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Abstract 

 
Marine microorganisms are regarded promising sources of bioactive molecules. For this 

reason, a marine heterotrophic bacterial collection from the sea surface microlayer had 

been established intending to identify molecules with potential commercial interest. To 

exploit this bacterial collection, rational screening procedures have to be developed. A 

high-throughput LC-MS protocol was established for screening of pigmented bacteria, 

rapidly characterizing the UV/Vis properties of the pigments. Between one and ten 

distinct pigments were identified in each bacterial isolate, with the majority of isolates 

producing three to five pigments. Carotenoids were the focus of this study, in particular 

carotenoids absorbing light in the upper UVA/visible light area. This type of carotenoids 

can be valuable as sunscreen agents, complementing the protection where conventional 

sunscreens offer low or no protection. In this study, several potential producer strains 

were identified. 

  Among several bright yellow colored bacterial strains from the culture 

collection, one formed more intensively colored colonies than the others did. The 

isolate, designated Otnes7 was determined to be a Micrococcus luteus strain, and LC-

MS analysis of extracted pigments revealed the C50 cyclic sarcinaxanthin as the major 

accumulated carotenoid. In silico screening of the genomic sequence data of M. luteus 

strain NCTC2665 resulted in identification of a putative carotenoid biosynthesis gene 

cluster. The genes in this cluster were putatively encoding for GGPP synthase (CrtE), 

phytoene synthase (CrtB), phytoene desaturase (CrtI), lycopene elongase (CrtE2), C50 -

cyclase subunit (CrtYg), C50 -cyclase subunit (CrtYh), and glycosyl transferase (CrtX). 

The complete crt gene cluster was cloned from strain Otnes7 and NCTC2665 in 

Escherichia coli hosts, and the sarcinaxanthin biosynthetic pathway was experimentally 

elucidated. Partial expression of the gene clusters were performed to reveal the single 

steps in the sarcinaxanthin biosynthesis. Carotenoid analysis from the resulting strains 

by LC-MS and NMR revealed that sarcinaxanthin is synthesized from the precursor 

farnesyl pyrophosphate via the intermediates lycopene, nonaflavuxanthin and 

flavuxanthin. Eventually 10-20 % of the sarcinaxanthin is glycosylated by CrtX. 
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Heterologous expression of the genes in E. coli by using the adjustable Pm promoter 

resulted in up to 10-fold higher sarcinaxanthin production levels compared to the levels 

obtained by M. luteus strains under comparable laboratory conditions.   

 Flavuxanthin is also an intermediate in the biosynthesis of the structurally related -

cyclic decaprenoxanthin. In an attempt to understand the specific difference between the 

biosynthetic pathway of sarcinaxanthin and decaprenoxanthin, a hybrid gene cluster 

combining the lycopene elongase gene (crtE2) from M.luteus Otnes7 with the two genes 

encoding for C50 carotenoid cyclase subunits (crtYe and crtYf) in the decaprenoxanthin 

producing organism Corynebacterium glutamicum was constructed. Surprisingly, three 

different C50 carotenoids were identified in this construct; decaprenoxanthin, 

sarcinaxanthin and a new C50 carotenoid denominated sarprenoxanthin. These data 

contribute to new insight into the diverse and multiple functions of bacterial C50 

carotenoid cyclases and these cyclases should therefore provide attractive targets for 

pathway diversification and directed genetic engineering to generate novel carotenoids. 

 In an effort to develop rational screening tools for identification of novel 

pigment producers in the marine bacterial collection, MALDI-TOF-MS was explored as 

a dereplication tool. MALDI-TOF-MS analysis and subsequent creation of similarity 

based dendrogram from nearly 400 strains from the bacterial collection showed that the 

bacterial collection is a diverse collection of marine heterotrophic bacteria. The 

pigmented bacteria showed greater diversity than the non-pigmented bacteria. Pigment 

extracts from a selection of the pigmented strains was analyzed with LC-DAD-MS. A 

dendrogram based on their pigment profiles was created. The pigment profile 

dendrogram was then linked to the corresponding MALDI-TOF MS dendrogram. These 

results show that pigment profiles can be used as taxonomic markers when the isolates 

produce at least three different pigments. In addition, MALDI-TOF MS can be used as 

dereplication tool to avoid redundant analysis without compromising the diversity of the 

collection when screening for novel pigmentation.  
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1 Introduction 

1.1 Bioprospecting and Natural products 

Humanity has a long history in the search for useful and potentially valuable natural 

products. This search was termed bioprospecting in the early 1990s [42] and is defined 

as the search for useful organic compounds in nature with the intent of developing 

products of commercial or social value. Within bioprospecting, the search for antibiotics 

and drugs for anti-cancer treatment have received most attention. However, there are 

many natural products with other possible uses in medicine, neutraceuticals or 

cosmetics. Our research has been focused on valuable pigments and in particular 

carotenoids as the most widespread group among natural pigments. 

 In general, natural products are chemical compounds or substances produced by 

any living organism. However, in a bioprospecting context, they are in most cases 

referred to secondary metabolites, defined as organic compounds that are not necessary 

for the survival, growth, development, or reproduction of the organism that produces 

them. Concepts of secondary metabolism include products of overflow metabolism as a 

result of nutrient limitation, or switch metabolism after the active growth phase, defence 

mechanisms, or regulator molecules [37].  These secondary metabolites may be 

conserved for a relatively long period and with time may come to confer a selective 

advantage to the producing organism [288]. This is supported by the fact that secondary 

metabolites are often unique to a particular species or group of organisms [21]. Often 

secondary metabolites exhibit some kinds of biological activities, i.e. they are molecules 

that have an effect upon a living organism or on living tissue and these are referred to as 

bioactive secondary metabolites.  

 Natural products played a prominent role in ancient traditional medicine systems 

such as Chinese, Ayurveda and Egyptian and are still commonly used for treatment of 

various diseases; fifty percent of all approved drugs in 2010 were of natural origin 

[181]. Also their uses as colorants, spices, fragrances, aphrodisiacs, cosmetics, and 

toxins have been fundamental to human culture and development [182]. Several well 

known plant species, e.g. licorice (Glycurrhiza glabra), myth (Commiphora species) 

and opium poppy (Papaver somniferum) are mentioned as medicinal herbs in the first 
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known written record on clay tablets from Mesopotamia in 2600 BC [47]. Egyptian 

medicine dates from about 2900 B.C., and the best known Egyptian pharmaceutical 

record is the Ebers Papyrus dating from 1500 B.C., describing 700 plant-based drugs 

[47].  

 The natural product history is not only about pharmaceutical products are part 

of; the production of colors was of great cultural and economic importance. One of the 

most important colors was Tyrian Purple, known already in the 4th century BC. The dye 

is a bromine compound and originates from hypobranchial glandular secretions of 

Murex trunculus, a predatory sea snail found in the eastern Mediterranean. Huge 

quantities of snails were required and spoil heaps of the shells can still be seen on the 

sites of ancient dye works around the Mediterranean. In 1908, Friedlander collected just 

1.4 grams of pure dye from 12,000 mollusks [157]. The natural dye known as indigo 

was obtained from the leaves of the Indigofera tinctoria plant originating in India (4th 

century BC) and contains an indigoid compound [94]. The production of Indian Yellow, 

however, was closer to modern biotechnological production; cows were fed exclusively 

on mango leaves and the resultant urine was dried to obtain the pigment. This led to 

serious malnutrition for the cows and the practice was outlawed in 1908  [248]. The 

pigment was identified as a xanthonoid, a natural phenolic compound [63]. Another 

important natural pigment is the brown pigment sepia. The main constituent of sepia is 

melanin and it was obtained from various cuttlefish from the 16th century [150]. After 

the accidental synthesis of aniline purple by William Henry Perkin in 1856, modern 

pigment chemistry started and left no space for the continuous search for natural 

pigments. 

 At the same time developments in chemistry allowed scientists to examine plants 

in order to understand why they were medically useful [23]. Morphine was the first 

identified pure natural product with documented bioactivity [229]. Other examples of 

bioactive natural products are quinine [158] and coca [11]. With the discovery of 

penicillin and it’s antibacterial activity by Fleming in 1929 [72] and its isolation by 

Chain and Florey in 1940 [40], the focus shifted to natural product screening from 

microorganisms [233]. Microbes from soil samples were cultured and identified in 

extensive screening programs, yielding many antibiotics that are still in use today. By 

2002, over 22,000 microbial bioactive compounds had been discovered [53]. Between 
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1970 and 2000, however, no novel classes of antibiotics were licensed [282] and since 

2000, only two new classes of antibiotics derived from natural products have been 

approved [36].  

 While the discovery of new antibiotics slowed down, the attention turned to 

searching for potential anti-cancer drugs as it was realized that compounds possessing 

antibiotic activity also possess other types of bioactivities. Microbial secondary 

metabolites were proven to be a valuable source of toxins, effectors of ecological 

competition and symbiosis, pheromones, enzyme inhibitors, immunomodulating agents, 

receptor antagonists and agonists, pesticides, antitumor agents and growth promoters of 

animals and plants, and pigments [54]. The outcome of these new screening programs 

were limited, and most pharmaceutical companies turned their focus to “rational drug 

design” using combinatorial chemical synthesis [19]. Rational drug design is not based 

on trial and error as screening for bioactive molecules, but involves the design of small 

molecules that are complementary in shape and charge to the molecular target with 

which they interact and therefore will bind and inhibit the biological function of the 

target. The approach gained a lot of attention, and a major victim was natural-product 

screening. This did not turn out remarkable successful either and perhaps one has to 

acknowledge the fact that the nature provides novel molecular skeletons with a 

complexity that seems impossible to achieve through combinatorial chemical synthesis 

[23].  

 Development in technologies for separation science, spectroscopic techniques, 

microplate-based bioassays and high-throughput screening (HTS) have made natural 

products research gain momentum in recent years [223]. The identified natural products 

from these screening programs usually function as starting material for subsequent 

chemical or microbiological modifications or function as lead compounds for chemical 

synthesis of new analogs or as templates for drug design in order to improve their 

properties [21]. 
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1.2 Marine microorganisms as an emerging source of novel bioactive 

compounds 

New terrestrial natural bioactive compounds are no longer discovered so frequently 

although it is estimated that up to now only 5-10 percent of terrestrial plants have been 

explored for drug discovery [223]. Instead, water-based ecological systems are regarded 

as more promising sources.  In particular, marine microbes are a promising source for 

bioactive molecules. Complex ecological pressures and extreme conditions have driven 

microbial evolution in the sea for over 3.5 billion years resulting in extraordinarily 

varied microbial adaptation. The great variation in abiotic factors (e.g. pressure, salt, 

temperature, light, nutrition) leads to the creation of unique habitats in the marine 

environment. Marine microorganisms may consequently have evolved a greater range 

of novel physiological and chemical capabilities than terrestrial [52, 57, 61, 205]. For 

instance some Gram-negative Pseudomonas and Gram-positive Bacillus species of 

marine origin have been reported to produce metabolites with extraordinary structures, 

different from those isolated from corresponding terrestrial species [102, 106, 276].  

 The first bioactive components from the marine environment were isolated in the 

early 1970s [71]. Since then a wide variety of bioactive secondary metabolites and 

enzymes have been isolated from marine microorganisms [149, 184]. Many 

pharmaceutical companies are now concentrating their natural products research on marine 

microorganisms [24].  

 

1.2.1 The sea surface microlayer and the bacterioneuston 

The sea surface microlayer (SML) is defined as the top millimeter of the ocean surface. 

It is the boundary layer where exchange between the atmosphere and the hydrosphere 

occurs. The SML can be divided in distinct layers (Figure 1.1). From the top it has a 

monomolecular lipid film, then a polysaccharide-protein layer, a layer of suspended 

abiotic particles, and bacterioneuston and deeper layers of phytoneuston (mainly algae) 

and zooneuston [296].  
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Figure 1.1 Schematic representation of the surface microlayer stratification adopted from [92, 296]. 

 

The physical, chemical, and biological properties of the SML are distinctly different 

from the underlying water (UW) [148]. Chemical contaminants accumulate in the SML 

due to its unique physicochemical properties, thereby creating a substantial 

unpredictability of chemical characteristics, compared to the UW. Therefore, the SML 

has often been considered an extreme environment for microorganisms that may contain 

unusual species and taxa that have developed life strategies to survive in this habitat 

[155]. On the other hand, the SML is generally enriched in organic material (up to 1000 

times higher concentration than UW), and this might fuel bacterial growth and the 

development of microbial food webs. Therefore, higher abundances of microorganisms 

have frequently been reported for the SML than the UW, often 10-100 times higher [38, 

92, 148, 239]. However, lower microbial concentrations in the SML have also been 

observed [20]. The SML and the organisms living there are at times exposed to intense 

light- and UV-radiation from the sun, and microorganisms sustaining these levels have a 

competitive advantage. One way of protecting themselves from radiation is by 
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producing pigments such as carotenoids that can protect the cells by stabilizing the cell 

membrane. 

1.2.2 Microbial diversity and culturability 
The industrial microbiology field has utilized only a small portion of nature’s microbial 

arsenal for the discovery of useful molecules. One main reason is the inability of 

microbiologists to culture the vast majority of microbes in nature. The uncultured or 

yet-to-be cultured microorganisms are estimated to account for almost 99% of all soil 

microbiota and nearly 99.9% of marine microorganisms. This phenomenon, called “the 

great plate count anomaly” [249], has been known for more than 30 years [96].  

 

Metagenomics proves the lack of culturability 

Metagenomics is defined as the direct genetic analysis of genomes contained with an 

environmental sample [264]. Metagenome libraries are created by cloning genomic 

DNA from environmental samples [208]. These libraries can then be screened for 

functional expression and the genes are sequenced with shotgun DNA sequencing, a 

DNA sequencing technique which requires the target DNA to be broken into random 

fragments [274]. This method is however very labor-intensive and the cloned genes 

might be toxic for the cloning host [244]. Next-generation sequencing (NGS) 

technologies does not require a metagenome library and combined with decreasing costs 

and improved bioinformatics tools for gene annotation and assembly NGS is therefore 

gradually replacing the shotgun DNA sequencing technology [264].  

 For taxonomic studies, usually the 16S rRNA gene sequences are used. As 

expected, many more microbial species than those culturable under laboratory 

conditions, have been described [12, 110, 267] proving the lack of culturability of 

microbial species [90]. Of the strains described by metagenomics, many were not even 

closely related to isolated strains and several candidate phyla have been proposed [110, 

226]. Currently there are 30 distinct bacterial phyla listed with cultivated members and 

in addition 70 candidate phyla based solely on 16S rRNA gene sequences [3, 67, 99]. 

Metagenomics has also given new insight into understanding the abundance of  

different bacteria [204]. The most abundant of cultivated bacteria belong to 

Gammaproteobacteria, whereas Alphaproteobacteria are most abundant in natural 
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environment as revealed by 16S rRNA. One very abundant group of bacteria, 

representing on average one third of the microbial cells in the ocean surface, the SAR11 

clade, was only discovered in 1990 [173] and cultured in 2002 [203].   

 Metagenome libraries are used to screen for particular DNA sequences or for 

functional expression of the cloned genes. Particular phenotypes, e.g. pigment 

production are found by visual inspection. Identified functions from metagenomes (e.g. 

proposed metabolic life strategies) can again be used to develop cultivating strategies 

for uncultured species, [8, 89].  

 

Strategies for increasing the culturability of microorganisms 

Although metagenomics can reveal functions of single enzymes or entire biosynthetic 

pathways, the characterization of physiological properties and understanding of 

metabolic and energetic capabilities can only be achieved through the isolation of 

individual bacterial species in pure culture [273]. Hence, for years microbiologists have 

been working on developing new ways to culture environmental microorganisms in 

attempts to overcome the “great plate count anomaly” [108, 204, 251, 290]. In general, 

aiming to mimic the growth conditions from the natural environment is likely to result 

in higher rates of cultivated bacteria. Several strategies for natural environment 

mimicking have been developed and the most important are discussed.  

 The use of very low nutrient concentrations, often in combination with long 

periods of incubation will favor growth of slow-growing bacteria. Particularly microbes 

that originate from oligotrophic habitats where a non-growing or dormancy state may be 

the norm might easily be discarded before visible growth is obtained and incubation 

periods of several months might be required [4, 279]. Higher concentrations of substrate 

may even be toxic. Connon and Giovanni were able to cultivate up to 14% of the cells 

from coastal seawater by using this approach [44], and members of the abundant 

SAR11 clade bacteria was for the first time isolated by using incubation times up to 24 

weeks combined with low-nutrient media [44, 203]. The principal behind this approach 

is to allow growth of only the desired microbes. Unwanted microbes can also be 

inhibited with salts, dyes, or other chemicals. 

 Other more specific approaches are encapsulation of cells directly from 

environmental samples in gel microdroplets and thereafter detection of microcolonies 
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by flow cytometry [290, 291]. Combined with environmental concentration of 

nutrients, single encapsulated cells grow and form microcolonies within the 

microcapsules and the fast growing species will burst the microcapsules. This method 

has been suggested to be suitable for massively parallel cultivation of microorganisms 

for natural-product screening and drug discovery [110]. 

 The traditional microbiological approach of selective culture does not allow for 

interactions between microbes that occur between organisms in the natural 

environment: the fastest growing species may overwhelm those that divide only very 

slowly, thus leading to an imbalance of cell-to-cell communications. By specifically 

targeting the isolation of consortia, rather than single species, it may be possible to 

bring many more environmentally relevant bacteria into laboratory culture. Incubation 

in diffusion chambers with simulated natural environment aims to include these factors 

[108]. The diffusion chambers separate the bacterial assemblage of interest from a 

source of nutrient utilizing a semi-permeable membrane. In this way, isolates that does 

not grow on artificial media alone but forms colonies in the presence of other 

microorganisms, can be cultivated. Kaeberlein and co-workers successfully cultivated 

2–40 % of the inoculated cells by using this technique [108]. Growth factors produced 

by closely related organisms have been shown to greatly increase cultivation success. 

As much as 40 % of the total community from a marine sediment biofilm has been 

cultivated by using helper strains that produce growth factors identified as siderophores 

[50]. 

 Even when the whole spectrum of nutrients and signalling factors are present for 

successful cultivation, presence of inhibitory compounds like bacteriocins in the 

isolated community might result in the inactivation of the cells by other microbes in the 

immediate vicinity [259]. Virus infection may prevent growth in culture; this may be 

either infection with phage or the change to the lytic cycle of temperate phages when 

nutrients are supplied to starved bacterial cells [68].  

 The advances made in culturing techniques are far from offering the possibility 

to culture all the microorganisms present in a an environmental sample, but increasing 

the culturability up to 40% is a massive improvement, that again improves the potential 

for natural products discovery. 
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1.3 Screening and Dereplication of large collections of bacteria 

High throughput drug screening of bacterial collections started in the late 1980s. 

Robotic methods of sample handling and detectors capable of reading 96-well microtiter 

plates were developed, and the emphasis of screening shifted from empirical measures 

of cell growth or function to molecular targets [23]. With the increasing knowledge of 

genes and receptor biology, bioassays were developed and used in the screening 

process. The scope of the primary screen is to rapidly identify samples with bioactivity 

of the desired type from a large number of samples. “Secondary testing” procedures 

involve more detailed testing of lead compounds and these assays usually have low 

capacity, are slow and costly [16].   

 A major problem within natural product drug discovery programs is the frequent 

rediscovery of already known compounds, as compound isolation and structure 

elucidation is very time and resource demanding. Methods intended to rapidly identify 

known compounds in natural product extracts, is referred to as dereplication [46, 80]. 

This is an important step in an efficient drug discovery program. Introduction of modern 

spectroscopic methods and tandem analytical techniques, such as HPLC-DAD (high 

performance liquid chromatography-(photo)diode-array-detector, LC-MS (mass 

spectrometry), LC-MS-MS, LC-NMR (nuclear magnetic resonance), and LC-NMR-MS 

[22, 76, 183] (to be discussed later) have revolutionized compound identification and 

tremendously accelerated the pace at which isolated compounds can be identified.  The 

identity of an active compound can be determined at an early stage in the discovery 

process by consulting databases for secondary metabolites. This prevents wasted effort 

on samples with no potential for development and allows resources to be focused on the 

most promising leads. Current databases for identification of natural products are 

presented in Table 1.1. 
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Table 1.1. Databases for natural product (NP) identification.  

Database Type of NP information # of components Reference 
SuperNatural 3D structures 46 000 [62] 
NMRShiftDB NMR database  41 300 http://nmrshiftdb.nmr.uni-koeln.de/
COMET Metabolite recognition  5 000 http://www.microbialscreening.com/
NAPROC-13  13C spectral information 6 000 [152] 
DNP Structure database  226 000 www.chemnetbase.com 
AntiBase 1H NMR-structural features  50 000 [126] 
 

1.3.1 Bacterial taxonomy in biodiscovery  

Microalgae have been proven to contain division- or class-specific carotenoids and the 

production of carotenoids can therefore be used as a taxonomic marker [256]. However, 

the linkage between taxonomic and chemical diversity are not coherent for all 

microorganisms. The ability of horizontal gene transfer in Streptomyces was argued to be 

a proof that secondary metabolite production is strain specific [64]. This view excludes 

bacterial taxonomy as a useful tool for dereplicating bacterial strains in a biodiscovery 

setting. However there are several contraindications for this view; screening of a 

taxonomically dereplicated collection of actinomycetes led to a high number of 

discovered compounds compared to the strain throughput [84], a set of secondary 

metabolites as phenotypic markers have been found to be of general validity in fungi 

[134], and by marine invertebrate-associated bacteria [98]. Hence, species specific 

chemoprofiles can exist and bacterial taxonomy has been used for guided discovery of 

secondary metabolites in filamentous fungi [75].  

