entities isolated can prove to
be a poor idea. This is because there is a high chance that the same named entities such
as locations, persons and organizations are mentioned all across the the corpus. Although
two documents talk about the same entities they could very well be describing different
events. Thus named entities should be used in a combination with words that describe their
context. This was the idea behind testing on the NER-Keywords1987 dataset, were we
used a combination between NER-tagging and TF-IDF. This showed some improvement
over the purely NER-tagged dataset. However it did not perform nearly as well as the
datasets where we solely used TF-IDF or POS tagging.

In short the tendency is that TF-IDF scores better than POS tagging when used as a
preprocessing technique for datasets to be dated by a content-based dating algorithm. We
find it likely that the reason behind this is that the POS tagged documents probably contain
more stop words that act as noise and can have a negative impact when running the dating
algorithm. From this, one can say that the documents where we used TF-IDF probably
contained more relevant information than the POS tagged documents.

Chapter 8
Conclusion and Future Work

In this chapter we will summarize our project with some concluding remarks. In Section
8.1 we will provide the conclusion for our project. Then, in Section 8.2 we will provide
some suggestions regarding future work.

8.1 Conclusion

In this project we have worked towards solving the problem of incorrectness and ambiguity
regarding temporal information in meta data describing documents. Our approach to this
problem was to implement content based dating methods that look at the terms used to
describe documents over the timeline in a reference corpus in order to estimate the dates
for undated documents. This is similar to the burstySimDater method described in [14].
In addition we implemented our own approach only utilizing lexical similarities between
documents. In order to evaluate the plausability of these methods we have performed
extensive experiments testing how different factors around the algorithms itself can affect
the results. In the beginning of this report we defined the following four research questions:

RQ1 : What impact does the preprocessing of the dataset have on the final result when
timestamping different documents?

RQ2 : When deciding the timestamp for a document by comparing it to similar doc-
uments, how will using different weighting methods for the reference documents
alter the results?

RQ3 : What will be the optimal number of documents to use for comparing when decid-
ing a timestamp for the query document?

RQ4 : Can we achieve a fair trade off between accuracy and the fraction of the dataset
estimated by introducing a threshold?

47

After writing the program and running the experiments it became clear to us that pre-
processing the documents was extremely important. A good representation of the docu-
ments is essential both for compressing the documents to be able to run an all pairs sim-
ilarity search as well as representing enough of the temporal information that is essential
for the dating algorithm to do its calculations and estimate a publishing date. An optimal
preprocessing technique here would be a technique that keeps a combination of terms that
are ”typical” for the document’s time and discards the rest. As discussed earlier in the
paper the all pairs similarity search is computationally heavy for large datasets. There ex-
ists a number of algorithms to make this computation faster, some utilizing approximation
methods and others exploiting sort order, threshold, indexing and so on to be able to com-
pute the exact similarity measure within reasonable time. One such method is using the
MinHash-LSH which, as mentioned earlier, could be useful for other datasets where the
similarities between documents are higher. In our case, when using the New York Times
Annotated Corpus it was sufficient to adjust the representation of the dataset, using a
hashmap with each distinct term as keys. To be able to use a representation like this it was
important to reduce the size of the dataset first. We tried a few different methods, namely
TF-IDF, POS tagging, Named Entity tagging and some combinations of these methods.
Our experience is that the TF-IDF method received the better results on the whole dataset,
but when running test with documents from only 1987, the POS tagging method scored
slightly better. After compressing the documents and running a Jaccard similarity search
on the dataset this information was stored in a database. This made it easy to extract the
top-k most similar documents compared to a given query document. Having this informa-
tion stored also meant that the dating algorithm could run tests on a large amount of query
documents much faster and was, in our case, even necessary to receive enough results to
evaluate the different dating methods in reasonable time.

As well as precomputing and storing the Jaccard similarities to save time when running
the algorithm we decided to do the same for the bursty intervals of the terms. Even though
the terms which bursty intervals need to be computed is a small number for each query
document the whole dataset needs to be considered for being able to do so. This adds
up over time and eventually makes the program a lot slower when computing this on the
fly, since the mapping between terms and timestamps needs to be kept in memory. After
computing the bursty intervals for every term in the corpus we stored each bursty interval
with timestamps representing the start and the end of all the intervals in which the term
was bursty. This made it easy to check if a document had a publishing date inside one of
these intervals, thus reducing the running time even more.

