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Abstract

Developmental biology seeks to understand how organisms are constructed. Development

is a set of very complex processes involving a coded program as the organisms’ genome.

This genome describes how to build the organism, but not how the organism will look like.

The zygote (the initial single cell), will eventually develop into a trillion cell organism.

This extraordinary phenomenon has been an inspiration to the world of Computer Science

and Artificial Life and has led to the creation of Artificial Embryogeny (AE). Artificial

Embryogeny is a sub-discipline of evolutionary computation (EC) in which a phenotype

undergoes a developmental phase. The number of AE systems currently being developed

investigate mainly how principal biological processes and mechanisms can be exploited

in the artificial world.

One approach that utilize the phase of biological development in artificial systems is

called Artificial Development (AD) where the genotype (genetic representation) contain a

similar set of instructions - as in the biological organisms case - called generative program
or developmental encoding. Therefore, the process of development comprise to actually

execute those instructions and deal with the highly parallel interactions between them and

the structure they create.

On the other hand, nature uses the same fundamental machinery and almost the same

genetic information to create vastly different creatures. A study reveals that about 99%

of mouse genomes have direct counterparts in humans with cats having 90% of their

homologous genes identical to humans. How is it possible for nature to use a vast majority

of the same genetic representation in the DNA but still be able to develop such distant

species? It was found that a common regulator gene can control the formation of many

of the internal organs in both nematodes and vertebrates. Therefore, the very same gene

can initiate the process of formation and define its outcome, for example, an intestine or

a muscle cell.

This thesis investigates how to design an Artificial Embryogeny by using the same ge-

netic information to develop a class of computational architectures or different compu-

tational architectures. The result of this investigation has given rise to the Common De-

velopmental Genomes (CDG). The computational architectures targeted, have a common

characteristic of being sparsely-connected networks, with each node acting as a simple

computational unit. Such computational architectures are cellular automata and boolean

networks, artificial neural networks and cellular neural networks.

The approach followed includes the following steps: a. investigate which architectures

are suitable for development with such a model, b. describe a common developmental

approach that can handle the targeted architectures, c. define how genetic information

can be exploited by the developmental process, so as to develop these architectures and d.

identify a suitable genome representation to ensure that different structures can be devel-

oped and achieved. The target architectures chosen throughout this thesis were cellular
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automata and random boolean networks. The reason for choosing those particular archi-

tectures is that they have similar structural and functional properties; in addition, random

boolean networks are considered a generalization of cellular automata.

Core work and design principles are given in Paper I. Though this paper it was able to

show how genetic information can be represented and how targeted architectures can

be integrated in the genotype. It is also shown how target architectures can be evolved

and different structures achieved. Paper II studies the ability of CDG to evolve a simple

financial market model in problems of varying complexity. CDG was shown to evolve

better for some architecture sizes. In addition, CDGs evolvability were studied in case

of limited resources (Paper III) with very promising results in certain cases. Paper IV

focuses on how genetic operators affect evolution of CDG and studies their developmental

dynamics under more complex and random environments. Paper V studies the ability of

CDG to adapt when the target goal changes over evolutionary time. CDG were able to find

very good solutions with rather simplified structure than anticipated. Paper VI focuses

on how CDG exploit the underlying architectures during development and build final

structure (network morphology). It was shown that during evolution, CDG exploit a larger

number of nodes/cells and manage to maintain only a few neutral and static cells/nodes

of the final structure.
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Chapter 1

Introduction

Everything changes and nothing

remains still ... and ... you cannot

step twice into the same stream

Heraclitus in Plato’s Cratylus,

p.408a

The chapter introduces the thesis, with an introduction to classical and global optimization

methods in Section 1.1. Advantages of evolutionary algorithms are shown in Section 1.2

with an introduction to Artificial Developmental Systems in Section 1.3. Motivation of

the thesis is presented in Section 1.4. Section 1.5 presents the research questions that have

been identified and explored. An outline is given in Section 1.6.

1.1 Introduction

Nature has been an inspiration to human kind for several thousands years. Human kind

has shown remarkable advancements in many areas inspired by nature [17, 19, 46, 94, 97,

99, 124]. Many biological organisms are vastly complex and show sophisticated behaviors

and properties that can not be achieved in human engineering. For example, Preissl et al.

[92] built a novel cognitive computer architecture simulating 2.084 billion neuro-synaptic

cores containing 53× 1010 neurons and 1.37× 1014 synapses running 1542 times slower

than the human brain in real time. Although computer architecture was inspired by the

number of synapses (memory) in a human brain, the design itself has an average of 6

times more than the total number of neurons [47].

In other examples evidence exists that evolution has worked over a very long time to

design how sharks look today (fossil findings indicate that the ancestors of today’s sharks

appeared even before the dinosaurs [123]). The skin of a fast-swimming shark exhibits

riblet structures aligned in the direction of a flow that are known to reduce skin friction
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drag in the turbulent-flow regime [23]. As a result, engineers have tested the effects and

have applied similar micro-structures to the surfaces of ships and aircrafts as well as to

the swimsuits of Olympic swimmers [13]. So, it is not by luck that humans have turned to

nature seeking inspiration, trying to get answers to real-world problems. Although man-

made creations may seem advanced and complex, still, in many ways they are inferior to

the designs of nature.

1.1.1 Limitations of classical optimization

In general, real-world problems are concerned with some form of optimization. In other

words, optimization refers to the process of manipulating a computational structure or

system in order to achieve some predefined goal [123]. Many problems are generally for-

mulated as a task of maximizing (or minimizing) a response function for the target prob-

lem and involves two types of problem difficulties: i. multiple, conflicting objectives, ii. a

highly complex search space [134]. The solutions (methods) provided to these problems

tackle usually a small range or a subset of the problem; otherwise are considered rather

inefficient. Classical optimization methods can only be used efficiently in certain types of

response functions (e.g., smooth, convex, etc). Many practical problems are non-convex

and may have many local optima. No classical optimization method guarantees finding

this global solution in finite time [125]. Examples of the above are the traveling salesman

[90], the knapsack problem [50] but also more specialized ones in branches like finance

[29], quantum control [104], medical image analysis [69], engineering optimization [120]

and data mining [111].

1.1.2 Global optimization methods

In order to overcome these phenomena, classical optimization methods were replaced

by global optimization methods. Evolutionary Algorithms (EA) mimics the processes of

Darwinian evolution [21] and were used as a potential global optimization method. EAs

have been extensively used and became popular in optimizatioon [25, 83], design prob-

lems [24, 49, 101] and robot control [78, 113] and other types of applications [18]. There

are many different variants of evolutionary algorithms. The underlying idea behind all

these techniques is the same: given a population of individuals within an environment

that has limited resources, competition for those resources causes natural selection (sur-

vival of the fittest) [31].

In a typical EA, fixed-length (bit) strings form the individuals of a population. Individuals

encode single possible solutions and compete continually with each other to discover

optimal areas of the search space [52]. In a function optimization, each candidate solution

could be represented in the initial population either, as a random real number or as a

random binary encoding.
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Individuals are being decoded and applied as candidate solutions to the problem. A fitness

score is assigned to each individual, based on the fitness function evaluation. Genetic op-

erators such as, mutation (flipping individual bits) and crossover (exchanging substrings

of two parents to obtain two offsprings) are applied to the ones with the highest fitness

score, producing the children of the next population. Individuals with the highest fitness

score have a much better probability of being selected for the next iteration. So, selection

is applied either, when choosing individuals to parent children or when choosing individ-

uals to form a new population [52]. The cycle is repeated until some predefined criteria is

satisfied.

1.2 Evolutionary Algorithms mechanics

Evolutionary algorithms use the concept of direct genotype-to-phenotype mapping whereby

each unit of the phenotype (adult organism) is represented by a single gene in the geno-

type. This direct mapping is particularly troublesome as problems become increasingly

complex [64]. Novel problem domains, such as the evolution of complex neural networks

and large commercial buildings require the order of thousands or even millions of struc-

tural units for a single phenotype [109]. Using direct genotype-to-phenotype mapping,

evolution requires an enormously large search space.

Therefore, in order for evolution to proceed with such problems, the number of genes

required to specify a phenotype must be considerably smaller than the number of struc-

tural units composing the phenotype. Nature has found a way to achieve this; even with

100 trillion neural connections in the human brain, there are only about 30 thousand ac-

tive genes in the human genome [26]. This is achieved by reusing genes. In biological

organisms, the genome contains a set of instructions on how to construct the phenotype.

The same genes can be used at different points during natural development for different

purposes, and the order in which activation of genes takes place determines when and

where a particular gene is expressed [95]. In other words, by replicating the process of

natural development and through indirect genetic encoding, it may be possible to create

extremely compact genotypes that represent complex phenotypes.

1.3 Artificial Developmental Systems

Embryogenesis is the first of three complex processes that take place in natural devel-

opment. It starts with the zygote (fertilized ovum) and from that point on, the zygote

undergoes a process called cleavage division, where the cell is split into two (or more)

identical cells. Cells at this stage may involve pattern formation as the cells get organized

in spatial and temporal patterns [131, 132]. The egg cells are asymmetric with the first

cleavage to occur along one axis and the second cleavage along an axis perpendicular to

it. The developing embryo receives a substantial amount of information in the starting
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configuration from its zygote, a process called molecular prepatterning [88]. Extraordi-

nary cell movements and conformational changes occur in the developing embryo as part

of the morphogenesis process. In the second process of cell differentiation, cells acquire

distinct structure and functionality, for example, nerve or skin cells. Growth is the third

and last of the complex processes where cells increase in size and multiply, but not further

differentiate.

One approach that utilizes the development phase in artificial evolutionary systems, is

Artificial Development (AD). Different names have been used in the literature to express

the same concept, including Artificial Ontogeny [14], Computational Embryogeny [10],

Cellular Encoding [40] and Morphogenesis [51]. In AD, the genotype (genetic represen-

tation) contains a similar set of instructions, as in the biological organisms case, called

generative program or developmental encoding [64]. The process of development actually

executes those set of instructions, dealing with the highly parallel interactions between

them and the structure they generate.

Artificial development systems are mainly divided into those that are based on Turing’s

cell chemistry approach or reaction-diffusion systems [119] and those based on grammat-

ical approaches [71]. Models based on cell chemical processes are inspired by the natural

mechanisms seen in development such as gene expression, cell signaling, gene/protein

interaction, gene mutation and recombination, chemical gradients, cell differentiation and

cell death. On the other hand, grammatical approaches are based on the evolution of a set

of rewriting rules where the grammar may be context-free or context-sensitive and can

utilize parameters.

Figure 1.1 shows a single artificial cell (zygote) developing into a 63-cell organism that

look like a French flag, just like in nature [84]. The task is considered very difficult as

the cell program must replicate to grow to the desired size and hold the desired cell state

(colour based) according to local cell interactions only. In Figure 1.1, the cell program

holds the complete building plan (DNA) for the artificial organism, including functions

like division, specialization and growth. Again, note that this plan is generative. It de-

scribes how to build the system and not what the system will look like. The information

carried in the evolving genome is the information that passes from generation to gen-

eration and the genetic information contained in a cell serves as the constructor of the

phenotype [115].

Figure 1.1: Miller’s French Flag Problem
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1.3.1 Concepts of artificial developmental systems

Scalability is a feature of AD and refers to the possibility of growing artificial designs to

tackle harder problems [105]. Kitano [58] proposed the use of a developmental process to

create large neural networks, i.e., a structure of neural nodes and connections. By evolv-

ing L-system rules as the developmental approach, he managed to increase scalability and

scale complexity, i.e., target more complex problems or scale the solution with the prob-

lem size. Kitano developed a method for evolving the architecture of an artificial neural

network using a matrix re-writing system that manipulated adjacency matrices. Gruau

revised a graph re-writing method called Cellular Encoding [40]. With this method, he

managed to control the division of cells that eventually grow into artificial neural net-

works. His method was shown to be effective at optimizing both the neural network

architecture and its weights at the same time and it scaled better than the direct encod-

ing method [41]. On the other hand, Federici [33] successfully evolved spiking neural

networks using a developmental system that showed better performance than the direct

encoding method.

Naturally, the developing organism grows and operates within an environment. Food, wa-

ter, sun and other resources play an important role in defining the growth of an animal as

well as external signals do [105]. Environment is an important source of information to

the organism where behavior, function and the development process is laid out. Since the

information contained in the genome is exploitable by the developmental process in order

to “build” the organism, environmental information can be included as an information

source to enable adaptation. This implies that natural organisms include developmental

plasticity, i.e., phenotypic plasticity [126]. Plasticity in this context is the ability of a

species responding to environmental conditions [115]. In other words, the ability of or-

ganisms to grow to sizes that fit the environment, maintaining their full functionality from

infancy to adulthood. In Lindenmayer systems (L-systems) [73, 74], the models of plants

can be run to any size and still retain the same morphology or shape.

Environment may influence the developmental outcome of an organism in a disruptive

way. In such cases, the organism must be robust enough so as not to be affected by

fluctuations of the environment. Environment includes enforced disturbances or changes

to the organism itself [115]. Miller [84] showed that even if his system was externally

disturbed by changing parts of the flag structure, development found a way to regenerate

it.

1.3.2 Developmental models

An artificial organism can be seen as an Evolutionary Developmental (EvoDevo) sys-

tem capable of developing some sort of functionality. This implies a developmental sys-

tem that takes into account information from the environment, intermediate structures

and behavior during evolution, together with the genetic information carried along in the

genome. The target functionality may include a structure design or a computational func-
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tion. The functionality is generally given by the computational function of the nodes

and their connections. A problem, is usually mapped to a computational architecture and

the architecture represents the developing phenotype. Kitano’s work on development of

Artificial Neural Network structures [59] is an example of a computational architecture,

consisting of nodes and an interconnected network. Tufte [114], used a different com-

putational architecture in his developmental model, namely, the von Neumann’s cellular

automata [121], where cells have a finite number of states that self-replicate, i.e., expand

their cellular structure. A non-uniform cellular automata is developed, in other words

its structure/form emerges out of a set of development rules capable of cellular growth,

differentiation and cell death.

Computational architectures have been extensively used by simple adaptive or EvoDevo

design approaches and have shown to be quite beneficial building certain structures or

functionalities [11, 39, 84, 107, 114]. However, all studies so far have been focused on

designing a developmental mapping towards a specific architecture. When target archi-

tecture is a cellular automata, the design and encoding of representational information

in the genotype is done under the limitations and restrictions dictated by the architecture

itself. In addition, the impediment of target computational architecture further limits the

variety of designs or solutions that can possibly be achieved in other cases.

1.4 Motivation of research work

Nature uses the same fundamental machinery and almost the same genetic information to

create vastly different creatures. A not so recent study reveals that about 99% of mouse

genomes have direct counterparts in humans [42]. Other study show that cats have 90%

of their homologous genes identical to humans [91]. How is it possible for nature to use

a vast majority of the same genetic representation in the DNA but still be able to develop

so distant species? Similarly, Maduro et al. found a common regulator gene that controls

the formation of many of the internal organs in both nematodes and vertebrates [76]. The

same gene determines early on what cells shall become an intestine or a muscle cell. The

embryos of most animals divide into three different layers: ectoderm, mesoderm and en-

doderm. For vertebrate embryos, the mesoderm produces heart, blood and muscles while

the endoderm becomes the organs; liver, pancreas and lungs. In the much simpler nema-

tode, just one cell (which is analogous to the mesoderm layer of vertebrates) produces the

mesoderm and endoderm organs. As a result, the same genes operate in early stages to

control the organ selection in both the worm and vertebrate animals.

These aspects reveal the benefit of having the same genetic representation (genome) to

develop and evolve several computational architectures (species). A developmental map-

ping that can be exploited and be used by several computational architectures or a class

of structures is not new [45]. The developmental process must be capable of expressing

developmental actions and must be able to express a large variety of network topologies

within each architecture, so that it can obtain different structural and computational goals.
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Designing an unconstrained EvoDevo system, will enable development and evolution to

exploit computational or structural properties from each architecture towards the goal

sought.

The current thesis investigates the potentiality of using the same genetic information to

develop a class of computational architectures or different types of computational archi-

tectures. The analysis and design of a new developmental mapping has led to the proposal

of a new approach, called Common Developmental Genomes or CDG. Cellular Automata

(CA) and Random Boolean Networks (RBN) were selected as target computational archi-

tectures. RBNs are considered a generalization of CAs, sharing several computational and

structural properties. The developmental model is based on a string rewriting grammar

L-system [71]. L-systems have shown to be able to describe developmental or generative

systems [72, 108]. A Genetic Algorithm (GA), a form of EA, was used in CDG to search

through possible solutions maintaining a population of gradually improving candidates

until a solution that satisfies the requirements is found. L-systems are responsible to gen-

erate the developmental mapping between the genotype and phenotype in CDG. Certain

indirect rules are applied to develop both CA and RBN in the developmental system. The

GA evaluates the solutions based on a common fitness function.

The goal of this thesis is to investigate and show that CDG are able to exhibit better

evolvability than systems developed and evolved by standard genomes (genomes target-

ing a specific computational architecture). Evolvability, usually describes how well the

system adapts to its environment therefore finding good solutions. Evolvability of CDG is

studied through the prism of scalability and complexity. Both scalability and complexity

are terms that have been interpreted in many different ways in computer science and bio-

logical disciplines. Here, the term scalability refers to the ability of CDG to evolve when

problem size increases. The term complexity is used as an abstract way to characterize the

capacity of information necessary to describe the problem at hand. More detailed analysis

is given in Chapter 2.

1.5 Research Questions

The main research question identified and explored by this thesis is:

Is it possible to design an EvoDevo system that can achieve evolvability targeting a class
of architectures?

In order to answer the main research question, several smaller and more specific research

questions had to be addressed:

• To what extent can a common developmental mapping be used to evolve classes of
architectures?

• How and to what extent does the environment affect the development and evolution
of common developmental genomes?
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• What kind of phenotypes are obtained and what are their structural characteristics?

1.6 Thesis Outline

This thesis is a collection of papers. The main part of this thesis and all relevant research

results are found in the papers. The papers were written with this thesis in mind and

built naturally on each other, leading to the main research question. Chapter 2 presents

the necessary background material and describes the proposed approach, called Common
Developmental Genomes. Chapter 3 provides an overview of the research process and the

papers. Chapter 4 concludes the thesis, summarizes research contributions and outlines

future research pathways.
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Chapter 2

Background

Thus, from the war of nature, from

famine and death, the most exalted

object which we are capable of

conceiving, namely, the production

of the higher animals, directly

follows. There is grandeur in this

view of life, with its several

powers, having been originally

breathed into a few forms or into

one; and that, whilst this planet has

gone cycling on according to the

fixed law of gravity, from so simple

a beginning endless forms most

beautiful and most wonderful have

been, and are being, evolved.

Charles Darwin The Origin of
Species

This chapter gives an overview of relevant scientific fields and a detailed analysis towards

the proposed approach for common development and evolution of classes of computa-

tional architectures; the Common Developmental Genomes (CDG) approach. Section 2.1

introduces the concept of evolution and explains basic evolutionary algorithm. Artificial

development with specific notions from dynamic systems are presented in Section 2.2.

Section 2.3 discusses the concept of evolvability setting it under the right perspective.

Section 2.4 explains what scalability. Complexity concept is defined in Section 2.5. Envi-

ronment is explained in Section 2.6. Introduction to computational architectures is briefly

presented in Section 2.7 with a short introduction to the computational models used in this

thesis, cellular automata (Section 2.7.1) and random boolean network (Section 2.7.2).

Finally, the proposed approach is introduced in Section 2.8 with reference to Lindenmayer
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systems. The chapter closes with an illustrative example using Common Developmental

Genomes.

2.1 Evolutionary Algorithms

Evolutionary algorithms (EA), as Section 1.2 mentions, are population-based global op-

timization methods whereby environmental pressure causes natural selection (survival of

the fittest) resulting in a rise of the population fitness. Four categories of EA can be found

in the literature: the Genetic Algorithm (GA) [48], Genetic Programming (GP) [63], Evo-

lutionary Programming (EP) [35] and Evolutionary Strategies (ES) [96].

Figure 2.1: Flow of a simple genetic algorithm (GA). Adapted from [64].

The population includes individuals that “explore” the fitness landscape, namely, the

space of all possible genotypes. Individuals of the population are evaluated and their

fitness score is obtained. A “mating pool” is produced out of individuals with the best

fitness score where a higher fitness indicates that more copies of that individual are added

to the population. Two parents are randomly picked from the “mating pool” for crossover

creating an offspring. The offspring is the randomly mutated and put back into the popu-

lation. This process is repeated until an acceptable solution is found, or a certain number

of generations is produced. The result of each generation is, by definition, a more fit

population. The problem solving process that involves the application of EAs, is called

Artificial Evolution (AE). Figure 2.1 shows the flow of a simple genetic algorithm.
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2.2 Artificial Development

Artificial Development (AD) is inspired by biological development and involves pro-

cesses that use “instructions” encoded into the genome (DNA) to “build” a multi-cellular

organism. It typically uses indirect encoding between the genotype and phenotype [109],

usually through the expression of rules. Rules can be anything from simple grammar

rules [40, 58] to complex gene regulatory systems, designed to closely mimic biological

development [64, 28]. AD alows the possibility of shrinking the genome size (genetic

representation) of an organism drastically compared to the total number of cells of the

developed organism. The example of figure 1.1, shows a cell program i.e., the zygote,

that is placed at the center cell of the 16 × 16 grid (time 0). The cell is a square in a

non-toroidal two-dimensional cellular automaton. The inputs to each live cell program

are bits defining the cell states and the chemicals in the Moore neighborhood (Section

2.7.1 presents the main neighborhoods for cellular automata). This information is being

exploited by the cell’s program in order to decide the amount of each chemical that will

produce (binary bits), whether it will live, die or change into a different cell type at next

time step and eventually how it will grow into the Moore neighborhood. In such a case,

each cell program runs in parallel and there is no knowledge of the overall system what-

soever. Computation is being done locally based purely on each cell’s state in Moore’s

neighborhood.

Artificial developmental systems are considered discrete dynamical systems where each

developmental state is represented by a point in time. The series of all developmental

states from the zygote to the adult organism form the developmental trajectory [55]. Fig-

ure 2.2 shows an example of a developmental trajectory of a system with states A,B,C,D
representing respective timesteps during development.

Figure 2.2: An example of a developmental trajectory

Developmental systems have a finite number of states and the system will eventually

re-enter a state previously visited. Since these systems are deterministic and the develop-

mental trajectory must always pass from a state to the same successor state, the system

will cycle repeatedly among those states. This cyclic behavior is called state cycle and

state cycles are a form of dynamical attractors. Figure 2.3 shows an example of an attrac-

tor with state cycle 3.

Figure 2.3: Attractor with state cycle 3

In the literature, one can find examples of possible models that can be used in artifi-

cial development. Most important example models include reaction-diffusion systems
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[119], activation-inhibition [81, 82], random boolean networks [55], Lindenmayer sys-
tems [71, 72], cellular encoding [40], evolutionary neurogenesis [58, 59]. In this the-

sis, a Lindenmayer (L-system) grammar is used to describe the developmental mapping.

The proposed developmental approach employs the processes of cell differentiation, cell

growth and cell apoptosis. Further details on their implementation are given in Section

2.8.

2.3 Evolvability

Evolvability, is the capacity of a system to evolve [56] or its ability to reach “good” so-

lutions via evolution [87]. In essence, is the amount of phenotypic variation on which

selection can act with a given amount or a minimum amount of genetic non-lethal varia-

tion. Biological systems are able in a sense, to accumulate random variation allowing the

system to function, but also to adapt during its lifetime [56].

Kirschner and Gerhart [57] explain evolvability as the capacity to generate heritable, se-

lectable phenotypic variation, with two basic components: (i) to reduce potential lethality

of mutations, and (ii), to reduce the number of mutations needed to produce phenotyp-

ically novel traits (properties). Evolvability is considered still at a maturing stage and

definitely is a field of active research within: (i) the characteristics of evolvable systems

and the requirements of a system to show evolvability, (ii) actual sources of evolvability

within biological and non-biological systems, and (iii) the evolution of evolvability.

The main focus of this thesis, is to study how a common developmental process is capa-

ble of evolving different systems and what the characteristics of such systems are. Papers

I-IV take an experimental approach to investigate evolution in artificial systems and look

at the possibilities of evolving certain phenotypic structures. More specifically, paper I

focuses on the characteristics of the developmental mapping in order to evolve classes of

computational architectures, (see Section 2.7) towards a structural goal. Papers II-IV have

the same focus, using basic dynamics as target behavior. Paper III investigates whether

the proposed developmental approach (see Section 2.8) favors the evolvability of pheno-

types in dynamic behavior problems. Paper IV focuses on the influence that mutation has

over the lifetime of an organism and investigates how developmental processes influences

evolution over different external environments (see section 2.6).

2.4 Scalability

As explained in Section 1.2, EAs typically use one-to-one mapping from genotype to phe-

notype, where by each property and characteristic of the phenotype needs to be encoded

in the genotype. Figure 2.4, shows a genotype represented by a binary string, where each

part indicates the respective status of the cell (active/inactive) in the phenotype, namely, a
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4× 4 cellular automata. In this case, the genotype size is predefined and is strictly speci-

fied by the size of phenotype. In other words, the more complex the phenotype, the more

complex the genotype.

Figure 2.4: An example of one-to-one mapping from genotype to phenotype. Adapted

from [10].

Another option is to have redundant genotypic representations with a higher cardinality

than that of the phenotype [100], i.e., many-to-one mapping. This type of mapping allows

for neutral genotypic mutations that don’t change the properties of the phenotype [102]

to reduce the chance of evolutionary search trapped in local optima [103].

Nature has found a way of producing incredibly complex organisms from compact ge-

netic representations. Inspired and motivated by natural development, indirect genotype-

to-phenotype mappings have enabled researchers to improve their designs and solutions

on a much larger scale [43, 84, 39, 38]. This type of mapping reduces the complex-

ity of the genotype and the size of the search space, but transfers the complexity to the

mapping itself to the underlying developmental process. When using indirect genotype-

to-phenotype mapping, the challenge is to find an efficient developmental process and

an indirect representation able to exploit it. Eggenberger [30], suggests that the complex

genotype-phenotype mappings typically employed in developmental models allow the

reduction of genetic information without losing the complex behaviour and that develop-

mental approaches will scale better on complex problems. However, reducing complexity

of genotype and shifting this complexity into a developmental mapping has turned out to

be more difficult than anticipated [85]. It is true, that using indirect developmental map-

ping has not always been as efficient but still considered as a promising approach in some

problem areas, such as, evolutionary design optimization[58, 40, 30].

In general, a design or solution is said to be scalable if it is able to provide results in a

computational time that is acceptable for increasing instance size. Scaling for any system,

biological or artificial is a question of available resources [116]. So, it is important to

have an understanding of the domains the resources are fitting in. Tufte [116], proposed

two different resource domains for scaling. The first domain regards scaling of mapping

external factors (generations, population size, genome size and other factors related to the

EA). The second resource domain concerns scaling properties of developmental processes

e.g., phenotype size, cellular actions and information processing.

In this thesis, scalability refers to the size of the problem at hand or the size of evolved phe-
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notypes and are investigated through the proposed developmental mapping and genotypic

representation. The size aspect relates to the available structural or functional resources

for development of the phenotype, e.g. cells [116]. Papers II and VI study scalability

property of the proposed developmental mapping in phenotypic sizes, N = 144, N = 169
and N = 196 for both cellular automata and random boolean networks.

Problem sizes considered as a starting point to our investigations and this property alone

is by no means significant to scalability. Other problem sizes could also have been consid-

ered. Though, extending the information available to gene regulation can be considered

as a way to scale up the developmental resources [116]. In that sense, scalability, besides

problem size, is also studied in terms of developmental resources, e.g., growth, differ-

entiation, number of developmental iterations and other mechanisms. Other information

is included and available to the development process, such as, inter-cell communication,

environmental information, N -state memory problem and conditional developmental pro-

cesses. Therefore, the amount of information available for gene regulation allows the de-

velopmental process to emerge organisms with more complex structure and functionality.

2.5 Complexity

Complexity is a term used with its meaning not being universally accepted [62] and many

authors use it implicitly. McShea referred to structural complexity [79] depending purely

on the number of different parts and interactions of the system, but not looking into

its functionality. In [80], he theoretically and empirically explored the notion of func-

tional complexity by looking into large-scale trends and correlations between functions

and other variables, such as, size of organism.

Kolmogorov complexity, acts as an inspiration, since it is a measure that can be used on

individual, finite objects [67] and associates the complexity of an object, (phenotype) with

the length of the shortest computer program that produces the object as output.

In this thesis, the complexity of a problem or instance size is associated with the number

of cell or node required in order to define the state of the current cell/node. Complexity is

investigated in papers II and VI, through the proposed developmental mapping. Paper II

gives a detailed analysis of “own” definition of complexity used in this context.