 Matrix assisted laser desorption/ionization time of flight mass spectrometry 

(MALDI-TOF MS) has become an important tool in bacterial identification and species 

differentiation. MALDI-TOF can be used for fast differentiation of isolated culturable 

bacteria based on their mass fingerprints (phyloproteomics). In the last few years 

MALDI-TOF MS has been increasingly studied and applied for the identification and 

typing of microorganisms [136, 216] and has also been proven valuable as a 

dereplication tool [4, 7].  
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1.4 Pigmentation in marine heterotrophic bacteria 

Pigments are part of the secondary metabolite arsenal in microbes and are often 

associated with bioactivity. The pigment itself can be bioactive (Table 1.2) or it can be 

co-expressed with bioactive secondary metabolites. Therefore, several bioprospecting 

projects looking for bioactive molecules have been targeted to pigmented marine 

bacteria [73, 202, 243, 245]. Reported values of pigmented heterotrophic marine 

bacteria (PHB) varies significantly; from 10 to 70 % of total colony forming units 

(CFU), comprising primarily the colors red to yellow [39, 61, 95, 294, 295]. The huge 

variance in PHB can be due to different habitat, but most likely, a great deal of the 

discrepancy can be attributed to different isolation techniques (sampling techniques, 

media, and cultivation conditions). PHB are particularly frequent in the SML, and a 

plausible explanation for the pigment production is that pigmentation function as 

protectants for UV radiation [61, 95, 268]. Figure 1.2 shows isolated bacteria from the 

SML with typical pigmentation.  

 

 
Figure 1.2. Example of pigmentation occurring in marine heterotrophic bacteria. Pellets from bacterial 

cultures isolated from the surface microlayer. 

 

The most important pigment group found in marine heterotrophic bacteria are the 

carotenoids and is described in the next paragraph. Other important pigment groups 

found in marine bacteria are listed in Table 1.2 together with their biological function 

and production organism. A thorough description of pigments produced by marine 

heterotrophic bacteria can be found in paper IV; “Pigmented Marine Heterotropic 

Bacteria: Occurrence, diversity and characterization of pigmentation”. 
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Table 1.2. Pigments (groups) isolated from marine bacteria. 
Pigment Activity Bacterial strains* References

Astaxanthin 
(carotenoid) 

Protect from UV radiation; 
Membrane stabilizer; 
Antioxidant 

Paracoccus haeundaensis  
Altererythrobacter ishigakiensis     
Agrobacterium arantiacum 

[46-48]

Prodiginines Antibacterial; Anticancer; 
Algicidal 

Hahella chejuensis                
Serratia marcescens   
Pseudoalteromonas rubra 
Streptomyces coelicolor 
Zooshikella rubidus 

[112, 139, 
283] 

Violacein Antibiotic; Antiprotozoan; 
Anticancer 

Pseudoalteromonas luteoviolacea 
Collimonas sp. 
Chromobacterium violaceum 
Janthinobacterium lividum 

[87, 146, 
192, 284] 

Tambjamines Antibiotic, Anticancer Pseudoalteromonas tunicata   [73] 

Melanines Protect from UV radiation 

Vibrio cholerae  
Shewanella colwelliana 
Alteromonas nigrifaciens  
Pseudomonas aeruginosa 
Marinomonas mediterranea 

[200, 243]

Phenazine derivatives Cytotoxic 

Pseudomonas aeruginosa 
Brevibacterium sp. 
Bacillus sp.  
Pelagibacter sp. 

[13, 41, 230]

*) Not a complete list, see paper IV for a thorough description of pigments in marine heterotrophic 
bacteria 
 

1.5 Carotenoids  

Carotenoids are a subfamily of isoprenoids (also denoted terpenes), which are among 

the most widespread of all natural products. Isoprenoids are a varied class of 

hydrocarbons that function as building-blocks for important organic compounds such as 

resins, steroids, vitamins and essential oils. Carotenoids are responsible for most of 

natural red, orange and yellow coloration of plants and microorganisms as well as the 

colors of some birds, insects, fish, and crustaceans [143]. Over 750 structurally distinct 

carotenoids are known [34, 103], and new structures continue to be reported [191, 250, 

258]. Carotenoids are divided in two main chemical groups, carotenes and xanthophylls. 

The latter are carotenoids containing hydroxyl (-OH) groups [34]. Carotenoids can also 

contain sugar units and are termed glycosylated carotenoids. The first carotenoid 

glycoside was isolated from saffron and described in 1818 [15]. So far few glycosylated 

carotenoids have been reported compared to the variety of carotenoids reported, but it is 
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assumed that a substantial amount of bacterial carotenoids often are glycosylated [31, 

124, 258]. They have great potential use as natural surfactants for the future chemical 

preparation of compounds useful as antimicrobial, antibacterial, and antitumor agents, 

or in industry [55].  

 Although best known for their antioxidant effect and as accessory light-

harvesting components of photosynthetic systems, many carotenoids are also produced 

by non-photosynthetic heterotrophic bacteria and fungi [116, 120]. Carotenoid 

biosynthesis apparently has an early origin, before photosynthetic systems arose, when 

the levels of UV radiation were higher than today [43, 115, 189]. And it is therefore 

plausible that these pigments evolved originally to play a role in membrane stabilization 

and UV tolerance. Some microorganisms produce carotenoids with structural 

characteristics very different from those commonly found in plants, such as a higher 

number of carbon atoms, of conjugated double bounds, and of hydroxyl groups, which 

all contribute to their great antioxidant capacity [190].  

 In microalgae, a distinction can be made between primary and secondary 

carotenoids. Primary carotenoids, as lutein, function as accessory pigments in the photo 

systems, as structural components of light harvesting complexes in chloroplasts, and as 

photo protective agents, and are therefore essential for cell survival. Secondary 

carotenoids, such as astaxanthin, accumulate in large quantities in lipid bodies outside 

the chloroplasts, after subjecting cells to stress conditions [28, 107]. Such 

environmental stress conditions include high salt concentrations, high irradiation (sun 

light) and nitrogen deficiency. 

 Animals cannot synthesize carotenoids, but must obtain them in their diet and 

may employ them in various ways in the metabolism, e.g. -carotene function as 

provitamin A that is converted to retinal and further to retinol (vitamin A) [187]. 

General proposed functions for carotenoid are to stimulate the immune system and play 

an important role in the prevention of degenerative diseases and cancer [45, 121, 185, 

231]. However, studies examining carotenoid health effects have produced inconsistent 

results [234]. Individuals with higher carotenoid intake or serum carotenoid 

concentration ( -carotene, -carotene, -cryptoxanthin, lutein, lycopene, zeaxanthin) 

have lower risk of mortality [135, 162], lung cancer [97], prostate cancer [81], and 

coronary heart disease [172].  The antioxidant activity of these compounds may shift 
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into pro-oxidant activity by interventions of carotenoid supplementation specifically 

with -carotene in tobacco smokers, facilitating the development of lung cancer [247] or 

no effects [1, 188]. This can be caused by the high concentration of individual 

carotenoids and possible pro-oxidant effects in settings of high oxidative stress. In 

addition, the positive effect attributed the carotenoids may reflect a dietary pattern 

associated with better health. For example, high lycopene concentrations suggest a diet 

rich in tomato products, which may also involve high intake of other fruits and 

vegetables.  

1.5.1 Carotenoids as sun protecting agent 

Sunlight is a continuous spectrum of electromagnetic radiation that is divided into three 

main wavelengths regions: ultraviolet (UV), visible, and infrared (IR). UV radiation 

comprises the wavelengths from 200 to 400 nm, while visible light ranges from 400 to 

750 nm and IR above the visible (750 to 1000 nm). The ultraviolet spectrum is further 

divided into three sections, each with distinct biological effects: UVA (320-400 nm), 

UVB (280-320 nm), and UVC (200-280 nm). When sun rays hit the skin surface it 

consists primarily of infrared and visible radiation, with only a small portion being 

within the UV spectrum. The portion of UVA rays is 10 - 20 times higher than UVB 

rays. This means that even though the UVB rays induce skin damage more efficiently, 

UVA and visible rays reach the cells of the skin more frequently. 

 The damaging effects of UVB have been widely documented (reddening of the 

skin, skin cancers and premature ageing of the skin, damage the cornea). UVA penetrate 

deeper into the skin surface than UVB rays (Figure 1.3) and cause long-term damage 

such as premature wrinkling and photo aging. The UVA damage is believed to 

exacerbates the risk of melanoma and other tumors [125, 170]. UVA rays are not 

directly absorbed by DNA, but can have indirect harmful effects by forming radical 

oxygen species (ROS) that can react with cellular proteins and DNA (causing single 

strand breaks) [278].  
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Figure 1.3. Penetration of solar 

radiation to the skin. The radiation 

penetrates the human skin with different 

efficiency, higher wavelengths 

penetrating deeper into the skin than 

lower. Adapted from [2]. 

 

 

With the growing awareness that UVA radiation causes significant damage, the need for 

broad spectrum (UVA/UVB) sunscreens has become obvious. Individuals using 

sunscreens normally expose themselves to the sun for much longer times than those 

without sun protection and thus will be more prone to melanoma when using UVB only 

sunscreen due to the prolonged exposure to UVA radiation [56]. To avoid this kind of 

“misunderstanding” the Food and Drug Administration (FDA), an agency of the United 

States Department of Health and Human Services, has imposed new labelling rules for 

sunscreens from July 2012 [70]. Products that do not pass the new “Broad Spectrum” 

testing requirements must include a warning that states: “Skin Cancer/Skin Aging Alert: 

Spending time in the sun increases your risk of skin cancer and early skin aging. This 

product has been shown only to help prevent sunburn, not skin cancer or early skin 

aging.” This is also the case when the weather is cloudy; UVB rays are filtered, but not 

UVA. Health authorities therefore recommend both broad spectrum sunscreen and the 

use of sunglasses in cloudy weather as well as in sun exposure. 

 Within the sunscreen technology, there are very few agents that offer protection 

in the upper UVA spectrum and no acceptable compounds that protects against visible 

blue light spectrum, i.e. in the range 360-500 nm. Despite increasing awareness of the 

importance of broad-spectrum protection, studies show that commercially available 

sunscreens claiming to have good UVA protection do not protect sufficiently against 

UVA rays. Particularly, for the longer wavelength UVA radiation (370-400nm), the 
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available sun filters provide poor protection and very poor or no protection against 

wavelengths above 400 nm (see Figure 1.4). Most of the commercially available UV- 

and sun protecting compounds in skin creams are synthetic, and the search for natural 

compounds with equal or greater efficiency is increasing due to the consumer's 

preference for natural products.  

 
Figure 1.4. Transmission spectra of Sun Protection Factor 60 (SPF60). Adopted from [280].  

 

Carotenoids have been proposed as a sun protecting agent based on the fact that they 

protect their producing organism against reactive oxygen species (ROS) and UV 

radiation from the sun by absorbing light in the 350-500 nm range [248]. This is within 

the range that should be added to obtain broad spectrum protection and therefore 

carotenoids absorbing in this range would provide complementary protection, 

increasing the protection of radiation above 400 nm. However, the solubility of 

carotenoids is a challenge and any solvent for use in cosmetics has to be approved by 

the FDA or health authorities in the respective country. An alternative to external 

application of carotenoids is internal uptake through the diet. Some tanning pills 

incorporate this pigment, which, when ingested, accumulates in the fat layer of the skin 

and produces a golden hue, simulating a tan and thereby proposed to protect the 

individual from the harmful effects of UV radiation. However, as discussed in section 
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1.5, the unequivocal benefit to humans of carotenoid supplementation has yet to be 

demonstrated. 

 Many carotenoids are already protected by patents for use as sun protecting 

agents; like astaxanthin, lycopene, -carotene, phytoene, diadinoxanthin 

(http://www.faqs.org/patents/app/20080260662). But the vast diversity of available 

structures and the possibility offered by genetic engineering to construct new 

compounds with enhanced properties (e.g. absorption, antioxidant, solubility) still make 

them an attractive starting point for natural sun protection formulas [7]. In addition, 

there may still be many new structures awaiting discovery in the microbial community.  

  

1.5.2 Isolation and characterization of carotenoids 

A good extraction procedure should release all the carotenoids from the sample 

and bring them into solution without causing any change in them  

The first step in carotenoid identification is to separate the carotenoids from the biomass 

(bacterial, plant, animal). The extraction protocol has to be optimized in each case 

depending on properties of the biomass and the carotenoids to be extracted. Only 

carotenoids from bacterial biomass will be discussed here. Carotenoids can be extracted 

from fresh bacterial biomass, which contain significant amounts of water, with water-

miscible organic solvents. Lyophilized materials can be extracted with water-immiscible 

solvents. Water in the extract can also be removed by partition to hexane, petroleum 

ether, diethyl ether, or dichloromethane or mixtures of these solvents. A good extraction 

procedure should release all the carotenoids from the sample and bring them into 

solution without causing any change in them. Acetone is a better solvent for the least 

polar carotenes and methanol better for xanthophylls and therefore mixtures thereof are 

often used [246]. Multiple extractions are usually required to obtain a color-free cell 

pellet and complete extraction. An enzymatic treatment step to weaken the bacterial cell 

wall might be necessary, especially for Gram-positive bacteria, in order to release the 

majority of pigments. Physical methods like ultrasound, French press and bead 

homogenizer are also alternatives. Saponification is an effective means of removing 

unwanted lipids, which may interfere with the later chromatographic separation. 

However, saponification extends the total analysis time, and may cause artifact 
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formation and degradation of carotenoids as is also the case with partition [211]. In the 

end, the extraction efficiency depends on cell wall resistance, the solvent penetration 

power and the length of the extraction [109, 254].   

 The solvent that result from these extraction procedures must be removed from 

the solutions. Alternatively, solvents that are compatible with further analysis can be 

reduced to obtain desired volume or concentration. Aqueous solutions are lyophilized, 

while organic solvent mixtures are dried using rotary evaporators. In the latter case, 

solvents with low boiling point have to be chosen to avoid prolonged heating. 

Carotenoids should then be stored under nitrogen atmosphere at -80 °C if not analyzed 

immediately.  

 

UV-Vis and spectral fine structure serves as a basis for carotenoid identification 

and quantification 

The conjugated double-bond system constitutes the light-absorbing chromophore that 

gives carotenoids their attractive color and provides the UV and visible absorption 

spectrum (UV-Vis) that serves as a basis for their identification and quantification. The 

wavelength of maximum absorption ( max) and the shape of the spectrum (spectral fine 

structure) are characteristic of the chromophore. Most carotenoids absorb maximally at 

three wavelengths, resulting in three-peak spectra (Figure 1.5 A). To give an idea of the 

spectral fine structure and to easier compare different spectra, the %III/II can be 

presented, along with the max values. The %III/II is the ratio of the height of the 

longest-wavelength absorption peak, designated III, and that of the middle absorption 

peak, designated II, taking the minimum between the two peaks as baseline, multiplied 

by 100 [33]. For conjugated ketocarotenoids, such as canthaxanthin and echinenone, the 

spectrum consists of a broad single maximum, having no defined fine structure, thus 

%III/II is 0 (Figure 1.5 B). 
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Figure 1.5. The UV-Vis spectre of a carotenoid with a distinct degree of spectral fine structure (A), and 

no fine structure (B). The calculation of % III/II for a carotenoid is inserted in A (adopted from [211]). 

 

At least 7 conjugated double bonds are needed for a carotenoid to have perceptible color 

[210]. The greater the number of conjugated double bonds, the higher the max values. 

Thus, the most unsaturated acyclic carotenoid lycopene, with 11 conjugated double 

bonds, is red and absorbs at the longest wavelengths ( max at 448, 474, and 505 nm in 

acetone). Several factors influence on the spectral fine-structure and absorbance 

wavelengths, like the chromophore, cyclization, steric hindrance (which can lead to 

hypsochromic shift, i.e. shorter wavelength), and placement of the carbonyl group.  

 Most carotenoids occur naturally in the all-trans form, but can easily be 

isomerized to mono-cis or poly-cis upon exposure to high temperatures, light, oxygen, 

acids, catalyst and metal ions, with a consequent change in light absorbing properties. 

Cis-isomerization occurs frequently of a chromophore’s double bond and causes a slight 

hypochromic effect (lowering of absorbance intensity), small hypsochromic shift 

(usually 2 to 6 nm for mono-cis), a less pronounced spectral fine structure and 

accompanied by the appearance of a distinct cis peak by ~140 nm lower than the longest 

wavelength absorption [32]. The intensity of the cis peak is greater as the cis double 

bond is nearer the centre of the molecule. Thus, the 15-cis isomer, in which the cis 

double bond is in the centre of the molecule, has an intense cis peak. The 5,6-

monoepoxide and 5,6,5´,6´-diepoxides of cyclic carotenoids, having lost one and two 

ring double bonds, respectively, absorb maximally at wavelengths some 5 and 10 nm 

lower and are lighter coloured than the parent compounds. These changes can easily be 

detected when analyzing their UV-Vis spectre. Many more examples of what effects the 

spectral fine structure and absorbance values can be found in [210]. 
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 The absorption spectra of carotenoids are markedly solvent dependent. The max 

values relative to hexane, petroleum ether, diethyl ether, methanol, ethanol, and 

acetonitrile are practically the same but increases by 2–6 nm in acetone, 10–20 nm in 

chloroform, 10–20 nm in dichloromethane, and 18–24 nm in toluene [33]. UV-Vis 

absorption spectra obtained with diode array detector in HPLC systems (Figure 1.5) are 

aquired in mixed solvents and it is important to account for the influence of the solvent 

on the spectra properties.  

 

Calculation of the carotenoid concentration  

The absorption coefficient A1%1cm of a carotenoid (absorbance at a given wavelength 

of a 1% solution in a spectrophotometer cuvette with a 1-cm light path) used in the 

calculation of the concentration also varies significantly in different solvents. 

Carotenoids in solution obey the Beer-Lambert law, i.e. their absorbance is directly 

proportional to the concentration. Thus, carotenoids are quantified 

spectrophotometrically. The quantification, however, depends on the availability of 

accurate absorption coefficients, which are difficult to obtain. The procedure normally 

involves weighing a small amount of the carotenoid, typically 1 to 2 mg, with an 

accuracy of ±0.001 mg [33]. This requires an accurate and sensitive balance and the 

carotenoid should be free from contaminants, including residual solvent. Moreover, 

complete dissolution of the carotenoids in the desired solvent can be difficult. Thus, 

some published values may have significant level of error or uncertainty [33]. The 

concentration of each identified carotenoid can be calculated according to the following 

formula: 

 

                               

A • y (mL) • 106

x ( g) = ———————–
A      • 1001cm

1 %

A • y (mL) • 106

x ( g) = ———————–
A      • 1001cm

1 %

 
 

where x is the weight of the carotenoid, y is the volume of the solution that gives an 

absorbance of A at a specified wavelength, and A1%1cm is the absorption coefficient of 

the carotenoid in the solvent used. When no absorption coefficient is available, an 
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accepted approximation is to use the molar absorption of a “similar” chromophore, 

which will not be accurate but sufficient for research purposes. In addition, the 

importance in carotenoid research lies more in the relative concentration of the total 

carotenoids and fold increase (or decrease) more than absolute concentration.  

 
HPLC and MS for carotenoid identification 

Heat labile carotenoids cannot be analyzed by GC and GC–MS. The most widely used 

method today is reversed phased HPLC equipped with DAD and MS detection (LC–

DAD-MS). The reproducibility and high sensitivity provide reliable analytical data, and 

the reasonably short analysis time minimizes the isomerization and decomposition of 

these sensitive compounds [29]. The DAD allows the UV-Vis spectrum of each 

component to be determined on line and information about the mass of individual 

carotenoids can be obtained through MS. Atmospheric pressure chemical ionization 

(APCI) is an ideal method of ionization for low- to medium-polar compounds, which 

include carotenoids and related compounds [207, 209]. Figure 1.6 exemplifies an LC-

DAD-MS analysis of carotenoids in a mixture. For protocols the reader is referred to the 

methods section in current research papers on carotenoid identification, e.g. [154, 176, 

178, 206, 246] and further information on LC-DAD-MS analysis can be found in Paper 

I and IV. 

 

 
Figure. 1.6 LC-DAD-MS analysis represented by isoabsorbance plot of a methanol extract from a 

pigmented marine bacterial isolate. An isoabsorbance plot is a 3-D graph of time, absorbance and 

intensity in a 2-D window by the representation of intensity by color. Identified masses from MS analysis 

are given in boxes.  
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 A given mass is far from conclusive as the majority of the carotenoids have a 

common C40 skeleton with different levels of hydroxylation and cyclization. Thus, there 

will be many different carotenoids with identical mass. From the masses given in Figure 

1.7, possible molecular formulas and possible identification can be retrieved by using 

the online database DNP (see Table 1.1). DNP is the most comprehensive source of 

natural product information available. The results from the search on these particular 

molecular masses are given in Table 1.3. Candidate identities can then be removed from 

the list if their UV/Vis profile does not fit.  

 
Table 1.3 Examples of molecular masses (m/z) values obtained with MS performed on a methanol extract 

of a pigmented marine bacterium. The carotenoid formula is calculated and candidate carotenoid 

identified by using the online database Dictionary of Natural Products (DNP). Optical stereoisomers are 

omitted from the list.  

m/z Carotenoid formula Hits in DNP Examples 
582.41 C40H54O3 14 Flexixanthin, -Doredexanthin 
584.42 C40H56O3 19 Myxol, Nostoxanthin, 2'-Deoxy 
596.39 C40H52O4 10 Astaxanthin,  Phillipsiaxanthin 

600.42 C40H56O4 27 Nostoxanthin, Violaxanthin 
 
 
Thin Layer Chromatography (TLC) 

TLC is widely used for food and pharmaceutical analyses because it is rapid, effective, 

and relatively inexpensive [289]. Furthermore, the TLC method does not necessarily 

require any instrumentation and the determination can be performed in the field, unlike 

HPLC. Although mostly replaced by HPLC for carotenoid analysis, it continues to be 

used for validation and complimentary analysis [113]. Preparative TLC as well as 

preparative HPLC can be used for isolation of pure carotenoids. 

  

Nuclear Magnetic Resonance (NMR) 

Once a carotenoid is isolated from the mixture and purified, it can be subjected to 

structure elucidation. The key technique for this is NMR, specifically a series of two-

dimensional experiments (COSY, HSQC, HMBC, and NOESY) that makes it possible 

to establish the connectivity of all hydrogen and carbon atoms in a molecule. Although 

larger amounts of sample are needed than for MS, NMR is non-destructive, and with 
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modern instruments, good data may be obtained from samples of less than a milligram. 