Naturally, the different weighting schemes had a lot of impact on the results we re-
ceived. The one coming out with the highest scores both regarding accuracy and mean
error was the Jaccard scores weighting scheme. This method outperformed all of our other
implementations as well as the burtsySimDater from [14]. When given the optimal k and
preprocessing of the corpus it dated more than 50% of the documents correct for time in-
tervals of one year with a dataset spanning 10 years. When decreasing the time interval
to achieve a more precise timestamp the accuracy, naturally, decreases. Still the Jaccard
scores weighting scheme received the highest accuracy for all the different intervals tested.

Regarding the third research question, we did not find a decisive optimal value for k
(i.e. the number of documents used for comparing). However we did discover that it was,

in our case, slightly better to use small values. To our understanding it is intuitive that as
the number of documents used for comparing grows there is a higher chance that intervals
outside the desired date gets higher scores, which in turn results in a higher probability for
estimating the wrong time frame. However, the contribution of the most lexical similar
documents will be of a much higher degree than the ones for documents that are ranked
lower. Hence, one would probably need to do tests for even higher values for k to see a
drastic reduction in accuracy.

By introducing a confidence threshold when estimating a timestamp the test runs show
that it is possible to receive a higher accuracy if the algorithm discards documents which
are typically more ”unsure”. If high accuracy is more important than timestamping the
whole dataset this is a useful function. The trade off between discarding documents for
higher accuracy can be analyzed to find an optimal threshold value for a given usage.

8.2 Future Work
When we started this project we had little practical knowledge on working with document
streams and large volumes of sparse high-dimensional data. As a result, a lot of time
was spent trying and failing when implementing the system. If we were to start the project
from scratch with the knowledge we have gained through the process there are some things
that we definitely would have done in a different way. In this section we will give some
propositions regarding future work on document dating. Hopefully these suggestions will
be helpful for anyone who wants to do further work in this field.

8.2.1 Parallelization
The 10-fold cross validation on our implementation was done using a for-loop dating one
document at a time. However, the validation process has no loop-carried dependencies
regarding the dating process of the different documents. Thus, it could be beneficial to date
the test-documents in parallel. One way to go about this problem could be to implement
the solution using the Apache Spark Framework [33] on top of the Hadoop Distributed
File System [30]. The benefits of using spark is that it allows you to work with distributed
collections as you would with with local ones. From the programmer’s point of view,
you simply write a sequential pipeline program. However, when the program is executed,
the computations are distributed among several nodes. Without going into detail, one can
say that Spark allows coders that know little about parallel programming to write parallel
programs. Figure 8.1 shows conceptually how a Spark implementation could improve the
performance.

8.2.2 Single Document BurstDater
The burstySimDater method [14] takes the top-k most similar documents into considera-
tion when dating documents. More specifically, as mentioned earlier, it takes the intersect-
ing terms with the k most similar documents and then finds the interval with the highest
number of terms are simultaneously bursty. As a concept we propose the SingleDocument-
BurstDater method. Unlike the burstySimDater method, this method does not directly

Figure 8.1 Spark could improve the performance by parallelizing the cross-validation.

compare documents. Instead, it only looks at terms within single documents and then
finds the time frame of a given length with the highest number of simultaneously bursty
terms. If this method where to produce as good results as the burstySimDater method,
it would be a more efficient approach. This is because this method would solely rely on
finding bursty intervals, which can be done in linear time [27], opposed to solving the all-
pairs similarity problem, which can be challenging to do precisely and efficiently for large
corpora. A suggestion to how we would have solved this task is given with pseudocode in
Algorithm 5.