2.6 Environment

Living organisms have withstood staggering assaults of harmful influences from their en-

vironment over the years and not only has life survived, but also it has thrived to evolve

into diverse species. Biological organisms proved to be robust and continue to function in

the face of perturbations. Perturbations can be twofold; first it can be genetic in terms of

mutations [122] or they can be non-genetic, for example, through environmental change
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[117]. The term environment has been used in the literature in different levels of granu-

larity. In [118] it was used to define the intra-cell environment that the DNA resides in;

also referred to as cell’s metabolism [32, 39]. The notion of environment found in most

artificial developmental systems, is the neighborhood or inter-cell environment, namely,

the environment that enables communication between neighboring cells [15, 32, 84]. Bi-

ological organisms are affected by the environment emerging from development. The

property of phenotypic plasticity [66] enables the organism to adapt to its environment

during development. This adaptation may be interpreted as a change in its phenotypic

structure and/or behavior. In other words, the developing organism may adapt its struc-

ture and/or functionality based on the information it has received from external stimulus

[117]. The “environment” of a biological organism refers to the external environment

that affects its development. This environment can also be expressed as a combination of

initial environment and an external environment [118]. The initial environment influences

the cell as it grows along with the developmental path of any given cell and eventually the

whole developing organism. At the same time, the developing organism interacts with its

environment in order to survive and this is the external environment.

Figure 2.5: Indirect environmental influence through evolution. Adapted from [114].

In this work, we consider both initial and external environments. The initial environment

is set only in the beginning of the development process and then the developing organism

is affected by external environment only indirectly i.e., through evolution. This is shown

in figure 2.5 where the organism emerges from the interplay between the genotype and

the emerging organism and through the developmental mapping. What is important about

this setting is that at any point in time, information about the genotype and the organism

(at that point) is available to the mapping process. As such, fitness evaluation is being

performed using the emerging organism (until that point) with its external environment

during development. The accumulated fitness is fed back to the evolutionary algorithm.

Under this setting, the external environment does not have a direct impact to the devel-

opmental process itself. Paper IV investigates how the developing organism adapts its

behavior under different external environments, namely, single-cell, random and multiple

random environments.
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2.7 Computational Architectures

Artificial developmental systems often target problems with some sort of functionality,

aiming to solve e.g., a structural problem [110] or a computational function [44] and

are usually mapped into a computational model. These models involve nodes or cells

representing elements of computation and connections through which nodes or cells in-

teract. As such, the functionality of a developmental system is given by the function of the

nodes/cells and their connections. In this thesis, the computational models are typically

architectures that consist of simple computational elements that are sparsely connected.

Cellular automata and random boolean networks are such target architectures, developed

and evolved through the proposed developmental approach.

2.7.1 Cellular Automata (CA)

Several biological systems in nature have been found to involve many simple compo-

nents. Their overall behavior arises from the cooperative effect of a very large number

of parts that each follow rather simple rules [130]. A cellular automaton (CA) is a com-

putational architecture (lattice) that exploits this exact principle and has been extensively

used to study biological systems, evolution, ecology and games [128]. A CA includes a

regular 2D lattice of N sites with each site taking k possible values. The lattice is up-

dated synchronously in discrete time steps according to a local rule φ that depends on

the value (state) of sites in some neighborhood structure. The most commonly studied

neighborhood structures for two-dimensional cellular automata include the von Neumann

neighborhood, consisting of the four horizontal and vertical sites, adjacent to the center

site of interest (Figure 2.6(a)), and the Moore neighborhood consisting of all eight sites,

immediately adjacent to the center site (Figure 2.6(b)). Several other possible lattices and

neighborhood structures are possible for two-dimensional cellular automata as the trian-

gular and hexagonal lattices [130]. The triangular and hexagonal cellular automaton may

be considered as special cases of the general nine-neighbor square CA.

(a) (b)

Figure 2.6: Neighborhood structures for two dimensional cellular automata: (a) von Neu-

mann neighborhood, (b) Moore neighborhood.

Another important parameter in the definition of cellular automata is the applicable “range”

of the rule r: the value of a given site depends on the values of the neighborhood, 2r + 1
sites at previous time step t−1. In other words, the features of the cellular automaton may

16



travel at most r sites per time step. As an example, an “elementary” two-dimensional CA

with a von Neumann neighborhood (s = 4) with two possible values (0, 1) per site k = 2
and r = 1, the total number of rules will contain 22

4
= 65536 possible states. The value

α of the center site at position i, j at time step t + 1 is the outcome of the rule that,based

on the von Neumann neighborhood, depends only on five-nearest neighbors according to

α
(t+1)
i,j = φ[α

(t)
i,j , α

(t)
i,j+1, α

(t)
i+1,j, α

(t)
i,j−1, α

(t)
i−1,j] (2.1)

John von Neumann was the first to introduce the notion of cellular automaton in the

mid-1940s as he developed an abstract model for studying self-reproduction inspired by

biology [128]. Stanislaw Ulam working independently in 1951 considered the problem

and managed to simplify Neumann’s model with a two-dimensional cellular automaton.

That particular automaton was constructed in 1952-3 and had 29 possible colors for each

cell and rather complicated rules. They were able to emulate the operation of the com-

ponents of a digital computer and various mechanical devices. Later on, and based on

Ulam’s work, von Neumann was able to mathematically provide the principles for self-

reproduction and eventually investigate systems exhibiting such sophisticated capabilities.

Cellular automata have been worked out as parallel computers since the 1950s and later

their formal computational capabilities have been theoretically proved and shown as an

analog to Turing machines. Other specific types of 2D CAs started to be used in the 50s

and 60s, as a way to optimize circuits for arithmetic operations, simulate idealized neu-

ral networks or other body parts, such as, heart or muscles as well as reaction-diffusion

processes [128].

Cellular automata can be viewed either as computers themselves or as logical universes

within which computers may be embedded [65]. CAs are systems exhibiting interesting

dynamics and have been used to investigate their global properties. Wolfram [129, 89]

has proposed four qualitative classes, according to the results of evolving the system from

a “disordered” initial configuration:

1. Class I evolves to a homogeneous state, that is, a unique state from all possible state-

space for any random initial configuration. This class of automaton are equivalent

to dynamical systems that reach a fixed-point attractor and this type of automata

cannot be reversible since the initial information is lost.

2. Class II evolves to simple structures which can be stable or periodic. For any ran-

dom initial configuration resembles dynamical systems with periodic behavior. Au-

tomata of this class may act as filters in the sense that certain data sequences can

be maintained in the system while others are made void. In addition, Class II sys-

tems are of finite size with finite number of cells and that exact property leads to

periodic behavior. The system eventually does find itself in a previously visited

state and thus it is inevitable to repeat itself. During evolution, different parts of the

system may evolve separately from each other without any long-range information

transmission.

3. Class III evolves to a chaotic pattern with long duration at any random initial con-

figuration. This class is a equivalent to a chaotic dynamical system and play an
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important role in studying randomness.

4. Class IV yields complex patterns of localized structures, sometimes long-lived. In

this class, non-trivial structures emerge and may include structures from the uni-

form, periodic or chaotic regimes. Although Classes I, II and III demonstrate a

basic type of behavior already found in dynamical systems, automata of Class IV

have no dynamical system equivalent. According to Wolfram [130], at the border

between order and chaos is where universal computation could be possible [129]

and Langton called this area “edge-of-chaos” [65].

(a) (b) (c) (d)

Figure 2.7: Wolfram’s computational classes for the evolution of rule 32 in elementary

cellular automata. Adapted from [77].

Figure 2.7 illustrates Wolfram’s classes with a focus on evolving rule 32 for an elementary

cellular automaton. All evolutions were run with the same random initial configuration,

50% density for state 0 (white dots) and state 1 (black dots). The evolution space begins

with a CA of 358 cells and evolved for 344 generations. Evolutionary time runs from top

to bottom. Figure 2.7(a) shows rule 32 converging quickly into a uniform state. Figure

2.7(b) shows a periodical evolution of blocks of state one cells in a leftward shift fashion.

A typical chaotic evolution with aperiodic patterns or unstable points is shown in figure

2.7(c). Small changes in initial configuration leads to an increasing change in the final

structure, usually circular or at least rounded. Finally, figure 2.7(d)) shows the emergence

of non-trivial patterns typically from the uniform, periodic and chaotic regimes.

2.7.2 Random Boolean Networks

Random Boolean Networks (RBN) are discrete dynamical systems and were originally

developed by Kauffmann, towards modeling and understanding gene regulatory mecha-

nisms (also known as N−K models) [54, 55]. RBNs are generic models since their nodes

assume no function nor do they imply any connectivity among the nodes. Kauffmann first

proposed the hypothesis that living organisms could be constructed from random elements

without the need of precisely programming them and he has shown great analogies to bi-

ological organisms [54]. An RBN consists of N nodes which can take values of zero or

one (Boolean), called state. The state is determined by K connections coming from other

(or the same) nodes. Connections are randomly assigned but remain fixed throughout

network’s dynamics.
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Each node holds a logic function which is generated randomly, using a node lookup table,

that takes the state of each incoming node as an input and the state of the “current” node as

an output. So, each node affects each other by the connectivity pattern and by its output

state. RBNs are considered a generalization of Boolean Cellular Automata (CA) [121,

133, 127], where each node may not be affected only by its neighborhood but potentially

by any node in the network. Another property of RBNs is the rate by which nodes updates

their status in the network, called updating scheme. Kauffmann studied the standard RBN

models where nodes’ state is updated synchronously: the state of the node at time t + 1
depends on the states of nodes at time t.

(a) (b) (c)

Figure 2.8: (a) Lookup table for state transitions, (b) RBN with node elements and their

connections, (c) State space diagram

The dynamics of RBNs are usually determined by their initial state (i.e., random state),

the updating functions and the scheme. Since the state space is finite (2N), a state will

eventually be repeated and since the dynamics are deterministic, the network will defi-

nitely reach an attractor (either point or cycle attractor) [37]. An example of an RBN with

N = 3 nodes and K = 3 connections is shown at figure 2.8. Figure 2.8(a) shows the

lookup table for the state transitions of the RBN at time t and t + 1 respectively. Figure

2.8(b) shows the wiring diagram of the RBN indicating the nodes affected. In this exam-

ple, all nodes affect all nodes. Each node can be active or inactive (zero or one), with the

number of combinations of the states of K = 3 inputs is 23 = 8. The boolean function

specifies whether the regulated element is active or inactive for each of these combina-

tions. The total number of possible boolean functions F of K inputs for each node in

all potential networks we can obtain, is F = 22
K

. The dynamic behavior of the network

is the set of states in the total state space that are visited. Figure 2.8(c) shows the state

space diagram of an RBN. There is one point attractor (011) with one state flowing into

it (111), and one cycle attractor of period three (001, 100, 101), with two states flowing

into it (110, 010). The set of states flowing into an attractor is called attractor basin.

One observes how much the network changes and therefore distinguishes different dy-

namic regimes: ordered, chaotic and critical (figure 2.9), by plotting the states of an RBN

network, where the state of a node depends on its neighbors. In the ordered regime, after

the initial random state, the states of the nodes in the network changes but the dynam-

ics of the network quickly stabilize and most of the nodes become static. Networks in

this regime are very robust to perturbations. In the chaotic regime, networks take time to

reach an attractor as most of the states change constantly with only a few “stable islands”.
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Networks in this regime are sensitive to initial conditions in a sense that small perturba-

tions can have large consequences to the network (butterfly effect). RBNs with uniform

connectivity have been found to have a phase transition from ordered to chaotic for a crit-

ical value K = 2 [55]. This critical value can be influenced by the bias existing in the

functions (not an equal opportunity for zeros and ones) and the topology of the networks

[3, 8].

(a) (b) (c)

Figure 2.9: A RBN with its dynamic regimes (N = 32). Square represent the state of a

node. Initial conditions shown at the top with time flowing downwards (a) ordered K = 1,

(b) critical K = 2, (c) chaotic regime, K = 5. Adapted from [37].

The structure of the nodes is very important for the dynamics of the RBNs. Parameters

like N , K, and p (the probability of a node being one), have been extensively used to study

RBNs both statistically and analytically in terms of the number and length of attractors

[34, 27, 9], sizes and distributions of their basins and how those interact with each other

[12]. Good overviews with more in-depth analysis of RBNs can be found in [36, 55, 53].

2.8 Common Developmental Genomes (CDG)

The aim of this thesis is to be able to generate not a specific but different classes of

structures using the same approach. Such developmental approach requires sufficient

knowledge of the targeted computational architectures along with their governing prop-

erties. The computational architectures targeted are 2-dimensional non-uniform cellular

automata and random boolean networks. The properties of these architectures in a de-

velopmental setting are identified and described in [4]. Three major requirements were

identified and worked out via the proposed approach:

• Developmental model. The model should be able to develop classes of structures,

taking into account the special properties governing each computational architec-

ture (dimension, neighborhood, connectivity) and have the same genome as input.

• Genome. The genome should contain information about the cell/node type and its

wiring at each developmental step (figure 2.10)
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(a)

(b)

Figure 2.10: The genome contains information about cell/node type and connectivity.

Genome gives input to the developmental model and the model is able to develop both (a)

a Cellular Automata, and (b) a Random Boolean Network.

• Developmental processes. The concept of chromosomes was incorporated to pro-

vide a logical grouping and separate functional (processes-related) from structural

(connectivity-related) genomes. Figure 2.11, shows what the genome looks like;

the first chromosome concerns the developmental processes and the second chro-

mosome holds information about connectivity.

Figure 2.11: The complete genome with the Node and Connectivity chromosomes.

Each chromosome is built out of rules. The first chromosome includes rules on

how to process cells/nodes. The rules of the first chromosome include processes like

growth, differentiation and apoptosis. The second chromosome has rules supporting

the wiring of nodes in a random boolean network (since wiring of cellular automata

is given). Chromosomes may have configurable size. Figure 2.12 shows how the

genome is made out of rules.

To express the rules of the chromosomes, Lindenmayer grammar has been employed.

Separate grammars are devoted for node/cell generation and connectivity. In that way, the

wiring of the system is not designed into the system but rather developed by grammar.

The model has the capacity to map genetic and environmental information to phenotypic

properties, e.g., growth and differentiation.
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Figure 2.12: Chromosome are made of rules. Each chromosome may have different size.

Table 2.1: (a) Symbols used in the first L-system, (b) Symbols used in the second L-

system

(a)

Symbol Description

a (AXIOM) Add (growth)

b Add (growth)

c Add (growth)

d Delete (apoptosis)

X Substitute (differentiation)

Y Substitute (differentiation)

→ Production

(b)

Symbol Description

x Node (different from y)

y Node (different from x)

+ Connect forward

– Connect backwards

→ Production

2.8.1 Lindenmayer grammar

Lindenmayer systems (L-systems) are rewriting grammars, able to describe developmen-

tal or generative systems and have successfully been used to simulate biological processes

[70] and describe computational machines [108].

The developmental model includes two L-system grammars. The first L-system is context-

sensitive and development uses the strict predecessor/ancestor to determine the applicable

production rule. This L-system is responsible for generating the phenotype with the fi-

nal set of cells/nodes. Some cells/nodes perform special cell processes and influence the

intermediate and final phenotypes. The cell processes are represented as symbols in the

L-system. Symbol a is the axiom and each phenotype starts with this node. Symbols a, b
and c are responsible for phenotypic growth. Symbol d performs apoptosis of the current

cell/node (cell death). Symbols X and Y are responsible for cell differentiation leading to

the replacement of the predecessor cell/node. Table 2.1(a) shows the symbols used in the

first L-system. It is obvious that several combinations of rules when deployed may lead

to the same phenotype (symbol sequence).

The second L-system is D0L (zero-sided interactions) and responsible for building the

connectivity of boolean networks. Each node in the network has a unique numbering sep-

arating them from other nodes. The current node has always the number 0 and any nodes

starting from the current node onward have positive numbering, where nodes bounce

backwards have negative numbering. This is an easy way to discriminate and realize the

relative location of the nodes in the network. The L-system includes the plus (+) symbol

to represent connections that are created onwards from the current node and the minus (-)

symbol for connections that bounce back from the current node.
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The length of each rule in both chromosomes is 4 symbols. That is, the length of each rule

takes up 4 × 8 = 32 bits. Table 2.1(b) shows the symbols used in the second L-system.

The axiom rule for the second chromosome is x→y. This means that development ini-

tially searches in the chromosome whether the axiom actually exists. If so, development

continues and looks for rules of type xy→+<value> or xy→-<value>. These two

rules imply that if two different (distinct) nodes are found (x �=y), then it creates a connec-

tion forward (assuming the rule includes ’+’) or bounces backward (if the rule includes

’-’). The field <value> denotes the node number for the onwards/bounce backwards

connection. For example, rule xy→+3 denotes that a connection will be created from the

current node (node 0), to the one that stands three nodes onwards (figure 2.13(a)). Simi-

larly, rule xy→-3 denotes that a connection will be created starting from the current node

(node 0) to the one that stands three nodes backwards (figure 2.13(b)). If the destination

node does not exists (i.e., has not been created yet), a self-connection to the current node

is created instead. Selected examples of how the developmental model works is shown in

Section 2.8.2.

(a) (b)

Figure 2.13: Example of (a) forward connection and (b) backward connection. New

connection is shown in solid line while existing connections in dashed line.

2.8.2 Example of proposed developmental system

In this section we present an example with step-by-step development of a Cellular Au-

tomaton and a Random Boolean Network, based on L-system rules that show how phe-

notypes are generated and mapped to the computational architecture.

Suppose the chromosome for node generation has the rules shown in figure 2.14 (Node

Chromosome). Each rule can be triggered multiple times during development. The con-

struction of the phenotype always starts from the axiom (symbol a), at developmental step

0. The axiom triggers the first rule of the chromosome a→bX at dev. step 1, resulting

in phenotypic growth (bX). In the next development step, two rules are triggered; rules

b→Xa and X→Y. The first rule adds growth to the phenotype where the second rule dif-

ferentiates cells X and Y. The phenotype in dev. step 2 becomes XaY. Next, rules X→Y,

a→bX and Y→a are triggered. The phenotype in dev.step 3 becomes YbXa. In dev.step

4, four rules are triggered and the phenotype becomes aXaYbX. Development continues

for a predefined number of steps and the cell processes act upon the phenotype which is

directly mapped at the cellular automata lattice, as shown in the bottom of Figure 2.14.
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Figure 2.14: The example shows how the rules of the first chromosome are triggered dur-

ing development. The sequence of the symbols represent the phenotype. The generation

of the phenotype is shown separately here only for illustration purposes. Cell processes

act upon the phenotype which is directly mapped at the cellular automata lattice.

The proposed developmental approach uses the rules of the node chromosome (figure

2.14), to develop the nodes for all targeted architectures. Therefore, for random boolean

network development, same nodes shall be used for structuring the network. Figure 2.15

shows an example of how rules of a second chromosome may look like.

Figure 2.15: Example of second chromosome including rules for generating the connec-

tions in a random boolean network.

Figure 2.16: Connectivity rules are being applied to the nodes of the random boolean

network. Development of connections occurs after phenotype is generated.

Figure 2.16 shows an example of how connectivity rules are applied to the nodes of a
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random boolean network. An intermediate phenotype XaY of dev.step 2 of figure 2.14 is

considered.

Initially, nodes are generated with a default number of 3 self-connections (dev.step 0).

Next, X becomes the “active” node and rule xy→+2 is triggered creating a forward con-

nection between nodes X and Y (dev.step 1). Node a become “active” at dev.step 2, with

the valid rule xy→-1 being applied. Hence, a backward connection is created between

nodes a and X. In dev.step 3, node Y becomes the “active” node. In this step, the same

connectivity rule applies as before and a backward connection is created between nodes Y
and a. Finally, it it important to remember that for a rule to be valid, the destination node

referenced in the connectivity rule must exist in the network, otherwise the rule does not

apply.
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Chapter 3

Research Summary

A computer would deserve to be

called intelligent if it could deceive

a human into believing that it was

human

Alan Turing, 1950

This chapter gives a summary of the research that took place during this thesis. The chap-

ter starts in Section 3.1 with a description of the research process defining the problem

determining the research questions. Section 3.2 lists all publications by the author. Note

that all publications are relevant to the topic and are built on top of each other. In other

words, they should be read in a proper sequence. The papers listed represent the research

path taken towards finding answers to the research questions of this work. Section 3.3

gives the abstracts and retrospective views of each paper.

3.1 Research Process

This section presents the research process that led to this thesis. The major choices and

motivation behind them are presented together with possible research pathways. An illus-

tration of how the published papers relate to each other is shown in figure 3.1.

3.1.1 Background

The initial PhD project proposal was connected to the research group CRAB lab (Com-

plex, Reconfigurable, Adaptive, Bio-inspired Computing hardware) with the main focus

in using biological inspiration from evolution and development towards hardware capa-

ble of unconventional computation. So, a potential approach for this project would be
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Figure 3.1: Research process and relation of papers
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to use cellular computation in combination with artificial development and evolutionary

algorithms. An initial goal was to develop computational circuits using the lab’s existing

hardware platform (FPGA) for experimentation. Although FPGA was set as the target

hardware platform, due to my previous academic experience in cellular architectures, it

was a reasonable decision to use computer simulations instead. So, the approach of the

PhD project turned out to have an initial focus on:

1. Exploit artificial development with regard to the creation of basic computational

functions to fit in an unconventional computational architecture (i.e., cellular com-

puting systems [106]), and

2. Investigation of developmental properties and their impact during development and

evolution of such computational architectures

This work was initially planned to be a close collaboration with the Intelligent Systems

Group, University of York, with Dr. Julian F. Miller.

3.1.2 Initial Investigations

Applying biologically inspired design methods such as evolutionary algorithms and artifi-

cial development as a design tool is generally not an easy task. The approach is relatively

new and there is little knowledge on how to better design a biologically inspired method

to target a problem. As such, studying basic concepts and processes found in biology

was the first way to go. It is important to increase own understanding on how biological

processes are designed and applied in the artificial world through computer simulations.

After this introductory period, a literature study was carried out to get a concrete overview

of bio-inspired computing systems with a focus in developmental mappings. It became

evident that some sort of computational architecture was necessary to be used as an un-

derlying computational model.

To reach one of the initial goals, to develop an artificial organism and investigate how

basic computational functions fit into it, the focus had targeted some sort of developmental

mapping able to produce phenotypic structures consisting of connected computational

elements. To enable the development of such structures, further knowledge was required

concerning the capabilities and constraints of the target computational architectures.

The literature study made evident that some computational architectures comprise sparsely

connected networks and their behavior emerges from cell interactions where a cell is

a simple and uniform computational element. The computational architectures initially

chosen to be studied, were cellular automata (CA), random boolean networks (RBN),

artificial neural networks (ANN) and cellular neural networks (CNN).

A research effort was undertaken to investigate how computational structures can be

achieved by the aforementioned architectures. Their functionality and behavior was ana-

lyzed and compared. The main focus was the type of information required by the com-

putational architectures and how developmental approaches of figure 3.2 could be used in
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an Evo-devo design approach [4]. The fact that the proposed computational architecture

yield common properties, namely, comprise sparsely connected networks with simple

computational elements, inspired us to focus on how a developmental mapping could

work on a class of architectures, in a more general way.

Figure 3.2: Potential developmental mappings to be used in an Evo-devo design approach.

Two possibilities were considered; the first possibility involved defining the developmen-

tal mechanisms to express the architecture’s inherent properties, namely connectivity and

functionality. This option provides a relative freedom to specify relevant cell processes

(e.g., growth, division, differentiation, etc.), genome representation and how these cell

processes will be carried out. The second possibility includes an evolutionary search of

the developmental mapping itself. The goal is to find ways to map the information at

hand, namely genome, environment and intermediate phenotypes, to be expressed in the

emerging phenotype. In the next section, it will become evident the path chosen and the

reasons that lie behind.

3.1.3 Evolvability and Common Genetic Representation

Based on initial investigations, two out of the four proposed computational architectures

were considered, that is, cellular automata and boolean networks, since their dynamic

behavior can be expressed in discrete time. In addition, the first possibility was chosen as

the way forward because, as explained in section 3.1.2, gives the privilege to architect the

developmental mapping in a non-restrictive manner.

The design challenges that had to be fulfilled are addressed in paper I. The first challenge

was to define a developmental mapping able to sufficiently describe and handle all com-

putational architectures, taking into account architectures’ specific properties. The devel-

opmental model should be able to receive the same kind of genome as input, depending

on some genome properties, to determine whether it will develop a cellular automata or a

random boolean network.
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For example, figure 2.10(a) shows a step-by-step development of a 2D cellular automata.

In DS 0, the first cell of the cellular automata is created. In DS 1, the cellular automata

grows in size and a new cell is added. In DS 2, architecture grows again. In DS n, devel-

opment has stopped and the cellular automata has its final structure (adult organism). Sim-

ilarly, figure 2.10(b) presents a step-by-step development of a random boolean network

using the same developmental model. In DS 0, the first node with its self-connections

is created. In DS 1, the random boolean network grows and a new node is added. This

causes new connections to be created for the nodes of the network. The algorithm con-

tinues until all nodes in the network and their connections have been defined (DS n). We

used literature study and several months of experimental simulations to decide that L-

system rewriting grammars [71, 72] would be one of the most prominent developmental

models, to evolve target architectures. Other approaches were also considered, based on

biochemical processes, but L-system grammars are more easily understood and imple-

mented.

The second challenge was to define the information type to be included in the devel-

opmental genome. The genome should contain information regarding the cells in each

developmental step and in order to place them in the architecture. For example, in the

case of a 2-D CA architecture, the properties of dimensionality and neighborhood had to

be defined, where the connectivity is pre-determined (figure 2.10(a)). For boolean net-

works, the connectivity (i.e., connections among the nodes in the network) is not given

but has to be worked out (figure 2.10(b)).

(a) (b)

Figure 3.3: Example of L-system grammars: (a) L-system for node/cell creation, (b) L-

system for connectivity.

The third challenge was to identify the cell processes to be included in the developmental

model. After a couple of months researching the different cellular processes applied in an

artificial setting, the conclusion was to take the simplest possible cell processes, that is,

growth, differentiation and apoptosis. The decision was driven by the basic requirements

of the target computational goal, be able to develop structures. These requirements dictate

that structures should be able to grow (growth), differentiate their cell functionality (dif-

ferentiation) and shrink in size (apoptosis). An example of these cell processes assigned

to L-system symbols is shown in table 2.1(a). Similarly, table 2.1(b) shows an L-system

describing the connectivity rules for the target structures.

Figure 3.3 gives an example of two L-systems: (a) an L-system for node/cell creation,

and (b) an L-system for creating the connectivity of a random boolean network. After
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identifying the cell processes, considerable work was carried out on how cell processes

could be incorporated into the genome. Here, the notion of chromosomes was employed,

with each chromosome containing the information addressed by the second challenge. So,

the genome would comprise a chromosome to withhold the cell/node information of the

architecture and a second chromosome to describe the connectivity details among nodes

of the structure (figure 2.11).

The notion of chromosomes was chosen because it allows to exploit the genome in a mod-

ular way, in a sense that if an additional computational architectures need to be described

in the future by the same genome, more chromosomes can be added to it. This new

chromosome would incorporate the special properties of the new architecture. In other

words, although cellular automata and boolean networks where the chosen computational

architectures, the established principles enable us to facilitate any other architecture with

reasonable flexibility.

Paper I, deals with the details of the developmental model briefly described here. In addi-

tion, it was shown that the genetic representation was able to build and evolve structurally

stable solutions. The developmental model is called Common Developmental Genomes
(CDG), as the genome aiming to develop and evolve more than one architecture. Paper

I verified also the functionality of the computational platform being developed over the

previous two years. This computational platform was built with a mindset enabling to run

all future experiments required by this thesis.

After this work, it was evident that Common Developmental Genomes approach was able

to evolve solutions with a structural goal as a target. Though, further experimentation was

required having a computational goal as target. Discussion took place around the types

of problems to be executed and how. The discussions pointed to a need to experimentally

test the evolvability of CDG under two main conditions. First, evolve CDG with limited

resources under the same external environment and second, evolve CDG in problems of

increasing complexity. Papers II and III, investigate the evolvability of CDG in the first

and second conditions respectively and are further detailed in the next section.

3.1.4 Studying the Evolvability of Common Developmental Genomes

A big part of this thesis investigates the capacity of CDG to evolve genomes that target a

specific architecture. Some work has been undertaken towards understanding how to ex-

perimentally show this. We concluded that CDG had to be tested against limited resources

but also when the target problem increases in complexity. Two different approaches were

taken for each case.

For the first case, the approach taken was towards studying the dynamic behavior of the

target architectures, cellular automata and boolean networks. The dynamic behavior could

involve problems ranging from cycle attractors, point attractors, transient phases and their

combinations. Since these dynamic behavior problems would be neutral to the underlying

architecture, we had to “challenge” CDG by specifying an additional problem that is best
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suited for one of the architectures only, i.e., cellular automata. The problem chosen is

the synchronization task which has been studied to be favorable to cellular automata [22].

By performing this experiment, we could gain a better understanding of CDG and its

evolvability regarding the architectures.

Paper III studies the ability of CDG to evolve computational architectures with limited re-

source conditions under the same external environment. There are cases where resources

are not infinitely available or not available at a given moment. Artificial organisms need

to have ways to overcome such problems if they are to continue to evolve at all (much

like in nature). For the first time, there were indications that CDG could evolve better,

utilizing fewer resources than genomes targeting a specific architecture only.