It has therefore become widely used in carotenoid identification as LC-DAD-MS and 

chemical tests (see below) often are inconclusive. NMR can also be directly coupled to 

LC and yield 1-D and 2-D NMR spectra for the components separated by HPLC [26, 

265]. The detection limit depends heavily on the NMR mode; ~100 ng in stopped-flow 

and loop storage mode and > 10 g in continuous or onflow mode [5].  

 

Chemical derivatization of functional groups as aid in structural elucidation 

Xanthophylls undergo group chemical reactions that can serve as simple chemical tests 

for the identification of carotenoids. Many of the chemical reactions, in extensive use in 

the late 1960s and early 1970s, have now been replaced by MS and NMR. However, 

some reactions remain useful and can be performed quickly and require only a small 

amount of the test carotenoid, and are amenable to rapid monitoring by UV or visible 

spectrometry, or HPLC. The most common tests are summarized in Table 1.4. 

 

Table 1.4. Summary of chemical reactions used as a diagnostic tool for carotenoid identification [35]. 

Functional group Reaction Catalyst Observed change 
Primary and secondary  
hydroxyl group Acetylation Acetic acid in pyridine Increase in retention 

time1) 

Allylic hydroxyls Methylation Acidic methanol Increase in retention 
time1) 

Epoxy group in 5,6 
or 5',6' position 

Conversion to furanoid 
derivatives Acid Hypsochromic shift, 

20-25 or 50 nm 

Ketocarotenoids and 
apocarotenals Reduction LiAlH4 or NaBH4 

Conversion to three-
maxima spectra 

1) HPLC. The extent of the increase depends on the number of hydroxysubstituents 
 

 To identify a carotenoid, these minimum criteria should be fulfilled to avoid 

misidentification [197, 225]; 

• the UV/Vis absorption spectrum ( max and fine structure) in at least two different 

solvents are in agreement with the chromophore suggested 

• a mass spectrum should be obtained, which allows at least confirmation of the 

molecular mass 

• chromatographic properties are identical in two systems, preferably TLC and HPLC 

and co-chromatography with an authentic sample should be demonstrated 
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The last criterion is difficult to fulfil if no authentic sample is available and the identity 

of the carotenoid can then only be proposed. There are more than 750 known 

carotenoids and many of these will have the same chromophore and mass. In addition, 

there are potential undiscovered carotenoids. The carotenoid concentrations might be 

very low. Typically, one to three principal carotenoids are present, with an additional 

number of carotenoids at low or trace levels. These minor carotenoids can be 

intermediates in the carotenogenesis or isomerized or oxidized carotenoids, reactions 

that can easily occur during analysis (discussed under UV-Vis and spectral fine 

structure)  [127].  
 

1.5.3 Carotenoid genes and biosynthetic pathways in bacteria  

Carotenoids belong to the tetraterpene group of the isoprenoids. Other isoprenoid 

groups are monoterpenes (e.g. menthol), sesquiterpenes (e.g. artemisinin), triterpenes 

(e.g. squalene), diterpenes (e.g. taxol), and polyterpenes (e.g. rubber). The biosynthesis 

of carotenoids starts with isopentenyl-diphosphate (IPP) and dimethylallyl 

pyrophosphate (DMAPP) formation, the general precursors of all isoprenoids. These 

five-carbon (C5) building units can be produced in two independent pathways: the 

mevalonate (MVA) pathway [151], and the more recently discovered 1-deoxy-D-

xylose-5-phosphate (DOXP) pathway (also called the MEP pathway or the non-

mevalonate pathway) [130, 213]. The two pathways are illustrated in Figure 1.7. In 

most bacteria, isoprene is produced via the DOXP pathway proceeding from pyruvate 

and D-glyceraldehyde-3-phosphate (G3P), whereas Archaea, eukaryotes with the 

exception of photosynthetic eukaryotes, and some bacteria utilize the mevalonate 

pathway, beginning with the synthesis of acetoacetyl-CoA from two molecules of 

acetyl-CoA. Some Actinomycetes possess both pathways [50-52].  
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Figure 1.7. The mevalonat and DOXP pathway leading to the common C5 precursors for 

isoprenoid biosynthesis. Key regulatory enzymes in the pathway are given in black boxes. In 

addition, the precursors for these pathways via the glycolysis are shown.  
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The carotenoid biosynthesis proceeds through a conserved central pathway starting with 

the condensation of the isomers DMAPP and IPP forming geranyl pyrophosphate (GPP, 

C10) and further condensation with two IPP units to form geranylgeranyl pyrophosphate 

(GGPP, C20) and finally the colorless phytoene is formed by condensation of two GGPP 

molecules (Figure 1.8). In total eight IPP units are joined to form phytoene, which is the 

first molecule defined as a carotenoid and the starting point for all C40, C50 and C35 

carotenoids [240]. In the synthesis of C30 carotenoids, two FPP molecules are 

condensed as depicted in Figure. 1.8.  
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Figure 1.8. The biosynthesis of phytoene, from the C5 building units dimethylallyl diphosphate (DMAPP) 

and isopentenyl diphosphate (IPP) via geranyl pyrophosphate (GPP), farnesyl pyrophosphate (FPP) and 

geranylgeranyl pyrophosphate (GGPP). The enzymes are given in black boxes. GPP, FPP, and GGPP lie 

at multiple branch points in the isoprenoid pathway and are substrates for many enzymes, responsible for 

generating the diverse carbon skeletons for the further synthesis of the thousands of mono-, sesqui-, di-, 

tri- and polyterpenes found in nature. 
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The most important structural modification of carotenoids is desaturation [221]. In most 

bacteria, phytoene is desaturated by the phytoene desaturase (CrtI) through four 

consecutive steps to produce the red pigment lycopene. Lycopene and other carotenoids 

formed early in a pathway, are further modified depending on the enzymes present in 

the producing organism. The result is an extensive pathway branching (and sub-

branching) illustrated by some examples in Figure 1.9 [100, 124, 166]. Depending on 

the enzymes present usually only one to five different carotenoids are produced in one 

organism [270]. 

 

 
 

Figure 1.9. Branching of carotenoids, starting from the colorless C40 backbone phytoene. These 

backbones are desaturated, cyclized, oxidized glycosylated and otherwise modified by downstream 

enzymes in various species-specific combinations. Shown are several common types of enzymatic 

transformations that occur in natural carotenoid pathways. The color-coding reflects the color of the 

carotenoid. Structure formulas for some of the carotenoids are included to show the effect of desaturation, 

prenylation, hydroxylation and cyclization. Apocarotenoids are formed from oxidative cleavage of C40 

xanthophylls [218]. 

 

Diprenylation (addition of two C5 isoprene units) and hydroxylation of C40 carotenoids 

leads to C50 carotenoids. C50 carotenoids have been found in Gram-positive bacteria 

from the order Actinomycetales (species from the genera Micrococcus, Halobacterium, 
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Corynebacterium, Dietzia, and Flavobacterium) [14, 31, 122, 144, 217, 252, 260] in 

addition in the  Gram-negative Pseudomonas strain [165].  

 C30 carotenoids are another minor group. The carotenoid pathways start from a 

different branching point in the isoprenoid synthesis; with the condensation of two 

molecules of FPP (Figure 1.8). They are found in various unrelated bacterial genera; 

Methylobacterium rhodium, Streptococcus faecium, Staphylococcus aureus, 

Heliobacteria, Rubritella squalenifaciens, Planococcus maritimus, Halobacillus

halophilus and Bacillus firmus [117, 118, 159, 237, 238, 250, 257, 261]. In contrast, C35 

carotenoids known as “apocarotenoids” are cleavage products of oxygenated C40 

carotenoids (xanthophylls) and thus belong to the C40 family (Figure 1.9) [218]. 

Examples are neurosporaxanthin produced by the fungi Neurospora and the 

commercially valuable pigments bixin and saffran produced by plants [18].  

 

1.5.4 Exploring the genes involved in carotenoid biosynthesis 

Since Misawa and co-workers cloned the carotenoid biosynthesis gene cluster from 

Pantoea ananatis (previously Erwinia uredovora) in 1990 [167], many carotenoid 

pathways have been elucidated. Most bacteria have their carotenoid genes organized in 

a single gene cluster, while other carotenoid producing organisms, such as 

Chlorobaculum (previously Chlorobium) tepidum (green sulfur bacteria), cyanobacteria, 

algae and higher plants, have no such clusters and instead the genes are randomly 

distributed on the genome [101, 145]. Single genes can also be localized outside the rest 

of the carotenogenesis gene cluster as is the case with -carotene hydroxylase gene 

(crtZ) involved in the synthesis of nostoxanthin in Sphingomonas elodea [292] or 

glycosyl transferases (crtX) in Enterobacteriaceae strains [232]. Recently, Wendisch 

and co-workers [94] have found a second carotenoid gene cluster in Corynebacterium 

glutamicum, both containing a functional phytoene synthase gene (crtB).  
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Figure 1.10. Illustration of the carotenoid biosynthetic gene cluster for P.ananatis, C.glutamicum [124], 

P. marcusii [138] and S.elodea. The genes are presented as arrows pointing in the direction of their 

transcriptions. Genes indicated in white are suggested not to be involved in carotenoid biosynthesis.  

 

 Cosmids are cloning vectors able to contain ~30-45 kb DNA [88] and are very 

useful for studying the gene organization in bacteria. All known carotenoid gene 

clusters are smaller than 30 kb and pigmented colonies are expected to be observed 

when constructing a cosmid library from carotenoid producing bacteria. Misawa and co-

workers reported pigmented colonies in a ratio of one to several hundred from their 

studies in elucidating the carotenoid biosynthetic pathway [167, 168]. The pigmented 

cosmid clones can then be sequenced, and the carotenoid synthesis gene clusters be 

determined from sequence assembly. Alternatively, a specific carotenoid DNA probe 

can be amplified from genomic DNA based on degenerate primers and used for 

hybridization experiments with the cosmid library. Well-conserved domains in the N-

terminal region and C-terminal region in the crtI encoding phytoene desaturase is the 

first choice when designing primers due to higher homology among different bacteria 

compared with the genes encoding for GGPP synthase (crtE) or Phytoene synthase 

(crtB), see Figure 1.8. However, this approach is challenging because in contrast to 

genes from plants, bacterial crt genes are not highly conserved and do not even 

hybridize to sequences of closely related species [123]. The approach with degenerate 

primers can also be applied to metagenome studies when searching for carotenoid genes 

or any other genes with prior knowledge of the target gene.  

 A third alternative is DNA sequencing of the entire bacterial genome and 

subsequent genome mining. In terms of costs and complexity it is getting a more and 

more realistic first choice [262]. As of today (December 2012), there are 3329 complete 
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genome sequences of bacteria listed on the online NCBI genome database 

(http://www.ncbi.nlm.nih.gov/sites/genome). With the entire genomic sequence 

available, potential carotenogenesis genes can easily be identified by sequence 

alignments and gene annotation. This can also be generally applied to the field of 

microbial natural product research; the increasing availability of genome sequences 

provides an enormous potential for the discovery of new natural compounds. The 

examination of biosynthetic gene clusters accessible from sequence information can 

further prevent rediscovery of known compounds. 

  Knowledge about the function of the genes in the pathway makes it possible to 

construct new carotenoids with potentially improved properties compared to existing 

natural carotenoids (i.e. enhanced antioxidant activity) [199, 227, 270]. Carotenoid 

enzymes from different organisms have been combined to generate functional pathways 

in heterologous hosts this proves that the formation of a specific enzyme complex is not 

a prerequisite for carotenoid biosynthesis, instead they have been proven to work 

independently [180, 270]. 

1.5.5 Industrial carotenoid production 

Carotenoids are as group valuable molecules for the pharmaceutical, chemical, food and 

feed industries, not only because they can act as vitamin A precursors, but also for their 

coloring, antioxidant and possible tumor-inhibiting activity. The global marked value 

for carotenoids was estimated to US$ 1.2 billion in 2010 and is expected to reach 1.3 

billion by 2017. The estimates are based on information from 82 companies worldwide 

[82]. Currently the carotenoids on the market are mainly used as food colorants and 

pigments in feed. Rising awareness about the benefits offered by various carotenoids is 

driving marked growth also for carotenoid dietary supplements, both synthetic and 

natural.  

 The feed sector represents the largest end use segment due to widespread use of 

astaxanthin (salmon) and canthaxanthin (poultry and salmon industry). The annual 

demand for astaxanthin worldwide in 2010 was 110-120 tons and is predicted to grow 

to 150-160 tons in 2020 [82]. -carotene is the most widely used food colorant and is 

principally used in yellow fats (butter, margarines, low fat spreads etc), but also soft 

drinks, confectionery and bakery products [60]. -carotene was first marketed in 1954 
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and today the marked demand is thought to exceed 500 tonnes [82, 85]. Carotenoids are 

alternatives to chemically synthesized food coloration; in particular, -carotene for 

yellow-orange color shades and lutein for yellow-gold color replacements, and the 

consumer demand drives the development toward more natural additives. Between 2006 

and 2009 Nestlé replaced four undesired colors for food in Smarties with a combination 

of colors including -carotene, copper chlorophyll, riboflavin, and curcumin [266].  

 Most of the carotenoids on the market are nature-identical carotenoids produced 

by chemical synthesis, but a few are produced in biological systems although these are 

not always cost competitive with chemical synthesis [142, 164, 177]. These are the 

algae Dunaliella salina ( -Carotene) and Haematococcus pluvialis (astaxanthin), the 

fungus Blakeslea trispora ( -Carotene) and the yeast Phaffia rhodozyma (astaxanthin). 

Natural sources of other carotenoids are plants and vegetables, e.g. Tagetes erecta 

(lutein) [194, 198], red fruit of Capsicum annuum (capsanthin) [271], and tomato 

(lycopene) [119]. Compared to the extraction from vegetables or chemical synthesis, the 

microbial production of carotenoids is of paramount interest. This is mainly due to the 

problems of seasonal and geographic variability in the production of carotenoids of 

plant origin and consumer demand for high quality and “natural” food additives. For 

instance pathways for the biosynthesis of saffron, the worlds most expensive spice 

($40–50 per gram), have recently been identified by the Swiss firm Evolva, which 

anticipates commercial microbial production in 2015 or ’16 [27]. Today’s production 

requires more than 75,000 flowers (Crocus sativus) to yield just 0.45 kilo of saffron 

spice [163]. The potential of utilizing cheaper carbon sources such as waste from the 

agricultural industry has further increased the probability of a cost competitive product 

compared with chemical synthesis [193]. For these reasons, the production of 

carotenoids in microbial hosts has been and still is the focus of extensive research [6, 9, 

10, 17, 25, 30, 69, 129, 156, 222, 228, 285] 

 

1.5.6 Engineering microbial cell factories for industrial carotenoid production 

In order for microbial carotenoid production to become cost competitive, the production 

process must be improved since titers produced by wild strains can never compete with 

the synthetically produced carotenoids. The first step in improving the carotenoid 
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production is optimization of various environmental and cultural conditions. In 

particular, the effect of light, temperature and chemical compounds in the media are to 

be optimized for maximum carotenoid production. E.g. the carbon to nitrogen ratio in 

the medium was found to increase the canthaxanthin production 5-fold in a 

Brevibacterium strain, resulting in a 700 ppm production level (0.07%) [179]. 

Improvements in the range 20 – 75 fold have also been achieved when optimizing the 

various cultural conditions [25]. However, when the original titers are in the ppm range, 

the impressive fold increases are still not sufficient for commercial production. For 

comparison 1.5 - 4 % astaxanthin is obtained in the unicellular green algae 

Haematococcus pluvialis [17, 153] and -carotene in Dunaliella salina can reach an 

impressive 10% of its dry weight [201]. The main challenge with carotenoid production 

in algae is the slow growth rate (0.2 – 0.7 day-1) [255]. 

 To further improve the production yield, several microorganisms have been 

explored as hosts for heterologous carotenoid production, e.g. the fungi Saccharomyces

cerevisiae [131, 275] and Candida utilis [236], and the bacteria Zymomonas mobilis, 

Agrobacterium tumefaciens [169], and Escherichia coli [51, 253]. E. coli grows fast, 

can utilize low-cost carbon substrates, is easy to scale-up and genetic tools are well 

established. Therefore, it is a very convenient host for heterologous carotenoid 

production. The existence of two pathways for IPP biosynthesis allows for 

consideration of complementary approaches for optimization of precursor supply in the 

production host (see Figure 1.7). One approach is to alter the metabolic flux and 

regulation of the native pathway; the alternative is to introduce the heterologous 

pathway to supplement the native pathway. 

 E. coli has to cope with the drain of prenyl pyrophosphates when 

carotenogenesis is established, which again can limit isoprenoid production yields. 

Overexpression of limiting enzymes of the native DOXP pathway and subsequent 

reactions can increase the supply of the C5PP “starter unit” DMAPP (Black boxes in 

Figure 1.7). Overexpression of idi has been shown to increase carotenoid titers by 

approximately an order of magnitude [277]. Dxs and dxr and are also among the genes 

that have been transformed in E.coli under a strong promoter to enhance the supply of 

precursors [161]. Because GGPP is the direct substrate for the formation of the first 

carotenoid in the pathway and its level is comparably low in E. coli, high expression 
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levels of GGPP synthase (CrtE) are very important for carotenogenesis (Figure 1.8). 

Another bottleneck for carotenoid biosynthesis in E. coli was relieved in the pathway by 

overexpressing the gene which encodes phosphoenolpyruvate synthase (pps), a pyruvate 

consuming enzyme, indicating that the pools of G3P and pyruvate, which both are 

substrates of 1-deoxy-D-xylulose 5-phosphate synthase (Dxs) (Figure 1.7), have to be 

more balanced in the direction of G3P [69].  

 The introduction of heterologous MVA pathway (see Figure 1.7) genes into 

E.coli has been shown to improve the productivity of carotenoids [286]. It has also been 

showed that the production levels of carotenoids produced were significantly increased 

with the addition of exogenous MVA, such as D-mevalonolactone (D-mevalonic acid 

lactone; D-MVL) in the culture medium. However, addition of mevalonate as a 

substrate makes it a costly process and efforts have been made to utilize the cheaper 

substrates, like acetoacetate, from earlier steps in the MVA pathway [91]. 

 When the precursor pool is balanced in the direction IPP, precursor supply can 

no longer be the limiting factor. Instead, carotenoid storage in E. coli seems to be the 

next major bottleneck. Enhanced carotenoid production can cause membrane overload 

with loss of functionality [161]. Sandmann [222] suggests that future activities should 

focus on extending the carotenoid storage capacity by genetic modification of the 

density of membranes in E. coli cells or by establishing plastoglobuli-like structures as 

all the lipophilic carotenoids are sequestered in the cell membranes.    

  Bacterial plasmids are used as vectors to carry the gene of interest to be 

overexpressed. Generally, a high copy number leads to high productivity, but it also 

tends to impose metabolic burdens on cells and thereby lowering the yield and the 

production reproducibility of recombinant molecules. In addition, it requires a high 

selection pressure. Plasmid-free cells lead to losses in the entire product recovery and 

decrease the profitability of the whole process. Antibiotic-resistant genes are the most 

common selectable markers used in fermentation to prevent plasmid-free cells from 

overgrowing the culture and is widely used in research. Antibiotics, however, are 

expensive compounds and they can contaminate the biomass or final product. The 

regulatory approvals for many commercial fermentation products are more favorable if 

antibiotic resistance genes are not present in the production strains [235]. In the industry 

therefore, non-selective conditions are desired, which requires high plasmid stability to 



 35 
 

avoid loss of production. Increased plasmid stability is therefore an aim towards 

industrial scale biotechnological production [196]. The metabolic burden can be 

drastically lowered by utilizing low-copy plasmids with a tightly regulated inducible 

promotor [105, 128]. In addition, these plasmids are more stably maintained in the cells. 

In the non-induced state only limited basal expression should occur and high level 

expression should be induced when sufficient cell-growth is reached. Leaky expression 

can cause metabolic burdens on the cells during the growth period by diverting the 

carbon and energy source to premature protein formation [269]. 

  An alternative is to construct vectors that can be selected for by other acceptable 

mechanisms. These can be post-segregational killing by which plasmids are stably 

maintained by expressing a gene product that would be toxic to cells becoming plasmid-

free upon division [78, 83] or essential gene complementation where the plasmid 

introduced codes for an essential gene for which the heterologous host has a defect or 

inhibited expression of [59].  

  Plasmids may be the best choice for the cloning and short-term expression of 

recombinant genes, in particular for the maximum overproduction of a given protein. 

However, a too strong gene expression may be unfavourable for long-term productivity 

[224]. Kim and co-workers [287] observed that a high expression of lycopene 

biosynthetic genes in E. coli leads to a decrease in growth and lycopene production. On 

the other hand, a low enzyme activity of a heterologous downstream pathway can result 

in a reduced product yield or in an accumulation of pathway intermediates [141].  

  An alternative to genes on plasmids is stable integration of heterologous genes 

into the host's chromosome. This alleviates the use of antibiotics that are required to 

exert selective pressure for plasmid maintenance during fermentation. In addition it 

eliminates the metabolic burden effects of multiple plasmids, the structural instability 

and segregational instability [74, 140]. However, time and effort of the more complex 

cloning procedure have to be considered in relation to the advantages of plasmid-free 

systems in upstream-processing. 
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2 Objectives for the thesis 

Prior to the present study, microorganisms from the marine surface microlayer (SML) 

had been collected as part of a larger project in marine bioprospecting. The SML is 

exposed to much higher radiation than the under laying water, and therefore selective 

pressure is suggested to have enriched the SML for bacteria with defence mechanism 

for UV radiation, like production of carotenoids absorbing light in the range 375 – 450 

nm. One aim with the current study was to identify pigments, preferably novel, from 

this collection for potential commercial interest together with our industrial partner 

Promar AS. 

 After an initial screen for pigments, the selected pigment(s) and producer 

strain(s) should be characterized and cultivation conditions for pigment production in 

the wild type optimized. However, only microalgae are known to be able to produce and 

store high amounts of carotenoids in lipid globules (up to 10%) whereas bacteria have a 

much lower storage capacity in their membranes. To increase the production of the 

desired carotenoid it is crucial to identify the biosynthetic pathway. The genes involved 

in the carotenoid synthesis can then be overexpressed in E.coli, a well studied and 

attractive host organism, and potential higher production achieved. A further sub-goal 

for this study was strain optimization and development of genetic tools for increased 

carotenoid production in E.coli or wild type host. 

