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Abstract 
Non-linear finite element analyses (NLFEA) of reinforced concrete structures have gained 
much attention in the structural engineering community during the last decade, and the 
practising engineer is now equipped with an advanced tool that can be used in the design 
process. The three main objectives of the present work has been i) to develop a solution strategy 
for NLFEA applicable during design of large reinforced concrete structures, ii) to quantify the 
modelling uncertainty obtained with the solution strategy, and iii) to quantify the variability of 
the compressive strength of concrete. These are central ingredients in the semi-probabilistic 
safety formats for NLFEA introduced in the literature. A solution strategy comprises all the 
choices that need to be made in order to perform a NLFEA, and the modelling uncertainty 
indicates how well the analysis outcomes compare to the real physical behaviour. 
 
A three dimensional material model for concrete was adapted and implemented in a finite 
element software. The material model required only one material parameter, the uniaxial 
compressive strength. The complete solution strategy is discussed in detail in the appended 
papers. A refinement of the solution strategy is only justified if the resulting modelling 
uncertainty is reduced, if necessary knowledge about the basic variables can be obtained, and 
if in the end it can be shown to produce results that provide a better basis for decision making. 
 
The modelling uncertainty was quantified by comparing NLFEA predictions to experimental 
outcomes, resulting in a bias of 1.10 and a coefficient of variation of 0.11. All the uncertainties 
that are not explicitly considered in the NLFEA will implicitly contribute to the estimated 
modelling uncertainty, and a pure modelling uncertainty is thus not straightforward to obtain. 
This is unfortunate, since the modelling uncertainty will carry a large part of the uncertainties 
in the problem. However, it can be useful, since the analyst later does not need to consider the 
uncertainties that were not considered during quantification of the modelling uncertainty.  
 
A hierarchical model for the variability of material properties was formulated for the study of 
the compressive strength of ready-mixed concrete. By combining Bayesian inference and 
maximum likelihood estimators, the contributions from the different hierarchical levels were 
quantified. The method was demonstrated on more than 14000 compressive strength recordings 
from the Norwegian market. The results indicate that the designer should specify strength 
classes that better utilize the strength potential of the durability class. A closer collaboration 
between the designer, contractor and the producer is expected to result in improved concrete 
specifications. 
 
In addition to summarizing the main findings of the work, this thesis contains a part describing 
the background and the context of the work. 
 
Keywords: non-linear finite element analyses, large reinforced concrete structures, practical 
applications, modelling uncertainty, structural design, ultimate limit state, hierarchical model 
for material variability, Bayesian inference, structural reliability.  
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1. Introduction 
1.1 Safe design in structural engineering 
By expressing the nature as mathematical models, the structural engineer performs analyses, 
which help stakeholders make proper decisions (Benjamin & Cornell 1970). With regard to 
structural safety, the task can be to calculate the necessary structural dimensions and material 
strengths so that the structure is sufficiently safe when exposed to its expected loads (Thoft-
Christensen & Baker 1982, Melchers 1999, Ditlevsen & Madsen 2005, Schneider 2006). For a 
new structure, the results from the analyses of the engineer can help the stakeholder to decide 
upon a structural concept, to select among different protective measures or to decide to realize 
the project or not. In case of an existing structure, the question can be whether the structure 
should be replaced or strengthened or not, or which repair strategy that should be selected. The 
findings of the engineer can therefore have significant economical and ecological impact, since 
more material use usually results in higher costs and larger environmental impact. 
 
A simple example of structural design is to consider a reinforced concrete container for liquids 
which is open to air, such that the maximum amount of liquids stored in the container is limited 
to the size of the container. The engineer should design the container so that the load carrying 
capacity is sufficient for carrying the internal forces due to the contained liquids. In this case, 
the loads can be determined with a high level of confidence. However, the material strengths 
can be relatively uncertain. One solution could be to obtain strength measurements from the 
producers of the materials, and design the container with a capacity just sufficient for the 
minimum measured strengths. This would be a safe design only if the material variability was 
completely described by the measurements. A better solution would be to scale down the 
material strengths with factors taking into account the uncertainty, or the lack of knowledge 
about the material variability. 
 
Consider the two-storey reinforced concrete frame in Fig. 1, which is subjected to a dominating 
horizontal load, , due to wind. Since the loads and the material strengths are variable of nature 
and the calculation models are only simplifications of the nature, the structural engineer should 
consider these uncertainties when finding the necessary dimensions and material strengths. In 
the histograms in Fig. 1 the uncertain material strengths are illustrated by considering two 
production lines, one delivering batches of concrete with a cylinder strength  according to a 
recipe and one delivering reinforcement steel bars with a yield stress . If two cylinders are 
cast from the same batch or from different batches of concrete, and the compressive strength is 
determined by testing, the results will vary between the tests. The variability of the concrete 
strength in a structure will in addition have variability due to casting, compaction and curing. 
Similarly for the reinforcement, the test results will vary between material tests. However, the 
variation of strength is smaller for the reinforcement steel than for the concrete. Due to the 
variation in material strength, the structural capacity, i.e. the maximum load  that could 
be applied to the frame in an experiment, will vary between experiments if several equal frames 
were cast and loaded until failure. A part of the task of the engineer is to collect sufficient 
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knowledge about the uncertain parameters of the problem in order to make a safe prediction 
about the future. 
 
Following the Eurocodes (CEN 2002, 2004), the usual way of taking into account the 
uncertainties in structural engineering analyses is to use the partial factor method. Here, the 
loads are multiplied by load factors and the material strengths are divided by material factors. 
The partial factors are larger than unity, and result in an increase of the loading and a decrease 
of the capacity. The partial material factor for concrete is larger than the factor for reinforcement 
steel due to the larger variation of concrete strength.  
 

 
Fig. 1: Reinforced concrete frame subjected to the load . The histograms indicate the 
variability of the compressive strength of concrete and the yield strength of the 
reinforcement,  and , and the resulting variability in resistance . 

 
1.2 One- and two-step approaches for design of reinforced concrete structures 
By considering the lower bound theorem of plasticity theory (see e.g. Nielsen 1984, Brekke et 
al. 1994, Cook & Young 1999, Melchers 1999, Lubliner 2008), a conservative estimate of the 
capacity of the frame in Fig. 1 is found by considering a set of internal forces which is i) in 
equilibrium with the external loads and ii) not exceeding the capacity locally in any section, 
and iii) by ensuring sufficient ductility by providing proper detailing of the reinforcement. If 
the frame is designed such that all critical sections are equally utilized, the lower bound solution 
would coincide with the formation of a mechanism, prohibiting any further loading and 
redistribution of internal forces. However, if the critical sections are not equally utilized, the 
loading could be further increased until the capacity is reached in enough sections to form a 
mechanism. 
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The internal force distribution of the frame in Fig. 1 can be calculated by hand, but due to the 
degree of statically indeterminacy, the engineer would most likely resort to computer-assisted 
methods. Today, linear finite element analyses (LFEA) are widely used in everyday practice. 
One of the main advantages of using LFEA is that the principle of superposition is valid. Hence, 
the engineer can perform separate analyses of each load case, and combine the results to form 
relevant load combinations afterwards. Based on the results from the LFEA, the structure is 
thus designed such that the capacity is not exceeded locally in any section. The detailing of the 
reinforcement is such that the full theoretical capacity of each cross-section can be mobilized 
by providing minimum reinforcement and sufficient anchorage lengths. 
 
The method described above can be called a two-step approach (Schlune 2011, Schlune et al. 
2012), since the response and the resistance are calculated in two steps using different 
assumptions regarding the material behaviour. The response of reinforced concrete is non-linear 
due to cracking of concrete even at low load levels. At higher load levels, the yield strength of 
the reinforcement can be exceeded, introducing additional non-linearities. For statically 
determinate structures, these stiffness reductions will not influence the distribution of internal 
forces. However, for statically indeterminate structures, the parts having the largest stiffness 
attract the larger portion of the internal forces. The non-linear response of reinforced concrete 
will thus result in a redistribution of the internal forces, which cannot be predicted by the LFEA.  
 
In the LFEA, the estimated internal force distribution can be close to, but basically not equal 
to, the real distribution, because of the assumed linear elastic material behaviour, and the full 
capacity of the structure is not utilized since the redistribution of forces is not modelled. 
However, the two-step approach is effective due to the validity of the principle of superposition, 
and by definition conservative. Instead of using a LFEA, one could use a non-linear finite 
element analysis (NLFEA) for calculating a more realistic internal force distribution for a 
certain design load. However, this is still a two-step approach, since the sectional capacities are 
generally calculated using different material models, and raises the question about which values 
of the material parameters that should be input in the NLFEA. With reference to the material 
variation in Fig. 1, should the materials be represented by their mean or most likely values, their 
nominal or characteristic values, their low design values or something in between? The selected 
values for the material parameters influence the failure mode and stiffness of the frame, and 
thus the distribution of the internal forces, and should be selected with care. 
 
Alternatively, since concrete and reinforcement steel are modelled with realistic material 
models, a NLFEA can be interpreted as a virtual experiment. Increasing the load until failure 
in this virtual experiment, would give an estimate of the load carrying capacity of the structure 
as a whole where all sections work together and contribute to the capacity. This represents a 
one-step approach, since the structural response and the structural resistance are calculated 
using the same assumptions regarding the material behaviour. Only those phenomena that are 
not explicitly modelled should be controlled separately, e.g. anchorage if the reinforcement is 
modelled as fully bonded and the transverse shear capacity if ordinary beam or shell elements 
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are used. Performing analyses with different values for the input parameters will give an 
indication of the variation of the load carrying capacity due to the material uncertainties, and 
semi-probabilistic methods can be used to estimate the design load carrying capacity based on 
this information. It should be noted that in NLFEA, the principle of superposition is no longer 
valid, and each relevant load combination should thus be analysed separately. 
 
Any LFEA or NLFEA only represent simplifications of the reality, and the modelling 
uncertainty or model uncertainty indicates how well the analysis outcomes compare to the real 
physical behaviour (Ditlevsen 1982). The modelling uncertainty of NLFEA depends on how 
the analysis is performed and what kind of physical phenomenon that is modelled. There are 
several contributions in the literature devoted to the modelling uncertainty, both addressing one 
specific model (e.g. Engen et al. 2017a), and the effect of selecting different models (Schlune 
et al. 2012). It is emphasized that the modelling uncertainty does not imply that the outcomes 
of the NLFEA are random. If one NLFEA is repeated, the outcome will be the same, but it will 
be uncertain, since the model is only a simplification of the reality. 
 

 

 
a) The Tresfjord Bridge (Statens Vegvesen) b) Dam Sarvsfossen (Bykle kommune) 
Fig. 2: Typical large reinforced concrete structures. 

 
The one-step approach has been elaborated on in the literature (CEB 1995, 1997, Henriques et 
al. 2002, Schlune et al. 2011, 2012, Cervenka 2013, Pimentel et al. 2014, Allaix et al. 2013, 
Blomfors et al. 2016), and with this method, the engineer is equipped with a tool that can be 
used to make realistic assessments of the load carrying capacity of structures. However, it is 
important to realize that the cost of performing NLFEA of reinforced concrete structures of 
realistic sizes, as illustrated in Fig. 2, can be significant. The use of NLFEA in everyday 
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engineering practice thus seems justified if significant cost savings can be expected. Hence, 
typical application areas are identified as 
 

 structures with complex geometries, 
 structures subjected to extreme loading, 
 existing structures designed according to old design codes, 
 existing structures subjected to new and increased loads, or 
 existing structures exposed to deterioration mechanisms where the residual structural 

resistance is questioned. 
 
In this work, emphasis has been put on developing a strategy for NLFEA within a one-step 
approach, applicable to analyses of large reinforced concrete structures, in order to facilitate 
the use by practicing engineers. Furthermore, the uncertainties related to material and modelling 
have been studied in order to contribute to ongoing discussions, and to be able to proceed 
towards a full one-step approach in future work. 
 
1.3 Objectives and limitations 
The objective of the present work is to develop the central parts to be used in the one-step 
approach for design of large reinforced concrete structures, and are summarized in the following 
three points: 
 

1) Develop a solution strategy suitable for NLFEA of large reinforced concrete structures, 
where the purpose of the analysis is to estimate the ultimate limit capacity. 

2) Validate the solution strategy and quantify the modelling uncertainty. 
3) Quantify the variability of the compressive strength of concrete. 

 
The work has been subject to the following limitations: 
 

 No physical experiments or material tests have been performed. 
 Only the ultimate limit load behaviour was considered. 
 Only static loads were considered. 

 
1.4 Structure of the thesis 
This thesis consists of a Part I presenting the background for and summarizing the main 
contributions from the present work, and a Part II where the four papers containing the main 
contributions from the work are appended. The present work has been carried out in the crossing 
between two specialist topics: 
 

 Non-linear finite element modelling.  
 Structural reliability. 
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In order to put the work in the right context, the chapters thus have slightly different focus. Chs. 
2 and 3 provide an introduction to uncertainties in engineering analyses, and structural 
reliability methods, written in the context of NLFEA. Ch. 4 introduces NLFEA in the context 
of structural reliability, and with special focus on modelling uncertainties and the application 
to structural engineering problems. The main contributions are summarized in Ch. 5, the main 
conclusions are drawn in Ch. 6 and suggestions for further research based on the present work 
are given in Ch. 7. 
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2. Uncertainties in engineering analyses 
2.1 Engineering analyses 
Design engineers use models to perform analyses and make predictions about a future outcome 
of a process, a problem which Cornell (1969) describes in the following way: 
 

The design problem requires prediction through imperfect mathematical 
theories of the performance of structural systems constructed by fallible humans 
from material with variable properties when these systems are subjected to an 
unpredictable natural environment. All aspects of the problem are uncertain. 

 
Examples of engineering analyses and models can be prediction of the shear capacity of a 
reinforced concrete beam without shear reinforcement, representation of the yield stress of 
reinforcement steel as a normally distributed random variable, prediction of the 100-year snow 
load in the municipality of Gran in Norway, or NLFEA predictions of the load carrying 
capacities of large reinforced concrete structures. A mechanical model relates the value of a 
derived variable to the values of a set of basic variables. The derived variable can typically only 
be observed in specially designed laboratory or field experiments, while the basic variables are 
typically readily observable in standard material tests. 
 
Two examples of mechanical models are the deflection  at mid-span of a lightly reinforced 
concrete beam subjected to a distributed load  assuming an un-cracked cross-section 
 

 , (1) 

 
and an equation deriv  from the cylinder strength , both measured 
in MPa (CEN 2004), 
 

 . (2) 

 
In Eq. (1),  is the length of the beam,  is the second moment of inertia of the area and  is an 
uncertain parameter of the model taking into account the effect of the boundary conditions. If 
the beam is assumed simply supported, the parameter can be assumed . In Eq. (2) 
the numbers 22, 10 and 0.3 are values assigned to the uncertain parameters of the model. The 
outcome of the models deviate from what is observed in experiments because the values of the 
basic variables are uncertain, and because the models are only approximations to the reality. 
Note that computer models, like NLFEA, are implicit models, meaning that the models give 
results for given input using a number of combined sub-models that are known to the analyst, 
but not directly visible as closed form expressions. The basic variables of a NLFEA are the 
variables that need to be input in order to get a solution. 
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Likewise, probability theory is used to construct rational models to describe observable 
uncertainties in the models and the variables. As an example, it is common to assume that the 
yield strength of reinforcement steel can be represented as a normally distributed random 
variable according to 
 

 , (3) 

 
where  and  are the mean and variance of the yield strength.  and  can generally be 
said to be uncertain parameters of the probabilistic model. The measure of the spread of the 
variable can also be given in terms of the coefficient of variation, . 
 
The uncertainties can be categorized according to their nature as either aleatory or epistemic, 
or according to their source as either physical uncertainties or modelling uncertainties. Note 
that the estimates of both physical uncertainties and modelling uncertainties are themselves 
uncertain since the estimates are usually based on a limited data set. Such additional 
uncertainties are denoted statistical uncertainties. This categorization will be elaborated on in 
the following. 
 
2.2 Aleatory and epistemic uncertainties: randomness and uncertainty 
In order to discuss the uncertainties in a structured manner, it is useful to introduce the terms 
aleatory and epistemic uncertainties (Der Kiureghian 1989, Faber 2005, Der Kiureghian & 
Ditlevsen 2009). According to the Oxford English Dictionary, aleatory describes something 
that depends on chance, like the throw of a dice. Aleatory uncertainties are thus uncertainties 
due to the inherent randomness of a phenomenon, e.g. the outcome of a coin toss or the 
compressive strength obtained in a future batch of concrete produced according to a given 
recipe. Epistemic, on the other hand, derives from epistemology, which is the branch of 
philosophy that deals with knowledge. Epistemic uncertainty is thus the uncertainty due to a 
lack of knowledge, e.g. the uncertain weight of a bag of potatoes or the uncertain compressive 
strength of concrete in an existing structure. 
 
The uncertainty in the outcome of most phenomena has contributions from both aleatory and 
epistemic uncertainty, however it is only the epistemic contribution that can be reduced by 
observations or by increasing the knowledge about the phenomenon, statistical uncertainties are 
thus purely epistemic. Aleatory and epistemic uncertainties can alternatively be referred to as 
randomness and uncertainty (Igusa et al. 2002). 
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2.3 Physical uncertainties 
Physical uncertainty represents the uncertain values of the basic variables. The basic variables 
are typically material strengths and stiffnesses, load intensities and distributions, and variables 
describing the geometry. Examples are shown in Tab. 1. 
 
Tab. 1: Examples of variables with physical uncertainties considered in assessments of 
reinforced concrete structures. 

Material 

 The compressive and tensile strengths of concrete. 
  
 The yield strength of the reinforcement steel. 
 The uncertain relation between stresses and strains of the materials. 

Geometry 

 The cross-sectional thickness. 
 The cover to the reinforcement. 
 The cross-sectional area of the reinforcement bars. 
 Imperfections of the geometry. 

Load 

 Distribution and intensity of distributed loads. 
 Locations and intensities of point loads. 
 Ground motion intensity. 
 The mass densities of the materials. 

Boundary 
conditions 

 The stiffness and strength of surrounding structures and foundations. 
 Geometrical idealization of supports. 

 
The values of the basic variables can be thought of as outcomes of random processes, and the 
categorization into aleatory or epistemic is best understood from an example. The concrete in a 
structure is produced according to a specified recipe, at the plant of a producer and supplied to 
the construction site (Rackwitz 1983, Engen et al. 2017c). At the construction site, the fresh 
concrete is placed in the formwork, properly compacted and left for curing, ensuring suitable 
curing conditions (Stewart 1995).  
 
The actual strength at a spot in an existing structure can be determined by destructive or non-
destructive testing. The estimate of the concrete strength thus depends on the accuracy of the 
measuring technique and the number of samples taken. Fig. 3 illustrates the effect of the number 
of samples on the estimated uncertainties. The measuring error can always be reduced by 
calibrating the measuring device or by using another technique, and the number of samples can 
always be increased, but due to the heterogeneous nature of concrete, a part of the uncertainties 
will always remain. The uncertainty is thus dominated by an epistemic part, but also has an 
aleatory contribution. 
 
However, in a structure that has not yet been constructed, the strength at a spot in the structure 
is not yet realized from the random process described above. The outcome is uncertain, and it 
is uncertain due to the inherent randomness of the process of producing, casting and curing 
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concrete. If information about the specific producer, plant and recipe or about quality control 
measures are available, this information can be taken into account to reduce the uncertainties. 
Hence, in this case the uncertainty is a combination of aleatory and epistemic.  
 

 
Similar examples can be constructed for most material properties and structural dimensions. In 
other words, the uncertainties related to the properties of the structure changes from a 
combination of aleatory and epistemic to purely epistemic as the structure is being constructed 
(Faber 2005, Der Kiureghian & Ditlevsen 2009). 
 
The uncertainties of the basic variables related to the loading are slightly different, and depend 
not only on whether the structure is constructed or not, but also on the nature of the load. The 
uncertainties of dead loads are comparable to the uncertainties in the properties of the structure. 
The basic variables related to variable loads, or live loads, on the other hand will always be 
outcomes of random processes. The random process can be bounded, for example by enforcing 
a limit for the height of vehicles that are allowed to drive over a bridge, and likely values of the 
loads can be derived from measurements. However, unlike the properties of the constructed 
structure, the values of a variable load can never be fully determined, and thus have a 
combination of aleatory and epistemic nature. 
 
The physical uncertainties are described further in Papers I and IV (Engen et al. 2017c, 2017a). 
 
2.4 Modelling uncertainties 
Our mechanical models consist of mathematical expressions describing complex physical 
phenomena (Ditlevsen 1982, Der Kiureghian & Ditlevsen 2009). The mathematical expressions 
can be of variable degree of complexity and can depend on a limited number of variables, and 
the model can be selected from a range of different models describing the same physical 
phenomenon (Zhang & Mahadevan 2000, Beck & Yuen 2004, Droguett & Mosleh 2008). The 
degree of complexity and the number of variables is usually limited either by lack of knowledge 
or for practical reasons.  

   
a) 50 observations. b) 100 observations. c) 400 observations. 
Fig. 3: Compressive strength recordings from a Norwegian concrete plant with different 
numbers of observations. 
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The modelling uncertainty thus arises due to the limited number of variables that are included 
in the model, the complexity of the mathematical model and the likelihood of the selected model 
being correct. In addition, if the model is empirically based, the parameters of the model are 
also uncertain since they are estimated from experimental observations using for example linear 
regression. The accuracy of the estimated values of the parameters depends on the number of 
observations that the estimate is based on, and can generally be improved if the number of 
observations is increased (Der Kiureghian & Ditlevsen 2009). The modelling uncertainty thus 
has an epistemic nature. It is emphasized that the fact that the models are uncertain does not 
mean that the outcomes of our models are random. In fact, if for instance a NLFEA prediction 
of the load-carrying capacity of the dam in Fig. 2b is repeated, the outcome will always be the 
same, however, the outcome is uncertain, since the model is only a simplification of the reality. 
 
A model can have a set of variables that need to be treated as basic variables. If some of the 
variables are not directly available or directly observable in standard material tests, and there 
exist models expressing any of the variables as function of other variables, these models can be 
used as sub-models. Continuing the examples from above, 
Eq. (2) can be used as a sub-model in the model for the deflection in Eq. (1), and the model for 
the deflection becomes a function of  instead of . This is common in NLFEA of concrete 
structures, where material models for concrete usually take many basic variables, for example 

tension and compression and measures of ultimate strains. 
 
It is important to note that as soon as a sub-model is used for estimating the value of one of the 
variables, the sub-model becomes a part of the model, and the modelling uncertainty of the sub-
model contributes to the modelling uncertainty of the whole model. The variable that is 
estimated changes from a variable that is explicitly modelled as a basic variable to a variable 
that is implicitly taken care of by the model. In other words, what is not explicitly considered 
in the model, implicitly contributes to the modelling uncertainty (Ditlevsen 1982, Engen et al. 
2017a). 
 
In the context of NLFEA, the modelling uncertainty, , is usually defined as 
 

 , (4) 

 
where  is the measured outcome from an experiment, and  is the predicted outcome 
of the experiment using NLFEA (fib 2013, JCSS 2001).  has the same nature as the concrete 
in a structure, i.e. it can be interpreted as an outcome of a random process. Hence, due to the 
relation in Eq. (4), the estimated modelling uncertainty also depends on the uncertainty in the 
outcome and measurement of  (Holický et al. 2016, Engen et al. 2017a). Quantification of 
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the modelling uncertainty of NLFEA, and implications of model refinements are discussed in 
Paper IV (Engen et al. 2017a) and will be discussed further in Sec. 4.4. 
 
Note that there are also modelling uncertainties related to the probabilistic models for the same 
reasons as above, i.e. the probabilistic model describing some physical variation is only an 
approximation of the real physical variation. Examples of models being approximations of real 
behaviour are shown in Fig. 4. 
 

  
a) NLFEA prediction (dashed) of a 
benchmark experiment (solid). 

b) Probabilistic model (dashed) fitted to 
observed material variability (histogram). 

Fig. 4: Examples of models that approximate real behaviour. 
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3. Structural reliability methods 
3.1 Performance-based design 
According to EN 1990 (CEN 2002) a structure should be designed and constructed in such a 
way that it has sufficient structural capacity, serviceability and durability within its complete 
service life with a sufficient degree of reliability. Reliability is the ability of the structure or 
structural component to fulfil the criteria for which it is designed, within its intended service 
life, and is normally given in terms of a probabilistic measure. Furthermore, the design criteria 
are formulated quantitatively as limit states, separating the performance of the structure into a 
safe and an unsafe region. The exceedance of a limit state is denoted as failure, and typical 
ultimate limit states and serviceability limit states are shown in Tab. 2. The structure will fail 
when an extreme load is encountered, or when a certain load combination results in an extreme 
load effect such that the structure enters a failure state. The design problem thus consists of two 
parts: 1) predict a reasonable magnitude for the extreme load or load effect, and 2) predict a 
reasonable value for the strength of the structure from the information available (Thoft-
Christensen & Baker 1982). 
 
Tab. 2: Typical ultimate limit states and serviceability limit states. 

Ultimate limit state 

 The local bending moment in a section exceeding the 
bending moment capacity of the section. 

 The external load exceeding the load bearing capacity of the 
structure. 

Serviceability limit 
state 

 The deflections are exceeding the maximum allowable 
deflections limited due to safe operation of machinery. 

 The crack widths exceeding a maximum allowable crack 
width limited for durability or aesthetical reasons. 

 
In the literature, design principles based on limit states, service life and probabilistic measures 
are typically referred to as probability- or reliability-based (Cornell 1969, Hasofer & Lind 1974, 
Vrouwenvelder 2013) and performance-based (Ellingwood 2008, Bigaj-van Vliet & 
Vrouwenvelder 2013). 
 
The purpose of this chapter is to introduce structural reliability methods, demonstrate the 
background for the codified semi-probabilistic safety formats for NLFEA that have been 
introduced in the literature (e.g. fib 2013) and to indicate a framework for more detailed analysis 
methods that can be used in cases where the simple semi-probabilistic safety formats are 
insufficient. 
 
3.2 Interpretation of probability 
The term probability can be given the classical, frequentist or Bayesian interpretation (see 
Apostolakis 1990, Faber 2005, Schneider 2006, Gelman et al. 2014). In the classical 
interpretation, probability is a fraction or concentration, for example the probability of picking 
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a green ball from a basket with a known number of green and yellow balls. In the frequentist 
interpretation, probability is a measure of the number of outcomes if a trial is repeated a large 
number of times. If one continued to pick balls from the basket with green and yellow balls, 
and put the ball back into the basket after each trial, the number of outcomes with a green ball 
divided by the total number of trials will eventually converge to the classical interpretation of 
probability. This interpretation is the common starting point in most courses in statistics, and 
the calculus of frequentist probability is widely developed.  
 
The expected lifetime of for example small electronical components can be understood with the 
frequentist interpretation of probability, since such components are usually manufactured in 
large numbers. However, since most buildings and infrastructure are one-of-a-kind, the 
frequentist interpretation is not readily applicable to structural reliability. One can imagine 
constructing a large number of the dam in Fig. 2b, counting all the dams that would fail, divide 
this number by the number of constructed dams and say that this is the probability of failure, 
however, it is not realistic. Hence, structural engineers do not easily appreciate the frequentist 
interpretation of probability. 
 
Instead, the Bayesian interpretation of probability is more relevant in structural engineering. 
This interpretation is of a conditional probability that is subjective, and often denoted 
subjectivist. Probability can be interpreted as the degree of belief given the state of knowledge 
and the method for estimating the probability. Hence, the probability of failure found from a 
reliability assessment is not a property of the structure under consideration, but a property of 
the analysis based on engineering judgement given the state of knowledge. Furthermore, with 
this interpretation it is equally meaningful good skiing conditions 
in your winter holiday

e probability that the capacity of a dam being exceeded during heavy rain 
or snow smelting during its lifetime of 100 years . Note that even though the interpretation of 
structural reliability is Bayesian or subjectivist, the frequentist calculus is applied, and available 
probability distributions are used to represent uncertainties. 
 
3.3 The basic reliability problem 
The ultimate limit state is usually expressed in terms of the resistance  and the load  as 
 

 , (5) 
 
or in terms of the limit state function  as 
 

 , (6) 
 
where  is the safe region and  is the unsafe region (Thoft-Christensen & Baker 
1982, Schneider 2006). In most structural engineering problems, the load and resistance are not 
independent. For example, the cross-sectional height of a slab will influence both the capacity 
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and the dead weight, and the cross-sectional dimensions of axially loaded slender columns will 
influence both the capacity and the lateral deformations due to eccentricities and hence the 
additional bending moments due to second order effects. Eq. (6) can thus alternatively be 
written in terms of the basic variables of the problem, collected in the vector , as 
 

 . (7) 
 
The vector of the  basic variables, , can be interpreted as a vector in an -dimensional space, 
and the limit state function, , can be visualized as a plane separating the safe region 
from the unsafe region. The basic reliability problem seeks an answer to one of the two 
alternative questions: 
 

1) Given our state of knowledge, what is the probability of  exceeding , 
? 