Figure 3.4 shows the average plot of 10 experiments with a goal of finding a transient

phase with a specific cycle attractor. For each individual, a random initial state was cre-

ated and fed into the architecture. The fitness function gives credit for transients with a

maximum size of 10 after which a cycle attractor of size 20 must follow. Point attractors

are also taken into account (cycles of 1). Fitness from transient phase and cycle attractors

are averaged to give the final fitness score. Figure 3.4(a) shows the average fitness plot

over 10 runs for genomes targeting a specific architecture. The CA was able to find a

sufficient solution, acquiring a large amount of resources (RsepCA). The RBN was able

to find moderate solutions acquiring more than half of the available resources (RsepBN ).

In the case of CDG in figure 3.4(b), both architectures were able to achieve similar per-

formance as previously, but consumed significantly less resources. The cellular automata

reached a max average fitness of 86% at generation 800 (RcomCA), where the random

boolean network reached a 55% fitness at generation 1750 (RcomBN ). This shows that

both genome cases ended up with a similar performance but CDG consumed considerably

fewer resources.

Figure 3.5 shows another interesting finding for the synchronization task. The goal here,

is to find a CA that given any initial configuration s within M time steps, reaches a final

configuration that oscillates between all zeros and all ones, in successive time steps. M ,

the desired upper bound of synchronization time, is a parameter of the task that depends

on the lattice size [22]. For this experiment, we relaxed the rule of all ones and all zeros

by introducing a synchronization threshold. This means that we may have configurations

of zeros or ones up to the threshold limit. In this case, the threshold limit is set to 80%.

This means that configurations filled up with 80% zeros or ones make them an acceptable

configuration. Figure 3.5(a) shows the average fitness plot over 10 runs for genomes

evolved targeting a specific architecture. The CA was able to achieve a maximum average

fitness of 40% at generation 2000 (RsepCA), where the random boolean network gave

below average solutions (18%) at generation 850 (RsepBN ). In the case of CDG (figure

3.5(b)), both architectures required fewer resources achieving the same results compared

to the previous case. Specifically, the CA reached the same fitness in generation 750

(RcomCA), where the RBN reached a fitness of 18% in generation 90 (RcomBN ). Finally,

CDG achieved better overall fitness; the CA reached an average of 60% and the RBN

an average of 20% (for the total of the available resources). The synchronization task
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(a)

(b)

Figure 3.4: Evolvability of CDG under limited resources conditions from paper III. The

experiment has a computational goal of finding a transient phase with a cycle attractor.

Average fitness plots: (a) Standard genomes, (b) Common Developmental Genomes.

was proven to be particularly challenging regarding the random boolean network finding

solutions in both cases.

For the second case, the approach taken was towards identifying a simple complexity

metric, enabling us to associate it with a problem instance. A problem instance in this

case is defined as a problem with a specific configuration. Considerable work was done

studying complexity measures [1, 2, 20, 61, 80, 75], to identify the complexity measure

fitting our purpose. We were inspired by Kolmogorov complexity definition, adapting it
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(a)

(b)

Figure 3.5: Synchronization task: Averaged fitness plot for the different architectures with

(a) standard genomes evolved separately, (b) CDG.

in paper II for our purpose.

The next challenge was to define the target problem and incorporate our own definition of

complexity, as to be able to associate a problem instance in terms of its complexity, i.e.,

problem instance X is more complex than Y . As explained in section 2.5, we associated

the complexity of a problem instance with the number of cells/nodes required to define the

state of the current cell/node. As an example, we mention the no-state memory problem

instance where previous states are not taken into consideration, deciding upon the state of

the current cell. A slightly more complex instance example, is the 1-state memory prob-
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Table 3.1: Rules table for the Stock Market model

Left neighbor Right Neighbor Next state

buy buy buy

buy sell buy

sell buy buy

sell sell sell

lem. Development rules take into consideration the state of the current cell at previous

timestep (state memory 1), in order to decide upon the state of the current cell. Similarly,

2-state memory problem instance takes into account the state of the current cell during the

previous two timesteps (state memory 2) and so forth. Several problem instances of the

same problem were considered, each having a higher level of complexity, i.e., an instance

with no-state memory and instances having previous memory of 1-, 2-, 5- and 10-state.

Paper II, studied the ability of CDG to evolve target architectures for problem instances

where the level of complexity is increasing along with the size (N ) of the underlying

architecture (i.e., with lattice sizes N = 144, N = 169, and N = 196).

In this paper, we found that CDG performed as well with genomes that targeted specific

architectures. A simple stock market model was the target problem with the status of each

cell being determined by looking at the behavior of its two neighbors and the state of the

cell in previous timesteps, based on some rules. This problem was selected as the com-

putational task since it provides interesting dynamics phenomena [93]. Two dimensional

CA and RBN are used as target architectures. Each cell/node corresponds to a trader that

either buys or sells, in each timestep. The model is based on local interactions and in-

volves simple rules that represent the behavior of the traders. The behavior of a trader X
in timestep t is determined by the behavior of its two neighboring traders in timestep t−1.

The governing trading rules are given in table 3.1. If, for example, the left neighbor buys

and the right neighbor sells, the state of the current trader in timestep t is buy. The states

of the stock market model are translated into binary values for assessing the fitness, that

is, sell = 0 and buy = 1. Fitness is assessed employing the total number of buy states in

the architecture.

Figure 3.6 shows that better solutions were found on average using CDG regarding N =
144 no-state memory problem. For N = 169, slightly worse solutions were obtained for

the no-state memory problem (figure 3.7). In addition, CDG showed better performance

on average, for the N = 196 no-state memory problem (figure 3.8). Generally, CDG

showed signs of robustness during evolution towards disruptive genetic operations for the

5- and 10-state memory instances. This is evident from the plots of paper II.

After the results obtained in papers II and III, there were indications that CDG could show

better evolvability, but only in certain cases. Still, it was not very clear why. The question

we focused on, was why could CDG show better evolvability in some cases?

Many ideas were set on the table and discussed not only with the supervisor of this thesis

but also with other researchers in research forums. Some of the ideas were partially ex-
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Figure 3.6: Average fitness plots for a simplified financial market model for N = 144 cell

architecture: (a) Standard genomes (b) CDG.

plained by the findings but other ideas would need additional experimentation. We started

considering questions like: Is better evolvability a result of the way CDG is constructed?,

are there other reasons explaining CDG’s ability to evolve?
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Figure 3.7: Average fitness plots for the stock market model for N=169-cell architecture:

(a) Standard genomes (b) CDG.

To be able to have a better understanding of our findings, we started looking into devel-

opmental and evolutionary topics from the literature and tried to identify developmental

factors that could enable phenotypic evolution. Arthur [6, 7], inspired us to look closer
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Figure 3.8: Average fitness plots for the stock market model for N=196-cell architecture:

(a) Standard genomes (b) CDG.

into how genetic operators, mutation and selection, affect evolution in CDG as the genome

is potentially part of an “orientation-mechanism” of both short- and long term evolution.

Additionally, we could investigate how environment affects development. This task was
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explored in paper IV. We considered only external environment since the behavior of the

organism may be distinctly different for the same organism when developed in differ-

ent environments [118]. So, we introduced different external environments and gave the

possibility to the developing organism to adapt its behavior into them.

The three different environmental setups are shown in figure 3.9. In the first subfigure,

individuals are evaluated based on environment A. In the second subfigure, individuals

are still being evaluated in a single environment, but the environment can be different for

each evaluation (i.e., environment A, environment B, etc.). In the third subfigure, each

individual is being assessed on a set of different environments. The environment in figure

3.9(a), is a single-cell environment where everywhere except in the first node/cell is zero.

The first cell/node has initially the value of one. The environments in figures 3.9(b) and

3.9(c) are random. Individuals are being evaluated in dynamic environment, that is, an

environment that is changing at each fitness evaluation. Feeding evolution with different

external information is expected to affect the genome, intermediate phenotypes and the

final phenotype, not only in terms of cell types, but also in terms of connectivity (for the

case of random boolean networks).

Paper IV investigates the influence genetic operators (i.e., mutations) may have to the

final phenotype under different environmental conditions. That is, we try to identify spe-

cific patterns by counting positive, neutral or negative influence a mutation has, over the

phenotype in each generation. The fitness value of the new phenotype after the mutation

is compared to the fitness of the phenotype from previous generation. If the fitness of the

new phenotype is better, then mutation is considered positive. Neutral mutation is the case

when phenotypes from current and previous generations have the same fitness. In other

words, mutation does not have any effect on individual’s fitness. Accordingly, negative

mutation has a destructive influence to the phenotype and hence, its fitness value is worse

than that of the previous generation.

In addition, we aimed to get a better understanding of how development works in CDG

by investigating the influence of developmental processes i.e., growth, apoptosis and dif-

ferentiation, during evolution. We focused on how these processes are deployed under

different environmental conditions. The study of the influence had a two-fold target:

a. First study the appearance rate of growth, apoptosis and differentiation per individual,

evaluated per generation and b. capture the conditional appearance for each process, given

a certain process has already appeared in a previous developmental step.

In developmental biology, conditional speciation exists as a way to determine how a par-

ticular cell develops into the final cell type (or organism). This type of speciation is a

cell-extrinsic process that relies of cues and interactions between cells, or from concen-

tration gradients of morphogens. In this type of speciation, one or more cells from a group

of cells with the same developmental potential are exposed to a signal (morphogen) com-

ing outside of the group. Only cells exposed to that signal are induced to follow a different

developmental pathway, leaving the rest of the group unchanged.

This functionality inspired us to apply it into our developmental model and gave rise to
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(a)

(b)

(c)

Figure 3.9: The three different environmental setups from paper IV. (a) Single-cell envi-

ronment/genome evaluation, (b) Random environment/genome evaluation, (c) Multiple-

random environments/genome evaluation.

conditional developmental processes concept. In our aim to get a better insight of how

CDG genotypes work, we studied what developmental processes are “exposed to that

signal” given a certain developmental process (morphogen) is triggered. For example, we

measure the number of a growth process after apoptosis has occurred (growth|apoptosis),

or after differentiation (growth|differentiation). This second exercise will hopefully give

us a better indication of the relation between processes during the development phase.

Given that we have three different developmental processes and each process can be in
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Table 3.2: Conditional Appearance of the Developmental Processes

Cond. case 1 Cond. case 2 Cond. case 3

growth|growth growth|apoptosis growth|differentiation
apoptosis|growth apoptosis|apoptosis apoptosis|differentiation

differentiation|growth differentiation|apoptosis differentiation|differentiation

one of the three different conditional cases, we conclude on a total of 9 conditional cases

for evaluation (Table 3.2).

The design and run of experiments took around six months to complete and their analysis

an additional two months. The analysis of the influence of mutation over the pheno-

types in various external environments was unfortunately not conclusive. Specially in

the random and multiple-random environments the number of positive, neutral and nega-

tive mutation showed a rather random behavior and unfortunately no conclusions can be

drawn. When it comes to the second part of our experiments, the findings obtained with

the multiple-random environment were slightly more interesting. Figure 3.10 shows the

developmental process plots for multiple-random environment. In figure 3.10(c), com-

mon developmental genomes show a higher growth and differentiation ratios compared

to development of standard genomes for CA (figure 3.10(a)) and RBN (figure 3.10(b)).

Growth and differentiation are important properties of a genome towards evolvability [5],

but also indicates that CDG are able to generate phenotypes of quite different structure

and function.

The last set of experiments for the second part of the investigation for the multiple-random

environment, contribute to the findings above. For the common genome case, there is a

higher exploitation of growth|apoptosis conditional process (figure 3.11(c)). A better

exploitation of conditional growth (growth|growth) was shown by CDG comparing to

genomes targeting a specific architecture. This is evident in figure 3.11(c), where con-

ditional growth has clearly increased, compared to the other two cases (figures 3.11(a)

and 3.11(b)). In addition, CDG shows a higher conditional growth after apoptosis and a

slightly increasing trend. Finally, multiple-random environment was shown to be rather

challenging for the standard genomes to cope with and CDG was able to show a better

behavior in such demanding environment.

The next step is to look closer into how CDG manage to evolve when the goal changes

(adaptation). The next two papers show this. Paper V, explores CDG’s capacity to evolve

through an adaptation problem. Paper VI extends paper II, by focusing on how CDG

exploit the underlying architecture during development and build structure (network mor-

phology) in the final phenotypes.
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(a)

(b)

(c)

Figure 3.10: Developmental processes for multiple-random environment from paper IV:

(a) CA, (b) RBN, (c) Common developmental genome.
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(a)

(b)

(c)

Figure 3.11: Conditional developmental processes for multiple-random environment from

paper IV: (a) CA, (b) RBN, (c) Common developmental genome.

3.1.5 Common Developmental Genomes - Evolution through Adap-
tation

After studying evolvability in CDG, it was time to look closer into the capacity of CDG

to adapt. In paper V, a more fair fitness evaluation scheme is defined where the com-
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putational architecture that performs better gets a fitness incentive of 10%. The paper

investigated the ability of CDG to evolve when the goal changes over time (adaptation).

CDG was studied under some basic dynamic problems including cycle attractor and a

transient phase. The experiment run for 10000 generations. Evolution searches for a

cycle attractor of 80 in the first 5000 generations. Then, the target goal changed to a dif-

ferent problem, reaching a transient phase of 100 followed by a cycle attractor of 80. For

the experiments, a 6 × 6 2D CA and a N = 36 RBN is used. The size of the lattice is

such that there would not be too many dependencies in the cell states of the CA. Also, the

maximum number of nodes/cells in the species should allow for easy, visual explanation

of the final phenotypic structure. The larger the size of the species, the harder it is to

visually interpret a structure. Figure 3.12 shows the average fitness evaluation of CDG

over all runs. The AVG line shows the average fitness of both species, CA and RBN. The

CA line shows the average fitness of the cellular automata only and the RBN line gives

the average fitness of the random boolean network.

The first adaptation problem (cycle attractor) is studied in generations 1-5000. During this

period, both CA and RBN are able to find fairly good solutions. Round about generation

2000, the effect of the new fitness assignment scheme can be observed. RBN is being

credited with an extra 10% incentive due to the fact that shows better evolvability than

the CA. This credit assignment in one of the species in CDG, can indirectly act as a

means of evolutionary pressure for the other species, since they share the same genetic

information. Though, the performance of the CA remains constant for the first problem.

It is not until generation 4600, where an improvement in performance for both species

occurs. The second adaptation problem (transient period & cycle attractor) is examined

after generation 5000. In generation 5001, the genome still contains genetic information

optimized for the previous adaptation problem. So, the same genetic information acts

as a basis for the second problem, which initially gives only average solutions. After

generation 7000, the new assignment scheme gets into effect. This is evident from a sharp

fitness increase for both species at a round about generation 7350, where the performance

of the RBN has an impact on the performance of the CA. Though, the solutions provided

overall were close to average.

The model managed to find several perfect solutions for the first problem, but also many

good solutions for the second. The solutions achieved by the developmental model with

the CA, exploited the full CA lattice for both problems studied. Next, we visually ana-

lyzed the best phenotypic structures and studied how well CDG exploited the architectures

during evolution to build solutions.

Interestingly enough, it was discovered that CDG were able to find very good solutions

with rather simple network structures, depending on the problem. Figure 3.13 shows two

of the best phenotypes for the random boolean network for the first adaptation problem

(fitness=100). The numbers at the nodes indicate the node number and the connections

are shown in black solid lines. Since there is no explicit positional information for the

nodes of the RBN, the node numbers indicate their sequential position (next, previous

node). The arrow at the end of each connection, indicates the flow of information be-
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Figure 3.12: Fitness evaluation of common developmental genomes (averaged).

tween the originating and destination nodes. The two random boolean network solutions

found, have obviously quite different structure. The solution found in figure 3.13(a), is

a network where each node has at least two connections to other nodes and at least one

self-connection. On the other hand, the solution of figure 3.13(b), shows a network where

one node is rather central to the network (node 1), since the outcome of the majority of the

nodes in the network, is dependent on the outcome of node 1. Self-connections in this net-

work are rare since most of the connections point to a different node than the originating

one.

Some of the near-perfect solutions given by evolution (fitness > 80), include networks

with a rather small number of nodes. Solutions with a fitness score >= 80, included

networks with a total number of 6-10 nodes. All perfect solutions (fitness 100), included

networks having the maximum number of nodes allowed by the architecture (N = 36).

In other words, the smallest “perfect” solution found were networks with N = 36 nodes.

This suggests that in the proposed developmental model, development tries initially to

search for solutions that involve fewer number of nodes. Later, the model tries to find

solutions incorporating additional nodes in the network.

Similarly, figure 3.14 shows two of the best RBN solutions for the second adaptation

problem. Both structures include a rather small number of nodes (N = 6) with some

nodes having one self-connection. The final phenotypes obtained by both problems (fig-

ures 3.13 and 3.14), indicate an ability of CDG to create different structures and to find

solutions well adapted to the problem targeted. The reason for choosing cellular automata

and random boolean networks as target computational architectures was due to the fact

that they have similar functional and structural properties. Also, the “multi-chromosome”

concept allows the two L-system grammars to develop both cells/nodes and connectivity

using randomly-generated grammar rules.

One can argue that this concept allows too much “design in the solution”. This argument
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could be relevant in case where based on the problem, the proposed approach could decide

which computational architecture would be best suited and therefore evolve. In our case

this is not true; the approach will evolve both computational architectures in any case.

Still, this option can be considered as extension of this research.
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Figure 3.13: Exploitation of RBN architecture from paper V. Two of the best evolved RBN

structures for the first adaptation problem showing also the nodes that are computing.
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Figure 3.14: The best evolved RBN structures for the second adaptation problem from

paper V.

Next, we studied how CDG managed to exploit the underlying architectures, in order to

build the final solutions. To achieve this, we focused on the variation of the nodes/cells

during evolution. Here, we are interested only in the change of the value of the cell/node,

not if the change has a positive (i.e., fitness increase), or a neutral (i.e., equal fitness)

impact to the fitness. Cells/nodes performing rarely any computation (< 30% of evolu-

tionary time) are considered static (quasi-static seems to be a better definition, since those

cells are performing but their state changes at a slower rate enough to keep the network

functioning). Quasi-static cells were not tested in terms of their significance of their con-
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tribution to the total computation. Cells/nodes that compute more than 30% of the time

are considered as active and that contributes to the final solution.

Figure 3.13 show the two best evolved networks for the first problem. The nodes of the

networks that are computing are shown in dark gray color. Figure 3.13(a) indicates that

approximately 55% of the network is computing with the rest 45% of the network being

static. Similarly, figure 3.13(b), shows that a total of approximately 70% of the network

includes nodes that compute more than 30% of the time. The RBN solutions found, give a

quite different picture; the first network solution involves more self-connections/node than

the solutions found for the second problem. Self-connections generally contribute to a

network’s neutrality and may partially have an effect on the amount of network nodes that

are actually contributing with computation. Regarding the second adaptation problem,

all nodes in the network were found to be computing and no static nodes were observed

(figure 3.14).

Similarly, figure 3.15 shows two 2D-CA of size 6×6. The light-gray colored cells indicate

cells that compute more than 30% of the time. As such, a total of 70% approximately

of the CA cell structure, is actually computing during evolution. Similarly, the dark-gray

colored cells indicate cells that are quasi-static, constituting a total of 30% of the structure.

(a) (b)

Figure 3.15: Exploitation of CA architecture from paper V. The number of CA cells that

compute (light gray) versus quasi-static cells (dark grey). (a) First adaptation problem,

(b) Second adaptation problem.

3.1.6 Studying Network Morphology in Common Developmental Genomes

Based on the interesting results of paper V, it was time to focus again on the capacity

of CDG to develop and evolve network structures in more scalable conditions, targeting

problems of increasing complexity. We linked the problems analyzed in paper III with

paper VI. The definitions of problem instances and complexity are defined in section

3.1.4 of paper III.

The motivation here is to understand how CDG manage to develop and evolve network

structures. This is supported by a need to understand what dynamic conditions apply

during evolution and whether architecture size affects the ability of CDG to evolve. One

potential possibility could be that the model builds different network structures for “less

complex” problem instances for smaller architecture sizes. Another potential possibility

could be that CDG exploit architectures similarly given any problem instance, or perhaps
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the size of architecture does not really affect the capacity of CDG to evolve. Therefore, the

goals of the experiments of paper VI are: (i) to study the capacity of the model to evolve

for problem instances with varying architecture size and complexity, and (ii) to study

how the developmental model builds network structure (morphology) for best phenotypic

solutions.

A set of 10 experiments of 1000 generations for each problem instance and architecture

size was initially run. The problem target was a simple stock market model (section 3.1.4).

For each problem, instances of different configurations are considered; an instance with

no-state memory and instances of 2-, and 5-state memory for N = 36, N = 64, and

N = 100 architecture size. A random initial environment is fed into the architectures.

This preliminary experiment resulted in ten final phenotypes. For each architecture size,

we chose the two best and two worst solutions, based on their fitness. Since the focus of

this work is to investigate how the model builds network structure, phenotypes yielding a

distant fitness one should anticipate diverse genetic information in genotypes. Evolving

further these genotypes will presumably result in very different network structure mor-

phologies.

After a preliminary run selecting the best and worst phenotypes for each problem instance,

we studied how common developmental genomes build the network morphology for the

solutions. Network morphology, studies network structures that have certain characteris-

tics. These characteristics are based on i. the developmental dynamics and ii. changes

in phenotypic structure. Since any of these factors may have an impact to the “local”

fitness of the individual, we record and analyze the best only individuals, by identifying

the following conditions:

1. Positive impact to the fitness. For example, a new cell/node added or a different

connection pattern may assign a greater fitness score than previously.

2. Neutral impact to the fitness (neither positive nor negative). For example, a cell/node

with differentiated functionality or a newly deleted connection between two nodes

has no impact to the fitness.

3. Static impact to the fitness. Cell/node functionality or connectivity remain static

during evolution, i.e., no changes occured.

Figure 3.16(a) shows that the number of cells/nodes contributing positively to fitness is

generally increasing as the problem instance does. Similarly, as the size of architecture

increases, the number of cells/nodes contributing to the fitness increase as well. The

results regarding N = 100, follow the other two trends, for N = 36 and N = 64, reaching

a maximum for the 2-state memory problem. Unfortunately, the trend flattens out for the

5-state memory problem. Figure 3.16(b) shows that the amount of neutrality for N = 36
and N = 64 is almost constant regarding all problem instances. For N = 100, the

average neutrality decreases as the problem instance becomes more complex. Generally

speaking, the number of nodes that are neutral is low, for all problem instances. Figure

3.16(c) shows that the smaller the architecture size, the larger number of static nodes are

involved during development, regarding all problem instances. For N = 100, the number
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of static nodes remains almost constant across all problem instances.

Although the target problems of paper VI were very different in nature, CDG showed

an ability to explore the solution space by finding phenotypes whose network structure

ranged from simplified to complex. Simple solution is considered a network structure

with only a few nodes where complex solution are structure including as many nodes as

the network allows.

Figure 3.17 is an example of emergent behavior for one of the best solutions for the no-

state memory problem (for definition of -state memory problems, see 3.1.4), a N = 64
random boolean network. All networks shown in this figure represent perfect solutions,

that is, individuals with the best fitness score. In generation 1, the phenotypes (network

structures) generated by CDG initially employs a large number of nodes. As early as in

generation 2, CDG managed to achieve solutions with a considerably smaller number of

nodes (N = 52). Smaller network solutions were obtained by CDG until generation 423.

From that point on, CDG started to incorporate again more nodes, reaching the maximum

available number of nodes for the network, N = 64. Networks of figure 3.17 are plotted

in Cytoscape [98] (Dynnetwork plugin), using the force-based graph layout algorithm

[60].

In papers V and VI, the solutions provided by CDG showed emergence under different

conditions (problem complexity and architecture size). That gives an indication of the

ability of CDG to explore the solution space, providing results whose structures range

from simple to complex. The example of figure 3.17 indicate that CDG may exhibit

emergence since the representation was not designed to demonstrate such behavior.
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Figure 3.16: Results of the three dynamic conditions for the problem instances during

evolution from paper VI.
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Figure 3.17: Evolution stages for best no-state memory, N = 64 random boolean network

from paper VI. (a) Initial solutions involve phenotypes that incorporate more nodes into

the final solution (gen. 1). (b) More simple solutions are found between generations

2-423 (N = 52), (c)-(e) At later stages, CDG found solutions including once again the

maximum number of available nodes. Sample phenotypes are shown from generations

500, 999 and 1000 (N = 64).
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VI - K.Antonakopoulos. Studying Network Morphology in Common Developmental

Genomes. In IEEE Systems, Man and Cybernetics, 2014.

3.2.1 Other Papers

• K.Antonakopoulos and G.Tufte. Possibilities and Constraints of Basic Computa-

tional Units in Developmental Systems. In Norsk Informatikk Konferanse (NIK),
2009.

• K. Antonakopoulos. Studying Common Developmental Genomes in Hybrid and

Symbiotic Formations. In 7th International Conference on Genetic and Evolution-
ary Computing, 2013.

3.3 Paper Abstracts

This section presents abstract for each paper included in this thesis. In addition, retro-

spective comments are given for each paper, where necessary.
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3.3.1 Paper I

A Common Genetic Representation Capable of Developing Distinct Computational Ar-
chitectures

Abstract
A big challenge in the area of developmental and generative systems, is the design of a

method for building complex systems with specific structural and/or functional proper-

ties. Most developmental models target specific computational architectures or structures

of strictly defined building blocks, in both cases developmental models have strong con-

nection to the target computational architecture/phenotype structure. In this work we seek

a common developmental model that can target different architectures but also to find a

common genetic representation that can include information that enables such a develop-

mental model. The computational architectures with sparsely connected computational

elements considered herein are cellular automata and boolean networks. The experiments

study the evolvability of the genetic representation and prove that it is able to build stable

structures for distinct computational architectures.

Retrospective View
This paper includes the main work and the design principles for common developmental

genomes. It actually manages to answer some of the initial challenges for this thesis.

It describes a common developmental approach that can handle the target architectures,

cellular automata and random boolean networks. It defines a common way of representing

genetic information that can be exploited by the developmental process, so that it enables

to develop both architectures. Finally, it manages to integrate target architectures and

genome representation in a way that enables us to evolve target architectures; structure is

the target here, ensuring that different structures of different architectures can be achieved.

3.3.2 Paper II

Is Common Developmental Genome a Panacea Towards More Complex Problems?

Abstract
The potentiality of using a common developmental mapping to develop not a specific, but

different classes of architectures (i.e., species), holding different structural and/or com-

putational phenotypic properties is an active area of research in the field of bio-inspired

systems. To be able to develop such species, there is a need to understand the governing

properties and the constraints involved for their development. In this work we investi-

gate the ability of common developmental genomes to evolve more than one specie (i.e.,

computational architecture), towards problems with increasing complexity. The architec-

tures considered as different species were cellular automata and boolean networks and the

problem studied was a simple financial market model over various architecture sizes. We

considered problem instances of the same problem, each having a higher level of com-

plexity, i.e., an instance with no state memory and with a previous memory of 1-, 2-, 5-
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and 10-state. The results show that the common developmental genome was able to find

better results for certain cell architectures sizes.

Retrospective View
In this paper, we defined a rudimentary metric to specify complexity in the problems tar-

geted. Our definition was based on Kolmogorov complexity. Many may argue about our

choice, but Kolmogorov complexity is a measure that can be used on individual, finite ob-

jects [67] and one can associate the complexity of an object (phenotype) with the length

of the shortest description for the object. For an unambiguous measure of an object’s

description length, the description length was defined as the length of the shortest pro-

gram that generates the object on a fixed, universal Turing machine [68]. This essentially

implies that an object (cell/node) is as complex as its description length. The shortest

description is defined as the amount of environmental information necessary to specify

the cell/node.

Errata

• At Section VI.C, 2nd paragraph, it should read "(...figures 1(a) and 1(f))" instead of

"(...figures 1(a) and 2(f))".

• At reference [19], the author should read "W. Arthur".

3.3.3 Paper III

On The Evolvability of Different Computational Architectures Using a Common Develop-
mental Genome

Abstract
Artificial organisms comprise a method that enables the construction of complex systems

with structural and/or computational properties. In this work we investigate whether a

common developmental genome can favor the evolvability of different computational ar-

chitectures. This is rather interesting, especially when limited computational resources is

the case. The commonly evolved genome showed ability to boost the evolvability of the

different computational architectures requiring fewer resources and in some cases, finding

better solutions.

Retrospective View
In section 5 of this paper (Conclusion and Future Work), it is stated that "...CDG may

have a positive influence in directing evolution and pushing the developmental system

in phenotypic directions where it would have been impossible to achieve with ordinary

genomes". Although it may sound impetuous, it nevertheless projects our overall un-

derstanding of the encouraging results we had obtained up to that point. Soon after the

encouraging results, the fact that CDG was not able to evolve in every case, it became a

pool of discussion and further exploration; something that eventually limited our expecta-

tions. Concluding, we point out ways to further our research, that is (a) potential relations

between mutation and selection in the underlying genetic process, and (b) understand the
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ontogenetic directionality (i.e., developmental dynamics) of CDG. This becomes the goal

for paper IV.

Errata

• At references section, author "Wallace, A." should read "Arthur, W.".