Algorithm 5 Single Document BurstDater
Input: bursty intervals B, query document q, max time frame length l
Output: time frame of q

1: WS ← ∅
2: for t ∈ timeline do
3: wI ← 0
4: for x ∈ q do
5: wt ← wt + |{I ∈ B(x) : t ∈ I}|
6: WS ←WS ∪ {wt}
7: AS ← (t ∈ timeline,WS)
8: I ← getMaxSumInterval(A, l)
9: Return I

8.2.3 Document Clustering
In our solution, we chose to represent documents using the BOW (Bag of Words) approach.
An obvious disadvantage of using this approach is that it cannot accurately represent the
meaning of documents since it ignores the semantic relationship among words. Addition-
ally the BOW approach will result in high dimensionality and data sparsity when dealing
with large corpora. Wei et al. [32] proposes a method that uses a modified similarity mea-
sure based on WordNet for word sense disambiguation and lexical chains to capture the

main theme of texts. Experiments show that this method can estimate the true number of
clusters in document collections as well as generating topic labels that are good indica-
tors for recognizing and analyzing the content of clusters. Such cluster techniques could
prove to be highly relevant regarding document timestamping. One obvious application
regarding our problem would be to group the documents in the reference corpus in their
respective clusters. Then, when you are to find the date of an ”unknown” document, you
can first find the cluster it belongs to and then find its top-k most similar documents within
the cluster. This way the test document only needs to be compared with a small portion
of the reference corpus. However, one should keep in mind that when using these kind
of methods, which uses lexicons such as WordNet, it is important that the relationship
between words are thoroughly represented in the lexicon.

Bibliography

[1] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity search. In
Proceedings of the 16th international conference on World Wide Web, pages 131–
140, 2007.

[2] N. Chambers. Labeling documents with timestamps: Learning from their time ex-
pressions. In Proceedings of the 50th Annual Meeting of the Association for Compu-
tational Linguistics: Long Papers-Volume 1, pages 98–106, 2012.

[3] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In Pro-
ceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages
380–388, 2002.

[4] F. Diaz and R. Jones. Using temporal profiles of queries for precision prediction. In
Proceedings of the 27th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 18–24, 2004.

[5] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search and classifica-
tion via rank aggregation. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 301–312, 2003.

[6] R. Feldman and J. Sanger. THE TEXT MINING BOOK Advanced Approaches in
Analyzing Unstructured Data. Cambridge, New York: Cambridge University Press,
2007.

[7] A. Gionis, P. Indyk, R. Motwani, et al. Similarity search in high dimensions via
hashing. In VLDB, volume 99, pages 518–529, 1999.

[8] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pages 604–613, 1998.

[9] d. F. Jong, H. Rode, and D. Hiemstra. Temporal language models for the disclosure
of historical text. 2005.

53

[10] N. Kanhabua, R. Blanco, K. Nørvåg, et al. Temporal information retrieval. Founda-
tions and Trends R© in Information Retrieval, 9(2):91–208, 2015.

[11] N. Kanhabua and K. Nørvåg. Improving temporal language models for determining
time of non-timestamped documents. In International Conference on Theory and
Practice of Digital Libraries, pages 358–370, 2008.

[12] N. Kanhabua and K. Nørvåg. Using temporal language models for document dating.
In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 738–741, 2009.

[13] J. Kleinberg. Bursty and hierarchical structure in streams. In Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 91–101, 2002.

[14] D. Kotsakos, T. Lappas, D. Kotzias, D. Gunopulos, N. Kanhabua, and K. Nørvåg. A
burstiness-aware approach for document dating. In Proceedings of the 37th interna-
tional ACM SIGIR conference on Research & development in information retrieval,
pages 1003–1006, 2014.

[15] W. Kraaij. Variations on language modeling for information retrieval. 2004.

[16] G. Kumaran and J. Allan. Text classification and named entities for new event de-
tection. In Proceedings of the 27th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 297–304, 2004.

[17] T. Lappas, B. Arai, M. Platakis, D. Kotsakos, and D. Gunopulos. On burstiness-
aware search for document sequences. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 477–486,
2009.

[18] Q. Le and T. Mikolov. Distributed representations of sentences and documents. In
Proceedings of the 31st International Conference on Machine Learning (ICML-14),
pages 1188–1196, 2014.

[19] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of massive datasets, chapter 3.
Cambridge University Press, 2014.

[20] X. Li and W. B. Croft. Time-based language models. In Proceedings of the twelfth
international conference on Information and knowledge management, pages 469–
475, 2003.