2) Given our state of knowledge, what is the probability of having an unsafe combination 
of the values for the basic variables, ? 

 
The difference between the resistance and the load in Eq. (5) is often denoted the safety margin, 
and the purpose of the design process is thus to ensure that the structure has a sufficient safety 
margin. The safety margin is considered sufficient if the estimated probability of failure, , 
expressed as the reliability index, , is larger than the target reliability index, . The 
reliability index is defined as 
 

 , (8) 
 
where  is the inverse of the cumulative standard normal distribution. Examples of values 
for the  from EN 1990 (CEN 2002) are shown in Tab. 3.  
 
Tab. 3: Typical target reliability indices, , according to EN 1990 for the ultimate and 
the serviceability limit state with reference periods one and 50 years (CEN 2002). The 
numbers in parentheses indicate the associated probability of failure, . 

Limit state 
 

One year 50 years 
Ultimate limit state 4.7 ( ) 3.8 ( ) 
Irreversible serviceability limit state 2.9 ( ) 1.5 ( ) 

 
Based on the reasoning in the previous sections,  should be interpreted as the degree of belief 
in the structure not fulfilling the quantitative design criteria. It is noted that the target reliability 
index not only is a function of probability, but also is calibrated to previous practice (Cornell 
1969, Ellingwood & Galambos 1982, Ellingwood 2008) or can be the result of an optimization 
process taking into account for example the cost of increasing the reliability and the willingness 
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of the society to invest in safety (Rackwitz 2000). In the case of an existing structure, the target 
reliability index will generally be accepted to be lower than in the case of a new structure, since 
the cost of increasing the reliability of an existing structure is larger than for a new structure 
which is still on the drawing table (fib 2017). 
 
3.4 Estimate of the probability of failure 
The methods for estimating the probability of failure are usually grouped according to their 
level of sophistication from Level 1 to 3 (Thoft-Christensen & Baker 1982, Schneider 2006). 
Examples of the methods and the corresponding levels of sophistication are shown in Tab. 4, 
and the methods are demonstrated in Fig. 5 using a known limit state function . 
 
The probability of failure is generally calculated by the integral 
 

 , (9) 

 
where a known joint probability distribution of the basic variables, , is integrated over the 
unsafe region, . An exact solution of Eq. (9) can only be found analytically in a very 
few cases, e.g. where  is the normal or the rectangular distribution and the limit state 
function  is linear. In other cases, the integral is solved either by numerical integration 
or by simulation. These methods pertain to the Level 3 methods described in Tab. 4. 
 

   
a) Level 3 method:  is 
found by dividing the 
number of outcomes in the 
unsafe region by the total 
number of outcomes. 

b) Level 2 method: a 
nominal reliability index, , 
is found by locating the 
point on  closest to 
the origin in the standard 
normal space. 

c) Level 1 method: the 
nominal values for the basic 
variables, , are scaled 
with partial factors, , in 
order to impose an intended 
safety level. 

Fig. 5: Demonstration of the three levels of sophistication. The solid curved line is the limit 
state function, , and the shaded area is the unsafe region, . 
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Tab. 4: The levels of sophistication in reliability assessment methods (adapted from Thoft-
Christensen & Baker 1982 and Schneider 2006). 
 

Description 
Representation of 
basic variables 

Examples of methods 

Level 3 

Methods where the true 
probability of failure is 
obtained by considering the 
full joint probability density 
function of the basic 
variables, and considering 
the true shape of the failure 
domain. 

Probability density 
functions. 

Monte Carlo, 
importance sampling, 
Latin hypercube 
sampling. 

Level 2 

Methods applying 
approximated probability 
distributions and 
approximations for the limit 
state function. Only nominal 
estimates of the probability 
of failure are obtained, that 
should only be used for 
comparison purposes. 

Two values, e.g. 
mean and 
coefficient of 
variation. 

First order reliability 
methods (FORM) and 
second order reliability 
methods (SORM) and 
their inverse 
formulations. 

Level 1 

Methods currently available 
in design codes where an 
intended level of safety on 
component level is attained 
by use of partial factors for 
load and resistance 
variables. Statements about 
the probability of failure 
cannot be made. 

One single value, 
e.g. characteristic 
or nominal. 

Partial factor method. 

 
The Level 3 methods will give exact estimates of the probability of failure if the analyst has full 
knowledge of the problem at hand (Der Kiureghian 1989). One Level 3 method is the Monte 
Carlo method. Here, random realizations are generated for each of the basic variables as shown 
in Fig. 5a, taking into account the respective distributions and possible correlation between the 
basic variables. The limit state function is furthermore evaluated for each of the sets of random 
realizations and the probability of failure is the number of limit state evaluations giving 

 divided by the total number of evaluations. Further improvements to this method aiming at 
reducing the necessary number of limit state function evaluations include for example 
importance sampling (Melchers 1999) and Latin hypercube sampling (McKay et al. 1979, 
Olsson et al. 2003). Two important drawbacks make the Level 3 methods unsuitable for 
structural engineering applications: 
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 Full knowledge about the statistical distributions of the basic variables is in general not 

possible to obtain. 
 Since a large number of samples is necessary to obtain the necessary accuracy in the 

estimate of , and the limit state function is often complex or time consuming to 
evaluate, the method will be costly or impossible to use. 

 
Using available exact or approximated transformation rules, the vector of basic variables, , 
can be transformed to a vector of uncorrelated standard normally distributed variables, , with 
means equal to zero and unit-variances (Hasofer & Lind 1974). After the transformation, the 
vector  and the limit state function, , will be located in the so-called standard normal 
space or u-space, with the origin corresponding to the mean value of the variables , shown in 
Fig. 5b. In Level 2 methods,  is approximated by a first- or second-order polynomial, 
and an approximated value for  is the minimum distance from  to the origin. The 
point on  closest to the origin, , is the point at the boundary between the safe and 
the unsafe region with the highest probability of occurring, and is often denoted as the design 
point. If  is far from the origin, the safety margin is large, giving a large  and a 
corresponding small . 
 
The design point can be found in an iterative manner, and several procedures are available in 
the literature (Hasofer & Lind 1974, Rackwitz & Fiessler 1978, Shinozuka 1983, Liu & Der 
Kiureghian 1991). If the limit state function is approximated by a linear polynomial, the method 
is denoted First Order Reliability Method (FORM), and an example of a FORM solution is 
shown in Fig. 5b. Also shown in the figure are the sensitivity factors, , that indicate the 
contribution from the variation of each of the basic variables to the probability of failure. The 
FORM solution is exact if the limit state is linear and the basic variables can be transformed to 
standard normally distributed variables by a one-to-one transformation. For large , i.e. low , 
FORM is a good approximation in other cases as well. The FORM solution can be improved 
by including second-order terms in the approximated limit state function, and this class of 
improved methods is denoted Second Order Reliability Methods (SORM) (Hohenbichler et al. 
1987). 
 
Assuming that the compressive strength of concrete, , and the yield strength of the 
reinforcement, , are the only basic variables for the resistance of reinforced concrete, the 
corresponding sensitivity factors  and  can be estimated by a FORM analysis. In an over-
reinforced cross-section, the bending moment capacity will be governed by failure of the 
compressive zone before the yield strength of the reinforcement is reached.  In this case,  
would be significantly larger than , since the concrete governs the failure mode. For an 
under-reinforced cross-section, where the failure mode is governed by yielding of the 
reinforcement steel, the opposite would be the case, i.e. . This illustrates the added 
value of the results from analyses with the Level 2 methods. 
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In the Level 1 methods, the design point is estimated directly by scaling characteristic or 
nominal values for the basic variables by partial factors. Design code developers calibrate the 
values of the partial factors in order to reach a target reliability level on the structural component 
level. By applying partial factors it is assumed that the values of the basic variables lie in the 
safe region, , see Fig. 5c. Implicit in the partial factors in the Eurocodes (CEN 2002) 
are assumptions of a linear limit state function following Eq. (6) and constant sensitivity factors 
for the resistance, , and load, , respectively. Further assuming that the load 
and resistance can be treated independently, the target reliability index for the resistance 
becomes . 
 
From this short summary of structural reliability methods it should be noted that the Level 2 
methods are approximations of the Level 3 methods and that the Level 1 methods are calibrated 
to solutions obtained with the Level 2 methods. Since the Level 1 methods are based on 
probabilistic measures, allowing the engineer to directly incorporate a target reliability and the 
variability of the basic variables, but only a design point is obtained, the method is often denoted 
as semi-probabilistic (Cornell 1969, Ellingwood & Galambos 1982, Ellingwood 2008). 
 
3.5 Response surfaces and Bayesian regression 
In the methods introduced in the previous section, it was assumed that the limit state function 
was known and available as an analytical expression on closed form. This is necessary since 
the different methods usually require calculation of the gradients of the limit state function. 
However, if the structural response is evaluated using NLFEA, such analytical expressions will 
not be available. In that case it can be useful to fit a response surface to the results from the 
NLFEA (Faravelli 1989). A response surface is a polynomial of a user-specified degree with 
unknown coefficients on the form 
 

 , (10) 
 
where  is the NLFEA prediction using the values of the basic variables , the row 
vector  contains powers of the basic variables and the column vector  contains the  
unknown coefficients of the response surface.  can be the load carrying capacity of 
a structure or the deflection or crack width at a certain point for a given set of loads. The 
modelling uncertainty is usually included by multiplying Eqs. (4) and (10), i.e. 
 

 , (11) 
 
such that the modelling uncertainty  is treated as a basic variable in addition to . The error 
term, , is due to approximating the NLFEA prediction with a polynomial, and is usually 
assumed normally distributed with a mean equal to zero and an unknown variance, i.e. 

. Often, a second-order polynomial without cross-terms is used (Bucher & 
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Bourgund 1990), giving  and  in a situation 
with two basic variables, such that the response surface is given by 
 

 . (12) 
 
The  unknown coefficients can be estimated by performing NLFEA at a set of  points . 
These points can be denoted as sampling points, experimental points or training points for the 
response surface, and are usually arranged around a centre in a pattern with a specified spacing 
(Faravelli 1989). In order to determine the coefficients, there must be at least as many sampling 
points as unknown coefficients, i.e. . The  NLFEA predictions are collected in the 

column vector , the powers of the sampling points are collected in 
the matrix  and the error terms associated with each sampling point are 
collected in the column vector , giving the following linear system of equations 
 

 . (13) 
 
By solving for the unknown coefficients, , the following conditional expressions are obtained 
for the expected value 
 

  (14) 
 
and the variance 
 

  (15) 
 
of the coefficients, respectively, by taking into account the assumptions regarding the 
probability distribution for the error term. In the classical response surface method (Faravelli 
1989, Bucher & Bourgund 1990), the coefficients are treated in a deterministic manner, i.e. 
neglecting the uncertainty introduced by the response surface and the correlation between the 
coefficients as induced by Eq. (15). By treating the coefficients as uncertain variables, a 
probability distribution for the coefficients can be predicted by using Bayesian regression 
(Gelman et al. 2014). As a first step, the variance of the error term, , can be estimated with 
the following unbiased estimator 
 

 , (16) 

 
which is defined for . Treating also the coefficients as uncertain variables our problem 
now has the following  random variables that can be incorporated in a FORM 
analysis: i)  basic variables , ii)  uncertain parameters of the response surface, and iii) the 
modelling uncertainty . 
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The response surface method is often combined with FORM according to the following 
approach: 
 

1) Fit the response surface to a set of sampling points. The first set of sampling points are 
often centred on the mean values of the basic variables. 

2) Find the location of the design point. 
3) Find a new centre for the sampling points based on the design point and the old centre. 
4) Check for convergence and repeat from 1) if necessary. 

 
In the literature, much focus has been put on step 3) from the approach above (Bucher & 
Bourgund 1990, Rajashekar & Ellingwood 1993, Allaix & Carbone 2011, Zhao & Qiu 2013) 
in order to reduce the necessary number of updates of the response surface, and hence reduce 
the necessary number of NLFEA predictions. 
 
3.6 Inverse reliability methods and semi-probabilistic safety formats for NLFEA 
The Level 2 and 3 reliability methods discussed in Sec. 3.4 can be used to estimate the reliability 
of a structure for a given level of knowledge. However, in many structural engineering cases 
the inverse can in fact be more useful, i.e. an estimate of the value of the limit state function for 
a given . Using the methods inverse FORM or SORM and treating the load and resistance 
as independent variables, the resistance for a given  can be estimated based on 
knowledge about the basic variables of the resistance (Li & Foschi 1998, Giske et al. 2017). 
 
Simpler inverse methods can be derived by considering a Taylor series expansion without 
higher order terms of the predicted resistance as function of the basic variables of the resistance, 

, around a point , i.e. 
 

 , (17) 

 
where  is the partial derivative of the resistance with respect to basic variable . 
Eq. (17) can be interpreted as a linear combination of the  basic variables , and the expected 
value and variance can be found from 
 

 , (18) 

 
and 
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 , (19) 

 
respectively, assuming uncorrelated basic variables. Eq. (19) can easily be extended to also take 
into account correlation. Assuming that the Taylor series expansion can be taken around the 

point represented by the mean values of the basic variables, , and that the 
partial derivative can be approximated by  
 

 , (20) 

 

where  is a point where all basic variables are represented by 
the mean value except variable  which is reduced by the value , Eqs. (18) and (19) simplify 
to Eqs. (21) and (22) respectively and the coefficient of variation of the NLFEA prediction is 
given by Eq. (23) (Schlune et al. 2011, 2012). 
 

  (21) 
 

  (22) 

 

  (23) 

 
By assuming normal or log-normal distributions for the basic variables, the increment  can 
be calculated as a function of a step factor  times the standard deviation or the coefficient of 
variation of the variable, see the work by Schlune et al. (2011, 2012) for further details. 
Furthermore, if a log-normal distribution is assumed for the resistance, the resistance can be 
expressed as 
 

 , (24) 
 
if only the basic variables related to the materials, and not the geometry, are included in .  is 
the modelling uncertainty assumed represented by a log-normally distributed variable with 
mean  and coefficient of variation .  is a random variable taking into account the effect 
of the uncertainties of the geometry on the resistance, assumed to be represented by a log-
normally distributed variable with unit-mean and coefficient of variation . The resistance 
corresponding to the target reliability of the resistance, , can then be estimated from 
 



 

23 
 

 , (25) 

 
where the sensitivity factor of the resistance  was discussed in Sec. 3.4 and the coefficient of 
variation of the resistance can be estimated as 
 

 . (26) 

 
Note that  and  represent the uncertainty of the resistance due to the uncertainty of 
the basic variables, i.e. how the uncertainties of the basic variables propagate through the 
resistance.  is usually denoted the global resistance factor and can be compared to the partial 
factors currently used in most design codes. However, where the partial factors incorporate the 
uncertainties on material level, the global resistance factor incorporates the uncertainties on 
global level, thus allowing the engineer to assess the resistance of the structure as a whole and 
the effects of the uncertainties, by realistic estimates of the load-bearing capacity. 
 
A further simplification is obtained by only considering the constant term in Eq. (17). Assuming 
that the NLFEA prediction using the lower 5%-fractile values of the basic variables yield the 
lower 5%-fractile value of the resistance, i.e. the NLFEA prediction using characteristic values 

 gives the characteristic value of the resistance , the following relation can be derived 
based on the assumption of a log-normal distribution for the resistance 
 

 . (27) 
 
By inverting Eq. (27), the coefficient of variation of the NLFEA prediction due to the 
uncertainties of the basic variables can be estimated from 
 

 , (28) 

 
which can be input to Eqs. (26) and (25). The method involving the last simplification is called 
the method of estimation of coefficient of variation of resistance (ECOV) (Cervenka 2013) and 
is included in the fib Model Code for Concrete Structures 2010 (fib 2013). The application of 
the ECOV method and the method suggested by Schlune et al. have been demonstrated in the 
literature (Schlune et al. 2011, 2012, Belletti et al. 2011, 2013, 2014, 2015, Cervenka 2013, 
Allaix et al. 2013, Pimentel et al. 2014, Blomfors et al. 2016, Engen et al. 2017d). 
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4. Non-linear finite element analyses of reinforced concrete structures 
4.1 NLFEA in structural engineering 
So far, NLFEA of reinforced concrete structures have been introduced as analyses where 
concrete and reinforcement are modelled with realistic material models. In addition to material 
non-linearities, NLFEA can also include non-linearities due to geometry and contact. In 
analyses of arch dams, for example, the interface between the reinforced concrete arch and the 
bedrock should be free to separate and slide so that no tensile forces are introduced in the 
structure due to artificial restraining (Aasheim et al. 2017). However, in this work, the main 
emphasize has been put on the material non-linearities. Although there are several application 
areas for NLFEA (Vecchio 2001, fib 2008), as shown in Tab. 5, attention will be paid to the 
application of NLFEA during design or reassessment of structures in the ultimate limit state, 
and more specifically to the one-step approach discussed in Chs. 1 and 3. 
 
Tab. 5: Typical application areas for NLFEA of reinforced concrete structures. 

Design of new structures or 
reassessment of existing 
structures 

 Capacity prediction of existing deteriorated structures, 
existing structures subjected to new or increased loads 
and/or existing structures designed according to 
superseded design codes. 

 Study of structural effects due to intentional or 
unintentional undesirable events, e.g. explosions or 
ship impacts, and development of adequate protective 
measures. 

 One- and two-step approaches for structural design. 

Research and development 

 Simulations of experiments to develop a deeper 
understanding of governing phenomena. 

 Development of material models for NLFEA based on 
comparison with experimental results. 

Forensic engineering  Investigation of the causes of structural collapse. 

Development of design codes 
 Calibration of Level 1 or simplified Level 2 reliability 

methods based on more sophisticated Level 2 or Level 
3 methods. 

 
In everyday structural engineering, LFEA are used to calculate the internal force distribution 
due to external loads. Due to the assumed linear behaviour of the structure, the solution is found 
by solving a linear set of equations. For plate and shell structures, the results are usually 
presented as diagrams or contour plots showing the distribution of internal bending moments, 
transverse shear forces, and axial forces or in-plane forces allowing for efficient design 
calculations either by hand or using specialized design software (Brekke et al. 1994). 
 
In NLFEA, however the problem is solved using an incremental-iterative method. Incremental, 
since the external loads are applied in several load steps or load increments. Iterative, since in 
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each load step, the solution is found by consecutively, or iteratively, updating the response in 
order to take into account the effects of non-linearities and to approach equilibrium between 
external loads and internal forces. At each load step, the equilibrium iterations are continued 
until a user-prescribed convergence criterion is satisfied or a predefined maximum number of 
iterations is reached. Several challenges are thus encountered, for example: 
 

How many load steps should be used? 
 

What is the adequate degree of equilibrium that can be accepted? 
 
and if a one-step approach is used, and since there is usually no clear-cut definition of structural 
failure in NLFEA:  
 

What is the actual structural capacity predicted by the NLFEA?  
 
The results from the NLFEA will usually not include a statement saying whether the capacity 
is still ok or not in a given load step, but basically just indicate if the solution was converged or 
not, or if the analysis was aborted due to divergence. The results from NLFEA also comprise 
more than just a set of internal forces. Information about for example cracking of concrete and 
yielding of the reinforcement will be available in every integration point of the concrete and 
reinforcement elements for every load step, and should be reviewed by the analyst in order to 
justify the adequacy of the outcome. 
 
In Sec. 2.4 the modelling uncertainty was introduced, and it was noted that the modelling 
uncertainty depends on which mathematical models that are selected to represent the physical 
problem at hand. The modelling uncertainty thus depends on our selected strategy for obtaining 
a solution from the NLFEA, and the term solution strategy is used throughout this chapter to 
describe the set of choices that need to be made in a NLFEA. In this chapter, special emphasis 
will be put on how NLFEA could be performed in everyday structural engineering by selecting 
or developing a proper solution strategy, the effect of different degrees of refinement in our 
models and finally, aspects related to quantification of the modelling uncertainty. A thorough 
introduction to the theory behind NLFEA is beyond the scope of this thesis, and the reader 
should consult standard textbooks (Zienkiewicz & Taylor 1994, Bathe 2006, Belytschko et al. 
2014). 
 
4.2 The process of developing a solution strategy 
A solution strategy for NLFEA comprises choices regarding kinematic compatibility, material 
models and equilibrium, as illustrated in Tab. 6. Most analysis software include several 
possibilities for combining different material models, for using a variety of different element 
types and for solving the equilibrium equations with different iterative methods. A broad suite 
of methods or models should be available for the user, since most models will be more suited 
to some applications than others. However, the user should select the solution strategy with care 
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and be aware of the consequences of the choices that are made (Vecchio 2001, fib 2008, 
Hendriks et al. 2017a). For example, the boundary conditions can play a significant role, either 
by introducing artificial tensile forces, leading to premature cracking, or by restraining 
longitudinal elongation, leading to an overestimation of the benefit from the compressive 
membrane effect in slabs and beams. In shell structures like the dam shown in Fig. 2, shell 
elements can seem to be the most natural choice of element type, however the inherent 
assumption of plane sections is most likely violated by cross-sectional thicknesses of several 
meters, leaving solid elements as the only viable option. Also, the application of loads, such as 
distributed pressures, will generally become more accurate for solid elements than for shell 
elements. 
 
Tab. 6: Examples of the content of a solution strategy for NLFEA. 

Kinematic compatibility 

 Finite element types for concrete and reinforcement, 
including order of numerical integration. 

 Finite element sizes. 
 Idealization of geometry. 
 Idealization of boundary conditions. 

Material models 
 Material models for concrete and reinforcement. 
 Material models for possible interfaces and boundary 

conditions. 

Equilibrium 

 Iterative methods for the solution of the non-linear 
equilibrium equations. 

 Convergence criteria and suitable tolerances. 
 Method for determining if the capacity was reached or not. 

 
The engineer is left with two general approaches for selecting a solution strategy, either develop 
his or her own solution strategy for a specific purpose, or select a solution strategy based on a 
set of guidelines developed for safe use of NLFEA (Hendriks et al. 2017a, 2017b). The process 
of developing a solution strategy consists of the four main activities 1) definition, 2) 
verification, 3) validation and 4) demonstration of applicability, as illustrated in Tab. 7. 
 
In the definition activity, the engineer would usually explore the available options in available 
software or review relevant literature. The results obtained from analyses with different solution 
strategies might be compared in order to find the most suitable for the purpose. The engineer 
can define the solution strategy following two different categories or philosophies, either 
 

i) use sub-models with a range of free parameters that can be fitted to experimental 
observations, or 

ii) select sub-models that are only functions of readily observable basic variables. 
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An example of the first category can be if Eq. (2) was used as a sub-
modulus without fixing the parameters of the model to the values predefined by the design code. 
An example of the second category could be the solution strategy developed in the present 
work, where the compressive cylinder strength of concrete is the only required input to the 
material model for concrete. Note that which category that is selected by the engineer is a matter 
of taste and depends on whether experimental results are available for calibration or not. Many 
free parameters most likely leads to overfitting of the model (Beck & Yuen 2004), giving good 
predictions for the cases that were used in the calibration process, but most likely leading to 
worse predictions elsewhere. However, in a design situation or when an existing structure is 
being assessed, calibration is less applicable since no observations are usually available 
describing the true behaviour of the structure. 
 
Tab. 7: The activities in the process of developing a solution strategy for NLFEA. 

Definition 
Select suitable material models, element types, iteration methods, 
etc. 

Verification 
Apply fundamental checks to assess if the model works as 
expected and assess the sensitivity to variations of the solution 
strategy, e.g. mesh size sensitivity and load step size sensitivity. 

Validation 
Assess how well the NLFEA predictions compare to the real 
structural behaviour, i.e. quantifying the modelling uncertainty by 
comparing NLFEA predictions to experimentally obtained results.  

Demonstration of 
applicability 

Prove that the solution strategy is suitable for the intended 
purpose. 

 
During verification and validation, the engineer would seek answers to the questions Are we 
solving the equations right? and Are we solving the right equations? (Roache 1998, Engen et 
al. 2017a). In the NLFEA context, verification thus comprises sensitivity studies of for example 
the element sizes, the element types, the load step sizes, the convergence tolerances and the 
iteration methods. Verification also comprise typical single element tests that are performed in 
order to check if the material models behave as expected. Validation on the other hand, is related 
to the idealization of the structural geometry, boundary conditions and material behaviour and 
thus involves quantification of the modelling uncertainty for the selected solution strategy. If a 
solution strategy was defined following category i) above, these activities would also include 
estimating the values for the free parameters of the sub-models. Based on the findings in the 
verification and validation activities, the engineer might take a step back to the definition 
activity and make changes to the solution strategy.  
 
The last step involves a demonstration of applicability by testing the solution strategy on 
realistic cases similar to the practical design problem it is intended for. The purpose of the final 
activity is to reveal if the expected important phenomena can be captured and the level of detail 
in the results is sufficient to be used as a basis for decisions. Note that the process has a 
subjective nature, leaving to the engineer to decide what is good enough or detailed enough. 
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The process of developing a solution strategy is further discussed in Paper II and III (Engen et 
al. 2015, 2017b) appended to the thesis. 
 
4.3 The degree of refinement of the solution strategy 
A solution strategy for NLFEA for structural engineering purposes should produce results that 
agree as close as possible with the observed behaviour from experiments, but apart from that, 
be as simple as possible (Beck & Yuen 2004). The refinement of the solution strategy should 
be limited to a level reflecting the significance of the decisions that are made based on the 

about the problem at hand. That is, a refinement of the solution strategy is only justified if the 
values of the possible additional basic variables can be found with a reasonable degree of belief, 
and if the uncertainty in the outcome of the NLFEA is reduced to such an extent that the 
confidence of the decision maker is improved. This can be obtained by selecting a solution 
strategy with a limited number of basic variables, where the basic variables are of a nature that 
are observable in experiments, thus giving the engineer the possibility to reduce the epistemic 
uncertainties by testing. 
 
Selecting a complex solution strategy with many basic variables and free parameters results in 
a problem with a large contribution from epistemic uncertainties of the basic variables, since 
there are many variables with uncertain values. Such solution strategies can also have a limited 
range of validity since the free parameters can be fitted to a limited range of experimental 
observations. On the other hand, a simpler solution strategy will have a higher modelling 
uncertainty since the effects that are not explicitly modelled are implicitly contributing to the 
modelling uncertainty (Ditlevsen 1982, Engen et al. 2017a). The simpler models can have the 
benefit of being more widely applicable, or equally applicable in a wide range of problems, but 
the more complex solution strategies will have the benefit that the uncertainties can be reduced 
by reducing the epistemic uncertainties of the basic variables (Faber 2005). Note that if values 
of any of the basic variables are not available, the values are usually estimated using additional 
sub-models, and as noted in Sec. 2.4 the modelling uncertainty of the additional sub-models 
contribute to the modelling uncertainty of the solution strategy. 
 
With reference to Secs. 3.5 and 3.6 the degree of refinement of the solution strategy has direct 
impact on assessments using the one-step approach, for example based on the method suggested 
by Schlune et al. (2011, 2012), or Level 2 analyses based on the response surface method. If 
more basic variables are included in the model, more analyses are needed in order to estimate 
the coefficient of variation of the resistance or the unknown coefficients of the response surface, 
and the scope of the assessment increases. 
 
When being introduced to the topic of NLFEA of reinforced concrete structures, one can be 
confronted with statements like 
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Program A gives much better results than Program B. 
 
or 
 

With NLFEA, you can obtain exactly the result you want. 
 
Although these can be true in some cases, such statements should not reflect the attitude of the 
expert. Statements of the first type reflect more the commercial part than the academic or 
engineering part of the topic of NLFEA. Different analysis software have different libraries of 
sub-models, however since each user in any case and with any software would do the utmost 
effort in making predictions with a modelling uncertainty as low as possible, a clear-cut 
distinction between, or ranking of, software seems not to be justified. 
 
Statements of the second type can reflect the experience with using material models with many 
free parameters that need to be calibrated. If such solution strategies are applied outside the 
range they were calibrated, there will always be a risk of making inaccurate or unsafe 
predictions. Also, the second statement can reflect what we see as the outcome of blind 
prediction competitions (e.g. Jaeger & Marti 2009a, 2009b) where experts do their best in 
predicting an unknown outcome of an experiment. The results from such competitions usually 
have significant variation, and can give valuable insight in the effects of selecting different 
solution strategies and of not knowing the result of the experiment on beforehand. 
 