3.3.4 Paper IV

Investigation of Developmental Mechanisms in Common Developmental Genomes

Abstract
The potentiality of using a common developmental mapping to develop not a specific, but

different classes of architectures (i.e., species), holding different structural and/or com-

putational phenotypic properties is an active area of research in the field of bio-inspired

systems. To be able to develop such species, there is a need to understand the governing

properties and the constraints involved for their development. In this work, we investi-

gate how common developmental genomes influence evolution and how they push the

developmental process in directions where it would have been impossible to achieve with

ordinary genomes. Relations between mutation and evolution along with a comprehen-

sive study of developmental mechanisms involved in development are worked out. The

results are promising as they unveil that common developmental genomes perform better

in more complex and random environments.

Retrospective View
In this work, we explore how genetic operators (i.e., mutation) affect evolution (i.e., se-

lection) in common developmental genomes. Second, we study whether development and

dynamics of common developmental genomes prescribe a certain pathway for evolution.

Third, we focus on the external environment to be able to assess the capacity of CDG in

more complex environments. The first and third tasks were sufficiently studied in this pa-

per since the results obtained leave little room for argumentation. The second task was a

harder one and was more difficult to answer. The findings of this paper, were investigated

but not documented in a satisfactory way.

3.3.5 Paper V

Common Developmental Genomes - Evolution through Adaptation

Abstract
Artificial development has been widely used for designing complex structures and as a

means to increase the complexity of an artifact. One central challenge in artificial devel-

opment is to understand how a mapping process could work on a class of architectures

in a more general way by exploiting the most favorable properties from each computa-

tional architecture or by combining efficiently more than one computational architectures
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(i.e., a true multicellular approach). Computational architectures in this context comprise

structures with connected computational elements, namely, cellular automata and boolean

networks. The ability to develop and co-evolve different computational architectures has

previously been investigated using common developmental genomes. In this paper, we

extend a previous work that studied their evolvability. Here, we focus on their ability to

evolve when the goal changes over evolutionary time (i.e., adaptation), utilizing a more

fair fitness assignment scheme. In addition, we try to investigate how common develop-

mental genomes exploit the underlying architecture in order to build the phenotypes. The

results show that they are able to find very good solutions with rather simplified solutions

than anticipated.

3.3.6 Paper VI

Studying Network Morphology in Common Developmental Genomes

Abstract
In most Evo-devo (Evolutionary Developmental) systems, genotypes are developed and

evolved towards a structural or computational goal utilizing some kind of computational

architecture (i.e., structures made of connected elements that may compute). Exploiting a

common genotype to develop and evolve different classes of computational architectures

towards a common goal has previously been successfully implemented, through common

developmental genomes. In this work, we focus at how common genomes exploit the un-

derlying architectures during development and build structure (network morphology) in

phenotypes for different problem instances and architecture sizes. Common developmen-

tal genomes showed an ability to exploit the size of the architecture by actively involving

a larger number of nodes/cells while managed to maintain a small number of neutral and

static parts in the evolved structures.

Retrospective View
Papers V and VI gave us the opportunity to focus on evolved network structures. As

cellular automata’s structure is known beforehand, it made more sense to bring random

boolean network under the spotlight and a need to investigate further. In paper VI, CDG

showed evidence of emergence since the solutions achieved included a smaller number of

nodes than the total number of nodes allowed by the architecture. This behavior was nei-

ther “programmed” in the design nor induced in the fitness function. CDG also provided

solutions (network structures) with different structural properties, for the same problem.
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Chapter 4

Concluding Remarks

Only two things are infinite, the

universe and human stupidity, and

I’m not sure about the former.

Albert Einstein

4.1 Conclusion

The work in this thesis has addressed the challenge of designing a model, called Common

Develomental Genomes, that is capable of developing and evolving classes of compu-

tational architectures. The approach was first to study suitable architectures for devel-

opment with such a model. Next step, was trying to describe a common developmental

approach that could handle the targeted architecture and define further how genetic in-

formation could be exploited by the developmental process, resulting in developing these

architectures. Last step, was to identify a suitable genome representation ensuring that

different structures can be achieved.

The architectures chosen and worked out throughout this thesis were cellular automata

and random boolean networks. The reason for choosing those particular architectures was

that they have similar structural and functional properties since random boolean networks

are considered a generalization of cellular automata. The characteristic of our proposed

approach is that genome representation and genetic information is common for all targeted

architectures. Therefore, the same information is being used for developing both CA and

RBN.

Section 1.5 formulated the following main research question for this thesis:

Is it possible to design an EvoDevo system that can achieve evolvability targeting a class
of architectures?

59



The current thesis can only answer partially in a positive way to the question, since com-

promises have been made. Papers I, II, III and IV are focusing on this question. First,

CDG involve rather simplified developmental processes. Second, CDG had to be ex-

perimentally tested further to cover a larger range of problems. In addition, the genetic

representation needs to be adapted and tested to incorporate other computational archi-

tectures as well i.e., artificial neural networks or other biologically plausible models like

gene regulatory networks. In this case, we can forsee a better picture of the result, after

these pointer have been fulfilled.

Section 1.5 also formulated several more specific questions.

1. To what extent can a common developmental mapping be used to evolve classes of
architectures?

In this thesis, we were able to show a possible design and use of a common de-

velopmental mapping, capable of developing and evolving cellular automata and

random boolean networks. Several types of problems have been studied: a. basic

dynamic behavior problems (transient phase/cycle and point attractors with varia-

tions in papers I, III, IV and V), b. problems targeting a structural goal (paper I),

c. simulation of a simplified stock market model (papers II and VI) and d. a task

synchronization problem (paper III). In addition, CDG have been experimentally

tested against problems with increasing complexity (using our own definition of

complexity), with varying architecture sizes (papers II and VI). We can conclude,

that common developmental genomes approach can be used to evolve classes of

architectures in limited cases. It was not possible to draw certain generalized con-

clusions since more experimentations were required. Since CDG is considered an

approach or a developmental model, it would be interesting to apply it on real-world

problems, such as, robotic control, manufacturing, hardware design, adaptive con-

trol, fault detection, decision support and pattern recognition.

2. How and to what extent does the environment affect the development and evolution
of common developmental genomes?

In this work, we considered only external environments, in terms of initial con-

ditions for the computational architectures. All papers presented in this thesis,

employed an external environment serving as input (to the genome, intermediate

phenotypes and final phenotype), not only in terms of cell types but also in terms

of connectivity (for the case of random boolean networks). Paper IV, introduced

different external environments (single, random and multiple random) and studied

processes of development. CDG showed a capability to cope with more complex

environments but no general conclusions can be drawn from the current findings.

3. What kind of phenotypes are obtained and what are their structural characteristics?

Final phenotypes and their structure were studied in papers I, V and VI. In paper

I, a first attempt to verify that the proposed developmental mapping is capable of

evolving phenotypes with certain cell processes is outlined but also it was shown to
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be able of building stable structures (i.e., reach a point attractor). Paper V, studied

network structures of evolved phenotypes in an adaptation problem. It was found

that CDG produced quite different phenotypes (structures) for the same problem.

Specifically, it obtained optimal solutions that involved varying number of nodes

during evolution. Solutions with emergent behavior were evident in paper VI. Gen-

eralized conclusions would again be perilous to draw from current findings.

4.2 Research Contributions

The following are the main contributions of this thesis:

1. A model able to develop and evolve a class of sparsely-connected network archi-

tectures using a common genetic representation.

2. The research has contributed to an understanding of how such a model can be ap-

plied through an Evo-devo approach for the target architectures.

3. Through the CDG model, a step closer towards adaptive, scalable systems has been

taken.

The following are other contributions:

• Identify what cellular processes can be included in such a model, so as to enable it

to develop different computational architectures.

• Identify a way to represent genetic information that can be exploited by a common

developmental process, so as to develop classes of computational architectures

4.3 Limitations

The genetic information is represented in the genome through the chromosome approach.

Each chromosome represents the different information required by architectures to be

built. The first chromosome, node/cell information, is common for all architectures

evolved by CDG. This poses an inherent limitation to the types / functionality of the nodes

/ cells that are represented in the genome for each architecture which may not always be

beneficial.

In terms of computational time, CDG experiments took approximately twice the time

required to evolve a cellular automata or a random boolean network. This is a important

limiting factor when designing complex experiments and high performance is anticipated.
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4.4 Future Work

This section suggests ways of extending research in this thesis.

• The main work of paper I can be extended to include artificial neural networks

(ANN) as an additional architecture. This can easily be done by employing an extra

chromosome in the genetic representation, to map the weights of the ANN edges.

• More research should be carried out to understand if neutrality is a property of

CDG; evident in problems having both structural and/or functional targets. Also, it

would be of great interest to study whether static/neutral parts of a network structure

would directly impact the robustness of the evolved system.

• More research needs to be done to improve the limitation of the first chromosome

described in section 4.3.

• A first step has been taken towards merging two computational architectures into

one, integrated biological organism (section 3.2.1), to understand how different

species can be evolved in close-association forming a hybrid architecture. This

hybrid architecture was developed and evolved with the same genetic information.

• Study to what extent it can be guaranteed that the RBN mapping is not actually

closely similar to an equivalent CA mapping.

• In the same paper (section 3.2.1), a symbiotic model was studied (based on CDG),

with two types of associations and reproduction rates. This work can be easily

extended to understand how can CDG evolve hybrid architectures, with different

symbiotic relationships and reproduction rates. References [16, 112, 86], may act

as an inspiration to futher the work.

• Real-world problems need to be worked out and applied using CDG to understand

if there are any benefits by this approach. See 1.5 for a list of potential real-world

problems.
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Abstract

A big challenge in the area of developmental and generative systems, is the design of a

method for building complex systems with specific structural and/or functional proper-

ties. Most developmental models target specific computational architectures or structures

of strictly defined building blocks, in both cases developmental models have strong con-

nection to the target computational architecture/phenotype structure. In this work we seek

a common developmental model that can target different architectures but also to find a

common genetic representation that can include information that enables such a develop-

mental model. The computational architectures with sparsely connected computational

elements considered herein are cellular automata and boolean networks. The experiments

study the evolvability of the genetic representation and prove that it is able to build stable

structures for distinct computational architectures.
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I. INTRODUCTION

Artificial developmental systems often target organisms or systems

with some kind of functionality. Target functionality may include

systems aiming to solve e.g., a structural problem [1], or a com-

putational function [2]. In the first case, the target is the structure

itself. In the second case, the target is a computational function. The

functionality is given by the computational function of the nodes and

their connections.

Node and node functions are closely coupled to machines and how

a computational problem can be mapped (fitted) into a computer

architecture. Kitano’s work on development of neural network struc-

tures [3], is an example of an architecture consisting of nodes and an

interconnected network. Kitano proposed the use of a developmental

process to create large neural networks, i.e., a structure of neural

nodes and connections. Including a developmental approach was in

Kitano’s work to increase scalability. Even if size was an important

factor, scaling of complexity was a more prominent goal, i.e., to be

able to target more complex problems or scale the solution with the

problem size.

The goal of this work is in many ways similar to Kitano’s; to

develop artificial organisms (phenotypic structures), consisting of

connected computational elements. However, further inspired by mul-

ticellularity and organisms ability to exploit different developmental

paths based on environmental factors, the target structure is expanded

from being of a specific type of computational structure. Instead

of devising a developmental system that is for a specific compu-

tational structure, i.e., genotype information, developmental actions

and phenotypic properties exploited by the developmental process, are

extended to represent a class of architectures. To be able to develop

such structures, there is a need to further understand the properties

of the targeted class of computational architectures. An analysis

of the possibilities and constraints involved in the development of

such computational architectures, focusing on the form, functionality

and the inherent biologically inspired properties, was presented [4].

The architectures studied therein were Boolean Networks (BN) [5],

Artificial Neural Networks (ANN) [6], Cellular Automata (CA) [7],

and Cellular Neural Networks (CNN) [8]. The common property of

all these architectures is that they can be called sparsely connected
networks. This common property motivates a further investigation on

how a mapping process can work on a class of architectures in a

more general way. This is elaborated by examining how universal

properties and processes can be included in development mapping,

through an EvoDevo approach [9].

In biology, a specie is often used as a basic unit for biological

classification and for taxonomic ranking. As such, an organism with

unifying properties and same characteristics can be of the same

specie. Organisms with different DNA, morphology or ecological

niche, are to be considered as different species [9].

In this work, we move one step further by exploring the potentiality

of using the same developmental mapping, in order to develop more

than one class of structures at the same time or different types of

organisms (i.e., species). The architectures considered herein are CAs

with a regular connectivity pattern and boolean networks as NK

networks [10].

The notion of species and multicellularity in artificial organisms

is in contrast to the rather well defined biological counterpart open

for interpretations. Herein different types of computational node

functions are defined as different cell types, i.e., defining an organism

to be multicellular, and the type of interconnection, i.e., defining an

organism to be of a specie. However, this notion is blurred, in other

work what is defined as species may be closer to what is treated as

multicellularity [11]. However, our point is to extend, or increase,

the freedom of how the phenotype can be composed. The extended

freedom should open the possibility for evolution to choose what

phenotype structure, e.g., ANN, CA or BN, that is best suited for the

computational problem at hand.

To devise a common developmental process that enables larger

freedom, i.e. develop several architectures, the developmental process

must be capable of expressing developmental actions, e.g., growth

and differentiation, that can result in the structures sought. Further,

the developmental process must be able to express a large variety of

topologies within each architecture, as to be able to meet different

computational goals. The introduction of a common developmental

process assumes that the genetic information given to the mapping

process must contain enough information to enable development

of all architectures. As the amount of genetic information required

varies from architecture to architecture, a notion of chromosomes is

introduced.

Towards the actual goal of evolving computational functions, it is
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required to gain knowledge on how a developmental process capable

of expressing different architectures operates in combination with the

provided genetic information. An experimental approach is taken to

investigate if evolvability and a variety of structural difference can

be achieved.

The rest of the article is laid out as follows. Section II presents

the developmental goals and challenges that need to be addressed. In

section III, the common genetic representation is described in detail.

Experimental results come in section IV with the conclusion and

future work in section V.

II. DEVELOPMENT FOR SPARSELY-CONNECTED COMPUTATIONAL

STRUCTURES

The developmental goal in this work, is to be able to generate

not a specific, but different classes of structures (i.e., species), using

the same developmental model. This should be achieved through the

same developmental approach. Such developmental approach would

require sufficient knowledge of the targeted computational architec-

tures and of their governing properties. That is, for the 2-dimensional

CA architecture, the properties of dimensionality and neighborhood

must be defined, where the connectivity is predetermined (i.e., the

Euclidean space). For boolean networks, the connectivity (i.e., the

connections among the nodes in the network), must be determined. To

address the problem described, we have classified three subproblems,

that may be expressed as: (a) the developmental model challenge, (b)

the genome challenge, and (c) the developmental processes involved

in the model.

A. The Developmental Model challenge

The developmental model should be able to develop these kind of

structures, taking into account the special properties governing each

computational architecture (i.e., CAs and BNs). Figures 1 and 2, illus-

trate this requirement. The developmental model should receive the

same kind of genome as input, regardless of the target architecture.

Then, it should be possible – depending on some properties of the

genome – to discriminate whether it will develop a cellular automata

or a boolean network.

Figure 1, visualizes this by showing step-by-step the development

of a cellular automata from the developmental model. At DS 0, the

first cell of the cellular automata is created. At DS 1, the cellular

automata grows in size and a new cell is added. At DS 2, the

architecture grows again by adding one more cell to the cellular

automata. At DS n, development is finished and the cellular automata

holds its final structure (adult organism).

Similarly, figure 2 presents step-by-step the development of a

boolean network with the same developmental model. At DS 0, the

first node with its self-connections is created. At DS 1, the boolean

network grows in size and a new node is added to the network.

This will cause new connections to be created for all the nodes

existing in the network. At DS 2, the network adds another node and

new connections are created for the existing nodes. This algorithm

continues until the boolean network has created all the nodes and the

connections for the existing nodes (DS n).

B. The Genome challenge

The second challenge for the developmental model is the type of

information to be included in the genome. Based on the properties

of a 2D CA explained earlier, the genome should contain enough

information about the cells at each developmental step, in order to

place them on a 2D CA structure. The wiring of a cell is given

by the CA’s neighborhood (Fig.1). At the same time and based on

the properties of a boolean network, the genome should contain the

wiring of the nodes (Fig. 2).

C. The Developmental Processes challenge

The third challenge is to identify what processes should be incorpo-

rated in the developmental model, in order for the resulting structure

to be able to grow, to alter the function of a cell/node, and to shrink.

These processes can be introduced in the developmental mapping

through growth, differentiation, and apoptosis (i.e., the death of the

cell/node). To better illustrate how these processes will influence

the developing structure, figure 3, shows the three developmental

processes as applied to a CA, and figure 4 show the same processes

as applied to a boolean network.

Having these properties in mind, our genome can incorporate the

notion of chromosomes. Each chromosome can contain respective

information about the structural and/or functional requirements (see

section II). More specifically, one chromosome can contain the infor-

mation required for the cell/node creation (i.e., for the CAs and BNs),

where a second chromosome can contain the information required

for wiring the nodes (i.e., for BNs). The notion of chromosomes

allows us to exploit the genome in a modular way in the sense that if

an additional computational architecture need to be described in the

future through the same genome, more chromosomes can be added

to it.

III. A COMMON GENETIC REPRESENTATION

Fig. 5. The common genome with the two chromosomes. The first chromo-
some maps the cell/nodes of the target architecture. The second chromosome
maps the connectivity.

Figure 5, shows how the genome can look like. It is split in two

parts (i.e., chromosomes). The first chromosome is responsible for

creating the cells/nodes. The second chromosome is responsible for

creating the connectivity (i.e., when the target architecture is a BN).

Each chromosome should be built out of rules. Each rule must

include sufficient information for cell/node creation and for connec-

tivity. Also, the rules should preferably be of certain length. Also,

the rules for cell/node creation should be different from the ones for

connectivity. Consequently, the chromosome for cell/node creation

must have different rules from the ones responsible for connectivity.

This is illustrated in figure 6.

Fig. 6. The first chromosome has rules for cell/node creation. The second
chromosome has rules for connectivity. The type of rules included in the
chromosomes should be different, since they serve different purposes.

The rules of the first chromosome should be able to express the

cell processes like growth, differentiation and apoptosis (fig.3), for

the 2D CA. In addition, the rules of the second chromosome should

be able to express connectivity, as this was illustrated in figure 4, for

boolean network development.
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Fig. 1. The developmental model should be able to develop a cellular automata. Here, the development of the automata is shown from developmental step
(DS) 0 until the DS n.

Fig. 2. The developmental model should be able to develop a boolean network. Here, the development stage of a BN is shown from developmental step
(DS) 0, until DS n.

Fig. 3. The developmental model should be able to incorporate the processes of growth, differentiation and apoptosis. Here, each of these processes are
illustrated, as the model develops a 2D cellular automata.

Fig. 4. The processes of growth, differentiation and apoptosis are illustrated, as the model develops a boolean network.

A. An L-system for the genetic representation

To express the rules in the chromosomes, there is a need for a

model able to describe developmental systems. The developmental

model is the process that maps genetic and environmental information

to phenotypic properties, e.g., by growth and differentiation. Gene

regulation networks is a possible model used in many systems [12],

[13], targeting phenotypic structures and system addressing phe-

notypic computational properties [6]. Another possible model, is

rewriting systems that exploits rules for expanding and changing the

structure. Herein a rewriting approach is chosen due to the ease of

defining specific rule set, that can target to rewrite specific features of

a structure, e.g., connections or node functions this enables a way of

splitting genetic information into separate information carrying units

(chromosomes), as explained in section III. A prominent candidate

model is the L-system. L-systems are rewriting grammars, able to

describe developmental or generative systems and have successfully

been used to simulate biological processes [14], and describe com-

putational machines [15].

Since there are different types of rules in the two chromosomes,

there is a need for two separate L-systems. The first L-system will

process the rules found in the first chromosome, with the goal of

creating the cells/nodes of the target architecture. The second L-

system processes the connectivity rules in the second chromosome.

B. The L-system for the first chromosome

The L-system used here is context-sensitive. As such, development

is using the strict predecessor/ancestor to determine the applicable

production rule.

The rules should be able to incorporate the cell processes. As such,

there should be symbols which when executed by the L-system, the

result would be one of these processes (i.e., growth, differentiation,

and apoptosis). It is possible that several symbols of the L-system,

can have the same outcome.

Table I, shows the type of symbols used by the L-system of the

first chromosome, in order to generate the phenotype with the final

cells/nodes. Some cells perform special cell processes and influence

the intermediate and final phenotypes. Symbol a is the axiom of the

system. Apart from symbols a, b, and c, which perform growth of

the phenotype, symbol d performs apoptosis, leading to the deletion

of the current rule (i.e., cell/node), of the intermediate phenotype.
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TABLE I
SYMBOLS USED FOR CELL/NODE DEVELOPMENT

Symbol Description

a (AXIOM) Add (growth)
b Add (growth)
c Add (growth)
d Delete (apoptosis)
X Substitute (differentiation)
Y Substitute (differentiation)
→ Production

Additionally, symbols X and Y, are responsible for differentiation,

leading to the replacement of the predecessor cell/node (i.e., if X->Y
the outcome will be Y, whereas, if Y->X the outcome will be X).

For the shake of simplicity, the length of each rule is 4 symbols (i.e.,

4x8bits=32bits). So, it should be possible for the chromosome

to hold a sufficient number of rules, for the L-system to be able to

develop.

Fig. 7. An example of L-system rules for the first chromosome

Figure 7, gives an example of a L-system for the first chromosome.

Its step-by-step development is shown in figure 8. The target structure

is a 2D CA. The symbols of the L-systems and their meanings, are

based on Table I.

Development starts with the axiom (a) representing a cell at

developmental step 0. Since the axiom is found in the L-system rules,

development continues and the next rule triggered is the a->bX.

This rule will create two more cells b and X, resulting in growth

of the CA, at DS 1. The next rule triggered is bX->Y. Since X->Y
denotes differentiation, the symbol X is replaced by Y, at DS 2. For

differentiation to occur, the rules should either be X->Y, or Y->X.

Next, rule Y->c triggers causing again growth of the CA, at DS 3.

At DS 4, the rule c->da is triggered, causing the death of the cell

c and the growth of the CA with the cell a. From DS 5 up to DS

8, the rules are being triggered once more in the same sequence.

C. The L-system for the second chromosome

The rules should be able to generate the connections necessary for

the wiring of the nodes. As such, there should be symbols which when

executed by the L-system, will result creating a connection forward

or backwards from the current node. Each node in the network has

a unique number which separates it from the other nodes. Also, the

current node has always the number 0 and any nodes starting from the

current node forward have positive numbering, where nodes that are

from the current node backwards, have negative numbering. So, there

is a need to differentiate between the current and the next node, using

different symbols and also a need to describe whether the connection

will be created forward from the current node, or backwards from

the current node.

The rules involved in connectivity are not as complex as the ones

found in the first chromosome. The length of the rules here is also

4 symbols / rule. Also, we need to assure that the chromosome will

have sufficiently enough information for the L-system developmental

processes (i.e., growth, differentiation and apoptosis). The L-system

used here is not context-sensitive, but D0L (i.e., with zero-sided

interactions). The symbols used in the L-system for the second

chromosome are shown at Table II.

TABLE II
SYMBOLS USED FOR CONNECTIVITY DEVELOPMENT

Symbol Description

x Node (different from y)
y Node (different from x)
+ Connect forward
– Connect backwards
→ Production

The axiom rule for the second chromosome is x->y. It means that

development initially searches if the axiom exists in the rules. If so,

development continues and looks for rules of type xy->+value, or

xy->-value. In short, these two rules imply that if two different

(i.e., distinct) nodes are found (x<>y), then it creates a connection

forward (i.e., if the rule includes a ’+’), or backwards (i.e., if the rule

includes a ’-’). The field value, denotes the node number for the

positive/negative connection. For example, rule xy->+3 denotes that

a connection will be created from the current node (node 0), to the

one standing three nodes forward (Fig.9(a)). Similarly, rule xy->-3,

denotes that a connection will be created starting from the current

node (node 0), to the one that stands three nodes backwards (Fig.

9(b)). If the destination node does not exist (i.e., has not been created

yet), a self-connection to the current node is created instead.

(a) (b)

Fig. 9. Example of forward and backward connections for the second
chromosome.

The field value – although randomly generated – is not allowed

to exceed the cluster size for connectivity. A cluster denotes a small

number of highly-connected nodes and its size can not be more

than a predetermined number (usually between 4-6). Cluster size

is a parameter to the system and constrains very long positive (or

negative) connections in the network, but also reassures that all nodes

will have incoming and outgoing connections. In addition, using

cluster connectivity is easier to track down the development process.

If value=0, a self-connection is created to the current node.

Fig. 10. A L-system for the second chromosome responsible for the
connectivity of the target architecture.

Figure 11, shows the step-by-step development of a boolean

network based on the chromosomes of figures 7 and 10. The symbols

of the chromosomes are based on Tables I and II.

The axiom is placed at DS 0 (node a) with three self-referencing

connections. Each newly generated node comes with three self-
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Fig. 8. A step-by-step development of a 2D CA architecture based on the example L-system for the first chromosome

referencing connections. Then at DS 1, the rule x->y is triggered,

causing the next node b to be generated.

For each developmental step, each node in the network has the

opportunity to establish three random connections, based on the rules

xy->+ and xy->-. As such, at DS 1 the assignment of random

connections start with the first node a. The grey-colored arrow, shows

the current node for which the connections are created. Further on,

the grey-colored arrow moves to the next node b, which now becomes

the current node. For node b, three new connections are created.

What is important to notice is that at the beginning of DS 3, the

process of differentiation has occurred, causing node Y to substitute

the previously existed node X. At the same step, a new node is added;

node c.

At the beginning of DS 4, the process of apoptosis has occurred,

causing the node c – along with all incoming and outgoing connec-

tions – to be deleted from the network. At the same step, node a is

added since is the next symbol following in the L-system (figure 7).

The modularity of the genome, let us enable or disable parts of

the genome (i.e., chromosomes), when this is not required by the

target architecture. For example, if the target architecture is a 2D

CA, the second chromosome (i.e., connectivity) can be disabled, since

connectivity is predetermined in CAs. In the same way, if the target

architecture is a boolean network, then both chromosomes of the

genome need to be enabled (i.e., nodes and connectivity).

D. The genetic algorithm for the common genetic representation

A genetic algorithm (GA), is used to generate and evolve the

rules found in the common genetic representation (i.e., in the

chromosomes). Since there are two separate L-systems involved

in development, the evolutionary process will be consisted of two

phases: node and connectivity generation. Mutation and single-point

crossover were used as genetic operators. Mutation may happen

anywhere inside the 4-symbol rule, ensuring that the production

symbol (->) is not distorted by mutation. In other words, we want to

make sure that after mutation, the production symbol is still in the rule

(i.e., the rule is valid). Single-point crossover between two parents is

executed at the location of the production symbol. In this way, it is

assured that the offspring will also be valid rules. The evolutionary

cycle ends after a predetermined number of generations.

IV. EXPERIMENTAL RESULTS

In order to be sure the genetic representation can reach the goals set

from the beginning, it is of great importance to test the representation

in terms of evolvability. This refers to how well the developmental

rules can evolve (i.e., adapt to the environment).

First, we should measure the maximum and the average number

of rules triggered for a predefined number of developmental steps.

During development, we aim to find the highest number of rules

triggered. A low number for the maximum number of rules triggered

would mean that our mapping is not able to evolve properly and

would imply a representation issue. On the other hand, the average

number of rules triggered during development is an extra indication

for the average evolvability of our developmental mapping. We would

wish the average number of rules triggered to be as high as possible.

Generally, one should evaluate the average number of rules triggered

with respect to the maximum number of rules triggered. As such, a

possible low value for the average number of rules triggered should

be evaluated with respect to the maximum number of rules triggered.

Second, the proposed genetic representation should be able to build

structures which are stable (i.e., reach a point attractor). As such, it is

necessary to measure if our mapping can reach point attractors during

development, along with the number of steps required before a point

attractor is found. For these two factors, we should be able to find

the maximum number of point attractors and the maximum number

of developmental steps required before a point attractor is found over

the whole population for one evolutionary run. Here, it is evident that

we wish the highest possible value for the point attractors and the

lowest for the developmental steps required, before a point attractor

is found.

Additionally, it would be interesting to see how a structure evolves

exhibiting certain cell processes, like growth and differentiation, or

growth and apoptosis, and perform the same measurements during

development. To be able to find point attractors during development,

there should be no change in structure.

A. Experimental setup

To be able to run the tests described earlier in section IV, the

description of the setup first needs to be clarified. The total number of

rules for nodes generation is 20. That means that the first chromosome

should have a total size of 20x32bits=648bits. As far as the

second chromosome is concerned, the number of rules included for

connectivity is 8. That means that the second chromosome will have

a total size of 8x32bits=256bits.

Generational mixing protocol was used for adult selection, where

adults and children compete equally for the total number of adult

spots. As a global selection mechanism, roulette wheel with fitness

proportionate was used for parent selection, in which fitness values

are scaled by the average population fitness. Simple symbol mutation

and single-point crossover with the production symbol (->) as the

crossover point, are the GA’s genetic operators. The number of total

generation is 1000, the population size is 100, the mutation rate is

0.2 and the crossover rate is 0.5.

