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Abstract
For economical reasons, it is necessary to operate separators such that the the pu-

rity specification is maximized while having the levels and the system pressure

controlled. In this thesis, a nonlinear model predictive control is applied to a three

phase subsea gravity separator system.

The main modeling principle used to describe the oil droplets rising and settling

of the droplets is given by Stokes law. Nonlinear dynamic equations were derived

for the water level, total liquid level and for the pressure of the gas in the system

based on the inflow and outflow dynamics, and were implemented in MATLAB

as script files. The equations were nonlinear due to the geometry of the separator.

These nonlinear models were formulated as a semi-explicit DAE system.

The NMPC optimization problem used in this report is solved using direct collo-

cation method using CasADi software within the MATLAB programming envi-

ronment. Simulation studies have been carried out for four cases, namely setpoint

tracking, disturbance rejection, sensitivity to measurement noise and the optimal

water level investigation. The performance of the closed loop Nonlinear Model

Predictive Control (NMPC) has been studied based on the simulation results.

Simulation results were carried out to analyze the effect of measurement noise

on the performance of the controller. Based on this analysis, the performance of

the system for remaining cases was studied. The controller was analyzed for the

setpoint tracking scenario where step change in water level was introduced to the

system. Additionally, the performance of the controller to reject the disturbances

was studied. Finally, the optimal level of water in the separator was investigated

based on maximization of the total volume of oil entering its native phase.
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Chapter 1
Introduction

The recent interest in subsea processing is mainly driven by the advantages of

reduced pumping cost, water management cost and reduced environmental impact

due to water re-injection (Moraes et al., 2013). Also, the subsea processing makes

it possible to use smaller or no platforms at all, due to the fact that the equipment

used for processing is placed on the seabed rather than topside (Albuquerque et al.,

2013).

The majority of oil wells produce a mixture of mainly gas, oil and water. Conven-

tionally, to separate this mixture, a series of separators is used placed starting with

a rough separation of gas-liquid mixture in three phase gravity separators to sep-

arate the mixtures into oil, water and the gas phase. The produced water that has

been separated can be used for re-injection into the reservoir, which helps to in-

crease the pressure and ultimately the recovery. With this advantage, many subsea

separators have been implemented around the world. In addition to the increased

production, the companies need to comply with strict requirements concerning the

disposal of produced waste water. There are many regulations for the maximum
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Chapter 1. Introduction

allowable concentration of oil in the water that could be discharged into the sea

which are set in terms of daily maximum and monthly average (Prescott, 2012).

For example, the maximum limit for hydrocarbon discharge in North Sea is set at

30ppm (Durdevic et al., 2017).

Three phase horizontal gravity separators are considered in this thesis. The sepa-

ration is based on density difference between the single phases as well as gravita-

tional forces. A proper control scheme allows to separate the mixtures based on

maximization of oil production, minimization of oil in the produced water or to

control the levels at their desired setpoints.

For the last two decades, predictive control has been found to be a very good

controller design scheme mainly due to the high performance controllers that can

be used for multivariable proceses and also that the constraints in the process are

handled in a straightforward and organized way (Nunes, 2001).

According to Stokke et al. (1994), a study was carried out on Statoil’s Statfjord A

crude oil production platform, where Model Predictive Control (MPC) was applied

to control the water, oil and the system pressure. In this process, due to the higher

production levels and large variations in the oil levels, experienced operators had

to adjust several PI controllers simultaneously. When the PI controllers are imple-

mented in a system, it is inappropriate to manipulate more than one PI controller

at a time. Therefore, in order to solve this problem, a Model Predictive Control

layer is placed on top of the PI control loops, so that it is possible to optimally and

dynamically control the setpoints of the PI controllers.

There has not been much work done on Model Predictive Control applied to the

gravity separator system. Nunes (2001) used a polynomial operator technique

to study the stability and performance of predictive control applied to a gravity

separator system. Here, the nonlinear system was linearized around a steady state

2



and proves that the linear model predictive control is a good control method for

oil -water-gas separators. Stokke et al. (1994) studied both MPC and LQG (Linear

Quadratic Gaussian) to control the levels in an oil-water-gas separator train. It was

found that MPC was far superior to LQG controller since the LQG controller was

sensitive to noise.

The remainder of this thesis is structured as follows. Chapter 2 outlines majorly

the description of the process, introduction to optimization and optimal control,

methods to solve optimal control problems and the control structure hierarchy

in chemical plants. Chapter 3 presents the control oriented modeling approach.

Chapter 4 outlines the theory of Model Predictive Control (MPC). Chapter 5 de-

scribes the simulation results and chapter 6 concludes the thesis with an outlook

on future work.
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Chapter 2
Background

2.1 Particle movement through the fluid

To understand the separation process, it is important to understand the principle of

emulsions. An emulsion is a dispersion of one liquid in another liquid, where both

liquids are immiscible. The phase in which the droplets are present is the continu-

ous phase and the droplets are termed as the dispersed phase. The main principle

of gravity separation is the separation of droplets based on density differences and

gravitational forces. The forces exerted on the droplets are the drag force, buoyant

force and the gravitational forces as shown in Figure 2.1.

The drag force also known as the frictional force will be exerted on the droplet in

the viscous fluid. This force is always in the direction opposite to the velocity of

the droplet and is given by

Fd =
CD v

2 ρAp
2

, (2.1)

where CD is the drag coefficient, v is the relative velocity of the droplet with

5
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𝐹𝑏 

𝐹𝑑  

𝐹𝑔 

𝐹𝑏 
m 

v 

Figure 2.1: Forces acting on a droplet settling through a continuous phase.

respect to the surrounding fluid, ρ is the density of the surrounding fluid and Ap is

the reference area of the droplet.

The droplet experiences an upward force which opposes the weight of the particle

and is termed the buoyant force. It comes from the pressure exerted on the droplet

by the fluid and is given by

Fb = Vp ρ g, (2.2)

where Vp is the volume of the droplet and g is the acceleration due to gravity.

In addition to the drag and the buoyant force, the particle is exposed to the gravi-

tational force given by

Fg = Vp ρp g, (2.3)

where ρp is the density of the droplet.

The drag coefficient CD depends on the Reynolds number and it can be defined

for several flow regimes. For laminar flow, Stokes’ law is applied and the drag

coefficient is given by

CD =
24

NRe
, (2.4)
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2.2 Horizontal Gravity Separator Description

where the Reynolds number NRe is given by

NRe =
dp v ρ

µ
, (2.5)

where dp is the diameter of the droplet and µ is the viscosity of the medium in

which the droplet is present.

At equilibrium, gravitational force on the particle is equal to the drag force and the

buoyant force. Examining equations (2.1), (2.2), (2.3) for the forces acting on the

particle, yields the terminal velocity of the particle in the laminar flow, assuming

Stokes’ law valid, and is given by

v = gd2p
(ρp − ρ)

18µ
. (2.6)

2.2 Horizontal Gravity Separator Description

In this thesis, a horizontal gravity separator is considered for bulk separation of

gas, oil and water. Many different separator types are used in industry, differing in

shape and internal devices. Thereby, the three phase horizontal gravity separator as

presented in Figure 2.2 is one of the most common types being employed (Mendes

et al., 2012).

Figure 2.2 shows volumetric liquid and the gas inflows qL,in and qG,in respectively.

The liquid which is a mixture of oil and water enters the separation chamber and

separates out into the continuous water and the oil layers based on the difference

in density and the gravitational forces as introduced in section 2.1. The oil flows

over a weir plate to the oil chamber where the valve uO is manipulated to extract

the oil from the separator vessel. Also, the valves uW and uG are used to control

7
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the outflows of water and gas from the separator. The control of the levels hW , hL

and the system pressure p is done using the valves uW , uO and uG respectively.

𝑞𝑊,𝑜𝑢𝑡  𝑞𝑂,𝑜𝑢𝑡  

𝑞𝐺,𝑜𝑢𝑡  

𝑢𝑊 𝑢𝑂 

𝑢𝐺  

𝑞𝐿,𝑖𝑛 

𝑞𝐺,𝑖𝑛 

𝐺𝑎𝑠 

O𝑖𝑙 

𝑊𝑎𝑡𝑒𝑟 ℎ𝑊 

ℎ𝐿 

𝑝 

Figure 2.2: Schematic of the three phase horizontal gravity separator.

2.3 Introduction to Optimization

Mathematical optimization is an important tool for the analysis of physical system.

This tool has been extensively used for the selection of best elements from a set of

available elements. To analyze the system of study, an objective must be identified

which could be the maximization of a company’s profits or minimization of an

energy consumption in a chemical plant. In either of the cases, the objective is

largely determined by certain characteristics of the system namely the variables or

unknowns. The aim of optimization is to find those unknown values or variables

that optimize the objective. Usually, the variables are constrained or restricted to

some bounds. The process of deciding the objective of the given problem, along

with variables and bounds on the variables is termed modeling of the given system.
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2.3 Introduction to Optimization

After the formulation of the model, an appropriate optimization algorithm has to

be chosen to solve the problem of interest.

2.3.1 Mathematical Formulation

Optimization is the maximization or minimization of an objective function subject

to variables which are constrained by bounds. Optimization models represent the

problem choices as decision variables and attempt to find the variables that maxi-

mize or minimize the objective function value subject to constraints on variables.

The optimization problem can be formulated as follows:

min
x
f(x) (2.7a)

subject to gi(x) = 0 i = 1, ..........,m (2.7b)

hj(x) ≤ 0 j = 1, .........., p (2.7c)

xmin ≤ x ≤ xmax (2.7d)

where f(x) is the objective function, g(x) are the set of equality constraints and

h(x) are the set of inequality constraints, x are the decision variables constrained

by lower and upper bounds xmin and xmax respectively.

If the goal is to minimize the objective function, then the minimization problem

can be written as

min
x
f(x)⇔ max

x
−f(x)

Now the minimization problem given by (2.7) can be formulated as the maximiza-
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Chapter 2. Background

tion problem

max
x
− f(x) (2.8a)

subject to gi(x) = 0 i = 1, ..........,m (2.8b)

hi(x) ≤ 0 i = 1, .........., p (2.8c)

xmin ≤ x ≤ xmax (2.8d)

Optimization problems can be of many classes comprehensively presented in the

book by Nocedal and Wright (2006). In this thesis, a brief introduction to a few

optimization problem types will be discussed.

Optimization problems formulated in the general form (2.8) can be classified based

on the linearity, nonlinearity, convexity of the objective function and constraints.

It also depends on how large or small the number of variables in the optimization

problem.

Constrained and unconstrained optimization: In case of unconstrained optimiza-

tion problems, the general form (2.8) does not have any equality or inequality

constraints, meaning Equations (2.8b) - (2.8d) are absent. These problems con-

sider maximizing or minimizing the objective function value with no restriction

on the decision variable values. However, most of the problems in engineering

applications are constrained.

Local and global optimization: Many optimization problems attempt to find a local

solution, which is a point at which the objective function value is smaller than the

neighbouring points. A Global solution is the point at which the objective function

value is smaller than all feasible points.

Convex and non-convex optimization: The optimization problem is said to be con-
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vex if the objective function is a convex function, all the equality constraints are

linear and inequality constraints are concave. A set is defined as a convex set if

a line segment joining any two points in that set lies within that set as shown in

Figure 2.3a. The function which is defined in an interval is said to be convex if the

straight line segment joining any two points in that interval is as shown in Figure

2.4a.

𝑥1 

𝑥2 

(a) A convex set

𝑥1 

𝑥2 

(b) A nonconvex set

Figure 2.3: The figure on the left shows convex set and the figure to the right indicates
nonconvex set

𝑥1 𝑥2 

(a) A convex function

𝑥1 𝑥2 

(b) A nonconvex function

Figure 2.4: The figure on the left shows a convex function and the figure to the right
indicates nonconvex function

In addition to the above optimization problem types, some specific optimization

problems will be discussed for the completeness of the report.

Linear Programming (LP): If the objective function f(x) defined by (2.8) is linear
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and all the constraints are linear, then the formulation is said to be a linear pro-

gramming problem. LP problems are always convex since the objective function

is linear and the constraints are linear with the feasible set being convex. The LP

problem is defined by

min
x∈Rn

cTx (2.9a)

subject to gi(x) = aTi x− bi = 0, i = 1, ..........,m (2.9b)

hj(x) = aTj x− bj ≤ 0 j = 1, .........., p (2.9c)

Quadratic Programming (QP): The mathematical optimization problem is said

to be quadratic programming if the objective function f(x) is quadratic and the

constraints are linear. The convexity of a QP problem depends on the positive

semi-definiteness of the matrix Q in (2.10a). The QP problem is defined by

min
x∈Rn

xTQx+ cTx (2.10a)

subject to gi(x) = aTi x− bi = 0, i = 1, ..........,m (2.10b)

hj(x) = aTj x− bj ≤ 0 j = 1, .........., p (2.10c)

Nonlinear Programming (NLP): A general optimization problem is to select n de-

cision variables x1, x2, x3, .., xn from a feasible region such that a given objective

function is minimized or maximized. The problem becomes a nonlinear program-

ming problem if any of the objective or constraints are defined by nonlinear func-

12



2.3 Introduction to Optimization

tions of variables. A general nonlinear minimization problem is given by

min
x,u

f(x) (2.11a)

subject to fi(x) ≤ 0, i = 1, 2, ....,m (2.11b)

hj(x) = 0, j = 1, 2, ...., p (2.11c)

The most promising approaches to solve nonlinear optimization problems are active-

set SQP (Sequential quadratic programming) methods and the interior-point meth-

ods.

SQP is one of the most widely used methods to solve nonlinear programming

problems. It is an iterative procedure, where at every major iteration, a QP sub

problem is solved. The solution of the QP problem is used to construct a new

iterate. The construction of new iterates is done such that the series of iterates

converge to a local minimum.

Interior point methods solve the problem (2.11) by applying Newtons method to

a series of modified KKT (Karush–Kuhn–Tucker) conditions. In the hierarchy

of convex optimization algorithms, interior point methods form the third level.

The simplest or the first level includes problems whose KKT conditions are linear

equations that can be solved analytically. Next level is Newtons method, which

reduces the problem into a sequence of equality constrained quadratic problems.

Interior point methods solve the optimization problem by reducing it to a sequence

of linear equality constrained problems. Barrier method and primal-dual interior

point method are frequently used interior point techniques. The goal of interior

point algorithms is to approximately formulate the inequality constrained problem

as an equality constrained problem where Newtons method can be used.

13
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There are several software packages that implement nonlinear interior-point meth-

ods such as LOQO, KNITRO/DIRECT, IPOPT, BARNLP, whereas active set pack-

ages are MINOS, SNOPT, KNITRO/ACTIVE etc (Nocedal and Wright, 2006).

2.4 Optimal Control Problem

An optimal control problem is a constrained optimization problem with a dynamic

system as one of its constraint. There are three parts in an optimal control prob-

lem formulation namely an objective function, constraint functions and a process

model. The general optimal control problem for a class of dynamic optimization

problems can be formulated as

min
x,u

J = E(x(tf ), b, tf ) +

∫ tf

t0

L(x(t), u(t), b, t)dt (2.12a)

subject to ẋ− f(x(t), u(t), b, t) = 0, (2.12b)

g(x, u, b, t) = 0, (2.12c)

x0 = x(t0), (2.12d)

h(x, u, b, t) ≤ 0 ∀t ∈ [t0, tf ] (2.12e)

The objective function also known as performance index represents the mathe-

matical expression that has to be either maximized or minimized. The constraint

function and the plant models both determine a search domain for the optimization

procedure.

The objective function given in (2.12a) is in Bolza form where L(·) is known as the

Lagrange form and E(·) is known as the Mayer form. Here, t represents the time

14



2.4 Optimal Control Problem

variable, x(t) ∈IRnx and u(t) ∈IRnu denote a vector of state variables and control

decision variables respectively which are going to be optimized. Parameters are

the time independent decision variables denoted by b ∈IRnb .