4.4 Quantification of the modelling uncertainty 
The models used in engineering analyses are only approximations of the reality. The question 
that must be asked is whether the model is suitable for the particular application where it is to 
be used. This can be assessed by quantifying the modelling uncertainty. The modelling 
uncertainty of a solution strategy for NLFEA,  as defined in Eq. (4), is usually assumed 
represented by a log-normally distributed variable. The probability distribution for the 
modelling uncertainty can be given in terms of the mean, , and the coefficient of variation, 

, that are generally unknown parameters and should be estimated by performing benchmark 
analyses, i.e. comparing NLFEA predictions to known experimental outcomes.  
 
The mean can be denoted the bias and indicates the average fit to experimental results. Note 
that if a model with free parameters is calibrated to experimental outcomes using some form of 
regression similar to what was discussed in Sec. 3.5, i.e. a category i) model as introduced in 
Sec. 4.2, the bias will be  for the set of experiments it was calibrated to, due to the 
assumptions regarding the properties of the error term. However, if a category ii) model is used, 

. The coefficient of variation is a measure of the spread of the NLFEA predictions. 
For example, if no NLFEA prediction is found to be equal to the experimental outcome, the 
predictions can still on average be close to the experimental outcomes, however having a 
coefficient of variation that depends on the respective deviations from the average. In Paper IV 
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appended to this thesis (Engen et al. 2017a) a method based on Bayesian inference is suggested 
for quantifying the modelling uncertainty.  
 
In the literature, one can encounter one of the following three limiting cases when NLFEA 
predictions are compared to experimental outcomes: 
 

1) One experimental outcome is compared to NLFEA predictions using different solution 
strategies. 

2) The outcomes of a number of nominally equal experiments are compared to one NLFEA 
prediction of the experiment using one solution strategy. 

3) One experimental outcome from each of a range of different experiments are compared 
to corresponding NLFEA predictions using one solution strategy. 

 
If the modelling uncertainty is estimated in each of the cases, the estimate will describe three 
different effects. In the first case, the estimator for the modelling uncertainty, , becomes 
 

 , (29) 

 
where  is NLFEA prediction . By taking the expected value of Eq. (29) it can be shown 
that the bias will be the ratio between the experimental outcome and the average NLFEA 
prediction and can have a contribution from the variation of the predictions. By finding the 
coefficient of variation of Eq. (29), it can be shown that this only depends on the variation of 
the NLFEA predictions.  is thus a measure of the inherent randomness in the population of 
models, or between-model uncertainty, and describes the obtained uncertainty in the prediction 
if a model was selected randomly to predict the experimental outcome. Interesting to note is 
that if  was an average of the outcomes from a number of nominally equal experiments 
instead of only the outcome from one of the experiments, this would only influence the bias 
and not the coefficient of variation of . 
 
Case 1 is the typical outcome from blind prediction competitions described above. Tab. 8 shows 
outcomes from a selection of blind prediction competitions, complementing the overview 
published by Schlune et al. (2012). The entries to the competitions include a broad variety of 
analysis methods, not only NLFEA. It can be seen that the largest spread and the most un-
conservative bias was obtained in the estimate of the first failure load of the large beam tested 
by Collins et al. (2015). In the ten first cases in Tab. 8, the failure mode in the experiment was 
governed by the concrete. In the rest of the cases, the reinforcement contributed to crack control, 
and hence improved the ductility. The biases in the two sets of cases are similar, but the spread 
is larger in the first set, indicating that failure modes governed by the concrete are more 
challenging to predict accurately. It is interesting to note that the seemingly simple problem of 
slender columns (Strauss et al. 2015) has on average slightly un-conservative predictions, 
however with a low spread. 
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Tab. 8: Outcomes of blind prediction competitions. The between-model uncertainty is 
presented with the expected value and the coefficient of variation in parentheses. 

Reference Type of structural element 
Number of 
participants 

Between-
model 
uncertainty 

Collins et al. (1985) 

Panel A loaded in plane stress 27 0.90 (0.19) 
Panel B loaded in plane stress 27 1.22 (0.44) 
Panel C loaded in plane stress 27 1.02 (0.24) 
Panel D loaded in plane stress 27 0.87 (0.46) 

Collins et al. (2015) 
Large beam, first failure 66 0.81 (0.60) 
Large beam, second failure 43 1.18 (0.35) 

Jaeger & Marti (2009a, 
2009b) 

Slab, A1 8 0.90 (0.36) 
Slab, B1 8 1.14 (0.35) 
Slab, C1 8 0.85 (0.42) 
Slab, D1 8 1.09 (0.35) 
Slab, A2 8 0.92 (0.13) 
Slab, B2 8 1.06 (0.08) 
Slab, C2 8 0.91 (0.13) 
Slab, D2 8 1.13 (0.05) 

van Mier & Ulfkjær (2000) 
Small over-reinforced beam 8 1.09 (0.14) 
Large over-reinforced beam 8 1.08 (0.15) 

Strauss et al. (2015) Slender columns  8 0.88 (0.07) 
 
In the second case, the estimator for the modelling uncertainty, , becomes 
 

 , (30) 

 
where  is the outcome of experiment . Since  is a constant,  only describes the 
average and the variation of the experimental outcomes, scaled by the constant NLFEA 
prediction. Eq. (30) thus describes the physical variation of the experiment. 
 
In the third case, the estimator becomes 
 

 , (31) 

 
and  describes the uncertainty in the prediction obtained with the selected solution strategy. 
Opposed to  which describes between-model uncertainty,  describes within-model 
uncertainty. It is emphasized that if Eq. (31) is to give reasonable results, the engineer must 
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have available the experimental outcome  and the corresponding values of the basic 
variables that are needed for input to the NLFEA prediction (Ditlevsen 1982, Der Kiureghian 
& Ditlevsen 2009). In addition, if values of some of the basic variables need to be estimated 
using available sub-models, the sub-models must be applied consistently from case to case. 
Otherwise,  will not describe the modelling uncertainty of the specific solution strategy. 
Interesting to note here is that if  in Eq. (31) was replaced by the average of the outcomes 
from a number of nominally equal experiments instead of only one outcome, both the estimated 
bias and the coefficient of variation of the modelling uncertainty would be influenced. This 
indicates that the estimated modelling uncertainty also gets contributions from the uncertainty 
of the measurement of the experimental outcome, and from the physical uncertainties related to 
the experimental outcome. A pure modelling uncertainty without additional contributions from 
measuring uncertainties and physical uncertainties is thus not trivial to obtain. This is elaborated 
on in Paper IV appended to the thesis (Engen et al. 2017a). 
 
Tab. 9 shows examples of modelling uncertainties obtained using different solution strategies 
developed for structural engineering purposes reported in the literature. In all the cases in Tab. 
9, the solution strategies were developed following the procedure outlined in Sec. 4.2, i.e. first 
selecting a set of sub-models with a limited number of basic variables before validating the 
solution strategy by performing benchmark analyses. 
 
Tab. 9: Modelling uncertainties estimated by comparing experimental outcomes with 
predictions using one specified solution strategy. The within-model uncertainty is presented 
with the expected value and the coefficient of variation in parentheses. 

Reference 
Number of 
benchmark analyses 

Within-model 
uncertainty 

Hendriks et al. (2017b) 13 1.11 (0.22) 
Selby & Vecchio (1993) 18 1.05 (0.17) 
Kotsovos et al., compiled in Engen et al. (2014) 69 1.02 (0.14) 
Engen et al. (2017a) 38 1.10 (0.11) 

 
Often, the modelling uncertainty for a defined range of values of the basic variables, or for 
specific failure modes, is sought. In that case, only a sample of experimental outcomes could 
be selected, reflecting the defined range. If however, the relevant subset of values for the basic 
variables and the failure mode is unknown, the sample of benchmark experiments should cover 
a larger range. This would be relevant in a design situation, where the failure mode is not known 
on beforehand, it can be different for different values of the basic variables and the failure mode 
might be due to interaction between different sectional forces. If a range of values for the basic 
variables is used, the correlation between the modelling uncertainty and the other basic 
variables could also be assessed. Several studies where the modelling uncertainty has been 
quantified using Eq. (31), can be found in the literature (Allaix et al. 2015, Holický et al. 2016, 
Engen et al. 2015, 2017a). 
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5. Summary of main contributions 
5.1 Paper I 
Predictive strength of ready-mixed concrete: exemplified using data from the Norwegian 
market 
The variability of the compressive strength of ready-mixed concrete was studied by devising a 
method based on Bayesian inference and maximum likelihood estimators. A hierarchical model 
for the variability of material properties in concrete was formulated. The developed methods 
were demonstrated on more than 14000 compressive strength recordings from Norwegian 
ready-mixed concrete plants from the period 2013-2017, and the contributions to the variability 
from the different levels of the hierarchy were quantified. The following contributions are 
highlighted: 
 

 A systematic approach for quantifying the variability of the concrete strength was 
developed. 

 A hierarchical model for the variability of concrete properties was suggested. 
 A set of prior parameters for the compressive strength was derived, which can be 

updated with new measurements in order to predict the compressive strength in existing 
structures based on a limited number of core samples. 

 A general probability distribution for the compressive strength was derived, addressing 
the contributions from different levels of the hierarchy. 

 The results from the analysis of the large dataset can be combined with additional data, 
if made available, in order to improve the predictions or to quantify the variability on 
higher levels of the hierarchy. 

 Since the durability class gives a required maximum water-binder ratio, and the strength 
of the concrete is governed by the water-binder ratio, the durability class introduces a 
strength potential if the concrete is subject to strict durability requirements and low 
strength requirements. The results indicate that the designer should specify a strength 
class which utilizes this strength potential. 

 A closer collaboration between the designer, contractor and producer is expected to 
result in less variability and a more homogeneous population of concrete. 

 
5.2 Paper II 
Solution strategy for non-linear finite element analyses of large reinforced concrete 
structures 
Results from benchmark analyses with two different solution strategies for NLFEA were 
compared in order to select one solution strategy for further development. The main difference 
between the two strategies were the material models for concrete, where one was based on a set 
of recently published guidelines for NLFEA (Hendriks et al. 2017a) and the other was based on 
the work by Kotsovos and co-workers (see e.g. Kotsovos & Pavlovic 1996). Note that the 
NLFEA predictions based on the guidelines were made by the author, and that the other results 
were collected from the literature. In order to simulate the conditions met when analysing large 
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concrete structures in a design situation, relatively large solid finite elements were used in all 
the benchmark analyses. The results indicated that no significant gain in accuracy with respect 
to the ultimate limit capacity was obtained by refining the modelling of the tensile and post-
cracking behaviour of concrete when large finite elements were used. Note that in this paper, 
the modelling uncertainty was defined as the inverse of Eq. (4), i.e. in the form of a utilization 
ratio, however with no influence on the conclusions. The following contributions are 
highlighted: 
 

 The modelling uncertainty was quantified for NLFEA using a set of guidelines in cases 
where large finite elements are used. 

 The modelling uncertainty was also quantified using results of the same benchmark 
analyses published work by Kotsovos and co-workers. 

 It was demonstrated that a detailed modelling of the tensile or post-cracking behaviour 
of concrete is of minor importance when predicting the ultimate limit capacity in 
NLFEA with relatively large finite elements. 

 
5.3 Paper III 
Non-linear finite element analyses applicable for the design of large reinforced concrete 
structures 
Based on the findings from Paper II, the solution strategy based on the material model by 
Kotsovos and co-workers was further developed. The paper demonstrates the process of 
developing a solution strategy as discussed in Sec. 4.2. The three-dimensional material model 
was adapted to a smeared, non-orthogonal, fixed cracking framework in order to facilitate its 
implementation in a commercial finite element software. The material model for concrete 
required only one material parameter, the uniaxial compressive strength. Suitable element types 
for concrete and reinforcement were selected and elaborated on and recommendations were 
given for selecting an iterative solution method for the non-linear equilibrium equations. The 
complete solution strategy was verified by assessing the sensitivity to finite element size, load 
step size and iterative solution method. The solution strategy was validated by performing 
benchmark analyses. Finally, the applicability to NLFEA of large reinforced concrete structures 
was demonstrated on a specially designed shell structure. The following contributions are 
highlighted: 
 

 The process of developing a solution strategy for NLFEA was outlined.  
 The material model was thoroughly described highlighting the developments made by 

the author. 
 Arguments for selecting adequate finite element types, iterative solution methods and 

convergence criteria were presented. 
 The importance of having a consistent method for defining structural failure was 

emphasized. 
 The version of the material model that was presented in this paper has been made 

available in the finite element software DIANA. 
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5.4 Paper IV 
A quantification of the modelling uncertainty of non-linear finite element analyses of large 
concrete structures 
The uncertainties in engineering analyses were discussed with special emphasis on the 
modelling uncertainties of NLFEA. In order to validate the solution strategy presented in Paper 
III, 38 benchmark analyses were performed. Based on the results from the benchmark analyses, 
and assuming that the modelling uncertainty could be represented by a log-normally distributed 
variable, the parameters of the probability distribution of the modelling uncertainty were 
estimated using Bayesian inference. The collection covered a range of failure modes and 
concrete strengths. In order to characterize the predicted failure modes in the NLFEA, a 
measure denoted the ductility index was developed. The ductility index was defined as the 
plastic dissipation in the reinforcement divided by the total plastic dissipation of the system. 
The ductility index attains a value of zero if all the internal stress redistribution is governed by 
the concrete, and increases to values closer to one when the redistribution is governed by plastic 
deformations in the reinforcement. Insignificant correlation between the modelling uncertainty 
and the basic variables was found. The following contributions are highlighted: 
 

 The modelling uncertainty was quantified using Bayesian inference. 
 The failure mode was characterized using the developed ductility index. 
 The results demonstrated the influence of physical uncertainties on the modelling 

uncertainty as discussed in Sec. 4.4, and that a pure modelling uncertainty is not straight 
forward to obtain. 

 The implications of this can be useful since, for example, if the unknown correlation 

concrete strength was not explicitly taken into account during quantification of the 
modelling uncertainty, they should neither be taken into account at a later stage, since 
the effects are already included in the estimated modelling uncertainty. 

 
5.5 The work seen in context 
As noted in Sec. 1.4, the present work has been carried out in the crossing between two 
specialist topics. It can thus be useful to see Papers I to IV in the context of Chs. 2 to 4. Fig. 6 
shows the context graphically, as a flow-chart for reliability-based structural design using 
NLFEA. The shaded areas indicate topics that are treated in the appended papers. The non-
shaded boxes indicate topics that were not treated in the appended papers. These topics have 
been briefly touched upon in Chs. 2 to 4 and will be returned to in Ch. 7. 
 
A structure can be idealized into a finite element model following the solution strategy 
discussed in Papers II and III. NLFEA  takes input values from the distributions for the material 
uncertainty, , and the geometrical uncertainty, , and the analysis is performed according 
to the solution strategy giving the result . The material uncertainty of concrete is treated in 
Paper I. The outcome  is input to the structural reliability analysis, here denoted Level 2 
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method. Level 2 method here represents typical level 2 or simplified level 2 methods as 
described in Secs. 3.4 to 3.6. The modelling uncertainty discussed in Papers III and IV is a 
property of the selected solution strategy and is input to the structural reliability analysis, along 
with information on the distributions of the material uncertainties and the geometrical 
uncertainties and the target reliability. 
 

 
Fig. 6: The present work seen in the context of reliability-based structural design. The 
shaded areas indicate parts that are covered by the present work and PI to PIV represent 
Papers I to IV.  and  are the basic variables for material and geometry, respectively, 

, is the outcome of analysis  e one of the Level 2 methods or 
semi-probabilistic safety formats discussed in Secs. 3.4 to 3.6. 

 
From the structural reliability perspective, one wishes to differentiate the uncertainties as 
accurately as possible by including a number of basic variables. However from the NLFEA 
perspective this might not be feasible, since each new basic variable results in a larger number 
of analyses needed in order to assess the sensitivity of the response to the basic variables. Also, 
seeing the problem from the computational mechanics perspective, one could wish to 
incorporate as many variables as possible in the analysis model in order to get refined 
predictions of the structural behaviour. However, each basic variable should be introduced with 
suitable probability distribution functions. By increasing the complexity of the NLFEA, the 
computational cost increases, and by increasing the number of variables, the cost of the 
reliability assessment also increases. 
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6. Conclusions 
The refinement of the solution strategy for NLFEA of reinforced concrete structures for 
structural engineering applications should reflect the level of knowledge that can be obtained 
about the problem at hand. A refinement of the solution strategy is only justified if the resulting 
modelling uncertainty is reduced, if necessary knowledge about the basic variables can be 
obtained and if in the end it can be demonstrated to yield less conservative estimates of the load 
carrying capacity. 
 
With the present methods for quantifying the modelling uncertainty, the estimate will always 
have contributions from physical uncertainties. The phenomena that are not explicitly 
considered in the benchmark analyses from which the modelling uncertainty is estimated, are 
implicitly included in the modelling uncertainty. This can be unfortunate, since the modelling 
uncertainty will carry most of the uncertainties, and the engineer is left with few possibilities 
for reducing the epistemic uncertainties of the problem. However, it can also be useful, since 
all the uncertainties that could not be isolated in the benchmark analyses, are included in the 
modelling uncertainty, and should thus not be included in later analyses. 
 
A systematic treatment of material variability by using a hierarchical model was found useful 
in the study of the compressive strength of ready-mixed concrete. The method is transparent 
and generic, and additional data from more plants, producers and regions are easily included. 
The results from the present work indicate that the designer should specify a strength class that 
utilizes the strength potential due to the constraints to the concrete recipe set by the durability 
requirements. A closer collaboration between designer, contractor and producer is expected to 
result in improved concrete specifications. 
 
With the one-step approach for design of concrete structures, the engineer can focus on making 
realistic assessments of the load bearing capacity of the structure, and the effects of 
uncertainties, instead of being forced to always use conservative estimates of both the load 
effect and the resistance. By elaborating further on the reliability-based structural design 
methods shown in Fig. 6, with for example the one-step approach for design of concrete 
structures using NLFEA, the response surface method and inverse FORM, the engineer can be 
equipped with powerful design methods. Such methods promote innovation, since they consist 
of different sub-models where improvements in each sub-model can result in either a more 
realistic prediction of the structural resistance or a more realistic estimate of the effects of the 
uncertainties of the problem. This is important in order to reduce unnecessary conservatism in 
assessments of the structural capacity, increase the competitiveness of concrete in new 
structures and increase the reuse of existing concrete structures.  
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7. Suggestions for further research 
Following the present work, it is suggested to work on the different parts shown in Fig. 6. 
Ideally, the different parts should be dealt with in parallel, since a refinement of only one of the 
parts is not justified before this results in an improved basis for the decision maker. The 
suggestions for further research are summarized in the following sections. 
 
7.1 Solution strategy for NLFEA 
Develop a criterion for structural failure in NLFEA. Such a criterion is useful to distinguish 
between load steps where failure happens and load steps that simply do not reach convergence. 
This was discussed in Paper III (Engen et al. 2017b), and one further step was recently described 
(Engen et al. 2017d). 
 
Assess the applicability of the developed solution strategy for NLFEA to other types of loadings 
and limit states, for example crack width predictions in the serviceability limit state or ship 
impact or explosions in the accidental limit state. As a first step, the solution strategy was 
recently successfully applied to restrained deformations due to seasonal temperature variations 
(Lie et al. 2017). 
 
7.2 Material variability 
As a continuation of the collaboration with the concrete producers, it is suggested to study the 
material variability from the point of view of the producer, i.e. study the effects of the different 
constituents on the variability of properties like strength and stiffness. A hierarchical treatment 
of the variability can be applicable, and variabilities like within- and between aggregate type 
and cement type can be relevant. 
 
The methodology suggested in Paper I can further be used to study for example the relation 
between the lab-strength and the strength obtained in the structure, the time development of 
strength and stiffness and the ratio of cylinder to cube strength, and eventually how these effects 
influence the structural reliability. 
 
7.3 Modelling uncertainty 
Future design codes could include brief guidance for how NLFEA should be used in the design 
process. The codes should be open to let the designers develop their own solution strategies, as 
described in Sec. 4.2, but should also provide values for the modelling uncertainty that could 
be used by the designer if this was not estimated in the validation phase. A suggestion is to 
study within- and between-model uncertainty, represented by  and  in Sec. 4.4, in order to 
estimate a reasonable upper bound suitable for a design code. A first step has been taken by 
Allaix et al. (2014) and Bertagnoli et al. (2015). A hierarchical treatment of uncertainties as 
suggested in Paper I might also be applicable for this purpose. The modelling uncertainty could 
be given either as a bias and a coefficient of variation, or as a global resistance factor. 
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The results in Tab. 9 indicate that models are usually on average on the safe side, since the bias 
is larger than unity. Although such results are conservative, and the bias can be compensated 
for if the modelling uncertainty is properly included, this also indicates that that the model is 
incomplete. Future studies of the modelling uncertainty should address this. 
 
In Paper IV it was found that the physical uncertainties that are not explicitly considered in the 
NLFEA will contribute to the estimated modelling uncertainty. With the present definition of 
the modelling uncertainty, it is not straight forward to unravel the two sources of uncertainties. 
Using for example the knowledge from Paper I about the hierarchical treatment of material 
variability, further research could focus on estimating a pure modelling uncertainty. 
 
7.4 Reliability-based design methods 
The semi-probabilistic safety formats for NLFEA discussed in Sec. 3.6 have been demonstrated 
in the literature for relatively simple structural systems with clear failure modes. The 
applicability to structures with high degrees of statically indeterminacy and possibly competing 
failure modes should be addressed, in order to see if there are conditions under which the simple 
safety formats fail, and more elaborate methods are advisable. 
 
One such method can be a combination of the response surface method and an inverse level 2 
method. A topic which is yet to be elaborated on is the effect of correlation between the 
parameters of the response surface, and how the modelling uncertainty of the NLFEA 
influences the distributions of these parameters. A first step can be to consider Bayesian 
regression, as mentioned in Sec. 3.5. 
 
Based on an extended study using a level 2 method, and if trends in the locations of the design 
points can be found, partial factors suitable for NLFEA can be calibrated. The results from such 
a study could also be used to advise the engineer in selecting proper values for the material 
parameters as input to NLFEA used in a two-step approach, as defined in Sec. 1.2. 
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ABSTRACT 
A hierarchical model for the variability of material properties in ready-mixed concrete is 
formulated. The model distinguishes between variation on the batch, recipe, plant, producer, 
durability class, strength class and regional standard level. By considering Bayesian inference 
and maximum likelihood estimators, the contributions from the different hierarchical levels to 
the variability can be estimated. The methodology is demonstrated by considering more than 
14000 compressive strength recordings from Norwegian ready-mixed concrete plants. The 
results suggest that the compressive cube strength of lab-cured specimens can be represented by 
a log-normally distributed variable with mean  and coefficient of variation 

. Prior parameters for Bayesian updating are given for a range of strength and durability 
classes. The application of the results is demonstrated in two examples. Since the durability 
class gives a required maximum water-binder ratio, and the strength of the concrete is governed 
by the water-binder ratio, the durability class introduces a strength potential if the concrete is 
subject to strict durability requirements and low strength requirements. It is suggested that the 
designer should specify a strength class that utilizes this strength potential, and it is expected 
that a closer collaboration between the designer, contractor and producer will result in improved 
concrete specifications. 
 
Keywords: Concrete compressive strength, hierarchical model for variability, Bayesian 
inference, informative prior distribution, maximum likelihood estimators, code calibration, 
structural reliability. 
 
1.  INTRODUCTION 
Selecting the concrete type is an important decision in design of concrete structures. Following 
the Eurocodes [1-3] the concrete type is defined by requirements related to strength and 
durability. In Norway, this is implemented by assigning a strength and durability class, where 
the strength class is denoted by the letter B followed by the characteristic compressive strength 
of a lab-cured cylinder, see Tab. 1, and the durability class is denoted by the letter M or the 
letters MF followed by a number indicating the maximum effective water-binder ratio. The 
characteristic compressive strength is defined as the lower 5%-fractile of the strength. EN 206 
gives the following durability classes for concrete in Norway: M90, M60, M45, MF45, M40 and 
MF40. In addition, The Norwegian Public Roads Administration introduces additional durability 
classes, e.g. SV30 and SV40, for infrastructure projects [4]. 
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Table 1: Relation between target cylinder strength, , and cube strength, , for the 
strength classes given in Eurocode 2, EN 206 and fib Model Code 2010. 
 B10 B20 B25 B30 B35 B45 B55 B65 B75 B85 B95 

 [MPa] 10 20 25 30 35 45 55 65 75 85 95 
 [MPa] 12 25 30 37 45 55 67 80 90 100 110 

 
Based on the strength and durability class, workability requirements and other requirements 
related to e.g. appearance or carbon footprint, the producer designs a recipe. For a given strength 
and durability class produced at a specific plant, the main differences between different recipes 
are related to the maximum aggregate size, the fractions of the different aggregate sizes, the 
cement type, the amount of supplementary cementitious materials and the amount of entrained 
air. Conformity control is performed based on the strength at 28 days. Cubes with sides 100 mm 
are used for conformity control in Norway due to their easier handling, preparation and testing 
compared to cylinders. 
 
Mirza et al. [5] presents an extensive literature review, and suggest that the main sources for 
variation of the compressive strength are the variation in properties and proportion of the 
constituents of the concrete mix, the variations in mixing, transporting, placing and curing 
methods, the variations in testing procedures and variations due to concrete being in a structure 
rather than in control specimens. Several other sources report similar findings [6-15], also 
addressing topics like size and shape of control specimen, casting direction, workmanship and 
type of structural component and location within the component. 
 
Rackwitz [16] suggests methods for predicting the strength of concrete using Bayesian 
inference, and estimate prior data based on a collection of data from Southern Germany. The 
prior data were later reworked and included in the JCSS Probabilistic Model Code [17]. 
 
The effect of compliance criteria are studied taking into account autocorrelation [18], different 
types of criteria [19] and the concept of concrete families [20,21]. Later, the effect of 
compliance control and strength estimation [22] on structural reliability are addressed [23-25]. 
Foster et al. [26] report from a study on a collection of strength recordings from Australia, and it 
can be shown that the 28-day compressive strength of lab-cured cylinders can be represented by 
a normally distributed variable with mean  and a coefficient of variation of 

. Correlation with other material parameters for concrete can be found elsewhere [27-29], 
and the relation between cylinder and cube strength is discussed in several contributions [30-
35]. 
 
In Eurocode 2 [2,36], and similarly in fib Model Code for Concrete Structures 2010 [37], the 
concrete strength is assumed represented by a log-normally distributed variable. The variability 
of the concrete strength is reflected in the partial factor 
 

, (1) 

 
where  is the sensitivity factor for resistance,  is the target reliability index for 
a 50-year reference period,  is the modelling uncertainty,  is the geometrical 
uncertainty,  is the material uncertainty [36] including the contributions discussed by 
Mirza et al. [5], and the factor 1.15 reflects the ratio of the lab-strength to the strength obtained 
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in a structure. Eurocode 2 also suggests the relation  between the mean and 
characteristic strength, assuming a standard deviation of approximately 5 MPa [38].  
 
In the present work more than 14000 compressive strength recordings from Norwegian ready-
mixed concrete plants were studied using a hierarchical model for the variability of material 
properties as suggested in the literature [16,17]. It is emphasized that the scope of the present 
work was to estimate the variation resulting from what the designer can control. The effects of 
the choices made by the contractor and the producer were thus not considered. 
 
This work only provides statistical evidence for the lab-strength of cubes of ready-mixed 
concrete in Norway, such that the uncertain relation between the lab-strength of cubes and the 
strength obtained in a structure should be included if the present results are to be applied in e.g. 
a reliability assessment. For completeness, full details of the statistical analysis methods will be 
given along with a detailed summary of the results. This transparency is important for possible 
future extensions with additional data and to facilitate for correct application of the results. 
 
2. HIERARCHICAL MODEL FOR THE VARIABILITY OF MATERIAL 
PROPERTIES IN CONCRETE 
Fig. 1 shows how the hierarchical model for the variability of material properties in concrete 
was formulated in the present work. During concrete production, the producer controls for 
compliance using standardized test specimens. The variation between test specimens from one 
batch of concrete represents the within-batch variation. The variation within and between 
samples of observations on one level contributes to the variation within the next level, see Tab. 
2. Hence, the variation within and between batches produced according to one recipe contribute 
to the within-recipe variation. Each batch is produced according to a given recipe, at a concrete 
plant, by a concrete producer in order to comply with a given durability class and strength 
class. The variation between plants and producers can be due to different availability and use of 
raw materials, but also due to cultural differences and the quality control regime at the 
respective plant. The concrete is produced within a region having a supply controlled by a 
regional standard, which is part of the gross supply. Since the designer specifies a strength and 
durability class, these levels are the entry points of information from the design process. 
 