B. Experiment I - Maximum/Average number of rules triggered

Using the experimental setup described at subsection IV-A, we run

a total set of 10 experiments to test the evolvability of the proposed

genetic representation. That is, the maximum and the average number

of rules triggered during development. The fitness function for the

first chromosome consists of the following factors (a) The total

number of rules been used x 0.20, (b) the total number of different

rules used x 0.80, (c) an extra 10 points in case an axiom node is

found in the genotype, and (d) an extra 10 points in case all rules of

the genotype were used at least once during development. The fitness

function for the second chromosome consists of (a) importance to
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Fig. 11. A L-system for the second chromosome responsible for the connectivity of the target architecture.
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growth x 0.70, and (b) importance to self-connectivity x 0.30.

This means that we are more interested in cellular automata that its

cells are amenable to growth but also in boolean networks that can

grow, and less interested if the nodes contain self-connections.

Figure 12, shows the maximum and the average number of rules

triggered during development with standard deviation. The values are

averaged over the number of individuals in the population.

Fig. 12. Maximum/Average number of rules triggered with standard deviation
during development

What we can make out of the results is that development could

reach the maximum number of rules (20) throughout all the ex-

periments that took place, with experiment #7 sightly deviating

from the maximum. Also, the average number of rules triggered

is within a range between 6-6.5, meaning that there are no large

variations. The average number of rules triggered (if seen separately),

is comparatively low, but if seen with respect to the maximum number

of rules, we can say that our developmental mapping has reached the

experimental goal.

C. Experiment II - Point attractors / Number of developmental steps

With the same experimental setup of subsection IV-A, we run a

total set of 10 experiments, to see if the proposed genetic represen-

tation is able to build stable structures (i.e., reach a point attractor).

So, we measured the total point attractors found during development

for the whole population over one evolutionary run, along with the

number of developmental steps required before a point attractor is

found. We used the same fitness function, mutation and single-point

crossover as in the previous experiment (Experiment IV-B).

Figure 13, shows a slight deviation of the maximum number

of point attractors over the 10 experiments totally conducted. The

maximum number of point attractors ranges from 31-37.5, with an

extreme low of 11, at exp. #7. The average number of developmental

steps required before a point attractor is found, ranges also between

4 and 18. The low range is found at exp. #7 again. This figure shows

that a point attractor is found from the very beginning of development

(around DS 4 of experiment #7), up to the very late developmental

steps (around DS 18, of experiment #10). It is obvious that the

proposed genetic representation can reach several point attractors

during development, which satisfies our second experimental goal.

D. Experiment III

In order to verify our findings, it would be interesting to illustrate

how a structure evolves, exhibiting certain cell processes. Here, we

show an example of one developmental run for the first chromosome

with only cell growth and differentiation (figure 14(a)), and another

Fig. 13. Total point attractors / Maximum number of steps (averaged) before
a point attractor is found with the standard deviation.

example with only cell growth and apoptosis (figure 14(b)). For this

experiment, we used the experimental setup of subsection IV-A, with

the same fitness function and genetic operators.

(a)

(b)

Fig. 14. Development of rules for 20 steps. The figures show the rules
being triggered, the total number of rules triggered and the phenotypic length.
(a) development occurs with cell growth and differentiation processes, (b)
development occurs with cell growth and apoptosis.

What figure 14(a) shows is that at developmental steps 4, 6, 8, 10,

12, 14, 16 and 18, cell differentiation occurs, causing the length of the

phenotype to remain at the same length (secondary Y axis). The rules

triggered are 0, 4 and 2. Therefore, the total rules triggered is three

after the third developmental step, and remain constant throughout

development. The final phenotype of the structure after development
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using only growth and differentiation processes, has a total length of

22 symbols.

The next figure 14(b), show that at developmental steps 1, 4,

7, 10, 13, 16 and 19, cell apoptosis occurs, causing the death of

the current rule. Based on the fourth rule of fig. 7 (c->da), after

apoptosis, there is growth. These two processes are executed in the

same developmental step (also shown in figures 8 and 11). The

rules triggered are 0, 10 and 5. The maximum number of rules

triggered here is also three, therefore the constant line after the third

developmental step. The phenotype of the structure at the end of

the development has a total length of 19 symbols. The length of the

structure at the last two developmental steps is the same, interpreting

that a point attractor has been found. This last observation shows that

the genetic representation can reach point attractors, as well as, to

grow phenotypes.

Since the goal for our genetic representation is to investigate

whether it can evolve phenotypes, but also to be able to reach stable

structures, figure 14, proves this point.

V. CONCLUSION AND FUTURE WORK

In this work, a genetic representation for sparsely connected com-

putational architectures was proposed, using a common chromosome

and developmental L-systems for nodes generation and connectivity.

The computational architectures considered herein were CAs and

BNs. The proposed genetic representation takes advantage of the

similarities and differences observed in these architectures. The

experiments studied the evolvability of the genetic representation and

it was shown to be able to build stable structures.

What is important is that the notion of chromosomes in our

representation, allows us to exploit the genome in a modular way

in a sense that if additional computational architectures need to be

incorporated in the future and expressed by the same genome, more

chromosomes can easily be attached.

Consequently future work will involve the extension of the repre-

sentation, so as to incorporate other types of sparsely connected com-

putational architectures (i.e., artificial neural networks), the coupling

of different architectures by development and perhaps what is most

promising, the exploration of (hybrid) organisms with a fitness-based

on function and not gene triggering and structural properties-through

a common developmental genome.
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Abstract

The potentiality of using a common developmental mapping to develop not a specific, but

different classes of architectures (i.e., species), holding different structural and/or com-

putational phenotypic properties is an active area of research in the field of bio-inspired

systems. To be able to develop such species, there is a need to understand the governing

properties and the constraints involved for their development. In this work we investi-

gate the ability of common developmental genomes to evolve more than one specie (i.e.,

computational architecture), towards problems with increasing complexity. The architec-

tures considered as different species were cellular automata and boolean networks and the

problem studied was a simple financial market model over various architecture sizes. We

considered problem instances of the same problem, each having a higher level of com-

plexity, i.e., an instance with no state memory and with a previous memory of 1-, 2-, 5-

and 10-state. The results show that the common developmental genome was able to find

better results for certain cell architectures sizes.
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Abstract—The potentiality of using a common developmental
mapping to develop not a specific, but different classes of
architectures (i.e., species), holding different structural and/or
computational phenotypic properties is an active area of research
in the field of bio-inspired systems. To be able to develop such
species, there is a need to understand the governing properties
and the constraints involved for their development. In this work
we investigate the ability of common developmental genomes to
evolve more than one specie (i.e., computational architecture),
towards problems with increasing complexity. The architectures
considered as different species were cellular automata and
boolean networks and the problem studied was a simple financial
market model over various architecture sizes. We considered
problem instances of the same problem, each having a higher
level of complexity, i.e., an instance with no state memory and
with a previous memory of 1-, 2-, 5- and 10-state. The results
show that the common developmental genome was able to find
better results for certain cell architectures sizes.

Index Terms—Genetic representation, cellular automata,
boolean network, L-systems, complexity, kolmogorov

I. INTRODUCTION

In man-engineered systems, one can study digital organisms
in a "much simplified" artificial EvoDevo world. Most Evo-
Devo (Evolutionary Developmental) systems consist of a geno-
type that target special phenotypic structures (i.e., structures
that comprise connected computational elements). To be able
to develop such structures, there is a need to understand
further the underlying properties of such architectures and
the constraints involved in their development with a focus
on the form, functionality and inherent biological properties
[1]. In their classic paper, Gould and Lewontin argued that
biological organisms are "so constrained" by a variety of fac-
tors, including developmental pathways, that "...the constraints
themselves become more important in delimiting pathways
of change than the selective force that may mediate change
when it occurs." [2]. It is therefore worth investigating how
development can work on phenotypes with looser constraints;
by investigating how universal properties and processes can be
included in a developmental mapping [3]. In biology, species
are individuals sharing the same developmental and ecological
processes [4]. As such, in [5], it was shown the potentiality of
using same developmental mapping to develop not a specific,
but different classes of architectures (i.e., species), holding dif-
ferent structural phenotypic properties (i.e., looser phenotypic
constraints).

The hypothesis for this work is whether common devel-
opmental genomes can prove superior over genomes that are
evolved separately for each specie, towards complex compu-
tations. To see if the hypothesis holds, two problems should
sufficiently be investigated and answered. Firstly, whether the
same mapping (i.e., a common developmental genome), can
favor the evolvability of different computational architectures
under the same environment with limited resources. This
problem was studied in [6]. Secondly, and as the motivation
for this work, is to study whether the same developmental
mapping can favor the evolvability of different computational
architectures (i.e., CA and BN), with a focus in problems of
increasing complexity. Then, we will have enough evidence
and a proof of concept that common developmental genomes
are more evolvable or can favor the development of differ-
ent architectures under a given environment. The notion of
complexity is approached from the view of Kolmogorov com-
plexity. Here again, we consider the architectures as different
species (since they exhibit different structural properties).

The rest of the article is organized as follows. Section II
gives an overview of the various interpretations of complex-
ity so far. The main ideas of Kolmogorov complexity are
introduced in Section III. The challenges involved in such
a developmental model and the description of the common
genetic representation are addressed in Sections IV and V,
respectively. Experiments come at section VI with discussion
and future work in section VII.

II. RELATED WORK ON COMPLEXITY

In this section, we give a brief overview of the ideas that
have been delineated in the field of complexity. Complexity
can be a very general term and can take various meanings
which may depend primarily on the field domain but also
under the angle one wishes to infer and explain various
phenomena. The major interest groups are physicists interested
in dynamical systems and biologists who ponder whether
complexity and its evolution is simply a trend [7]. Physicists
are mainly interested in the relationship between structure
and complexity, namely, computational complexity. In this
context, there were various endeavors to give a meaningful
measurement of complexity (i.e., thermodynamical depth [8],
statistical complexity [9]). Computational complexity has also
been used by computer scientists as a means to quantify the
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computational resources needed to solve the problem as a
function of the problem instance size [10].

Biologists on the other hand, are trying to capture the form,
function or the genetic sequence that comprise an organism,
a.k.a., structural complexity. McShea, tried to study structural
complexity in animals in terms of number of cell types and
limb-pair types [11], but also made the case for a measure
of functional complexity of organisms, counting the different
functions an organism can perform [12]. Another measure
of complexity pointed out by Adami [7], was hierarchical
complexity, measuring the number of levels of nestedness
during the course of evolution of an organism. The goal was
to find a measure able to capture the biological complexity in
the functional protein level; looking at correlations among the
symbols of a sequence with features of the environment within
which sequence is functional. In other words, correlations
between the symbols in a genome and a description of the
environment within which that sequence is functional. He
defined physical complexity (of a sequence), as the amount of
information that is stored in that sequence about a particular
environment (i.e., a niche).

Both evolutionary biologists and computer scientists have
strived over the past years to create the necessary conditions
for biological evolution and measurement of the complexity
involved in open-ended A-Life systems. Currently, no A-
Life system has demonstrated anything like the creativity of
biological evolution [13]. Most of the A-Life literature on
the prospects and means for generating open-ended evolution
focuses exclusively upon generating more complex organisms
(i.e., organismic complexity). As of today, there seems to be no
consensus on a formal definition of biological complexity [7].
In many cases though, organismic complexity is essentially
realized as physical complexity.

In this work, we try to find a more intuitive approach to
characterize the notion of complexity. Towards that direction,
physical complexity technically can be defined as the shared
Kolmogorov complexity between a sequence (phenotype), and
a description of the environment in which that sequence is
to be interpreted [14]. As such, concepts from Kolmogorov
complexity theory can be borrowed and use them abstractively
herein.

III. KOLMOGOROV COMPLEXITY

In this section we introduce Kolmogorov complexity and
how notions of its theory can help us formulate our reasoning
for the experiments to follow. We don’t intend to give any
review nor we try to prove the theory mathematically. Formal
definitions and results of the theory can be found in [15].
Kolmogorov complexity is a measure that can be used on
individual, finite objects [16]. It associates the complexity
of an object (phenotype), with the length of the shortest
description of the object. For an unambiguous measure of
an object’s description length, the description length was
defined as the length of the shortest program that generates
the object on a fixed, universal Turing machine [15]. The

Kolmogorov complexity itself is incomputable. So, for practi-
cal experiments, approximations are used instead. It is mostly
being used in conjunction with compression algorithms, as an
overestimate measure for complexity. The idea is that bitstrings
that are easily compressible have low complexity, whereas
bitstrings that cannot be compressed are more complex. So,
complexity is proportional to the compression ratio.

Since an object can be given as a description of its en-
vironment, we can infer that the more information we have
about an object, the more complex this object is. Similarly,
it can be implied that the longer the object’s trajectory, the
more complex the object is. To formulate this, let n be the
amount of information required to describe an object (for the
purpose of this example, think of the object being a finite
state automaton). For n = 4, we say that the finite state
automaton at timestep t is sufficiently described by an amount
of information of four. We suppose that information about the
environment is included. Similarly, if n = 5, the finite state
automaton at timestep t, is given by an information amount
of five. Therefore the latter automaton is a more complex
machine. Although the above explanation is intuitive, it gives
a clear, rudimentary view for our experimental basis at Section
VI.

IV. DEVELOPMENT FOR SPARSELY-CONNECTED

COMPUTATIONAL STRUCTURES

The developmental goal is to be able to generate not
a specific, but different classes of structures (i.e., species),
using the same developmental model. This should be achieved
through the same developmental approach. Such developmen-
tal approach requires sufficient knowledge of the targeted
computational architectures and of their governing properties.
That is, for the 2-dimensional CA architecture, the properties
of dimensionality and neighborhood must be defined, where
the connectivity is predetermined (i.e., the Euclidean space).
For boolean networks, the connectivity (i.e., the node con-
nections of the network), must be determined. The problem
just described can be better expressed as three-challenge
problem: (a) the genome challenge, (b) the developmental
processes involved in the model, and (c) the developmental
model challenge. The three-challenge problem and the genetic
representation (section V), was initially introduced in [5] and
is presented here as is.

A. The Genome Challenge

Based on the properties of a 2D-CA, the genome contains
information about the cells at each developmental step, in
order to place them on a 2D-CA lattice structure. The wiring of
the cell is given by the CA’s neighborhood. At the same time
and based on the properties of a boolean network, the genome
contains enough information to feed the developmental model
to develop a boolean network, at each developmental step.

B. The Developmental Processes Challenge

The resulting structure is able to grow, alter the functionality
of a cell/node, and shrink. These processes are introduced
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in the developmental mapping through growth, differentia-
tion, and apoptosis (i.e., the death of the cell/node). Having
these properties in mind, our genome incorporates the notion
of chromosomes - inspired by biology. Each chromosome
contains respective information about the structural and/or
functional requirements. More specifically, a chromosome will
contain the information required for the cell/node creation (i.e.,
for the CAs and BNs), where another chromosome will contain
the information required for wiring the nodes (i.e., for BNs).
The notion of chromosomes allows us to exploit the genome in
a modular way in the sense that if an additional computational
architecture need to be described through the same genome,
more chromosomes can be added to it.

C. The Developmental Model Challenge

The developmental model is able to develop these structures,
taking into account the special properties employed by each
architecture. The developmental model receives the same
genome as input, regardless of the target architecture. Then,
it is possible – depending on some properties of the genome
– to discriminate whether it will develop a CA or a BN.

V. THE COMMON GENETIC REPRESENTATION

In biology, a specie is often used as the basic unit for bio-
logical classification and for taxonomic ranking [4]. As such,
an organism with unifying properties and same characteristics
can be of the same specie. The genome is split into two parts
(chromosomes). The first chromosome is responsible for creat-
ing the cells/nodes. The second chromosome is responsible for
creating the connectivity (i.e., for the BNs). Each chromosome
is built out of rules. Each rule has sufficient information for
cell/node creation and connectivity. Also, the rules are of cer-
tain length. Those destined for cell/node creation are different
from the ones for connectivity. Consequently, chromosomes
contain different rules.

A. An L-system for the genetic representation

A rewriting approach was chosen due to the ease of defining
specific rule set, that can target to rewrite specific features of
a structure, e.g., connections or node functions that enable a
way of splitting genetic information into separate information
carrying units (i.e., chromosomes).

A prominent model is L-systems. They are rewriting gram-
mars, able to describe developmental systems, simulate biolog-
ical processes [17], and describe computational machines [18].
Since there are different types of rules in the two chromo-
somes, there is a need for two separate L-systems. The first
L-system processes the rules of the first chromosome, while
the second L-system deals with the connectivity rules of the
second chromosome.

B. The L-system for the first chromosome

The L-system used here is context-sensitive. As such, de-
velopment is using the strict predecessor/ancestor to deter-
mine the applicable production rule. The rules are able to
incorporate all the cell processes. Table I(a), shows the type

of symbols used by the L-system of the first chromosome.
Some cells perform special cell processes and influence the
intermediate and final phenotypes. Symbol a is the axiom.
Apart from the symbols a, b, and c, which perform growth
of the phenotype, symbol d performs apoptosis, leading to the
deletion of the current rule (i.e., cell/node), of the intermediate
phenotype. Additionally, symbols X and Y, are responsible for
differentiation, leading to the replacement of the predecessor
cell/node (i.e., if X→Y the outcome will be Y, whereas, if
Y→X the outcome will be X). For the shake of simplicity, the
length of each rule is 4 symbols (i.e., 4x8bits=32bits).
For node/cell generation the L-system runs for 100 timesteps
and then stops. As such, the intermediate phenotypes generated
by development are of variable size.

An example with step-by-step development of a 2D-CA
architecture is illustrated in [5].

C. The L-system for the second chromosome

The rules are able to generate the connections necessary
for the wiring of the nodes. They contain symbols which
when executed by the L-system, result in creating a connection
forward or backwards from the current node. Each node in the
network has unique numbering; the current node has always
the number zero and any nodes starting from the current node
forward have positive numbering, where nodes that exist from
the current node backwards, have negative numbering. So,
there is a need to differentiate between the current and the
next node, using different symbols and also a need to describe
whether a connection will be created forward or backward
from the current node.

The rules involved for connectivity are not as complex as
the ones found in the first chromosome. The length of the
rules here is also 4 symbols / rule. Also, there is a need to
assure that the chromosome will have sufficient information
for the developmental processes (i.e., growth, differentiation
and apoptosis). The L-system uses is a D0L (i.e., with zero-
sided interactions). The symbols used, are explained at Table
I(b). The axiom rule for the second chromosome is x→y.
It means that development initially searches if the axiom
exists. If so, development continues and looks for rules of
type xy→+value, or xy→-value. In short, these two
rules imply that if two different (i.e., distinct) nodes are
found (x�=y), then it creates a connection forward (if the
rule includes a ’+’), or backwards (if the rule includes a ’-’).
The field value is encoded in the genotype and denotes the
node number for the generated connection. For example, rule
xy→+3 denotes that a connection will be created from the
current node (node 0), to the one being three nodes forward.
Similarly, rule xy→-3, denotes that a connection will be
created starting from the current node (node 0), to the one
that is three nodes backwards. If value=0, a self-connection
is created to the current node. A step-by-step development
of a boolean network based on the chromosomes of Table
I(a) and I(b), can be found at [5] and is not shown here due
to page limitation. The modularity of the genome, gives the
possibility to development itself to enable or disable parts of
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TABLE I
(A) SYMBOL TABLE FOR NODE GENERATION, (B) SYMBOL TABLE FOR

CONNECTIVITY GENERATION

(a)

Symbol Description

a (AXIOM) Add (growth)
b Add (growth)
c Add (growth)
d Delete (apoptosis)
X Substitute (differentiation)
Y Substitute (differentiation)
→ Production

(b)

Symbol Description

x Node (different from y)
y Node (different from x)
+ Connect forward
– Connect backwards
→ Production

it (chromosomes), when this is required and driven by the
goal set. For example, if the target architecture is a 2D-CA,
the second chromosome (i.e., connectivity) is disabled, since
connectivity is predetermined. Similarly for BN development,
both chromosomes are enabled (i.e., nodes and connectivity).

D. The genetic algorithm for the common genetic representa-
tion

A genetic algorithm is used to generate and evolve the rules
found in the genome (i.e., in the chromosomes). Since there
are two separate L-systems involved in development, the evo-
lutionary process comprise two phases: node and connectivity
generation phases. Mutation and single-point crossover were
used as genetic operators. Mutation may happen anywhere
inside the 4-symbol rule, ensuring that the production symbol
(→) is not distorted by mutation. In short, we want to make
sure that after mutation, the production symbol is still in the
rule (i.e., the rule is valid). Single-point crossover between
two parents is executed at the location of the production
symbol, ensuring that a valid rule is created as offspring.
The evolutionary cycle ends after a predetermined number of
generations.

VI. EXPERIMENTS

In [6], we investigated the ability of our representation
to deal with problems using a computational function as
fitness. This was achieved by assessing the evolvability of
each architecture to find sufficiently good solutions when i.
a separate genome is evolved for each architecture, and ii. a
common genome is evolved for the architectures altogether. In
this work, we study the ability of our representation to deal
with problems of increased complexity. We do that by taking
an experimental approach for the previous cases (i) and (ii).
By increased complexity, we mean targeting problems that
can be comparable to each other, have the same underlying
specification and is possible to intuitively differentiate them
in terms of their complexity, as described in Section III.

TABLE II
RULES TABLE FOR THE FINANCIAL MARKET MODEL

Left neighbor Right Neighbor Next state

buy buy buy
buy sell buy
sell buy buy
sell sell sell

A. Experimental setup

We develop a number of N rules for node generation and
connectivity, depending on the size of the architecture. Here
we develop two different architectures (1D-CA and BN), each
holding sizes of a. N = 144 cells, b. N = 169 cells,
and c. N = 196 cells. The architecture sizes were decided
upon preliminary results. As such, three different experimental
setups were being evaluated based on the architecture size.
The number of rules being created were a. 32x144=4608 bits,
b. 32x169=5408 bits, and c. 32x196=6272 bits. Each rule
can be reused during development. Development runs for 100
timesteps for each individual.

The number of outgoing connections per node is K = 5. For
more than 5 inputs/node, a self-connection to the originating
node is created instead. Generational mixing protocol was used
for the GA’s global selection mechanism and Rank selection
for parental selection. Unless otherwise stated, mutation rate
was set to .009 and crossover rate to .001.

B. A Simple Financial Market Model

A simple financial market model is undertaken as the
target problem. Each cell corresponds to an entity that either
buys or sells on each step. The behavior of a given cell is
determined by looking at the behavior of its two neighbors
on the step before, according to the rules of Table II. As we
can see, the rules correspond to the OR logical function. The
computational goal (fitness) here is all entities buy at the same
timestep.

We considered problem instances of the same problem, each
having a higher level of complexity, i.e., an instance with no
state memory and with a previous memory of 1-, 2-, 5- and
10-state. Based on Section III, each problem instance that is
described next, holds an increased complexity as compared to
all the previous ones. Using the experimental setup (Section
VI-A), we run a set of 10 experiments of 1000 generations
each. For each individual, a random initial environment was
set and fed into the architecture (i.e., CA and BN).

1) No-State Memory Instance: For this model, the archi-
tectures hold no state memory (i.e., are not interested in the
previous states, in order to decide upon the next cell state).
Since we use two neighbors to decide upon the state of the
cell for the next timestep, we say that this problem has a
complexity of n = 2. This number by itself may not mean
much, but in perspective with the problems of increasing
complexity described next, it is clear that this problem holds
the minimum complexity of all.
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2) A 1-State Memory Instance: For this model (except the
two current neighbors), the rules take also into consideration
the state of the cell at the previous timestep (state memory 1),
in order to decide upon the state of the current cell. The rules
are based on the behavior (buy/sell) that dominate within the
environment, using a simple majority decision. This problem
has a complexity of n = 3, since we need information from
three different sources before decision is made (two current
neighbors & the state of the cell at the previous timestep).

3) A 2-State Memory Instance: For this model (except the
two current neighbors), the rules take also into consideration
the state of the cell during the two previous timesteps (state
memory 2), in order to decide upon the state of the current
cell. The rules are based again on the behavior (buy/sell)
that dominate within the environment, using simple majority.
Similarly, this problem has a complexity of n = 4.

4) A 5-State Memory Instance: For this model (except the
two current neighbors), the rules take also into consideration
the state of the cell during the five previous timesteps (state
memory 5), in order to decide upon the state of the current
cell. The rules are based again on the behavior (buy/sell) that
dominate within the environment, using simple majority. This
problem has a complexity of n = 7.

5) A 10-State Memory Instance: For this model (except the
two current neighbors), the rules take also into consideration
the state of the cell during the ten previous timesteps (state
memory 10), in order to decide upon the state of the current
cell. The rules here are based again on the behavior (buy/sell)
that dominate within the environment, using simple majority.
This problem has a complexity of n = 12.

C. Results

The results for the 1D-CA and BN, for N = 144, N = 169
and N = 196 cell architectures for the separate and commonly
evolved genome, are shown at figures 1, 2 and 3, respectively.

For the 144-cell architecture, the common genome finds on
average better solutions for the no-memory problem instance
(figures 1(a) and 2(f)). In the case of state memory 1 and 2,
we observe that although the common genome performs on
average slightly worse than in the case of genomes evolved
separately for each architecture, it exhibits a better exploratory
trend; has a monotonically increasing fitness (figures 1(b), 1(c)
and 1(f)). For the 5- and 10-state memory cases, both genome
cases find best solutions with the commonly evolved genome
case showing higher levels of robustness, i.e., mutations have
smaller phenotypic effects (figures 1(d), 1(e), and 1(f)).

For the 169-cell architecture, the common genome demon-
strated slightly worse solutions on average, with high robust-
ness in the no-state memory casev(figures 2(a) and 2(f)). For 1-
and 2-state memory, the commonly evolved genome obtained
slightly worse solutions but shows a monotonically increasing
fitness (figures 2(b), 2(c), and 2(f)). 5- and 10-state mem-
ory cases showed high levels of robustness for architectures
evolved with a common genome where the solutions evolved
with separate genomes were equally good (figures 2(d), 2(e),
and 2(f)).

In the 196-cell architecture, the common genome showed
better on average solutions for the no-state memory problem
(figures 3(a) and 3(f)). The commonly evolved genome for the
1- and 2-state memory cases, demonstrated a monotonically
increasing fitness with similarly good solutions like in the
separately evolved genome case (figures 3(b), 3(c), and 3(f)).
5- and 10-state memory cases, exhibited on average similar so-
lutions in both cases. Though, the commonly evolved genome
showed highly robust solutions achieving similar solutions on
average (figures 3(d), 3(e), and 3(f)).

VII. DISCUSSION AND FUTURE WORK

In this work we investigated the ability of common devel-
opmental genomes to evolve more than one specie (i.e., looser
phenotypic constraints), towards problems with increasing
complexity. The notion of complexity was approached from
the viewpoint of Kolmogorov complexity. The architectures
considered as different species were CAs and BNs and the
problem studied was a simple financial market model over
various architecture sizes, that is, 144-, 169- and 196-cell
architectures with no-memory, 1-, 2-, 5-, and 10-state memory.
The system showed consistent behavior over the architecture
sizes, for the same problem instance. Generally, the commonly
evolved genome in the no-memory, 5- and 10-state memory
problems, showed a much more robust behavior and performed
rather well. Even if the 5- and 10-state memory instances
are considered more complex than the 1- or 2-state memory
problems, they challenged the financial market model and
succeeded in finding better solutions. It seems that the 5-
and 10-previous cell state taken into account to decide upon
the value of the current state, contributed to the robustness
of evolution than being disruptive. On the other hand, 1-
and 2-state memory instances showed better exploratory trend
with monotonically increasing fitness. The financial market
problem was sufficiently solved for the 144- and the 196-cell
architecture sizes.

Overall, the cell architecture size did not seem to play any
significant role in the exploratory capacity for our genetic
representation and its ability to tackle problems of greater
complexity. The results show that the common genome was
able to find on average, equally good solutions but showed
better results for the 144- and 196-cell architectures. Figures
1(f), 2(f) and 3(f) show the performance of the common
developmental genome on average. If one wishes to look at
the individual performance of the architectures (i.e., BN or
CA), evolved with the common genome, their performance
was highly superior in most of the cases (not shown).

The ability of the common genomes to drive evolution lies
in the developmental process and may have a positive influence
in directing evolution, i.e., common developmental genomes
are the essence for what is called developmental drive [19].
Similarly, it may be that genomes evolved for each architecture
separately, pose limitations to the developmental system in
ways that prevent evolution from going in certain phenotypic
directions (developmental bias [20]). Although these concepts
are currently an area of active research for developmental
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Fig. 1. Experiments for 144-cell architecture for genomes evolved separately, for (a) no state memory, (b) 1-state memory , (c) 2-state memory, (d) 5-state
memory, (e) 10-state memory. The average fitness plots for commonly evolved genomes is shown at (f).
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Fig. 2. Experiments for 169-cell architecture for genomes evolved separately, for (a) no-state memory, (b) 1-state memory, (c) 2-state memory, (d) 5-state
memory, (e) 10-state memory. The average fitness plots for commonly evolved genomes is shown at (f).

biologists, we have every reason to believe that this might
be the case in the artificial domain.