The process model given by (2.12b) and (2.12c) is also known as system equation

constraints which represent an additional set of equality constraints and gives a

mathematical representation of phenomena taking place in the observed system.

(2.12b), (2.12c) represent ODE models and algebraic equations respectively. Both

set of equations combined present a set of differential algebraic equations (DAEs).

Different equality and inequality constraints may bound the values of control and

state variables to safeguard the environment, to maintain certain setpoints in the

control loop etc. Equation (2.12e) is termed path constraint, which is used to de-

termine a particular value of the state or decision variables at specific time instants.

They are also known as the terminal constraints, when for instance state at the final

time tf is restricted to a particular value.

2.4.1 Methods to solve optimal control problem

There are three fundamental approaches to solve a constrained optimal control

problem as presented in the form (2.12a). These methods are outlined as follows.

1) Dynamic Programming, Hamilton- Jacobi- Bellman (HJB)

2) Indirect methods, Calculus of variations, Euler Lagrange differential equation,

Pontryagin’s Maximum principle (PMP)

3) Direct methods which are based on parameterizing optimial control problem

into a finite dimensional nonlinear programming problem (Kaya, 2007; Geiger,

2009).
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Continuous time Optimal 
Control problem 

Indirect Methods Direct methods 

Sequential Methods Simultaneous Methods 

Direct  
Multiple Shooting 

Direct  
Single Shooting 

Direct  
Collocation 

Figure 2.5: Classification of methods to solve optimal control problem

Indirect Method

Indirect methods make use of optimal conditions of the infinite optimal control

problem to obtain a boundary value problem. These optimality conditions are

discretized and then the boundary value problem is solved. Hence they are termed

”optimize and then discretize” (Diehl et al., 2006).

Direct Method

Contrary to the indirect methods, direct methods can be used to solve the optimal

control problems without the need to derive necessary conditions for optimality.

The principle of direct method is to discretize the original infinite dimensional

optimal control problem into a nonlinear program (NLP) with finite dimensions.

Therefore these methods are also termed ”discretize and then optimize” methods.

The finite dimensional NLP is solved numerically using standard solution algo-
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2.4 Optimal Control Problem

rithms. The two well known approaches within this group of methods are sequen-

tial and simultaneous approaches. Direct single shooting is a class of sequential

methods while direct multiple shooting and direct collocation represents the simul-

taneous methods.

The following methods give an overview of the direct methods to solve the infinite

dimensional optimal control problems. Direct methods can be used both for ODE

and DAE models. For the sake of simplicity in understanding, the optimal control

problem subject to an ODE model is briefly explained. However, this thesis is

based on a system of semi-explicit differential algebraic equations (DAE) as will

be seen in section 3.3, and the direct method used to solve this is described in

section 4.4.

Direct Single Shooting (DSS)

This is the basic direct method for solving optimal control problems. Here the

model simulation and optimization are done sequentially. It is a control parametriza-

tion method where the control is approximated and the control trajectory is parametrized

using a piecewise smooth approximation, typically piecewise linear functions and

the ODE or the DAE constraints (2.12b) are solved using standard numerical in-

tegration solvers. The parametrization of the control trajectory is done in the time

horizon [t0, tf ], where the horizon is divided into set of gridpoints as t0 = 0 <

t1 < .... < tN = tf .

u(t) = qi for t ∈ [ti, ti+1], i = 0, 1, ...., N − 1 (2.13)

In general, the control parametrization is represented as u(t; q), where the term

after the semicolon indicate the dependence of the discretized control parameters

on every subinterval. Using numerical integration, the states are obtained as a

function of several control parameters and they are denoted as x(t; q). Finally,
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Chapter 2. Background

an NLP solver is used to obtain the optimal control sequence. This is called the

sequential approach for solving the optimal control problem since the ODE/DAE

solvers integrate the differential equations and the NLP solver finds optimal control

parameters sequentially.
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Figure 2.6: Schematic of Direct Single Shooting.

Direct Multiple Shooting (DMS)

In a direct multiple shooting method, the time interval [t0, tf ] is divided into sev-

eral subintervals as presented earlier and a direct shooting method is used over each

subinterval. On every subinterval the control trajectory is piecewise discretized as

in (2.13) and the ODE (2.14a) is solved numerically on each interval indepen-

dently, starting with an initial value (2.14b) at every gridpoint to obtain multiple
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2.4 Optimal Control Problem

trajectory segments as shown in Figure 2.7.

ẋi(t)− f(xi(t), qi) = 0, (2.14a)

xi(ti) = si (2.14b)

Solving the above set of initial value problems (2.14) at every gridpoint, trajectory

segments equal to the number of subintervals are obtained and they are denoted as

xi(t; si, qi).

The set of control parametrization coefficients and the initial values of state be-

ginning at each subinterval as denoted by v remain unknown in the optimization

problem and can be solved using NLP methods like Sequential Quadratic Pro-

gramming (SQP) methods or Interior Point methods as described in section 2.3.1.

v = [s0, q0, s1, q1, ...., s5, q5, s6]

In order to enforce continuity of the state trajectories, additional constraints are

added at the interface of each subinterval where it is desired to drive the difference

between x(t−i ) and x(t+i ) to zero.

Numerical integration of the IVP over the time interval [ti, ti+1] provides the state

x at ti+1 denoted by xi(ti+1; si, qi) as shown in Figure 2.7. The trajectory is

physically meaningful when the shooting gaps at every subintervals are closed as

shown in Figure 2.7 meaning

xi(ti+1; si, qi)− si+1 = 0

The variables si and qi indicate that the trajectory segments depend on the initial
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Figure 2.7: Schematic of Direct Multiple Shooting. Note the discontinuities of states in
the intermediate stage of optimization, where the equality constraints are not yet satisfied.

values at the intervals and the corresponding control inputs. The shooting gaps are

introduced as additional constraints in the optimization problem.

After the convergence of the NLP solver, the shooting gap constraints are fulfilled

as indicated in Figure 2.8.
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Figure 2.8: Schematic of Direct Multiple Shooting where the shooting gap constraints are
satisfied after the convergence of the NLP solver (Kirches, 2010)

Direct Collocation

A direct collocation method is a state and control parametrization method where

the states are approximated by cubic polynomials and the controls are expressed as

piecewise linear function. The discretization is performed on a grid of N intervals

with c intermediate collocation points in each interval. For example, in interval

[t0, t1] three intermediate collocation points are indicated as shown in Figure 2.9.

There are different schemes to choose the collocation points depending on factors

like stability and order of convergence (Magnusson and Åkesson, 2015).

ẋ(t) = f(x(t), u(t)), (2.15a)

x(t0) = x0 (2.15b)
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An infinite ODE system is approximated using a collocation scheme, for instance

the Lagrange collocation method, to obtain a polynomial approximation on each

interval.

At every collocation point, the state derivative of the approximated Lagrange poly-

nomial is evaluated and is denoted as ẋc. The value of the system dynamics (2.15a)

is also computed at the collocation points f(xc, u(t)). The main idea is to min-

imize the error between the state derivative from the system dynamics and the

derivative of polynomial approximation at the collocation points as shown in Fig-

ure 2.9.
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Figure 2.9: Schematic of the Direct Collocation method. The state derivative of the ap-
proximated polynomial (black line) and the value of the system dynamics (red dotted line).
The polynomial approximation (orange curve) and the true solution of the system dynam-
ics (blue dotted curve). The control input is piecewise constant over the interval [tk, tk+1]

The equality constraints ẋc− f(xc, u(t)) = 0 are introduced into the optimization

algorithm as slope constraints. In addition to this, shooting gap constraints as
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discussed before for the multiple shooting method are also introduced into the

optimization problem. Figure 2.9 illustrates the concept of the direct collocation

method.

However, the optimal control presented above are open loop techniques which do

not consider measurement noise or errors in the model. Figure 2.10 illustrates open

loop control. To take the disturbances affecting the process into account, there has

to be a closed loop system as shown in Figure 2.11, where the estimated states or

the actual measurements are fed back to the optimizer. This is known as Model

Predictive Control (MPC) or receding horizon control and is described in detail in

Section 4.1.

2.4.2 Open loop vs. closed loop optimal control

In open loop optimal control, an optimal control law which is of the form uopt(t) =

ω(t; t0, x0) obtained for a specific initial value of the state x(t0) = x0, for t ∈

[t0, tf ].

𝑢𝑜𝑝𝑡(𝑡) 

𝑥0 

Controller Process 
𝑥(𝑡) 

Figure 2.10: Schematic of open loop optimal control

In case of closed loop optimal control, a feedback control law is of the form

uopt(t) = ω(t;x(t)), wherein the optimal control actions uopt(t) are calculated
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corresponding to the current state x(t), for t ∈ [t0, tf ].

𝑢𝑜𝑝𝑡(𝑡) 

Controller Process 
𝑥(𝑡) 

Figure 2.11: Schematic of closed loop optimal control

2.5 Software Package

In this thesis, the optimization software package CasADi (Computer algebra system

for Automatic Differentiation) is used to solve Optimal Control Problems (OCP)

and nonlinear model predictive control (NMPC) for a gravity separator system.

CasADi solves the OCPs using direct and indirect methods both for ODE and

DAE systems. Details on the installation and the syntax of CasADi can be found

in the user guide by Andersson (2013).

CasADi is a tool used to efficiently compute the derivatives using automatic dif-

ferentiation and is specifically developed for dynamic optimization problems. It

makes use of two different representations for symbolic expressions. The two

most fundamental classes are the SX and the MX symbolics. SX is the scalar

representation which involves the unary or binary elementary operations. MX is

the matrix representation where the elementary operations are multiple-input and

multiple-output. The MX symbolic representation is more efficient for high level

operations like matrix multiplication and function calls. On the contrary, the SX
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2.6 Plantwide Control by Timescale Separation

representation provides faster computations by reducing the additional symbolical

simplifications (Magnusson and Åkesson, 2015). The mixing of these two repre-

sentations makes it possible to implement a code that is both computationally fast

and generic since the SX expressions have much lower overhead per operation.

Thus the SX expressions are considered for use in low level operations, for ex-

ample while declaring the variables, while the MX expressions should be used for

constraint function of an NLP. However, it is important to note that performing any

other operation like multiplication of the two symbolic representations for instance

cannot be done.

2.6 Plantwide Control by Timescale Separation

The term ”plantwide control” is used in the area of process control and it is de-

fined as the selection of the control structure (Larsson and Skogestad, 2000). It is

very important to have the right control selection since the chemical or the process

plants are largely complex. As seen in Figure 2.12, the layers constituting schedul-

ing, site-wide optimization and local optimization deal with economic optimiza-

tion whereas the layers supervisory control and regulatory control are concerned

with setpoint tracking defined by the layer above. The two main objectives for

control is the longer term economics and short term stability. Based on these two

objectives, the control layer is divided into a ”slow” supervisory (economic) layer

and a ”fast” regulatory (stabilization) layer.

The objectives of the supervisory layer is to perform advanced economic control

actions (meaning to control CV1 at their desired setpoints and to provide setpoints

CV SP
2 to the regulatory layer) and avoid saturation of the regulatory layer. The

implementation of the supervisory control is done either by using model predictive
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Figure 2.12: Typical control hierarchy in a chemical plant (Larsson and Skogestad, 2000).

control (MPC) or by making use of advanced control based on simpler elements

like cascade control, selectors, ratio control, split range control, decoupler and

valve position control. The advantage of having these simple elements is that the

implementation can take place in existing basic control structure. However, it is

not easily understood by the engineer who has not designed it. Hence, model based

solutions (MPC) are usually preferred since the design can be easily modified.

The main objective of the regulatory layer is to keep the plant or the process at

the steady state, by using simple single loop PID controllers. This layer tracks the
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setpoints given by the supervisory layer (MPC).
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Chapter 3
Modeling of the process

The models presented in this chapter are based upon the work of Backi and Sko-

gestad (2017).

3.1 Assumptions

• Absence of dense - packed layer in the separator which means that the

droplets will either rise or fall from the interface to disperse in the con-

tinuous phases.

• Plug flow model for both the oil and the water phase.

• Absence of coalescence and breakage of the droplets.

• Stokes’ law is applied for the rising and the settling velocity of the water and

oil droplets.

• There are neither water nor oil droplets dispersed in the gas phase and no

gas droplets dispersed in the water and oil phases respectively.
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Chapter 3. Modeling of the process

3.2 Mathematical Models Description

This section describes the models for the horizontal gravity separator. The sim-

plified schematic of the gravity separator is illustrated in Figure 3.1. The liquid

enters the separator with volumetric flow rate qL,in and the gas flow rate into the

separator is qG,in. The separator is divided into two sections, namely the separa-

tion section and an oil chamber. The incoming liquid is a mixture of water and oil

and the volume fraction of water in the liquid is termed water cut α, whereas the

volume fraction of oil is termed oil cut β = 1 − α. As the liquid enters the sepa-

rator, some of the water droplets disperse into the bulk oil phase which is denoted

by φwo. It follows that out of inflowing water, the fraction of water entering the

water continuous phase is φww = 1−φwo. Similarly, some of the oil droplets will

disperse into the bulk water phase which is denoted by φow. Therefore, the fraction

of the inflowing oil entering the continuous oil phase is φoo = 1 − φow. The oil

rich phase, flows over the weir into the oil chamber and the flow is controlled by

the valve uO. Similarly, the water rich phase is released before the weir and the

flow is manipulated using valve uW .

The objective is to control the levels of water, oil and the system pressure and to

calculate the amount of dispersed phase in the bulk phase outlets. The variables in

the model are classified as state variables x = [hL hW p], manipulated variables

u = [qW,out qO,out qG,out] and the disturbance variable d = [qL,in qG,in].

3.2.1 Inventory Models

In this section, non-linear dynamic models are derived representing the change

in water level, total liquid level, which includes the oil and the water level, as

well as the system pressure. Figure 3.1 illustrates the simplified schematic of the
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separation process indicating the water level, the total liquid level, the inlet and the

outlet sections.

𝑞𝑊,𝑜𝑢𝑡  𝑞𝑂,𝑜𝑢𝑡 

𝑞𝐺,𝑜𝑢𝑡  
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ℎ𝐿 

𝑝 
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𝐴𝑊 

𝐴𝐿 

𝑉𝑂𝑜𝑊 

𝑉𝑊𝑜𝑂 

Figure 3.1: Schematic of the three phase horizontal gravity separator indicating heights
of inventory.

Rate of change of water level

The rate of change of water volume is given as

dVW
dt

= qW,in − qW,out −
VOoW

twaterh

+
VWoO

toilh
. (3.1)

The inflowing water contains dispersed oil droplets, and hence qW,in is given by

qW,in = qL,in(αφww + βφow).
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Hence, the rate of change of water volume is

dVW
dt

= qL,in(αφww + βφow)− qW,out −
VOoW
twaterh

+
VWoO

toilh
.

where VOoW denotes the total volume of oil droplets leaving the water phase into

their continuous phase (subscript OoW : Oil out of Water), VWoO denotes the total

volume of water droplets leaving the oil phase and entering their continuous phase

(subscript WoO: Water out of Oil) as shown in Figure 3.1, twaterh and toilh denotes

the horizontal residence times of water and oil phase respectively.

The volume of water contained in the separator is VW = AWL, where L is the

length of the separator, AW is the cross sectional area of the circular segment

containing water with water height hW as indicated in Figure 3.1.

Therefore the change in area is given by

dAW
dt

=
1

L

dVW
dt

.