Table 2: Description of the levels of the hierarchical model. The right column indicates that if a 
sample of observations at one level in the hierarchy is considered, one can make inference 
about the between-variation on that level and a contribution to the within-variation on the next 
higher level. 
Hierarchical level Inference from a sample of observations at 

the respective level 
Standard test specimens from one batch Within batch 
Batch Within recipe / between batch 
Recipe Within plant / between recipe 
Concrete plant Within producer / between plant 
Concrete producer Within durability class / between producer 
Durability class Within strength class / between durability class 
Strength class Within region / between strength class 
Supply controlled by regional standard Within the gross supply / between region 
The gross supply - 
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Figure 1: Hierarchical model for the variability of material properties in concrete. The 
examples to the right in the figure indicates the application of the estimators in Sec. 3.1. 
 
3. METHODS FOR STATISTICAL ANALYSIS 
3.1 Sample statistics for the hierarchical model 
Assuming independent and interchangeable observations from a homogeneous population, 
unbiased estimators for the mean and variance of sample i with  observations are 
 

 
 

(2) 

 
and 
 

 , (3) 

 
where  is observation  in sample . For example,  can refer to recipe  for obtaining a 
combination of strength and durability, and  can refer to a strength recording from batch  
produced with that recipe. From this, one can derive the sample mean 
 

 
 

(4) 
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and variance 
 

 
 

(5) 

 
of a group of  samples respectively, where  is the total number of observations. 
Here, ,  and  could include all the strength recordings for all recipes for a 
combination of strength and durability at a specific plant. For example the sample mean and 
variance for a combination of strength and durability class at a specific plant can thus be 
calculated directly by considering the sample mean, sample variance and number of 
observations for all the recipes obtaining the specified combination of strength and durability 
class at that plant, as indicated in Fig 1. Eq. (5) expresses the variance of the group of samples 
as the sum of the variance within and between the samples. 
 
3.2 Bayesian inference 
The derivations in this section are valid for normally distributed random variables, and are 
adapted from the literature [e.g. 16,39,40]. Following recommendations in the literature, the 
compressive cube strength of concrete, , is represented by a log-normally distributed 
variable [16,41], meaning that the natural logarithm of the cube strength is normally distributed. 
In the following, the variable  thus represents the natural logarithm of the cube strength, 

.  
 
Following , and assuming that  is normally distributed with mean  and 
variance , the joint posterior distribution of the parameters  and  given a set of  
observations collected in the vector  is written as 
 

 , (6) 

 
where  is the prior distribution of the parameters and  is the likelihood of the 
observations. The likelihood is established by considering the distribution of : 
 

 , (7) 

 
where 
 

  (8) 

 
is the normal distribution. If there exists no prior information about , the proportionality 
 

 
 (9) 
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can be used as a non-informative prior distribution for  and . By combining Eqs. (7) and (9) 
with Eq. (6), the joint posterior distribution of  and  is 
 

 , (10) 
 
where 
 

  (11) 

 
is the scaled inverse- 2 distribution with scale  and  degrees of freedom.  is the 
Gamma-function and , assuming that the sample variance and mean are estimated 
from the same sample. From Eq. (10), the marginal posterior distribution of each parameter is 
found by integrating over the other, e.g. . The posterior predictive 
distribution of  is found from the total probability theorem 
 

 , (12) 

 
where the integral is over all possible values of  and . The posterior distributions for ,  
and , and the corresponding expected values and variances, are summarized in Tab. 3. The 
posterior distribution of  is given in Eq. (13), which is a t-distribution with location , scale 

 and  degrees of freedom. Eq. (14) can be used to estimate values of  with a non-

exceedance probability , where  is the upper -fractile of the t-distribution with  degrees 
of freedom. 
 
Table 3: Marginal posterior distributions, , expected values, , and variances, , 
for ,  and , starting from a non-informative prior distribution. 
Variable    

    

    

    
 

  
 

(13) 

 

 
 

(14) 

 
If prior information about  exist, a conjugate informative prior distribution with prior 
parameters  , ,  and  on the same form as Eq. (10) can be written as 
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 . (15) 
 
By combining Eqs. (7), (15) and (6) it can be shown that the joint posterior distribution of  and 

 is given by Eq. (10) with updated parameters 
 

 , (16) 
 

 , (17) 

 
 , (18) 

 
and 
 

 , (19) 

 
and the posterior distributions, expected values and variances of ,  and  are given in Tab. 3, 
inserted for the updated parameters. Note that Eqs. (17) and (19) are parallel to Eqs. (4) and (5), 
and that in this case Bayesian updating involves inference on two samples of observations that 
are combined. The prior sample is often taken as a virtual sample where the sample size 
represents the information content in the sample. 
 
If prior information exists only for the variance, the conjugate informative prior distribution 
would take the form 
 

 , (20) 
 
and following the same derivation as above gives the updated parameters 
 

 , (21) 
 

 , (22) 
 

 , (23) 
 
and 
 

 . (24) 
 
Since the inference is based on the log-normally distributed random variable , the 
results from the inference should be transformed in order to find the parameters of the 
distribution of . By applying a coordinate transformation such that Eq. (8) is expressed as 
a function of , and calculating the first two moments in a regular manner, it can be shown 
that the mean  and coefficient of variation  can be calculated 
using 
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 (25) 

 
and 
 

 , (26) 
 
where the errors of approximation in Eqs. (25) and (26) are less than 2% for . 
 
3.3 Estimate of parameters for an informative prior distribution 
Rackwitz [16] suggests maximum likelihood estimators (MLE) for estimating parameters for an 
informative prior distribution. By considering Eqs. (11) and (8) the likelihoods 
 

 
 

(27) 

 
and 
 

 
 

(28) 

 
are established based on  samples of observations from a concrete type, where  represents 
the collection of all the  samples , and  and  are the sample mean and variance 
of sample . By maximizing the natural logarithms of the likelihoods, the following MLE are 
found, with parameters in Eq. (33). 
 

 
 (29) 

 

 
 

(30) 

 

 
 (31) 

 

 
 

(32) 

 

 ,  ,  ,   (33) 

 
The error term in Eq. (30), , is due to truncation after the second term of 

, and can be compensated for by multiplying with the factor  given in Tab. 4.  
and  are measures of the information content in the estimated values of  and , 
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often denoted the degree of belief.  and  attain large values if the sample variances and 
means are similar. 
 
Table 4: Correction factor for Eq. (30) found by including higher order terms of 

 in the numerical solution of Eq. (30). 

 0.5 1.0 1.5 2.0 3.0 5.0 10.0 20.0 40.0 

 2.42 1.44 1.20 1.14 1.10 1.06 1.03 1.02 1.01 

 
If the concrete type is unknown, generalized prior parameters can be useful. Caspeele & Taerwe 
[42] suggest a method for obtaining approximated generalized prior parameters for the variance 
based on prior data from samples with unknown sample sizes . In the present work, the 
sample sizes  are known, and generalized prior parameters  to  can be 
estimated by using the parameters  to   according to 
 

 ,  ,    (34) 

 
where the subscript  refers to either strength class, durability class or combination of strength 
and durability class . From this it is clear that  and  will be meaningful since 
the variances of the different classes are expected to be comparable. In contrast,  are not 
comparable due to the different target strengths. However, if  is estimated with a 
reasonable degree of belief,  is expected to be comparable for 
different classes.  should be interpreted as the natural logarithm of the ratio between the mean 
strength and the target cube strength, , from Tab. 1. Hence, , ,  
and  are estimated by replacing  with  in the calculation of  in Eq. (34), 
and inserting Eq. (34) in Eqs. (29) to (32). If  is estimated with a reasonable degree of 
belief, its value can be used to estimate the location parameter of the prior distribution for a 
concrete with an arbitrary target strength. 
 
3.4 Estimate of within-batch variation 
Since the data acquired in the present work only included one strength measurement per batch, 
no direct inference could be made about the within-batch variation. However, it can be 
estimated. Assume that the natural logarithm of a strength recording from batch , , can be 
represented by a normally distributed variable expressed as  with 

and . Here,  represents the uncertain mean of the batch and  
represents the random fluctuation due to an assumed known within-batch variance, . This is 
realistic in situations where more information is available about the variance compared to the 
mean. The variance of  is given by 
 

 , (35) 
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with  being the number of batches that are considered. An estimate of  is the sample 
variance  of  observations for a given recipe , and an estimator for the within-batch 
variation of recipe  thus becomes 
 

 . (36) 

 
This indicates that the between-batch variance dominates the estimate if the number of 
observations is small, and that the within-batch variance dominates if the number increases. 
Based on Eq. (36), the MLE from Eqs. (29) and (30) can be used to estimate the within-batch 
variance. 
 
4. RESULTS AND DISCUSSION 
4.1 Compressive strength recordings from the Norwegian market 
Three concrete producers provided more than 14000 compressive strength recordings covering 
most of the Norwegian supply in the period 2013-2017, shown in Tab. 5. The six strength 
classes B20-B55 were represented with 20 combinations of strength and durability classes. Only 
concretes with aggregates consisting of at least 50% coarse aggregates with size larger than 4 
mm and a maximum aggregate size larger than 16 mm were considered.  
 
Table 5: Overview of the producers and plants that have contributed to the study. 

Producer Plant Observations 

A 

1 925 
2 751 
3 679 
4 419 
5 358 
6 258 

B 

1 612 
2 996 
3 543 
4 350 
5 479 
6 564 

C 

1 2065 
2 880 
3 841 
4 1698 
5 1789 

Total  14207 
 
4.2 Bayesian inference with non-informative prior 
The sample mean and variance for each recipe were calculated using Eqs. (2) and (3). Eqs. (4) 
and (5) were further used to calculate the sample mean and variance on higher levels of the 
hierarchy, and the equations in Tab. 3 were used to calculate the expected value and variance of 

 on the respective level. 
 
For brevity, detailed results from the plant level are left out of this presentation. At plant level 
for producer A and C the durability class was governing for the strength prediction, e.g. 
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B35M40, B35MF40 and B35SV40 were almost equally distributed as B45M40, B45MF40 and 
B45SV40, respectively. The within-recipe variation dominated, but the between-recipe variation 
was significant in most combinations of strength and durability classes. For the plants of 
producer C, a significant over-strength was observed in most instances of B35 concretes. The 
trend where the durability class was governing for the strength prediction was weaker for the 
plants of producer B, and the between-recipe variation was relatively large and dominated in 
eight combinations of strength and durability classes. 
 
Tab. 6 shows the results on the producer level. The predicted characteristic strength should be 
compared to the target cube strength from Tab. 1. Due to statistical uncertainty, i.e. a small 
sample resulting in , a low value was predicted for the characteristic strength for 
B55M40 for producer A. For producer A, it can be seen that the between-plant variation was 
small and only dominant for B20M90. Due to large standard deviations, five strength 
predictions were lower than the target for producer B. For B25M90 and B30M60 this was due to 
within-plant variation, but for the higher strength classes the between-plant variation also 
influenced. Due to slightly low mean values, the predictions of B45MF40 and B45MF45 were 
lower than the target strengths for producer C. The contribution from between-plant variation 
was small in all cases. Since compliance control is based on samples where observations from 
different recipes are combined using the concrete family concept [20,21], the sometimes low 
predictions of the characteristic strength do not indicate that the producers deviate from the 
criteria in EN 206 [3]. 
 
Tab. 7 shows the results on the level of the combination of strength and durability class. Four 
predictions were lower than the target strength, either due to a large standard deviation due to 
within-producer variation, see e.g. B25M90, slightly low mean values, see B45MF40 and 
B45MF45, or due to statistical uncertainty, see B55M40. The contribution from between-
producer variation was low in most cases, with the largest contribution for B35M40. 
 

  
a) B35, note that B35M60 and B35SV30 were 
left out of the figure due to the low numbers of 
observations. 

b) B45. 

Figure 2: Posterior predictions according to Tabs. 7 and 8 and Eq. (14) for the combinations 
of strength and durability classes. The solid lines indicate the target cube strength and the 
squares and the triangles indicate the median and the lower 5%-fractile of the posterior 
predictive distributions respectively. 
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Finally, Tab. 8 shows the results from the level of the strength class. Only B25 did not reach the 
target strength. This was due to a slightly low mean strength and a large standard deviation with 
a significant contribution from between-durability class variation, where B25M60 was closer to 
a B30. B35 also got a significant contribution from between-durability class variation, as 
demonstrated in Fig. 2a, but the higher mean strengths of e.g. B35M40 resulted in a high mean 
strength for B35. The lower contribution from between-durability class variation for B45 is 
demonstrated in Fig. 2b. 
 
In the bottom row of Tab. 8, the natural logarithm of the target strength is subtracted from the 
values of , to get the variable  as introduced in Sec. 3.3. It is interesting to note that 

 is approximately what could be estimated assuming , i.e. 
. The results indicated that the cube strength could be represented by a log-normally 

distributed variable with mean 
 

  (37) 
 
and coefficient of variation 
 

 . (38) 
 
The general coefficient of variation gets a dominant contribution from within-durability class 
variation, but also between-durability class variation, indicated by  in Tab. 8, and 
between-strength class variation due to different  for the different classes contribute. 
 
Table 6: Posterior inference per producer for different combinations of strength and durability 
classes, where  and  are the expected value and the variance of the posterior 
prediction of ,  is the sample standard deviation,  is the sample size and 

 and  is the median and characteristic value of the posterior prediction in 
MPa.  indicates the contribution from the within-plant variance to the total variance of 
the combination of strength and durability class at the respective producer. 

               
Producer A        
B20M90 3.52 0.13 0.13 33 0.40 33.7 26.8 
B25M60 3.78 0.10 0.10 20 0.59 43.6 36.3 
B25M90 3.59 0.10 0.09 33 0.90 36.4 30.8 
B30M60 3.86 0.12 0.12 1076 0.81 47.4 39.2 
B35M40 4.22 0.10 0.10 179 0.94 67.9 57.1 
B35M45 4.05 0.12 0.12 409 0.95 57.5 47.5 
B35M60 3.94 0.06 0.05 8 1.00 51.2 45.5 
B35MF40 4.17 0.11 0.11 183 0.79 64.8 54.4 
B35MF45 4.03 0.11 0.11 308 0.98 56.5 47.0 
B35SV40 4.21 0.11 0.11 162 0.86 67.7 56.0 
B45M40 4.21 0.10 0.10 235 0.89 67.3 56.7 
B45MF40 4.20 0.10 0.10 212 0.97 66.7 56.6 
B45SV30 4.19 0.10 0.10 68 1.00 65.9 55.5 
B45SV40 4.24 0.11 0.11 458 0.77 69.4 58.2 
B55M40 4.30 0.09 0.07 6 1.00 74.0 60.5 
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Producer B        
B20M90 3.55 0.12 0.11 16 0.69 34.9 28.0 
B25M90 3.61 0.18 0.17 54 0.98 37.1 27.5 
B30M60 3.81 0.12 0.12 956 0.78 45.0 36.8 
B30MF45 3.98 0.11 0.07 5 1.00 53.6 41.8 
B35M40 4.09 0.14 0.13 120 0.36 60.0 47.9 
B35M45 4.03 0.13 0.13 466 0.58 56.3 45.5 
B35MF40 4.09 0.19 0.18 59 0.34 59.5 43.3 
B35MF45 4.01 0.12 0.12 276 0.66 55.2 45.4 
B35SV30 4.10 0.08 0.04 4 1.00 60.2 48.4 
B35SV40 4.14 0.11 0.11 62 0.47 62.7 51.7 
B45M40 4.21 0.13 0.13 161 0.44 67.3 54.3 
B45MF40 4.15 0.12 0.12 332 0.68 63.3 52.0 
B45SV30 4.24 0.10 0.09 49 0.38 69.7 59.1 
B45SV40 4.18 0.10 0.10 824 0.73 65.6 55.8 
B55SV40 4.38 0.10 0.10 160 0.96 80.0 68.2 
Producer C        
B20M90 3.59 0.11 0.11 131 0.72 36.3 30.1 
B30M60 3.83 0.10 0.10 2363 0.91 45.9 38.8 
B35M40 4.27 0.10 0.10 458 0.91 71.4 60.2 
B35M45 4.13 0.10 0.10 1138 0.79 62.5 52.6 
B35MF40 4.16 0.12 0.12 120 0.66 64.0 52.7 
B35MF45 4.02 0.11 0.11 464 0.86 55.6 46.5 
B35SV40 4.25 0.14 0.14 280 0.71 69.9 55.8 
B45M40 4.30 0.10 0.10 343 0.91 73.4 61.7 
B45M45 4.22 0.11 0.11 52 0.82 68.2 56.4 
B45MF40 4.17 0.11 0.11 161 0.88 64.8 53.9 
B45MF45 4.15 0.09 0.08 34 0.92 63.4 54.4 
B45SV40 4.22 0.10 0.10 1729 0.88 68.4 57.7 
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Table 7: Posterior inference per combination of strength and durability classes, where the 
variables are defined in Tab. 6.  indicates the contribution from the within-producer 
variance to the total variance of the combination of strength and durability class. 

               
B20M90 3.57 0.12 0.12 180 0.94 35.7 29.3 
B25M60 3.78 0.10 0.10 20 1.00 43.6 36.3 
B25M90 3.61 0.15 0.15 87 1.00 36.8 28.7 
B30M60 3.83 0.11 0.11 4395 0.97 46.1 38.3 
B30MF45 3.98 0.11 0.07 5 1.00 53.6 41.8 
B35M40 4.23 0.13 0.12 757 0.75 68.6 55.8 
B35M45 4.09 0.12 0.12 2013 0.85 60.0 49.0 
B35M60 3.94 0.06 0.05 8 1.00 51.2 45.5 
B35MF40 4.15 0.13 0.13 362 0.94 63.6 51.5 
B35MF45 4.02 0.11 0.11 1048 0.99 55.8 46.4 
B35SV30 4.10 0.08 0.04 4 1.00 60.2 48.4 
B35SV40 4.22 0.13 0.13 504 0.93 68.3 55.0 
B45M40 4.25 0.12 0.12 739 0.87 70.1 57.7 
B45M45 4.22 0.11 0.11 52 1.00 68.2 56.4 
B45MF40 4.17 0.11 0.11 705 0.96 64.6 53.6 
B45MF45 4.15 0.09 0.08 34 1.00 63.4 54.4 
B45SV30 4.21 0.10 0.10 117 0.96 67.5 56.9 
B45SV40 4.22 0.10 0.10 3011 0.96 67.7 57.1 
B55M40 4.30 0.09 0.07 6 1.00 74.0 60.5 
B55SV40 4.38 0.10 0.10 160 1.00 80.0 68.2 

 
Table 8: Posterior inference per strength class, where the variables are defined in Tab. 6. 

 indicates the contribution from the within-durability class variance to the total variance 
of the strength class. The general posterior predictive inference is for the variable 

. 
               

B20 3.57 0.12 0.12 180 1.00 35.7 29.3 
B25 3.64 0.16 0.15 107 0.81 38.0 29.3 
B30 3.83 0.11 0.11 4400 1.00 46.1 38.3 
B35 4.12 0.14 0.14 4696 0.72 61.4 48.5 
B45 4.21 0.11 0.11 4658 0.96 67.6 56.4 
B55 4.38 0.10 0.10 166 0.98 79.8 68.0 
General 0.25 0.13 - - - - - 

 
4.3 Parameters for an informative prior distribution 
Informative prior parameters were estimated with the MLE on the strength and durability class 
level, based on groups of samples at the plant level. The results can be used in Eqs. (16) to (19), 
or Eqs. (21) to (24), assuming that the observations in the sample  originate from one producer 
and plant, and replacing , ,  and  with , ,  and , respectively. Note 
that  was estimated by solving Eq. (30) numerically. 
 
Tab. 9 shows the results of the MLE per combination of strength and durability class.  and  
input to Eq. (33) were the sample mean and variance of a sample containing all the observations 
from the recipes obtaining a specified combination of strength and durability class at plant .  
could range from 2 to 17, excluding combinations represented at only one plant. Generally the 
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results showed higher degrees of belief, in terms of  and , and lower standard deviations 
compared to the results by Rackwitz [16] shown in Tab. 10. 
 
Table 9: MLE for different combinations of strength and durability class. 

           
B20M90 3.54 1.4 0.09 6.7 12 
B25M60 3.77 1.8 0.07 6.5 2 
B25M90 3.65 5.2 0.05 1.3 5 
B30M60 3.83 3.8 0.10 21.4 17 
B35M40 4.18 0.8 0.08 6.5 14 
B35M45 4.06 1.6 0.09 7.2 17 
B35MF40 4.14 0.8 0.09 7.0 14 
B35MF45 4.01 2.8 0.09 8.7 15 
B35SV40 4.21 1.0 0.08 4.7 12 
B45M40 4.21 1.0 0.08 5.7 17 
B45M45 4.19 5.7 0.07 2.9 4 
B45MF40 4.17 2.5 0.09 11.6 15 
B45MF45 4.14 8.1 0.09 33.8 2 
B45SV30 4.24 0.9 0.06 11.0 5 
B45SV40 4.21 3.4 0.08 9.5 16 
B55SV40 4.36 9.8 0.06 3.8 3 
General 0.26 0.6 0.08 5.0 170 

 
Table 10: Prior data for the cube strength of ready-mixed concrete as suggested by Rackwitz 
[16] assuming a log-normal distribution.  and  represent the prior knowledge about the 
mean and standard deviation, and  and  are the degree of belief in  and  respectively. 

         
C15 3.40 1.5 0.14 6.0 
C25 3.65 1.5 0.12 6.0 
C35 3.85 1.5 0.09 6.0 
C45 3.98 1.5 0.07 6.0 

 
For B25M90, the variances at the plants of producer B dominated in Sec. 4.2, but were 
dominated by the lower variances at the plants of producer A in the MLE. This explains the low 
values for  and . The contrasting high value of  was recognized in the low 
contribution from between-plant and -producer variation shown in Tabs. 6 and 7.  of 
B30M60 was associated with the small variation of the variances between the plants and 
producers. The low values for  for B35M40 and B35MF40 reflected that the durability 
class was governing for the strength prediction for producers A and C, but less governing for 
producer B. The low variation in the variance between plants and the relatively low contribution 
from between-plant and -producer variance for B45MF40 and B45SV40, resulted in high values 
for  and  respectively. The low  for B45SV30 was reflected in the large 
contribution from between-plant variance for producer B. 
 
Tab. 11 shows the MLE per durability class, where  and  are the sample mean and variance 
of the group of samples with the same durability class at plant , and the estimated variances 
would thus include a contribution from between-strength class variance. Interesting to note from 
the results were the high values for the degree of belief, both with respect to the mean and the 
standard deviation. These results were not surprising, since the durability class gives a required 
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maximum water-binder ratio, and the strength of the concrete is governed by the water-binder 
ratio. 
 
Table 11: MLE for different durability classes. 

           
M40 4.19 1.1 0.08 10.4 17 
M45 4.06 1.6 0.09 7.4 17 
M60 3.83 4.1 0.10 21.9 17 
M90 3.57 2.4 0.10 6.8 13 
MF40 4.17 2.2 0.09 10.7 16 
MF45 4.01 2.8 0.09 8.3 15 
SV30 4.24 0.8 0.06 11.2 5 
SV40 4.21 3.2 0.09 8.0 16 
General - - 0.09 7.7 116 

 
Tab. 12 shows the MLE per strength class, where  and  are the sample mean and variance of 
the group of samples with the same strength class at plant , and the estimated standard 
deviations would thus include a contribution from between-durability class variance. 
 
Table 12: MLE for different strength classes. 

           
B20 3.54 1.4 0.09 6.7 12 
B25 3.67 1.2 0.06 1.4 7 
B30 3.83 3.9 0.10 21.3 17 
B35 4.07 2.2 0.11 22.8 17 
B45 4.19 2.2 0.09 20.4 17 
B55 4.35 4.9 0.06 5.0 4 
General 0.24 1.1 0.09 4.1 74 

 
Taking the values of the general MLE with the highest degree of belief, Tabs. 12 and 11 indicate 
that if the strength and durability class is unknown, and the producer and plant is known, the 
mean and coefficient of variation of the cube strength respectively, can be estimated with a 
reasonable degree of belief according to 
 

  (39) 
 
and 
 

 . (40) 
 
Since samples with low sample standard deviations tend to dominate, and the between-plant and 
-producer variance is not taken into account, the general MLE of the variance was smaller than 
the general estimate in Sec. 4.2. 
 
4.4 Within-batch variation 
For estimating the within-batch variation, the samples of observations for each recipe were 
treated separately, i.e. without combining samples from different recipes as in Sec. 4.3. The 
sample variance and the sample size of recipe  were input to Eq. (36) to obtain the estimator for 
the within-batch variation of recipe , . Furthermore, the value of  for each recipe 
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obtaining a specified strength class or combination of strength and durability class was input to 
Eqs. (33), (29) and (30). Tabs. 13 and 14 show the results per combination of strength and 
durability class and per strength class respectively. Note that Tab. 13 indicates for example that 
at the 17 plants considered in the present work, there were  recipes for obtaining a 
B45M40. The estimates of the standard deviation of the within-batch variation ranged from 0.03 
for B45SV30 to 0.07 for B20M90, and from 0.05 for B25-B55 to 0.07 for B20. The general 
estimate of the within-batch variation was comparable to results from the literature [5,11,12]. 
 
Table 13: MLE of the within-batch variation for different combinations of strength and 
durability class. 

       
B20M90 0.07 3.8 26 
B25M60 0.04 3.2 3 
B25M90 0.05 1.4 16 
B30M60 0.05 1.6 129 
B35M40 0.05 1.9 59 
B35M45 0.04 1.4 105 
B35MF40 0.05 1.6 49 
B35MF45 0.06 2.6 72 
B35SV40 0.05 2.1 40 
B45M40 0.05 2.0 69 
B45M45 0.05 2.1 8 
B45MF40 0.05 1.7 56 
B45MF45 0.06 11.4 5 
B45SV30 0.03 1.4 11 
B45SV40 0.04 1.6 91 
B55SV40 0.05 3.9 6 
General 0.05 1.6 745 

 
Table 14: MLE of the within-batch variation for different strength classes. 

       
B20 0.07 3.8 26 
B25 0.05 1.5 19 
B30 0.05 1.6 130 
B35 0.05 1.6 327 
B45 0.05 1.6 240 
B55 0.05 4.2 7 
General 0.05 1.6 749 

 
4.5 General probability distribution 
Based on the preceding sections, a general probability distribution was established, as 
summarized in Tab. 15. Considering Tabs. 8 and 12, the mean compressive cube strength was 
taken as 
 

 , (41) 
 
where  is the target cube strength from Tab. 1. 
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According to Tab. 8, the coefficient of variation of the cube strength at the highest level of the 
hierarchy can be taken as 
 

 , (42) 
 
and assuming that Tabs. 11 and 14 represent the within-plant and within-batch variation 
respectively, the respective coefficients of variation can be taken as  and 

. The total coefficient of variation can be given as 
 

 , (43) 

 

where  is the between-batch and -recipe variation and 

 is the between-plant and -producer variation. 

 
Table 15: Parameters for the general probability distribution for the compressive cube strength. 

 is the target cube strength. 
Mean  
Total variation 

 

Within-batch variation  
Between-batch and -recipe variation  
Between-plant and -producer variation  

 
5. APPLICATION EXAMPLES 
5.1 General remarks 
Two examples are introduced to demonstrate the application of the results: one existing and one 
new structure. Stewart [10] suggests that the compressive strength in a structure can be 
calculated based on the lab-strength of cylinders according to 
 

 , (44) 
 
where  and  are factors considering the effects of compaction and curing respectively. It 
was assumed that the concrete was placed with fair performance of the compaction and exposed 
to fair curing conditions for at least seven days, resulting in mean values  and 

, and coefficients of variation  and . With a poor level of compaction 
and poor curing conditions, the mean values and the coefficients of variation of the factors 
decrease and increase, respectively. A nominal ratio between the cylinder and cube strength of 
0.85 was used, and the coefficient of variation of the lab-strength of cylinders was assumed to 
be properly described by the one estimated for cubes, justified by evidence in the literature 
reviewed in the introduction. The compressive strength in the structure was thus represented by 
a log-normally distributed variable with mean 
 

  (45) 
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and coefficient of variation 
 

 , (46) 

 
assuming that Eqs. (25) and (26) are valid approximations. It should be noted that the ratio 
between the cylinder and cube strength also has a significant coefficient of variation [30-35] 
which should be taken into account in Eq. (46) if a detailed strength prediction is necessary. 
However, for the present application examples, the nominal ratio was assumed sufficient. 
 