However, the results achieved in [6] and in this work, dictate
a need for further investigation. The first step would be to
identify relations between mutations and natural selection in
the underlying genetic process under different environmental
conditions, since environmental factors may affect the onto-

genetic pathway. Second, – and indeed a more challenging
step – is to discover inherent ontogenetic directionalities (i.e.,
dynamics) for the common developmental genomes during
the stages of evolution. So, to answer the main question "if
common developmental genomes are panacea towards more
complex problems?" and by the results obtained so far, we can
only tentatively agree. The final answer can’t be put forward
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Fig. 3. Experiments for 196-cell architecture for genomes evolved separately, for (a) no-state memory, (b) 1-state memory, (c) 2-state memory, (d) 5-state
memory, (e) 10-state memory. The average fitness plots for commonly evolved genomes is shown at (f).

unless these two steps are fully explored.
Additional future work include other ways of looking into

the architectures, i.e., instead of looking at them as different
species, they could be considered as organs of a common
developing biological entity. That brings the case where archi-
tectures need to be merged (as is the case of biological organs),
towards a. hybrid architectures with a common genome, and
b. the ability to shape their phenotypes as modules, in order
to change their dynamic properties (i.e., phenotypic shaping).
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Abstract

Artificial organisms comprise a method that enables the construction of complex systems

with structural and/or computational properties. In this work we investigate whether a

common developmental genome can favor the evolvability of different computational ar-

chitectures. This is rather interesting, especially when limited computational resources is

the case. The commonly evolved genome showed ability to boost the evolvability of the

different computational architectures requiring fewer resources and in some cases, finding

better solutions.
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Abstract: Artificial organisms comprise a method that enables the construction of complex systems with structural and/or

computational properties. In this work we investigate whether a common developmental genome can favor

the evolvability of different computational architectures. This is rather interesting, especially when limited

computational resources is the case. The commonly evolved genome showed ability to boost the evolvability of

the different computational architectures requiring fewer resources and in some cases, finding better solutions.

1 INTRODUCTION

Artificial systems often target organisms or systems
with some kind of functionality. Target functional-
ity may include systems aiming to solve problems, be
it structural (Steiner et al., 2009), or computational
(Harding et al., 2007). In the first case, the target is
the structure itself. In the second case, the target is a
functionality given by the computational function of
the nodes and their connections.

Targeting problems with a structural versus a com-
putational goal is quite different. Most EvoDevo (i.e.,
Evolutionary Developmental) systems consist of a
genotype targeting special phenotypic structures (i.e.,
structures that comprise connected computational ele-
ments) - even when the target is a computational func-
tion. The structural property of the phenotype may re-
duce the solution efficiency or even the computational
goal that can be achieved.

To be able to develop such phenotypic structures,
there is a need to further understand the properties
of the targeted computational architectures. An anal-
ysis of the possibilities and constraints involved in
the development of various computational architec-
tures, focusing on the form, functionality and the in-
herent biological properties, was presented in (An-
tonakopoulos and Tufte, 2009). The architectures
studied therein were Boolean Networks (BN) (Kauff-
man, 1993), Artificial Neural Networks (ANN) (As-
tor and Adami, 2000), Cellular Automata (CA) (Tufte
and Haddow, 2005), and Cellular Neural Networks
(CNN) (Chua and Yang, 1988). The common prop-

erty of these architectures is that they are considered
as sparsely-connected networks. This common prop-
erty motivates a further investigation on how a map-
ping process can work on a class of architectures in a
more general way towards complex problems. This is
elaborated by examining how universal properties and
processes can be included in a development mapping,
through an EvoDevo approach (Robert, 2004).

In biology, a specie is often used as a basic unit
for biological classification and for taxonomic rank-
ing. Species are individuals sharing the same genetic,
developmental and ecological processes (Wilkins,
2010). Inspired by multicellularity and the organ-
isms’ ability to exploit different developmental paths
based on environmental factors, we explored the po-
tentiality of using the same developmental mapping to
develop not a specific, but different classes of archi-
tectures (i.e., species), using a common genetic repre-
sentation (Antonakopoulos and Tufte, 2011).

The hypothesis for this work is to see whether
common developmental genomes can prove benefi-
cial over developmental genomes evolved for each
specie, separately, towards complex computations. To
see if the hypothesis holds, two things should be fur-
ther investigated. First, whether the same mapping
(i.e., a common developmental genome), can favor
the evolvability of different computational architec-
tures under the same environment when resources are
limited. Second, if the same developmental mapping
can favor the evolvability of different computational
architectures (i.e., CA and BN), with a focus in prob-
lems of increasing complexity. Only then, we will
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have concrete evidence for our hypothesis.

The first step mentioned above, comprise also the
motivation of this work. The second step will be ex-
amined and published elsewhere. Here, we are study-
ing the same computational architectures (i.e., CA
and BN), as different species. The computational ar-
chitectures in this setup will have limited computa-
tional resources to evolve. It is of interest then to
investigate whether common developmental genomes
can favor the evolvability of these architectures, as op-
posed to genomes evolved separately for each archi-
tecture.

The rest of the article is laid out as follows. Sec-
tion 2 addresses the challenges involved in such a de-
velopmental model. The common genetic representa-
tion is given at section 3. Experiments come in sec-
tion 4 with the conclusion and future work in section
5.

2 DEVELOPMENT FOR
SPARSELY-CONNECTED
COMPUTATIONAL
STRUCTURES

The developmental goal is to be able to generate
not a specific, but different classes of structures (i.e.,
species), using the same developmental model. This
should be achieved through the same developmental
approach. Such developmental approach requires suf-
ficient knowledge of the targeted computational archi-
tectures and of their governing properties. That is,
for the 2-dimensional CA, the properties of dimen-
sionality and neighborhood must be defined, where
the connectivity is predetermined (i.e., the Euclidean
space). For boolean networks, the connectivity (i.e.,
the node connections of the network), must be deter-
mined. The problem just described can be better ex-
pressed as three-challenge problem: (a) the genome
challenge, (b) the developmental processes involved
in the model, and (c) the developmental model chal-
lenge.

2.1 The Genome Challenge

Based on the properties of a 2D-CA, the genome con-
tains information about the cells at each developmen-
tal step, in order to place them on a 2D-CA lattice
structure. The wiring of the cell is given by the CA’s
neighborhood. At the same time and based on the
properties of a boolean network, the genome contains
enough information to feed the developmental model

to develop a boolean network, at each developmental
step.

2.2 The Developmental Processes
Challenge

The resulting structure is able to grow, alter the func-
tionality of a cell/node, and shrink. These processes
are introduced in the developmental mapping through
growth, differentiation, and apoptosis (i.e., the death
of the cell/node). Having these properties in mind,
our genome incorporates the notion of chromosomes
- inspired by biology. Each chromosome contains re-
spective information about the structural and/or func-
tional requirements. More specifically, a chromosome
will contain the information required for the cell/node
creation (i.e., for the CAs and BNs), where another
chromosome will contain the information required for
wiring the nodes (i.e., for BNs). The notion of chro-
mosomes allows us to exploit the genome in a mod-
ular way in the sense that if an additional computa-
tional architecture need to be described through the
same genome, more chromosomes can be added to it.

2.3 The Developmental Model
Challenge

The developmental model is able to develop these
structures, taking into account the special properties
employed by each architecture. The developmental
model receives the same genome as input, regardless
of the target architecture. Then, it is possible – de-
pending on some properties of the genome – to dis-
criminate whether it will develop a CA or a BN.

3 THE COMMON GENETIC
REPRESENTATION

In biology, a specie is often used as the basic unit for
biological classification and for taxonomic ranking.
As such, an organism with unifying properties and
same characteristics can be of the same specie. Figure
1, show how the genome looks like. The genome is
split into two parts (chromosomes). The first chromo-
some is responsible for creating the cells/nodes. The
second chromosome is responsible for creating the
connectivity (i.e., for the BNs). Each chromosome
is built out of rules. Each rule has sufficient infor-
mation for cell/node creation and connectivity. Also,
the rules are of certain length. Those destined for
cell/node creation are different from the ones for con-
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nectivity. Consequently, chromosomes contain differ-
ent rules.

Figure 1: This is how the genome looks like with the
genome split into two (chromosomes). The first chromo-
some is responsible for generating the cells/nodes whereas
the second chromosome is responsible for generating the
connectivity of the network.

3.1 An L-system for the Genetic
Representation

A rewriting approach was chosen due to the ease of
defining specific rule set, that can target to rewrite
specific features of a structure, e.g., connections or
node functions that enable a way of splitting genetic
information into separate information carrying units
(i.e., chromosomes).

A prominent model is L-systems. They are rewrit-
ing grammars, able to describe developmental sys-
tems, simulate biological processes (Lindenmayer
and Prusinkiewicz, 1989), and describe computa-
tional machines (Staffer and Sipper, 1998). Since
there are different types of rules in the two chromo-
somes, there is a need for separate L-systems. The
first L-system processes the rules of the first chromo-
some, while the second L-system deals with the con-
nectivity rules of the second chromosome.

3.2 The L-system for the First
Chromosome

The L-system used here is context-sensitive. As such,
development is using the strict predecessor/ancestor
to determine the applicable production rule. The rules
are able to incorporate all the cell processes. Table
1(a), shows the type of symbols used by the L-system
of the first chromosome. Some cells perform special
cell processes and influence the intermediate and fi-
nal phenotypes. Symbol a is the axiom. Apart from
the symbols a, b, and c, which perform growth of
the phenotype, symbol d performs apoptosis, leading
to the deletion of the current rule (i.e., cell/node), of
the intermediate phenotype. Additionally, symbols X
and Y, are responsible for differentiation, leading to
the replacement of the predecessor cell/node (i.e., if
X→Y the outcome will be Y, whereas, if Y→X the out-
come will be X). For the shake of simplicity, the length
of each rule is 4 symbols (i.e., 4x8bits=32bits).
For node/cell generation the L-system runs for 100

timesteps and then stops. As such, the intermediate
phenotypes generated by development are of variable
size.

(a) (b)

Figure 2: (a) Example of L-system rules for the first chro-
mosome, (b) Example of L-system rules for the second
chromosome.

Figure 2(a), gives an example of a L-system for
the first chromosome. A simple example with step-
by-step development of a 2D-CA architecture is illus-
trated at figure 3. Development starts with the axiom
(a) representing a cell at developmental step (DS) 0.
Since the axiom is found in the L-system rules, de-
velopment continues and the next rule triggered is the
a→bX. This rule will create two more cells b and X,
resulting in growth of the CA, at DS 1. The next rule
triggered is bX→Y. Since X→Y denotes differentia-
tion, the symbol X is replaced by Y, at DS 2. For differ-
entiation to occur, the rules should either be X→Y or
Y→X. Next, rule Y→c triggers causing again growth
of the CA, at DS 3. At DS 4, the rule c→da is trig-
gered causing the death of the cell c and the growth of
the CA with the cell a. From DS 5 up to DS 8, rules
are being triggered once more in the same sequence.

3.3 The L-system for the Second
Chromosome

The rules are able to generate the connections neces-
sary for the wiring of the nodes. They contain sym-
bols which when executed by the L-system, result in
creating a connection forward or backwards from the
current node. Each node in the network has unique
numbering; the current node has always the number
zero and any nodes starting from the current node for-
ward have positive numbering, where nodes that exist
from the current node backwards, have negative num-
bering. So, there is a need to differentiate between
the current and the next node, using different symbols
and also whether a connection will be created forward
or backward from the current node.

The rules involved in connectivity are not as com-
plex as those of first chromosome. The length of the
rules here is also 4 symbols / rule. Also, there is a
need to assure that the chromosome will have suf-
ficient information for the developmental processes
(i.e., growth, differentiation and apoptosis). The L-
system uses is a D0L (i.e., with zero-sided interac-
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Figure 3: A step-by-step development of a 2D-CA architecture based on the example L-system for the first chromosome.

tions). An example L-system for the second chromo-
some is shown at figure 2(b), and the symbols used
are explained at Table 1(b).

Table 1: (a) Symbol table for Node generation, (b) Symbol
table for Connectivity generation.

(a)

Symbol Description

a (AXIOM) Add (growth)
b Add (growth)
c Add (growth)
d Delete (apoptosis)
X Substitute (differentiation)
Y Substitute (differentiation)
→ Production

(b)

Symbol Description

x Node (different from y)
y Node (different from x)
+ Connect forward
– Connect backwards
→ Production

The axiom rule for the second chromosome is
x→y. It means that development initially searches if
the axiom exists. If so, development continues and
looks for rules of type xy→+value or xy→-value.
In short, these two rules imply that if two different
(i.e., distinct) nodes are found (x�=y), then it creates
a connection forward (if the rule includes a ’+’), or
backwards (if the rule includes a ’-’). The field value
is encoded in the genotype and denotes the node num-
ber for the generated connection. For example, rule
xy→+3 denotes that a connection will be created from
the current node (node 0), to the one being three nodes
forward. Similarly, rule xy→-3 denotes that a con-
nection will be created starting from the current node
(node 0), to the one that is three nodes backwards. If
value=0, a self-connection is created to the current
node. A step-by-step development of a boolean net-
work based on the chromosomes of Table 1(a) and
1(b), can be found at (Antonakopoulos and Tufte,
2011) and is not shown here due to page limitation.
The modularity of the genome, gives the possibility
to development itself to enable or disable parts of it
(chromosomes), when this is required and driven by
the goal set. For example, if the target architecture is
a 2D-CA, the second chromosome (i.e., connectivity)
is disabled, since connectivity is predetermined. Sim-
ilarly for BN development, both chromosomes are en-

abled (i.e., nodes and connectivity).

3.4 The Genetic Algorithm for the
Common Genetic Representation

A genetic algorithm is used to generate and evolve the
rules found in the genome (i.e., in the chromosomes).
Since there are two separate L-systems involved in
development, the evolutionary process comprise two
phases: node and connectivity generation. Mutation
and single-point crossover were used as genetic op-
erators. Mutation may happen anywhere inside the 4-
symbol rule, ensuring that the production symbol (→)
is not distorted by mutation. That is, we want to make
sure that after mutation, the production symbol still
exists in the rule (i.e., the rule is valid). Single-point
crossover is performed at the location of the produc-
tion symbol, ensuring that a valid rule is created as
offspring. The evolutionary cycle ends after a prede-
termined number of generations.

4 EXPERIMENTS

In (Antonakopoulos and Tufte, 2011), we investigated
the ability of the representation to evolve different
computational architectures using a structured-based
fitness. Here we study the ability of our representation
to deal with problems using a computational fitness;
we take an experimental approach using the same ge-
netic representation on both architectures (CA and
BN), towards sufficient solutions when: i. a sepa-
rately genome is evolved for each of the architecture,
and ii. a common genome is evolved for architectures
altogether.

4.1 Experimental Setup

We use a total number of 36 rules for node genera-
tion and for connectivity (i.e., 32x36=1152bits). It
is important to note that a rule can be reused during
development. Development runs for 100 timesteps for
each individual. The evaluation of the phenotypes for
the CA and the BN is given by the cell types of Table
2.

A 6x6 2D-CA and a N = 36 BN is used. The rea-
son is that the two architectures must to be compara-

100



Table 2: Cell types and their functionality.

Cell Type Function name

a NAND
b OR
c AND
d IDENTITY CELL
X XOR
Y NOT

ble; have the same state space (i.e., 236). The number
of outgoing connections per node is K = 5. For more
than 5 inputs/node, a self-connection to the originat-
ing node is created instead. Generational mixing was
used as global selection mechanism and Rank selec-
tion for parental selection. Unless otherwise stated,
mutation rate was set to .0005 and crossover rate to
.001.

4.2 Search for Cycle Attractors

Using the experimental setup described in section 4.1,
we run a set of 10 experiments of 5000 generations
each. For each individual, a random initial state was
created and fed into the architecture. The fitness func-
tion gives credit for cycle attractors between 2-21; the
best score is assigned for cycle attractors of size 11.

Figure 4(a) shows the average fitness plots over
the 10 runs for genomes evolved separately. The BN
managed to find sufficiently good solutions using a
large amount of available resources (RsepBN). The
CA found also rather good solutions, needing less
than half of the available resources (RsepCA).

The average fitness plot over the 10 runs for com-
monly evolved genomes is shown at figure 4(b). In
this case, genomes were able to find reasonable solu-
tions. The BN achieved a max average of 70% fitness
using half of the available resources (RcomBN), where
the CA achieved a fitness of 68%, acquiring almost
all of the resources (RcomCA).

4.3 Search for Transient Phase and
Attractors

Using the same setup, we also run a set of 10 exper-
iments of 5000 generations each. For each individ-
ual, a random initial state was created and fed into
the architecture. The fitness function gives credit for
transients with a maximum size of 10 after which an
attractor of maximum size of 20 must follow. Point
attractors are also being taken into account (cycles of
1). The transient phase has a range between 1-10 (best
score is assigned for transients of size 5), where at-
tractors have a range between 1-21 (best score is as-
signed for attractors of size 11). Both fitness param-

(a)

(b)

Figure 4: Cycle Attractor experiment: (a) Averaged fitness
plot for the different architectures with genomes evolved
separately, (b) Averaged fitness plot for different architec-
tures with a commonly evolved genome.

eters (i.e., transient phase and attractors) are normal-
ized into half and their partial scores were summed to
give the final score.

Figure 5(a) shows the average fitness plot over 10
runs for genomes evolved separately. The CA was
able to find a sufficient solution, requiring a large
amount of resources (RsepCA). The BN was able to
find only fair solutions acquiring more than half of
the resources available (RsepBN).

In the case of the commonly evolved genome of
figure 5(b), both architectures were able to achieve
similar performance as previously, but consumed sig-
nificantly less resources. The CA reached a max
average fitness of 86% at generation 800 (RcomCA),
where the BN reached a 55% fitness at generation
1750 (RcomBN).

4.4 Synchronization Task

For this task, the goal is to find a CA that given any
initial configuration s within M time steps, reaches
a final configuration that oscillates between all zeros
and all ones on successive time steps. M, the desired
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(a)

(b)

Figure 5: Transient with attractors experiment: (a) Av-
eraged fitness plot for the different architectures with
genomes evolved separately, (b) Averaged fitness plot for
different architectures with a commonly evolved genome.

upper bound on the synchronization time, is a param-
eter of the task that depends on the lattice size (Das
et al., 1995). Here, we relaxed the rule of all ones
and all zeros by introducing a synchronization thresh-
old. It means that we may have configurations of ze-
ros or ones up to the threshold limit. In this case, this
threshold is set to 80%. This implies that configura-
tions filled up with 80% zeros or ones are eligible as
target configurations. Here, a 1D-CA and a BN of
size 36 is used, with the mutation rate being .002 and
the crossover rate .001. Each individual is developed
for 1000 timesteps.

Figure 6(a) shows the average fitness plot over
10 runs for the separately evolved genomes case.
The CA was able to achieve a max average fitness
of 40% at generation 2000 (RsepCA), where the BN
gave moderate solutions (18%) at generation 850
(RsepBN).

In the case of commonly evolved genomes at fig-
ure 6(b), both architectures needed fewer resources to
achieve the same results as in the separately evolved
genome case. As such, the CA reached the same
fitness at generation 750 (RcomCA), where the BN

(a)

(b)

Figure 6: Synchronization task experiment: (a) Averaged
fitness plot for the different architectures with genomes
evolved separately, (b) Averaged fitness plot for different
architectures with a commonly evolved genome.

reached the fitness of 18% at generation 90 (RcomBN).
In addition to that, the commonly evolved genome
achieved better overall fitness; the CA reached an av-
erage of 60% and the BN an average of 20% (for the
total of the available resources).

5 CONCLUSION AND FUTURE
WORK

In this work, we investigated whether and when
commonly evolved genomes favor the evolvability
of different computational architectures, as opposed
to genomes evolved separately for each architecture.
The computational architectures targeted herein were
a 6x6 non-uniform 2D-CA and a BN of size N = 36
and were considered as different species. In addition,
the different genome cases evolved in a setup with
only limited computational resources.

The search for a cycle attractor problem showed
that the common genome was not able to show favor-
able results for the development of the architectures.
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The separately evolved genome was able to give par-
tially better results; the CA was able to evolve requir-
ing less than half of the resources available.In the case
of transient phase and attractor search, both genome
cases ended up with a similar fitness performance but
the commonly evolved genome consumed consider-
ably fewer resources. In the synchronization task
problem, the commonly evolved genome was able to
evolve the architectures acquiring again less resources
than in the separately evolved genome case.

The construction of a common genome able to de-
velop different computational architectures proved to
be beneficial. There are cases where resources are
not infinitely available or not available at the given
moment. Artificial organisms need to have ways to
overcome such problems if they are to continue to
evolve at all (much like in the nature). Commonly
evolved genomes boosted the evolvability of the ar-
chitectures. In two of the experiments we studied,
it required considerably fewer resources than in the
case of the genome evolved separately. The reason
behind the superiority of the common developmental
genomes is somewhat intuitive. Common genomes in
this configuration, involve two fitness functions (i.e.,
one for node generation and another for connectivity),
defining a set of optimal solutions over each evolu-
tionary cycle. So, we can say that the nodes genome
stands as an ideal source of information for the con-
nectivity genome and ultimately, the development of
the phenotypes.

But there is more to that. It may be that common
developmental genomes are more amenable to devel-
opmental drive (Wallace, 2001). Or, they may have a
positive influence in directing evolution and pushing
the developmental system in phenotypic directions
where it would have been impossible to achieve with
ordinary genomes (i.e., genomes evolved separately
for each architecture at hand). The latter is identi-
fied as developmental bias (Raff, 2000). To conclude,
more research needs to be done towards the identi-
fication of: i. potential relations between mutation
and selection in the underlying genetic process, and
ii. inherent ontogenetic directionalities (i.e., dynam-
ics) for common developmental genomes, during the
stages of evolution.

Closing, the notion of chromosomes in our repre-
sentation, allows us to exploit the genome in a modu-
lar way in a sense that if additional computational ar-
chitectures need to be incorporated in the future and
expressed by the same genome, more chromosomes
can be attached. Changing the way of looking into the
architectures, i.e., instead of looking at them as dif-
ferent species, we could consider them as organs of
a common developing biological entity. That brings

up a case where architectures need to be merged (as
is the case in biological organs). Since the overall
goal of this work is to target more adaptive scalable
systems able of complex computation, the exploration
of these merged computational architectures (i.e., hy-
brid architectures) with the same genome and devel-
opmental model but even further, the ability to shape
the phenotype of our system (phenotypic shaping) as
modules in order to change the dynamic properties of
the entire system, paves the way for promising future
research.
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Abstract

The potentiality of using a common developmental mapping to develop not a specific, but

different classes of architectures (i.e., species), holding different structural and/or com-

putational phenotypic properties is an active area of research in the field of bio-inspired

systems. To be able to develop such species, there is a need to understand the governing

properties and the constraints involved for their development. In this work, we investi-

gate how common developmental genomes influence evolution and how they push the

developmental process in directions where it would have been impossible to achieve with

ordinary genomes. Relations between mutation and evolution along with a comprehen-

sive study of developmental mechanisms involved in development are worked out. The

results are promising as they unveil that common developmental genomes perform better

in more complex and random environments.

105



106



Investigation of Developmental Mechanisms in
Common Developmental Genomes

Konstantinos Antonakopoulos and Gunnar Tufte

Norwegian University of Science and Technology,
Department of Computer and Information Science,
Sem Sælandsvei 7-9, NO-7491, Trondheim, Norway

kostas@idi.ntnu.no

Abstract. The potentiality of using a common developmental map-
ping to develop not a specific, but different classes of architectures (i.e.,
species), holding different structural and/or computational phenotypic
properties is an active area of research in the field of bio-inspired sys-
tems. To be able to develop such species, there is a need to understand
the governing properties and the constraints involved for their develop-
ment. In this work, we investigate how common developmental genomes
influence evolution and how they push the developmental process in di-
rections where it would have been impossible to achieve with ordinary
genomes. Relations between mutation and evolution along with a com-
prehensive study of developmental mechanisms involved in development
are worked out. The results are promising as they unveil that common
developmental genomes perform better in more complex and random
environments.

Key words: Common developmental genomes, evolvability, cellular au-
tomata, boolean network, L-systems

1 Introduction

The importance of development in life is crucial since it enables multicellular
organisms to grow in well-defined stages. Besides ’direct-development’, which
is the simplest form of development, one can also find ’indirect development’
through which the organism changes radically. These changes impose a new kind
of adult organism over a period of evolutionary generations [1]. In the artificial
analog, one can find a ”simplified” artifact comprised of a genotype targeting
a special phenotypic structure or other computational goal (a.k.a., Evo-Devo
systems).

Taking a step further, there is a possibility of creating a genome (i.e., a ge-
netic representation), which can be common for more than one phenotypes. In
previous work, we studied whether the same mapping (i.e., common developmen-
tal genomes), can favor the evolvability of different computational architectures
under the same (single-cell) environment i. with limited resources [2], and ii. in
problems with increasing complexity [3].
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The ability of common developmental genomes to drive evolution lies in the
developmental process and has a positive influence in directing evolution, as it
has been seen so far. In other words, common developmental genomes may be the
essence for what is called developmental drive [4]. Though, it is not yet clear how
common developmental genomes influence evolution and how they push the de-
velopmental process in directions where it would have been impossible to achieve
with ordinary genomes (i.e., genomes evolved separately for each architecture at
hand). Also, it is still unclear whether and in what way the environment affects
the ontogenetic pathways of development. Therefore, further research is needed
towards three aspects. First, how genetic operators (i.e., mutation) affect evo-
lution (i.e., selection) in common developmental genomes, as they are part of
the ”orienting mechanism” of both short-term and long-term evolution. Second,
whether development and the developmental dynamics of common developmen-
tal genomes prescribe a certain pathway for evolution. Third, it is interesting to
see if the external environment is at all important to the final phenotype.

The motivation for this work is to identify potential relations between muta-
tion and selection in the underlying genetic process, discover inherent ontogenetic
directionalities during the stages of evolution, and see whether environmental
conditions affect the outcome in some way.

The rest of the article is laid out as follows. Section 2 describes the challenges
involved in designing such a developmental model. The common genetic repre-
sentation is given in section 3. Detailed explanation of the genetic representation
and developmental model can be found in [5]. The definition and structure of
the environment is given in section 4. Experiments come in section 5 with the
conclusion and future work in section 6.

2 Development for Sparsely-Connected Computational
Structures

The developmental goal is to be able to generate not a specific, but different
classes of structures (i.e., species), using the same developmental model. This
should be achieved through the same developmental approach. Such develop-
mental approach requires sufficient knowledge of the targeted computational
architectures and of their governing properties. That is, for the 2-dimensional
cellular automata (CA) architecture, the properties of dimensionality and neigh-
borhood must be defined, where the connectivity is predetermined (i.e., the
Euclidean space). For boolean networks (BN), the connectivity (i.e., the node
connections of the network), must be determined. The problem just described
can be better expressed as three-challenge problem: (a) the genome challenge,
(b) the developmental processes involved in the model, and (c) the developmental
model challenge.

2.1 The Genome Challenge

Based on the properties of a 2D-CA, the genome contains information about
the cells at each developmental step, in order to place them on a 2D-CA lat-
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tice structure. The wiring of the cell is given by the CA’s neighborhood. At the
same time and based on the properties of a boolean network, the genome con-
tains enough information to feed the developmental model to develop a boolean
network, at each developmental step.

2.2 The Developmental Processes Challenge

The resulting structure is able to grow, alter the functionality of a cell/node, and
shrink. These processes are introduced in the developmental mapping through
growth, differentiation, and apoptosis (i.e., the death of the cell/node). Having
these properties in mind, our genome incorporates the notion of chromosomes
- inspired by biology. Each chromosome contains respective information about
the structural and/or functional requirements. More specifically, a chromosome
will contain the information required for the cell/node creation (i.e., for the CAs
and BNs), where another chromosome will contain the information required for
wiring the nodes (i.e., for BNs). The notion of chromosomes allows us to exploit
the genome in a modular way in the sense that if an additional computational
architecture needs to be described through the same genome, more chromosomes
can be added to it. To better illustrate how these processes will influence the de-
veloping structure, Figure 1 shows the three developmental processes as applied
to a developing cellular automata.

Fig. 1. The developmental model should be able to incorporate the processes of growth,
differentiation and apoptosis. Here, each of the processes are illustrated as the model
develops step-by-step a 2D cellular automata.

2.3 The Developmental Model Challenge

The developmental model is able to develop these structures, taking into account
the special properties employed by each architecture. Figures 2 and 3, illustrate
this requirement. The developmental model receives the same genome as input,
regardless of the target architecture. Then, it is possible – depending on some
properties of the genome – to discriminate whether it will develop a CA or a
BN.

Figure 2, visualizes this by showing step-by-step the development of a cellular
automata from the developmental model. At DS 0, the first cell of the cellular
automata is created. At DS 1, the cellular automata grows in size and a new
cell is added. At DS 2, the architecture grows again by adding one more cell to
the cellular automata. At DS n, development has stop and the cellular automata
has its final structure (adult organism).
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Fig. 2. The developmental model should be able to develop a cellular automata. Here,
the development of the automata is shown from developmental step (DS) 0 until the
final developmental step (DS) n.