The cross sectional area of the circular segment filled with water AW is calculated

as

AW = r2
[

cos−1
(r − hW

r

)
− (r − hW )

√
2rhW − h2W

]
. (3.2)

In order to obtain the differential equation for the height of water level, the time

derivative of (3.2) is given by

dAW
dt

= 2
√

2rhW − h2W
dhW
dt

. (3.3)
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The differential equation for the height of water level is

dhW
dt

=
1

2L
√

2rhW − h2W

dVW
dt

. (3.4)

Rate of change of total liquid level The rate of change of liquid volume in the

separator is given by

dVL
dt

= qL,in − qL,out. (3.5)

The total outflow is the amount of oil and water leaving the separator. Therefore

the equation is rewritten as

dVL
dt

= qL,in − qW,out − qO,out.

The volume of the segment in which the liquid is contained is given by VL = ALL

where AL is the cross sectional area of the cylindrical segment containing total

liquid.

The rate of change of liquid cross sectional area is

dAL
dt

=
1

L
(qL,in − qW,out − qO,out).

The cross sectional area of the circular segment containing the total liquid AL is

calculated as

AL = r2
[

cos−1
(r − hL

r

)
− (r − hL)

√
2rhL − h2L

]
. (3.6)
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In order to obtain the rate of change of liquid level, (3.6) is differentiated with

time,

dAL
dt

= 2
√

2rhL − h2L
dhL
dt

. (3.7)

Therefore, the differential equation for height of the liquid is

dhL
dt

=
1

2L
√

2rhL − h2L

dVL
dt

. (3.8)

Rate of change of system pressure:

As mentioned previously in Section 3.1, the gas phase of the separator is modeled

by taking the ideal gas law into account. The ideal gas law is given by

p̄VG = nGRT, (3.9)

and VG = VSep−VL, where VSep is the total volume of the separator and VG is the

volume of the separator containing the gas phase both measured in cubic metres,

p̄ is the system pressure measured in Pascal, nG is the number of gas moles, R is

the universal gas constant, T is the temperature measured in Kelvin.

The ideal gas law given by (3.9) is differentiated, yielding

VG
dp̄

dt
+ p̄

dVG
dt

= RT
dnG
dt

+ nGR
dT

dt
.

Assuming isothermal compression, the above equation reduces to

VG
dp̄

dt
+ p̄

dVG
dt

= RT
dnG
dt

.
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Since the volume of the gas phase in the separator is inversely proportional to the

total liquid phase volume, volume change of the gas phase is given by

dVG
dt

= −dVL
dt

= qL,in − qW,out − qO,out. (3.10)

The component balance for the gas phase is given by

dnG
dt

= − ρG
MG

(qG,in − qG,out). (3.11)

Using (3.10) and (3.11) the gas pressure dynamics is written as

VG
dp̄

dt
= RT

ρG
MG

(qG,in − qG,out) + p̄(qL,in − qL,out), (3.12)

and p̄ = p · 105, where p is measured in bars.

The scaled form of (3.12) is thus given by

dp

dt
=
(RT
VG

ρG
MG

(qG,in − qG,out) + (
p ∗ 105

VG
)(qL,in − qL,out)

)
· 10−5. (3.13)

3.2.2 Droplet size distribution

As stated in section 3.1, it is assumed that there is absence of coalescence or break-

age of the droplets in the separator. Therefore a fixed droplet size distribution is

assumed. Droplet sizes of 10 classes were defined as shown in Table 3.1. It is

observed from the Figure 3.2, that the droplets are approximately normally dis-

tributed.
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Table 3.1: Droplet size distribution.

Droplet size class
Droplet size

µm
Number of droplets

1 50 1e8

2 100 5e8

3 150 1e9

4 200 5e9

5 250 1e10

6 300 1e10

7 350 5e9

8 400 1e9

9 450 5e8

10 500 1e8
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Figure 3.2: Droplet size distribution for 10 droplet classes
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3.2 Mathematical Models Description

3.2.3 Horizontal Velocities

As the mixture enters the gravity separator, it is divided into the water continuous

phase and the oil continuous phase, each of these phases containing dispersed oil

and water droplets, respectively. As the continuous phase moves in the horizontal

direction towards the outlet, the dispersed droplets move relative to their continu-

ous phase. Therefore, the horizontal velocity of the droplets is assumed to be equal

to the continuous phase in which they are present.

𝑞𝑊,𝑜𝑢𝑡  𝑞𝑂,𝑜𝑢𝑡 

𝑞𝐺,𝑜𝑢𝑡  

𝑢𝑊 𝑢𝑂 

𝑢𝐺  

𝑞𝐿,𝑖𝑛 

𝑞𝐺,𝑖𝑛 

𝐴𝑊 

𝐴𝐿 

𝑣𝑣 

𝑣ℎ 

Figure 3.3: Schematic of the three phase gravity separator indicating velocity components
on the droplets.

Horizontal velocity of water droplets:

vwaterh =
qO,in
AO

, (3.14)

where qO,in is the flow rate of the oil into the oil continuous phase and AO is the
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area of the circular segment containing the oil phase in which the water droplets

are being dispersed.

The area of the segment containing oil is obtained using (3.2) and (3.6) and is given

by AO = AL −AW .

The total flow rate of the oil qO,in is the sum of the oil entering the oil continuous

phase and the oil dispersed into the water phase

qO,in = qL,in
(
βφoo + αφwo

)
.

Horizontal velocity of oil droplets:

voilh =
qW,in
AW

, (3.15)

where qW,in is the total flow rate of the water into the water continuous phase and

the water dispersed into the oil phase and AW is the area of the circular segment

containing the water phase in which the oil droplets are being dispersed.

The area of the segment containing water AW is given in (3.2).

The flow rate of liquid into the water continuous phase qW,in is the amount of water

entering the water phase and the amount of dispersed oil entering the water phase

qW,in = qL,in
(
αφww + βφow

)
.

3.2.4 Vertical Velocities

The terminal velocity for the dispersed particles is given by Stokes’ Law
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3.2 Mathematical Models Description

vv =
gd2p(ρp − ρ)

18µ
, (3.16)

where dp is the diameter of the particle for every droplet class as mentioned in

section 3.2.2, ρp is the density of the particle, ρ is the density of the continuous

phase and µ is the viscosity of the continuous phase. The particles can be either

water or oil droplets dispersed in their continuous phases.

Stokes’ Law assumes that the particles are spherical in shape, the flow of the

droplet is laminar and that the droplet movement is not hindered by the other

droplets or the surface of the separator.

3.2.5 Horizontal and vertical residence time

In order to understand if the dispersed phase is being separated or is carried along

with the bulk phase, it is important to understand the horizontal and the vertical

residence times. The horizontal residence time for the droplets in their respective

bulk phase can be defined as the amount of time the droplets spend in the separator

before reaching the outlets.

The horizontal residence time is given by the equation:

th =
L

voil,waterh

. (3.17)

The dispersed particles are considered to be separated from the continuous phase,

if they rise or settle vertically to reach the interface well within the time it takes

for the dispersed phase to move horizontally along the length of the separator.
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𝑞𝑊,𝑜𝑢𝑡  𝑞𝑂,𝑜𝑢𝑡  

𝑞𝐺,𝑜𝑢𝑡  

𝑢𝑊 𝑢𝑂 

𝑢𝐺  

𝑞𝐿,𝑖𝑛 

𝑞𝐺,𝑖𝑛 

𝑃𝑎𝑡ℎ 𝐴 𝑃𝑎𝑡ℎ 𝐵 

Figure 3.4: Illustration of the horizontal and the vertical residence times.

The vertical residence time is derived from the terminal velocity

tv =
hW,O
vv

, (3.18)

where hW,O is the level of water and oil layer (hO = hL − hW ), and vv is the

vertical velocity of the droplets (see section 3.2.1 and 3.2.4).

Comparing these residence time comparisons, the number of droplets entering

their respective homogeneous phases can be calculated. Consequently, the total

volume of the droplets leaving the bulk phases can be calculated. It is understood

that if the time taken by the droplets to reach the interface is less than the horizontal

residence time, the droplets will reach their homogeneous phase before reaching

the outlet. This is illustrated by path A in Figure 3.4, and if the time taken by the

droplets to reach their outlet is lesser than the vertical residence time, the droplets

will be present at their outlet and is illustrated by path B in Figure 3.4.
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3.2 Mathematical Models Description

3.2.6 Separation Efficiency

In section 3.2.5, the time taken by the droplets to reach their native phase or remain

dispersed in their continuous phase was described. Based on this, the number and

volume of oil droplets entering their native phase or remaining in the continuous

water phase was estimated using a code scripted in MATLAB (see Appendix E.3)

and similar calculations were made for the water droplets (see Appendix E.4).

Separation efficiency is an important factor in order to measure the performance

of separators. Separation efficiency of oil is defined as the fraction of initially

dispersed oil being removed from the water phase and is given by

ηO = 1− Volume of oil droplets present in water outlet
Initial volume of oil dispersed

. (3.19)

Similarly, the separation efficiency of water is defined as the fraction of initially

dispersed water being removed from the oil phase and is given by

ηW = 1− Volume of water droplets present in the oil outlet
Initial volume of water dispersed

. (3.20)

This means an efficiency value of 98% indicates that 2% of initially dispersed

volume is contained at the outlet.
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3.3 Formulation of Models in the DAE form

dhW
dt

=
1

2L
√

2rhW − h2W
(qW,in − qW,out −

VOoW

twaterh

+
VWoO

toilh
) (3.21a)

dhL
dt

=
1

2L
√

2rhL − h2L
(qL,in − qW,out − qO,out) (3.21b)

dp

dt
=
(RT
VG

ρG
MG

(qG,in − qG,out) + (
p ∗ 105

VG
)(qL,in − qL,out)

)
· 10−5 (3.21c)

In section 3.2.5, we understood that if the vertical residence time of the droplets

is less than the horizontal residence time, then the droplets will reach the oil wa-

ter interface before they reach the outlet and if the vertical residence time of the

droplets is greater than the horizontal residence time, then fractions of the single

droplets size classes will remain in the bulk as dispersed phase.

Oil droplets in the water phase:

The system switches between these two models and since there are 10 droplet

classes, the system takes the form

If (toilh ≥ toilv (i)) [Oil droplets move to the interface]

lp = hW , (3.22a)

VOoW(i) = n(i)V (i) (3.22b)

Else (toilh < toilv (i)) [Oil droplets remain dispersed]

lp = toilh v
oil
v (i), (3.23a)

VOoW(i) =
lp
hW

n(i)V (i) (3.23b)
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3.3 Formulation of Models in the DAE form

Water droplets in the oil phase:

If (twaterh ≥ twaterv (i)) [Water droplets move to the interface]

lp = hO, (3.24a)

VWoO(i) = n(i)V (i) (3.24b)

Else (twaterh < twaterv (i)) [Water droplets remain dispersed]

lp = twaterh vwaterv (i), (3.25a)

VWoO(i) =
lp
hO

n(i)V (i) (3.25b)

where i ∈ [1,..,10], n(i) is the number of particles in each particle class and V (i)

is the volume of particles in each particle class, hO = hL − hW , VOoW(i) is

the volume of oil leaving the water phase for particle class i and VWoO(i) is the

volume of water leaving the oil phase for particle class i and lp is the position of

the droplets at the end of the separator.

These models (3.21), (3.22), (3.23), (3.24) and (3.25) are collectively termed hy-

brid DAEs (Najafi and Nikoukhah, 2006) or discontinuous DAEs (Powell et al.,

2016; Agrawal et al., 2003).

The if/else logic in the model is represented using greater than or equal to (≥) and

a less than or equal to (≤) operators. The if/else formulation is presented as a set

of continuous algebraic equations, in such a way that only binary solutions (0 or

1) are obtained for certain variables at the solution.

The logical expressions could be introduced into the optimization problems us-

ing mixed integer programming and solved using mixed integer programming al-
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Chapter 3. Modeling of the process

gorithms. However, combining these algorithms and introducing them into the

CasADi environment seemed challenging. Also, converting dynamic optimization

problems into MINLP (Mixed Integer Nonlinear Programming) problems does not

seem like an easy task (Powell et al., 2016). Therefore, the variables which activate

the change in the dynamics of the process should be formulated such that it will

have reasonable solutions at either zero or one. This kind of formulation allows

logical disjunctions in the dynamic optimization problems to be solved without

making use of mixed integer programming.

Therefore, logical statements are embedded as sets of algebraic equations thus

maintaining mathematical continuity. There are many operators like sigmoid func-

tion or arctan functions that can be used for this purpose. In this thesis, arctan

functions are used to express the functions which are discontinuous in nature.

ta
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(a) Plot of f(x) = arctan(x) func-
tion where function value ranges from
[−π/2, π/2]

𝑎𝑟𝑔 

𝑓
(𝑎
𝑟𝑔
) 
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(b) Plot of f(arg) =
arctan(b·arg)+π

2

π
where the function value lies in [0, 1] and
b is the stiffness factor

Figure 3.5: Plot of arctan function on the left in the range [−π/2, π/2] converted to a
function on the right that takes binary values.

Therefore, the argument function which is the difference in horizontal and vertical
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3.3 Formulation of Models in the DAE form

residence times from Equations (3.22) and (3.23) is written as

argoil = toilh − toilv (i) (3.26)

and the argument function from Equations (3.24), (3.25) is written as

argwater = twaterh − twaterv (i) (3.27)

Since, only the binary values are necessary to represent the if/else statements, the

function is rewritten as Equation (3.28) such that either 0 or 1 is obtained for the

variables at that solution. The value for b in f(arg) can be adjusted to make the

curve smooth or stiff.

f(arg) =
arctan(b · arg) + π

2

π
(3.28)

where arg stands for either argwater or argoil.

Hence the algebraic equation is written in the form fi(zi) = 0 where zi is the al-

gebraic state given by the particle position lp for 10 particle classes i = [1, ..., 10].

Depending on the argument function (3.28), if it is greater than or equal to zero,

one set of ’if’ statement is executed and if it is less than zero, the other set of ’if’

statement will be executed causing f(x) to take binary values. This can therefore

be written as continuous set of algebraic equations

fi(zoil,i) = zoil,i − (f(argoil)hW ) + (1− f(argoil))t
oil
h v

oil
v (i) (3.29)
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fi(zwater,i) = zwater,i − (f(argwater)hO) + (1− f(argwater))t
water
h vwaterv (i)

(3.30)

In this way, the volume of oil leaving the water phase is calculated for the individ-

ual particle class and then summed up to obtain the total oil volume leaving the

water phase.

VOoW(i) =
zoil,i
hW

n(i)V (i) (3.31)

Therefore the total volume of oil leaving the water phase is given by

VOoW =
∑

VOoW (i) (3.32)

Similarly, the volume of water leaving the oil phase is calculated for the individual

particle class and then summed up to obtain the total water volume leaving the oil

phase.

VWoO(i) =
zwater,i
hO

n(i)V (i) (3.33)

and the total volume of water leaving the oil phase is given by

VWoO =
∑

VWoO(i) (3.34)

The differential equations (3.21) and the set of algebraic equations (3.29), (3.30)

for gravity separator are collectively termed semi-explicit DAE (Differential Alge-

braic Equations)

All the models discussed above have been implemented as separate script files (see

Appendix E.1 - E.4) and the plant model is solved using ode15s solver.
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Chapter 4
Model Predictive Control Theory

4.1 Introduction

Model Predictive Control (MPC) is a control strategy that calculates control inputs

by solving constrained optimal control problem over a finite time horizon.

Currently, model predictive control also referred to as receding horizon control

(RHC) is the most attractive feedback strategy particularly for linear processes

subject to constraints (Findeisen and Allgöwer, 2002). MPC uses a plant model to

predict the output trajectories. Many real systems are nonlinear in nature. In these

cases, if the plant is approximated by a Linear Time Invariant (LTI) model, it is

insufficient to accurately capture the nonlinearities in the model.
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4.2 MPC Elements

There are three main stages which constitute the method of model predictive con-

trol strategy. First, the future values of the output variables are predicted based

on the process model and current measurements. Second, the optimization prob-

lem is solved using a suitable algorithm. Finally, for a particular time instant, the

manipulated variables are applied to the process which minimizes the cost or the

objective function. This procedure is repeated at subsequent intervals for the entire

prediction horizon.