5.2 Example 1: Existing structure 
The sample of six cores drilled from an existing structure presented by Steenbergen & Vervuurt 
[43] was considered. The sample mean and standard deviation of the natural logarithm of the 
core strengths were  and , and with six observations, . Assuming a non-
informative prior, Eq. (14) can be used to estimate the lower 5%-fractile of the cylinder strength 
as 
 

 . (47) 

 
Assuming that the generalized prior data for the variance given in Tab. 12 is valid for the 
population of concrete from which the six cores originate, Eqs. (23) and (24) update the prior 
data for the variance, added the contributions from compaction and curing, according to 
 

  (48) 
 
and 
 

 . (49) 

 
Eq. (49) is derived from Eq. (24), assuming that the prior value of the variance can be given by 

. The estimated lower 5%-fractile of the cylinder strength becomes 
 

 . (50) 

 
The influence of the prior data on the updated standard deviation was small since the values of 
the sample standard deviation and the prior were similar. However, the prior data increased the 
information content in the posterior prediction, shown in Fig. 3, resulting in a 3% increase of the 
estimated lower 5%-fractile of the cylinder strength. 
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Figure 3: Posterior predictive distributions based on non-informative (dashed) and informative 
(solid) prior distributions for the cylinder strength in Example 1. 
 
5.3 Example 2: New structure 
A structure was assumed to be designed with a concrete B45M40. At an early stage in the 
design process, it is reasonable to consider the whole population of B45 when estimating the 
design compressive strength, i.e. the strength class level in the hierarchical model in Fig. 1. 
Considering Tab. 8 and the assumptions above, the mean compressive strength becomes 
 

 , (51) 
 
the total coefficient of variation becomes 
 

 , (52) 

 
and the design compressive strength becomes 
 

 , (53) 
 
assuming that ,  and , attain the values from Eq. (1). Comparing the design strength 
with the target cylinder strength from Tab. 1, , gives an effective partial material factor 
 

 , (54) 

 
which could be compared with  from Eq. (1). By including more information by 
moving downwards in the hierarchical model, and considering Tabs. 7 and 6, the results in Tab. 
16 are obtained. The different estimates of  are results of considering different 
subpopulations of B45 and B45M40, having different mean values and coefficients of variation. 
If a sufficient amount of information is made available, it could be possible to move further 
downwards in the hierarchy, and possibly exclude both between-plant and between-recipe 
variation. 
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Table 16: Results from Example 2, demonstrating the effect of including more information in the 
estimate of the design compressive strength.  is the mean strength in the structure,  is the 
total coefficient of variation,  is the design compressive strength and  is the effective 
partial material factor according to Eqs. (51) to (54). 

Knowledge  [MPa]  [-]  [MPa]  [-] 
B45 49.8 0.15 31.4 1.44 
B45M40 51.8 0.16 31.9 1.41 
B45M40, Prod. A 49.8 0.15 32.0 1.40 
B45M40, Prod. B 49.8 0.17 30.0 1.50 
B45M40, Prod. C 54.5 0.15 35.1 1.28 

 
6. CONCLUSION 
By studying strength recordings from Norwegian ready-mixed concrete plants, the variability of 
the compressive cube strength has been quantified on different hierarchical levels. The highest 
studied level of the hierarchy was the strength class, which represents the entry point of 
information in the design process. During design of a new structure, the designer specifies a 
certain strength and durability class, and the fact that the producer, plant, recipe and batch is 
unknown is reflected in the coefficient of variation at the highest level of the hierarchy. The 
presented results are easily combined with additional data, e.g. from the European market, or 
from a supply controlled by a different regional standard. 
 
It has been demonstrated how the level of knowledge of the designer influences the uncertainty 
that must be taken into account, and thus the estimated design compressive strength in the 
structure. With today's diversity in assessment methods both with regard to structural behaviour 
and uncertainty differentiation, and the strong focus on reassessments of existing structures, data 
on a form similar to what has been presented herein could be considered included in future 
design codes. This could stimulate to a safe use of advanced assessment methods, with an aim to 
reduce unnecessary conservatism and increase the competitiveness of concrete. 
 
The scope of the present work was to estimate the variation resulting from what the designer can 
control. The results indicate that the designer should specify a strength class that utilizes the 
strength potential of the durability class, and avoid combinations like e.g. B35M40 and 
B25M60, where a resulting over-strength could introduce a safety margin, but also unintended 
variation in the population. A closer collaboration between the designer, contractor and producer 
is expected to result in improved concrete specifications. A natural continuation of this work 
could be to address the influence of the different constituents on the estimated variation, i.e. 
study the variation from a producer's point of view with the possible aim of reducing unintended 
variation, and obtaining a more homogenous population of concrete. 
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When performing non-linear finite element analyses during the
design of large reinforced concrete structures, there is a need for
a general, robust and stable solution strategy with a low model-
ling uncertainty which comprises choices regarding force equi-
librium, kinematic compatibility and constitutive relations. In this
paper, analyses of experiments with a range of structural forms,
loading conditions, failure modes and concrete strengths show
that an engineering solution strategy is able to produce results
with good accuracy and low modelling uncertainty. The advice is
to shift the attention from a detailed description of the post-
cracking behaviour of concrete to a rational description of the
pre-cracking compressive behaviour for cases where large ele-
ments are used and the ultimate limit capacity is sought.

Keywords: large reinforced concrete structures, non-linear finite element
analysis, modelling uncertainty, structural design, engineering solution
strategy

1 Introduction

The design of large concrete structures such as dams and
offshore oil and gas platforms is normally carried out us-
ing linear finite element analyses (LFEA) followed by post-
processing and non-linear section design [1]. Owing to the
size of the structure and the high number of load cases
that might need to be analysed, the sizes of the finite ele-
ments are normally in the order of the member dimen-
sions, and could be termed large-scale. Solid elements are
normally used due to the accuracy required at structural
joints. Fig. 1 shows an example of a global finite element
model with a typical element size of approx. 1 m. In order
to take advantage of the principle of superposition, rein-
forced concrete is treated as an isotropic, linear elastic ma-
terial during the LFEA, and the non-linear material prop-
erties of concrete and reinforcement are taken into
account during the non-linear section design. Owing to
the cracking of concrete and yielding of reinforcement, a
redistribution of internal forces occurs even at low load
levels. Such effects cannot be revealed by the LFEA due to
the lack of realistic connection between load and material
response during calculation of the internal forces. Despite
this inconsistency, the present design method is consid-

ered safe when equilibrium is satisfied, the material
strengths are not exceeded and sufficient ductility is pro-
vided. To compensate for the inconsistency, non-linear
 finite element analyses (NLFEA), where the non-linear
material behaviour is taken into account directly, could be
carried out to verify the reliability of the design. Engen,
Hendriks, Øverli and Åldstedt [2] outline the application
of NLFEA in the design process.

One of the main challenges when taking the step to
using NLFEA in reliability analyses of concrete structures
is the large modelling uncertainty possibly associated with
the solution strategy selected for NLFEA [3]. A solution
strategy for NLFEA consists of choices regarding force
equilibrium, kinematic compatibility and constitutive rela-
tions. A review of results from blind prediction competi-
tions shows that predictions of beams in bending and
shear can result in coefficients of variation (COV) of
5–30 % and 10–40 % respectively [3]. Such scatter can be
attributed to the solution strategy selected and has been
found to increase as the skills of the analyst decrease
[4–7]. In order to use NLFEA in practical design, a gener-
al, robust and stable solution strategy should thus be se-
lected. This is of particular importance in the design of off-
shore concrete structures owing to the wide range of
loading conditions encountered during their lifetime.
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Fig. 1. Global finite element model used during the design of a typical off-
shore concrete platform (Roar Lie)



Several guidelines have been produced to help ana-
lysts select suitable solution strategies, but still leaving the
analyst with a number of choices to make [8–10]; however,
large-scale element sizes are treated only briefly. The ob-
jective of the present study is to develop a solution strate-
gy for large-scale NLFEA in verifications of the global reli-
ability of concrete structures. The objective of this paper is
to select a proper solution strategy with a low COV for fur-
ther development.

In this paper, the results from benchmark analyses
on material and structural level, using two different solu-
tion strategies, are compared in order to reveal strengths
and weaknesses. Three experiments on material level and
ten relatively simple experiments on structural level, with
a range of loading conditions, failure modes and concrete
strengths, were chosen for this comparative study.

2 Solution strategy for large-scale NLFEA

A solution strategy for NLFEA consists of choices regard-
ing force equilibrium, kinematic compatibility and consti-
tutive relations, e.g. iteration method and convergence cri-
teria, finite element type and integration scheme, and
material models for concrete and reinforcement. The two
solution strategies compared on material and structural
level in this paper are more or less similar when it comes
to equilibrium and kinematic compatibility, and the mate-
rial model for concrete constitutes the main difference.

In a uniaxial compressive test, failure is initiated at
the critical volume point where the test specimen has its
smallest volume and starts to expand [11]. Due to the het-
erogeneity of concrete, one material point can reach the
critical volume point before neighbouring material points.
When this happens, the surrounding concrete will have a
confining effect on the critically loaded concrete, leading
to local triaxial compression at the critically loaded mate-
rial point and transverse tension in the surrounding con-
crete. Failure is initiated when the tensile stresses in the
surrounding concrete exceed the tensile capacity of the
concrete. This phenomenon could be termed splitting due
to the resulting cracks parallel to the maximum applied
compressive stress. In contrast to splitting, crushing, or
collapse of the void system of the concrete, happens due
to extreme hydrostatic pressures [12], and is normally only
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observed as a post-peak phenomenon. Following this sim-
ple terminology, the failure modes at structural level are
defined as either brittle or ductile. The brittle failure mode
is associated with tensile stresses causing failure of the
flow of compressive stresses from the load point to the
supports, and the ductile failure mode is characterized by
yielding of the reinforcement. Since the focus of this paper
is on the ultimate capacity of structures, less attention was
paid to the descending branch, all analyses were stopped
at the peak level and no attempt was made to trace the
post-peak behaviour. In order to reduce the analysis time,
the load steps for the analyses on structural level were
 adjusted so that the ultimate load was reached in approx.
20 load increments.

The first solution strategy was based on the Dutch
guidelines (DG) [10]. In the design phase, limited informa-
tion is normally available regarding the concrete mix, and
often the designer can only specify the compressive
strength. The second solution strategy was based on a ful-
ly triaxial material model needing only one material input
parameter, namely the uniaxial cylinder compressive
strength [13, 14]. The solution strategy is well suited to en-
gineering design problems, and is called the engineering
solution strategy. The two solution strategies are summa-
rized in Table 1.

Modified Newton-Raphson with a force convergence
criterion of 10–2 and an energy convergence criterion of
10–3 was used in the DG solution strategy. The engineer-
ing solution strategy used a slightly amended version of
the modified Newton-Raphson method, called Newton-
Raphson Plus [15, 16], where the material stiffness matri-
ces for concrete and reinforcement at each integration
point were updated at the beginning of each load incre-
ment and kept constant throughout this load increment
unless strong non-linearities, i.e. cracking of concrete and
yielding of reinforcement, occurred. Convergence criteria
dependent on stress and strain residuals were used, but
were usually not met due to a relatively strict force con-
vergence criterion of 10–3. A trilinear constitutive law, as
proposed by González Vidosa, Kotsovos and Pavlovic
[15], was chosen for all reinforcement in both of the solu-
tion strategies in order to reduce bias. Both of the solution
strategies used 20-node solid elements and three-node
truss elements for concrete and reinforcement respective-

Table 1. Summary of the two solution strategies; εR and εE are the convergence criteria for residual force and energy respectively and the reference value
used for convergence check is the square root of the sum of squares

DG Engineering

Force equilibrium Modified Newton-Raphson with εR = 10–2 and εE = 10–3 Newton-Raphson Plus with εR = 10–3

Kinematic compatibility – 20-node solid elements for concrete and three-node bar elements for reinforcement
– Reduced integration

Constitutive relation Concrete: Concrete:
– Fixed, orthogonal, smeared cracking – Fixed, non-orthogonal, smeared
– Uniaxial behaviour models generalized to triaxial cracking with max. three cracks per 

stress states integration point
Reinforcement: – Fully triaxial, empirically based
– Trilinear relation material model

Reinforcement:
– Trilinear relation
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ly. Despite the dangers of under-integration discussed in
the literature [17], reduced integration was selected based
on the recommendations published by González Vidosa,
Kotsovos and Pavlovic [18].

In the guidelines published by fib [9], modelling the
tensile behaviour of concrete and the interface between
concrete and reinforcement receive special attention
when discussing element size scales. Following these
guidelines, bond slip and tension softening should be used
in medium-scale analyses, i.e. when the element size is in
the order of the reinforcing bar diameter, and perfect bond
and tension stiffening should be used for large-scale analy-
ses, recalling that tension stiffening represents the inte-
grated response of uncracked concrete between cracks. In
a recent study [19], results from medium- and large-scale
analyses were compared. At the large scale, a fracture en-
ergy-based tension softening relation was modified in or-
der to include the energy released during bond slip at the
medium scale; see the work by Lackner and Mang [20] for
a thorough discussion of the method. In [19] this ap-
proach was found to have only a limited effect on the glob-
al response, and it was suggested that this is due to the low
relative contribution of concrete in tension to the total
strain energy of the system. With this in mind, the tensile
behaviour of concrete was not modified in the present
study, where the elements were relatively large, and most
of the focus was shifted towards the physical representa-
tion of cracking.

A fixed, orthogonal, total strain-based, smeared crack
model was chosen for the DG solution strategy. When us-
ing a fixed crack model, it is necessary to assign a shear re-
tention factor (SRF). The SRF reflects the relative amount
of shear stiffness that should be retained at an integration
point after cracking, and should be assigned a sufficiently
high value to avoid numerical instabilities due to ill-condi-
tioning of the material stiffness matrix and a sufficiently
low value to reduce the transfer of shear stresses across
cracks due to rotation of the stress field after cracking [18].
The Dutch guidelines propose the use of a variable SRF,
but this has resulted in predicted capacities being too low.
It has been suggested that the variable SRF mainly applies
to medium-scale analyses, and a constant value of 0.1 was
assigned in all analyses in the present study [21].

The DG solution strategy used a parabolic expres-
sion in compression [22] and an exponential softening ex-
pression in tension [23]. The effects of lateral stresses were
taken into account by the model for strength reduction
due to cracking published by Vecchio and Collins [24] and
the confinement model published by Selby and Vecchio
[25]. Poisson’s ratio was gradually decreased after crack-
ing. Note that a constant value of 0.15 was assigned to
Poisson’s ratio prior to cracking. A secant formulation was
used for unloading and reloading. The chosen models re-
quired a set of material parameters that were all calculated
based on relevant expressions in the fib Model Code for
Concrete Structures 2010 [26] using a reported mean
cylinder strength as input.

The material model used in the DG solution strategy
was thus based on a uniaxial formulation and generalized
by adopting extensions based on biaxial and triaxial ex-
perimental data. This is convenient when the effects of dif-
ferent behaviour models have to be studied, but models for

material behaviour are often developed in combination
with other complementary models and should not be sep-
arated [27]. Instead, fully triaxial material models could be
developed directly based on biaxial and triaxial experi-
mental results. This is the case for the material model used
in the engineering solution strategy.

The material model used in the engineering solution
strategy is described in full elsewhere [13, 14] and will on-
ly be outlined here. Decomposing the response of biaxial-
ly and triaxially loaded test specimens into octahedral
stresses and strains led to the development of simple ex-
pressions for secant and tangent bulk and shear moduli
only dependent on stress level and compressive strength,
realizing that the deviatoric deformation due to pure hy-
drostatic loading is negligible and pure deviatoric loading
results in both deviatoric and volumetric deformation.
The state of strain corresponding to any state of stress can
thus be calculated from Hooke’s law using the secant mod-
uli for that particular state of stress and a coupling term
for the volumetric response to deviatoric loading. By using
this approach, the effects of confinement and varying
Poisson’s ratio are automatically included, and the influ-
ence of lateral stresses on the strength is included in the
three-dimensional fracture criterion. A criterion for load-
ing or unloading is determined based on the critical devia-
toric component of the octahedral stresses at an integra-
tion point and unloading and reloading follows a branch
using the initial elastic moduli. For stress levels below the
critical volume point, the response can be predicted using
the non-linear moduli described above. For stress levels
beyond the critical volume point, additional expansion in
the directions transverse to the maximum principal com-
pressive stress due to unstable formation of continuous
microcracking could be calculated and added to the
 deformation calculated using the non-linear moduli [28].
Note that this effect was excluded from the present study
following recommendations presented elsewhere [13].

Upon cracking, all stiffness and stress across the
crack are reduced to zero, leaving the concrete as a fully
brittle material. A total of three non-orthogonal, fixed
cracks can be formed at each integration point, and a con-
stant SRF is used [18]. The simplicity of the material mod-
el is achieved by neglecting any softening in both com-
pression and tension and applying a constant tangential
material stiffness in the uncracked directions after crack-

Fig. 2. Simplified presentation of the material models used in a) the DG
 solution strategy and b) the engineering solution strategy – shown for a
cylinder subjected to an axial stress σa and a confining stress σc (εa = axial
strain, fc = compressive strength, ft = tensile strength)



ing. A simplified presentation of the material models for
the two solution strategies is shown in Fig. 2. In the pre-
sent study, a review of nearly 70 benchmark analyses cov-
ering a wide range of structural forms, loading conditions
and concrete strengths reported in the literature [13] re-
vealed a mean ratio of numerical to experimental capacity
of 1.0 with a COV of 14 %, which is good compared with
the results collected by Schlune et al. [3] mentioned in the
introduction. In this paper, ten of the 70 experiments on
structural level were selected for a more thorough investi-
gation.

3 Case studies on material level

In this section, results from experiments on plain concrete
subjected to well-defined stress states are compared with
results from NLFEA of single elements in order to com-
pare the solution strategies on the material level. At this
level it is important to select experiments that were not in-
cluded in the databases to which the material models were
calibrated during the development. The following bench-
mark experiments were selected with this in mind. Com-
pressive stresses and strains are assigned negative values.
It should be noted that the analyses were stopped at peak
level and that no attempt was made to trace post-peak be-
haviour. The results are thus independent of, for example,
the crack bandwidth and the variable post-cracking Pois-
son’s ratio as these parameters relate to the post-peak be-
haviour. No cracks were observed before the peak level in
any of the analyses on material level. All the results were
extracted from the integration points.

Fig. 3 shows a biaxial failure surface as a result of ex-
periments on plain concrete with compressive strength
fc = 57.6 MPa [29]. The DG solution strategy produced
somewhat unconservative results in the tension/compres-
sion regime, which could lead to somewhat stiffer struc-
tural behaviour before cracking. The engineering solution
strategy showed a close fit with the experimental results
and was somewhat conservative for equibiaxial compres-
sion and tension.

Fig. 4 shows the response to triaxial compression,
σ3 ≤ σ2 = σ1, for plain concrete with fc = 56.9 MPa subject-
ed to confining pressures of σ2 = σ1 = –20 MPa and
σ2 = σ1 = –40 MPa [30]. At both levels of confinement the
engineering solution strategy produced results with both
stiffness and capacity closer to the experimental results
than the DG solution strategy. The engineering solution
strategy underestimated the strain at ultimate capacity,
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but predicted values closer to the experimental results
compared with the DG solution strategy despite the brit-
tleness of the engineering solution strategy. Note the sig-
nificant increase in the ultimate strains resulting from a
higher confining pressure.

The volumetric strain development for plain con-
crete with fc = 32.1 MPa subjected to three different biaxi-
al loading ratios, σ2/σ3 = 0, 0.52 and 1, is shown in Fig. 5
[29] and compared with results from NLFEA. For the uni-
axial case, the two solution strategies agree well with the
experimental results. At the intermediate confinement lev-
el the DG solution strategy tends to underestimate the vol-
umetric strain and the engineering solution strategy tends
to overestimate the strain. At the highest confinement lev-
el the engineering solution strategy overestimates the vol-
umetric strain development, and it can be seen that the ca-
pacity is somewhat underestimated, as was also shown in
Fig. 3.
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Fig. 3. Biaxial failure surface for plain concrete with fc = 57.6 MPa [29]
compared with results from NLFEA using (left) the DG solution strategy and
(right) the engineering solution strategy
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4 Case studies on structural level

Ten case studies on structural level are presented in
this section. The cases were evaluated in terms of the
 predicted load-displacement curves and failure modes.
The predicted ultimate loads correspond to the loads
from the last converged load step. The case studies were
selected in order to have variations in concrete strengths,
structural forms, failure modes and loading conditions.
Details of the finite element meshes are shown in Fig. 6,
where it can be seen that the sizes of the finite elements
were in the order of the member dimensions and that all
reinforcement was lumped to the element borders.
 Details of the experiments can be found in the references
below. In cases 1, 2, 3 and 9, only the effective depth of
the beam was modelled, neglecting the cover. In all other
cases the complete depth was modelled, but the rein-
forcement was still lumped to the element borders main-

taining the total reinforcement area and internal lever
arm. Note that the analyses using the engineering solu-
tion strategy were not performed by the authors; the re-
sults were collected from the literature referred to in
Table 2. The finite element meshes and the simple rein-
forcement representation was adopted from this litera-
ture in order to reduce bias. The following cases were
studied:
CS1: Reinforced concrete beam with stirrups under two-

point loading (B1) [31]
CS2: Reinforced concrete beam without stirrups under

one-point loading (OA-1) [32]
CS3: Reinforced concrete beam with stirrups under one-

point loading (A-1) [32]
CS4: Reinforced concrete T-beam under four-point load-

ing (beam C) [33]
CS5: Short structural wall subjected to horizontal and

vertical loads (SW15) [34]

Fig. 6. Finite element meshes for all case studies on structural level (dashed lines and solid circles indicate reinforcement locations)



CS6: Slender structural wall subjected to horizontal load
(SW21) [34]

CS7: High-strength reinforced concrete T-beam under
two-point loading (HSB2) [35]

CS8: High-strength reinforced concrete beam under one-
point loading (B 150-11-3) [36]

CS9: Reinforced concrete beam with cantilever subjected
to two-point sequential loading (B2CFP) [37]

CS10: Prestressed T-beam subjected to six-point loading
(PCB6) [38]

The predicted load-displacement curves are shown in
Fig. 7 and Table 2 compares the ultimate load predictions
with the values established experimentally. The mean ra-
tio of predicted to experimental ultimate load and the cor-
responding standard deviation and COV were calculated.
Both solution strategies yielded adequate results. The en-
gineering solution strategy yielded results with the lowest
systematic error and variation – well within the limits of
the results collected by Schlune et al. [3] presented in the
introduction. The DG solution strategy predicted the
stiffest behaviour in most cases.

5 Discussion

Solution strategies applicable for NLFEA of concrete
structures with large finite elements are studied in the pre-
sent paper. The cases are evaluated in terms of the pre-
dicted load-displacement curves and failure modes. Dur-
ing post-processing of the results, however, a detailed
study of the stress and strain distributions and the crack
patterns was necessary. Detailed plots of, for example,
stress and strain contours and crack patterns were omitted
from this paper in order to focus attention on the global
behaviour. In general, the crack patterns obtained with the
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DG solution strategy corresponded well with those ob-
tained with the engineering solution strategy, for which
references can be found in section 4. Both solution strate-
gies were able to predict results with accuracy well within
the limits that were collected by Schlune et al. [3] men-
tioned in the introduction. One of the analyses with the
DG solution strategy predicted a wrong failure mode. The
results from the NLFEA with the engineering solution
strategy had the lowest systematic error and the lowest
modelling uncertainty.

When comparing the two solution strategies used in
the present study, one distinct difference is the simple
post-cracking behaviour in the engineering solution strate-
gy. Kotsovos [42] points out that tensile fracture is charac-
terized by a sudden loss of capacity in a force-controlled
experiment due to the lack of possibility of stress redistrib-
utions within the concrete specimen upon formation of
microcracks. On the other hand, Reinhardt, Cornelissen
and Hordijk [23] mention that stress transfer is still possi-
ble after the tensile strength is reached in deformation-
controlled experiments, and that this softening is a result
of gradual degradation within a discrete crack band. Brit-
tle cracking could seem too crude at large scale because
the volume assigned to each integration point where the
material behaviour is evaluated inevitably comprises both
cracked and uncracked concrete. Nevertheless, the results
from the analyses using the engineering solution strategy
yield adequate accuracy even at lower load levels. It
should be noted that when large elements are used, the re-
sulting high value for the crack bandwidth results in a rel-
atively steep descending branch, turning the softening ma-
terial model into a more brittle one. The somewhat stiffer
behaviour at structural level predicted by the DG solution
strategy shown in Fig. 7 could be a combination of the
larger amount of strain energy available in direct tension
and the unconservative failure criterion in tension-com-
pression shown in Fig. 3.

Large hydrostatic compressive stress states give rise
to increased capacity and strains at ultimate load level [29,
30, 42]. The results of the triaxial benchmark analyses on
the material level, shown in Fig. 4, show that the engineer-
ing solution strategy predicts a capacity and deformation
in close agreement with the experimental results despite
the brittle post-peak behaviour of the material model. The
slightly underestimated strains obtained with the engi-
neering solution strategy can be attributed to the expan-
sion effects close to ultimate load levels which were ne-
glected in the present study. In fact this effect was
demonstrated by Kotsovos and Newman [28] for triaxial
compression, resulting in underestimated strains similar to
those shown in Fig. 4. The low capacity predicted by the
DG solution strategy under triaxial compression is sug-
gested to be due to the constant Poisson’s ratio before
cracking. Selby and Vecchio [25] analysed the same exper-
iment with a solution strategy similar to DG, but including
a variable Poisson’s ratio, and the predicted capacity was
found to be much closer to the experimental value.

The number of cases studied was too small to ob-
serve any systematic error as a function of the number of
elements or integration points over the depths of the mem-
bers. If – within the limits for large-scale elements – a finer
mesh is chosen, a higher total number of integration

Table 2. Summary of ultimate load predictions compared with experimental
results; numbers and letters in parentheses indicate ratio of predicted to
experimental result (RNLFEA/Rexp) and failure mode (B = brittle, D = ductile)
respectively

Case study Rexp RNLFEA,eng RNLFEA,DG

1 13.6 kN (D) 14 kN (1.03 D) [15] 16 kN (1.18 D)

2 334 kN (B) 300 kN (0.90 B) [15] 274 kN (0.82 B)

3 467 kN (B) 450 kN (0.96 B) [16] 467 kN (1.00 B)

4 240 kN (D) 195 kN (0.82 D) [39] 202 kN (0.84 D)

5 320 kN (D) 273 kN (0.85 D) [13] 217 kN (0.68 D)

6 127 kN (D) 115 kN (0.91 D) [13] 90 kN (0.71 D)

7 200 kN (D) 187 kN (0.94 D) [39] 189 kN (0.95 D)

8 323 kN (B) 360 kN (1.11 B) [39] 376 kN (1.16 B)

9 156 kN (D) 156 kN (1.00 D) [40] 120 kN (0.77 B)

10 94 kN (D) 84 kN (0.90 D) [41] 88 kN (0.94 D)

Mean ratio 0.94 0.90

Standard deviation 0.09 0.17

COV 9 % 19 %
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points where the stresses and strains are calculated is in-
troduced. With a higher number of such sampling points,
the stress field, and especially gradients over the cross-sec-
tion due to, for example, bending or local effects, could be
predicted with a higher degree of accuracy and critical
points could be revealed. One question that remains to be
answered is the level of local accuracy that is needed in or-
der to predict the ultimate load with adequate global accu-
racy. In the further work, the effect of the ratio of element
size to member size on the modelling uncertainty should
be addressed.

Simple structural forms with a range of loading con-
ditions and failure modes were chosen for this study. The
estimated modelling uncertainty is thus based on different
failure modes, and we do not have enough data to distin-
guish between the uncertainties for the specific failure
modes. In a complex structure, the global failure could be

a mixture of failures in several areas, a failure mode where
in-plane and out-of-plane forces interact or it could be
dominated by one specific failure mode in one specific
area. The role of the NLFEA is to predict the global load
and the failure mode unknown in advance, so a general
modelling uncertainty of a solution strategy applied to a
range of failure modes could seem most rational for com-
plex structures. On the other hand, if the solution strategy
turns out to have a higher modelling uncertainty when ap-
plied to a certain failure mode, and this failure mode dom-
inates the global behaviour of the structure, the modelling
uncertainty of that certain failure mode should have a
larger influence on the estimated design capacity of the
structure. In the further work, the modelling uncertainty
of specific failure modes should be addressed, aiming for a
uniform uncertainty independent of the failure mode.
More complex structural forms should also be included.
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Fig. 7. Force-displacement curves for all case studies on structural level with total force plotted against displacement and positive displacement 
measured in direction of applied load in all cases



6 Conclusion

Despite coarse finite element meshes, simple representa-
tions of reinforcement and boundary conditions and rela-
tively large load increments, both solution strategies per-
formed well, with results within the expected limits for
modelling uncertainty discussed in the literature.