Similarly, Figure 3 presents step-by-step the development of a boolean net-
work with the same developmental model. At DS 0, the first node with its self-
connections is created. At DS 1, the boolean network grows in size and a new
node is added to the network. This will cause new connections to be created for
all the nodes existing in the network. At DS 2, the network adds another node
and new connections are created for the existing nodes. This algorithm continues
until the boolean network has created all the nodes and the connections for the
existing nodes at DS n).

Fig. 3. The developmental model should be able to develop a boolean network. Here,
the development stage of a BN is shown from developmental step (DS) 0, until the last
developmental step (DS) n.

3 The Common Genetic Representation

In biology, a specie is often used as the basic unit for biological classification and
for taxonomic ranking [6]. As such, an organism with unifying properties and
same characteristics can be of the same specie. Figure 4, shows how the genome
looks like. The genome is split into two parts (chromosomes). The first chro-
mosome is responsible for creating the cells/nodes. The second chromosome is
responsible for creating the connectivity (i.e., for the BNs). Each chromosome is
built out of rules. Each rule has sufficient information for cell/node creation and
connectivity. Also, the rules are of certain length. Those destined for cell/node
creation are different from the ones for connectivity. Consequently, chromosomes
contain different rules.

3.1 An L-system for the genetic representation

A rewriting approach was chosen due to the ease of defining a specific rule set,
that can target to rewrite specific features of a structure, e.g., connections or
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Fig. 4. This is how the genome looks like with the genome split into two (chromo-
somes). The first chromosome is responsible for generating the cells/nodes whereas the
second chromosome is responsible for generating the connectivity of the network

node functions that enable a way of splitting genetic information into separate
information carrying units (i.e., chromosomes).

A prominent model is L-systems. They are rewriting grammars, able to de-
scribe developmental systems, simulate biological processes [7], and describe
computational machines [8]. Since there are different types of rules in the two
chromosomes, there is a need for two separate L-systems. The first L-system
processes the rules of the first chromosome, while the second L-system deals
with the connectivity rules of the second chromosome.

3.2 The L-system for the first chromosome

The L-system used here is context-sensitive. As such, development is using the
strict predecessor/ancestor to determine the applicable production rule. The
rules are able to incorporate all the cell processes. Table 1(a), shows the type of
symbols used by the L-system of the first chromosome. Some cells perform spe-
cial cell processes and influence the intermediate and final phenotypes. Symbol
a is the axiom. Apart from the symbols a, b, and c, which perform growth of
the phenotype, symbol d performs apoptosis, leading to the deletion of the cur-
rent rule (i.e., cell/node), of the intermediate phenotype. Additionally, symbols
X and Y, are responsible for differentiation, leading to the replacement of the
predecessor cell/node (i.e., if X→Y the outcome will be Y, whereas, if Y→X the
outcome will be X). The length of each rule is 4 symbols (i.e., 4x8bits=32bits).
For node/cell generation the L-system runs for 100 timesteps and then it stops.
As such, the intermediate phenotypes generated by development are of variable
size.

(a) (b)

Fig. 5. (a) Example of L-system rules for the first chromosome, (b) Example of L-
system rules for the second chromosome
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Figure 5(a), gives an example of a L-system for the first chromosome. A
simple example with step-by-step development of a 2D-CA architecture is illus-
trated in Figure 6. Development starts with the axiom (a) representing a cell
at developmental step (DS) 0. Since the axiom is found in the L-system rules,
development continues and the next rule triggered is the a→bX. This rule will
create two more cells b and X, resulting in growth of the CA, at DS 1. The
next rule triggered is bX→Y. Since X→Y denotes differentiation, the symbol X is
replaced by Y, at DS 2. For differentiation to occur, the rules should either be
X→Y, or Y→X. Next, rule Y→c triggers causing again growth of the CA, at DS
3. At DS 4, the rule c→da is triggered, causing the death of the cell c and the
growth of the CA with the cell a. From DS 5 up to DS 8, the rules are being
triggered once more in the same sequence.

Fig. 6. A step-by-step development of a 2D-CA architecture based on the example
L-system for the first chromosome

3.3 The L-system for the second chromosome

The rules are able to generate the connections necessary for the wiring of the
nodes. They contain symbols which when executed by the L-system, result in
creating a connection forward or backwards from the current node. Each node
in the network has unique numbering; the current node has always the number
zero and any nodes starting from the current node forward have positive num-
bering, where nodes that exist from the current node backwards, have negative
numbering. So, there is a need to differentiate between the current and the next
node, using different symbols and also a need to describe whether a connection
will be created forward or backward from the current node.

The rules involved for connectivity are not as complex as the ones found in
the first chromosome. The length of the rules here is also 4 symbols / rule. Also,
there is a need to assure that the chromosome will have sufficient information
for the developmental processes (i.e., growth, differentiation and apoptosis). The
L-system uses a D0L (i.e., with zero-sided interactions). An example L-system
for the second chromosome is shown in Figure 5(b), and the symbols used are
explained at Table 1(b). The axiom rule for the second chromosome is x→y. It
means that development initially searches if the axiom exists. If so, development
continues and looks for rules of type xy→+value, or xy→-value. In short, these
two rules imply that if two different (i.e., distinct) nodes are found (x�=y), then
it creates a connection forward (if the rule includes a ’+’), or backwards (if the
rule includes a ’-’). The field value is encoded in the genotype and denotes the
node number for the generated connection. For example, rule xy→+3 denotes
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Table 1. (a) Symbol table for Node generation, (b) Symbol table for Connectivity
generation

(a)

Symbol Description

a (AXIOM) Add (growth)
b Add (growth)
c Add (growth)
d Delete (apoptosis)
X Substitute (differentiation)
Y Substitute (differentiation)
→ Production

(b)

Symbol Description

x Node (different from y)
y Node (different from x)
+ Connect forward
– Connect backwards
→ Production

that a connection will be created from the current node (node 0), to the one
being three nodes forward. Similarly, rule xy→-3, denotes that a connection
will be created starting from the current node (node 0), to the one that is three
nodes backwards. If value=0, a self-connection is created to the current node.
A step-by-step development of a boolean network based on the chromosomes
of Table 1(a) and 1(b), can be found in [5] and is not shown here due to page
limitation. The modularity of the genome, gives the possibility to develop itself
to enable or disable parts of it (chromosomes), when this is required and driven
by the goal set. For example, if the target architecture is a 2D-CA, the second
chromosome (i.e., connectivity) is disabled, since connectivity is predetermined.
Similarly for BN development, both chromosomes are enabled (i.e., nodes and
connectivity).

3.4 The genetic algorithm for the common genetic representation

A genetic algorithm is used to generate and evolve the rules found in the genome
(i.e., in the chromosomes). Since there are two separate L-systems involved in
development, the evolutionary process comprise of two phases: node and con-
nectivity generation phases. Mutation and single-point crossover were used as
genetic operators. Mutation may happen anywhere inside the 4-symbol rule, en-
suring that the production symbol (→) is not distorted by mutation. In short,
we want to make sure that after mutation, the production symbol is still in the
rule (i.e., the rule is valid). Single-point crossover between two parents is ex-
ecuted at the location of the production symbol, ensuring that a valid rule is
created as offspring. The evolutionary cycle ends after a predetermined number
of generations.

4 Definition of the Environment

Here, we define the ’environment’ in a consistent way. In the literature, the
environment has been used in various levels, depending on the system. In
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[9] for example, the environment is used within the cell itself (i.e., the cell’s
metabolism [9],[10]). In most models, environment refers to inter-cell communi-
cation, where cells can communicate their protein levels [11] or chemical levels
and cell types [10]. The neighborhood of the underlying architecture (i.e,. cellu-
lar automata) can also become the environment, as in [10] with a 2D von Neu-
mann neighborhood. Herein, we consider only an external environment, where
the emerging organism needs to survive in it. Also, the behavior of the organ-
ism - interpretation of the state plot, may be distinctly different for the same
organism when developed in two different environments [9]. As such, we intro-
duce different external environments and give the possibility to the developing
organism to adapt its behavior.

Figure 7 shows the various external environmental setups applied to the de-
veloping organisms. In the first subfigure, the individuals are evaluated based on
environment A. In the second subfigure, the individuals are still being evaluated
in a single environment, but the environment can be different (i.e., environment
A, environment B, etc.). In the third subfigure, each individual is being assessed
on a set of different environments. The environment in Figure 7(a), is a single-
cell environment where everywhere except in the first node/cell has a value of
zero. The first cell/node holds initially the value of one. The environments in
Figures 7(b) and 7(c) are random. Feeding evolution with different information
(i.e., environments), is expected to affect the genome, intermediate phenotypes
and the final phenotype, not only in terms of cell types (i.e., for CA, BN), but
also in terms of connectivity (i.e., for the BN).

(a) (b) (c)

Fig. 7. The three different environmental setups. (a) Single-cell environment/genome
evaluation, (b) Random environment/genome evaluation, (c) Multiple-random envi-
ronments/genome evaluation.

5 Experiments

The motivation in Section 1, dictates a need to identify whether common de-
velopmental genomes have an inherent advantage over the separately developed
genomes. We take different approaches to be able to draw solid conclusions.
First, the influence mutations may have to the final phenotype and in driving
evolution in different environmental conditions (Subsection 5.1). Second, we try
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to discover inherent ontogenetic trends of common developmental genomes, by
focusing on the developmental mechanisms and how these are deployed under
different environments. This is studied in Subsections 5.2 and 5.3.

5.1 Influence of Mutation Over Evolution

In this experiment, we study whether mutations help to determine the direc-
tion of phenotypic evolution. That is, try to identify specific patterns by simply
counting the positive, neutral or negative influence a mutation has over the phe-
notype for each generation. The new phenotype after a mutation is compared
to the phenotype from the previous generation. If the fitness of the new phe-
notype is bigger, then the mutation is considered positive. Neutral mutation is
when both phenotypes have the same fitness where negative mutation will have
a destructive influence to the phenotype.

5.2 Influence of Developmental Processes Over Evolution

Here, the mechanisms involved in development, i.e., the developmental pro-
cesses during evolution, are investigated. More specifically, the appearance rate
of growth, apoptosis and differentiation per individual are measured for each gen-
eration. In this way, we hope to get a better understanding of how development
works for the separate and common genomes respectively.

5.3 Influence of Conditional Developmental Processes Over
Evolution

Taking one step further, we capture conditional appearance for each pro-
cess, given a certain process has appeared earlier during development. For ex-
ample, we measure the number of growths after an apoptosis has occurred
(growth|apoptosis) or after a differentiation has occurred (growth|differentiation).
Given we have three different developmental processes and each process can be
in one of the three different conditional cases, we conclude to a total of 9 condi-
tional cases for evaluation (Table 2).

Table 2. Conditional Appearance of the Developmental Processes

Cond. case 1 Cond. case 2 Cond. case 3

growth|growth growth|apoptosis growth|differentiation
apoptosis|growth apoptosis|apoptosis apoptosis|differentiation

differentiation|growth differentiation|apoptosis differentiation|differentiation

5.4 Experimental Setup

The experiments were performed both for separate genomes and the common
genome cases. Each experiment is based on the different settings shown in Figure
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7. For each setup, 20 runs were performed resulting in 20 different organisms.
The developmental process was apportioned of 1000 state steps. The fitness
function gives credit for cycle attractors between 2 - 800; the best score 100 is
assigned to individuals with a cycle attractor of 400. The fitness scores have a
bell-curve ”distribution” with the worst score 4 being assigned at limit values. A
total number of 70 rules for node generation (i.e., total size 70x32=2248bits).
For the second chromosome, we use the same number of rules (i.e., a size of
70x32=2248bits). In this setup, each rule can be used more than once during
development. For the common developmental genomes case, fitness is the average
of CA and BN fitnesses. In the multiple-random environment case, fitness is the
average over 10 evaluations (i.e., different external environments). The evaluation
of CA and BN phenotypes was based on the cell types of Table 3.

Table 3. Cell types with their functionality

Cell Type Function name

a NAND
b OR
c AND
d IDENTITY CELL
X XOR
Y NOT

The 2D-CA is non-uniform of size 6x6. The BN network has a maximum size
of N = 36 nodes. The reason for this choice is that we want the architecture to
have the same state space. The number of outgoing connections per node is K =
5. For inputs more than 5, a self-connection to the originating node is created
instead. Generational mixing protocol was used as the GA’s global selection
mechanism and Rank selection for parental selection. For CA development, the
mutation rate was set to .005 and crossover rate at .001. The population size is
20. The GA was set to 10000 generation/Run.

5.5 Results

The result figures were generated after sampling the data every 100 values.
To present the influence mutation has over evolution, an average number for
each mutation type (i.e., positive, neutral and deleterious), is drawn across all
runs along with the standard deviation per generation. Common developmental
genomes show higher ratio of positive mutation during evolution for the single-
cell environment (Figures 8(a), 8(b), and 8(c)). Neutrality levels seems to be less
throughout evolution. Deleterious mutations follow positive mutations across all
species. In the random environment case, common genome holds a constant level
of neutrality which is slightly higher than the separate genomes for CA and BN
(Figures 8(d), 8(e), and 8(f)).

Higher neutrality ratio gives genomes the ability to choose amongst larger
span of potential trajectories in the fitness landscape, and greater ability to cope
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. Mutational analysis. Single-cell environment: (a) CA, (b) BN, (c) Common
developmental genome. Random environment; (d) CA, (e) BN, (f) Common develop-
mental genome. Multiple-random environment: (g) CA, (h) BN, (i) Common develop-
mental genome.

with uncertain and random environments. The same applies for the multiple-
random environment, where common genome has a higher constant ratio on
positive and neutral levels as compared to the other architectures (Figures 8(g),
8(h), and 8(i)). Also, common genomes appear to have lower standard deviation,
for the random and multiple-random environment cases.

To present the influence of developmental processes over evolution, an average
for each developmental process (i.e., growth, apoptosis and differentiation), is
drawn along with the standard deviation per generation. Common developmental
genomes hold higher growth and differentiation ratios for the single-cell, random
and multiple-random environments (Figures 9(c), 9(f), and 9(i)). Growth and
differentiation are crucial components of a genome towards evolvability [2]. Here,
it is obvious that as the environment becomes more difficult (i.e., from the single-
cell to the multiple-random), common genomes acquire higher ratios of growth
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and differentiation, if compared to the other architectures. Apoptosis levels are
close to zero in all cases. Higher standard deviation is shown for the multiple-
random environment case.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. Developmental processes for the single-cell environment: (a) CA, (b) BN, (c)
Common developmental genome. Random environment; (d) CA, (e) BN, (f) Common
developmental genome. Multiple-random environment: (g) CA, (h) BN, (i) Common
developmental genome.

Each conditional developmental process is averaged across all 10 runs and
the standard deviation is shown per generation. The conditional developmental
processes ratios for the single-cell environment seem homogeneous in all architec-
tures (not shown). What is worth noting is that the ratio of the apoptosis|growth
conditional process for the common genome looks like a convolution of the other
two architectures (Figures 10(a), 10(b), and 10(c)), with values being spread out
over a larger range (i.e., high standard deviation). It is not yet clear why and
what effect this has for common genomes development. The conditional growth
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and differentiation processes show similar behavior across all architectures (not
shown).

(a) (b) (c)

Fig. 10. Conditional apoptosis process for the single-cell environment. CA (a), BN
(b), Common developmental genomes (c).

The same result is obtained also for the random environment. The over-
all pattern is similar across all architectures (not shown). The ratio of the
apoptosis|growth conditional process for the common genome looks (again) like
a convolution of the other two architectures (Figures 11(a), 11(b), and 11(c)).

(a) (b) (c)

Fig. 11. Conditional apoptosis process on a random environment. CA (a), BN (b),
Common developmental genomes (c).

The last set of experiments on the multiple-random environment, con-
tributes clearly to the overall findings. For the common genome case, there
is higher exploitation of growth|differentiation and growth|apoptosis conditional
processes (Figure 12(e)). Also, a higher exploitation ratio of apoptosis|growth and
apoptosis|differentiation conditional processes (Figure 12(f)), and higher stan-
dard deviation is observed. No apoptosis|differentiation conditional processes
were observed for any of the architectures (not shown). Higher ratios of these
conditional processes dictates the complexity of the multiple-random environ-
ment and the effect it applies on the common genomes as they need to respond
and better adapt to the environment.
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(a) (b) (c)

(d) (e) (f)

Fig. 12. Conditional developmental processes on multiple-random environment. CA:
Conditional growth (a), apoptosis (b). BN: Conditional growth (c), apoptosis (d). Com-
mon developmental genomes: Conditional growth (e), apoptosis (f).

6 Conclusion

In this study, we investigated potential relations or patterns that exist between
mutation and evolution for the common developmental genomes and how these
are limited by the different environmental conditions. Also, we studied the devel-
opmental processes and the inherent dynamics involved and how environmental
conditions affect the outcome. In this line, we also made a comprehensive work to
identify directionalities during ontogeny by looking at conditional developmen-
tal processes and identifying which processes are triggered mostly under certain
conditions.

Concluding, common genomes showed higher positive and neutral mutation
ratios in more complex environments giving an inherent ability to cope with
such environments. Also, they acquired higher ratios of growth and differentia-
tion processes as compared to the other architectures. Lastly, high exploitation
ratios of growth|differentiation and growth|apoptosis conditional processes, of-
fered to common genomes the ability to perform in random environments. They
have also shown a larger plurality of conditional processes during development.
More work is needed towards conditional developmental processes and how these
affect evolution and the final phenotype.

As future work, we shall change the way of looking into the architectures, i.e.,
instead of looking at them as different species, we can consider them as organs
of a common developing biological entity. In this case, architectures need to be
merged (as is the case in biological organs). The overall goal of this study is to
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target more adaptive scalable systems able of complex computation. The explo-
ration of these architectures (i.e., hybrid architectures) with common genomes,
the current developmental model and the ability to shape the phenotype of the
system as modules, to change the dynamic properties of the entire system (i.e.,
phenotypic shaping), seem promising as future research.
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Abstract

Artificial development has been widely used for designing complex structures and as a

means to increase the complexity of an artifact. One central challenge in artificial devel-

opment is to understand how a mapping process could work on a class of architectures

in a more general way by exploiting the most favorable properties from each computa-

tional architecture or by combining efficiently more than one computational architectures

(i.e., a true multicellular approach). Computational architectures in this context comprise

structures with connected computational elements, namely, cellular automata and boolean

networks. The ability to develop and co-evolve different computational architectures has

previously been investigated using common developmental genomes. In this paper, we

extend a previous work that studied their evolvability. Here, we focus on their ability to

evolve when the goal changes over evolutionary time (i.e., adaptation), utilizing a more

fair fitness assignment scheme. In addition, we try to investigate how common develop-

mental genomes exploit the underlying architecture in order to build the phenotypes. The

results show that they are able to find very good solutions with rather simplified solutions

than anticipated.
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Abstract. Artificial development has been widely used for designing
complex structures and as a means to increase the complexity of an arti-
fact. One central challenge in artificial development is to understand how
a mapping process could work on a class of architectures in a more general
way by exploiting the most favorable properties from each computational
architecture or by combining efficiently more than one computational ar-
chitectures (i.e., a true multicellular approach). Computational architec-
tures in this context comprise structures with connected computational
elements, namely, cellular automata and boolean networks. The ability
to develop and co-evolve different computational architectures has pre-
viously been investigated using common developmental genomes. In this
paper, we extend a previous work that studied their evolvability. Here, we
focus on their ability to evolve when the goal changes over evolutionary
time (i.e., adaptation), utilizing a more fair fitness assignment scheme.
In addition, we try to investigate how common developmental genomes
exploit the underlying architecture in order to build the phenotypes. The
results show that they are able to find very good solutions with rather
simplified solutions than anticipated.

Keywords: Common developmental genomes, evolvability, cellular au-
tomata, boolean network, L-systems

1 Introduction

In artificial systems, a species can be linked to a certain computational archi-
tecture, such as, a cellular automata (CA) [1] or a boolean network (BN) [2].
Here, computational architectures are considered as structures comprising con-
nected computational elements. A computational element may represent a cell
(part of a cellular automaton) or a node (part of a boolean network). Most such
systems include a specific genetic representation (genotype), a mapping process
(genotype-to-phenotype) and have a specific structure as a target (phenotype).

A big challenge in developmental systems is how a genotype-phenotype map-
ping can work on a class of computational architectures (species), towards scal-
able systems for complex computation. So, it is important to investigate whether
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it is possible to exploit the most favorable properties from each species or to
combine more than one species in a more efficient way (i.e., a true multicellular
approach). To study this concept, an experimental approach was undertaken [3]
and [4], giving rise to common developmental genomes.

Common developmental genomes are genomes constructed in a modular way
(chromosomes), making it possible to develop and evolve more than one species,
towards a common goal [3],[5]. In [3], it was investigated whether common de-
velopmental genomes can favor the evolvability of different species. The species
studied therein were cellular automata and boolean networks. Evaluation of the
fitness was done by averaging the partial fitnesses of the species involved. Even
though common genomes exhibited superior ability to evolve and adapt to the
environment than genomes evolved separately for each species, the fitness evalu-
ation scheme in [3] needs some reconsideration. For example, a CA with a fitness
0.1 and a BN with a fitness 0.9, would have an average fitness of 0.5. On a dif-
ferent case, with the CA having a fitness 0.5 and the BN having a fitness 0.5,
we will also get an average fitness 0.5. As such, there is no way to discriminate
better from worse individuals in a population. Even still, they are all assigned
the same fitness score.

In this paper, we continue the study of [3]. The goal herein is to test the
ability of common developmental genomes to adapt when the goal changes over
evolutionary time (i.e., adaptation), facilitating a more fair fitness assignment
scheme. Through this new fitness evaluation scheme we aim at assigning a more
fair fitness to the evolving species but also, and perhaps more importantly, since
the genetic information (genotype) is common for all species, the scheme may
act as a means to indirectly apply evolutionary pressure towards the inferiorly
evolving species. In addition, we analyze the structures of the best phenotypes by
visual inspection and investigate how common developmental genomes exploit
the underlying architectures in order to build their solutions.

The rest of the article is laid out as follows. The developmental model is
given at Section 2. Section 3 give a brief description of the emergent dynamics
in artificial systems. Section 4 present the experimental setup. Results are given
in Section 5, with the conclusion at Section 6.

2 The Developmental Model

In this section, the genetic representation and the developmental model is given
in brief. For a detailed description, see [5]. Figure 1, shows the genome con-
structed by two parts or chromosomes. The first chromosome creates the cells /
nodes of the species whereas the second chromosome generates the connections.
Each chromosome is governed by rules. The rules for node / cell creation are
different from those for connectivity.

The rules of the first chromosome describe cell processes like growth, differen-
tiation and apoptosis and are used during the development process (ontogeny).
The rules of the second chromosome express the connectivity and are used for
developing the connections of the boolean network. To express the rules in the
chromosomes, an L-system is used as a developmental model.
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Fig. 1. The genome is split into two chromosomes: Node- and Connectivity-
chromosomes.

L-systems are rewriting grammars, able to describe developmental or genera-
tive systems and have successfully been used to simulate biological processes [7],
[8]. Two separate L-systems are used in the representation. The first L-system
processes the first chromosome rules where a second L-system deals with the
connectivity rules of the second chromosome.

2.1 The L-system for the First Chromosome

The L-system used here is context-sensitive. As such, development is using the
strict predecessor/ancestor to determine the applicable production rule. The
rules are able to incorporate all the cell processes of a species. Table 1(a), shows
the type of symbols used by the L-system of the first chromosome.

(a)

Symbol Description

a Add (growth)
b Add (growth)
c Add (growth)
d Delete (apoptosis)
X Substitute (differentiation)
Y Substitute (differentiation)
→ Production

(b)

Symbol Description

x Node (different from y)
y Node (different from x)
+ Connect forward
– Connect backwards
→ Production

Table 1. (a) Symbol table for nodes/cell creation, (b) Symbol table for creating con-
nectivity

Symbol a is the axiom. Apart from the symbols a, b, and c, which perform
growth of the phenotype, symbol d performs apoptosis, aiming at the deletion
of the current rule (i.e., cell/node). Symbols X and Y, represent the differenti-
ation process, replacing the predecessor cell/node. For example, for X→Y the
outcome will be Y. The length of each rule is 4 symbols (i.e., 4x8bits=32bits).
For node/cell generation the L-system runs for n timesteps and then stops. As
such, the intermediate phenotypes generated by development are of variable size.
Figure 2(a), gives an example of a first chromosome L-system.

Detailed example with step-by-step development of a 2D-CA architecture
can be found at [5].
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(a) (b)

Fig. 2. (a) L-system rule set for node/cell generation, (b) L-system rule set for con-
nectivity.

2.2 The L-system for the Second Chromosome

The rules are able to generate the connections necessary for the wiring of the
nodes. They contain symbols which when executed by the L-system, result in
creating a connection forward or backwards from the current node. Each node
in the network has unique numbering; current node holds number zero and any
nodes starting from the current node forward have positive numbering. Nodes
existing from the current node backwards, have negative numbering. As such,
there is a need to differentiate between the current and the next node, using
different symbols but also to describe when a connection will be created forward
or backwards from the current node.

The length of connectivity rules is also four. The L-system uses a D0L (i.e.,
with zero-sided interactions). The second chromosome L-system is shown at
Figure 2(b). Symbols are explained in Table 1(b).

The axiom rule for the second chromosome is x→y. Then, development con-
tinues looking for rules of type xy→+value, or xy→-value. In short, these two
rules imply that if two different (distinct) nodes are found (x �=y), it creates a
connection forward (if the rule includes a ’+’), or similarly a connection back-
wards (if the rule includes a ’-’). The field value is encoded in the genotype and
denotes the node number of the newly created connection. If value=0, a self-
connection is created to the current node. Detailed example with step-by-step
development of a boolean network architecture is presented at [5].

2.3 The Genetic Algorithm for Common Genetic Representation

A genetic algorithm (GA) is utilized to create and evolve the chromosome rules.
Since there are two separate L-systems involved in development, the evolution-
ary process will be consisted of two phases: a. the creation of nodes and b. the
creation of the connections. Mutation and single-point crossover are used as ge-
netic operators. Mutation may occur anywhere inside the 4-symbol rule, such
as the production symbol (→) remains undistorted after mutation. Single-point
crossover between two parents always takes place at the position of the pro-
duction symbol in the rule. The evolutionary cycle ends after a predetermined
number of generations.
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3 Emergent Dynamics in Artificial Systems

In biology, development is a process starting from a zygote and develops into
a multicellular organism. Similarly, in the artificial domain, development simu-
lates this biological process; from an given initial condition, the zygote, through
an iterative developmental process, it can develop into a final structure (phe-
notype). Assuming the developmental process is deterministic, i.e,. the outcome
of development is defined by the initial zygote (genome), some initial condition
and a developmental mapping, then an initial configuration (or a set of configu-
rations) exists and is sufficiently defined by the developmental genome and the
initial conditions [6].

Any sparsely connected computational architecture (i.e., CA, BN, etc.) can
be represented in the space time domain. Phenotypic structures can be shown as
nodes and their transitions in time can be shown as developmental paths from the
zygote to the final organism. Development of a structure comprise developmental
steps (DS). Each DS may include one or more developmental processes proposed
by the model (Section 2). Development starts with the zygote (initial genome).

Fig. 3. Developmental path of a structure shown as a trajectory.

Figure 3 shows the path of development of a non-uniform 2D-CA. White cells
are considered empty whereas colored cells represent the CA rule of the particular
cell. Solid lines represent consecutive developmental steps (DS 10-11 and DS
99-100). Non-consecutive developmental steps are represented by dashed lines
(zygote-DS 10 and DS 11-99). The path from the zygote until DS 10 has gone
through 10 different intermediate phenotypic structures. Similarly, the path from
DS 11 until DS 99 has produced 88 different intermediate phenotypic structures.
DS 100 has a loop back to DS 99; this type of behavior is a cycle attractor which
indicates whether the structure is stable or not. The path until DS 99 represents
a transient period or phase. The structure at DS 100 is the final phenotype.

The behavior of the system is described by the initial state and the trajec-
tory of all 100 developmental steps of the example. Each developmental step is
further analyzed into state steps (SS). A state includes cell/node information
giving a snapshot of instantaneous behavior. As such, state steps provide infor-
mation about the emergent behavior of intermediate and final phenotypes in the
space/time domain.

The descriptions on emergent dynamics explained above, are useful to better
understand the definitions of the computational goals for the common develop-
mental genomes (Sections 4.3 and 4.4).

129



4 Experimental Setup

For the experiments, a 6x6 2D-CA and a N=36 BN is used. The size chosen
for the CA is the minimum possible. By choosing a smaller lattice size, there
will be too many dependencies in the cell states of the CA. Also, the maximum
number of nodes/cells in the species should allow for easy, visual explanation of
the final phenotypic structures. The larger the size of the species, the harder it
is to visually interpret their structure.

For the two species to be comparable, they must have the same state space
or the same amount of possible states. Since the size of each architecture is 36
and each cell/node can take 2 different distinct values (boolean), the total state
space for each species is 236. The number of outgoing connections per node is
K = 5. When the number of outgoing connections exceeds five, a self-connection
to the originating node is created instead. The number of incoming connections
per node is limited only by the total number of nodes found in the network
(N − 1).