 In addition, characterization of the bacterial collection to improve the value for 

future bioprospecting studies was an aim. In the first part of this project, we experienced 

that a lot of effort was put into analyzing replicas. Therefore, developing more rational 

tools for exploration of the bacterial collection with a special focus on dereplication was 

the focus for the last part of the study.  
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3 Summary of results and discussion 

The results of this PhD work are described in Papers I-III and the following chapters are 

summarizing the major findings as well as discussing the results in a broader context 

and including some unpublished results. 

3.1 Screening of the bacterial collection for carotenoids 

The pigmented bacterial collection consisted of ~2000 isolates and most of the pigments 

were presumed to be carotenoids as they are the largest pigment group in marine 

heterotrophic bacteria (See Paper IV for review on pigmentation of Marine 

Heterotrophic Bacteria). Carotenoids are readily soluble in organic solvents, but the 

extraction protocol has to be optimized for the type and nature of the carotenoids 

present (xanthophylls, carotenes, hydrophobicity) and the properties of the biomass 

from which they are extracted from. After initial tests on ten different bacterial isolates, 

pure methanol was found to give the best overall extraction efficiency for this 

heterogeneous collection of bacterial isolates and carotenoids when compared with a 

mixture of methanol and acetone. A complete extraction was not the aim, because at this 

step the characterization of the isolates was primarily qualitative. A pre-treatment step 

with lysozyme was included in the extraction procedure for the isolates that were 

selected for detailed analysis, i.e. purification and structural elucidation of major 

carotenoids. 

 

3.1.1 LC-TOF-MS analysis reveals high carotenoid diversity in the isolates (Paper 

I) 

A high-resolution LC-MS protocol for analyzing a broad spectrum of pigments was 

designed. An additional aim was to provide important information for designing a high 

throughput protocol for screening a higher number of isolates later. An Agilent 1100 

series HPLC system equipped with a diode array detector (DAD) that recorded UV-Vis 

spectra between 200 and 650 nm and Time of flight (TOF) mass spectrometer for high 

mass accuracy was used and operated in positive APCI mode. This enabled accurate 

mass determination with better than 3 ppm accuracy. Chromatographic separation was 
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performed with a reverse phase C18 4.6×150 mm column operated with flow of 1 

ml/min. Mobile phases were methanol-water (80:20) in channel A and dichloromethane 

in channel B. The total run lasted 25 minutes. 

 Extracts from sixteen randomly chosen isolates cultivated in shake flasks were 

analyzed with the high resolution LC-DAD-TOF MS protocol. The number of pigments 

per isolate varied from one to ten with mostly three to five main abundant pigments plus 

several minor pigments. Figure 3.1 A shows a DAD isoabsorbance plot of a 

representative extract with three major and at least three minor pigments. The UV-Vis 

scans for the six largest peaks are shown in Fig. 1B. The chromatogram retention time 

(rt), measured masses, tentative molecular formula deduced from accurate mass 

determination and assumed C40-carotenoid structure backbone, and spectral fine 

structure (%II/III) are inserted. The UV-VIS scans show that the extracted pigments all 

have the three-peak carotenoid profile.  Peak 4 and 5 contain a distinct cis-peak 

(indicated by an arrow) and are putative isomers of peak 1 and 2, respectively as they 

also have identical masses. Cis-isomerization of the trans-form of carotenoids is likely 

to occur during extraction and sample processing, and a lower concentration of the cis-

form is therefore most likely an artefact, and not a natural pigment in the producing 

organism [31, 171]. Cis-isomerization leads to a hypsochromic shift in the UV-Vis 

absorbance properties, lower intensity and less pronounced fine structure in addition to 

the distinct cis-peak (section 1.5) [32]. The calculated %III/II as a measure for the 

spectral fine structure for each individual peak support the assumption of two main UV-

Vis profiles including their cis-isomers; peak 1,3,4 (and 6) in one group and peak 2 and 

5 in the other. The intensity of peak 6 is too low to give reliable values. The TOF MS 

was used to assign accurate molecular masses to each of the six peaks. Peaks with the 

same fine structure also have the same mass (except peak 6), which again supports the 

assumption that the pigments with the same DAD profile are isomers, i.e. cis-trans or 

Z/E of the same carotenoid. The mass 551.43 obtained for the peak 6 could possibly 

represent a loss of oxygen from the mass 567 (M-16) although this is not common [66]. 
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Figure 3.1. Example of a chromatographic scan presented as isoplot from 6 to 24 minutes. The measured 

mass, calculated molecular formula and %II/III as indicator of the spectral fine structure are inserted. All 

DAD scans show the typical three-peak-spectre characteristic for carotenoids. Peak 4 and 5 are 

carotenoids with pronounced cis-peaks (indicated by arrows). (Modified from Figure 1, Paper I.) 
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 The high resolution analyses indicated large carotenoid diversity among the 

isolates in the culture collection, comprising both hydrophobic carotenoids (eluting late 

in the LC run) and more hydrophilic carotenoids (eluting rapidly in LC run), Figure 3.2.  

We obtained several masses from the LC-TOF analysis with carotenoid-like absorption 

spectra that did not give any hits in DNP and these are all potential novel and previously 

undiscovered pigments. Pigments with masses higher than 710 may be glycosylated 

carotenoids, i.e. carotenoids linked to a sugar by a glycosidic or an ester link. Other 

natural pigments that do not belong to the carotenoid family but have a similar 

terpenoid conjugated backbone structure and therefore also similar absorbance spectra, 

are also described in the literature (see paper IV). No further attempts were made to 

identify these unknown compounds. 

 
Figure 3.2 Diodearray isoabsorbance plots of four unique bacterial isolates from the culture collection.  

These plots visualize part of the large diversity among pigments and isolates. (Figure 2, Paper I.) 
  

Tentative identification of the pigments was based on the UV-Vis profile (DAD) and 

molecular formula calculated from the accurate mass determination. Most of the 

pigments were found to be carotenoids. As discussed in the introduction chapter, 

matching UV-Vis profile and molecular mass are not enough to identify a carotenoid. 

However, by comparing the carotenoids with identical molecular mass from DNP and 

consulting the Carotenoids Handbook [34] for UV-Vis profiles, the number of candidate 

carotenoids can be narrowed down considerably. The main purpose of this study was to 

look for unique pigments and the accurate mass and DAD profile data combined with 



 41 
 

the retention time index makes it possible to discriminate between different carotenoids 

in the various extracts.  

 

3.1.2 High throughput LC-MS analysis enables quick characterization of 

carotenoids (Paper I) 

The chromatographic resolution may decrease with a shorter run period and carotenoids 

that are separated in a long analysis run can co-elute in a shorter run, but to increase 

throughput compromises with regard to chromatographic separation must be made. 

However, screening and initial characterization of isolates focus on the major 

carotenoids in the extracts, and these will dominate the chromatogram in a fast analysis, 

too. As seen from the example illustrated in Figure 3.1, many of the minor carotenoids 

are often isomers of the main carotenoids and therefore we do not expect to loose much 

information in a high throughput screen.  

 A high throughput LC-MS method was established with the aim to screen the 

bacterial isolates for abundance and diversity of carotenoids. In addition, our main focus 

was on carotenoids that absorbed in the UVA-Blue light area. An Agilent Single 

Quadrupole (SQ) SL mass spectrometer equipped with an Agilent 1100 series HPLC 

system was used. The mobile phases were the same as for the protocol in the initial 

screen and the carotenoids were eluted during a 4 minute run. The column was re-

equilibrated with a 3 min post run giving a total run time of 7 min. A Zorbax rapid 

resolution cartridge RP C18 column with dimension 2.1×30 mm was used for the 

analyses.  

 The SQ MS was set up with Single Ion Monitoring (SIM) for 20 carotenoid 

masses for 90% of the cycle time and 10% of the cycle time was run in scan mode. The 

20 carotenoid masses (M+H+) that were included in the SIM list were generated from 

analysis of the LC-TOF MS data on the sixteen isolates and a thorough analysis of all 

carotenoid entries in DNP. The SQ MS has only unit mass resolution, but this is precise 

enough to assign a carotenoid molecular formula since carotenoids have limited 

variation in chemical composition. With C40H56 (lycopene) as the starting point, the 

carotenoids can be added additional O, H and C atoms through hydroxylation, 

prenylation and glycosylation, i.e. molecules contain only the elements C, H, and O.  
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 A total of 260 isolates were analyzed with the high throughput screening LC-MS 

method. They were chosen with a criterion of diversity and represented eight different 

sampling points (see map, Figure 3.3).  

The number of pigments detected 

per isolate was as expected lower 

with the short run LC-MS method 

than the long run method (1-3 major 

pigments versus 3-5 major 

pigments). Almost all pigments 

(>95%) could be assigned a 

carotenoid mass from the SIM-list 

implying that most of the pigments 

probably belong to the chemical 

group carotenoids. All 260 

chromatograms were examined for 

carotenoids with an UV-Vis 

absorbance profile covering the 

 
Figure 3.3 Map of the sampling locations along 

the mid part of the Norwegian coast. Samples 

were taken both in inner fjords and further off the 

coast. 

UVA-Blue range of the light spectre and strains with main carotenoid(s) (pigment) with 

max below 450 nm were chosen as candidate strains for further investigations. Figure 

3.4 shows the UV-Vis spectra of two such carotenoids. The comparison with 

astaxanthin visualizes the downward shift in the UV-Vis absorbance profile of two 

carotenoids.  
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Figure 3.4. The UV-Vis absorbance spectre of two pigments absorbing in the UVA-Blue range. 

Astaxanthin is included for comparison. The inserted vertical line at 450 nm represent the screening 

criterion Organisms with a main carotenoid with max below this value were chosen as candidates for 

further research (Figure 4. paper I) 

3.1.3 Identification of six producer strains and carotenoid structural elucidation 

revealed potential novel strains and carotenoids with novel glycosylation pattern 

(Paper I) 

Six strains containing main carotenoids with the desired UV-Vis properties were chosen 

for detailed analysis. The isolates were sent to NCIMB Ltd in Scotland for 16S rRNA 

analysis. Two strains were identified at the species level and the other four were 

identified at the genus level (Table2). This indicated that the bacterial collection also 

has great potential for finding novel strains. The six isolates were then cultivated in 1 

liter fermentors to produce enough biomass for purification of carotenoids by 

preparative HPLC. Four isolates produced satisfactory amounts of carotenoids 

(measured in mg/L) and were selected for preparative HPLC analyses and subsequent 

structural elucidation using NMR. The results are given in Table 3.1. 
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Table 3.1.  Results from identification of strains and carotenoids. (Modified from Table 3, Paper I). 

Isolate                         #Pigments/isolate                                Carotenoids identified 
Leeuwenhoekiella sp                  3          Zeaxanthin                              9-cis-Zeaxanthin   13-cis-zeaxanthin 
Spingomonas baekryungensis    5          4-ketonostoxanthin                 Nostoxanthin
Erythrobacter sp.                       2          Nostoxanthin diglycoside       Nostoxanthin
Micrococcus luteus                    3          Sarcinaxanthin diglycoside    Sarcinaxanthin
Cyclobacterium sp.     
Xanthomonas sp.         
 1 Tentative identification 
2 Co-elution of at least three carotenoids, all nostoxanthin skeletons with sugar 
3 Not selected for further analyses due to low production of the desired carotenoid 

 

This study shows a great diversity of carotenoids in marine heterotrophic bacteria and that 

single strains are able to produce several different carotenoids as exemplified in Figure 3.2. 

Through this work, we have shown that an already established bacterial collection can have 

great value and is easily accessible for targeted screens like carotenoids with specific light 

absorption properties. 

  

3.1.4 Selecting the carotenoid candidate 
Among the isolated carotenoids, the C50 sarcinaxanthin was chosen as candidate for 

potential commercial applications, such as sun protecting agent as it was not already 

covered by a patent or had known issues regarding stability and toxicity that would 

create conflicts with a potential commercial exploitation. Examples of patented 

carotenoids are astaxanthin [49], zeaxanthin, -carotene, lutein and lycopene [272]. 

Among several bright yellow bacterial strains in the culture collection found to produce 

sarcinaxanthin there was one that formed more intensively colored colonies than the 

others did (Figure 3.5). The isolate, designated Otnes7 was a Micrococcus luteus strain 

as revealed by 16S rRNA analysis.   
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A B

 

Figure 3.5 

Liquid culture of two strains found to 

produce sarcinaxanthin.  

A: Vågland1 

B: Otnes7 

M. luteus is a representative of the Actinobacteria and has a G+C content among the 

highest in Bacteria (~75%). It can be found in a variety of environments including soil, 

water, animals, and some dairy products. It is regarded as an interesting organism for 

biotechnological applications for several reasons;  

 it is a catabolically versatile organism with the ability to utilize a wide range of 

potentially toxic substrates and therefore has great potential as a bioremediator 

[220, 241, 293] 

 the membranes of M. luteus are rich in enzymes that catalyze the synthesis of 

prenyl pyrophosphates included long-chain alkene biosynthesis [186, 219] and 

might be useful in isoprene and terpene synthetic reactions as well as biofuel 

production [214] 

In addition, it has certain characteristics that that makes it amenable for genetic 

engineering (to be discussed later). 

 

3.2 Molecular cloning, expression, and functional analysis of the genes 

responsible for sarcinaxanthin biosynthesis in M. luteus  

To be able to control and improve the production of sarcinaxanthin, detailed insight in 

the biosynthetic pathway is needed. The first step towards elucidation of the 

sarcinaxanthin biosynthetic pathway is to clone the presumed gene cluster in M. luteus 

strain Otnes7. Our hypothesis was that the carotenoid genes are organized in a single 

cluster as proven for most bacteria (see chapter 1.5.4). A genomic cosmid library 

representing the whole genome of M. luteus strain Otnes7 was constructed. The 
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SuperCos1 Cosmid Vector Kit and the Gigapack III XL packaging Extract (Stratagene) 

were used for making the cosmid library. The system is optimized to result in vectors 

containing 30-42 kb fragments of the partially digested chromosomal DNA. For 

comparison, the size of two other identified C50 carotenoid gene clusters are ~10 kb and 

~6 kb (decaprenoxanthin gene cluster in Corynebacterium glutamicum and C.p 450 

genecluster in Dietzia sp. respectively). At the start of this project, the genome size of 

M.luteus was not known. However, the size of a M.luteus strain had been estimated to 

2.3 Mbp by the aid of restriction fragments [175]. Together with the genome sizes of 

other strains in the family Micrococcaceae [58],  M. luteus strain Otnes7 was estimated 

to have a genome size between 2.3 and 2.5 Mbp. Implying that ~1700 colonies of the 

cosmid library would be sufficient for obtaining at least 20 times coverage of the 

genome. More than 8000 colonies were obtained. However, no pigmented clone was 

observed. This could signify that no clone contained the entire gene cluster for 

sarcinaxanthin. Considering the high coverage of the genome (more than 95 times), this 

was not likely. Other reasons could be that the genes for carotenoid biosynthesis were 

not functionally expressed or that they were not sufficiently expressed to result in 

visible pigmentation. With this strategy, it was not possible to identify the gene cluster 

for further expression of the genes in a heterologous system. 

  In a second approach, the work to construct a specific crt probe was initiated 

using degenerate primers based on the deduced amino acid sequences of conserved 

regions of CrtI proteins of other known C50 carotenoid producers (Dietzia sp., C. 

glutamicum). Several attempts of PCR amplification with various degenerate primers 

were made, using Block Maker and COnsensus-DEgenerate Hybrid Oligonucleotide 

Primers [215], but none were successful. Most likely, this was due to distant sequence 

similarity between the M. luteus crt genes and crt genes available in the databases.  

  While these attempts to find and amplify the carotenogenesis genes in M.luteus 

still were in progress, the complete genomic sequence of Micrococcus luteus 

NCTC2665 “Fleming strain” was released by the Joint Genome Institute (March 2008, 

www.jgi.doe.gov). This made in silico identification and directed PCR amplification of 

the crt genes in the Fleming strain possible. The homology of the 16S-23S rDNA 

internal spacer region from M. luteus strains is reported to be as low as 40% [86], and 

the heterogeneity of the whole genomic DNA level has been demonstrated by Moore 
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and co-workers [175]. Still, the access to the genome sequence markedly increased the 

chances for successful amplification of the crt genes also from strain Otnes7. 

3.2.1 Identification of sarcinaxanthin gene cluster in M.luteus (Paper II) 
In silico screening of the genomic sequence data of M. luteus strain 2665 resulted in 

identification of a putative carotenoid biosynthesis gene cluster consisting of totally 

nine open reading frames, or1007 – or1015. The genetic organization of the carotenoid 

(crt) genes in M. luteus displayed certain similarities to the previously published 

biosynthetic gene clusters for the C50 carotenoids C.p.450 and decaprenoxanthin in 

Dietzia sp. [260] and C. glutamicum [122], respectively (Figure 3.6). The deduced M.

luteus gene products displayed between 31% and 53% primary sequence identity to 

enzymes of the decaprenoxanthin and C.p.450 biosynthetic pathways (Table 3.2). 

Although the protein identity is as high as 76% (lycopene elongase) with C. glutamicum 

and Dietzia sp. CQ4, no significant region of homology could be found between these 

organisms.  

Table 3.2. M. luteus sarcinaxanthin biosynthetic gene cluster and primary sequence comparison with 

respective homologues from biosynthesis of decaprenoxanthin biosynthesis and C.p.450 in C. glutamicum 

and Dietzia sp. CQ4, respectively. (Table 3, Paper II) 

      
 C. 

glutamicum   
Dietzia sp. 

CQ4   
  ORFa Gene name Predicted gene product  Primary  Primary 

   Homologue sequence Homologue sequence 
        indentity (%)   identity (%)

or1007 crtX Glycosyl transferase (CrtX) None  CrtX 43 
or1008 Unknown     
or1009 crtYh C50 -cyclase subunit (CrtYh) CrtYf 31 LbtBCb 38 
or1010 crtYg C50 -cyclase subunit (CrtYg) CrtYe 32 LbtA 36 
or1011 crtE2 Lycopene elongase (CrtE2) CrtEb 50 LbtBCc 53 
or1012 crtI Phytoene desaturase (CrtI) CrtI 43 CrtI 53 
or1013 crtB Phytoene synthase (CrtB) CrtB 41 CrtB 48 
or1014 crtE2 GGPP synthase (CrtE) CrtE 31 CrtE 33 
a) ORF, open reading frame. 

b) The N-terminal region of LbtBC (amino acids 1-134) is homologous to those of M. luteus CrtYh and C.

glutamicum CrtYf respectively.  
c) the C-terminal region of LbtBC (amino acids 135-432) shows homology to M. luteus CrtE2 and C.

glutamicum CrtEb, respectively. 
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In addition CrtE2 share high similarity to the corresponding protein sequence (prenyl 

transferase) in Arthrobacter aurescens (59% identity), CrtYg and CrtYh exhibit highest 

similarity to a putative C50 carotenoid epsilon cyclase in Agromyces mediolanus (47% 

identity) and the lycopene -cyclase isoprenoid transferase B, Leifsonia xyli (52% 

identity), respectively. Based on these sequence analyses the M. luteus genes crtE, crtB,

crtI, crtE2 (encoding lycopene elongase), crtYg (encoding C50 cyclase subunit), crtYh

(encoding C50 cyclase subunit) and crtX (encoding glycosyl transferase) were assigned 

(Table 3.2). In addition, or1008 and or1015 encoded putative proteins with no assigned 

functions. To our knowledge, no analogous gene to crtX has been found in the C.

glutamicum genome sequence and still this bacterium can synthesize glycosylated 

decaprenoxanthin [124]. The putative biosynthetic gene cluster for sarcinaxanthin is 

depicted in Figure 3.6 A together with the corresponding biosynthetic pathway (B).    

 

FPP            Lycopene            C45, C50 Sarcinaxanthin Sarcinaxanthin
glycoside(s)crtEBI crtE2 crtYgYh crtX

2000 4000 6000 8000

idi crtE crtB crtI crtE2 crtYg

crtYh

crtX or1006or1008or1015

A)

B)

Figure 3.6 Chromosomal organization of the M. luteus sarcinaxanthin biosynthetic gene cluster (A). 

Genes indicated in white are suggested not to be involved in carotenoid biosynthesis. The biosynthetic 

pathway for sarcinaxanthin and its glycoside(s) as deduced from the identified gene cluster (B). (Modified 

from Figure 2, Paper II). 

 

To experimentally verify that the identified M. luteus gene cluster encoded an active 

sarcinaxanthin biosynthetic pathway, the entire crtEBIE2YgYh region (5,8 kb fragment) 

from M. luteus NCTC2665 and Otnes7 were PCR amplified from genomic DNA using 

primers deduced from the NCTC2665 crtE2 and crtYh gene sequences. These were first 

subcloned into the PGEM_T vector and after verification of correct insert cloned under 

transcriptional control of the positively regulated Pm promoter in plasmid pJBphOx 

[242]. The resulting plasmid were introduced into the non-carotenogenic E. coli host 
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strain XL1-blue by transformation, and the recombinant strain was analyzed for 

carotenoid production under induced conditions (0.5 mM m-toluic acid) over a 48 hours 

period. LC-MS analysis of cell extracts revealed a small peak at identical retention time, 

absorption spectrum, and molecular mass as sarcinaxanthin identified in the M. luteus 

strains [246]. No sarcinaxanthin was detected in plasmid free cells, thus confirming that 

the identified gene cluster encodes a sarcinaxanthin biosynthetic pathway starting from 

FFP (Figure 1.8, section 1.5.3). However, the sarcinaxanthin produced was estimated to 

be only 10-15 and 20-30 g/g CDW for recombinant E.coli strains expressing 

NCTC2665 and Otnes7 derived crt genes, respectively. The corresponding values for 

sarcinaxanthin production it the M. luteus wild types were 145 g/g CDW and 190 g/g 

CDW. 