Based on the results from the present study, a shift in
attention from a detailed description of the post-cracking
behaviour of concrete to a rational description of the pre-
cracking compressive behaviour is advised. This holds
 especially true for cases where large elements are used and
the ultimate limit capacity is sought. Further work will be
based on the engineering solution strategy, also consider-
ing associated recent developments [43, 44].

A thorough investigation of the effect of element size
and failure mode on the modelling uncertainty should be
carried out. More complex structural forms and loading
conditions should also be included in this, still keeping the
element sizes within the limits for large-scale elements.
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ABSTRACT
In order to make non-linear finite element analyses applicable during assessments of
the ultimate load capacity or the structural reliability of large reinforced concrete
structures, there is need for an efficient solution strategy with a low modelling uncer-
tainty. A solution strategy comprises choices regarding force equilibrium, kinematic
compatibility and constitutive relations. This contribution demonstrates four impor-
tant steps in the process of developing a proper solution strategy: 1) definition, 2)
verification by numerical experiments, 3) validation by benchmark analyses and 4)
demonstration of applicability. A complete solution strategy is presented in detail,
including a fully triaxial material model for concrete, which was adapted to facilitate
its implementation in a standard finite element software. Insignificant sensitivity to
finite element discretization, load step size, iteration method and convergence tol-
erance were found by numerical experiments. A low modelling uncertainty, denoted
by the ratio of experimental to predicted capacity, was found by comparing the
results from a range of experiments to results from non-linear finite element predic-
tions. The applicability to large reinforced concrete structures is demonstrated by
an analysis of an offshore concrete shell structure.

KEYWORDS
non-linear finite element analyses; large concrete shell structures; practical
applications; ultimate load capacity; modelling uncertainty; structural design

1. Introduction

With the introduction of the semi-probabilistic safety formats in fib Model Code 2010
for Concrete Structures (fib, 2013), non-linear finite element analyses (NLFEA) are
receiving increased interest from the engineering community. This paper addresses the
topic of NLFEA applicable for the design of large reinforced concrete structures, where
the main scope of the analyses are accurate predictions of the ultimate load capacity.

The design of large reinforced concrete shell structures like dams and offshore oil and
gas platforms is normally based on global linear finite element analyses (LFEA). This
allows for using the principle of superpositioning in order to handle the vast number
of design load combinations (Brekke, Åldstedt, and Grosch, 1994; Engen, Hendriks,
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Øverli, and Åldstedt, 2015). For such large shell structures it is important to perform
global analyses due to the interaction between global and local load effects. In order
to reduce the computational cost, the finite elements are normally large compared to
the sectional dimensions. Sufficient capacity is assured by performing local sectional
design based on the sectional forces obtained from the LFEA.

In order to better take into account the real physical behaviour of reinforced con-
crete, non-linear finite element analyses (NLFEA) could be carried out in the design
phase. The NLFEA should then be used in combination with methods for global re-
liability assessments, e.g. the semi-probabilistic safety formats suggested in fib Model
Code for Concrete Structures 2010 (fib, 2013). Due to cracking of concrete and yielding
of reinforcement, a redistribution of the internal forces can be expected.

In order to perform NLFEA, the analyst needs to make proper choices regarding
force equilibrium, kinematic compatibility and constitutive relations. Collectively, the
choices constitute a strategy for obtaining a solution from NLFEA, or short, a solution
strategy for NLFEA (Engen et al., 2015). Previous research has led to the development
of a set of guidelines for NLFEA of reinforced or prestressed concrete beams, girders
and slabs (Belletti, Damoni, and Hendriks, 2011; Belletti, Damoni, den Uijl, Hendriks,
and Walraven, 2013; Belletti, Damoni, Hendriks, and de Boer, 2014; Belletti, Pimentel,
Scolari, and Walraven, 2015; Hendriks, de Boer, and Belletti, 2017). However, the
applicability to large reinforced concrete shell structures has not been demonstrated.

This contribution is part of an ongoing research project and complements the find-
ings reported by the authors in two separate publications (Engen et al., 2015; Engen,
Hendriks, Köhler, Øverli, and Åldstedt, 2017). Engen et al. (2015) compared results
obtained with the mentioned guidelines to results reported elsewhere in the literature
in order to select a solution strategy for further development. Engen et al. (2017)
adapted the selected solution strategy and assessed the modelling uncertainty by com-
paring results obtained with NLFEA to experimental results reported in the literature.
The modelling uncertainty can be defined as the ratio between the experimental and
the predicted capacity, θ = Rexp/RNLFEA. The modelling uncertainty is mainly related
to simplifications of the mathematical models compared to the real physical behaviour
that is modelled, either for practical reasons or due to a lack of knowledge. This can be
related to e.g. modelling of the material behaviour as a function of a limited number of
variables, or a simplified representation of the real loading or boundary conditions. For
reinforced concrete, the material model for concrete is considered the largest source of
modelling uncertainties.

In this paper the selected solution strategy from Engen et al. (2015, 2017) is further
developed and discussed in detail. The solution strategy includes a fully triaxial mate-
rial model for concrete which was adapted to facilitate its implementation in a standard
finite element software. The accuracy of the solution strategy should be assessed by
verification and validation, where verification answers the question are we solving the
equations right?, and validation answers the question are we solving the right equa-
tions? (Engen et al., 2017; Roache, 1998). The complete solution strategy was verified
by comparing results obtained with different finite element discretizations, load step
sizes and iterative solution procedures. Validation was performed by comparison of
experimental and predicted results from a range of benchmark analyses. Results from
two benchmark analyses are presented in this paper and the applicability to large con-
crete structures is demonstrated by NLFEA of an offshore concrete shell structure. It
will be demonstrated that the ultimate load capacity and load-displacement relations
can be efficiently predicted with reasonable accuracy in spite of using relatively simple
material models and coarse finite element meshes. It should be noted that problems
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related to e.g. durability or mechanical degradation, where a precise prediction of the
crack pattern is important, might call for other and more detailed solution strategies.

2. Solution strategy for NLFEA

2.1. Material model for concrete

A common way of selecting material models for concrete is to use a uniaxial material
model as basis, extended with additional models that take into account other material
effects such as the effects of confinement and lateral cracking. Such an approach can
be convenient when the structural effects of different material effects are to be studied,
but additional models are normally developed in combination with other complemen-
tary models and should not be separated (Vecchio, 2001). Alternatively, fully triaxial
material models where all material effects are treated, could be used. One such ma-
terial model has been developed by Kotsovos and co-workers since the 1970s and is
still subject to improvements (Bédard and Kotsovos, 1985; Cotsovos and Pavlovic,
2006; González Vidosa, Kotsovos, and Pavlovic, 1991a,b; Kotsovos, 1979a, 1980;
Kotsovos and Pavlovic, 1995; Kotsovos and Spiliopoulos, 1998; Kotsovos, Pavlovic,
and Cotsovos, 2008; Lykidis and Spiliopoulos, 2008; Markou and Papadrakakis, 2013;
Spiliopoulos and Lykidis, 2006). Recently, the model was also adapted to light-weight
aggregate concrete (Øverli, 2016). In the literature, it is stated that this model is
particularly suited for structural engineering NLFEA. Demonstrations of the com-
putational efficiency and comparisons to commercially available algorithms can be
found in the literature (Bark, Markou, Mourlas, and Papadrakakis, 2016; Markou,
Sabouni, Suleiman, and El-Chouli, 2015; Markou and Papadrakakis, 2013; Mourlas,
Papadrakakis, and Markou, 2016).

The early versions of the fully triaxial material model are implemented in special
purpose finite element software that allowed the user to interfer with the program on
several levels. In order to make the material model available for practising engineers,
it was adapted to facilitate its implementation in a standard finite element software in
the present work. In the following, the basic ingredients, i.e. the constitutive relation
and the fracture criterion, will be presented, the central parts of the implemented
algorithms will be outlined and two improvements to the earlier versions of the model
are highlighted.

In this section, the subscripts i and j are reserved for tensor components, while k
and l are used for the load step and iteration number respectively. Thorough reviews
of other constitutive relations and crack models for concrete can be found elsewhere
(Cotsovos, 2004; González Vidosa, 1989; Rots, 1988; Rots and Blaauwendraad, 1989).
It is emphasized that the objective of the present work was not to contribute to a
detailed discussion about how concrete as a material should be modelled, but how it
could be modelled in NLFEA performed by practising engineers where the purpose
of the analysis is to assess the ultimate load capacity or structural reliability of large
reinforced concrete structures. The material model did not include regularization of
the constitutive relation in terms of e.g. crack bandwidth and fracture energy in order
to obtain results that are objective with respect to the size of the finite elements
(Bazant and Oh, 1983). It will be demonstrated that this sensitivity was insignificant
when relatively large elements were used in analyses of reinforced concrete.
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Figure 1. Demonstration of the shape of the fracture criterion for concrete with fc = 50 MPa.

2.1.1. Constitutive relation and fracture criterion

When concrete is subjected to an increasing state of stress, the non-linear deforma-
tional response below the ultimate stress level can be described in terms of the internal
fracture process which reduces tensile stress concentrations near the tips of internal
microcracks (Kotsovos, 1979b). The response under multiaxial states of stress can be
decomposed into three parts: 1) the change in volume due to hydrostatic loading, 2)
the change of shape due to deviatoric loading and 3) the change in volume due to devi-
atoric loading (Kotsovos, 1980). Part 1 can be modelled by superimposing an internal
hydrostatic stress, which is statically equivalent to the stress reduction due to micro-
cracking, or by continuously degrading the bulk modulus, K, which is depending on
the hydrostatic stress level. Similar reasoning can be used of parts 2 and 3. Due to this
decomposition, it is convenient to decompose the stress state into octahedral stress
components: σoct, τoct and θoct. σoct is the hydrostatic stress, which is the projection
of the point in principal stress space onto the hydrostatic axis along σ1 = σ2 = σ3.
The deviatoric plane is orthogonal to the hydrostatic axis, and intersects with σoct.
The point which represents the state of stress in principal stress space lies in the devi-
atoric plane with a distance τoct to the hydrostatic axis. θoct is the lode-angle which is
the angle between the point in the deviatoric plane and the projection of the positive
σ1-axis as indicated in Figure 1(a). σoct is a function of the first invariant of the stress
tensor, τoct is a function of the second invariant of the deviatoric stress tensor and θoct
is a function of the second and third invariant of the deviatoric stress tensor.

By assuming non-linear elastic isotropic material behaviour for uncracked concrete
and using the secant values of the stiffness moduli, the total strains corresponding to
a given stress level below the ultimate stress level, can be calculated by Hooke’s law
in Equation (1) which can be interpreted as the sum of the change of shape and the
change in volume.

εij =
σij − σoctδij

2Gs
+

(σoct + σid)δij
3Ks

(1)

G and K is the shear modulus and the bulk modulus, respectively. K and G rep-
resent part 1 and 2, respectively, of the non-linear deformational response described
above. The subscript s indicates that the respective modulus is a secant modulus.
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Figure 2. Internal hydrostatic stress and non-linear bulk and shear moduli as functions of the stress level
for concrete with fc = 50 MPa. The subscripts 0, s and t indicate initial, secant and tangent values of the
respective modulus.

σid is an equivalent internal hydrostatic stress which represents the change in volume
due to deviatoric loading, i.e. part 3 of the non-linear deformational response, and is a
function of the cylinder strength fc and the current σoct and τoct (Kotsovos, 1980). The
development of σid is shown in Figure 2(a). δij is the Kronecker delta which is equal
to unity for equal indices and zero elsewhere. Note that positive and negative values
indicate tensile and compressive stresses and strains in the present work. With this
type of formulation, the effects of confinement and Poisson’s ratio on the stress-strain
relation are automatically included. Initial, unloaded values of the shear and bulk
modulus, G0 and K0, can be calculated from the cylinder strength, and expressions
describing the dependency of the moduli on their initial values, the cylinder strength
and the stress level are found in the literature (Kotsovos, 1980). Figures 2(b) and 2(c)
show K and G respectively as functions of the stresses.

The ultimate stress level, given by a fracture criterion, is defined in terms of the
critical octahedral shear stress, τoct,u(σoct, θoct, fc), and expressions for τoct,u depen-
dent on σoct, θoct and fc are found in the literature (Kotsovos, 1979a). The critical
octahedral shear stresses for θoct = 0◦ and θoct = 60◦ are calculated using Equations
(2) and (3) respectively, and shown in Figure 1(b). By ordering the principal stresses
according to σ1 > σ2 > σ3 it can be shown that all stress states have 0◦ ≤ θoct ≤ 60◦,
and the relation proposed by Willam and Warnke (1974) can be used to calculate
intermediate values of τoct,u for given σoct, θoct and fc. The fracture criterion can be
interpreted as a limit beyond which the fracture process changes from internal micro-
cracking to visible macrocracking. In the principal stress space, the fracture criterion
can be visualized as a cone opening along the compressive hydrostatic axis, with a
cross section approaching a triangle for hydrostatic tensile stresses, as demonstrated
in Figure 1(a). Figure 1(c) demonstrates the significant effect of lateral stresses on the
axial strength. If the fracture criterion is exceeded with at least one positive principal
stress, a crack is formed on a plane with a normal parallel to the direction of the
largest principal stress. If on the other hand the fracture criterion is exceeded with all
principal stresses compressive, this corresponds to compressive failure, i.e. a complete
loss of capacity in all directions.
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τoct,u,0◦

fc
= 0.633

(
0.05− σoct

fc

)0.857

(2)

τoct,u,60◦

fc
= 0.944

(
0.05− σoct

fc

)0.724

(3)

Figure 3 shows the material response up to failure for a) uniaxial loading and b) 10%
confining stresses. The effect of confinement on both deformations and capacity was a
direct consequence of the stress-dependent non-linear stiffness moduli and fracture cri-
terion. Following the approach presented in this section the material model depended
on only one material parameter, the compressive cylinder strength. It is noted that
the expressions for K, G, σid and τoct,u found in the literature are results from fitting
mathematical expressions to experimental results (Kotsovos, 1979a, 1980).

2.1.2. Outline of the implemented algorithm

The implemented material model consisted of three main parts: A) uncracked stress
update algorithm, B) crack initiation and stress update algorithm for cracked integra-
tion points, and C ) crack closing and stress update algorithm for closing integration
points. Each part provided the appropriate material stiffness matrix. In part A, the
non-linearities are mainly due to loading in compression, and in parts B and C, the
non-linearities are due to opening and closing of cracks. Two improvements to the
earlier versions of the material model were introduced: i) material stiffness matrix for
uncracked integration points based on initial stiffness moduli, ii) and threshold angle
for crack initiation.

A) Uncracked stress update algorithm. The stress-strain relationship up to the ulti-
mate stress level given by Equation (1) is stress-driven, i.e. in the form ε = ε(σ) where
σ and ε are the stress and strain vectors shown in Equation (4). Since typical strain-
driven material models are required in standard finite element software, the relation
should either be inverted or solved in an iterative manner. An iterative solution as
proposed in the literature (González Vidosa, 1989; Kotsovos and Pavlovic, 1995) was
used. In the iterative stress update, the fracture criterion was continuously monitored,
and if τoct > τoct,u, τoct,u was used in the calculation of G and σid in Equation (1).
If this limitation was not used, G and σid could attain unrealistically low and high
values respectively.

In a general case, the material stiffness matrix consists of partial derivatives of the
constitutive relation in terms of the strains, or partial derivatives of the stress update
algorithm in terms of the strains. Following the recommendations by Kotsovos and
Pavlovic (1995) the material stiffness matrix, C, was given in the form of Equation
(5) corresponding to Hooke’s law neglecting the coupling between deviatoric loading
and hydrostatic deformation. The subscript t indicates that tangent stiffnesses were
used, and λ = K − 2G/3 is Lame’s constant. The material stiffness matrix according
to Equation (5) with initial values for the material stiffness parameters was output
from the material model. Compared to updated values for the stiffness parameters,
this was found to have a slightly stiffening and stabilizing effect on the solution.
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Figure 3. Examples of loading, unloading and reloading of concrete with fc = 50 MPa subjected to a)
uniaxial compression, b) triaxial compression, c) uniaxial tension and d) pure shear. Note that no unloading

and reloading is shown for the uniaxial tension case and that reinforcement ρx = ρy = 3% with yield stress

fy = 500 MPa was included in the pure shear case.

σ = {σx σy σz τxy τyz τxz}T , ε = {εx εy εz γxy γyz γxz}T (4)

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

2Gt + λt λt λt 0 0 0
2Gt + λt λt 0 0 0

2Gt + λt 0 0 0
Gt 0 0

sym. Gt 0
Gt

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

As indicated in Figure 2(c), the non-linearities due to deviatoric loading dominate,
and τoct can be regarded as the main contributor to the internal fracture process
below the ultimate stress level. τoct was thus used as an indicator for loading and
unloading. If τoct was found to be less than the previously maximum sustained τoct,
indicating unloading, the stresses were simply updated linearly using initial values
of the material stiffness parameters as shown in the unloading-reloading branches in
Figure 3. A similar procedure is suggested in the literature (Bathe, Walczak, Welch,
and Mistry, 1989; Kotsovos, 1984; Kotsovos and Spiliopoulos, 1998). The resulting
stress update for an uncracked integration point can be seen in Figure 3 for loading,
unloading and reloading. It is evident that confinement leads to a stiffer material
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(a) One crack. The stress in

the direction normal to the first
crack plane, n11, is set to zero,
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the direction of the intersection
of the two crack planes, n23, is
the only non-zero normal stress

component.

n21

n11

n31

(c) Three cracks. All normal

stress components are set to
zero.

Figure 4. Demonstration of possible crack states, where the plane of each open crack is visualized as a circle.

response, i.e. the strains are smaller in Figure 3(b) than in 3(a) for the same axial
stress level, since due to a lower τoct the shear modulus is less degraded. Also, the
axial stress at the ultimate stress level, and the corresponding strains are larger due
to the stress dependent fracture criterion. If the confinement was further increased,
the response would become more linear, but still non-linear due to the continuously
degrading bulk modulus.

After the stresses were updated, the fracture criterion was checked, and if the stresses
were found to exceed the ultimate stress level, i.e. if τoct > τoct,u, the crack initiation
algorithm was called.

B) Crack initiation and cracked stress update algorithm. Upon cracking, the material
model followed a smeared, non-orthogonal, fixed cracking approach with a maximum
number of three cracks per integration point. The possible crack states are shown
in Figure 4. In this context, the terms fixed and non-orthogonal refer to that the
normal to a crack plane is kept constant after crack initiation and not rotated along
the principal stress or strain directions, and that further cracking is not restricted to
directions orthogonal to existing cracks. If the fracture criterion was exceeded with at
least one principal tensile stress, a crack was initiated on a plane with a normal parallel
to the largest principal stress, as shown by the vector n11 in Figure 4(a), resulting in
a state of nearly plane stress. The stress normal to the crack plane was set equal to
zero. If on the other hand the fracture criterion was exceeded with all principal stresses
compressive, compressive failure was initiated by setting all normal stresses equal to
zero, i.e. a complete loss of capacity in all directions. It should be noted that this
way of treating cracking is non-standard as cracking is initiated in a brittle manner
neglecting any softening both in tension and compression. Also, no measures were
introduced on material level to ensure objectivity with respect to finite element size
in terms of e.g. fracture energy and crack bandwidth (Bazant and Oh, 1983), but as
will be demonstrated, the mesh size dependency was found to be insignificant for the
coarse finite element meshes used in the present work.

8



C̄1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

βσ(2Gt + λt) 0 0 0 0 0
2Gt + λt λt 0 0 0

2Gt + λt 0 0 0
βτGt 0 0

sym. Gt 0
βτGt

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

C̄2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

βσ(2Gt + λt) 0 0 0 0 0
βσ(2Gt + λt) 0 0 0 0

2Gt + λt 0 0 0
βτGt 0 0

sym. βτGt 0
βτGt

⎤
⎥⎥⎥⎥⎥⎥⎦

(7)

C̄3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

βσ(2Gt + λt) 0 0 0 0 0
βσ(2Gt + λt) 0 0 0 0

βσ(2Gt + λt) 0 0 0
βτGt 0 0

sym. βτGt 0
βτGt

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

The material stiffness matrix of a cracked integration point was evaluated in a local
coordinate system defined by the crack direction, and transformed to global coordi-
nates by an appropriate transformation rule. The stiffness parameters, G and λ, were
assigned the values from the stress level upon first crack initiation, and kept constant
for all remaining load steps regardless of further cracking and loading or unloading.
The material stiffness matrix corresponding to one crack is given by Equation (6),
which simply is a reduction of Equation (5), with the only remaining significant stiff-
nesses in the plane of the crack. The overbars in Equations (6) to (8) indicate that
the matrices are established in a local coordinate system. The index 1 in Equation
(6) indicates that the matrix represents one crack and that it is evaluated in the
coordinate system defined by the vectors n11, n12 and n13, and similarly for the in-
dices 2 and 3 in Equations (7) and (8). The normal retention factor, βσ = 0.0001,
followed the recommendations by Bathe et al. (1989), and was provided in order to
avoid diagonal elements equal to zero. The shear retention factor, βτ = 0.1, followed
the recommendations by Gonzlez Vidosa, Kotsovos, and Pavlovic (1988). It is empha-
sized that the off-diagonal terms that are set equal to zero in Equations (6) to (8) are
equivalent to setting the corresponding Poisson’s ratio equal to zero. This represents a
simplified treatment of the gradual post-cracking reduction of the Poisson’s ratio often
recommended in the literature (Hendriks et al., 2017). The material stiffness matrix
corresponding to compressive failure was set equal to the matrix corresponding to
three cracks given by Equation (8).

When using a smeared crack approach, every crack represents an average crack state
within the volume represented by the integration point. A rotation of the stress field
and an increase of the stresses can lead to new cracks in the same integration point,
but if the angle between the new and existing crack(s) is small, the new crack can
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be interpreted as already represented by the existing crack(s), at least if the elements
are relatively large. Hence, it is appropriate to introduce a threshold angle as a lower
bound to the angle between the new and the existing crack(s). The effect of different
values for the threshold angle between 0◦ and 90◦ is demonstrated in the literature
(de Borst and Nauta, 1985; Rots and Blaauwendraad, 1989). A threshold angle of
45◦ was selected in the present work. Large threshold angles could lead to stress
states exceeding the fracture criterion in critical integration points without initiating
new cracks (de Borst and Nauta, 1985; Rots and Blaauwendraad, 1989). In order to
ensure conservative results, this potential issue was avoided in the present work by
proportionally scaling down the stress state in cases where the stresses exceeded the
fracture criterion without initiating new cracks. The proportional stress scaling can be
interpreted as a limitation of the stress state to a value given by the fracture criterion
until new cracks are allowed to initiate.

If the fracture criterion was exceeded for the second time with at least one positive
principal stress, a second crack could be formed on a plane with a normal parallel to
the current largest principal stress, as indicated by the vector n21 in Figure 4(b). Note
that n11 and n21 are non-orthogonal vectors separated by an angle larger than the
threshold angle. The material stiffness matrix was reduced to Equation (7) with the
only significant normal stiffness left in the direction of the intersection between the
crack planes, indicated by the vector n23 = n11 × n21 in Figure 4(b), resulting in a
state of nearly uniaxial stress. The stresses in the directions n21 and n21 × n23 were
set equal to zero. Finally, a third crack could be formed on a plane with a normal
indicated by n31 in Figure 4(c) parallel to the current largest principal stress. With
three cracks, the normal stresses in the directions corresponding to the principal stress
directions upon formation of the third crack were all set equal to zero. The material
stiffness matrix was given by Equation (8).

If the threshold angle was set equal to 0◦ and the stress scaling described above
was left out, a possible outcome of initiating a new crack in a previously cracked
integration point due to a small rotation of the stress field could be a spurious loss
of capacity in a direction orthogonal to the normal to the new crack plane. Although
not presented herein, the global results from analyses with values of the threshold
angle below 45◦ showed no significant influence from the selected value, however, by
introducing the threshold angle and the stress scaling, any potential spurious stress
reduction was avoided.

The stress update of a cracked integration point followed a linear relation between
the material stiffness matrices in Equations (6) to (8) and the total strain increment e.g.
Δσ = C1Δε, where C1 is C̄1 transformed to the global coordinate system, in addition
to the stress reduction normal to the crack planes described above. The material
stiffness matrices in Equations (6) to (8) are thus close approximations to the partial
derivatives of the stress update algorithm, and will contribute to fast convergence.
The resulting stress update is shown in Figures 3(c) and 3(d) for uniaxial tension and
pure shear respectively. Before cracking in pure shear, the stresses are carried by the
concrete as compression and tension in the principal directions. Upon cracking, the
principal tensile stress is reduced to zero, and the concrete carries stresses in principal
compression only, resulting in stresses in the coordinate directions that need to be
equilibrated by reinforcement. Hence, the results for pure shear were obtained with
reinforcement amounts ρx = ρy = 3% and a yield stress fy = 500 MPa.

C) Crack closing and closing stress update algorithm. In a cracked integration point,
the strain(s) normal to the crack plane(s) were checked. If the total strain normal to
a crack plane was found to turn negative, and less than its value upon cracking, the
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crack was in a state of closing. It should be noted that the strain upon cracking could
be negative if the integration point was unloading to cracking from a compressive state
of stress.

The material stiffness matrix was restored for the appropriate number of cracks
that remained open and evaluated locally according to the directions of the remain-
ing crack(s). An integration point that had experienced compressive failure was not
allowed to close, since compressive failure represented a complete loss of capacity in
all directions.

The stresses in a closing integration point were first updated according to the al-
gorithm for cracked integration points. If one crack was found to be closing, the total
strains were transformed to the local directions of the closing crack and multiplied
with a uniaxial stiffness in order to find the stresses due to closing, Δσ̄, according
to Equation (9). The local closing stress was further transformed to global coordi-
nates and added to the current stress. A similar procedure was applied to two and
three closing cracks with plane stress and triaxial stiffnesses respectively, according
to Equations (10) and (11). In Equations (9) to (11), the overbars indicate that the
stresses and strains are transformed to local coordinates and the numerical subscripts
indicate strains along the first, second and third local axis. By following this procedure
it was ensured that the closing stress update was unified with the cracked stress up-
date and that the correct stress components were updated for closing. This algorithm
is similar to what was presented by Spiliopoulos and Lykidis (2006).

Δσ̄uniaxial =
Gt(2Gt + 3λt)

Gt + λt
ε̄1 → Δσ̄ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δσ̄uniaxial
0
0
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(9)

Δσ̄plane =

⎡
⎢⎣
4Gt(Gt + λt)

2Gt + λt

2Gtλt

2Gt + λt

sym.
4Gt(Gt + λt)

2Gt + λt

⎤
⎥⎦
{

ε̄1
ε̄2

}
→ Δσ̄ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δσ̄plane

0
0
0
0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(10)

Δσ̄triaxial =

⎡
⎣2Gt + λt λt λt

2Gt + λt λt

sym. 2Gt + λt

⎤
⎦
⎧⎨
⎩

ε̄1
ε̄2
ε̄3

⎫⎬
⎭→ Δσ̄ =

⎧⎪⎪⎨
⎪⎪⎩

Δσ̄triaxial

0
0
0

⎫⎪⎪⎬
⎪⎪⎭
(11)

2.2. Material model for reinforcement

A bilinear elastic-plastic relation was used for the reinforcement. The initial slope of the
stress-strain curve was fully defined by an elastic Young’s modulus E = 200000 MPa.
After yielding, the relation between stress and total strain was defined by a low hard-
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ening modulus EH = 2000 MPa. Similar recommendations are found in the literature
(Hendriks et al., 2017; Kotsovos and Pavlovic, 1995).

2.3. Force equilibrium

In the present work, results from analyses with modified and full Newton-Raphson
were compared. Line search was applied in order to improve the iterative displacement
increments. For reinforced concrete structures, a force based convergence criterion
can be difficult, or even impossible, to satisfy in load steps where large forces need
to be redistributed due to cracking. This is expected to be pronounced in analyses
with large elements and large load steps. In the present work, a force criterion based
on the change in the norm of the nodal residual forces given by Equation (12) was
thus used in combination with an energy criterion given by Equation (13). Rres is
the vector of nodal residual forces, δu is the vector of nodal iterative displacement
increments, and εF and εE are the convergence tolerances. The subscripts l, 1 and
0 indicate the current iteration, the first iteration of the current load step, and the
last iteration of the previous load step respectively. According to recommendations
published elsewhere (Hendriks et al., 2017) the tolerances were set to εF = 0.01 and
εE = 0.001. Convergence was achieved with at least one of the criteria satisfied within
a maximum number of 40 iterations per load step. The load was applied with constant
load increments.

|
√

RT
res,lRres,l −

√
RT

res,l−1Rres,l−1|
|
√

RT
res,1Rres,1 −

√
RT

res,0Rres,0|
≤ εF (12)

δuT
l Rres,l

δuT
1 Rres,1

≤ εE (13)

2.4. Kinematic compatibility

When analysing concrete shell structures, shell elements are often preferred due to
their efficiency in modelling and computation. However, such elements usually require
additional capacity control, since the interaction between in-plane forces and moments,
and transverse shear forces is usually not accounted for in the NLFEA. Solid elements
thus seem most applicable. This also allows the analyst to model the geometry and
load application more accurately, and ensures correct modelling of the stiffness in
structural joints. In LFEA with properly formulated hexahedral elements, the internal
forces and bending moments in slender shells can be calculated with high accuracy even
with only one element over the shell thickness or beam height. However, in NLFEA it is
expected that there is need for evaluation of the internal stress state in a larger number
of integration points over the thickness in order to capture the effect of cracking, and
the interaction between in-plane forces, bending moments and transverse shear forces.