Plant Model 

Dynamic 

Optimizer 

Plant 

Model 

Cost function 

& 

Constraints 

Initialize with state 

values and control 

inputs 

Inputs 

𝑢𝑜𝑝𝑡(𝑡) 

MPC Controller 
𝑢 𝑡 + 1 𝑡  
𝑢 𝑡 + 2 𝑡  

                 : 
                 : 
𝑢(𝑡 + (𝑁 − 1)|𝑡) 
 
 

Predicted 

Outputs 

Set Point 

Future Errors 

+ 

- 

Figure 4.1: Schematic of basic MPC structure

The elements of the Model Predictive Controller are shown is Figure 4.1. Plant

model in the figure represents the models of the gravity separator system. In the

MPC controller mechanism, the model predicts the process output in the future and

the optimization calculates the sequence of optimal control inputs by optimizing a

determined set of reference criteria. The criterion, also known as the objective or

cost function can take the form of a quadratic function of the errors between the

48



4.2 MPC Elements

predicted outputs and the setpoint or the reference value. These errors will be as-

signed a weighting factor depending on the relative importance of the manipulated

variables, control variables or the constraint violations.

In short, the MPC consists of

1. At a given sampling instant i, given the initial values of the control inputs and

the states, the system output for the entire prediction horizon N is obtained

y((i+ k)|i) along with future control signals u((i+ k)|i).

2. Optimize the determined set of reference criterion such that the process is kept

close to the setpoint

3. The first control signal calculated is applied to the plant u(i|i), while the others

are rejected

4. For the subsequent sampling instants, step 1 is repeated with the new value of

the state obtained from the plant.

This is illustrated in Figure 4.2 where the system is simulated for a total time

of tf seconds. Along the prediction horizon Tp, the optimal control sequence is

calculated forN sampling instants, that isN =
Tp
h where h is the sampling period.

Assuming that the sampling period is 1 second each, the optimization problem

is solved at every sampling instant and only the first part of the optimal control

sequence is applied to the plant denoted by uopt. Towards the end of the simulation,

a set of optimal control inputs is obtained uopt = [u0, u1, u2, ....., utf−1].
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Figure 4.2: Receding horizon strategy for a total simulation time of tf seconds

In the next section, the formulation of NMPC problem and also the detailed method

to solve the optimization problem will be described.

4.3 Formulation of NMPC Optimization Problem

Figure 4.3 illustrates the basic principle of Model Predictive Control. Based on

the measurements obtained at time t, the controller predicts the trajectory of the

system dynamics over the prediction horizon Tp and determines the control input

over the control horizon Tc such that the cost function or the performance criteria

is optimized. For simplicity, the prediction horizon Tp is taken to be equal to the

control horizon Tc. The time difference h between the measurements can vary,

however it is assumed that the measurements take place between fixed sampling

50



4.3 Formulation of NMPC Optimization Problem

instants h. At time t + h, a new measurement is obtained and by making use of

it, the entire procedure of prediction and optimization is repeated to obtain a new

optimal control input and the prediction horizon is moved forward.

Past Future/ Prediction 

Set point 

Predicted state 

Control input 

t t +  h  t +  𝑇𝑝  

Past State values 

Past control inputs 
𝑢1 

𝑢2 

𝑢𝑁 

Prediction/ Control horizon 𝑇𝑝 =  𝑇𝐶  

Figure 4.3: Illustration of the predictive control algorithm (Findeisen and Allgöwer, 2002)

As seen from section 3.3, the gravity separator system is modelled as a semi-

explicit index-1 DAE (differential algebraic equation) of the form

ẋ = f(x, z, u, b), (4.1a)

0 = g(x, z, u, b) (4.1b)

where x is the vector of differential states, z is the vector of algebraic states, the

vector of control inputs is given by u, and b are the time invariant parameters.

We assume that the state of the system x is measurable. In NMPC, the control

input applied to the process in the interval [t t+h] can be obtained by the repeated
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solution of finite horizon optimal control problem of the form

min
x,z,u

∫ tf

t0

L(t, x(t), z(t), u(t), b)dt+

N−1∑
k=0

∆uTkR∆uk (4.2a)

subject to ẋ(t) = f(t, x(t), z(t), u(t), b), (4.2b)

0 = g(t, x(t), z(t), u(t), b), (4.2c)

x(t0) = x0, (4.2d)

xlow ≤ x(t) ≤ xhigh, (4.2e)

zlow ≤ z(t) ≤ zhigh, (4.2f)

ulow ≤ u(t) ≤ uhigh, (4.2g)

−∆uhigh ≤ ∆u(t) ≤ ∆uhigh (4.2h)

The objective function is the typical optimal control Lagrange term as discussed

in section 2.4 together with a quadratic penalty on ∆uk where R is the diagonal

weighting matrix. The optimization variables are the discrete control inputs u, and

the trajectories x and z.

The Lagrange term introduced in the objective function is in its continuous form

and has to be discretized using the direct collocation algorithm. Whereas, the

control inputs are introduced within the direct collocation algorithm as discrete

variables. Therefore, in the above formulation (4.2a) the continuous Lagrange

term is augmented with the differences of the piecewise constant control inputs,

∆u which are discretized with N sampling instants in the time interval [t0 tf ].
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4.4 Direct Collocation Method to solve NMPC Optimiza-

tion Problem

Section 2.4.1 briefly described the methods used in general to solve the optimal

control problem. Among the direct methods seen earlier, direct collocation method

is employed in this thesis to solve the optimal control problem (4.7b). The basic

idea is to discretize the differential equations and transcribe the optimization prob-

lem into a finite dimensional NLP, which is later solved by IPOPT. The third order

direct collocation gives a polynomial approximation of (4.1) as shown in Figure

4.4.

The optimization time horizon is divided into N elements such that each interval

is in [tk tk+1] where k ∈ [0, ..., N − 1]. The trajectories x and z are approxi-

mated using low order polynomials in the interval [tk tk+1] known as collocation

polynomials. The collocation polynomials are formulated by choosing K collo-

cation points and these are kept same for all elements. In this thesis, Lagrange

interpolating polynomials are being used as the collocation polynomials given by

Pk,i(t) =

K∏
j=0,j 6=i

t− tk,j
tk,i − tk,j

(4.3)

with the property

Pk,i(tk,l) =


1 if l = i

0 otherwise

Let tk,i be the collocation points in the interval [tk tk+1] and i ∈ [0, ..,K], where

(xk,i zk,i uk,i) is the simplified notation of (x(tk,i) z(tk,i) u(tk,i)). The collo-
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cation polynomials are then formulated by interpolating the values (xk,i zk,i) in

that time interval. The interpolation yields

x(xk, t) =

K∑
i=0

xk,i Pk,i(t) (4.4a)

z(zk, t) =
K∑
i=1

zk,i Pk,i(t) (4.4b)

where xk,i are the parameters and Pk,i are the Lagrange polynomials. Additionally,

the degrees of freedom (DOF) for the differential states is K + 1 whereas it is K

for the algebraic states. The reason for an additional DOF in case of the differential

states is to ensure continuity so that the shooting gaps are closed. Algebraic states

can be discontinuous and therefore do not require an additional DOF.

In order to ensure integration accuracy, Radau collocation points are used. The

Radau collocation points are obtained from Radau quadrature, which is similar to

the Gaussian quadrature. However, one collocation point is clearly defined at one

end of the time interval, rather than having all points completely inside the time

interval like the Legendre collocation points (Powell et al., 2016).

The control inputs are assumed to be piecewise constant in the interval [tk tk+1]

and given by

u(t) = uk (4.5)

The polynomials for ẋ are obtained by differentiating the polynomials for x

ẋk,i =
1

(tk+1 − tk)

K∑
r=0

Ṗk,l(tk,i) xk,r =
1

(tk+1 − tk)

K∑
r=0

αr,i xk,r (4.6)
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Figure 4.4: Schematic representation of third order direct collocation in the single sam-
pling interval [tk tk+1]. The control input is piecewise constant in the interval [tk tk+1].

4.5 Finite Dimensional NLP

The variables in the transcribed NLP are chosen such that it contains the variable

values at all collocation points ẋk,i, xk,i, zk,i , the control input values uk the initial
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value of the state xk,0 and the parameters b. The transformation results in the NLP

min
xk,i,zk,i,uk

N−1∑
k=0

K∑
i=0

ωiL(tk,i, xk,i, zk,i, uk, b) +

N−1∑
k=0

∆uTkR∆uk (4.7a)

subject to ẋk,i − f(tk,i, xk,i, zk,i, uk, b) = 0, (4.7b)

0 = g(tk,i, xk,i, zk,i, uk,i, b), (4.7c)

x1,0 = x0, (4.7d)

xlow ≤ xk,i ≤ xhigh (4.7e)

zlow ≤ zk,i ≤ zhigh (4.7f)

ulow ≤ uk,i ≤ uhigh (4.7g)

−∆uhigh ≤ ∆uk ≤ ∆uhigh (4.7h)

0 = xk,K − xk+1,0 (4.7i)

ẋk,i =
1

(tk+1 − tk)

K∑
r=0

αr,i xk,r (4.7j)

The Lagrange term in (4.2a), which is in the continuous form is transcribed into

discrete form in (4.7a) using Gauss quadrature within each element such that the

integral is approximated by a summation using quadrature weights ωi (see Ap-

pendix B ). The states need to be continuous with respect to time and hence the

shooting gap constraint or the continuity constraint is introduced given by (4.7i).

Equation (4.7j) is introduced to specify the relation between ẋ and x. The weights

αr,i are the result of differentiating Lagrange polynomials for the states.
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Figure 4.5: Control structure for a gravity separator

The MPC problem attempts to minimize the deviations from the reference value

for the water level hW , liquid level hL and sytem pressure p, without making large

control moves. Therefore, a quadratic performance index is employed, where the

deviations are squared at the end of each time interval, and are weighted accord-

ingly, and are finally summed up to produce an objective function to be minimized.

This generates an optimization problem which is subject to system models and the

constraints.

As discussed in section 2.6, the MPC provides setpoints to the regulatory layer

(PI controllers), and this layer manipulates the control valves to keep the plant at

steady state values. However, in this thesis the regulatory layer is not considered,

and the NMPC is directly used to manipulate the control valves using the optimal

control inputs obtained after solving the optimization problem.
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Chapter 5
Simulation Results and Discussion

In this thesis, the dynamic optimization problem is transformed into a discrete NLP

problem using direct collocation method where radau collocation points are used.

This problem has been implemented in CasADi using MATLAB as the modeling

environment. Once the NLP problem is created, it is solved using the IPOPT

plugin, which is an open source primal- dual interior point method incorporated

in CasADi installations (Andersson, 2013). At every iteration, the first value of

the obtained optimal input is sent to the plant model. The plant model has been

implemented in MATLAB as separate m-files or script files. From the plant model,

the states computed are sent to the optimizer and these values will be the starting

point for the next iteration. The simulation results in this section are described

based on the Gullfaks-A production rates (Laleh et al., 2013; Backi and Skogestad,

2017). The simulation parameters are presented in Appendix A.

As it has been discussed in section 3.3, the models are expressed as semi-explicit

DAEs, described by the differential equations and two sets of algebraic equations

each for the oil droplets dispersed in the continuous water phase and the water
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droplets dispersed in the continuous oil phase. However, while implementing both

sets of algebraic equations in the CasADi environment, an error message was given

by the IPOPT plugin ”Converged to a point of local infeasibility. Problem may be

infeasible”. Since, the main interest was to minimize the total amount of oil present

in the water phase, simulations were carried out using the differential equations

3.21 and considering only the algebraic equations 3.29 which represent the oil

droplets present in the water phase, therefore discarding the other set of algebraic

equations that represent the water droplets in the oil phase 3.30.

Table 5.1: Setpoint values for the controlled variables for different cases

Parameters
Values

[Case 1, III, 1V]

Values

[Case II]

hSPW 1.2 1.2, 1.4, 1.6, 1.8

hSPL 2.5 2.5

pSP 68.7 68.7

Case I: Comparative study of the effect of noise on the system control behav-

ior

In real processes, the controller has to handle noisy measurements. It is important

that the controller should not be very sensitive to the noise, because there is a

possibility that the control valves will be subjected to continuous wear and tear

and can be worn out easily. Therefore, a random noise was added to the states both

of high order magnitude and low order magnitude to understand the effect of noise

on the system behavior. The NMPC formulation for this case is written as follows,

and the setpoint values are displayed in Table 5.1
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min
qW,out,qO,out,qG,out

N−1∑
k=0

(hW (k)− hSPW )2 + (hL(k)− hSPL )2 + (p(k)− pSP )2

+

N−1∑
k=0

(qW,out(k)− qW,out(k − 1))2

+
N−1∑
k=0

(qO,out(k)− qO,out(k − 1))2

+

N−1∑
k=0

(qG,out(k)− qG,out(k − 1))2 (5.1a)

Subject to (3.21), (5.1b)

(3.29), (5.1c)

0.9 ≤ hW ≤ 1.9, (5.1d)

2.2 ≤ hL ≤ 3.3, (5.1e)

50 ≤ p ≤ 100, (5.1f)

− 0.05 ≤ qW,out(k)− qW,out(k − 1) ≤ 0.05, (5.1g)

− 0.05 ≤ qO,out(k)− qO,out(k − 1) ≤ 0.05, (5.1h)

− 0.05 ≤ qG,out(k)− qG,out(k − 1) ≤ 0.05 (5.1i)

hW (0), hL(0), p(0) given (5.1j)

qW,out(−1), qO,out(−1), qG,out(−1) given (5.1k)
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Figure 5.1: Right: Manipulated variables for low magnitude noise addition (black) and
high magnitude noise addition (blue) Left: State variables for low magnitude noise addi-
tion (black) and high magnitude noise addition (blue) and the setpoint values (red)

For the purpose of generating noise, randn function from MATLAB toolbox,

which draws a random scalar from a standard normal distribution is used. In Figure

5.1, a low magnitude measurement noise is added to the states, which is of the

order of 10−4 on the water and the liquid level, and 10−3 on the system pressure.

Additionally, a high measurement noise is added to the states, which is of the order

of 10−3 on water level and the liquid level, and 10−2 on the system pressure. It

is observed that the controller is very sensitive to increase in measurement noise

thereby causing the manipulated variables to be noisy as well.
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In this thesis, all simulations for case II, case III and case IV have been carried out

for low magnitude measurement noise.

CASE II: Setpoint Tracking

The objective is to track setpoints, where the output has to converge to a given

reference value as close as possible while fulfilling the constraints. Here, the water

level hW , total liquid level hL and the system pressure p are considered for track-

ing. The NMPC formulation for this case is given by (5.1), where the setpoints for

water, liquid levels and the system pressure are displayed in Table 5.1.

In Figure 5.2, the plots on the left hand side show the variables to be controlled

or the state variables hW , hL and p. The three plots on the right hand side show

their corresponding manipulated variables qW,out, qO,out and qG,out. A series of

stepwise setpoint changes were employed to the water level. Setpoint changes of

+0.2 m were given at every 200 s of simulation time, with the initial water level of

1 m. It is observed from the Figure that the controlled variables are kept at their

set-point values by the NMPC controllers where the set-point values are displayed

in red.

It is also seen that, when a step is given to the water level at every 200 s, the

controller tries to close the control valve, therefore the water outflow drops to

zero. Ideally, there should be a gradual drop in water outflow, since the rate of

change of flow constraint has been implemented in the code (see Appendix E.5,

line). However, there is a sudden fall to zero at the point where the step change

in level is introduced, which means that the rate of change of flow constraint is

violated at those time instants. Whereas, the implementation of the rate of change

constraints work well at those time instants where no step change is introduced.