 

3.2.2 Elucidation of the sarcinaxanthin biosynthetic pathway in M.luteus (Paper II) 

To investigate the role of each single crt gene in the cluster and elucidate the 

biosynthetic steps from FPP to sarcinaxanthin (See Figure 3.6 B), vectors containing 

only modules of the crt-cluster were constructed and overexpressed in E. coli host 

strains. The DNA fragments including the genes crtE, crtB and crtI that together should 

lead to the common precursor lycopene (Figure 3.6) were amplified by PCR from both 

M. luteus strains NCTC2665 and Otnes7 and cloned in the same way as the complete 

gene cluster. However, lycopene production yield was low (8 - 12 g/g CDW) and in 

the same range as the sarcinaxanthin production yield obtained when expressing the 

complete crtEBIE2YgYh gene cluster. This result confirmed the sequential biological 

functions of the three genes and suggested that these genes (crtEBI) might represent a 

bottleneck for high level production when the complete gene cluster was expressed in 

E.coli. This might be the same effect as we experienced when screening the cosmid 

library for pigmented clones; the expression of M.luteus crtEBI genes in E.coli were too 

low to result in visible color. The biological reason for the low lycopene production 

level remains to be further investigated. However, there are no indications from analysis 

of the gene sequence that the genes crtEBI in M.luteus is highly different from crtEBI 

genes from other organisms that have successfully been expressed heterologously in 

E.coli. The homologies with the corresponding genes in C. glutamicum and Dietzia sp. 
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CQ4 are 31-53% (Table 3.2) and the homology between C. glutamicum and Dietzia sp. 

CQ4 between 27 and 48% (not shown). Very recently it has been reported that C. 

glutamicum possesses two functional phytoene synthase genes (crtB) in two separate 

carotenoid gene clusters [94]. If M.luteus also possesses a second carotenoid gene 

cluster with functional genes it could explain why the heterologous expression of crtEBI 

resulted in such a low expression; wild type expression might rely on genes from the 

second carotenoid cluster. 

 Due to the low lycopene production achieved by using the M.luteus crtEBI genes 

we introduced the crtEIB gene cluster from Pantoea ananatis using plasmid pAC-LYC 

[167]. LC-MS analysis of the resulting strain XL1-blue (pAC-LYC) confirmed that 

lycopene was accumulated as sole carotenoid, and the production in this strain was ~100 

times higher (1.8 mg/g CDW) than what we achieved using M.luteus derived genes. 

Therefore, it was decided not to use M.luteus crtEBI genes, but instead the 

corresponding Pantoea ananatis genes for further experiments.  

 The carotenoid biosynthesis genes crtE2, crtYg and crtYh putatively encode for 

the proteins that catalyze the formation of sarcinaxanthin from the precursor lycopene 

(Figure 3.6). To experimentally verify their function, these genes from both M. luteus 

strain (Otnes7 and NCTC2665) were cloned into pJBphOx (pCRT_E2YgYh) and 

introduced into the lycopene producing XL1-blue (pAC-LYC) for color 

complementation experiments and analysis of sarcinaxanthin biosynthesis. LC-MS 

analysis of the resulting yellow cell extracts revealed a total maximum carotenoid 

accumulation of 2.3 mg/g CDW and about 98% of the total carotenoid produced was 

identified as sarcinaxanthin in recombinant strain expressing NCTC2665 genes and 2.5 

mg/g CDW and 100% sarcinaxanthin in the strain expressing Otnes7 genes. These data 

demonstrated that the M. luteus crtE2YgYh gene products can effectively convert 

lycopene into sarcinaxanthin.   

 To identify the intermediate metabolites between lycopene and sarcinaxanthin, 

two vectors were constructed; one contains the gene coding for lycopene elongase 

(crtE2, Figure 3.6), potentially producing C45 and C50 precursor carotenoids and the 

second containing in addition the first gene encoding for C50 cyclase subunit (crtE2Yg). 

Genes from both M. luteus strains were used. These were then expressed in E. coli with 

lycopene producing background. In C.glutamicum and Dietzia sp. CQ4 C50 
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biosynthesis, both C50 cyclase subunits were required to form an active catalytic unit 

[122, 260]. Therefore, it was not surprising that these two gene products (CrtE2 and 

CrtE2Yg) resulted in the formation of the same carotenoid profile and no 

sarcinaxanthin, as revealed by HPLC analysis. Two different carotenoids accumulated 

in these cells in addition to lycopene (Figure 3.7 D); all three compounds sharing 

identical UV/Vis profiles. The minor carotenoid had molecular mass of 620 Da, 

indicating a C45 xanthophyll compared with reported values (620-624 Da), and the 

major carotenoid had a molecular mass of 704 Da indicating a C50 xanthophyll (704-738 

Da). Only a small number of C50 and C45 carotenoids are known and a tentative 

identification of the carotenoids as flavuxanthin (peak 5, Figure 3.7 D) and 

nonaflavuxanthin (peak 6) based on their DAD profile and molecular mass was made. 

NMR confirmed the identity of the major carotenoid as acyclic C50 carotenoid 

flavuxanthin [124]. 
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Figure 3.7. HPLC elution profile of carotenoids extracted from M. luteus strain Otnes7 (A), lycopene-

producing E. coli XL1 Blue (pAC-LYC) transformed with pCRT-E2YgYh-O7 (B), pCRT-E2YgYhX-O7 

(C) and pCRT-E2-O7 (D). Peak 1, sarcinaxanthin diglucoside; peak 2, sarcinaxanthin monoglucoside; 

peak 3, sarcinaxanthin; peak 4, lycopene; peak 5, flavuxanthin; peak 6, nonaflavuxanthin; Peak 4’ 5’ and 

6’ are the cis isomers of 4, 5 and 6 respectively. Absorption spectra of carotenoids from peaks 1, 2 and 3 

(solid line) and peaks 4, 5 and 6 (scattered line) are depicted in graph (E). (Figure 1, Paper II).  
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These results verified that the M. luteus crtE2 gene encodes a lycopene elongase 

catalyzing the sequential elongation of the C40 carotenoid lycopene via the C45 

carotenoid nonaflavuxanthin to the C50 carotenoid flavuxanthin. In light of these results, 

we could also conclude that the cyclase subunit crtYg is not active alone but must act 

together with CrtYh as an active carotenoid cyclase catalyzing cyclization of 

flavuxanthin to sarcinaxanthin in vivo. To analyse the specificity of this carotenoid 

cyclase, lycopene producing E.coli strain were transformed with pCRT-YgYh 

expressing the genes encoding for the carotenoid cyclase subunits (crtYgYh) from both 

M. luteus strains. HPLC analysis of cell extracts showed that these strains accumulated 

lycopene as the only carotenoid (data not shown), confirming that the crtYgYh gene 

products can not use lycopene as a substrate in vivo. Together, these data confirmed that 

CrtYg and CrtYh polypeptides together constitute an active -type C50 carotenoid 

cyclase catalyzing cyclization of flavuxanthin to sarcinaxanthin in vivo. 

 Finally, the function of crtX was to be experimentally verified. The crtX gene 

product would be the first functionally verified glycosyl transferase involved in 

carotenoid biosynthesis and the crt gene cluster would be expanded. We constructed 

strain XL1 Blue (PAC-LYC) (pCRT-E2YgYhX-O7) with genes from M. luteus strain 

Otnes7. This strain would express crtX in addition to the genes leading to sarcinaxthin. 

HPLC analysis of the cell extract (Figure 3.7 C) revealed sarcinaxanthin as the major 

carotenoid (peak 3), but in additional a more polar carotenoid was eluted earlier (peak 

2) which had identical retention time and absorption spectrum to that of sarcinaxanthin 

monoglucoside from M. luteus Otnes 7 (results not shown). Another minor peak was 

observed with the same retention time as that of sarcinaxanthin diglycoside produced by 

M. luteus strains [246]; however, the detected amount was too low for a confident 

analysis of the mass and absorption spectrum. About 10% of the produced 

sarcinaxanthin was glucosylated both in M. luteus wild-type strains and when produced 

heterologous in E. coli, under the conditions tested. These results confirmed that crtX 

encodes an active glycosyl transferase that is necessary for the glycosylation of 

sarcinaxanthin and the complete biosynthetic pathway of sarcinaxanthin and its 

glucosides from FFP and via lycopene in M. luteus could be presented as in Figure 3.8.  
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Figure 3.8. The biosynthetic pathway for the individual steps in the formation of sarcinaxanthin and its 

glycosides from lycopene. CrtEBI, GGPP synthase, phytoene synthase, and phytoene desaturase; CrtE2, 

lycopene elongase; CrtYg plus CrtYh, C50 carotenoid –cyclase; CrtX, C50 carotenoid glycosyl transferase 

(Figure 4, Paper II). 

 

 

3.2.3 Comparison of sarcinaxanthin genes from strain Otnes7 and 2665 (Paper II) 
The Otnes7 strain was chosen among several other marine M.luteus strains due to the 

more intense color in liquid culture (Figure 3.4). Otnes7 was also a more efficient 

sarcinaxanthin producer than the Fleming strain, confirmed both by visual observation 

and by measuring the accumulated carotenoid content, with 24% higher production in 

the Otnes7 strain. However, when produced heterologously, the difference was only 

8.7%. This indicates that lycopene synthesis is a bottleneck in improving heterologous 
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sarcinaxanthin production with Otnes7 derived genes under conditions tested. This 

difference between the strains was more pronounced when only the lycopene elongase 

gene (crtE2) was overexpressed in E.coli in a lycopene producing background. Seventy-

nine % of the total carotenoid was flavuxanthin when overexpressing the crtE2 gene 

deriving from Otnes7 and only 23 % when overexpressing the crtE2 gene deriving from 

the NCTC2665 strain. Remaining fractions were lycopene and the intermediate 

nonaflavuxantin. Therefore, to further compare the efficiency of Otnes7 versus 

NCTC2665 derived biosynthetic genes, carotenoid production analyses were performed 

with different Pm inducer concentrations. The results demonstrated that strain XL1-blue 

(pAC-LYC) (pCRT-E2YgYh-O7) produced sarcinaxanthin to significantly higher levels 

than XL1-blue (pAC-LYC) (pCRT-E2YgYh-2665) under all conditions tested, thus 

confirming that Otnes7 genes are preferable for efficient sarcinaxanthin production in E. 

coli hosts (Figure 3.9). DNA sequence analysis of the cloned Otnes7 crtE2YgYh 

fragment revealed totally 24 nucleotide substitutions compared to corresponding 

NTCT2665 DNA sequence, corresponding to four amino acid substitutions in CrtE2, 

five in CrtYg, and two substitutions plus one insertion in CrtYh. Whether these 

sequence variations positively affects the expression level or the catalytic properties of 

the respective proteins remained unknown, and this was no further investigated. 
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Figure 3.9. Relative carotenoid abundances in extracts from E. coli(pAC-LYC)(pCRT-E2YgYh-O7) and 

E. coli(pAC-LYC)(pCRT-E2YgYh-2665) overexpressing crtE2, crtYg, and crtYh genes from M. luteus 

strains Otnes7 and NCTC2665 cultivated in the presence of various Pm inducer concentrations (0, 0.002, 

0.01, and 0.5 mM m-toluic acid). The fractions of sarcinaxanthin, lycopene, and intermediates are 

indicated. (Figure 3, Paper II).  

 

3.2.4 A novel carotenoid, sarprenoxanthin, was synthesized using combinatorial 

biosynthesis (Paper II) 

The biosynthetic pathway for decaprenoxanthin in C. glutamicum is reported to involve 

cyclization of flavuxanthin by an -cyclic C50 cyclase encoded by crtYe and crtYf. This 

means that the biochemical functions of the C50 cyclase proteins in M. luteus and C. 

glutamicum are the major differences between the pathways. Flavuxanthin was proven 

the branch point in the diversification of sarcinaxanthin and decaprenoxanthin. To 

experimentally verify this, we established and analysed E. coli XL1 Blue (pAC-LYC) 

(pCRT-E2-O7-YeYf-MJ) expressing a hybrid operon containing crtE2 from Otnes7 and 

crtYe and crtYf from C. glutamicum MJ233-MV10 (Figure 3.10). 
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Figure 3.10. In vitro design of a hybrid operon containing crtE2 from M.luteus and crtYeYf from 

C.glutamicum.  

 

We expected this recombinant strain to produce decaprenoxanthin. Surprisingly, LC-

MS analysis revealed that three different cyclic C50 carotenoids were accumulated, 

exhibiting the same UV/Vis absorbance spectre and mass (Figure 3.11). The retention 

time for peak 1 was identical to that of sarcinaxanthin. Peaks 1, 2 and 3 represented 

35%, 46%, and 19%, respectively, of the total carotenoid content in the recombinant 

cells. No lycopene was detected. 
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Figure 3.11. HPLC elution profiles of the carotenoids 

extracted from E. coli (pAC-LYC)(pCRT-E2 ml-

YeYfcg) (A); purified peak 1, sarcinaxanthin (B); 

peak 2, sarprenoxanthin (C); and peak 3, 

decaprenoxanthin (D). (Figure 5, paper II). 

 

 
All three fractions were then purified and analyzed by NMR. The NMR data confirmed 

the identity of peak 1 as sarcinaxanthin [132], while peak 3 was identified as 

decaprenoxanthin [77, 79]. The NMR data of the purified peak 2, representing the major 

product, indicated a molecule that cannot be clearly distinguished from a 1:1 mixture of 

sarcinaxanthin and decaprenoxanthin, so its existence had to be confirmed by 

chromatographic methods. The purified fractions were reanalyzed by LC using a high 

resolution method to control its purity and the corresponding chromatogram clearly 

shows that fraction 2 is a distinct carotenoid different from fraction 1 and 3 (Figure 3.11 

B and C). Peak 2 was identified as a new bicyclic asymmetric C50 carotenoid with the 

systematic name 2,2 -Bis(4-hydroxy-3-methyl-2-butenyl)- , –carotene. The compound 
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exhibits one -cyclic and one -cyclic structure and thus appears to be a structural 

combination of sarcinaxanthin and decaprenoxanthin. This is in total agreement with the 

polarities of the three carotenoids (Figure 3.11), and the compound was named 

sarprenoxanthin (Figure 3.12). To rule out that these results were not due to any 

unforeseen functions of the hybrid operon as such, we established analogous strain E.

coli XL1 Blue (pAC-LYC) (pCRT-YeYfEb-MJ) expressing decaprenoxanthin genes 

crtYe, crtYf and crtEb from C. glutamicum (see Figure 3.5). The resulting 

chromatographic profile and absorbance spectres were the same as in the hybrid 

construct with identical relative abundance, mass, UV/Vis profile and retention time of 

the carotenoids (data not shown). Moreover, DNA sequencing confirmed that the 

expressed crt genes were wild-type C. glutamicum sequences as described in the 

literature (41). Together, these results revealed that the crtYe and crtYf genes encoded a 

multifunctional C50 carotenoid cyclase that can catalyze synthesis of three different 

bicyclic carotenoids. To our knowledge, this is the first time reported that C.

glutamicum genes can be used to synthesize sarcinaxanthin and decaprenoxanthin. 
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Figure 3.12. Diverse biochemical functions of the M. luteus and the C. glutamicum C50 carotenoid 

cyclases. Both sarcinaxanthin and decaprenoxanthin biosynthesis involve conversion of lycopene to 

flavuxanthin catalyzed by lycopene elongases CrtEb and CrtE2 in M. luteus and C. glutamicum, 

respectively. The M. luteus CrtYgYh polypeptides constitute a -cyclase specifically converting 

flavuxanthin into sarcinaxanthin. In contrast, the C. glutamicum CrtYgYh polypeptides constitute both -

cyclase and -cyclase activity and can convert flavuxanthin into three different C50 carotenoids; 

decaprenoxanthin, sarcinaxanthin, and sarprenoxanthin. (Figure 6, Paper II) 

 

3.3  Increased sarcinaxanthin production 

For industrial scale heterologous production processes to be established, the first topics 

to solve are increasing the carotenoid titers and establishing a stable fermentation 

process without selective pressure. When using E.coli as host for heterologous gene 

expression under the control of the adjustable Pm promoter in small scale laboratory 

conditions up to 10-fold higher sarcinaxanthin production levels was achieved 

compared to the levels obtained by M. luteus strains. However, there is great potential to 

increase the carotenoid production further. Evident targets for increasing the precursor 

supply for lycopene production were identified from the literature (section 1.5.6, Figure 

1.7). These being overexpression of dxs and dxr in the DOXP pathway, the introduction 

of the MVA pathway and overexpression of idi and FPP synthase, common for both 

pathways (Figure 1.8), in addition to the crt genes crtE and crtB.  
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3.3.1 Introduction of the MVA pathway (unpublished results) 

E. coli strains carrying an exogenous MVA+ operon were reported to have a higher 

lycopene production upon induction (arabinose) when mevalonate was present in the 

media [212]. These strains, EcAB4-1(K12 and EcAM5-1(BL21), were kindly supplied 

by the authors and transformed with pLYC and pCRT_E2YgYh-O7 or with pLYC and  

pCRT_E2YgYh-2665. All strains were induced with the standard concentration 0,5mM 

m-Toluate, and 0,1 % arabinose. 

 In strain EcAB4-1 we obtained a 2-fold increase in the total carotenoid 

production but surprisingly no increased sarcinaxanthin production. In strain EcAM5-1, 

the total carotenoid production was less than in XL1-Blue background. For comparison, 

the same strains containing only plasmid pAC-LYC were tested. In strain EcAB4-1, the 

total carotenoid production was the same as when containing the pCRT vector, but for 

strain EcAM5-1 a three times higher total carotenoid production was measured when 

only plasmid pAC-LYC was present. Strain EcAM5-1 was therefore excluded from 

further experiments. The effect of higher m-toluate concentrations was tested on 

EcAB4-1 and XL1-Blue strains to test whether the remaining lycopene could be 

transformed to sarcinaxanthin upon higher induction. However, as expected, the 

presence of m-toluate concentrations higher than 1 mM negatively affected the growth 

of EcAB4-1.  

 These results suggest that the tested new lycopene overproducing strains are not 

compatible with our inducer system for the pJBphOx vector. In addition, the reported 

values for lycopene production were not achieved in these strains containing only the 

pLYC plasmid. These results in combination with the cost of mevalonate (~8000 NOK 

per 10 mg) made also these strains not interesting for further experiments. 

 

3.3.2 The pJBphOx vector system containing crt genes is stably maintained in the 

cells (unpublished results) 

To be able to produce carotenoids on a larger scale it will be necessary to cultivate 

selected strains in fermentors under high cell density conditions. A presumption for this 

type of cultivation is the absence of antibiotics. Therefore, high plasmid stability under 

maximal permissive conditions is necessary. It has earlier been demonstrated that the 
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pJBphOx vector system used for heterologous gene expression in E.coli host strains is 

stably maintained in the cells during lab bench scale high-cell density fermentation, but 

this may change depending on the protein expressed [242].  

  Initial tests of the plasmid stability in XL1 (pAC-LYC) (pCRT_E2YgYh-O7) 

and EcAB4-1 (pAC-LYC) (pCRT_E2YgYh-O7) were performed. The strains were 

tested for plasmid stability in shake flask cultivations without antibiotics added. After 

13 generations, still 98% of the cells contained both plasmids and formed yellow 

colored colonies on LB agar plates. The majority on the remaining 2% were colorless 

(lack either plasmids or only pAC-LYC) and a small fraction were red/pink (lack 

pCRT_E2YgYh-O7). This is a strong indication that this vector system for 

sarcinaxanthin production can be used for high cell density fermentations under 

permissive conditions.  

 

3.3.3 Potential of utilizing M. luteus as the producing organism (unpublished 

results) 

M.luteus is regarded an interesting organism for biotechnological applications for 

several reasons, like it’s potential use in bioremediation and the high amount of 

enzymes in the membrane that catalyzes the synthesis of prenyl pyrophosphates 

(Section 3.1.4). Even though these enzymes have been proposed as useful in isoprene 

synthetic reactions, the potential of M. luteus strains for industrial carotenoid production 

has not been explored so far. To manipulate the sarcinaxanthin biosynthesis and direct 

the carbon flux towards carotenoid and sarcinaxanthin production, development of 

genetic tools, for instance vectors for selection and overexpression, is indispensable. 

With the entire genomic sequence available, metabolic network modelling can be very 

useful. A network model was recently presented as a tool that can be used for design of 

an engineered M. luteus strain with improved alkane production [214]. The same 

approach can be used for designing a M. luteus strain with improved carotenoid 

production. 

  An important requirement for genetic work with bacteria is a method to 

introduce and functionally express DNA, such as introduction of vectors into a host 

strain. An efficient and convenient method is electroporation of competent receptor 
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cells. However, the construction of vector systems for selection and overexpression is 

indispensable. A shuttle vector replicates in two different organisms and the advantage 

is that it can easily be amplified and genetically manipulated in E.coli and thereafter 

transferred back to M.luteus for recombinant gene expression (e.g. enhanced carotenoid 

production). 

 Due to the phylogenetic relationship between the genera Micrococcus and 

Corynebacterium attempts were made to generate electrocompetent cells of M. luteus 

strain Otnes7 according to a modified method for C. glutamicum [114]. The potentially 

electrocompetent cells were then attempted to be transformed according to a 

C. glutamicum method as well with several shuttle vectors found to replicate in both 

E.coli and Gram-positive bacteria [48, 93, 104, 137, 174, 195]. After initial attempts, no 

transformations were successful, and in order to succeed a lot of fine-tuning of the 

protocols would have been necessary. Without the certainty that the shuttle vectors 

selected were able to replicate in M. luteus, it was decided not to continue with this 

work. 

 

M.luteus Otnes7 plasmid as a potential backbone for developing of genetic tools for 

M. luteus 

When analyzing chromosomal DNA from M.luteus Otnes7 with gel electrophoreses a 

significant band appeared on the gel (Figure 3.13), and the hypothesis was that this band 

represented a natural plasmid.  

 

A 

B

1  2

 

Figure 3.13. Gel electrophoresis of isolated 

chromosomal DNA from M.luteus digested 

with Sau3aI. Undigested chromosomal DNA 

(A) and putative plasmid DNA (B). Lane 1: 

partially digested DNA, lane 2: undigested 

DNA.   
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To isolate the plasmid DNA the Genopure plasmid midi kit from Roche was used with 

some modifications. A 100 ml overnight culture was resuspended in the suspension 

buffer/RNAse solution following the kit and the lysis buffer was replaced with adding 

80 l mutanolysin (2000U/ml), 80 mg lysozyme and 4 g sucrose (2,5%) [111]. The 

yield was 18 g plasmid from 100 ml culture. The potential plasmid DNA was analyzed 

using various restriction enzymes and cutting with Pst1 resulted in one linear fragment 

that was sequenced. The results from the DNA sequencing (primer walking) was a ~3.6 

kbp fragment (which represents a complete linear version of this plasmid) and is 

depicted in Figure 3.14.  