Markou and Papadrakakis (2013) have stated that the use of numerically unstable
material models is one of the reasons for researchers to use higher order elements with
higher order numerical integration rules. Bergan and Holand (1979) argues that higher
order interpolation functions with artificially high differentiability should be avoided
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due to the highly discrete and localized deformational behaviour of concrete. This is
considered particularly relevant in analyses with relatively large finite elements, i.e.
elements that are large relative to the cross sectional dimensions. Artificial straining
should also be avoided in order to reduce the risk of premature cracking. The two-point
Gauss rule calculates the exact values of stresses and strains for undistorted elements
(Barlow, 1976), and the error is smaller with a two-point rule than with a three-point
rule in case of distorted elements (Barlow, 1989). This was believed to be crucial in the
present work in order to reduce artificial straining and the risk of premature cracking.

Based on these arguments, fully integrated 8-noded solid elements were used in the
present work. In order to avoid spurious shear strains in bending dominated areas, so-
called enhanced strains were used (Simo and Rifai, 1990; Simo, Armero, and Taylor,
1993). A minimum number of three elements were used over the shell thickness or
beam height. Compared to using 20- or 27-noded solid elements the size of the global
stiffness matrix can be significantly reduced which in turn results in a faster solution
of each equilibrium iteration and a lower amount of required memory.

The reinforcement was assumed fully bonded, i.e. neglecting any differential defor-
mation between the concrete and the reinforcement. This assumption was justified by
the size of the elements, prohibiting any detailed modelling of local variations in the
interface. The reinforcement was modelled as elements overlaying the solid concrete
elements, providing strength and stiffness embedded within the volume of the concrete
element according to the material model of the reinforcement steel, the cross sectional
area of the bars, the orientation in space and the size of the cover. This functionality,
referred to as embedded reinforcement in most commercial finite element software, is
an efficient way of modelling reinforcement in engineering applications, without the
need for adapting the mesh of solid elements to the reinforcement layout.

3. Verification by numerical experiments

Verification is related to how the mathematical problem is solved, and the sensitivity
to the selected solution method. The sensitivity to size of finite elements, Newton-
Raphson procedure and size of load steps were assessed by performing numerical ex-
periments of two setups that were designed for the purpose. In the crack plots of this
section and Section 5, each crack is visualized as a circular plane with a normal parallel
to the largest principal tensile stress upon cracking. If the normal lies in the drawing
plane, the crack appears as a line, but if the normal forms an angle with the drawing
plane, the crack appears as an ellipse approaching a circle. If the crack closes, the
symbol is removed, and the integration point appears as uncracked in the figure.

3.1. Description of the numerical experiment setups

One slender and one short beam was designed for the verification of the solution
strategy. The cross section and reinforcement layout is shown in Figure 5(a). The
concrete had a cylinder strength of 40 MPa and all reinforcement had a yield strength
of 500 MPa. The slender and the short beam had a total length of 6 m and 3 m
respectively. The beams were simply supported and were subjected to a constant
distributed load, as shown schematically in Figure 5(b). Unless explicitly specified,
the load steps were adjusted in order to reach yielding of the tensile reinforcement
after 30 load steps. In the Figures 6, 9 and 10 the total load, R = R1 +R2, is plotted
against the vertical displacement, Δ, at the midspan.
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(a) Cross section. (b) Loading and boundary conditions.

Figure 5. Details of the numerical experiment setups.
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(b) Short case.

Figure 6. Comparison of results obtained with modified Newton-Raphson with three (solid), six (dashed)

and nine (dash-dotted) elements over the beam height for a) slender case and b) short case.

3.2. Sensitivity to size of finite elements

The sensitivity to finite element discretization was checked by performing analyses of
the two experimental setups with three different element sizes. Three, six and nine
elements were used over the beam height, and the number of elements along the beam
length was adjusted in order to keep the elements square. Two elements were used over
the width in all analyses. Figure 6 shows the resulting load-displacement curves from
analyses with modified Newton-Raphson, and no significant element size dependency
can be observed. Similar results were obtained with full Newton-Raphson. Figures 7
and 8 show examples of the resulting crack patterns. For each load level, the crack
directions were comparable. The element size in the coarsest meshes was comparable
to the crack spacing that can by estimated using e.g. fib Model Code 2010 (fib, 2013).
The observed cracks in the results from the analyses with the coarsest meshes should
thus be interpreted as average states of cracking within the volume corresponding to
each integration point. With smaller elements, it can be seen that the crack patterns
were gradually localizing, and the crack spacing can be found as a result of the analysis.
This topic of gaining more details from the results upon mesh refinement has been
elaborated on in the literature (fib, 2008), but will not be taken further here. As the
mesh was refined, the cracks were found to propagate deeper towards the compressive
zone, although this had no significant effect on the load-displacement curves as shown
in Figure 6. The coarsest meshes in Figures 7 and 8 are comparable to the element
sizes that were used in the validation in Section 4 and the demonstrations in Section
5.
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(a) Three elements over the beam height.

(b) Six elements over the beam height.

(c) Nine elements over the beam height.

Figure 7. Crack patterns for the slender case at load step 10: R = 153 kN. All the analyses were performed

with two elements over the width of the beam.

(a) Three elements over the beam height.

(b) Six elements over the beam height.

(c) Nine elements over the beam height.

Figure 8. Crack patterns for the short case at load step 10: R = 347 kN. All the analyses were performed

with two elements over the width of the beam.
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(b) Short case.

Figure 9. Comparison of results obtained with three elements over the beam height with modified (solid)

and full (dashed) Newton-Raphson for a) slender case and b) short case.

3.3. Sensitivity to Newton-Raphson procedure

The sensitivity to the method for updating the tangent stiffness matrix during equilib-
rium iterations was checked by comparing results from analyses with full and modified
Newton-Raphson. All of the analyses were performed with three elements over the
beam height. The resulting load-displacement curves are shown in Figure 9. No sig-
nificant sensitivity was observed in either of the cases. For the slender case, a total
number of 409 iterations with modified Newton-Raphson taking approximately 115 s
was needed to reach yielding of the longitudinal reinforcement in 30 load steps. These
numbers were reduced to 214 iterations and 60 s using full Newton Raphson. Simi-
larly for the short case, 277 iterations in 40 s and 173 iterations in 30 s was needed
with modified and full Newton-Raphson respectively. A slight increase of the cal-
culation time per iteration with full Newton-Raphson was thus compensated for by
requiring a lower number of iterations for reaching convergence. The sensitivity to
the selected convergence tolerances were also assessed by decreasing the tolerance of
the force-based convergence criterion, however no significant influence on the resulting
load-displacement curve could be observed.

3.4. Sensitivity to size of load steps

The sensitivity to the size of the load steps was checked by performing analyses of both
the slender and the short case with three elements over the beam height, modified
Newton-Raphson and applying the load corresponding to yielding of the longitudinal
reinforcement in 30, 20 and ten load steps. The resulting load-displacement curves are
shown in Figure 10, where no significant sensitivity can be observed.

4. Validation by benchmark analyses

Validation is related to how well the numerical predictions correspond to real observa-
tions. In the present work, validation was performed by comparing experimental and
predicted capacities from 38 benchmark analyses. The sample of benchmark analyses
contained beams (Bresler and Scordelis, 1963; Jelic, Pavlovic, and Kotsovos, 2004;
Kotsovos, 1982), walls (Cervenka and Gerstle, 1972; Lefas, Kotsovos, and Ambraseys,
1990) and frames (Ernst, Smith, Riveland, and Pierce, 1973; Vecchio and Balopoulou,
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Figure 10. Comparison of results obtained with modified Newton-Raphson and three elements over the beam
height with 30 (solid), 20 (dashed) and ten (dash-dotted) load steps for a) slender case and b) short case.

1990; Vecchio and Emara, 1992) with failure modes ranging from fully brittle to fully
ductile. The sample could have been separated in smaller samples depending on the
failure mode or type of structural component, but since the failure mode of large
concrete shell structures most likely is due to an interaction between different sec-
tional forces, the collection seems justified. During post-processing of the results from
the benchmark analyses, the nodal displacement increments were plotted as deformed
shapes, and if the displacement increments were found to significantly change from step
to step, this was treated as a warning of failure. The last converged load step before
failure was selected as the predicted capacity. Failure can thus be interpreted as the
load level where the materials are degraded to such an extent, either due to cracking,
yielding or both, that a further internal redistribution of forces is not possible.

Figure 11 shows the relation between experimental and predicted capacity. It is
evident that the capacity is properly predicted with a small scatter in most of the
cases. Based on these results, the modelling uncertainty, θ = Rexp/RNLFEA can be
assessed. By using the Bayesian inference technique suggested by (Engen et al., 2017)
and assuming that θ can be modelled as a log-normally distributed random vari-
able, a mean μθ = 1.07 and a coefficient of variation Vθ = 0.09 was found. This can
be regarded as being within the requirements suggested in the literature (Pimentel,
Brühwiler, and Figueiras, 2014; Schlune, Plos, and Gylltoft, 2012). Engen et al. (2017)
analysed the same set of benchmark experiments with the same solution strategy as
used herein, however using modified Newton-Raphson, a force-based convergence cri-
terion, ||Rres||/||Rext|| < 0.01, and not continuously monitoring the fracture criterion
during the stress update algorithm for uncracked integration points as mentioned in
Section 2.1.2. Rres is the vector of nodal residual forces, Rext is the vector of nodal
external loads, and || · || is the L2-norm of the vectors. With these settings, μθ = 1.10
and Vθ = 0.11 was obtained. Assuming a 5% level of significance, the modelling uncer-
tainty obtained using the two versions of the solution strategy can not be rejected to
come from the same population, i.e. having the same mean and coefficient of variation.
This finding underlines the conclusions from the previous section where no sensitivity
to Newton-Raphson procedure was found.
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Figure 11. Predicted and experimental capacities, RNLFEA and Rexp, for the 38 benchmark analyses.

Table 1. Summary of computational performance in the three demonstration cases.
Case Solid elements Reinf. elements Equations Iterations Solution time

MDCB3 162 378 974 763 178 s
2D18H 720 1764 4286 775 764 s

Large structure 5547 10554 22351 662 3965 s

5. Demonstration of performance

In this section, the performance of the solution strategy is demonstrated by two bench-
mark analyses from the previous section involving sequential loading and an analysis
of an offshore concrete shell structure that was specially designed in the present work.
The focus of the present work was on the structural behaviour at the ultimate load
level, and the presented results were thus limited to load-displacement curves and crack
plots for the benchmark analyses and displacement plots and indications of internal
load redistributions for the shell structure. It is noted again that all of the analyses
were performed using solid elements.

Table 1 shows a summary of the number of elements, equilibrium equations, total
number of iterations and the time spent computing the solutions of the NLFEA in
this section. All analyses were performed on a Windows PC with an Intel Xeon E5620
CPU with 2.39 GHz and 16 GB RAM. No parallel processing was used. The average
solution time per iteration and equilibrium equation was 0.23 ms to 0.27 ms in all
analyses. This number should only be treated as indicative, since the solution time
highly depends on the computer specifications and how data are transferred by the
solver.

5.1. Continuous beam MDCB3 by Jelic, Pavlovic & Kotsovos

Jelic et al. (2004) tested simply supported beams subjected to sequential loading. The
beam MDCB3 was selected for the present paper. The loading and supports are shown
schematically in Figure 12(b), where the loads R1 and R2 were applied as pressures
over the full width and two elements along the length, and the supports were modelled
by multi-point constraints in order to mimic the load and support plates. The load
at the midspan, R1, was applied first, and while keeping R1 = 90 kN, the load at the
tip of the cantilever, R2, was increased until failure. R2 was applied with constant
load steps so that the experimental capacity of R2 = 103.9 kN was reached in 30 load
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(a) Full intensity of the load at midspan: R1 = 90 kN, R2 = 0 kN.

R2

1 2

R1

(b) Load step 2 substep 30: R1 +R2 = 192.6 kN.

Figure 12. Crack patterns for the beam MDCB3 tested by Jelic et al. for a) full intensity of the load at
midspan and b) failure. The analysis was performed with two elements over the width of the beam.
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Figure 13. Load-displacement curves from the two benchmark analyses.

steps. The predicted total failure load was RNLFEA = R1 + R2 = 192.6 kN, giving
a modelling uncertainty θ = 1.01. The resulting load-displacement curve is shown in
Figure 13(a) where the total reaction is plotted against the deflections below the two
point loads. Crack patterns for selected load steps are shown in Figure 12, where it
can be seen that several cracks were closing during application of the second point
load. The predicted failure mode was characterized by diagonal cracking between the
point load at the tip of the cantilever and the right support, combined with yielding
of the longitudinal reinforcement over the support, corresponding to the failure mode
described by Jelic et al. (2004).

5.2. Portal frame 2D18H by Ernst, Smith, Riveland & Pierce

Ernst et al. (1973) tested the portal frame 2D18H subjected to three vertical point
loads and one horizontal point load. While keeping the total vertical load constant
with a value 3V = 24.6 kN, the horizontal load, R, was increased until failure. The
loading and supports are shown schematically in Figure 14(b), where the horizontal
and vertical loads were applied as distributed pressures over three and two elements
along the height and length respectively, and the supports were modelled by multi-
point constraints in order to mimic the load and support plates. R was applied with
constant load steps so that the experimental capacity of R = 14.1 kN was reached in
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(a) Full intensity of the vertical loads: V = 8.2 kN, R = 0.
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(b) Load step 2 substep 32: V = 8.2 kN, R = 15.4 kN.

Figure 14. Crack patterns for the frame 2D18H tested by Ernst et al. for a) full intensity of the vertical loads

and b) failure. The analysis was performed with two elements over the width of the cross sections.

30 load steps. The predicted failure load was RNLFEA = 15.4 kN, giving θ = 0.92. The
resulting load-displacement curve is shown in Figure 13(b), where the total horizontal
reaction is plotted against the horizontal deflection at the top. Crack plots for selected
load steps are shown in Figure 14. Due to the reversed bending in the left leg of the
frame resulting from application of the horizontal load, several cracks were closing
when approaching the ultimate load level. The predicted failure mode was character-
ized by yielding of the outer longitudinal reinforcement of the right leg, followed by
splitting of the compressive zone in the inner right corner and compressive failure, in
close agreement with what was reported by Ernst et al. (1973).

5.3. Offshore concrete shell structure

A large offshore concrete shell structure suitable for oil or gas production was specially
designed during this work. A thorough description of e.g. the design procedure, result-
ing reinforcement layout and geometry is beyond the scope of this paper, and only a
brief description is provided in the following. A description of the design, construction
and performance of offshore concrete structures for oil and gas fields can be found in
the literature (fib, 2009).

The structure consisted of a 90 m tall shaft supported on a 10 m tall circular caisson
as shown in Figure 15(a). The outer radii of the shaft and caisson were 6 m and 18 m
respectively. The purpose of the structure is to support a topside with production
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(a) Complete struc-

ture.

(b) The sector covering 30◦ and a total height of 20 m

which was studied in the present work.

Figure 15. Offshore concrete structure.

(a) LFEA. (b) NLFEA.

Figure 16. Deformed shape at full characteristic intensity of all applied loads. The displacements are scaled
with a factor of 100.
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(a) Radial force resultant in
the bottom slab in section 1-1,
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(b) Global bending moment in
the caisson in hoop direction in
section 2-2, Mhoop.
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(c) Global bending moment in
the caisson in radial direction
in section 3-3, Mrad.

Figure 17. Force resultants and global bending moments in sections as functions of the total applied load
from the topside carried by the studied part of the structure, Fz,ext, from NLFEA (solid) and LFEA (dotted).
The bending moments are calculated around the mid-height of the caisson, and the sections are shown in Figure
15(b).

facilities and living quarters with an assumed total weight of 18000 t, and to guide riser
pipes from the sea-bed through the caisson and shaft. A mean water depth of 80 m was
assumed to be applicable, and the structure was assumed to be completely waterfilled
during operation. The caisson was stiffened with twelve equally spaced ribs as shown in
Figure 15(b). A concrete strength of B55 and reinforcement steel strength of B500NC
according to NS 3473 (Norges Standardiseringsforbund, 2003) was assumed. In order
to demonstrate the applicability of the presented solution strategy to a large structure,
a sector corresponding to one twelfth of the structure was studied in the present work
as shown in Figure 15(b). The studied finite element model had a total height of 20 m.
In the finite element model, all the nodes at the top of the shaft were constrained in
the vertical direction, and the nodes along the radial symmetry edges were constrained
in the hoop direction. The structure was assumed supported on soft soil, so that the
vertical load could be applied as a constant outer pressure on the bottom slab.

Based on results from LFEA, the structure was designed with a special post-
processor and non-linear sectional design software (Brekke et al., 1994) according to
NS 3473 and EN-ISO 19903 (CEN, 2006; Norges Standardiseringsforbund, 2003). Only
the dead weight of the concrete, the external and internal static water pressure and
the total vertical load from the topside were considered in the present work in order
to be able to reduce the complexity of the problem. The structure was designed for
the applicable load combinations in the operation phase in the ultimate limit state.

The resulting reinforcement amounts from the non-linear sectional design were
transferred back to the finite element model used in the NLFEA, and were mod-
elled similarly as in the benchmark analyses described above. It should be noted that
the complete structure could easily have been modelled, analysed and designed, but
due to the symmetry with respect to load and geometry, and due to the mechanism
of load transfer in circular shafts, a limited amount of information would have been
gained compared to the smaller model that was used.

In a real design situation other static and dynamic loads and other limit states will
require global modelling of the complete structure and are expected to have significant
influence on the required shell thicknesses and reinforcement amounts. Also, the rein-
forcement amounts are normally adjusted in local areas due to e.g. constructability,
continuity in reinforcement layout and required anchorage. However, in the present
work, only the required amounts found directly from the ultimate limit design checks
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were included.
A combination of local bending moments and transverse shear forces, and global

membrane forces, results in a relatively complex distribution of internal sectional
forces. The vertical load is transferred through the upper parts of the shaft as vertical
compressive forces. When approaching the caisson, the shaft is subjected to additional
local bending in the vertical direction, compressive forces in the hoop direction and
transverse shear forces. The ribs provide stiffness to the caisson, and ensures that the
caisson deforms as one unit, and that the vertical load is carried as a combination of
global bending in the hoop and radial direction. The ribs are subjected to in-plane
forces, while the top and bottom slab and the outer wall and the lower parts of the
shaft within the caisson are subjected to in-plane forces, bending moments in two
principal directions and transverse shear forces. Because the structure was assumed
completely waterfilled, the internal and external water pressure mainly resulted in a
slight prestressing of the structure due to the difference in internal and external area
for load application.

In the NLFEA the dead weight of the concrete and the internal and external water
pressure was first applied in five load steps, before the total load from the topside
was applied in 40 load steps. It should be noted that in the present paper it was
not attempted to perform a reliability assessment of the structure; the materials were
assigned their characteristic strengths and the loads were applied with their charac-
teristic intensities. Ideally, the results from the NLFEA should have been compared to
experimental results, but for obvious reasons, no relevant results are available for such
structures. Instead it would be valuable to study the difference in calculated response
between a LFEA and a NLFEA, since the design is based on the former, and a possible
global reliability assessment would be based on the latter. Hence, the global and local
structural effects of material non-linearity are presented in the following comparing re-
sults from LFEA and NLFEA following the same load histories. The deformed shapes
in the final load step of the LFEA and NLFEA shown in Figure 16 are provided as
physical evidence for the discussion.

At 37.5% and 40% of the total vertical load, Fz,ext, cracks appeared on the outer and
inner face of the central parts of the bottom slab. The cracks resulted in a translation of
the neutral axis in the central parts of the bottom slab, an elongation of the midplane
and the significant radial displacement of the joint between the shaft and the bottom
slab that can be seen in Figure 16(b). This effect, known in the literature as the
compressive membrane effect, gave a reduction of the radial resultant tensile forces in
section 1-1 in the central parts of the bottom slab as shown in Figure 17(a), but also
an increase in hoop tension in the lower parts of the shaft, the outer wall and the rest
of the bottom slab.

From 52.5% to 67.5% of the total vertical load, cracks appeared at the outer face
of the bottom slab along the rib, the inner face of the bottom slab along the radial
symmetry edge and in lower parts of the shaft along the rib. The cracking in the
bottom slab led to a compressive membrane effect in hoop direction, slightly reducing
the hoop tension in the bottom slab. The cracking in the shaft reduced the stiffness
of the shaft, leading to a reduction of horizontal forces transferred from the rib to
the shaft and a slight redistribution of global bending of the caisson from radial di-
rection in section 3-3 to hoop direction in section 2-2 as shown in Figures 17(b) and
17(c). The global resultant moments Mhoop and Mrad were calculated by summing the
moment contributions around the mid-height of the caisson from the nodal forces in
hoop direction in section 2-2 and radial direction in section 3-3 respectively. Due to
the reduction of horizontal force transfer from the rib to the shaft, the tensile and
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compressive resultants due to global radial bending of the caisson were localized in
the bottom and top slab respectively. As the vertical load was further increased to
the characteristic level, cracking propagated in the described cracked areas, and only
minor cracking appeared in the outer wall and in the lower parts of the rib close to
the joint between the shaft and the bottom slab. The reinforcement did not yield in
any direction. The compressive membrane effect in the two directions in the bottom
slab resulted in crack closure, where some of the closed cracks remained closed during
the rest of the load application, but some also reopened. At the final load level 11757
cracks had appeared in the structure, of which 153 were closed.

Due to the global force redistribution, a change of local behaviour was observed,
e.g. the principal compressive stress, σ3, in the shaft above the top slab increased from
−23.5 MPa to −25.7 MPa, and σ3 in the rib close to the joint between the shaft and
the top slab increased from −10.0 MPa to −10.6 MPa. A beneficial reduction of tensile
forces in the bottom slab thus came with the expense of increased compressive stresses
in the shaft and the rib.

6. Discussion

The level of detail which is required for the material model depends on the phenomena
that are to be studied in the analysis. In the present work, the ultimate load capacity
was sought, and for this application the simple material models for concrete and rein-
forcement was appropriate. The results were supporting the conclusions from Engen
et al. (2015) advising a shift of the attention from a detailed description of the post-
cracking tensile behaviour to a rational description of the pre-cracking compressive
behaviour of concrete in analyses where large finite elements are used. The assumed
brittleness in tension and compression was considered a useful simplification which
resulted in a material model with only one material parameter needed. If on the other
hand a tensile softening relation based on crack bandwidth and fracture energy was
used, results from Bazant and Oh (1983) and Hendriks et al. (2017) show that the
element size should be limited to 100-400 mm depending on the cylinder strength in
order to avoid snap-backs in the constitutive relation. The limiting values correspond
to a sudden vertical drop in the stress-strain relation upon cracking (Bazant and Oh,
1983). Because the size of the elements used in the present work was in the order of
these limiting values and the results indicated insignificant sensitivity to finite element
size, the simplified brittle behaviour was justified. With the scope of the present work
being focused on large reinforced concrete structures, the brittle degradation of one
local point is not expected to significantly influence the ultimate load capacity, since
the stresses released due to cracking of the concrete are directly supported by the rein-
forcement. If however, lightly reinforced or unreinforced concrete was studied, a more
detailed description of the post-cracking tensile behaviour might become necessary.

Although not presented in detail in the present paper, the tolerances of the conver-
gence criteria and the maximum number of iterations were observed not to significantly
influence the predicted global behaviour, but influenced which load was treated as the
predicted capacity in the benchmark analyses. This result indicates that the solutions
were converged to a stable state close to equilibrium, and that the remaining force un-
balance in unconverged load steps might be due to local self-equilibrating unbalances
as discussed by Bergan and Holand (1979). In most of the load steps of the presented
NLFEA, the energy convergence criterion was governing, i.e. it was satisfied before
the force criterion, even though a tighter tolerance was used for the energy criterion.
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The two criteria are fundamentally different, and the tolerances are not directly com-
parable, but the results indicate that different criteria require different tolerances in
order to obtain comparative levels of accuracy, and that it is important to state both
the selected tolerance and the mathematical expression of the criterion when results
from NLFEA are presented.

The cylinder strength reported in the references was used directly as the only input
material parameter for the concrete material model in the benchmark analyses, and
was not calibrated in order to improve the results. This was considered particularly
important in engineering applications where the results are not known on beforehand.
The results from the benchmark analyses did not show exact crack patterns, but the
failure modes and the ultimate limit loads were close to what was experimentally
obtained. Finite elements of the size that was used in the present study are typically
in the order of the crack spacing and localized crack patterns can not be expected.

The results from the NLFEA of the large shell structure show that a global analysis
is required for a realistic assessment of such structures. If only local analyses were
performed, the analyst should pay close attention to the applied boundary conditions.
If the central part of the bottom slab was modelled locally, the compressive membrane
effect could be overestimated if the slab was fully constrained in the radial direction.
Also, if only the rib was modelled, the effect of redistribution of resultants from global
bending could not be predicted, and too large horizontal force transfer from the rib to
the shaft might be predicted, which could lead to an overestimation of crack widths
and stresses in the horizontal reinforcement. With a solution time of approximately
6 s per equilibrium iteration, the solution strategy presented in the present paper is
considered applicable for NLFEA of large concrete structures in the design phase.

7. Conclusions

Development of a solution strategy for NLFEA should as a minimum include the four
steps 1) definition, 2) verification, 3) validation and 4) demonstration of applicability.
This contribution complements findings published by the authors in two separate
publications (Engen et al., 2015, 2017). In spite of relatively simple material models
and large finite elements, the results from the present work indicate that the presented
solution strategy has a low modelling uncertainty and a low element size and load
step size dependency. With the presented solution strategy, the practising engineer is
equipped with an efficient tool for performing detailed assessments of the ultimate load
capacity and the structural reliability of new and existing large reinforced concrete
structures. This will be elaborated on in the further work of the present research
project.
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F. González Vidosa, M. D. Kotsovos, and M. N. Pavlovic. Three-dimensional non-linear finite-
element model for structural concrete. Part 1: main features and objectivity study. Pro-
ceedings of the ICE - Structures and Buildings, 91:517–544, 1991a.
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a b s t r a c t

In order to make non-linear finite element analyses applicable during assessment of the global resistance
of large concrete structures, there is need for a solution strategy with a lowmodelling uncertainty. A solu-
tion strategy comprises choices regarding force equilibrium, kinematic compatibility and constitutive
relations. Relatively large solid finite elements and a fully triaxial material model for concrete were used
in the present work. Bayesian inference was applied to results from 38 benchmark analyses. The results
indicated that the modelling uncertainty could be represented as a log-normally distributed random vari-
able with mean 1.10 and standard deviation of 0.12. A new method for characterizing the failure mode
was developed. The results indicated that the physical uncertainties influenced the estimated parameters
of the modelling uncertainty, and that this should be considered when other uncertainties are included in
a reliability assessment.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The design of large concrete shell structures like dams and off-
shore oil and gas platforms is normally based on global linear finite
element analyses. This allows for using the principle of superposi-
tioning in order to handle the vast number of design load combina-
tions [1,2]. For such large shell structures it is important to perform
global analyses due to the interaction between global and local
load effects. Solid elements are normally used due to the required
accuracy in structural joints, and the elements are large compared
to the sectional dimensions.

In order to better take into account the real physical behaviour
of reinforced concrete, non-linear finite element analyses (NLFEA)
could be carried out. The results of such analyses are global in nat-
ure due to all sections contributing to the load carrying capacity
[3,4]. Due to the global nature of NLFEA, the capacity should be
assessed in a global manner, in contrast to the local sectional
design based on linear finite element analyses. fib Model Code
2010 for concrete structures [5] introduces probabilistic methods
and the semi-probabilistic concept of global resistance methods
for assessing the structural reliability. Demonstrations of the global
resistance methods are reported in the literature for relatively sim-

ple structural forms [3,4,6–12] and also for larger structural sys-
tems [13,14]. For such assessments to be accurate, all relevant
sources of uncertainties should be considered. As described by
Zhang and Mahadevan [15], there are basically three sources of
uncertainties in engineering analyses: physical uncertainties, mod-
elling uncertainties and statistical uncertainties.