Similar observation is made for the outlet oil flow rate, where there is a rise in

the oil outflow which is as expected, however the rise is not gradual where the step
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Figure 5.2: Setpoint tracking of gravity separator controlled with NMPC. State variables
hW , hL and p on the left with their respective manipulated variables qW,out, qO,out and
qG,out on the right

change in the water level is given, therefore violating the constraints (5.1h) at those

time instants (see Appendix D). In this formulation, equal weights were given to

both the states as well as the change in manipulated variables. The reason being

that it was equally important to keep the states at their reference values, and also

to avoid the violation of control move constraints.
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CASE III: Disturbance Rejection

As it has been discussed in chapter 3, the separator levels and the system pressure

are often disturbed by varying inflow rate into the separator system. Usually, the

separator is disturbed by the liquid inflow qL,in and the gas inflow qG,in. The

optimization problem given by (5.1) is solved and the aim of the controller is to

maintain the levels and the system pressure at their desired reference values, (see

Table 5.1) despite the disturbances due to the inflows to the system.
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Figure 5.3: Pulse disturbance in liquid inflow qL,in (blue) and disturbance in gas inflow
qG,in (black)

Figure 5.4 shows the response of the levels and system pressure of the gravity

separator subject to pulse disturbances in the liquid inflow rate qL,in and the gas

inflow rate qG,in one at a time. At t = 100 s, a sudden increase in liquid inflow rate

is applied, therefore increasing from the steady state value qL,in = 0.59 m3 s−1 to

1.003 m3 s−1 and then at t = 110 s back to the initial value as shown in the Figure

5.3. It can be seen that, with the sudden increase in the liquid inflow, the water
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Figure 5.4: Disturbance rejection when there is sudden increase in inflow liquid qL,in
and inflow gas qG,in. Left: hW , hL and p, and the dotted red line indicates the reference
values. Right: Manipulated variables qW,out, qO,out and qG,out

level and the liquid level increases, thereby increasing the pressure of the system.

The controller tries to flush the accumulated liquid out of the system to restore the

levels to their reference values.

Similarly, a pulse disturbance in the gas inflow rate is given to the system. At

t = 200 s, a sudden increase in gas inflow rate is applied, therefore increasing

from the steady state value qG,in = 0.456 m3 s−1 to 0.775 m3 s−1 and then at t

= 210 s back to the initial value as shown in the Figure 5.3. It can be observed
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that the disturbance in qG,in results in abrupt increase in the system pressure. The

controller starts flushing more gas out of the system to bring back the pressure to

normal level. It can be seen that other manipulated variables change appropriately

to bring back water and liquid levels back to the reference values.

CASE IV: Maximize the volume of oil entering its homogeneous phase (VOoW )

In this case, the objective is to maximize the total volume of oil entering its native

(mother) phase, and obtain the optimal value of the water level while satisfying

the constraints. It is desired to control the water level in the range given by (5.2d).

Therefore, the objective function does not include tracking for the water level since

maximizing VOoW and tracking of the water level to the desired setpoint cannot

be done simultaneously. Since the goal is to minimize the objective function while

maximizing VOoW , this term is preceded with a minus sign in the objective func-

tion. Additionally, because it is very important to maximize VOoW , a higher weight

was assigned to this term in comparison to the weights on state variables and the

control moves. The NMPC in this case is formulated as follows.
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min
qW,out,qO,out,qG,out

N−1∑
k=0

100(hL(k)− hSPL )2 + 100(p(k)− pSP )2

+

N−1∑
k=0

100(qW,out(k)− qW,out(k − 1))2

+
N−1∑
k=0

100(qO,out(k)− qO,out(k − 1))2

+

N−1∑
k=0

100(qG,out(k)− qG,out(k − 1))2

−
N−1∑
k=0

1000(VOoW (k))2 (5.2a)

Subject to (3.21), (5.2b)

(3.29), (5.2c)

0.9 ≤ hW ≤ 2.2, (5.2d)

2.2 ≤ hL ≤ 3.3, (5.2e)

50 ≤ p ≤ 100, (5.2f)

− 0.05 ≤ qW,out(k)− qW,out(k − 1) ≤ 0.05, (5.2g)

− 0.05 ≤ qO,out(k)− qO,out(k − 1) ≤ 0.05, (5.2h)

− 0.05 ≤ qG,out(k)− qG,out(k − 1) ≤ 0.05 (5.2i)

hL(0), p(0), qW,out(−1), qO,out(−1), qG,out(−1) given

(5.2j)

In Figure 5.5, the two plots on the top show the state variables hL, p and the

plots on the bottom show the manipulated variables qO,out, qG,out. It is seen from

the plots of the controlled variables, that the NMPC is able to keep them at their

desired reference values, (see Table 5.1). It can be observed from the oil outflow
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plot, that there are a few drops in the outlet flow rate thus violating the constraints

5.2h. The reason is that, while solving the above optimization problem, IPOPT

gives a message ”Maximum number of iterations reached” at those points which

means that the solver could not find the optimal control input at those time instants

(see Appendix D, Figure D.3). Similar observation is also made in Figure 5.6.
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Figure 5.5: Controlled variables hL and p on top with their respective manipulated vari-
ables qO,out and qG,out on the bottom

In Figure 5.6, the plot on top shows the water level hW , which starts at an initial

value of 1 m, and stabilizes at 2 m. The red dotted lines indicate the upper and

lower bounds given by (5.2d). It is observed from the Figure that the controlled
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variable hW is kept within its bounds and stabilizes at an optimal value. It can be

seen that the optimal value for the level of water in order to maximize the amount

of oil leaving the water phase and entering its continuous phase VOoW is at 2 m.
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Figure 5.6: Top: Controlled variable hW indicated in (blue) and the bounds on hW in
dotted red. Below: Manipulated variable qW,out

In order to investigate the optimal water level, the total volume of oil at the water

outlet, efficiency of oil removal from the water phase as well as the horizontal and

the vertical residence times were analyzed. The lower bound on the water level is

chosen to be 0.9 m, while the upper bound is set to 2.2 m. In order to investigate

the optimal water level, four different water levels are considered within the given
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Figure 5.7: Efficiencies of oil removal from the water phase for different water levels

From Figure 5.7, it can be observed that at lower water levels the efficiency of oil

removed from the water phase is smaller, whilst it increases with an increase in the

water level. It can be noticed that the efficiency of oil removal for a water level

greater than 2 m is almost constant at around 99.8%.

This can also be observed from the oil droplet distribution at the water outlet,

which is demonstrated in the following Figures 5.8 - 5.11.

71



Chapter 5. Simulation Results and Discussion

200

150

T
im

e 
[s

]

100

Distribution of oil droplets at the water outlet

50

0

Droplet sizes [ m]

1

0
50 100 150 200 250 300 350

2

400 450 500

3

108

N
u
m

b
er

 o
f 

d
ro

p
le

ts

4

5

6

7

Figure 5.8: Distribution of oil droplets at the water outlet for water level = 0.9 m

200

150

T
im

e 
[s

]

100

Distribution of oil droplets at the water outlet

50

0

Droplet sizes [ m]

1

0
50 100 150 200 250 300 350

2

400 450 500

3

N
u
m

b
er

 o
f 

d
ro

p
le

ts

108

4

5

6

7

Figure 5.9: Distribution of oil droplets at the water outlet for water level = 1.65 m
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Figure 5.10: Distribution of oil droplets at the water outlet for water level = 2 m
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Figure 5.11: Distribution of oil droplets at the water outlet for water level = 2.2 m
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Figures 5.8 - 5.11 show the amount of oil droplets present at the water outlet for the

corresponding droplet size and time for different water levels, respectively. From

Figure 5.8, it can be seen that for a water level of 0.9 m, the cut-off oil droplet size

(minimum size above which the dispersed droplets present at the water outlet is

zero) is observed to be 250 µm. This means that all oil droplets larger than 250 µm

leave out of the water phase into their mother phase. With the increase in water

level, the cut-off oil droplet size decreases (200 µm), meaning that more particle

classes leave the water phase and enter their mother phase. Therefore, also the total

volume of oil droplets leaving the water phase (VOoW ) will be higher. This is due

to the fact that if the water level is smaller, the horizontal velocity of the droplets

is higher. Hence, the droplets need less time to reach the outlet in comparison to

the time it takes to reach their oil-water interphase (see Appendix C).

It can be observed from Figures 5.10 and 5.11 that for levels of water above 2 m

the oil distribution at the water outlet remains almost nearly the same.
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Figure 5.12: Total volume of oil droplets entering their continuous phase VOoW for the
respective water levels.

From Figure 5.12 it can be seen that with the increase in water level, the total

volume of oil droplets leaving the water phase and entering the oil phase is numer-

ically almost the same for water levels above 2 m. This explains the optimal level

of the water obtained.

75



Chapter 5. Simulation Results and Discussion

76



Chapter 6
Conclusion

In this thesis, a Nonlinear Model Predictive Control (NMPC) strategy is proposed

to control the levels and the system pressure of a three phase gravity separa-

tor. The NMPC optimization problem was formulated for the three phase sys-

tem and solved using the Direct collocation approach (Simultaneous method) us-

ing CasADi within the MATLAB programming environment. Nonlinear dynamic

models were derived for the water level, liquid level and the pressure of the gas

in the system based on inflow and outflow dynamics. The equations were imple-

mented in MATLAB as separate script files and were solved using ode15s solver.

The models were formulated as a semi-explicit DAE system and the discontinuous

algebraic equations were embedded into the optimizing controller as continuous

algebraic equations using arctan functions.

The simulations were conducted for several cases in order to analyze the perfor-

mance of the NMPC controller on the system behavior. Firstly, the system be-

havior was studied to analyze the performance of the controller to sensitivity in

measurement noise. It was observed that the controller was sensitive to the large
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magnitude in measurement noise. This could lead to the wear and tear of the con-

trol valves very easily. Therefore for the successive cases, the system performance

was studied for a low magnitude noise added to the measurements. Secondly, the

controller was studied for the tracking of the setpoint using NMPC scheme. It

was seen that the states converged to their given setpoints while satisfying the con-

straints. However, at the time instants, where the step change in water level was

introduced, constraint violation of the rate of change in manipulated variables was

observed. Thirdly, the controller was studied for the case, where sudden distur-

bances in liquid and gas inflows to the gravity separator system were introduced.

It was observed that the controller was able to reject the disturbances and regulate

the output at the desired setpoint without any offset. Finally, a case was investi-

gated to maximize the total volume of oil entering its native phase, and thereby to

obtain the optimal water level. It was noticed that the optimal level of water was

at 2 m and within the given bounds. This was because, at water level greater than

2 m, the efficiency of oil removal from the water phase was almost constant. Also,

the distribution of oil droplets at the water outlet remained almost the same. Addi-

tionally, the numerical values from the simulation show that the total volume of oil

entering its continuous phase at a water level greater than 2 m is almost constant.

From the simulations, it is observed that the controller is effectively able to track

the setpoints, reject disturbances for a low magnitude of measurement noise since

the controller is sensitive to high magnitude measurement noise thereby reacting

positively to changes in the parameters. Results also agree with the simulations,

and it can be concluded that the Nonlinear Model Predictive Controller is a good

control method for oil-water-gas separators.
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Future Work

The fluid dynamics inside the separators involve a lot of complexity, and hence it

is necessary to study the phenomena like droplet breakage and coalescence. In ac-

tuality, there exists an initial distribution of droplet size at the inlet of the separator,

and the size distribution changes inside the separator due to nonuniform flow pat-

terns and factors such as coalescence and droplet breakage. This evolution of the

droplet size distribution can be estimated by the use of Population Balance Equa-

tions (PBE) and incorporating these models can further improve the exactness of

estimation.

For the absence of droplet breakage and coalescence, only Stokes law is sufficient

to determine the terminal settling velocity of the droplets which has been consid-

ered for the purpose of modeling. However, while considering the coalescence

and the break up of droplets which exists commonly in the separators, the veloc-

ity is hindered and the Stokes law for settling will need to take into account the

correction factor. Introducing PBEs within the CasADi environment seems a bit

challenging and also the simulations might take a lot of computation time.
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Appendix A
Simulation Parameters

Table A.1: Simulation Parameters (Backi and Skogestad, 2017; Laleh et al., 2013).

Parameter Description Value

MG Molar mass of the gas 0.01604 kgmol−1

R Universal gas constant 8.314 kgm2 s−2mol−1K−1

T Temperature 328.5 K

g Gravitational acceleration 9.8 ms−2

qG,in Volumetric gas inflow 0.456 m3 s−1

qL,in Volumetric liquid inflow 0.59 m3 s−1

µO Viscosity of oil 0.001 kg (ms)−1

µW Viscosity of water 0.0005 kg (ms)−1

ρG Density of gas 49.7 kgm−3

ρO Density of oil 831.5 kgm−3

ρW Density of water 1030 kgm−3
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Appendix B
Quadrature coefficients

The aim is to evaluate the integral I =
∫ b
a f(x) dx. Assuming that the values of

the function f(x) is known at n + 1 points; x0, ..., xn ∈ [a, b]. With the function

values f(x0), ..., f(xn), the Lagrange interpolating polynomial is written in the

form

Ln(x) =

n∑
i=0

f(xi)Pi(x), (B.1)

where

Pi(x) =

n∏
j=0,j 6=i

x− xj
xi − xj

, 0 ≤ i ≤ n (B.2)

The integral I =
∫ b
a f(x) dx is then approximated by the integral of Ln(x):
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∫ b

a
f(x) dx ≈

∫ b

a
Ln(x) dx =

n∑
i=0

f(xi)

∫ b

a
Pi(x) dx =

n∑
i=0

ωif(xi) (B.3)

This way the integral is converted to a summation

∫ b

a
f(x) dx =

n∑
i=0

ωif(xi)

Therefore the quadrature coefficients ωi in Equation B.3 is expressed by the equa-

tion given below

ωi =

∫ b

a
Pi(x) dx. (B.4)
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Appendix C
Residence time of droplet classes
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Figure C.1: Horizontal and vertical residence times of oil droplets in the water phase for
water level = 0.9 m. The horizontal residence time = 90.45 s.

91



0 500 1000 1500 2000 2500 3000 3500

Residence times

50

100

150

200

250

300

350

400

450

500

D
ro

p
le

t 
si

ze
 [

 m
]

Horizontal and Vertical residence time for h
W

 = 1.65 m

Vertical residence times

Horizontal residence time

Figure C.2: Horizontal and vertical residence times of oil droplets in the water phase for
water level = 1.65 m. The horizontal residence time = 204.715 s.
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Figure C.3: Horizontal and vertical residence times of oil droplets in the water phase for
water level = 2 m. The horizontal residence time = 259.58 s.
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Figure C.4: Horizontal and vertical residence times of oil droplets in the water phase for
water level = 2.2 m. The horizontal residence time = 289.96 s.

The above figures indicate the horizontal (blue dotted line) and vertical residence

times (green diamond marked) of droplets in the water phase. It is understood

that, if the horizontal residence time is greater than the vertical residence times,

the droplets will leave to their continuous phase.

It can be observed from Figure C.1 that all droplets above 250 µm leave to their

continuous phase for a water level of 0.9 m. With the increase in water level, the

cut-off droplet size is 200 µm as can be seen from Figures C.2 - C.4 meaning all

droplets above the cut-off droplet size enter their mother phase.
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Appendix D
Rate of change constraints
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Figure D.1: The control inputs without the inclusion of rate of change constraints
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Figure D.2: The control inputs with the inclusion of rate of change constraints

Without the implementation of the rate of change constraint ∆uTR∆u the plots

for the control inputs is as shown in Figure D.1, and with the implementation

of the above mentioned constraint, the plot as shown in Figure D.2 is obtained.

The inclusion of this constraint in the optimization problem penalizes the control

moves (∆ut = ut − ut−1), thereby reduces the wear and tear of valves.
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Figure D.3: The control inputs without the inclusion of rate of change constraints

Without the implementation of the rate of change constraint ∆uTR∆u the plots

for the control inputs is as shown in Figure D.3.