[21] K. E. Lochbaum and L. A. Streeter. Comparing and combining the effectiveness
of latent semantic indexing and the ordinary vector space model for information re-
trieval. Information Processing & Management, 25(6):665–676, 1989.

[22] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky.
The Stanford CoreNLP natural language processing toolkit. In ACL (System Demon-
strations), pages 55–60, 2014.

54

[23] A. Metwally, D. Agrawal, and A. El Abbadi. Detectives: detecting coalition hit infla-
tion attacks in advertising networks streams. In Proceedings of the 16th international
conference on World Wide Web, pages 241–250, 2007.

[24] M. J. Metzger. Making sense of credibility on the web: Models for evaluating on-
line information and recommendations for future research. Journal of the American
Society for Information Science and Technology, 58(13):2078–2091, 2007.

[25] M. A. Olson, K. Bostic, and M. I. Seltzer. Berkeley DB. In USENIX Annual Technical
Conference, FREENIX Track, pages 183–191, 1999.

[26] J. Ramos et al. Using tf-idf to determine word relevance in document queries. In
Proceedings of the first instructional conference on machine learning, 2003.

[27] W. L. Ruzzo and M. Tompa. A linear time algorithm for finding all maximal scoring
subsequences. In ISMB, volume 99, pages 234–241, 1999.

[28] M. Sahami and T. D. Heilman. A web-based kernel function for measuring the sim-
ilarity of short text snippets. In Proceedings of the 15th international conference on
World Wide Web, pages 377–386, 2006.

[29] B. Shaparenko, R. Caruana, J. Gehrke, and T. Joachims. Identifying temporal pat-
terns and key players in document collections. In Proceedings of the IEEE ICDM
Workshop on Temporal Data Mining: Algorithms, Theory and Applications (TDM-
05), pages 165–174, 2005.

[30] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop distributed file sys-
tem. In Mass storage systems and technologies (MSST), 2010 IEEE 26th symposium
on, pages 1–10, 2010.

[31] R. Swan and D. Jensen. Timemines: Constructing timelines with statistical models
of word usage. In KDD-2000 Workshop on Text Mining, pages 73–80, 2000.

[32] T. Wei, Y. Lu, H. Chang, Q. Zhou, and X. Bao. A semantic approach for text cluster-
ing using wordnet and lexical chains. Expert Systems with Applications, 42(4):2264–
2275, 2015.

[33] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster
computing with working sets. HotCloud, 10(10-10):95, 2010.

55

56

Appendix
Extended Results

Dataset Timeframe Length k Weighting Accuracy
NYT1987 1 month 5 Burstiness 31.7%
NYT1987 1 month 10 Burstiness 31.9%
NYT1987 1 month 15 Burstiness 31.4%
NYT1987 1 month 20 Burstiness 30.6%
NYT1987 1 month 30 Burstiness 29.1%
NYT1987 1 month 100 Burstiness 23.6%
NYT1987 1 month 5 JaccScores 33.6%
NYT1987 1 month 10 JaccScores 34.9%
NYT1987 1 month 15 JaccScores 34.7%
NYT1987 1 month 20 JaccScores 34.4%
NYT1987 1 month 30 JaccScores 33.9%
NYT1987 1 month 100 JaccScores 31.8%

Keywords1987 1 month 5 Burstiness 31.5%
Keywords1987 1 month 10 Burstiness 31.8%
Keywords1987 1 month 15 Burstiness 31.9%
Keywords1987 1 month 20 Burstiness 31.6%
Keywords1987 1 month 30 Burstiness 31.0%
Keywords1987 1 month 100 Burstiness 28.5%
Keywords1987 1 month 5 JaccScores 32.8%
Keywords1987 1 month 10 JaccScores 34.0%
Keywords1987 1 month 15 JaccScores 34.2%
Keywords1987 1 month 20 JaccScores 34.2%
Keywords1987 1 month 30 JaccScores 34.0%
Keywords1987 1 month 100 JaccScores 32.2%
Keywords1987 1 month 30 Top-k 31.1%

NamedEntities1987 1 month 10 Burstiness 21.6 %
NamedEntities1987 1 month 10 JaccScores 23.6 %
NER-Keywords1987 1 month 10 Burstiness 25.9 %
NER-Keywords1987 1 month 10 JaccScores 27.4 %