 
Figure 3.14 Map of the M. luteus Otnes7 natural plasmid pML_O7. Putative origin for replication (blue), 

putative integrase(red) and putative replicase (red) are indicated. 

 

A putative origin for replication as well as a replication initiation protein gene was 

identified; these two genetic elements may be highly useful to construct an E. coli-M. 

luteus shuttle vector for future gene delivery in M. luteus. In addition, a putative gene 

encoding an integrase/transposase was identified. The small size of this plasmid makes 

it extra interesting, as it will minimize the metabolic burden by replication.  
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 Twenty percent of all Micrococcus luteus strain are reported to contain 

plasmid(s), in the  size range 1 to 20 MDa [160] and antibiotic resistant phenotypes are 

often linked to these plasmids [147, 263]. The pMEC2 plasmid, conferring 

erythromycin resistance and purified from a M.luteus strain have been successfully 

inserted to plasmid-free strains of M.luteus and C.glutamicum resulting in erythromycin 

resistance [147]. 

 Further work on the plasmid was not initiated. However, future work would be 

to construction of a M.luteus shuttle vector starting from pML_O7 and/or other pML 

vectors reported in the literature and thereafter fuse it with an E.coli vector including 

selection markers. In addition, the specificity of glycosyl transferase and the effect of 

overexpression of crtX from M.luteus remain to be explored. 

 

3.4 MALDI-TOF MS based taxa identification and dereplication tool 

for efficient screening for novel pigmentation 

In the first part of this PhD project a substantial fraction of the marine heterotrophic 

bacterial collection was analyzed for pigments by using LC-DAD-MS analysis (Paper 

I). We experienced a heavy workload resulting in many redundant pigment profiles. 

Identical pigment profiles were suspected to be produced by the same species as also 

morphological characteristics (shape, consistency, motility) were the same, but no 

taxonomic classification was performed except the 16S rRNA analysis of six selected 

strains. 

 Of the initial collection of more than 10 000 heterotrophic bacteria, ~20% were 

pigmented, meaning that the largest fraction was the unexplored unpigmented bacteria. 

For better characterizing the bacterial collection it was of interest to look into the 

diversity of bacteria belonging to these two groups – pigmented vs. non-pigmented by 

using MALDI-TOF MS bacterial fingerprinting and in the same way verify if the 

pigment profiles as revealed by LC-DAD-MS could be connected to bacterial 

taxonomy. In addition, some pigments are produced only under certain conditions (like 

prodigiosin) and a screen on only pigmented bacteria would therefore not be sufficient 

to discover all pigment producing strains.  
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3.4.1 MALDI-TOF MS analysis for species differentiation (Paper III) 
A hierarchically clustered dendrogram was created based on MALDI-TOF MS spectra 

from 373 bacterial isolates (as shown in Figure 2, Paper III). Fifty-five different clusters 

were identified when using the “default” distance level (Table 3.3). Twenty-one clusters 

contained only one isolate. In addition, 15 clusters were classified as low abundant taxa 

(less than 1% of the total population but above 1 isolate, i.e. two to four isolates). This 

confirms a large diversity of bacterial isolates in the culture collection. 

 
Table 3.3 Overview of MALDI-TOF MS analysis divided in pigmented and non-pigmented groups. 

(Modified from Table 1, Paper III) 

 Total Pigmented (%) Non-pigm. (%)       Mixed pigm. (%) 
Bacterial isolates  373 243 (65) 130 (35)    
Total clusters 55 45 (82) 9 (16) 1(2) 
Cluster with 2-4 isolates  15 13 (87) 2 (13)  
Cluster with 1 isolate 21 19 (91) 2 (9)   
 

Sixty-five percent of the 373 analysed isolates were pigmented and distributed among 45 

clusters (i.e. representing 82 % of the clusters). Furthermore, as the non-pigmented 

isolates constituted 35% of the MALDI-TOF analysed samples were distributed in only 9 

clusters (16%) and the percentage further diminishing when comparing low abundant 

clusters (13%) and clusters with one isolate (9%) it shows that the selection of pigmented 

bacteria have a greater diversity than non-pigmented bacteria. Only one cluster comprised 

both pigmented and non-pigmented isolates. Eight clusters were identified at the species 

level. The low identification percentage was as expected as most isolated in the Biotyper 

database is validated for clinical isolates [65, 281].  

3.4.2 Pigment profile clustering shows good correlation with MALDI-TOF MS 

clustering (Paper III) 

The MALDI-TOF MS generated dendrogram was used as aid in selecting isolates for 

pigment analysis. Both single bacterium clusters and multiple bacteria clusters were 

represented and in total 97 pigmented isolates were selected for pigment analysis by LC-

DAD-MS. Eighty-two unique pigments (i.e. unique absorption spectrum, m/z and 

retention time) were detected among the 97 analysed isolates. The number of pigments 

per isolate varied from 1 to 15, and most isolates produced between 3 and 5 pigments. 
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This clearly shows the large pigment diversity among the various isolates. Identified 

pigments were zeaxanthin, nostoxanthin, lycopene and prodigiosin (based on authentic 

samples, earlier identification (Paper I) or strain identification (Serratia plymuthica)).  

A matrix of pigments vs. isolates amenable for statistical analysis was constructed 

based on the LC-DAD-MS analysis. Thereafter a pigment dendrogram was created with 

the Unscrambler software (Average linking clustering). The resultant dendrogram 

comprised 28 pigment profiles and connections to the corresponding MALDI-TOF MS 

bacterial dendrogram containing 31 clusters were manually performed (as shown in 

Figure 4, Paper III. Eight of the pigment profiles, comprising 35 isolates, have total 

correlation with bacterial clusters. In addition, five single membered clusters were 

detected. Furthermore, five pigment profiles can be found in more than one bacterial 

cluster. This was as expected for pigment profiles containing less than three pigments as 

most marine pigments are not unique for one bacterial species and the production of one 

or two pigments gives a weak basis for a bacterial fingerprint. This is also consistent with 

research from secondary metabolites in filamentous fungi where individual metabolites 

have been found in both phylogenetically closely related and distantly related species 

[133]. In all the above mentioned clusters, no unique pigment profile would be lost if 

MALDI-TOF MS dereplication was applied to reduce the number of isolates for further 

pigment screening by LC-MS, these represent 90 % of the isolates. There is only one 

bacterial cluster with several pigment profiles (three). In this case only, the MALDI-TOF 

MS would fail as a dereplication tool, as one would risk losing unique pigments by 

selecting just a few isolates for further LC-DAD-MS screening. In view of the massive 

advantage with introducing a dereplication step before pigment analysis, this potential 

10% loss in diversity would be acceptable.  
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4 Concluding remarks 
The sea surface microlayer in the Trondheim fjord is rich in pigmented heterotrophic 

bacteria producing a great diversity of carotenoids as shown by the high throughput LC-

DAD-MS protocol developed. The establishment of this culture collection is a valuable 

source for pigments with potential novel properties from unidentified bacterial species. 

Further, the high throughput LC-DAD-MS method can be used for efficient screening of 

bacterial extracts for pigments with specific UV/Vis characteristics. 

 A bright yellow strain, Otnes7, was identified as the sarcinaxanthin producing M.

luteus. The biosynthetic pathway for sarcinaxanthin synthesis was elucidated, and starting 

from the precursor farnesyl pyrophosphate (FPP), identified intermediates were lycopene, 

nonaflavuxanthin and flavuxanthin. In addition, a glycosyl transferase (CrtX) was 

identified and functionally expressed, catalyzing the conversion of sarcinaxanthin to 

sarcinaxanthin mono- and diglycosid. The M.luteus strain Otnes7 was shown to have 

more efficient lycopene transforming genes than the compared M. luteus strain 

NTCT2665. The wild type production of sarcinaxanthin was 24% higher in strain Otnes7 

and heterologous expression of the gene encoding for lycopene elongase (crtE2) resulted 

in more pronounced difference between the two strains. This suggested that CrtE2 is the 

main contributor to this difference and Otnes7 based genes should be chosen when 

aiming for a more efficient sarcinaxanthin production.

With flavuxanthin being the common substrate for the C50–cyclases in M.luteus 

and C. glutamicum (synthesizing sarcinaxanthin and decaprenoxanthin respectively), we 

combined the lycopene elongase gene (crtE2) from M. luteus and the C50-cyclase genes 

from C.glutamicum (crtYe and crtYf) to form a hybrid operon to further experimentally 

prove the difference in the last step of the biosynthesis. This combination lead to the 

formation of three different bicyclic C50 products; sarcinaxanthin, decaprenoxanthin and 

the new carotenoid sarprenoxanthin. These results proved that crtYe and crtYf encoded a 

multifunctional C50 carotenoid cyclase and contributed to new insight into the multiple 

functions of bacterial C50 carotenoid cyclases as key catalysts for the synthesis of 

structurally different carotenoids. 

 Production of carotenoids from marine heterotrophic bacteria is usually not 

industrial interesting due to low production levels. There are several strategies for 

optimizing the production of carotenoid pigments. Optimal cultivating conditions with 
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respect to carotenoid production can result in significant improvements, but the main 

potential lies within deregulation of metabolic pathways in order to increase the 

metabolic flux to isoprenoid precursors. Carotenoid storage in the heterologous host 

E.coli is a potential major bottleneck for increased carotenoid production and therefore 

it is important to exploit carotenoid production also in the native host by developing 

genetic tools like shuttle vectors. Microbial carotenoid production is a field of strong 

academic and industrial interests and the isolation and characterization of new 

carotenogenic genes expands the possibilities for heterologous production of a broad 

range of carotenoids. 

 By analyzing part of the cultural collection five years after the original screen for 

pigments, the viability and pigmentation was still high and the collection could be 

further explored. When new efficient screening strategies and analytical tool are being 

developed, already established bacterial collections can get added value important for 

successful bioprospecting. MALDI-TOF-MS analysis showed that the bacterial 

collection is a diverse collection of marine heterotrophic bacteria, both pigmented and 

non-pigmented and that pigment profiling has potential to be used as taxonomic marker 

at the species level when the isolates produce at least three different pigments. In 

addition, we showed that by using MALDI-TOF MS as dereplication tool before 

pigment profiling of the isolates massive redundant analysis could be avoided without 

compromising the diversity of the collection.  
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We report the cloning and characterization of the biosynthetic gene cluster (crtE, crtB, crtI, crtE2, crtYg, crtYh,
and crtX) of the �-cyclic C50 carotenoid sarcinaxanthin in Micrococcus luteus NCTC2665. Expression of the
complete and partial gene cluster in Escherichia coli hosts revealed that sarcinaxanthin biosynthesis from the
precursor molecule farnesyl pyrophosphate (FPP) proceeds via C40 lycopene, C45 nonaflavuxanthin, C50
flavuxanthin, and C50 sarcinaxanthin. Glucosylation of sarcinaxanthin was accomplished by the crtX gene
product. This is the first report describing the biosynthetic pathway of a �-cyclic C50 carotenoid. Expression
of the corresponding genes from the marine M. luteus isolate Otnes7 in a lycopene-producing E. coli host
resulted in the production of up to 2.5 mg/g cell dry weight sarcinaxanthin in shake flasks. In an attempt to
experimentally understand the specific difference between the biosynthetic pathways of sarcinaxanthin and the
structurally related �-cyclic decaprenoxanthin, we constructed a hybrid gene cluster with the �-cyclic C50
carotenoid cyclase genes crtYg and crtYh from M. luteus replaced with the analogous �-cyclic C50 carotenoid
cyclase genes crtYe and crtYf from the natural decaprenoxanthin producer Corynebacterium glutamicum. Sur-
prisingly, expression of this hybrid gene cluster in an E. coli host resulted in accumulation of not only
decaprenoxanthin, but also sarcinaxanthin and the asymmetric �- and �-cyclic C50 carotenoid sarprenoxan-
thin, described for the first time in this work. Together, these data contributed to new insight into the diverse
and multiple functions of bacterial C50 carotenoid cyclases as key catalysts for the synthesis of structurally
different carotenoids.

Carotenoids are natural pigments synthesized by bacteria,
fungi, algae, and plants, and more than 750 different carot-
enoids have been isolated from natural sources (17). They
possess important biological functions as protectants against
light and oxygen excess in photosynthetic processes (32, 38),
and they have been proposed to reduce the risk of certain
cancers, cardiovascular disease, and Alzheimer disease due to
their antioxidative properties (20, 46). The global market for
carotenoids used as food colorants and nutritional supple-
ments was estimated at approximately $935 million in 2005
(11). More than 95% of all natural carotenoids are based on a
symmetric C40 phytoene backbone, and only a small number of
C30 and even fewer C50 carotenoids have been discovered (42).

C50 carotenoids have multiple conjugated double bonds, and
they contain at least one hydroxyl group; both these features
contribute to strong antioxidative properties (17, 30, 32, 38). In
nature, C50 carotenoids are synthesized by bacteria of the or-
der Actinomycetales, and to date, only two different C50 carot-
enoid biosynthetic pathways have been described in the liter-

ature. The biosynthetic pathways of the ε-cyclic C50 carotenoid
decaprenoxanthin [2,2�-bis-(4-hydroxy-3-methybut-2-enyl)-ε,ε-
carotene] and the �-cyclic C50 carotenoid C.p.450 [2,2�-bis-(4-
hydroxy-3-methybut-2-enyl)-�,�-carotene] have been eluci-
dated in Corynebacterium glutamicum (22, 23) and in Dietzia sp.
CQ4 (41), respectively. For both pathways, the common pre-
cursor, C40 lycopene, is synthesized from C15 farnesyl pyro-
phosphate (FPP) via the methylerythritol 4-phosphate (MEP)
pathway, which is present in most eubacteria (33). Effective
lycopene production has been achieved in genetically engi-
neered noncarotenogenic hosts, such as Escherichia coli and
Saccharomyces cerevisiae (9). Accordingly, the potential of us-
ing such biotechnologically relevant hosts for heterologous
production of any lycopene-derived carotenoids has generated
high interest.

The biosynthesis of cyclic C50 carotenoids from lycopene is
catalyzed by lycopene elongase and carotenoid cyclases. Even
though most carotenoids in plants and microorganisms exhibit
cyclic structures, cyclization reactions were predominantly
known for C40 pathways (45) catalyzed by monomeric enzymes
that have been isolated from plants and bacteria (5, 16, 27, 29,
31, 36). In C. glutamicum, the genes crtYe, crtYf, and crtEb were
identified as being involved in the conversion of lycopene to
the ε-cyclic C50 carotenoid decaprenoxanthin (22, 44). Sequen-
tial elongation of lycopene into the acyclic C50 carotenoid
flavuxanthin was catalyzed by the crtEb gene product lycopene
elongase. Subsequent cyclization to decaprenoxanthin was cat-
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alyzed by a heterodimeric C50 carotenoid, ε-cyclase, encoded
by crtYe and crtYf (22). C. glutamicum can synthesize both
mono- and diglucosylated decaprenoxanthin; however, the ge-
netic and enzymatic bases for glucosylation of decaprenoxan-
thin are unknown. Analogous to decaprenoxanthin, biosynthe-
sis of the �-cyclic C50 carotenoid C.p.450 in Dietzia sp. CQ4
from lycopene involves lycopene elongase and C50 carotenoid
�-cyclase activities (41).

While most cyclic carotenoids exhibit �-rings, ε-ring-con-
taining pigments are common in higher plants (7), and carot-
enoids substituted only with �-rings are rarely observed in
plants and algae (14). To date, no biosynthetic pathway for
�-cyclic C50 carotenoids has been reported in the literature.

Micrococcus luteus NCTC2665 (the “Fleming strain”) is a
Gram-positive bacterium belonging to the family Micrococ-
caceae within the order Actinomycetales. The carotenoids, in-
cluding the �-cyclic C50 sarcinaxanthin [(2R,6R,2�R,6�R)-(2,2�-
bis(4-hydroxy-3-methyl-2-butenyl)-�,�-carotene)], synthesized
by this bacterium have been identified and structurally eluci-
dated (26). We recently isolated and characterized several
wild-type M. luteus strains from the sea surface microlayer of
the middle part of the Norwegian coast (39). Here, we report
one additional such marine M. luteus isolate, designated
Otnes7, forming color-intensive colonies indicating high sarci-
naxanthin production levels. Both Otnes7 and NCTC2665
were used as M. luteus model strains, and the sarcinaxanthin
biosynthetic gene clusters were cloned from both strains. The
complete sarcinaxanthin biosynthetic pathway from lycopene
was elucidated, including glucosylation, and we also explored
the potential of using Otnes7-derived genes to achieve effective

heterologous production of sarcinaxanthin in E. coli. The re-
sults add important new knowledge of the biosynthesis of C50

carotenoids, and in particular, they highlight the diverse func-
tions of C50 carotenoid cyclases leading to synthesis of struc-
turally different carotenoids.

MATERIALS AND METHODS

Bacteria, plasmids, standard DNA manipulations, and growth media. The
bacterial strains and plasmids used in this work are listed in Table 1. Bacteria
were cultivated in Luria-Bertani (LB) broth (35), and recombinant E. coli cul-
tures were supplemented with ampicillin (100 �g/ml) and chloramphenicol (30
�g/ml) as appropriate. M. luteus and C. glutamicum strains were grown at 30°C
and 225-rpm agitation for 24 h, and E. coli strains for cloning purposes were
grown at 37°C and 225-rpm agitation overnight. For heterologous production of
carotenoids, overnight cultures (100 ml) of recombinant E. coli cells grown at
30°C with 180-rpm agitation in shake flasks (500 ml) were diluted 1% in pre-
warmed medium with 0.5 mM of the Pm promoter inducer m-toluic acid (37)
added unless otherwise indicated. In order to elucidate maximal sarcinaxanthin
production yields, samples were initially taken after 16 h, 24 h, and 48 h and
analyzed quantitatively as described below. The highest carotenoid abundance
was typically observed after 48 h of cultivation, but it was only marginally higher
than after 24 h of cultivation (data not shown). This is in agreement with
analogous reports for heterologous production of zeaxanthin in E. coli (34), and
therefore, production analyses were routinely performed by analyzing samples
collected after 48 h. Standard DNA manipulations were performed according to
the method of Sambrook et al. (35), and isolation of total DNA from M. luteus
strains was performed as described previously (43).

Vector construction. (i) pCRT-EBIE2YgYh-2665 and pCRT-EBI-2665. The
complete crtEBIE2YgYh gene cluster of M. luteus NCTC2665 was PCR amplified
from genomic DNA by using the primer pair crtE-F (5�-TTTTTCATATGGGT
GAAGCGAGGACGGG-3�) and crtYh-R (5�-TTTTTGCGGCCGCTCAGCGA
TCGTCCGGGTGGGG-3�). The crtEBI region of M. luteus NCTC2665 was
PCR amplified from genomic DNA by using the primer pair crtE-F (see above)
and crtI-R (5�-TTTTTGCGGCCGCTCATGTGCCGCTCCCCCCGG). The re-

TABLE 1. Bacterial strains and plasmids used in this study

Strain or plasmid Relevant characteristicsa Source

Strains
E. coli DH5� General cloning host Gibco-BRL
E. coli XL1-Blue Used as host for heterologous carotenoid production Stratagene
M. luteus NCTC2665 Wild-type strain NCTC
M. luteus Otnes7 Marine wild-type isolate This work
C. glutamicum MJ-233C-MV10 Tn31831 mutant of C. glutamicum MJ-233C; contains a wild-type crt gene cluster 44

Plasmids
pGEM-T Ampr; standard cloning vector Promega
pJBphOx Ampr; pJB658 derivative with inducible Pm-xylS promoter/regulator system 37
pAC-LYC Cmr; lycopene-producing plasmid containing crtEIB from P. ananatis; p15A ori 8
pCRT-EBIE2YgYh-2665 pJBphOx with scFv-phOx gene replaced with the crtEBIE2YgYh region from

strain Otnes7
This work

pCRT-EBI-2665 pJBphOx with scFv-phOx gene replaced with crtEBI from strain NCTC 2665 This work
pCRT-E2YgYh-O7 pJBphOx with scFv-phOx gene replaced with crtE2YgYh from strain Otnes7 This work
pCRT-E2YgYh-2665 pJBphOx with scFv-phOx gene replaced with crtE2YgYh from strain NCTC 2665 This work
pCRT-E2Yg-O7 pJBphOx with scFv-phOx gene replaced with crtE2Yg from strain Otnes7 This work
pCRT-E2Yg-2665 pJBphOx with scFv-phOx gene replaced with crtE2Yg from strain NCTC2665 This work
pCRT-E2-O7 pJBphOx with scFv-phOx gene replaced with crtE2 from strain Otnes7 This work
pCRT-E2-2665 pJBphOx with scFv-phOx gene replaced with crtE2 from strain NCTC2665 This work
pCRT-YgYh-O7 pJBphOx with scFv-phOx gene replaced with crtYgYh from strain Otnes7 This work
pCRT-YgYh-2665 pJBphOx with scFv-phOx gene replaced with crtYgYh from strain NCTC2665 This work
pCRT-E2YgYhX-O7 pJBphOx with scFv-phOx gene replaced with crtE2YgYhX from strain Otnes7 This work
pCRT-E2-O7-YeYf-MJ pJBphOx with scFv-phOx gene replaced with crtE2 from strain Otnes7 and YeYf

from C. glutamicum
This work

pCRT-YeYfEb-MJ pJBphOx with scFv-phOx gene replaced with crtYeYfEb from C. glutamicum This work
pCRT-E2Yg-2665-Yf-MJ pJBphOx with scFv-phOx gene substituted with crtE2Yg from strain Otnes7 and

crtYf from C. glutamicum
This work

a Ampr, ampicillin resistance; Cmr, chloramphenicol resistance.
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sulting PCR products (5,283 bp and 3,693 bp, respectively) were end digested
with NdeI and NotI (the recognition sites are indicated in boldface in the primer
sequences) and ligated into the corresponding sites of pJBphOx (37), yielding
plasmids pCRT-EBIE2YgYh-2665 and pCRT-EBI-2665, respectively.