97



98



Appendix E
MATLAB CODE

E.1 velocity inflows.m

1 f u n c t i o n [ v e l o i l , v e l w a t e r , qWin ] = v e l o c i t y i n f l o w s ( qLin , hL ,hW,

a lpha , phi wo , phi ow , r a d i u s )

2

3 abs wo = a l p h a * phi wo ; % F r a c t i o n o f w a t e r go ing i n t o

t h e c o n t i n u o u s o i l phase ( s u b s c r i p t wo −> w a t e r t o o i l )

4 abs ww = a l p h a *(1− phi wo ) ; % F r a c t i o n o f w a t e r go ing i n t o

t h e c o n t i n u o u s w a t e r phase ( s u b s c r i p t ww −> w a t e r t o w a t e r )

5 abs ow = (1− a l p h a ) * phi ow ; % F r a c t i o n o f o i l go ing i n t o

t h e c o n t i n u o u s w a t e r phase ( s u b s c r i p t ow −> o i l t o w a t e r )

6 a b s o o = (1− a l p h a ) *(1− phi ow ) ; % F r a c t i o n o f o i l go ing i n t o

t h e c o n t i n u o u s o i l phase ( s u b s c r i p t oo −> o i l t o o i l )

7

8 f l o w f r a c t i o n w = abs ww + abs ow ; % S p l i t f a c t o r d e s c r i b i n g t h e

amount o f o i l and w a t e r go ing i n t o t h e w a t e r phase

9 f l o w f r a c t i o n o = a b s o o + abs wo ; % S p l i t f a c t o r d e s c r i b i n g t h e

amount o f o i l and w a t e r go ing i n t o t h e o i l phase
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10

11 AL = r a d i u s ˆ 2 / 2 * ( 2 * acos ( ( r a d i u s−hL ) / r a d i u s )−s i n (2* acos ( ( r a d i u s−hL )

/ r a d i u s ) ) ) ; % Cross s e c t i o n a l a r e a o f l i q u i d

12 AW = r a d i u s ˆ 2 / 2 * ( 2 * acos ( ( r a d i u s−hW) / r a d i u s )−s i n (2* acos ( ( r a d i u s−hW)

/ r a d i u s ) ) ) ; % Cross s e c t i o n a l a r e a o f w a t e r

13 AO = AL−AW; % Cross

s e c t i o n a l a r e a o f o i l

14

15 v e l o i l = f l o w f r a c t i o n o * qLin /AO; % V e l o c i t y o f t h e

c o n t i n u o u s o i l phase

16 v e l w a t e r = f l o w f r a c t i o n w * qLin /AW; % V e l o c i t y o f t h e

c o n t i n u o u s w a t e r phase

17

18 qWin = qLin * f l o w f r a c t i o n w ; % F r a c t i o n o f l i q u i d i n f l o w

go ing i n t o t o w a t e r phase

E.2 gravity ode.m

1 f u n c t i o n dyd t = g r a v i t y o d e ( t , y , p a r a m e t e r s p l a n t )

2

3 % ASSIGN EMPTY VECTOR

4 dyd t = z e r o s ( 3 , 1 ) ;

5

6 % DEFINE THE PASSING PARAMETERS

7 qLin= p a r a m e t e r s p l a n t ( 1 ) ;

8 a l p h a = p a r a m e t e r s p l a n t ( 2 ) ;

9 phi wo = p a r a m e t e r s p l a n t ( 3 ) ;

10 phi ow = p a r a m e t e r s p l a n t ( 4 ) ;

11 r a d i u s = p a r a m e t e r s p l a n t ( 5 ) ;

12 L = p a r a m e t e r s p l a n t ( 6 ) ;

13 R = p a r a m e t e r s p l a n t ( 7 ) ;

14 Temp = p a r a m e t e r s p l a n t ( 8 ) ;
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15 d e n s i t y g a s = p a r a m e t e r s p l a n t ( 9 ) ;

16 MG = p a r a m e t e r s p l a n t ( 1 0 ) ;

17 qGin = p a r a m e t e r s p l a n t ( 1 1 ) ;

18 qWout = p a r a m e t e r s p l a n t ( 1 2 ) ;

19 qOout = p a r a m e t e r s p l a n t ( 1 3 ) ;

20 qGout = p a r a m e t e r s p l a n t ( 1 4 ) ;

21 hW = p a r a m e t e r s p l a n t ( 1 5 ) ;

22 hL = p a r a m e t e r s p l a n t ( 1 6 ) ;

23 p = p a r a m e t e r s p l a n t ( 1 7 ) ;

24

25 % CALLING THE FUNCTIONS

26 [ v e l o i l , v e l w a t e r , qWin ] = v e l o c i t y i n f l o w s ( qLin , hL ,hW, a lpha ,

phi wo , phi ow , r a d i u s ) ; % h o r i z o n t a l v e l o c i t y , i n f l o w s

c a l c u l a t i o n model

27 [ ˜ , VOoW vector , ˜ ] = o i l d r o p l e t s i n w a t e r ( v e l w a t e r , hW, L ) ;

% o i l d r o p l e t s i n W a t e r c a l c u l a t i o n

model

28 [ ˜ , VWoO vector , ˜ ] = w a t e r d r o p l e t s i n o i l ( v e l o i l , hL , hW, L ) ;

% w a t e r d r o p l e t s i n o i l c a l c u l a t i o n model

29

30

31 % DEFINING THE VARIABLES

32 t i m e o i l = L / v e l o i l ; % used i n dhW/ d t model

33 t i m e w a t e r = L / v e l w a t e r ; % used i n dhW/ d t model

34 c o n s t a n t = R*Temp* d e n s i t y g a s /MG; % used i n dp / d t model

35

36 % DIFFERENTIAL EQUATIONS

37

38 %dhW/ d t

39 dyd t ( 1 ) = ( qWin− qWout + sum ( VWoO vector ) / t i m e o i l− sum (

VOoW vector ) / t i m e w a t e r ) / ( 2 * L* s q r t (2* r a d i u s *y ( 1 ) − y ( 1 ) ˆ 2 ) ) ;

40

41 %dhL / d t
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42 dyd t ( 2 ) = ( qLin − qOout−qWout ) / ( 2 * L* s q r t (2* r a d i u s *y ( 2 ) − y ( 2 ) ˆ 2 ) ) ;

43

44 %dp / d t

45 dyd t ( 3 ) = 1e−5* 1 / ( p i * r a d i u s ˆ2*L−r a d i u s ˆ 2 / 2 * ( 2 * acos ( ( r a d i u s−y ( 2 ) ) /

r a d i u s )−s i n (2* acos ( ( r a d i u s−y ( 2 ) ) / r a d i u s ) ) ) *L ) * ( c o n s t a n t * (

qGin−qGout ) + 1 e5 *y ( 3 ) * ( qLin−qOout−qWout ) ) ;

E.3 oildroplets in water.m

1 f u n c t i o n [ no i l new , Voil new , l p p o i l n e w ] = o i l d r o p l e t s i n w a t e r (

v h o r i z o n t a l , h wa te r , n , L )

2

3 % v h o r i z o n t a l i s t h e h o r i z o n t a l v e l o c i t y o f o i l d r o p l e t s =

h o r i z o n t a l

4 % v e l o c i t y o f t h e w a t e r phase

5

6 % h w a t e r i s t h e h e i g h t o f t h e w a t e r .

7 % n i s t h e v e c t o r o f i n i t i a l o i l p a r t i c l e s s i z e d i s t r i b u t i o n .

8 % L i s t h e l e n g t h o f t h e G r a v i t y S e p a r a t o r

9 % d i s t h e v e c t o r o f d i a m e t e r o f a l l t h e o i l p a r t i c l e s .

10 % s i s t h e v e r t i c a l v e l o c i t y o f t h e d r o p l e t s .

11 % V i s t h e volume of o i l d r o p l e t s

12

13 d = z e r o s ( 1 , 1 0 ) ' ;

14 V = z e r o s ( 1 , 1 0 ) ' ;

15 s = z e r o s ( 1 , 1 0 ) ' ;

16 l p p o i l n e w = z e r o s ( 1 , 1 0 ) ' ;

17 n o i l n e w = z e r o s ( 1 , 1 0 ) ' ;

18 Voi l new = z e r o s ( 1 , 1 0 ) ' ;

19 d e n s i t y o i l = 8 3 1 . 5 ;

20 d e n s i t y w a t e r = 1030 ;

21 d y n v i s c w a t e r = 0 . 5 e−3;
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22

23 f o r i = 1 :10

24 d ( i ) = 50*10ˆ(−6) * i ;

25 V( i ) = 4 /3* p i * ( d ( i ) / 2 ) ˆ 3 ;

26 s ( i ) = abs ( ( ( d ( i ) ) ˆ 2 ) * 9 . 8 1 * ( d e n s i t y o i l −d e n s i t y w a t e r ) / ( 1 8 *

d y n v i s c w a t e r ) ) ;

27

28 i f ( L / v h o r i z o n t a l )>= ( h w a t e r / s ( i ) )

29

30 n o i l n e w ( i ) = 0 ; % number o f o i l d r o p l e t s p r e s e n t i n t h e

w a t e r phase

31 Voi l new ( i ) = n ( i ) * V( i ) ; % volume of o i l d r o p l e t s l e a v i n g t h e

w a t e r phase

32 l p p o i l n e w ( i ) = h w a t e r ; % p o s i t i o n o f t h e o i l p a r t i c l e s

33 e l s e

34 l p p o i l n e w ( i ) = ( L / v h o r i z o n t a l ) * s ( i ) ;

35 n o i l n e w ( i ) = (1−( l p p o i l n e w ( i ) / h w a t e r ) ) * n ( i ) ;

36 Voi l new ( i ) = n ( i ) * V( i ) * ( l p p o i l n e w ( i ) / h w a t e r ) ;

37 end

38 end

E.4 waterdroplets in oil.m

1 f u n c t i o n [ nwater new , Vwater new , l p p w a t e r n e w ] =

w a t e r d r o p l e t s i n o i l ( v h o r i z o n t a l , h l i q u i d , h wa te r , n , L )

2

3 % v h o r i z o n t a l i s t h e h o r i z o n t a l v e l o c i t y o f w a t e r d r o p l e t s =

h o r i z o n t a l

4 % v e l o c i t y o f t h e bu lk o i l phase

5

6 % h w a t e r i s t h e h e i g h t o f t h e w a t e r .

7 % n i s t h e v e c t o r o f i n i t i a l w a t e r p a r t i c l e s s i z e d i s t r i b u t i o n .
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8 % L i s t h e l e n g t h o f t h e G r a v i t y S e p a r a t o r

9 % d i s t h e v e c t o r o f d i a m e t e r o f a l l t h e w a t e r p a r t i c l e s .

10 % s i s t h e v e r t i c a l v e l o c i t y o f t h e d r o p l e t s .

11 % V i s t h e volume of w a t e r d r o p l e t s

12

13 h o i l = h l i q u i d − h w a t e r ;

14 d = z e r o s ( 1 , 1 0 ) ' ;

15 V = z e r o s ( 1 , 1 0 ) ' ;

16 s = z e r o s ( 1 , 1 0 ) ' ;

17 l p p w a t e r n e w = z e r o s ( 1 , 1 0 ) ' ;

18 nwate r new = z e r o s ( 1 , 1 0 ) ' ;

19 Vwater new = z e r o s ( 1 , 1 0 ) ' ;

20 d e n s i t y o i l = 8 3 1 . 5 ;

21 d e n s i t y w a t e r = 1030 ;

22 d y n v i s c o i l =1e−3;

23

24 f o r i = 1 :10

25 d ( i ) = 50*10ˆ(−6) * i ;

26 V( i ) = 4 /3* p i * ( d ( i ) / 2 ) ˆ 3 ;

27 s ( i ) = abs ( ( ( d ( i ) ) ˆ 2 ) * 9 . 8 1 * ( d e n s i t y o i l −d e n s i t y w a t e r ) / ( 1 8 *

d y n v i s c o i l ) ) ;

28

29 i f ( L / v h o r i z o n t a l )>= ( h o i l / s ( i ) )

30 nwate r new ( i ) = 0 ; % number o f w a t e r d r o p l e t s

p r e s e n t

31 % i n t h e o i l phase

32 Vwater new ( i ) = n ( i ) * V( i ) ; % volume of w a t e r d r o p l e t s

l e a v i n g

33 % t h e o i l phase

34 l p p w a t e r n e w ( i ) = h w a t e r ; % p o s i t i o n o f t h e w a t e r

p a r t i c l e s

35 e l s e

36 l p p w a t e r n e w ( i ) = ( L / v h o r i z o n t a l ) * s ( i ) ;
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37 nwate r new ( i ) = (1−( l p p w a t e r n e w ( i ) / h o i l ) ) * n ( i ) ;

38 Vwater new ( i ) = n ( i ) * V( i ) * ( l p p w a t e r n e w ( i ) / h o i l ) ;

39 end

40 end

E.5 NMPC.m

1 c l e a r a l l

2

3 a d d p a t h ( ' F :\NTNU ' )

4 i m p o r t c a s a d i . *

5 % Running u s i n g on ly o i l d r o p l e t s i n w a t e r a l g e b r a i c e q u a t i o n s ,

h e r e

6 % o p t i m a l s o l u t i o n i s found

7

8 % TIME HORIZON

9 T = 2 0 ;

10

11 % DECLARE VARIABLES

12 qLin= 0 . 5 9 ; % I n l e t l i q u i d f low r a t e

13 a l p h a = 0 . 1 3 5 ; % Water c u t

14 phi wo = 0 . 3 ; % F r a c t i o n o f incoming w a t e r e n t e r i n g

t h e o i l phase

15 phi ow = 0 . 3 ; % F r a c t i o n o f incoming o i l e n t e r i n g t h e

w a t e r phase

16 r a d i u s = 1 . 6 5 ; % Radius o f t h e g r a v i t y s e p a r a t o r

17 L = 10 ; % Length o f g r a v i t y s e p a r a t o r

18 R = 8 . 3 1 4 ; % U n i v e r s a l gas c o n s t a n t

19 Temp = 328 .5 ; % Tempera tu r e

20 d e n s i t y g a s = 4 9 . 7 ; % D e n s i t y o f gas

21 MG = 0 . 0 1 6 0 4 ; % M o l e c u l a r we igh t o f gas

22 qGin = 0 . 4 5 6 ; % I n l e t gas f l o w r a t e
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23

24 phi ww = 1−phi wo ; % f r a c t i o n o f w a t e r e n t e r i n g t h e w a t e r

phase

25 p h i o o = 1−phi ow ; % f r a c t i o n o f o i l e n t e r i n g t h e o i l phase

26 V sep = 3 .14 * r a d i u s * r a d i u s *L ; % T o t a l s e p a r a t o r volume

27

28 d e n s i t y o i l = 8 3 1 . 5 ;

29 d e n s i t y w a t e r = 1030 ;

30 d y n v i s c w a t e r = 0 . 5 e−3;

31 d y n v i s c o i l =1e−3;

32

33 % INITIAL VALUES FOR THE INTEGRATORS OF THE DYNAMIC STATES

34 hWin i t = 1 ; % I n i t i a l v a l u e f o r t h e w a t e r l e v e l [m]

35 h L i n i t = 2 . 3 ; % I n i t i a l v a l u e f o r t h e l i q u i d l e v e l [m]

36 p i n i t = 6 8 . 5 ; % I n i t i a l p r e s s u r e [ b a r ]

37

38 % PARTICLE DIAMETERS

39 d1 = 50*10ˆ(−6) ;

40 d2 = 100*10ˆ(−6) ;

41 d3 = 150*10ˆ(−6) ;

42 d4 = 200*10ˆ(−6) ;

43 d5 = 250*10ˆ(−6) ;

44 d6 = 300*10ˆ(−6) ;