For each individual, a random initial state is created and fed into the archi-
tecture. We use a total number of 36 rules for node generation and connectivity
(i.e., 32x36=1152bits). Each rule can be reused during L-system development.
The GA program drives a single population of 20 individuals. Development runs
for 100 timesteps (DS) for each individual. In each DS, behavior is defined by
1000 state steps (SS). Generational mixing is used as global selection mechanism
and fitness proportionate for parental selection. Mutation rate is set to .0009 and
crossover rate to .001. We run a total of 20 experiments of 10000 generations
each. Evaluation of phenotypes is given by the cell types and functionality of
Table 2.

Cell Type Function name

a NAND
b OR
c AND
d IDENTITY CELL
X XOR
Y NOT

Table 2. Cell types and functionality.

4.1 Fitness assignment scheme

The new fitness evaluation scheme used is described in four steps:

– Run the first 20% of evolutionary time using normal fitness evaluation (final
fitness is the average of the fitnesses of CA and BN), e.g., fitnesstotal =
(fitnessCA + fitnessBN )/2

– In the next 20% – 50% of time and if the partial fitnesses differ more than
30%, there is an extra 10% of fitness credit assigned to the species with the
higher fitness. For example if CA has a 30% higher fitness than BN, then
fitnesstotal = [(fitnessCA + (fitnessCA ∗ 0.1)) + fitnessBN ]/2
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– In the next 50% – 70% of time, species are evolved using normal fitness
evaluation, e.g., fitnesstotal = (fitnessCA + fitnessBN )/2

– In the final 70% – 100% of time and if the partial fitnesses differ more than
30%, there is an extra 10% of fitness credit assigned to the species with the
higher fitness. For example, if BN has a 30% higher fitness than CA, then
fitnesstotal = [(fitnessBN + (fitnessBN ∗ 0.1)) + fitnessCA]/2

The highest assigned fitness score is 100 and the lowest is 2 with a worst-case
of 0.1. The final fitness for the common developmental genome is the average of
the fitness of the species involved. If, for example CA’s fitness is 50 and BN’s
fitness is 20, the final fitness of the common developmental genome will be 35.

4.2 Studying the dynamic behavior

To study the evolvability of computational properties, the system must be able
to target different behavior on the architectures chosen (CA and BN). Their
behavior can be evolved through the study of various dynamic problems i.e.,
stable point attractor, short attractors or long repetitive/chaotic behavior.

The computational problems chosen here describe some basic dynamic be-
havior for CA and BN and the goal is generally expected to be reached. Though,
the problems as such are of minor importance since we are mainly after the abil-
ity of common developmental genomes to adapt during evolution.

4.3 First problem definition

Evolution searches for a cycle attractor of size 2-160, at generations 1 - 5000.
A minimal cycle attractor can be found as early as in SS 2, that is, behavior is
stabilized and the final structures are phenotypes obtained at SS 1 and SS 2. On
the other extreme, a maximally big cycle attractor may be found as late as in SS
1000-160=840. Best fitness score is assigned for cycle attractors of size 80. Here,
no fitness credit is assigned for cycle attractors found at an earlier or later stage
i.e., a cycle attractor can occur after any transient phase. Fitnesss distribution
is given at Figure 4(a).

4.4 Second problem definition

After generation 5000, the evolutionary goal change. From generation 5000 -
10000, evolution searches for a transient phase of size 1-200, followed by a cy-
cle attractor of 2-160 steps. Best fitness score is assigned for transient phase
100 and cycle attractor 80. This is a harder problem than the previous one,
considering that the total number of states / developmental step is 1000. No
credit is given for point attractors following a transient phase. Here, separate
fitnesses are assigned for the transient phase and the cycle attractor. The final
fitness is estimated by averaging their respective fitnesses, e.g., for the CA will be
fitnessCA = (fitnesstransient+fitnesscycleattractor)/2. The fitness distribution
for this problem is shown at Figure 4(b).
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Fig. 4. Fitness distributions plots: (a) Cycle attractors, (b) Transient phase & cycle
attractor.

5 Results

Figure 5 shows the average fitness evaluation of common developmental genomes
over all runs. The ’AVG’ line shows the average fitness of both species (CA and
BN). The ’CA’ line shows the average fitness of the cellular automata only and
the ’BN’ line gives the average fitness of the boolean network.

The first problem (search for cycle attractor) is studied at generations 1-5000.
During this period, both CA and BN are able to find fairly good solutions. After
generation 2000, the effect of the new fitness assignment scheme can be observed.
BN is constantly being credited with an extra 10% of fitness due to its fitness
difference to the CA. This credit assignment in one of the species in common
developmental genomes, can indirectly act as a means of evolutionary pressure
for the other species, since they share the same genetic information. Though,
the performance of the CA remains constant until the very end. It is not until
generation 4600, where an improvement in performance for both species occurs.

The second problem (search for transient period & cycle attractor) is exam-
ined at generations 5001-10000. At generation 5001, the genome still contains
genetic information optimized for the previous problem (generation 5000). So,
the same genetic information acts as a basis for the second problem, which ini-
tially gives only average solutions. After generation 7000 the new assignment
scheme gets into effect. This is evident from a sharp fitness increase for both
species. Here, the performance of BN has an impact in the performance of the
CA (generation 7350).

Figure 6 shows some evolutionary steps of one of the best CA runs over time.
Solid line shows consecutive generations where dashed lines delineate more than
one generation steps. The figure, shows some of the best evolved phenotypes for
the first problem (gen.2-5000). From generation 5001, the target changes and the
genome tries to adapt to the newly set goal, with a clear impact in the fitness.
Some of the phenotypes for the second problem are shown for generations 5001,
8500 and 10000.

The model managed to find several perfect solutions for the first problem,
but also, many good solutions for the second problem. The solutions achieved by
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Fig. 5. Fitness evaluation of common developmental genomes (averaged).

Fig. 6. Some of the best intermediate and final phenotypes of a CA evolution over
time.

the developmental model with the CA, extended out exploiting the complete CA
lattice for both the problems investigated. In addition, development produced
maximally big genomes at the very beginning of the process (not shown). As we
will see in the next paragraph, this is not the case for the evolved BN phenotypes.

Figure 7 shows two of the best evolved BN solutions for the first problem at
generation 5000. Both solutions solved this problem perfectly (fitness 100), but
with a quite different structure. The solution at Figure 7(a), shows a network
where each node has at least two connections to other nodes and at least one
self-connection.

The numbers at the nodes indicate the node number and the connections are
shown in black solid lines. Since there is no explicit positional information for
the nodes of the BN, the node numbers indicate their sequential position (next,
previous node). The arrow at the end of each connection, indicates the flow of
information between the originating and destination nodes.

On the other hand, the solution at Figure 7(b), shows a network where one
node is rather influential (node nr.1), since the outcome of the majority of the
nodes in the network, is dependent on the outcome of node nr.1. Self-connections
are rare since most of the connections point to a different node than the origi-
nating node.

Some of the near-perfect solutions given by evolution (fitness > 80), include
networks with a rather small number of nodes (not shown). All perfect solutions
(fitness 100), involved networks having the maximum number of nodes allowed by
the model (N=36). This suggests that development initially tries to seek solutions
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Fig. 7. Two of the best evolved boolean networks for the first problem (generation
5000, fitness 100).

using less number of nodes and then extends the networks by introducing more
nodes in the network. This shows an unexpected emergent behavior of the system
since the developmental model was not designed as such.
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Fig. 8. The best evolved BNs for the second problem (generation 10000, fitness 76).

Figure 8 shows the best evolved BN solutions for the second problem at genera-
tion 10000. Both solutions have a rather small number of nodes (N=6) and most
of the nodes have at least one self-connection. Other, less than perfect solutions
provided networks having the max number of nodes (N=36).

At generation 5001, the goal changes and evolution finds near perfect solu-
tions with networks of similar size as before. At the end of evolution, the solutions
included networks with a rather simplified structure. The latter shows that the
developmental model is able to give both complex and more simplified solutions,
depending on the goal sought.
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(a) (b)

Fig. 9. Amount of CA structures that is computing (light gray) versus their static
parts (dark gray). (a) First problem, (b) Second problem.
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Fig. 10. Computing parts of BN phenotypes for the two of the best evolved networks
for the first problem.

Next, we investigate how common developmental genomes exploit the un-
derlying architectures, in order to build the final solutions. To achieve this, we
focus on the variation of the nodes/cells during evolution. Here, we are inter-
ested only in the change of the value of the cell/node, not if the change has a
positive (i.e., fitness increase), or a neutral (i.e., equal fitness) impact to the fit-
ness. Cells/nodes performing rarely any computation (≺30% of the evolutionary
time) are considered static, where cells/nodes computing more than 30% of the
time is considered that they are actively contribute to the final solution.
Figure 9 shows two 2D-CA of size 6x6. The light-gray colored cells indicate
cells that compute. As such, a total of 70% approximately of the CA structure
is actually computing during evolution. Similarly, the dark-gray colored cells
indicate cells that are static, constituting a total of 30% of the structure.

Next, Figure 10 shows the two best evolved networks for the first problem
(as in Figure 7). The nodes of the networks that are computing are shown in
dark gray color. Figure 10(a) indicates that approximately 55.6% of the network
is computing with the rest 44.4% of the network being static. Similarly, Figure
10(b), shows that a total of approximately 70% of the network is actually active.
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The BN solutions found, give quite different statistics; the first network solution
involve more self-connections/node than the network solutions for the second
problem. Self-connections contribute to the network’s neutrality and this can
partially have an impact on the amount of the network that is actually active.
Regarding the second problem (network solutions of Figure 8), all the nodes in
the networks found to be computing and no static nodes are observed.

6 Conclusion

In this work, we extended a previous study by looking at how common develop-
mental genomes can evolve computational architectures when the goal changes
over time (evolution through adaptation). The focus here was to evolve CA and
BN computational architectures with simple cycle attractor with transient phase
problems as a computational goal and a more fair fitness assignment scheme.
Also, it was investigated how common genetic representation is being exploited
during development, sometimes exhibiting emergent behavior during phenotype
construction. Common developmental genomes where able to adapt fairly well
to each problem, considering the number of available state steps during devel-
opment. In addition, they were able to exploit a large part of the underlying ar-
chitectures having on average more than 55% of the total number of cells/nodes
actively computing, for both problems studied.
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In most EvoDevo (Evolutionary Developmental) systems, genotypes are developed and

evolved towards a structural or computational goal utilizing some kind of computational

architecture (i.e., structures made of connected elements that may compute). Exploiting a

common genotype to develop and evolve different classes of computational architectures

towards a common goal has previously been successfully implemented, through common

developmental genomes. In this work, we focus at how common genomes exploit the un-

derlying architectures during development and build structure (network morphology) in

phenotypes for different problem instances and architecture sizes. Common developmen-

tal genomes showed an ability to exploit the size of the architecture by actively involving

a larger number of nodes/cells while managed to maintain a small number of neutral and

static parts in the evolved structures.
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Abstract—In most EvoDevo (Evolutionary Developmental) sys-
tems, genotypes are developed and evolved towards a structural
or computational goal utilizing some kind of computational
architecture (i.e., structures made of connected elements that
may compute). Exploiting a common genotype to develop and
evolve different classes of computational architectures towards
a common goal has previously been successfully implemented,
through common developmental genomes. In this work, we focus
at how common genomes exploit the underlying architectures
during development and build structure (network morphology) in
phenotypes for different problem instances and architecture sizes.
Common developmental genomes showed an ability to exploit the
size of the architecture by actively involving a larger number of
nodes/cells while managed to maintain a small number of neutral
and static parts in the evolved structures.

Index Terms—Developmental genomes, L-systems, morphol-
ogy, cellular automata, boolean networks

I. INTRODUCTION

One central challenge in artificial development is to understand
how a mapping process could work on a class of computational
architectures (species) in a more general way. Computational
architectures can for example be cellular automata (CA) [1]
or boolean networks (BN) [2]. The hypothesis for going
this way forward is that it may be possible to exploit these
properties from each computational architecture or combine
more than one architectures in a more efficient way (i.e., a true
multicellular approach) [3]. This hypothesis has given rise to
common developmental genomes (CDG) [4].
Common developmental genomes have shown a potentiality

of developing different classes of computational architectures
with non-identical structural [4] or computational [5] pheno-
typic properties. A simple stock market model with varying
architecture size (N = 144, N = 169, and N = 196) was
studied in [5], using CA and BN as architectural models.
Although results showed that CDG are able to find better
solutions for certain architecture sizes than single genomes
evolved specifically for a one computational architecture only
(i.e., CA or BN), no insight was acquired regarding how they
manage to evolve networks towards the final phenotypes.
In [6], is mentioned that a sequence (phenotype) and the

description of the environment in which that sequence is to
be interpreted, is expressed in terms of physical complexity
(which technically can be defined as the shared Kolmogorov
complexity). By borrowing related concepts from Kolmogorov

complexity [7], it can be inferred that the more information
required to fully describe an object and its environment, the
more complex the object is. As a simplified example, let
k be the amount of information required to describe i.e., a
finite state automaton. For k = 4, we suggest that the finite
state automaton at timestep t, can be fully described by an
amount of information of four. It is assumed that environment
information is included in this description. As such, for k = 5,
the finite state automaton in a later timestep, i.e., t + Δx, is
characterized by an information amount of five. Therefore, the
latter automaton is interpreted as a more complex system. This
simple notion is used here as a rudimentary metric to describe
the complexity of a problem instance.
In this work, we investigate how CDG model exploits the

underlying computational architectures during development
and builds structure (network morphology) for different prob-
lem instances and architecture sizes. The motivation here is
to see how common genomes manage to develop and evolve
network structures in phenotypes in more scalable conditions.
This is supported by a need to understand what dynamic
conditions apply during evolution and whether architecture
size affects their ability to evolve.
The rest of the article is organized as follows. The develop-

mental model is briefly described at Section II. Experimental
design is given at Section III with results at Section IV. Finally,
conclusion and future work come at Section V.

II. THE DEVELOPMENTAL MODEL

In this section, the genetic representation and the developmen-
tal model is described in brief. For a detailed description of
the model and analytical examples for cellular automata and
boolean network development, see [4].
The genome comprise two parts or chromosomes as shown

at Figure 1. The first chromosome creates cells/nodes of the
species where the second chromosome generates the connec-
tions. Each chromosome is governed by rules. The rules for
node/cell creation are different from those for connectivity.
The rules of the first chromosome describe cell processes

like growth, differentiation and apoptosis and are used during
the development process (ontogeny). The rules of the second
chromosome express the connectivity and are used for devel-
oping the connections of the boolean network. L-systems are
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Fig. 1. Genome comprise two chromosomes: Node and Connectivity.

TABLE I
SYMBOL TABLE FOR (A) NODES/CELL CREATION, (B) CONNECTIVITY

(a)

Symbol Description

a growth
b growth
c growth
d apoptosis
X differentiation
Y differentiation
→ Production

(b)

Symbol Description

x Node (other than y)
y Node (other than x)
+ Connect forward
– Connect backwards
→ Production

rewriting grammars, able to describe developmental or gen-
erative systems and have successfully been used to simulate
biological processes [9]. Two separate L-systems are used in
the representation as the developmental model; the first L-
system develops cell processes of the first chromosome and
the second L-system develops the connectivity rules of the
second chromosome. Table I show the symbols used by the
L-system for the first and second chromosomes.
Symbol a is the axiom. Apart from symbols a, b, and c,
which perform growth of the phenotype, symbol d performs
apoptosis i.e., deletion of current rule (cell/node). Symbols
X and Y, represent the differentiation process, replacing the
predecessor cell/node. For example, for X→Y, outcome will be
Y. For node/cell generation, L-system runs for n timesteps and
then stops. As such, the intermediate phenotypes generated by
development are of variable size. Figure 2, show an example
of a L-system grammar that can be used for developing
chromosome rules.

(a) (b)

Fig. 2. (a) L-system rule set for node/cell generation, (b) L-system rule set
for connectivity.

A simple example of a 2D-CA development is illustrated at
Figure 3. Development starts with any of the symbols a, b or
c, representing a cell at developmental step (DS) 0. The next
rule triggered is a→bX. This rule generates two cells b and
X, resulting in CA growth, at DS 1. The next rule triggered
is bX→Y. Since X→Y denotes differentiation, X is replaced
by Y at DS 2. For differentiation to occur, rules should either
be X→Y or Y→X. Next, rule Y→c triggers causing again CA
growth (DS 3). At DS 4, rule c→da is triggered, causing the

death of cell c and growth of CA with the cell a.

A. The Genetic Algorithm
A genetic algorithm (GA) is utilized to evolve the chromo-

some rules. Since there are two separate L-systems involved
in development, evolutionary process consists of two phases:
a. creation of cells/nodes and b. generation of connections.
Single symbol mutation and single-point crossover are used
as genetic operators. Mutation may occur anywhere within the
4-symbol rule, so that production symbol (→) remains intact.
Single-point crossover between two parents takes place at the
production symbol location within the rule. The evolutionary
cycle ends after a predetermined number of generations.

III. EXPERIMENTS

In [5], it was studied whether the same developmental mapping
can favor the evolvability of different computational archi-
tectures (i.e., CA and BN), in problem instances where the
amount of information required to fully describe the system
increases. As explained in Section I, this approach allows for a
simple characterization of the complexity of problem instance.
Complexity in a problem instance is defined in brief by the
number of cell states involved to decide upon the state of the
current cell (Section III-A).
Although a great deal of the capabilities of CDG was

acquired in [5], [8], no studies were done to understand how
the model exploit the underlying architectures and how it
builds network structures or morphologies. This becomes more
interesting as the developmental model is investigated using
problems of varying complexity under scalable conditions. It
might be that the model builds different network structures
for "easier" problem instances or when architecture size (N)
remains small. In addition, it may be possible that CDG exploit
architectures in a similar way with any problem instance or
that the size of architecture does not really affect the ability
of the model to evolve and find some of the best phenotypes
in the solution space.
So, the goals of the experiments to follow are: (i) study

how the model exploits underlying architectures during devel-
opment for varying architecture size and problem instance, and
(ii) investigate how the developmental model builds network
structure (morphology) for the best phenotypic solutions.

A. Experimental Setup
We develop two different computational architectures (2D-

CA and BN) with size: a. N = 36, b. N = 64, and c.
N = 100 cell/node. The size of architectures is smaller
than in [5], but large enough so that dependencies amongst
cells/nodes be minimized during state evaluation. In addition,
the size chosen should allow for easy, visual explanation of
the network structures of the phenotypes.
For architectures to be comparable, they must yield the

same state space or number of possible states. For example,
an architecture of size N = 36, each cell/node can take 2
different distinct values (boolean). The total state space for
each architecture would then be 236. The number of outgoing
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Fig. 3. Development of a 2D-CA architecture based on the example L-system for the first chromosome.

connections per node is K = 5. If the number of outgoing
connections exceeds five, a self-connection to the originating
node is created instead. The number of incoming connections
per node is limited by the total number of nodes in the network
(N − 1). For simplicity, the length of each rule is 4 symbols
(i.e., 4x8bits=32bits). The total number of rules for cell/node
and connectivity is 64 with total size 32x64bits=2048bits. Each
rule can be reused during a developmental cycle. The GA
drives a single population of 20 individuals. All GA parameters
are similar to [5]. Development runs for 100 time steps
for each individual in the population. Generational mixing
is used as the GA’s global selection mechanism and fitness
proportionate for parental selection. Mutation rate is .009 and
one-point crossover rate .001. Rates are chosen based on past
experience with the model [5], [8].
The computational problem is described at Section III-B.

For each problem, instances of different configuration are
considered; an instance with no-state memory and instances
of 2-, and 5-state memory. Problem instance description is
given below (Sections III-C, III-D, III-E).

1) Preliminary Run: We initially run a set of 10 ex-
periments of 1000 generations for each problem instance
and architecture size. For each individual, a random initial
environment is fed into the architecture (CA and BN). This
preliminary experiment resulted in ten final phenotypes. For
each architecture size, we chose the two best and two worst
solutions, based on their fitness. Since the focus of this work
is to investigate how the model builds network structure,
phenotypes yielding a distant fitness one should anticipate di-
verse genetic information in genotypes. Evolving further these
genotypes will presumably result in very different network
structure morphologies.

2) Main Run: After best and worst phenotypes for each
problem instance are chosen, their genotypes are further
evolved by an additional set of experiments. Each genotype
is fed into the model and run once over 500 generations each,
for the same computational task. The final fitness score is
the average of the fitness of all four (two best & two worst)
genotypes.

B. A Simple Stock Market Model
A simple stock market model is set as the computational

task since such models provide interesting dynamics phenom-
ena [10]. 2D-CA and BN lattices are used to represent a typical
trading behavior. Each cell/node corresponds to a trader that
either buys or sells on each timestep. The model is based on
local interactions and involves simple rules to represent the
behavior of the traders. The behavior of a trader X at timestep

TABLE II
RULES TABLE FOR THE STOCK MARKET MODEL

Left neighbor Right Neighbor Next state

buy buy buy
buy sell buy
sell buy buy
sell sell sell

t is determined by the behavior of its two neighboring traders
at timestep t − 1. The governing trading rules are given at
Table II. If for example the left neighbor buys and the right
neighbor sells, the state of the current trader at timestep t is
buy. The states of the stock market model are translated into
binary values for assessing the fitness, that is, sell = 0 and
buy = 1. Fitness is assessed employing the total number of
buy states in the architecture, as shown in (1).

fitness =

⎛
⎝
∑

buy

N

⎞
⎠ , where N = architecure size (1)

Following is a short description of the problem instances that
are used in the experiments:

C. No-State Memory Problem Instance
Species hold no state memory (i.e., do not take into account

previous states, in order to decide upon the current state of
the cell). Since the model uses two neighbors to decide upon
the state of the current cell, the instance has a rudimentary
complexity k = 2.

D. A 2-State Memory Problem Instance
Except the two current neighbors, rules in this case take

into consideration the state of the cell during the two previous
timesteps (state memory 2), to decide upon the state of the
current cell. Rules are based on the trading behavior (buy/sell)
that dominate within the environment, using simple majority.
As such, the instance would have a rudimentary complexity
k = 4.

E. A 5-State Memory Problem Instance
Except the two current neighbors, rules in this case take

into consideration the state of the cell during the five previous
timesteps (state memory 5), to decide upon the state of the
current cell. Rules are based on the behavior (buy/sell) that
dominate within the environment, using simple majority. This
instance would have a rudimentary complexity k = 7.
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Fig. 4. Averaged normalized (0-1) runs for the different architecture sizes
(a) 36-node/cell, (b) 64-node/cell, (c) 100-node/cell architecture.

IV. RESULTS

Figure 4 shows the average (normalized) fitness results of
the preliminary run with ten evolved phenotypes for different
architecture sizes (N=36, N=64, and N=100). Each figure
shows a combined bar chart for the instance problems (i.e.,
no-state, 2-state, and 5-state memory). After preliminary run
(Section III-A1), two best and two worst phenotypes for each
architecture size, are selected for the main experiment. That
is, four phenotypes from each problem instance for N=36,
N=64, and N=100. Phenotypes chosen for the main experiment
(#Run), are shown at Table III.

TABLE III
PHENOTYPES CHOSEN TO INCLUDE FOR FURTHER DEVELOPMENT AND

EVOLUTION.

Prob.Instance 36-node 64-node 100-node

no-state #7,#8,#9,#10 #1,#3,#4,#7 #2,#3,#6,#10
2-state #1,#2,#8,#9 #1,#6,#8,#9 #6,#8,#9,#10
5-state #1,#2,#3,#4 #1,#2,#3,#4 #1,#2,#4,#10

A. Rate of Change of the cell/node

To study how CDG exploit the underlying computational
architecture, first is investigated how they are deployed during
development. That is, monitor and estimate how each cell/node
changes with respect to developmental time (i.e., Rate of
Change or RoC). The rate of change is given by the derivative
dy/dt, where y is the change of cell/node over the previous
value and t the instantaneous developmental time.
Figure 5 shows the average RoC (%) and standard deviation

for each cell/node during development for varying architecture
size. The average RoC is estimated by averaging the RoC of
each cell/node of the architecture for all generations. Standard
deviation shows the dispersion of the max/min RoC from the
mean value for each cell/node for all generations.
Generally, the first part of the architectures (cells/nodes 1-

10), involve a higher RoC for all problem instances. 5-state
memory problem yield a considerably higher average RoC,
comparing to the other two instances, i.e., the no-state and
2-state memory. The average RoC for the 5-state memory
problem, is inversely proportional to the architecture size.
No-state memory RoC, is proportional to the architecture

size. At Figure 5(a), we observe that the average RoC is quite
low but at figure 5(c) the average RoC is similar to that of the
2-state memory problem. The average RoC of 2-state memory
exhibits a similar behavior and is not affected by the size of
the underlying architecture.

B. Evolved Network Structures

In this section, we investigate how common developmen-
tal genomes build the network morphology of the solutions
sought. As network morphology, we mean parts of network
structure that have certain characteristics. These characteristics
are based on i. the developmental dynamics and ii. changes in
the phenotypic structure. Since any of these factors may have
an impact to the "local" fitness of the individual, we record and
analyze the best only individuals, by identifying the following
conditions:
1) Positive impact to the fitness. For example, a new

cell/node added or a different connection pattern may
assign a greater fitness score than previously.

2) Neutral impact to the fitness (neither positive nor nega-
tive). For example, a cell/node with differentiated func-
tionality or a newly deleted connection between two
nodes may have no impact to the fitness.

3) Cell/node functionality or connectivity remain static
during evolution, i.e., no changes have occurred.
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Fig. 5. Average rate of change (%) for (a) N=36, (b) N=64, (c) N=100,
node/cell architecture during development.
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Fig. 6. Results of the three dynamic conditions for the problem instances
during evolution.
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Visualization of dynamic evolution of network structures
were analyzed with Cytoscape and DynNetwork plugin [13],
[11]. Figure 6(a), shows the amount of structure (%) that
contributes to the fitness, for different architecture sizes. The
number of cell/nodes contributing positively to fitness is gen-
erally increasing with problem instance. Similarly, as the size
of architecture increases, the number of cell/nodes contributing
to the fitness increase. The result for N=100, follows the
other two trends for N=36 and N=64, reaching a maximum
contribution for 2-state memory problem. Unfortunately, trend
failed to keep up since it flattens out for the 5-state memory
problem.
Figure 6(b), shows the average amount of the structure (%)

that has neutral impact to the fitness. The amount of neutrality
in the structure for N=36 and N=64 is almost constant for
all problem instances. Structures evolved for N=100, show a
decreasing amount of network neutrality in the morphology
when the problem instance’s complexity increase. Figure 6(c)
indicate average amount of static structures. Network struc-
tures for N=36, show that the number of static cells/nodes
during evolution is almost constant when the problem in-
stance’s complexity increases. Conversely, network structures
for N=64 and N=100, initially involve a large number of static
cells/nodes, but the number of nodes gradually decrease as
problem’s complexity increase.
Focusing on how network structures are evolved, common

genomes initially generate solutions (phenotypes) that exploit
the maximum number of nodes/cells available in the architec-
ture. Subsequently, common genomes enter into a phase where
evolved phenotypes are characterized by network solutions of
smaller size with the same fitness. At later evolutionary stages,
the developmental model provides solutions yielding the total
number of available nodes/cells in architecture. This behavior
was identified only in no-state and 2-state memory problem
instances. This is justified by the decreased capacity of the
5-state problem towards neutral dynamics as shown at Figure
6(b).
Figure 7 show an example of emergent behavior for one of

the best no-state memory, N=64 boolean network. All boolean
networks shown in this figure are perfect solutions, i.e.,
individuals with best fitness score. Evolution starts exploring
a large number of nodes at generation 1. Next generation, the
model finds perfect solutions with smaller network structure
(N=52). The model continues to provide phenotypes with sim-
ple structure also in later evolutionary stages (i.e., gen. 2-423).
From generation 424, evolution started to explore solutions
with more complex structures. Figure 7(c)-7(e) show some
phenotypes with most complex network structure (N=64). Net-
works are plotted with the force-based graph layout algorithm.

V. CONCLUSION AND FUTURE WORK

In this work, we investigated how CDG manage to exploit
the underlying computational architectures during develop-
ment and how they build network structures (morphology) for
different problem instance and architecture size. CDG showed
an emergent behavior where an increased number of cell/nodes

was employed and the number of neutral and static parts
of network structures were constantly small. In addition, it
was shown that the more complex the problem (i.e., 5-state
memory problem), the higher the rate of change. The rate of
change was shown to be inversely proportional to architecture
size.
Same type of behavior was also shown in [12], where

common genomes initially found solutions whose network
structures yielded a small number of nodes. At later evolu-
tionary stages solutions employed a larger number of nodes.
Among the final solutions were also phenotypes whose net-
work structures were rather simplified, i.e., the model did not
need to exploit the total number of nodes available in the
underlying architecture to obtain maximum fitness.
Both here and in [12], the model showed emergence since

it was not designed to exhibit such behavior. Also, although
the target tasks in the latter work were very different in
nature, common genomes showed an ability to explore the
solution space by providing solution whose structure range
from simplified to complex.
Future work involves the generalization of the findings of

this work. To draw statistically correct conclusion, results
need to be validated with further experimentation. It is also
interesting to investigate whether the amount of static/neutral
parts of network structures may have a direct influence to the
robustness of the evolved system.
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