(ii) pCRT-E2YgYh-2665 and pCRT-E2YgYh-O7. The crtE2YgYh regions of M.
luteus strains NCTC2665 and Otnes7 were PCR amplified from genomic DNA
using primers crtE2-F (5�-TTTTTCATATGATCCGCACCCTCTTCTG-3�) and
crtYh-R (see above). The PCR products obtained (1,615 bp and 1,618 bp,
respectively) were blunt-end ligated into the pGEM-T vector system (Promega,
Madison, WI). The resulting plasmids were digested with NdeI and NotI (the
recognition site is indicated in boldface in the primer), and the inserts were
ligated into the corresponding sites of pJBphOx, yielding plasmids pCRT-
E2YgYh-2665 and pCRT-E2YgYh-O7, respectively.

(iii) pCRT-E2YgYhX-O7. The crtE2YgYhX region of M. luteus strain Otnes7
was PCR amplified from genomic DNA using primers crtE2-F (see above) and
crtYX-R (5�-TTTTTCCTAGGAGATGGCCGCGAACATCCTG). In the result-
ing PCR product, crtYh and crtX were separated by or1008, encoding a putative
protein with no assigned function. The PCR product was end digested with NdeI
and BlnI (the recognition site is indicated in boldface in the primer), and the
3,085-bp fragment was ligated into the corresponding sites of pJBphOx, resulting
in plasmid pCRT-E2YgYhX-O7.

(iv) pCRT-E2Yg-O7 and pCRT-E2Yg-2665. The crtE2Yg coding regions of M.
luteus strains NCTC2665 and Otnes7 were PCR amplified from chromosomal
DNA using primers crtE2-F (see above) and crtYg-R (5�-TTTTTGCGGCCGC
TCACCGGCTCCCCCGGTCGGTC-3�). The PCR products obtained were end
digested with NdeI and NotI (the recognition site is indicated in boldface in the
primer sequence), and the resulting 1,247-bp fragments were ligated into the
corresponding sites of pJBphOx, resulting in plasmids pCRT-E2Yg-2665 and
pCRT-E2Yg-O7, respectively.

(v) pCRT-E2-O7 and pCRT-E2-2665. The crtE2 genes of M. luteus strains
NCTC2665 and Otnes7 were PCR amplified from chromosomal DNA using
primers crtE2-F (see above) and crtE2-R (5�-TTTTTGCGGCCGCTCATGCC
GCCGCCCCCCGGG-3�). The resulting PCR products were end digested with
NdeI and NotI (the recognition site is indicated in boldface in the primer
sequence), and the 890-bp fragments were ligated into the corresponding sites of
pJBphOx, resulting in plasmids pCRT-E2-2665 and pCRT-E2-O7, respectively.

(vi) pCRT-YgYh-O7 and pCRT-YgYh-2665. The crtYgYh regions of M. luteus
strains NCTC2665 and Otnes7 were PCR amplified from genomic DNA by
using primers crtYg-F (5�-TTTTTCATATGATCTACCTGCTGGCCCT-3�) and
crtYh-R (see above). The resulting 734-bp PCR products were end digested with
NdeI (the restriction site is indicated in boldface in the primer sequence) and
NotI and ligated into the corresponding sites of pJBphOx, resulting in plasmids
pCRT-YgYh-2665 and pCRT-YgYh-O7, respectively.

(vii) pCRT-E2-O7-YeYf-MJ. According to the gene sequences of crtE2 in M.
luteus Otnes7 and crtYeYf in C. glutamicum MJ233-MV10, four primers, crtE2-F
(5�-TGACCAACGACCGGTAGCGGAG-3�) and crtE2-i-R (5�-CCCATCCACT
AAACTTAAACATCATGCCGCCGCCCCCCGG-3�), and crtYe-i-F (5�-TGTT
TAAGTTTAGTGGATGGGTTGATCCCTATCATCGATATTTCAC-3�) and
crtYf-R (5�-TTTTGCGGCCGCTTTTCCATCATGACTACGGCTTTTC), were
used. Primers crtE2-i-R and crtYe-i-F contained homologous extensions of 21 bp
(italics) at the 5� ends as linker sequences in order to allow crossover PCR. The
primer pair crtE2-F and crtE2-i-R was used to amplify a 1,227-bp fragment
containing the crtE2 gene from genomic M. luteus DNA, and the primer pair
crtYe-i-F and crtYf-R was used to amplify an 885-bp crtYeYf-containing frag-
ment from genomic DNA of C. glutamicum MJ-233C-MV10. The resulting PCR
fragments were used as templates for PCR with the primer pair crtE2-F and
crtYe-R to amplify a hybrid DNA fragment (2,090 bp) containing crtE2 from M.
luteus and crtYeYf from C. glutamicum connected by the 21-bp linker sequence.
The resulting hybrid fragment was end digested with AgeI and NotI (the restric-
tion site is indicated in boldface in the primer sequence), and the 2,070-bp
fragment obtained was ligated into the corresponding sites of pJB658phOx,
resulting in plasmid pCRT-E2-O7-YeYf-MJ.

(viii) pCRT-YeYfEb-MJ. The crtYeYfEb genes from C. glutamicum strain MJ-
233C-MV10 (Table 1) were PCR amplified from genomic DNA using primers
crtYe-F1 (5�-TGGCTATCTCTAGAAAGGCCTACCCCTTAGGCTTTATGC
AACAGAAACAATAATAATGGAGTCATGAACATATGATCCCTATCAT
CGATATTTCAC-3�) and crtYf-R (5�-TTTTGCGGCCGCCTGATCGGATAA
AAGCAGAGTTATATC-3�). The resulting PCR product was digested with
XbaI and NotI (the restriction site is indicated in boldface in the primer se-
quence), and the 1,789-bp fragment was ligated into the corresponding sites of
pJBphOx, resulting in plasmid pCRT-YeYfEb-MJ.

All the constructed vectors were verified by DNA sequencing and transformed

by electroporation (10) into the production host strains E. coli XL1-Blue and the
lycopene-producing E. coli XL1-Blue(pAC-LYC) (8).

Extraction of carotenoids from bacterial-cell cultures. To extract carotenoids
from M. luteus strains, cells were harvested, washed with deionized H2O, and
treated with lysozyme (20 mg/ml) and lipase (Fluka Chemicals, Germany) ac-
cording to the method of Kaiser et al. (18), and the pigments were extracted with
a mixture (7:3) of methanol and acetone. For recombinant E. coli strains, 50-ml
aliquots of the cell cultures were centrifuged at 10,000 � g for 3 min, and the
pellets were washed with deionized H2O; the cells were then frozen and thawed
to facilitate extraction. Finally the pigments were extracted with 4 ml methanol-
acetone (7:3) at 55°C for 15 min with thorough vortexing every 5 min. When
necessary, up to three extraction cycles were performed to remove all visible
colors from the cell pellet. When selective extraction for xanthophylls was de-
sired, pure methanol was used. Butyhydroxytoluene (BHT) (0.05%) was added
to the organic solvent to contribute to the stabilization of carotenoids (18).
Samples for preparative high-performance liquid chromatography (HPLC) were
in addition partitioned into 50% diethyl ether in petroleum ether. The collected
upper phase was evaporated to dryness and dissolved in methanol.

Quantitative and qualitative LC-MS analyses of carotenoids in cell extracts.
Liquid chromatography-mass spectrometry (LC-MS) analyses of carotenoid-con-
taining extracts were performed on an Agilent Ion Trap SL mass spectrometer
equipped in front with an Agilent 1100 series HPLC system, including a diode
array detector (DAD) for UV/visible (Vis) spectrum recording. Quantification of
carotenoids was performed using the extracted wavelength chromatogram at
peak �max, 450 	 16 nm for sarcinaxanthin and carotenoids with corresponding
UV/Vis profiles and 470 	 16 nm for lycopene and corresponding carotenoids,
while MS detection was used to confirm the identities of known peaks for
quantification and to determine the molecular masses of unknown carote-
noids in the various cell extracts. Trans-beta-apo-8�-carotenal (Sigma) and
lycopene (Fluka) were used as standards. They were dissolved in chloroform
according to their solubilities and diluted in methanol. The correct concen-
trations of the prepared standard solutions were calculated from absorbance
measurements of the solutions and by using the specific extinction coefficients
E1%

1cm, i.e., the absorption of 1% solution in a 1-cm cuvette at the maximum
absorption wavelength, of 3,450 for lycopene and 2,590 for apocarotenal (15,
18). The standards were filtered through a syringe 0.2-�m polypropylene filter
(Pall Gelman) and stored in amber glass vessels at 
80°C under an N2

atmosphere if not used immediately.
Two HPLC protocols were used, a fast, high-throughput method for quanti-

fication of known carotenoids and a slow method with higher resolution for
qualitative detection of all carotenoids in an extract permitting determination of
the UV/Vis spectra and molecular masses of unknown carotenoids. A 2.1- by
30-mm Zorbax RR SB RP C18 column was used for the fast, high-throughput
method. The carotenoids were eluted isocratically in methanol for 5 min. The
column flow was kept at 0.4 ml/min, and 10 �l extract was injected for each run.
The slow run method was run isocratically for 25 min with a mobile phase
composition of MeOH/acetonitrile (7:3) with a 2.1- by 150-mm Zorbax SB RP
C18 column using a flow rate of 250 �l/min. Ten or 20 �l extract was injected
depending on the concentrations of carotenoids in the various extracts. The mass
spectrometer was operated in positive scan mode using chemical ionization. The
settings of the atmospheric pressure chemical ionization (APCI) source were
325°C dry temperature, 350°C vaporizer temperature, 50 lb/in2 nebulizer pres-
sure, and 5.0 liter/min dry gas.

Purification of carotenoids. For purification of carotenoids, preparative HPLC
was performed on an Agilent preparative HPLC 1100 series system equipped
with two preparative HPLC pumps, a preparative autosampler, and a preparative
fraction collector. The mobile phases were methanol in channel 1 and acetoni-
trile in channel 2. Samples (2 ml) were injected at a flow rate of 20 ml/min into
a Zorbax RP C18 21- by 250-mm preparative LC column. Online MS analysis was
performed by splitting the flow 1:200 after the column using an Agilent LC flow
splitter, and a makeup flow of 1 ml methanol/min was used to carry the analytes
to the mass spectrometer with less than a 15-s delay. The diode array detector
was used to trigger fraction collection.

Carotenoid structure determination by NMR. When appropriate, nuclear
magnetic resonance (NMR) was used for carotenoid structure determination. All
NMR spectra were recorded on a Bruker Avance 600-MHz instrument fitted
with an inverse triple resonance cryoprobe (TCI) using CDCl3 as a solvent with
trimethylsilyl (TMS) as an internal reference. 1H and 13C signals were unambig-
uously assigned with the aid of in-phase correlation spectroscopy (ip-SCOPY),
heteronuclear single-quantum coherence (HSQC), heteronuclear multiple-bond
correlation (HMBC), nuclear Overhauser effect spectroscopy (NOESY), and
HSQC–total-correlation spectroscopy (TOCSY) experiments.
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RESULTS

Analysis of carotenoids produced by M. luteus NCTC2665
and a new marine M. luteus isolate designated Otnes7. As a
basis for the current studies, we characterized the major
carotenoids synthesized by the M. luteus wild-type strain
NCTC2665. In addition, we report here one new selected
marine isolate, designated Otnes7, classified as an M. luteus
strain by 16S rRNA sequence analysis (performed by
NCIMB Ltd., Scotland) and forming colonies on LB agar
plates with higher color intensity than other wild-type M.
luteus strains (data not shown). We chose to include Otnes7
as an alternative model strain in this study, in particular to
investigate whether its genes might also be favorable for
efficient heterologous sarcinaxanthin production in E. coli
strains (see below).

Cell extracts from shake flask cultures of strain NCTC2665
were analyzed by LC-MS, and one major peak (peak 3) (Fig.
1A) was identical to that of sarcinaxanthin purified and struc-
turally identified by NMR earlier from wild-type M. luteus
strains (39). In addition, two minor peaks, peak 1 and peak 2,
were identified, with the same absorption spectra as sarcina-
xanthin (Fig. 1A). The retention time of peak 2 was equal to
that of sarcinaxanthin monoglucoside identified by NMR ear-
lier (39), while peak 1 was more polar and therefore was
predicted to represent sarcinaxanthin diglucoside (Table 2).
An analogous analysis of strain Otnes7 revealed that it pro-
duced the same type of carotenoids; however, the total carot-
enoid level was higher (190 �g/g cell dry weight [CDW]) than
that of NCTC2665 cells (145 �g/g CDW) under the conditions
tested, which was in agreement with the different colony color
intensities of the two strains.

Genetic characterization and heterologous expression of the
M. luteus sarcinaxanthin biosynthetic gene cluster. The ge-
nome sequence of M. luteus strain NCTC2665 (accession num-
ber NC_012803) has been deposited in the databases, and just
before the submission of this paper, an accompanying publi-
cation appeared in the scientific literature (47). In silico screen-
ing of the sequence data resulted in the identification of a
putative carotenoid biosynthesis gene cluster consisting of a
total of nine open reading frames, or1007 to or1015. The
genetic organization of the carotenoid (crt) genes in M. luteus
displayed certain similarities to the previously published bio-
synthetic gene clusters for the C50 carotenoids C.p.450 and
decaprenoxanthin in Dietzia sp. (41) and C. glutamicum (22),
respectively (Fig. 2). The deduced M. luteus gene products
displayed between 27% and 55% primary sequence identity to
enzymes of the decaprenoxanthin and C.p.450 biosynthetic
pathways. Based on these sequence analyses, the M. luteus
genes crtE (encoding geranyl geranyl pyrophosphate [GGPP]
synthase), crtB (encoding phytoene synthase), crtI (encoding
phytoene desaturase), crtE2 (encoding lycopene elongase),
crtYg (encoding the C50 cyclase subunit), crtYh (encoding the
C50 cyclase subunit), and crtX (encoding glycosyl transferase)
were assigned (Table 3). In addition, or1008 and or1015 en-
coded putative proteins with no assigned functions. In an at-
tempt to identify relevant transcription initiation elements, the
“neural network promoter prediction” method (http://www
.fruitfly.org/seq_tools/promoter.html) was applied to the entire
crt gene cluster, including or1015 and the upstream region

(Fig. 2). By far the highest score was observed for a nucleotide
sequence located 112 to 62 bp upstream of the crtE start codon,
suggesting that the gene cluster is transcribed as a polycistronic
operon from this promoter.

To experimentally verify that the identified M. luteus gene
cluster encoded an active sarcinaxanthin biosynthetic pathway,
the entire crtEBIE2YgYh region from NCTC2665 was cloned in
frame and under the transcriptional control of the positively
regulated Pm-xylS promoter/regulator system in plasmid
pJBphOx (37). This expression vector has many favorable
properties useful for regulated expression of genes and path-
ways at relevant levels in Gram-negative bacteria (1). The
resulting plasmid, pCRT-EBIE2YgYh-2665 (Table 1), was
transformed into the noncarotenogenic E. coli host strain XL1-
Blue, and the recombinant strain was analyzed for carotenoid
production under Pm-induced conditions (0.5 mM m-toluic
acid) over 48 h (see Materials and Methods). LC-MS analysis
of cell extracts revealed a small peak at a retention time,
absorption spectrum, and molecular mass identical to those of
sarcinaxanthin identified in the M. luteus strains (see above).
The recombinant E. coli strain produced small amounts of
sarcinaxanthin (10 to 15 �g/g CDW). No sarcinaxanthin was
detected in plasmid-free cells, thus confirming that the iden-
tified gene cluster encodes a sarcinaxanthin biosynthetic
pathway from farnesyl pyrophosphate. The biological role of
the crtX gene was experimentally confirmed (see below).

Sarcinaxanthin production levels in E. coli can be increased
150-fold (2.5 mg/g CDW) by expressing Otnes7-derived
crtE2YgYh genes in a lycopene-producing host. To investigate
the reason for the poor sarcinaxanthin production levels ob-
tained in E. coli, we established a recombinant strain, E.
coli(pCRT-EBI-2665), expressing the crtE, crtB, and crtI genes
from NCTC2665, encoding enzymes assumed to catalyze the
conversion of FPP into lycopene (Fig. 2 and Table 3). Analysis
of this recombinant strain under Pm-induced conditions (0.5
mM toluic acid) confirmed that it produced lycopene as the
sole carotenoid. However, the lycopene production yield was
low (8 to 12 �g/g CDW) and in the same range as the sarci-
naxanthin production yield obtained when the complete
crtEBIE2YgYh gene cluster was expressed (see above). These
data suggested that lycopene synthesis might be a bottleneck
for efficient sarcinaxanthin production in this E. coli host.
Therefore, E. coli XL1-Blue was transformed with plasmid
pAC-LYC (6, 8) harboring the Pantoea ananatis crtEIB genes
encoding three enzymes for biosynthesis of lycopene from iso-
prenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate
(DMAPP). LC-MS analysis confirmed that the resulting strain,
E. coli(pAC-LYC), accumulated lycopene (1.8 mg/g CDW) as
the sole carotenoid, and therefore, further carotenoid produc-
tion experiments were performed using XL1-Blue(pAC-LYC)
as a host.

We then established E. coli(pAC-LYC)(pCRT-E2YgYh-
2665) expressing the crtE2, crtYg, and crtYh genes from
NCTC2665 (Table 1). LC-MS analysis of cell extracts revealed
a total maximum carotenoid accumulation of 2.3 mg/g CDW,
and about 98% of the total carotenoid produced was identified
as sarcinaxanthin (Fig. 3, 0.5 mM inducer). These data dem-
onstrated that the M. luteus NCTC2665 crtE2YgYh gene prod-
ucts could effectively convert lycopene into sarcinaxanthin.
This result also confirmed that M. luteus genes were not effi-

VOL. 192, 2010 SARCINAXANTHIN BIOSYNTHETIC PATHWAY 5691



cient for lycopene production under the conditions tested. The
reason for this is unknown, and it was not further investigated
in the present study.

It was of interest to test if Otnes7 genes could contribute to
more efficient sarcinaxanthin production levels in this host.
Therefore, the alternative strain E. coli(pAC-LYC)(pCRT-
E2YgYh-O7) expressing the crtE2, crtYg, and crtYh genes from
Otnes7 was established. The total carotenoid production level

(2.5 mg/g CDW) of the resulting recombinant strain was
slightly higher than that of the analogous strain E. coli(pAC-
LYC)(pCRT-E2YgYh-2665) (2.3 mg/g CDW). Interestingly,
we noticed that all (100%) of the total carotenoid produced by
E. coli(pAC-LYC)(pCRT-E2YgYh-O7) was sarcinaxanthin
and no lycopene was present in these cells (Fig. 3). This dem-
onstrated very efficient lycopene conversion by using Otnes7-
derived genes, indicating that lycopene synthesis is a bottle-

FIG. 1. (A to D) HPLC elution profiles of carotenoids extracted from M. luteus strains Otnes7 (A), E. coli(pAC-LYC)(pCRT-E2YgYh-O7)
(B), E. coli(pAC-LYC)(pCRT-E2YgYhX-O7) (C), and E. coli(pAC-LYC)(pCRT-E2-O7) (D). Peak 1, sarcinaxanthin diglucoside; peak 2,
sarcinaxanthin monoglucoside; peak 3, sarcinaxanthin; peak 4, lycopene; peak 5, flavuxanthin; peak 6, nonaflavuxanthin; Peaks 4�, 5�, and 6� are
the cis isomers of 4, 5, and 6, respectively. (E) Absorption spectra of carotenoids from peaks 1, 2, and 3 (solid line) and peaks 4, 5, and 6 (dashed
line). AU, arbitrary units.
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neck for further improved sarcinaxanthin production under the
conditions tested. Therefore, to further compare the efficiency
of using Otnes7- versus NCTC2665-derived biosynthetic genes,
production analyses were performed with different Pm inducer
concentrations (Fig. 3). The results demonstrated that the
strain E. coli(pAC-LYC)(pCRT-E2YgYh-O7) produced sarci-
naxanthin at higher levels than E. coli(pAC-LYC)(pCRT-
E2YgYh-2665) under all induction conditions tested, thus con-
firming that Otnes7 genes may be preferable for efficient
sarcinaxanthin production in the E. coli host. DNA sequence
analysis of the cloned Otnes7 crtE2YgYh fragment revealed a
total of 24 nucleotide substitutions compared to the corre-
sponding NTCT2665 DNA sequence, corresponding to four
amino acid substitutions in CrtE2, five in CrtYg, and two
substitutions plus one insertion in CrtYh. Whether these se-
quence variations positively affect the expression levels or the
catalytic properties of the respective proteins remains un-
known, and it was not further investigated here.

The M. luteus crtE2 gene product catalyzes in vivo conversion
of lycopene to C45 nonaflavuxanthin and C50 flavuxanthin. To
elucidate the individual biosynthetic steps in the conversion of
lycopene to sarcinaxanthin, we established strain E. coli(pAC-
LYC)(pCRT-E2-2665) expressing the crtE2 genes from
NCTC2665 (Table 1) and analyzed it for carotenoid produc-
tion. Two different carotenoids were accumulated in the cells
in addition to lycopene (Fig. 1D); all three compounds shared

identical UV/Vis profiles. No sarcinaxanthin was detected. The
minor carotenoid had a molecular mass of 620 Da, indicating
a C45 xanthophyll compared with reported values (620 to 624
Da) (3), and the major carotenoid had a molecular mass of 704
Da, indicating a C50 xanthophyll (704 to 738 Da) (3). The
major carotenoid was purified by preparative HPLC and ana-
lyzed by NMR (see Table S1 in the supplemental material).
Inspection of 1H, 13C, and HSQC spectra revealed chemical
shifts in agreement with reported data for the acyclic C50

carotenoid flavuxanthin (24). The minor carotenoid was iden-
tified as nonaflavuxanthin on the basis of the UV/Vis profile
and the mass (Table 2). These results verified that the M. luteus
crtE2 gene encodes a lycopene elongase catalyzing the sequen-
tial elongation of the C40 carotenoid lycopene via the C45

carotenoid nonaflavuxanthin to the C50 carotenoid flavuxan-
thin. A similar analysis using the analogous strain E. coli(pAC-
LYC)(pCRT-E2-Otnes7) gave the same conclusion (data not
shown). We noticed that the relative conversion of lycopene
was substantially higher in the latter strain (79% versus 23%),
which was in agreement with the generally effective sarcina-
xanthin production obtained when Otnes7 genes were ex-
pressed (Fig. 3).