45 d7 = 350*10ˆ(−6) ;

46 d8 = 400*10ˆ(−6) ;

47 d9 = 450*10ˆ(−6) ;

48 d10= 500*10ˆ(−6) ;

49

50 % VOLUME OF EACH PARTICLE CLASS

51 V1 = 4 /3* p i * ( d1 / 2 ) ˆ 3 ;

52 V2 = 4 /3* p i * ( d2 / 2 ) ˆ 3 ;

53 V3 = 4 /3* p i * ( d3 / 2 ) ˆ 3 ;

54 V4 = 4 /3* p i * ( d4 / 2 ) ˆ 3 ;
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55 V5 = 4 /3* p i * ( d5 / 2 ) ˆ 3 ;

56 V6 = 4 /3* p i * ( d6 / 2 ) ˆ 3 ;

57 V7 = 4 /3* p i * ( d7 / 2 ) ˆ 3 ;

58 V8 = 4 /3* p i * ( d8 / 2 ) ˆ 3 ;

59 V9 = 4 /3* p i * ( d9 / 2 ) ˆ 3 ;

60 V10 = 4 /3* p i * ( d10 / 2 ) ˆ 3 ;

61

62 V = [ V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 ] ;

63

64 % TOTAL PARTICLE DISTRIBUTION

65 n = [1 e8 5 e8 1 e9 5 e9 1 e10 1 e10 5 e9 1 e9 5 e8 1 e8 ] ;

66

67 % TOTAL INITIAL VOLUE DISTRIBUTION OF ALL PARTICLES

68 i n i t V = sum ( n . * V) ;

69

70 % SETTLING VELOCITY OF OIL PARTICLE CLASS IN THE WATER PHASE

71 s o 1 = abs ( ( ( d1 ) ˆ 2 ) * 9 . 8 1 * ( d e n s i t y o i l −d e n s i t y w a t e r ) / ( 1 8 *

d y n v i s c w a t e r ) ) ;

72 s o 2 = abs ( ( ( d2 ) ˆ 2 ) * 9 . 8 1 * ( d e n s i t y o i l −d e n s i t y w a t e r ) / ( 1 8 *

d y n v i s c w a t e r ) ) ;

73 s o 3 = abs ( ( ( d3 ) ˆ 2 ) * 9 . 8 1 * ( d e n s i t y o i l −d e n s i t y w a t e r ) / ( 1 8 *

d y n v i s c w a t e r ) ) ;

74 s o 4 = abs ( ( ( d4 ) ˆ 2 ) * 9 . 8 1 * ( d e n s i t y o i l −d e n s i t y w a t e r ) / ( 1 8 *

d y n v i s c w a t e r ) ) ;

75 s o 5 = abs ( ( ( d5 ) ˆ 2 ) * 9 . 8 1 * ( d e n s i t y o i l −d e n s i t y w a t e r ) / ( 1 8 *

d y n v i s c w a t e r ) ) ;

76 s o 6 = abs ( ( ( d6 ) ˆ 2 ) * 9 . 8 1 * ( d e n s i t y o i l −d e n s i t y w a t e r ) / ( 1 8 *

d y n v i s c w a t e r ) ) ;

77 s o 7 = abs ( ( ( d7 ) ˆ 2 ) * 9 . 8 1 * ( d e n s i t y o i l −d e n s i t y w a t e r ) / ( 1 8 *

d y n v i s c w a t e r ) ) ;

78 s o 8 = abs ( ( ( d8 ) ˆ 2 ) * 9 . 8 1 * ( d e n s i t y o i l −d e n s i t y w a t e r ) / ( 1 8 *

d y n v i s c w a t e r ) ) ;
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79 s o 9 = abs ( ( ( d9 ) ˆ 2 ) * 9 . 8 1 * ( d e n s i t y o i l −d e n s i t y w a t e r ) / ( 1 8 *

d y n v i s c w a t e r ) ) ;

80 so 10 = abs ( ( ( d10 ) ˆ 2 ) * 9 . 8 1 * ( d e n s i t y o i l −d e n s i t y w a t e r ) / ( 1 8 *

d y n v i s c w a t e r ) ) ;

81

82 % DECLARE MODEL VARIABLES

83 % S t a t e v a r i a b l e s

84 x1 = MX. sym ( ' x1 ' ) ; % Water l e v e l

85 x2 = MX. sym ( ' x2 ' ) ; % L i q u i d l e v e l

86 x3 = MX. sym ( ' x3 ' ) ; % System P r e s s u r e

87

88 % C o n t r o l v a r i a b l e s

89 u1 = MX. sym ( ' u1 ' ) ; % O u t l e t Water f l o w r a t e

90 u2 = MX. sym ( ' u2 ' ) ; % O u t l e t O i l f l o w r a t e

91 u3 = MX. sym ( ' u3 ' ) ; % O u t l e t gas f l o w r a t e

92

93 %A l g e b r a i c v a r i a b l e s ( p a r t i c l e p o s i t i o n o f o i l i n t h e w a t e r phase )

94 lpp1 = MX. sym ( ' l pp1 ' ) ;

95 lpp2 = MX. sym ( ' l pp2 ' ) ;

96 lpp3 = MX. sym ( ' l pp3 ' ) ;

97 lpp4 = MX. sym ( ' l pp4 ' ) ;

98 lpp5 = MX. sym ( ' l pp5 ' ) ;

99 lpp6 = MX. sym ( ' l pp6 ' ) ;

100 lpp7 = MX. sym ( ' l pp7 ' ) ;

101 lpp8 = MX. sym ( ' l pp8 ' ) ;

102 lpp9 = MX. sym ( ' l pp9 ' ) ;

103 lpp10 = MX. sym ( ' lpp10 ' ) ;

104

105 % CONCATENATE VARIABLES

106 x = [ x1 ; x2 ; x3 ] ; % s t a t e v a r i a b l e s

107 u = [ u1 ; u2 ; u3 ] ; % c o n t r o l v a r i a b l e s

108 l p p = [ lpp1 ; lpp2 ; lpp3 ; lpp4 ; lpp5 ; lpp6 ; lpp7 ; lpp8 ; lpp9 ; lpp10

] ; % p a r t i c l e p o s i t i o n a l g . v a r i a b l e s
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109

110 % DECLARE VARIABLES

111 f l o w f r a c t i o n w = ( a l p h a *(1− phi wo ) ) + ((1− a l p h a ) * phi ow ) ;

112 AW = ( r a d i u s ˆ2* acos ( ( r a d i u s−x1 ) / r a d i u s ) ) − ( ( r a d i u s − x1 ) * s q r t (2*

r a d i u s *x1 − x1*x1 ) ) ;

113 v e l w a t e r = ( f l o w f r a c t i o n w * qLin ) /AW;

114 t i m e w a t e r = L / v e l w a t e r ;

115

116 A L = ( r a d i u s ˆ2* acos ( ( r a d i u s−x2 ) / r a d i u s ) ) − ( ( r a d i u s − x2 ) * s q r t (2*

r a d i u s *x2 − x2*x2 ) ) ;

117 AO = A L−AW;

118 f l o w f r a c t i o n o = ((1− a l p h a ) *(1− phi ow ) ) + ( a l p h a * phi wo ) ;

119 v e l o i l = ( f l o w f r a c t i o n o * qLin ) /AO;

120 t i m e o i l = L / v e l o i l ;

121

122 % DEFINE ARGUMENT FUNCTION( r e s i d e n c e t ime d i f f e r e n c e o f o i l

d r o p l e t s )

123 a rg1 = ( L / v e l w a t e r )−(x1 / s o 1 ) ;

124 a rg2 = ( L / v e l w a t e r )−(x1 / s o 2 ) ;

125 a rg3 = ( L / v e l w a t e r )−(x1 / s o 3 ) ;

126 a rg4 = ( L / v e l w a t e r )−(x1 / s o 4 ) ;

127 a rg5 = ( L / v e l w a t e r )−(x1 / s o 5 ) ;

128 a rg6 = ( L / v e l w a t e r )−(x1 / s o 6 ) ;

129 a rg7 = ( L / v e l w a t e r )−(x1 / s o 7 ) ;

130 a rg8 = ( L / v e l w a t e r )−(x1 / s o 8 ) ;

131 a rg9 = ( L / v e l w a t e r )−(x1 / s o 9 ) ;

132 a rg10 = ( L / v e l w a t e r )−(x1 / so 10 ) ;

133

134 % USE ARCTAN FUNCTION TO EXPRESS CONTINUOUS SYSTEM

135 a r c t a n f u n c 1 = ( a t a n ( ( a rg1 ) .*1000* p i ) + p i / 2 ) . / p i ;

136 a r c t a n f u n c 2 = ( a t a n ( ( a rg2 ) .*1000* p i ) + p i / 2 ) . / p i ;

137 a r c t a n f u n c 3 = ( a t a n ( ( a rg3 ) .*1000* p i ) + p i / 2 ) . / p i ;

138 a r c t a n f u n c 4 = ( a t a n ( ( a rg4 ) .*1000* p i ) + p i / 2 ) . / p i ;
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139 a r c t a n f u n c 5 = ( a t a n ( ( a rg5 ) .*1000* p i ) + p i / 2 ) . / p i ;

140 a r c t a n f u n c 6 = ( a t a n ( ( a rg6 ) .*1000* p i ) + p i / 2 ) . / p i ;

141 a r c t a n f u n c 7 = ( a t a n ( ( a rg7 ) .*1000* p i ) + p i / 2 ) . / p i ;

142 a r c t a n f u n c 8 = ( a t a n ( ( a rg8 ) .*1000* p i ) + p i / 2 ) . / p i ;

143 a r c t a n f u n c 9 = ( a t a n ( ( a rg9 ) .*1000* p i ) + p i / 2 ) . / p i ;

144 a r c t a n f u n c 1 0 = ( a t a n ( ( a rg10 ) .*1000* p i ) + p i / 2 ) . / p i ;

145

146 % DEFINING ALGEBRAIC EQUATIONS

147 f z 1 = lpp1 − ( ( a r c t a n f u n c 1 ) *x1 + (1− a r c t a n f u n c 1 ) * (L* s o 1 . /

v e l w a t e r ) ) ;

148 f z 2 = lpp2 − ( ( a r c t a n f u n c 2 ) *x1 + (1− a r c t a n f u n c 2 ) * (L* s o 2 . /

v e l w a t e r ) ) ;

149 f z 3 = lpp3 − ( ( a r c t a n f u n c 3 ) *x1 + (1− a r c t a n f u n c 3 ) * (L* s o 3 . /

v e l w a t e r ) ) ;

150 f z 4 = lpp4 − ( ( a r c t a n f u n c 4 ) *x1 + (1− a r c t a n f u n c 4 ) * (L* s o 4 . /

v e l w a t e r ) ) ;

151 f z 5 = lpp5 − ( ( a r c t a n f u n c 5 ) *x1 + (1− a r c t a n f u n c 5 ) * (L* s o 5 . /

v e l w a t e r ) ) ;

152 f z 6 = lpp6 − ( ( a r c t a n f u n c 6 ) *x1 + (1− a r c t a n f u n c 6 ) * (L* s o 6 . /

v e l w a t e r ) ) ;

153 f z 7 = lpp7 − ( ( a r c t a n f u n c 7 ) *x1 + (1− a r c t a n f u n c 7 ) * (L* s o 7 . /

v e l w a t e r ) ) ;

154 f z 8 = lpp8 − ( ( a r c t a n f u n c 8 ) *x1 + (1− a r c t a n f u n c 8 ) * (L* s o 8 . /

v e l w a t e r ) ) ;

155 f z 9 = lpp9 − ( ( a r c t a n f u n c 9 ) *x1 + (1− a r c t a n f u n c 9 ) * (L* s o 9 . /

v e l w a t e r ) ) ;

156 f z 1 0 = lpp10 − ( ( a r c t a n f u n c 1 0 ) *x1 + (1− a r c t a n f u n c 1 0 ) * (L* so 10 . /

v e l w a t e r ) ) ;

157

158 % VOLUME OF OIL DROPLETS ENTERING THEIR NATIVE PHASE

159 VOoW1 = ( lpp1 . / x1 ) *n ( 1 ) * V1 ;

160 VOoW2 = ( lpp2 . / x1 ) *n ( 2 ) * V2 ;

161 VOoW3 = ( lpp3 . / x1 ) *n ( 3 ) * V3 ;
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162 VOoW4 = ( lpp4 . / x1 ) *n ( 4 ) * V4 ;

163 VOoW5 = ( lpp5 . / x1 ) *n ( 5 ) * V5 ;

164 VOoW6 = ( lpp6 . / x1 ) *n ( 6 ) * V6 ;

165 VOoW7 = ( lpp7 . / x1 ) *n ( 7 ) * V7 ;

166 VOoW8 = ( lpp8 . / x1 ) *n ( 8 ) * V8 ;

167 VOoW9 = ( lpp9 . / x1 ) *n ( 9 ) * V9 ;

168 VOoW10 =( lpp10 . / x1 ) *n ( 1 0 ) * V10 ;

169

170 VOoW = (VOoW1+ VOoW2 + VOoW3 + VOoW4 + VOoW5 + VOoW6 + VOoW7 +

VOoW8 + VOoW9 + VOoW10) ;

171

172 % MPC DIFFERENTIAL EQUATIONS

173

174 xdo t1 = ( qLin * ( a l p h a *phi ww+(1− a l p h a ) * phi ow )−u1 −(VOoW/ t i m e w a t e r

) ) / ( 2 * L* s q r t (2* r a d i u s *x1 − x1 ˆ 2 ) ) ;

175 xdo t2 = ( qLin − u2 −u1 ) / ( 2 * L* s q r t (2* r a d i u s *x2 − x2 ˆ 2 ) ) ;

176 VG = V sep − A L*L ;

177 xdo t3 = ( 1 /VG) * ( ( ( ( ( R*Temp* d e n s i t y g a s ) / (MG) ) * ( qGin − u3 ) ) +( x3

* 1 0 ˆ 5 ) * ( qLin−u1−u2 ) ) ) *10ˆ−5;

178

179 % CONCATENATE EQUATIONS TO FORM SEMI EXPLICIT DAE SYSTEM

180 d i f f = [ xdo t1 ; xdo t2 ; xdo t3 ] ; % D i f f e r e n t i a l eqns

181 a l g = [ f z 1 ; f z 2 ; f z 3 ; f z 4 ; f z 5 ; f z 6 ; f z 7 ; f z 8 ; f z 9 ; f z 1 0

] ;% P a r t i c l e p o s i t i o n a l g e x p r e s s i o n

182

183 % MPC OBJECTIVE TERM

184

185 L1 = ( x1 − 1 . 2 ) ˆ2 + ( x2 − 2 . 5 ) ˆ2 + ( x3 − 6 8 . 7 ) ˆ 2 ; % CASE 1

186 %L1 = 100* ( x2 − 2 . 5 ) ˆ2 + 100*( x3 − 6 8 . 7 ) ˆ2 − 1000*(VOoW) ˆ 2 ; %

CASE 3

187

188 % CONTINUOUS TIME DYNAMICS
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189 f = F u n c t i o n ( ' f ' ,{x , lpp , u} ,{ d i f f , a lg , L1} ,{ ' x ' , ' z ' , ' p ' } ,{ ' xdo t ' , ' z j

' , ' q j ' } ) ;

190

191 %%−−−−−DIRECT COLLOCATION SCHEME−−−−−−%%

192

193 % DEGREE OF INTERPOLATING POLYNOMIAL

194 d = 3 ;

195

196 % GET COLLOCATION POINTS

197 t a u r o o t = [0 c o l l o c a t i o n p o i n t s ( d , ' r a d a u ' ) ] ;