In this paper, the different sources of uncertainties are dis-
cussed. The modelling uncertainty is further quantified by use of
Bayesian inference, and a new method for characterization of the
failure mode is presented in order to study the influence from
the physical uncertainties on the modelling uncertainty. The
results indicate that the modelling uncertainty includes contribu-
tions from the physical uncertainties, and that this should be con-
sidered when other uncertainties are included in a reliability
assessment.

2. Uncertainties in engineering analyses

The physical uncertainties are related to the measured strength
and deformation properties of concrete and reinforcement. The
physical uncertainties of concrete and reinforcement on material
level is studied by several authors, e.g. Rackwitz [16], and a sum-
mary of the results is found in the Probabilistic Model Code [17].
The variation of material properties can be studied on several hier-
archical levels and can be quantified in terms of the uncertain
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mean of the gross supply, the variability of the production line of
one producer, the variability within one batch and the mean and
standard deviation of the material property in a reference volume.
By investigation of such results, it can be seen that the variation of
the compressive cylinder strength of concrete, denoted by the coef-
ficient of variation, is in the range of 5–15% depending on the cylin-
der strength, compared to a value of typically 5% for the yield
strength of the reinforcement steel. The correlation between the
cylinder strength and other properties of concrete is studied by
e.g. Rashid et al. [18], where the splitting tensile strength of 499
tested specimens was found to vary within a bandwidth of approx-
imately 30–40% when presented as a function of the compressive
cylinder strength.

Ideally, the physical uncertainty on structural level should be
assessed by performing a large number of experiments on nomi-
nally equivalent components. However, in reality, only a limited
amount of results from repeated experiments are reported, and
the results are typically normalized in order to assess the physical
uncertainty from a range of experiments. The uncertainty found
from such a study would also include a contribution from

modelling uncertainty due to the selected normalizing factor.
Based on the different uncertainties on material level it is expected
that the physical uncertainties on structural level depend on
whether the failure mode is governed by the concrete or the rein-
forcement, and expected to be particularly high if the failure mode
is governed by the tensile strength of the concrete. This statement
is supported in the work of Ellingwood and Galambos [19] where
the resistance of reinforced concrete beams failing in bending is
found to have a lower coefficient of variation than beams failing
in shear. Fig. 1a and b shows normalized results from experiments
with ductile [20–24] and brittle [25] failure modes respectively. By
investigation of the variation, the uncertainty of the ductile failure
modes is smaller than the uncertainty of the brittle failure modes.
A significant statistical uncertainty is present in the case of the duc-
tile failure modes due to the limited amount of observations col-
lected in the present study.

Modelling uncertainties, or model uncertainties, in engineering
analyses are related to model selection and the accuracy of the
selected model, and apply to both statistical and mechanical mod-
els. Only the contribution from the accuracy of the mechanical
model to the modelling uncertainty was considered in the present
work. Models in engineering analyses are never right or wrong, but
they can be more or less useful for a certain problem if the mod-
elling uncertainty is appropriately accounted for. The accuracy of
the mechanical model depends on the approximations in the
numerical solution procedure and the mathematical idealization
of the problem. According to Ditlevsen [26] the uncertainties
related to the mathematical idealization are due to a limitation
of the possible infinite number of basic variables to a finite number
and idealizations of the mathematical equations, both for prag-
matic reasons and due to a lack of detailed knowledge about the
variation or the behaviour of the problem at hand. There are
aspects that we know that we do not consider in the model, but
also features that we do not know, i.e. the unknown unknowns.
The modelling uncertainty thus covers implicitly everything that
is not explicitly considered in the model.

The modelling uncertainty can be quantified by verification and
validation [27]. Verification is related to how the equations of the
mechanical model are solved, i.e. a quantification of the accuracy
without questioning the relation between the equations and the
physical problem at hand. With regard to NLFEA, verification thus
relates to the iterative solution of the equilibrium equations and
the discretization into finite elements. Validation, on the other
hand, relates to how well the equations capture the true physical
behaviour. In the NLFEA context, validation thus relates to idealiza-
tion of the geometry and the material behaviour. In other words,
verification answers the question Are we solving the equations
right?, and validation answers the question Are we solving the right
equations? [27].

This distinction is useful. One cannot expect improved results
by refining the element discretization or the iterative solution
scheme if the material model is inadequate. The same holds for
refinement of the material model with an improper element dis-
cretization. Following the multiplicative formulation in the Proba-
bilistic Model Code [17], the modelling uncertainty was defined as
the ratio of the experimental to the predicted capacity,
H ¼ Rexp=RNLFEA.

3. Solution strategy for NLFEA

All of the choices regarding force equilibrium, kinematic com-
patibility and constitutive relations influence the modelling uncer-
tainty of NLFEA. Collectively, these choices constitute a strategy for
obtaining a solution from NLFEA, or short, a solution strategy for

20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

fc [MPa]

M
ex

p/(b
 h

2  f c) [
−]

20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

fc [MPa]

V
ex

p/(b
 d

 f c) [
−]

Fig. 1. Visualization of the physical uncertainty on structural level for (a) ductile
and (b) brittle experiments.
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NLFEA [2]. For reinforced concrete, the material model for concrete
is considered the largest source of modelling uncertainties.

A common way of selecting material models for concrete is to
use a uniaxial material model as basis and extend this with addi-
tional models that take into account other material effects such
as the effects of confinement and lateral cracking. Such an
approach can be convenient when the structural effects of different
material effects are to be studied, but additional models are nor-
mally developed in combination with other complementary mod-
els and should not be separated [28]. Alternatively, fully triaxial
material models where all material effects are treated, could be
used directly. One such fully triaxial material model has been
developed by Kotsovos and co-workers since the 1970s and is still
subject to improvements [29–38]. In order to make the material
model available for practising engineers, it was adapted to a com-
mercial finite element software in the present work. The details are
presented in a separate paper [39]. The material model required
only one input parameter, the compressive cylinder strength of
concrete. A bilinear, elastoplastic model was used for the
reinforcement.

Relatively large solid 8-noded finite elements were used for the
concrete and the reinforcement was represented by fully bonded
embedded reinforcement elements. Due to the size of the concrete
elements, the length of the reinforcement elements corresponding
to one integration point was typically in the order of magnitude of
the expected crack spacing, and the assumption of perfect bond
was thus justified. It should be noted that this is a valid approach
specially for NLFEA with large finite elements, where the ultimate
limit capacity is sought assuming properly anchored reinforce-
ment. If, on the other hand, the crack pattern at the serviceability
limit state is to be studied, a more detailed description of the inter-
face between concrete and reinforcement steel and thus a finer
finite element mesh might be needed. Modified Newton–Raphson
in combination with line search was used for the iterative solution
of the equilibrium equations. A convergence criterion given by
jjRresjj=jjRextjj < 0:01 was used for the equilibrium iterations. Rres

is the vector of nodal residual forces, Rext is the vector of nodal
external loads and jj � jj indicates that the L2-norm was used. The
loads were applied with constant increment, so that the experi-
mental capacity was reached in 30 load steps.

The solution strategy is discussed in detail in a separate paper,
where verification is performed by comparing solutions with dif-
ferent element discretizations, load step sizes and iterative solu-
tion procedures [39]. The results show insignificant sensitivity to
finite element size and load step size. Validation was performed
by comparison of experimental results and results from NLFEA,
and the results are presented in the present paper.

4. Characterization of the failure mode

The classical way of characterizing the failure mode of a con-
crete structure both experimentally and numerically is a matter
of subjective judgement. By assessing crack patterns and stress
and strain fields at the ultimate limit load, the failure mode can
be described as e.g. diagonal tension, shear compression or flexure-
compression [40]. Such distinctions are convenient in classical sec-
tional design methods, but have limited applicability to global
resistance assessments of large concrete structures where the fail-
ure mode could be due to interaction between different sectional
forces. For this reason, a more objective characterization to be used
in numerical assessments of the failure mode was proposed in the
present work.

When a reinforced concrete structure is loaded, cracking of con-
crete will be initiated at some load level. Upon cracking, the inter-
nal forces need to be redistributed. Such redistribution can be

associated with the plastic dissipation, i.e. the absorbed non-
recoverable strain energy, in the system. If the load is further
increased, cracking can either propagate and stabilize if sufficient
reinforcement is provided, or propagate progressively to failure.
Eventually, also cracking of the sufficiently reinforced structure
will propagate to failure when the global redistribution capacity
of the reinforcement is exhausted. Hence, reinforcement provides
ductility to the brittle concrete by controlling crack propagation
and providing sufficient capacity for redistribution of internal
forces. This statement was formulated mathematically according
to the following expression, where Wpl;tot and Wpl;steel are the plas-
tic dissipation of the system and the reinforcement at failure
respectively:

Xductility ¼ Wpl;steel

Wpl;tot
ð1Þ

The ductility index, Xductility, takes values between 0 and 1, and
indicates to which degree the failure mode is governed by the rein-
forcement, and thus the degree of ductility of the failure mode.

5. Statistical inference

According to the definition in the Probabilistic Model Code [17]
the modelling uncertainty of benchmark analysis i was defined as
the ratio of the experimental to the predicted capacity
hi ¼ Rexp;i=RNLFEA;i. In order to incorporate the modelling uncertainty
in a probabilistic analysis, we need to decide the type and param-
eters of the probability distribution by statistical inference.

5.1. Bayesian data analysis

In Bayesian data analysis both the variable to be modelled and
the parameters of the distribution are treated as unknown random
variables. The method allows for incorporation of both prior
knowledge and observed data, and the statistical uncertainty of
the parameters can be estimated from the respective probability
distributions. Demonstrations of use can be found in the literature
[15,41,42] and a thorough treatment of the technique can be found
in the work by Gelman et al. [43]. Although not all of the informa-
tion provided in this section was used in the rest of the paper, it
was included for completeness. All the resulting expressions in this
section are valid for normally distributed random variables and
were adapted from Gelman et al. [43].

The probability distribution of a normally distributed random
variable y is fully described as soon as the mean l and the variance
r2 is known. According to Bayes’ theorem, the conditional distribu-
tion of the mean and variance given a set of n observations yi col-
lected in the array y can be expressed as:

Pðl;r2jyÞ / Pðl;r2ÞPðyjl;r2Þ ð2Þ
Pðl;r2jyÞ is called the joint posterior distribution of l and r2

given the observations y. The posterior distribution of l and r2

is thus proportional to the product of the prior distribution
Pðl;r2Þ and the likelihood Pðyjl;r2Þ. Any known information about
the random variable, both qualitative and quantitative can be
included in the prior distribution.

Having established the joint posterior distribution Pðl;r2jyÞ, a
natural extension is to establish the posterior predictive distribu-
tion Pð~yjyÞ where ~y is a future prediction of the outcome of the
variable y. In Sections 5.2 and 5.3 estimates for l and r2, and pos-
terior predictions of ~y are given for two different prior
distributions.

For non-normally distributed random variables, only a limited
selection of analytical solutions, the so-called conjugate priors,
exist for some distributions, e.g. Poisson or gamma distributions.
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If these solutions do not exist, the joint posterior and the posterior
predictive distributions should be approximated by e.g. numerical
integration methods such as Markov Chain Monte Carlo simulation
methods or deterministic quadrature rules [43].

5.2. Inference using a non-informative prior distribution

If no information is given about the variable, a non-informative
prior distribution can be assumed. An important property of a non-
informative prior distribution is that it should be objective, and
thus not influence the posterior distribution in any direction. Based
on the marginal posterior distributions the expected values and the
variances for the mean and the variance are given by (3)–(6),

where �y ¼ 1
n

Pn
i¼1yi is the sample mean and s2 ¼ 1

n�1

Pn
i¼1ðyi � �yÞ2

is the sample variance. Note how the statistical uncertainty, i.e.
Var½ljy� and Var½r2jy�, decrease as the number of observations
increase.

E½ljy� ¼ �y ð3Þ

Var½ljy� ¼ n� 1
n� 3

s2

n
ð4Þ

E½r2jy� ¼ n� 1
n� 3

s2 ð5Þ

Var½r2jy� ¼ 2ðn� 1Þ2
ðn� 3Þ2ðn� 5Þ s

4 ð6Þ

It can be shown that the posterior prediction ~y can be modelled
as a t-distributed random variable with location �y, scale s2ð1þ 1=nÞ
and n� 1 degrees of freedom. A future observation can thus be
modelled by (7) where tn�1 is a centrally t-distributed random vari-
able with n� 1 degrees of freedom. For large n the t-distribution
approaches the normal distribution.

~y ¼ �yþ tn�1s

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
ð7Þ

5.3. Inference using a conjugate prior distribution

If prior information exists, this can be included in the prior dis-
tribution. One technique that ensures closed form solutions is to
select a joint prior distribution of the same form as the likelihood.
This is called a conjugate prior distribution. The parameters of the
resulting posterior distribution are given in (8)–(11), where n0 is
the number of samples that forms the basis of the prior knowledge
and m0 ¼ n0 � 1 is the prior number of degrees of freedom.

ln ¼ n0l0 þ n�y
n0 þ n

ð8Þ

nn ¼ n0 þ n ð9Þ

mn ¼ m0 þ n ¼ n0 þ n� 1 ð10Þ

mnr2
n ¼ m0r2

0 þ ðn� 1Þs2 þ n0n
n0 þ n

ð�y� l0Þ2 ð11Þ

The expected values and variances are given in (12)–(15).
Notice how (12) and (14) approach (3) and (5) if no prior informa-
tion exists.

E½ljy� ¼ ln ð12Þ

Var½ljy� ¼ mn
mn � 2

r2
n

nn
ð13Þ

E½r2jy� ¼ mn
mn � 2

r2
n ð14Þ

Var½r2jy� ¼ 2m2n
ðmn � 2Þ2ðmn � 4Þ

r4
n ð15Þ

It can be shown that the posterior prediction ~y can be modelled
as a t-distributed random variable with location ln, scale
r2

nð1þ 1=nnÞ and mn degrees of freedom. A future observation can
thus be modelled by (16) where tmn is a centrally t-distributed ran-
dom variable with mn degrees of freedom.

~y ¼ ln þ tmnrn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

nn

s
ð16Þ

5.4. The probability distribution of the modelling uncertainty

The probability distribution of the modelling uncertainty is gen-
erally not known in advance, however, it is suggested to represent
it as a log-normally distributed random variable [17]. The relation
between the parameters of a log-normal distribution lln and rln

and the mean and variance of the variable itself are given in (17)
and (18), where V ¼ r=l is the coefficient of variation.

lln ¼ lnl� 1
2
lnðV2 þ 1Þ ð17Þ

rln ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðV2 þ 1Þ

q
ð18Þ

In order to perform Bayesian inference on a normally dis-
tributed random variable, each observation of the modelling
uncertainty hi is assigned to yi. If, on the other hand, the random
variable is log-normally distributed, the natural logarithm of each
observation ln hi is assigned to yi. In order to verify the selected dis-
tribution type, the Shapiro–Wilk test for normality [44] with the
improvements proposed by Royston [45] was applied. A test statis-
tic was calculated and used as input for a hypothesis test where the
null-hypothesis stated that the sample was normally distributed.
The P-value was calculated and compared to a 5% level of
significance.

6. Quantification of the modelling uncertainty

The global results from 38 benchmark analyses are summarized
in Table 1 and Fig. 2. The sample consisted of seven short and five
slender walls by Lefas et al. [24], one beam by Kotsovos [20], 12
beams by Bresler and Scordelis [40], two frames by Ernst et al.
[46], two frames by Vecchio and Balopoulou [47] and Vecchio
and Emara [48], one deep beam by Cervenka and Gerstle [49]
and eight beams by Jelic et al. [50]. All of the references reported
the nominal geometries, and the cylinder strength of the concrete
and the yield strength of the reinforcement steel based on a num-
ber of material samples. The cylinder strength was used directly as
the only input material parameter for the concrete material model,
and was not calibrated in order to improve the results in any of the
analyses. It was assumed that the concrete within one structural
component, i.e. one beam, frame or wall, originated from one
batch, and that the reported cylinder strength was measured on
samples from the same batch. No information about the spatial
variability of the strength was reported, and was thus not consid-
ered in the analyses.

Most model predictions were slightly underestimating the
experimental capacity, denoted by hi > 1:0, and the variation was
small. The results from the Shapiro–Wilk test on either yi ¼ hi or
yi ¼ ln hi, i.e. testing for either normality or log-normality, are sum-
marized in Table 2, where the P-value was compared to a 5% level
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of significance. The test did not reject that H could be represented
as a log-normally distributed random variable. The results were
confirmed by the probability plots in Fig. 3 where the scatter plot
is slightly more concentrated along the straight line for the log-
normal distribution than for the normal distribution. Note that
the straight lines are indicative only, as they are based on the sam-
ple mean and sample variance.

Based on these results, Bayesian inference with a non-
informative prior was performed on the sample y where
yi ¼ ln hi. The expressions in Section 5.2 resulted in llnH ¼ 0:092
and rlnH ¼ 0:108, and by using the expressions in Section 5.4 a
mean lH ¼ 1:10, a standard deviation rH ¼ 0:12 and a coefficient
of variation VH ¼ 10:9% was calculated.

Fig. 4a shows the modelling uncertainty plotted against the
cylinder strength. No simple linear trend can be observed, and
the resulting linear correlation coefficient was 0.013 which con-
firms that observation. It might be interesting also to check the
correlation to other input parameters, but as the sample contained
benchmark experiments with varying reinforcement layouts and
structural forms, no parameters except the cylinder strength were
directly comparable. Fig. 4b shows the modelling uncertainty plot-
ted against the ductility index, as defined in Section 4, for all the
benchmark analyses. Depending on the ductility index, the obser-
vations might be grouped in two separate domains: one brittle
and one ductile.

Table 1
Summary of the results from the benchmark analyses. f c is the cylinder strength in MPa, Rexp;i and RNLFEA;i are the experimental and predicted capacities in kN, hi is the modelling
uncertainty and xductility;i ¼ Wpl;steel=Wpl;tot is the ductility index given by the ratio of the plastic dissipation of the reinforcement and the total plastic dissipation.

Ref. Experiment f c Rexp;i RNLFEA;i hi xductility;i

[24] SW11 42.3 260.00 274.94 0.95 0.914
SW12 43.6 340.00 293.20 1.16 0.331
SW13 32.3 330.00 252.35 1.31 0.000
SW14 33.2 265.00 253.92 1.04 0.839
SW15 33.9 320.00 298.39 1.07 0.946
SW16 41.7 355.00 271.46 1.31 0.000
SW17 41.1 247.00 238.22 1.04 0.841
SW21 33.6 127.00 113.99 1.11 0.863
SW22 40.6 150.00 139.94 1.07 0.704
SW23 37.8 180.00 151.38 1.19 0.464
SW24 38.3 120.00 120.01 1.00 0.920
SW26 25.1 123.00 90.20 1.36 0.526

[20] B1 37.8 13.60 12.69 1.07 0.680

[40] OA-1 22.5 333.60 378.53 0.88 0.000
OA-2 23.7 355.84 320.40 1.11 0.000
OA-3 37.6 378.08 277.93 1.36 0.000
A-1 24.1 467.04 466.96 1.00 0.235
A-2 24.3 489.28 423.80 1.15 0.132
A-3 35.0 468.37 405.60 1.15 0.130
B-1 24.8 442.58 443.00 1.00 0.179
B-2 23.2 400.32 320.00 1.25 0.183
B-3 38.7 353.62 377.17 0.94 0.103
C-1 29.6 311.36 290.27 1.07 0.147
C-2 23.8 324.70 238.33 1.36 0.253
C-3 35.0 269.10 224.72 1.20 0.088

[46] 2D18 40.8 46.40 41.72 1.11 0.848
2D18H 28.8 14.10 13.24 1.07 0.824

[47] BF1 29.0 540.00 521.98 1.03 0.888

[48] BF2 30.0 332.00 301.31 1.10 0.000

[49] W2 26.8 240.00 240.00 1.00 0.967

[50] HDCB3 30.0 202.70 180.16 1.13 0.024
HDCB4 30.0 196.50 182.29 1.08 0.037
MDCB3 28.0 193.90 189.98 1.02 0.881
MDCB4 28.0 196.40 193.14 1.02 0.919
LDCB3 30.0 181.60 178.54 1.02 0.185
LDCB4 30.0 186.20 179.70 1.04 0.292
G21 34.3 204.80 185.53 1.10 0.069
G22 34.3 200.80 197.01 1.02 0.958
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Fig. 2. Experimental capacity and predicted capacity for the 38 benchmark
analyses.

Table 2
Summary of results from the Shapiro–Wilk test for normality of H. W is the Shapiro–
Wilk test statistic and the P-value is the probability of making the current observation
given that the observations are normally distributed.

yi W P-value

hi 0.9232 0.012 < 0.05 ) Reject
ln hi 0.9461 0.066 > 0.05 ) Do not reject
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7. Discussion

The level of detail which is needed for the material model
depends on the phenomena that are to be studied in the analysis.
In the present study, the ultimate limit capacity was sought, and
for this application the simple fully triaxial material model
[29,30] was appropriate. The results were supporting the conclu-
sions from Engen et al. [2] advising a shift of the attention from
a detailed description of the post-cracking tensile behaviour to a
rational description of the pre-cracking compressive behaviour of
concrete in analyses where large finite elements are used. Despite
the simple form of the material model and the coarse meshes of
linear solid elements, the resulting modelling uncertainty had a
low standard deviation, and the mean value close to one indicated
a small model bias.

A new method for characterization of the failure mode was pre-
sented. The method characterized the failure mode in terms of the
ductility index, Xductility, defined as the ratio between the plastic
dissipation of the reinforcement and the total plastic dissipation
of the system. It was regarded as an advantage of the method that
it was objective and unambiguous compared to traditional charac-
terizations based on subjective judgement. This seemed to be par-
ticularly relevant for failure modes where the interaction between
several sectional forces was governing. The objective characteriza-
tion should be complemented by a description of the failure mode,
e.g. in terms of the crack pattern, stress and strain contours and
displacements.

If all the redistribution, i.e. the plastic dissipation, is assigned to
the concrete, the structure is likely to fail in a brittle manner due
to the low redistribution capacity of the concrete. The brittle failure
modes governed by the concrete have a higher inherent physical
uncertainty and are often more difficult to predict with a high accu-
racy compared to the ductile counterpart of failure modes governed
by the reinforcement. The sources for the high inherent uncertainty
of the brittle failure modes are the spatial variability and the mean
and standard deviation of the material properties within the con-
crete batch, and the correlation between the cylinder strength and
other parameters of the concrete as described in Section 2. Because
these variations were not controlled in the uncerlying experiments,
they were not considered explicitly in the analyses, thus they were
implicitly included in the modelling uncertainty. The modelling
uncertainty of the ductile failure modes, on the other hand, would
have a lower contribution from physical uncertainties due to the
lower physical uncertainties inherent to the reinforcement steel.
This statement serves as a rational explanation to the results from
earlier studies of the modelling uncertainty in connection to predic-
tion of the capacity of reinforced concrete [3,19]. As an indication on
the dependency of H on the failure mode, the benchmark analyses
could be separated in two domains, e.g. a brittle domain for
Xductility < 0:6 and a ductile domain for Xductility P 0:6, as shown in
Fig. 4b. Bayesian inference resulted in lH ¼ 1:14 and rH ¼ 0:14,
and lH ¼ 1:04 and rH ¼ 0:05, for the brittle and ductile domain
respectively, and the standard deviation of the modelling uncer-
tainty thus got its largest contribution from the brittle domain.
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Fig. 3. Probability plot for the modelling uncertainty H assuming (a) normal and (b) log-normal distribution.
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Fig. 4. Correlation between modelling uncertainty H and (a) cylinder strength f c and (b) ductility index Xductility ¼ Wpl;steel=Wpl;tot.
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Based on the discussion above, the separation of uncertainties
such that a pure modelling uncertainty is obtained is not straight
forward and it is reasonable to keep the present definition and note
that the estimated modelling uncertainty also includes contribu-
tions from the physical uncertainties. With the present definition
of the modelling uncertainty, and treating the physical uncertain-
ties on hierarchical levels, the only contribution to the physical
uncertainties that should be included in a reliability assessment
are those related to the variability of the material supply between
different producers. However, reasonable assumptions for the
quantification of this variability is beyond the scope of this paper
and calls for further research.

If the capacity of a ductile experiment was underestimated, the
calculated ductility index would also be underestimated, resulting
in a low xductility;i, a low predicted capacity and a high hi. This repre-
sented a slight weakness of the characterization of the failure
mode presented in the present paper. It should be noted that the
underestimation could be both due to solving the wrong equations,
i.e. inadequate material modelling or geometric idealization, or due
to wrong solution of the equations, i.e. inadequate finite element
discretization or iterative solution of the non-linear equilibrium
equations. On the other hand, if the capacity of a brittle experiment
was properly estimated, this resulted in a low xductility;i and hi � 1:0,
and a high xductility;i would in all cases indicate that the failure mode
is indeed ductile.

In order to perform all the benchmark analyses in a consistent
manner, the external load was applied with constant load incre-
ments such that the experimental capacity was reached in 30 load
steps. This was the main reason for several of the points in Fig. 4a
and b being horizontally aligned. Due to the discretized load appli-
cation, a higher load could in principle be reached if the load was
continuously increased to failure. If several benchmark analyses
in reality could have yielded higher capacities, this would influence
the estimated parameters of the modelling uncertainty. A resulting
theoretical deviation was found to be in the order of magnitude of
the statistical uncertainty of the estimated parameters, and was
thus not studied further in detail.

Ditlevsen and Madsen [51] note that whatever degree of refine-
ment of the mechanical model, some modelling uncertainty will
remain, and at some degree of refinement, the physical and statis-
tical uncertainty will dominate the total uncertainty of the prob-
lem. This indicates that a reasonable target for the modelling
uncertainty could be in the order of the dominating physical or sta-
tistical uncertainty. In the recommendations published by fib [52]
it is stated that the coefficient of variation of the modelling uncer-
tainty should be less than 30%. Assuming a target reliability level
including sensitivity factors, the global safety factor for modelling
uncertainty used in Model Code 2010 corresponds to a coefficient
of variation of 5–15% depending on the assumed bias [5]. The coef-
ficient of variation obtained in the present study was thus consid-
ered adequate. It should be noted that the resulting modelling
uncertainty reported in the present paper is related to one specific
solution strategy, i.e. one specific set of choices regarding force
equilibrium, kinematic compatibility and constitutive relations. A
change of solution strategy is expected to result in different param-
eters for the modelling uncertainty that need to be quantified.

The modelling uncertainty as treated in the present project can
be incorporated in reliability assessments in several ways. In semi-
probabilistic methods, the coefficient of variation can be included
in the calculation of the total coefficient of variation following
the approach suggested by Schlune et al. [3] or as a separate reduc-
tion factor as discussed by e.g. Kadlec and Cervenka [53]. H could
be incorporated directly as a basic variable in a procedure based on
e.g. a response surface and a first order reliability method as
demonstrated by Belletti et al. [12]. In a full probabilistic method,
H can be simulated by drawing random samples from a normal,

log-normal or a t-distribution depending on which distribution is
the most suitable.

8. Conclusions

Results from a range of benchmark analyses where a fully triax-
ial material model for concrete and relatively large solid elements
were used, showed that the modelling uncertainty could be repre-
sented as a log-normally distributed random variable with a mean
1.10 and a standard deviation of 0.12. These results indicate that
the global safety factor for modelling uncertainty suggested in
Model Code 2010 for numerical models subjected to a high level
of validation is valid. The newmethod for characterizing the failure
mode that was developed was successfully applied, and the results
indicated that the physical uncertainties influence the estimated
parameters of the modelling uncertainty. Because the physical
uncertainties related to variation of the concrete compressive
strength within and between batches from one producer were
not explicitly considered in the NLFEA in the present study, these
uncertainties were implicitly included in the estimated modelling
uncertainty. With the present definition of the modelling uncer-
tainty, only the physical uncertainties related to the variability of
the material supply between different producers should thus be
included in a reliability assessment. It is worth noting that all the
cases that were studied, relate to laboratory experiments with
more or less well-defined boundary and loading conditions. In a
real concrete structure, the physical uncertainties might increase
e.g. due to inadequate curing conditions or variable quality of
workmanship, and the modelling uncertainty might increase due
to e.g. idealization of geometry, load application and boundary
conditions. In the further work, different possibilities for including
the modelling uncertainty in a reliability assessment will be stud-
ied. This is considered crucial for obtaining realistic estimates of
the design load carrying capacity or the reliability of both new
and existing concrete structures.
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