The M. luteus crtYg and crtYh genes together encode an active
C50 carotenoid cyclase catalyzing cyclization of C50 flavuxan-
thin to C50 sarcinaxanthin in vivo. To investigate if crtYg en-
coded any cyclase activity, we constructed and analyzed the
recombinant strains E. coli(pAC-LYC)(pCRT-E2Yg-O7) and
E. coli(pAC-LYC)(pCRT-E2Yg-2665) expressing the crtE and
crtYg genes from NCTC2665 and Otnes7, respectively (Table
1). The carotenoids produced by both strains were flavuxan-
thin, nonaflavuxanthin, and lycopene, and their relative abun-
dances were similar to those in strains E. coli(pAC-LY-
C)(pCRT-E2-O7) and E. coli(pAC-LYC)(pCRT-E2-2665),
respectively. No sarcinaxanthin was detected in either of the
strains. These data thus implied that the CrtYg and CrtYh
polypeptides must function together as an active carotenoid
cyclase catalyzing cyclization of flavuxanthin to sarcinaxanthin
in vivo. To analyze the specificity of this carotenoid cyclase, we
established the recombinant strains E. coli(pAC-LYC)(pCRT-
YgYh-O7) and E. coli(pAC-LYC)(pCRT-YgYh-2665) express-
ing the crtYg and crtYh genes from NCTC2665 and Otnes7, re-
spectively (Table 1). The aim was to analyze whether the
CrtYgYh cyclases could catalyze cyclization of lycopene in vivo.
HPLC analysis showed that both strains accumulated lycopene as

TABLE 2. Characteristics of carotenoids extracted from M. luteus
strain Otnes7 and from recombinant E. coli strainsa

Carotenoid
(trivial name)

�max (nm)
in the
HPLC
eluent

Molecular
mass (Da)

Retention
time (min)

Sarcinaxanthin diglucoside 414 438 467 1,028 3.0
Sarcinaxanthin

monoglucoside
414 438 467 886 4.5

Sarcinaxanthin 414 438 467 704 7.7
Flavuxanthin 445 470 501 704 8.2
Nonaflavuxanthin 445 470 501 620 13.2
Lycopene 445 470 501 536 21.3
Decaprenoxanthin 414 438 467 704 10.1
Sarprenoxanthin 414 438 467 704 8.9

a The carotenoids were dissolved in methanol and separated by HPLC using
the Zorbax C18 150- by 30-mm column (see Materials and Methods). All these
extracted carotenoids have a characteristic three-peak absorption profile (Fig.
1E), and all �max values are given.

FIG. 2. Chromosomal organization of the M. luteus sarcinaxanthin biosynthetic gene cluster presented in this study. The analogous C.
glutamicum and Dietzia sp. biosynthetic gene clusters for the C50 carotenoids decaprenoxanthin and C.p.450, respectively, are included for
comparison. Genes indicated by white arrows are suggested not to be involved in carotenoid biosynthesis.
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the only carotenoid (data not shown), confirming that the crtYgYh
gene products cannot use lycopene as a substrate. These data
confirmed that the CrtYg and CrtYh polypeptides together con-
stitute an active �-type C50 carotenoid cyclase catalyzing cycliza-
tion of flavuxanthin to sarcinaxanthin in vivo.

The M. luteus crtX gene encodes an active glycosyl trans-
ferase that can be used to produce monoglucosylated sarci-
naxanthin in E. coli. Downstream of crtYh is or1008, encod-
ing a putative protein with no significant homology to any
known proteins, followed by or1007, which encodes a
polypeptide sharing 46% primary sequence identity with the

putative glucosyl transferase protein CrtX from Dietzia sp.
CQ4 (41). To our knowledge, no analogous gene has been
found in the C. glutamicum genome sequence, and yet this
bacterium can synthesize glucosylated decaprenoxanthin
(24). The or1007 gene is depicted here as crtX (Table 3), and
to unravel its biological function, we constructed and ana-
lyzed the recombinant strain E. coli(pAC-LYC)(pCRT-
E2YgYhX-O7), which expresses the crtE2, crtYg, crtYh, and
crtX genes from Otnes7 (Table 1). The resulting HPLC
profile (Fig. 1C) revealed sarcinaxanthin as the major carot-
enoid (peak 3), but an additional, more polar carotenoid

FIG. 3. Relative carotenoid abundances in extracts from E. coli(pAC-LYC)(pCRT-E2YgYh-O7) and E. coli(pAC-LYC)(pCRT-E2YgYh-
2665) overexpressing crtE2, crtYg, and crtYh genes from M. luteus strains Otnes7 and NCTC2665 (Table 1) cultivated in the presence of various
Pm inducer concentrations (0, 0.002, 0.01, and 0.5 mM m-toluic acid). The fractions of sarcinaxanthin, lycopene, and intermediates are indicated.
Samples (three replicates) were analyzed after 48 h of cultivation to ensure maximum sarcinaxanthin production levels (see Materials and
Methods).

TABLE 3. M. luteus sarcinaxanthin biosynthetic genes and primary sequence comparison with respective homologues from biosynthesis of
decaprenoxanthin and C.p.450 in C. glutamicum and Dietzia sp. CQ4, respectively

ORFa Gene name Predicted gene product

C. glutamicum Dietzia sp. CQ4

Homologue
Primary

sequence
identity (%)

Homologue

Primary
sequence

identity (%)

or1007 crtX Glycosyl transferase (CrtX) None CrtX 43
or1008 Unknown
or1009 crtYh C50 �-cyclase subunit (CrtYh) CrtYf 31 LbtBCb 38
or1010 crtYg C50 �-cyclase subunit (CrtYg) CrtYe 32 LbtA 36
or1011 crtE2 Lycopene elongase (CrtE2) CrtEb 50 LbtBCc 52
or1012 crtI Phytoene desaturase (CrtI) CrtI 43 CrtI 53
or1013 crtB Phytoene synthase (CrtB) CrtB 41 CrtB 48
or1014 crtE GGPP synthase (CrtE) CrtE 31 CrtE 33

a ORF, open reading frame.
b The N-terminal region of LbtBC (amino acids 1 to 134) is homologous to those of M. luteus CrtYh and C. glutamicum CrtYf, respectively.
c The C-terminal region of LbtBC (amino acids 135 to 432) is homologous to those of M. luteus CrtE2 and C. glutamicum CrtEb, respectively.
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was eluted earlier (peak 2) and had a retention time and
absorption spectrum identical to those of sarcinaxanthin
monoglucoside from M. luteus Otnes 7 (Fig. 1C and E).
Another minor peak was observed with the same retention
time as sarcinaxanthin diglucoside produced by M. luteus
strains (39); however, the amount detected was too small for
a confident analysis of the mass and absorption spectrum.
About 10% of the total sarcinaxanthin produced was glu-
cosylated both in M. luteus wild-type strains and when het-
erologously produced in E. coli under the conditions tested.
These results confirmed that crtX encodes an active glycosyl
transferase that is necessary for the glucosylation of sarci-
naxanthin. Based on all the accumulated data, we could
deduce the complete biosynthetic pathway of sarcinaxanthin
and its glucosides from FPP and via lycopene in M. luteus, as
presented in Fig. 4.

Expression of a hybrid operon containing the decapreno-
xanthin cyclase genes crtYe and crtYf leads to production of
three different C50 carotenoids in E. coli. The biosynthetic
pathway for decaprenoxanthin in C. glutamicum is reported to
involve cyclization of flavuxanthin by an ε-cyclic C50 cyclase
encoded by crtYe and crtYf. At this point, the biochemical
functions of the C50 cyclase proteins in M. luteus and C. glu-
tamicum seemed to represent the major difference between the
biosynthetic pathways of sarcinaxanthin and decaprenoxan-
thin. To experimentally verify this, we established and analyzed
E. coli(pAC-LYC)(pCRT-E2-O7-YeYf-MJ) expressing a hy-
brid operon containing crtE2 from Otnes7 and crtYe and crtYf
from C. glutamicum MJ233-MV10. We expected this recombi-
nant strain to produce decaprenoxanthin. Surprisingly, LC-MS
analysis revealed that three different cyclic C50 carotenoids were
accumulated (Fig. 5), exhibiting the same UV/Vis absorbance
spectrum and mass (Fig. 1E). The retention time for peak 1 was
identical to that of sarcinaxanthin. Peaks 1, 2, and 3 represented
35%, 46%, and 19%, respectively, of the total carotenoid content
of the recombinant cells. No lycopene was detected.

All three fractions were then purified by preparative HPLC
and analyzed by NMR. The NMR data confirmed the identity
of peak 1 as sarcinaxanthin (25), while peak 3 was identified as
decaprenoxanthin (12, 13) (see Table S1 in the supplemental
material). The NMR data for the purified peak 2 (Table 4),
representing the major product, indicated a molecule that
could not be clearly distinguished from a 1:1 mixture of sarci-
naxanthin and decaprenoxanthin, so its existence had to be
confirmed by chromatographic methods. The purified fractions
were reanalyzed by LC using the slow run method (see Mate-
rials and Methods) to control its purity, and the corresponding
chromatogram clearly shows that fraction 2 is a distinct carot-
enoid different from fractions 1 and 3 (Fig. 5B and C). Peak 2
was identified as a new bicyclic asymmetric C50 carotenoid with
the systematic name 2,2�-bis(4-hydroxy-3-methyl-2-butenyl)-
�,ε-carotene. The compound exhibits one ε-cyclic and one
�-cyclic structure and thus appears to be a structural combi-
nation of sarcinaxanthin and decaprenoxanthin. This is in total
agreement with the polarities of the three carotenoids (Fig. 5),
and the compound was named sarprenoxanthin (Fig. 5 and 6).
To our knowledge, this carotenoid has not been previously
reported in the literature.

To rule out the possibility that these results were due to any
unforeseen functions of the hybrid operon as such, we estab-
lished the analogous strain E. coli(pAC-LYC)(pCRT-YeYfEb-
MJ) expressing the decaprenoxanthin genes crtYe, crtYf, and
crtEb from C. glutamicum (Fig. 2). The resulting chromato-
graphic profile and absorbance spectrum were the same as
in the hybrid construct, with relative abundance, mass, UV/
Vis profile, and retention time identical to those of the
carotenoids (data not shown). Moreover, DNA sequencing
confirmed that the expressed crt genes were wild-type C.
glutamicum sequences. Together, these results revealed that
the crtYe and crtYf genes encoded a multifunctional C50

carotenoid cyclase that could catalyze the synthesis of three
different bicyclic carotenoids. To our knowledge, this is the
first report that C. glutamicum genes can be used to synthe-
size sarcinaxanthin and sarprenoxanthin.

FIG. 4. Elucidated biosynthetic pathway for the individual steps in
the formation of sarcinaxanthin and its glucosides from lycopene.
CrtEBI, GGPP synthase, phytoene synthase, and phytoene desaturase;
CrtE2, lycopene elongase; CrtYg plus CrtYf, C50 carotenoid �-cyclase;
CrtX, C50 carotenoid glycosyl transferase.
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DISCUSSION

In this paper, we report the cloning, characterization, and
functional expression of the sarcinaxanthin biosynthetic gene
cluster from M. luteus NCTC2665, consisting of six genes (crtE,
crtB, crtI, crtE2, crtYg, and crtYh) encoding enzymes involved in
the conversion of FPP into sarcinaxanthin. By expressing single
genes and combinations of genes under the control of the
positively regulated Pm-xylS promoter/regulator system in E.
coli hosts, we discovered that sarcinaxanthin biosynthesis from
the precursor FPP proceeds via lycopene, nonaflavuxanthin,
and flavuxanthin to sarcinaxanthin (Fig. 4). M. luteus strains
synthesized both mono- and diglucosylated derivatives of sar-

cinaxanthin, and we demonstrated that the crtX gene located
proximal to the sarcinaxanthin genes encoded glycosyl trans-
ferase activity for the glucosylation of sarcinaxanthin (Fig. 2
and Table 3). No analogous glycosyl transferase-encoding gene
has been identified in the natural decaprenoxanthin producer

TABLE 4. 1H and 13C NMR assignments of sarprenoxanthina

Position 1H Multiplicityb 13C

C-1 36.0
CH-2 1.36 m 44.2
CH2-3 1.66 m 28.7

2.07 m
CH-4 5.45 m 121.4
C-5 134.4
CH-6 2.44 d (10.4) 56.6
CH-7 5.33 dd (15.4, 10.4) 130.3
CH-8 6.15 d (15.4) 138.1
C-9 135.3
CH-10 6.14 m 130.4
CH-11 6.62 m 124.9
CH-12 6.36 d (14.9) 137.4
C-13 136.4
CH-14 6.25 m 132.4
CH-15 6.63 m 130.0
Me-16 0.93 s; trans to C-7 26.8
Me-17 0.74 s; cis to C-7 16.3
Me-18 1.53 s 23.1
Me-19 1.93 s 13.16
Me-20 1.97 s 12.8
CH2-1� 1.81 m 28.0

2.27 m
CH-2� 5.41 m 126.1
C-3� 135.2
CH2-4� 4.01 s 69.2
Me-C-3� 1.67 s 13.8
C-1� 39.3
CH-2� 1.28 m 48.5
CH2-3� 1.19 m 28.9

1.73 m
CH2-4� 2.04 m 36.3

2.35 ddd (13.4, 4.2, 2.6)
C-5� 150.4
CH-6� 2.48 d (9.9) 58.5
CH-7� 5.83 dd (15.5, 9.9) 128.4
CH-8� 6.12 d (15.5) 137.6
C-9� 135.4
CH-10� 6.12 m 130.7
CH-11� 6.62 m 124.9
CH-12� 6.34 d (14.9) 137.4
C-13� 136.4
CH-14� 6.25 m 132.4
CH-15� 6.63 m 130.0
Me-16� 0.95 s; trans to C-7� 27.7
Me-17� 0.73 s; cis to C-7� 15.3
CH2-18� 4.53 s; cis to C-6� 108.1

4.76 s; trans to C-6�
Me-19� 1.98 s 13.21
Me-20� 1.97 s 12.8
CH2-1�� 1.73 m 28.4

2.26 m
CH-2�� 5.43 m 126.2
C-3�� 135.3
CH2-4�� 4.03 s 69.1
Me-C-3�� 1.66 s 13.8

a Recorded in CDCl3. Chemical shift values are expressed as � values (ppm)
from TMS.

b s, singlet; d, doublet; dd, doublet of doublets; ddd, doublet of doublet of
doublets; m, multiplet. J coupling values (Hz) are shown in parentheses.

FIG. 5. HPLC elution profiles of the carotenoids extracted from
E. coli(pAC-LYC)(pCRT-E2 ml-YeYfcg) (A); purified peak 1, sar-
cinaxanthin (B); peak 2, sarprenoxanthin (C); and peak 3, deca-
prenoxanthin (D).
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C. glutamicum. The reported presence of decaprenoxanthin
glucosides in lycopene-producing E. coli cells expressing the C.
glutamicum crtEb, crtYe, and crtYf genes led to the concomitant
suggestion that host-encoded enzymes might be responsible for
the glucosylation of decaprenoxanthin in C. glutamicum and E.
coli (22). Based on their proximal localization and similar ori-
entations, together with promoter prediction analyses, we pro-
pose that the sarcinaxanthin biosynthetic genes, including crtX,
are cotranscribed from a common promoter located upstream
of crtE in M. luteus (Fig. 2). The translational stop codons of
crtB, crtI, crtE2, and crtYg overlap the translational start codons
of their respective downstream genes, which may allow trans-
lational coupling to ensure equimolar expression and/or
proper folding of the products. Secondary-structure analysis of
the deduced gene products revealed six transmembrane helices
for the M. luteus lycopene elongase CrtE2, and both CrtYg and
CrtYh exhibited three transmembrane helices, indicating that
they are transmembrane proteins (data not shown). This is in
accordance with previous findings for carotenoid genes in
other bacteria (4).

A new marine M. luteus isolate designated Otnes7 was in-
cluded, together with the well-known M. luteus model strain
NCTC2665. By expressing Otnes7 genes in a lycopene-produc-
ing E. coli host, we achieved complete conversion of the lyco-
pene into production of 2.5 mg/g CDW sarcinaxanthin in shake
flask cultures. Our data presented here indicate that Otnes7
genes may be favorable compared to M. luteus NCTC2665
genes when high-level heterologous production of sarcinaxan-
thin is desirable. Whether these differences are due to varia-
tions in the biochemical properties of the enzymes or, alterna-
tively, different expression levels of the corresponding genes
remains unknown. Our production experiments were done in
small-scale shake flasks and without any optimization of
growth conditions. We believe that conducting controlled high-
cell-density cultivations of the recombinant E. coli strains un-
der controlled conditions should further increase sarcinaxan-

thin production yields. However, this was not within the scope
of the present study. In any case, our results implied that
engineering E. coli host strains for higher lycopene production
is presumably the immediate bottleneck for achieving in-
creased sarcinaxanthin production.

The M. luteus CrtYg and CrtYh polypeptides were shown
here to catalyze the in vivo �-cyclization of the linear C50

carotenoid flavuxanthin to bicyclic sarcinaxanthin, and this cy-
clization reaction is independent of the prior stepwise lycopene
elongation. In C. glutamicum, the C50 ε-cyclization reaction
was reported by Krubasik et al. (22) to also be catalyzed by a
heterodimeric protein encoded by crtYe and crtYf. However, in
a separate report by these authors (24), different carotenoid
intermediates were identified in C. glutamicum strains, and
thus, an aberrant decaprenoxanthin pathway with a variant
reaction sequence was proposed. Here, lycopene is trans-
formed via monocyclic C45 nonaprene to bicyclic C50 sarcinene
by two separate elongation/cyclization steps before deca-
prenoxanthin is formed by two sequential hydroxylation reac-
tions. To our knowledge, the genetic basis for this alternative
pathway is unknown. It should be noted that sarcinene has also
been detected in M. luteus cell extracts (28), but whether this is
relevant to sarcinaxanthin biosynthesis remains unclear. No
sarcinene or nonaprene intermediates were detected in the
present study. In Dietzia sp. CQ4, the conversion of the linear
C50 carotenoid intermediate C.p.496 to the bicyclic C.p.450 has
been reported to be catalyzed by a �-cyclase encoded by lbtA
and the lbtB region in the lbtBC genes. The lbtB-encoded
�-cyclase subunit appeared to be fused with a lycopene
elongase (encoded by the lbtC region in the lbtBC genes)
(41). The authors proposed a two-step sequential reaction
consisting of the stepwise elongation of lycopene by the
addition of two C5 units and subsequent C50 �-cyclization,
analogous to the reaction cascade in M. luteus proposed
here. The M. luteus CrtYgYh enzyme represents the first

FIG. 6. Diverse biochemical functions of the M. luteus and the C. glutamicum C50 carotenoid cyclases. Biosynthesis of both sarcinaxanthin and
decaprenoxanthin involves conversion of lycopene to flavuxanthin catalyzed by the lycopene elongases CrtEb and CrtE2 in M. luteus and C.
glutamicum, respectively. The M. luteus CrtYgYh polypeptides constitute a �-cyclase specifically converting flavuxanthin into sarcinaxanthin. In
contrast, the C. glutamicum CrtYgYh polypeptides constitute both �-cyclase and ε-cyclase activities and can convert flavuxanthin into three
different C50 carotenoids; decaprenoxanthin, sarcinaxanthin, and sarprenoxanthin.
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specific C50 carotenoid �-cyclase that has been reported in
the scientific literature.

Three different types of carotenoid cyclases are currently
known, and based on sequence homology, the C50 carote-
noid cyclases from Dietzia sp. and C. glutamicum have been
proposed to be members of the CrtYcd-type cyclases (21).
In contrast to other crtYcd-type cyclases, the C50 carotenoid
cyclases are not involved in lycopene cyclization (41). Tak-
ing this together with our data presented here, we suggest
that the C50 cyclases constitute a novel subtype of carote-
noid cyclases conferring �-, ε-, and �-cyclization of C50

carotenoids.
Carotenoid cyclases usually produce only one kind of ring

structure (2), but lycopene cyclase from the cyanobacterium
Prochlorococcus marinus has both �- and ε-cyclase activities
(40). Surprisingly, construction and expression of a hybrid
operon carrying the M. luteus crtE2 gene and the C50 carot-
enoid ε-cyclase genes crtYeYf from C. glutamicum resulted in
accumulation of three different C50 carotenoids in E. coli:
ε-cyclic decaprenoxanthin, �-cyclic sarcinaxanthin, and a new
molecule containing both ε- and �-rings, here designated sar-
prenoxanthin (Fig. 6). This result proved that the C. glutami-
cum cyclase encoded by crtYeYf can function both as an ε- and
a �-cyclase when expressed heterologously in E. coli, and thus,
it has not one but multiple catalytic functions under the con-
ditions tested. It was plausible to assume that the formation of
sarprenoxanthin might be an artifact of overexpression; how-
ever, the same carotenoid products were detected in extracts of
cells grown under noninduced conditions (data not shown).
These results are contradictory to previous reports (22, 24), as
neither sarcinaxanthin nor sarprenoxanthin has been identified
in cell extracts of C. glutamicum strains or in cell extracts of
recombinant E. coli strains expressing decaprenoxanthin bio-
synthetic genes.

In summary, we have unraveled the biosynthetic pathway of
the �-bicyclic C50 carotenoid sarcinaxanthin in M. luteus, in-
cluding the function of the crtX gene product as sarcinaxanthin
glycosyl transferase. In particular, our studies have generated
new and important insight into the diverse catalytic functions
of natural carotenoid cyclases as a novel class of enzymes
directing biosynthesis of structurally different C50 carotenoids.
Recently, the C40 carotenoid biosynthetic pathway of Brevibac-
terium linens was redesigned and extended by recruitment of
heterologous genes leading to production of unexpected carot-
enoids in E. coli hosts (19). As we see it, C50 cyclases should
represent interesting targets for future synthetic biology ap-
proaches aiming at generating structurally diverse carote-
noids with interesting properties that might not be present
in nature.
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