198

199 % COEFFICIENTS OF THE COLLOCATION EQUATION

200 C = z e r o s ( d +1 , d +1) ;

201

202 % COEFFICIENTS OF THE CONTINUITY EQUATION

203 D = z e r o s ( d +1 , 1 ) ;

204

205 % COEFFICIENTS OF THE QUADRATURE FUNCTION

206 B = z e r o s ( d +1 , 1 ) ;

207

208 % CONSTRUCT POLYNOMIAL BASIS

209 f o r j =1 : d+1

210 % CONSTRUCT LAGRANGE POLYNOMIALS TO GET THE POLYNOMIAL BASIS AT

THE COLLOCATION POINT

211 c o e f f = 1 ;

212 f o r r =1 : d+1

213 i f r ˜= j

214 c o e f f = conv ( c o e f f , [ 1 , − t a u r o o t ( r ) ] ) ;

215 c o e f f = c o e f f / ( t a u r o o t ( j )− t a u r o o t ( r ) ) ;

216 end

217 end

218
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219 % EVALUATE POLYNOMIAL AT THE FINAL TIME TO GET THE COEFFICIENTS

OF CONTINUITY EQUATION

220 D( j ) = p o l y v a l ( c o e f f , 1 . 0 ) ;

221

222 % EVALUATE TIME DERIVATIVE OF THE POLYNOMIAL AT ALL COLLOCATION

POINTS TO GET COEFFICIENTS OF CONTINUITY EQUATION

223 pde r = p o l y d e r ( c o e f f ) ;

224 f o r r =1 : d+1

225 C( j , r ) = p o l y v a l ( pder , t a u r o o t ( r ) ) ;

226 end

227

228 % EVALUATE INTEGRAL OF THE POLYNOMIAL TO GET COEFFICIENTS OF THE

QUADRATURE FUNCTION

229 p i n t = p o l y i n t ( c o e f f ) ;

230 B( j ) = p o l y v a l ( p i n t , 1 . 0 ) ;

231 end

232

233 % CONTROL DISCRETIZATION

234 N = 1 0 ; % Number o f c o n t r o l i n t e r v a l s

235 h = T /N; % S i z e o f each c o n t r o l i n t e r v a l

236

237 % START WITH AN EMPTY NLP

238 w ={} ;

239 w0 = [ ] ;

240 lbw = [ ] ;

241 ubw = [ ] ;

242 J = 0 ;

243 g ={} ;

244 l b g = [ ] ;

245 ubg = [ ] ;

246

247 % ” LIFT ” INITIAL CONDITIONS

248 X0 = MX. sym ( ' X0 ' , 3 ) ;
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249 Z0 = MX. sym ( 'ZO ' , 10) ;

250 w = {w{ :} , X0 , Z0 } ;

251 lbw = [ lbw ; 1 ; 2 . 3 ; 6 8 . 5 ; z e r o s ( 1 0 , 1 ) ] ; % Ass ign i n i t i a l

c o n d i t i o n s t o lower bound

252 ubw = [ ubw ; 1 ; 2 . 3 ; 6 8 . 5 ; z e r o s ( 1 0 , 1 ) ] ; % Ass ign i n i t i a l

c o n d i t i o n s t o uppe r bound

253 w0 = [ w0 ; 1 ; 2 . 3 ; 6 8 . 5 ; z e r o s ( 1 0 , 1 ) ] ;% I n i t i a l c o n d i t i o n s

v a l u e

254

255

256 %% FORMULATE THE NLP (DIRECT COLLOCATION)

257 Xk = X0 ;

258 f o r k = 0 : N−1

259 % NEW NLP VARIABLE FOR EACH CONTROL

260 Uk = MX. sym ( [ ' U ' num2s t r ( k ) ] , 3 ) ;

261 w = {w{ :} , Uk} ;

262 lbw = [ lbw ; 0 ; 0 ; 0 ] ;

263 ubw = [ ubw ; 2 ; 2 ; 5 ] ;

264 w0 = [ w0 ; 0 ; 0 ; 0 ] ;

265

266 % STATE AT COLLOCATION POINTS

267 Xkj = {} ; Zkj = {} ;

268 f o r j =1 : d

269 Xkj{ j } = MX. sym ( [ ' X ' num2s t r ( k ) ' ' num2s t r ( j ) ] , 3 ) ;

270 Zkj{ j } = MX. sym ( [ ' Z ' num2s t r ( k ) ' ' num2s t r ( j ) ] , 10) ;

271 w = {w{ :} , Xkj{ j } , Zkj{ j }} ;

272 lbw = [ lbw ; 0 . 9 ; 1 . 9 ; 5 0 ; z e r o s ( 1 0 , 1 ) ] ;

273 ubw = [ ubw ; 2 . 2 ; 2* r a d i u s ; 100 ; 2* ones ( 1 0 , 1 ) ] ;

274 w0 = [ w0 ; 1 ; 2 . 3 ; 6 8 . 5 ; z e r o s ( 1 0 , 1 ) ] ;

275 end

276

277 % LOOP OVER COLLOCATION POINTS

278 Xk end = D( 1 ) *Xk ; %where D i s t h e c o n t i n u i t y eqn c o e f f
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279 f o r j =1 : d

280 % EXPRESSION FOR STATE DERIVATIVE AT COLLOCATION POINT (

p o l y n o m i a l approx )

281 xp = C( 1 , j +1) *Xk ; % C i s t h e d e r i v a t i v e a t t h e c o l l o c a t i o n

p o i n t s

282 f o r r =1 : d

283 xp = xp + C( r +1 , j +1) *Xkj{ r } ;

284 end

285 % APPEND COLLOCATION EQUATIONS

286 [ f j , z j , q j ] = f ( Xkj{ j } , Zkj{ j } ,Uk ) ; % f j = dxd t & q j =

o b j e c t i v e f u n c t i o n va lue , z j = s o l u t i o n o f a l g

e x p r e s s i o n

287 g = {g { :} , h* f j − xp , z j } ; % s l o p e c o n s t r a i n t s

288 l b g = [ l b g ; z e r o s ( 3 , 1 ) ; z e r o s ( 1 0 , 1 ) ] ;

289 ubg = [ ubg ; z e r o s ( 3 , 1 ) ; z e r o s ( 1 0 , 1 ) ] ;

290

291 % ADD CONTRIBUTION TO THE END STATE

292 Xk end = Xk end + D( j +1) *Xkj{ j } ;

293

294 % ADD CONTRIBUTION TO THE QUADRATURE FUNCTION

295 J = J + B( j +1) * q j *h ;

296

297 end

298 % NEW NLP VARIABLE FOR STATE AT THE END OF THE EQUATION

299 Xk = MX. sym ( [ ' X ' num2s t r ( k +1) ] , 3 ) ; % t h i s v a l u e i s u p d a t e d

300 w = {w{ :} , Xk} ;

301 lbw = [ lbw ; 0 . 9 ; 1 . 9 ; 5 0 ] ;

302 ubw = [ ubw ; 2 . 2 ; 2* r a d i u s ; 1 0 0 ] ;

303 w0 = [ w0 ; 1 ; 2 . 3 ; 6 8 . 5 ] ;

304

305 % ADD EQUALITY CONSTRAINT

306 g = {g { :} , Xk end−Xk} ; % s h o o t i n g gap c o n s t r a i n t

307 l b g = [ l b g ; 0 ; 0 ; 0 ] ;
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308 ubg = [ ubg ; 0 ; 0 ; 0 ] ;

309

310 % ADD CONTROL MOVES AND PENALTY TERM IN THE OBJECTIVE FUNCTION

311 i f k>0

312 % ADD EQUALITY CONSTRAINT

313 g = {g { :} , Uk − Uk prev } ;

314 l b g = [ l b g ; −0.05; −0.05 ; −0 .05] ;

315 ubg = [ ubg ; 0 . 0 5 ; 0 . 0 5 ; 0 . 0 5 ] ;

316 % INCLUDE THE PENALTY TERM IN OBJECTIVE FUNCTION WITH WEIGHT

FACTOR

317 J = J + ( ( Uk ( 1 ) − Uk prev ( 1 ) ) . ˆ 2 ) + ( ( Uk ( 2 ) − Uk prev ( 2 ) ) . ˆ 2 )

+ ( ( Uk ( 3 ) − Uk prev ( 3 ) ) . ˆ 2 ) ;

318 end

319

320 Uk prev = Uk ;

321 end

322 %%

323

324 % CREATE AN NLP SOLVER

325 prob = s t r u c t ( ' f ' , J , ' x ' , v e r t c a t (w{ :} ) , ' g ' , v e r t c a t ( g { :} ) ) ;

326 o p t i o n s . i p o p t . p r i n t l e v e l = 0 ; % o p t i o n s does n o t a l l o w t o p r i n t

a t e v e r y i t e r a t i o n

327 o p t i o n s . p r i n t t i m e = f a l s e ;

328 s o l v e r = n l p s o l ( ' s o l v e r ' , ' i p o p t ' , prob , o p t i o n s ) ;

329

330 % TOTAL SIMULATION TIME

331 t s i m =300;

332

333 % DEFINE EMPTY MATRICES

334 qWout vec = z e r o s ( 1 , t s i m ) ;

335 qOout vec = z e r o s ( 1 , t s i m ) ;

336 qGout vec = z e r o s ( 1 , t s i m ) ;

337
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338 p o s i t i o n o i l p a r i c l e s v e c = z e r o s ( t s im , 1 0 ) ;

339 v o l u m e o i l p a r t i c l e s v e c = z e r o s ( t s im , 1 0 ) ;

340

341 % PASSING INITIAL VALUES TO PLANT MODEL

342 hW = hWini t ;

343 hL = h L i n i t ;

344 p = p i n i t ;

345

346 f o r sim = 1 : t s i m

347 % SOLVE THE NLP

348 s o l = s o l v e r ( ' x0 ' , w0 , ' l b x ' , lbw , ' ubx ' , ubw , ' l b g ' , lbg , ' ubg

' , ubg ) ;

349 w opt = f u l l ( s o l . x ) ;

350 sim % h e l p s t o know t h e c u r r e n t

i t e r a t i o n

351

352 % SOLUTION

353 x 1 o p t = w opt (56 :6+13* d : end ) ;

354 x 2 o p t = w opt (57 :6+13* d : end ) ;

355 x 3 o p t = w opt (58 :6+13* d : end ) ;

356

357 u 1 o p t = w opt (14 :6+13* d : end ) ;

358 u 2 o p t = w opt (15 :6+13* d : end ) ;

359 u 3 o p t = w opt (16 :6+13* d : end ) ;

360

361 % FIRST VALUE OF THE OPTIMIZER SENT TO PLANT MODEL

362 qWout= u 1 o p t ( 1 ) ;

363 qOout= u 2 o p t ( 1 ) ;

364 qGout= u 3 o p t ( 1 ) ;

365

366 % SET EMPTY MATRICES TO STORE THE OPTIMUM VALUES

367 qWout vec ( sim ) = qWout ;

368 qOout vec ( sim ) = qOout ;
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369 qGout vec ( sim ) = qGout ;

370

371 % CONCATENATE THE OPTIMUM INPUTS

372 c o n t r o l i n p u t s = [ qWout ; qOout ; qGout ] ;

373 c o n t r o l i n p u t s a l l ( : , sim ) = [ c o n t r o l i n p u t s ] ;

374

375 % SIMULATE PLANT MODEL

376 p a r a m e t e r s p l a n t = [ qLin , a lpha , phi wo , phi ow , r a d i u s , L , R ,

Temp , d e n s i t y g a s , MG, qGin , qWout , qOout , qGout , hW, hL ,

p ] ;

377 [ t , y ]= ode15s(@ g r a v i t y o d e , [ sim−1 sim ] , [hW, hL , p ] , [ ] ,

p a r a m e t e r s p l a n t ) ;

378

379 % EXTRACT EACH FINAL ELEMENT OF THE STATES

380 hW = y ( end , 1 ) ;

381 hL = y ( end , 2 ) ;

382 p = y ( end , 3 ) ;

383

384 % ADDING NOISE TO THE STATES

385 hW = hW + 1e−3*randn ( 1 ) ;

386 hL = hL + 1e−3*randn ( 1 ) ;

387 p = p + 1e−2*randn ( 1 ) ;

388

389 [ v e l o i l , v e l w a t e r , qWin ] = v e l o c i t y i n f l o w s ( qLin , hL ,hW, a lpha ,

phi wo , phi ow , r a d i u s ) ;

390 [ ˜ , VOoW vector , l p p o i l n e w ] = o i l d r o p l e t s i n w a t e r (

v e l w a t e r , hW, L ) ;

391

392 p o s i t i o n o i l p a r i c l e s v e c ( sim , : ) = [ l p p o i l n e w ] ' ;

393 v o l u m e o i l p a r t i c l e s v e c ( sim , : ) = [ VOoW vector ] ' ;

394

395 % STATES PERTURBED BY NOISE

396 s t a t e s = [hW; hL ; p ] ;
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397 s t a t e s a l l ( : , sim ) = [ s t a t e s ] ;

398

399 %% SET NEW INITIAL VALUES FOR THE NEXT ITERATION

400 lbw = [ ] ;

401 ubw = [ ] ;

402 w0 = [ ] ;

403

404 % ” LIFT ” INITIAL CONDITIONS

405 lbw = [ lbw ; s t a t e s ; l p p o i l n e w ' ] ;

406 ubw = [ ubw ; s t a t e s ; l p p o i l n e w ' ] ;

407 w0 = [ w0 ; s t a t e s ; l p p o i l n e w ' ] ;

408

409 f o r k= 1 : N

410 lbw = [ lbw ; 0 ; 0 ; 0 ] ;

411 ubw = [ ubw ; 2 ; 2 ; 5 ] ;

412 w0 = [ w0 ; c o n t r o l i n p u t s ] ;

413

414 % STATE AT COLLOCATION POINTS

415 f o r j =1 : d

416 lbw = [ lbw ; 0 . 9 ; 1 . 9 ; 5 0 ; z e r o s ( 1 0 , 1 ) ] ;

417 ubw = [ ubw ; 2 . 2 ; 2* r a d i u s ; 100 ; 2* ones ( 1 0 , 1 ) ] ;

418 w0 = [ w0 ; s t a t e s ; l p p o i l n e w ' ] ;

419 end

420

421 % NEW NLP VARIABLE FOR STATES AT THE END OF THE INTERVAL

422 lbw = [ lbw ; 0 . 9 ; 1 . 9 ; 5 0 ] ;

423 ubw = [ ubw ; 2 . 2 ; 2* r a d i u s ; 1 0 0 ] ;

424 w0 = [ w0 ; s t a t e s ] ;

425

426 end

427

428 end

429
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430 t g r i d = 0 : 1 : t s i m ;

431 leve l W1 = [ 1 , s t a t e s a l l ( 1 , : ) ] ;

432 l e v e l L 1 = [ 2 . 3 , s t a t e s a l l ( 2 , : ) ] ;

433 P1 = [ 6 8 . 5 , s t a t e s a l l ( 3 , : ) ] ;

434

435 qWout1 = [ c o n t r o l i n p u t s a l l ( 1 , : ) , nan ] ;

436 qOout1 = [ c o n t r o l i n p u t s a l l ( 2 , : ) , nan ] ;

437 qGout1 = [ c o n t r o l i n p u t s a l l ( 3 , : ) , nan ] ;

438

439 % PLOTTING

440 f i g u r e ;

441 s u b p l o t ( 3 2 1 )

442 p l o t ( t g r i d , l eve l W1 )

443 s u b p l o t ( 3 2 2 )

444 s t a i r s ( t g r i d , qWout1 )

445 s u b p l o t ( 3 2 3 )

446 p l o t ( t g r i d , l e v e l L 1 )

447 s u b p l o t ( 3 2 4 )

448 s t a i r s ( t g r i d , qOout1 )

449 s u b p l o t ( 3 2 5 )

450 p l o t ( t g r i d , P1 )

451 s u b p l o t ( 3 2 6 )

452 s t a i r s ( t g r i d , qGout1 )
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