Table 8.1: Results from running the different dating algorithms on different datasets

57

Dataset Timeframe Length k Weighting Accuracy
NYT10 1 year 5 Burstiness 41.9%
NYT10 1 year 10 Burstiness 42.0%
NYT10 1 year 15 Burstiness 41.3%
NYT10 1 year 20 Burstiness 40.6%
NYT10 1 year 30 Burstiness 39.5%
NYT10 1 year 100 Burstiness 35.0%
NYT10 1 year 5 JaccScores 47.0%
NYT10 1 year 10 JaccScores 49.2%
NYT10 1 year 15 JaccScores 49.7%
NYT10 1 year 20 JaccScores 49.8%
NYT10 1 year 30 JaccScores 49.7%
NYT10 1 year 100 JaccScores 47.3%

Keywords10 1 year 5 Burstiness 44.4%
Keywords10 1 year 15 Burstiness 45.2%
Keywords10 1 year 10 Burstiness 45.3%
Keywords10 1 year 20 Burstiness 45.0%
Keywords10 1 year 30 Burstiness 44.4%
Keywords10 1 year 100 Burstiness 44.4%
Keywords10 1 year 5 JaccScores 47.3%
Keywords10 1 year 10 JaccScores 49.5%
Keywords10 1 year 15 JaccScores 50.0%
Keywords10 1 year 20 JaccScores 50.2%
Keywords10 1 year 30 JaccScores 50.11%
Keywords10 1 year 100 JaccScores 50.1%
NYT10-0.6d 1 year 5 Burstiness 42.6%
NYT10-0.6d 1 year 10 Burstiness 42.9%
NYT10-0.6d 1 year 15 Burstiness 42.5%
NYT10-0.6d 1 year 20 Burstiness 41.8%
NYT10-0.6d 1 year 30 Burstiness 40.8 %
NYT10-0.6d 1 year 100 Burstiness 36.2%
NYT10-0.6d 1 year 5 JaccScores 47.0 %
NYT10-0.6d 1 year 10 JaccScores 49.1 %
NYT10-0.6d 1 year 15 JaccScores 49.7 %
NYT10-0.6d 1 year 20 JaccScores 49.7 %
NYT10-0.6d 1 year 30 JaccScores 49.6 %
NYT10-0.6d 1 year 100 JaccScores 47.2 %

Table 8.2: Results from running the different dating algorithms on different datasets

58

	Abstract
	Sammendrag
	Preface
	Table of Contents
	Introduction
	Motivation
	Problem Formulation
	Research Questions
	Contributions
	Project Outline

	Related Work
	Temporal Language Models
	Burstiness
	Content Based Dating Approaches

	Preliminaries
	Document Representation
	Bag of Words Model
	K-Shingles

	Semantic-based Preprocessing and Stop Word Removal
	TF-IDF
	Part-Of-Speech Tagging
	Named Entity Recognition

	Jaccard Similarity
	All Pairs Similarity Search
	LSH and MinHash

	Term Burstiness
	All Maximal Scoring Subsequences Problem

	Document Dating
	Normalized Log Likelihood Ratio (NLLR)
	Temporal Entropy
	MaxEnt Document Dater
	BurstySimDater

	Approach
	Finding Index Terms
	Precomputing the Top-k Most Similar Documents
	Precomputing Bursty Intervals
	Oracle Berkeley DB
	Weighting the Documents
	Burstiness
	Top-k
	Jaccard Scores

	Estimating the Interval

	Experimental Setup
	Datasets
	Parameters
	Top-k Value
	Time Frame Length
	Document Weighting
	Threshold

	Evaluation Metrics
	Accuracy
	Mean Error
	Fraction of Dataset Estimated

	Experiments

	Results and Evaluation
	Overview
	Accuracy
	Mean Error

	Parameters
	Top-k Value
	Time Frame Length
	Document Weighting
	Threshold

	Data Preprocessing

	Conclusion and Future Work
	Conclusion
	Future Work
	Parallelization
	Single Document BurstDater
	Document Clustering

	Bibliography
	Appendix

