
Lasso-Path and Taut String Algorithm for
One-Dimensional Total Variation
Regularization

Lene Hagen

Master of Science in Physics and Mathematics

Supervisor: Markus Grasmair, IMF

Department of Mathematical Sciences

Submission date: June 2017

Norwegian University of Science and Technology



 



Abstract
In this thesis, we consider the minimization problem arising from a linear operator equa-
tion when applying Tikhonov regularization. In particular, we study the one-dimensional
case with total variation penalization. We present two numerical methods for the recon-
struction of the original function, both of which give exact results. The first is the taut
string algorithm, for which we assume no linear transformation of the data. The second
is a modified lasso-path algorithm, derived for the total variation regularization. The the-
sis focuses on the derivation of these algorithms. The taut string algorithm is of lower
complexity than the lasso-path algorithm, but the trade off is that it is only applicable on
non-transformed data and only computes the solution for a single regularization parame-
ter. The lasso-path is applicable on all linear transformations, and computes the solution
simultaneously for all regularization parameters in a given range. Finally, we test both of
the algorithms with a few numerical experiments. We test the taut string algorithm for a
block signal, and for moderate amount of noise we are able to reconstruct the signal. We
test the lasso-path algorithm on the same block signal for different linear operator equa-
tions, in particular for moving averages and for random measurements. In general, when
not too much noise is added, we are able to reconstruct the significant jumps of the origi-
nal signal, although not exactly. For the random matrices, with fewer measurements than
unknowns, the problem is more difficult, but we were able to find a good reconstruction if
the number of jumps in the original signal were small enough.

Sammendrag
I denne masteroppgaven ser vi på minimeringsproblemet vi får ved å legge til Tikhonov-
regularisering til en lineær operatorligning. Vi tar for oss det endimensjonale problemet
hvor vi straffer med totalvariasjon. Vi presenterer to numeriske metoder for å rekonstruere
den originale funksjonen. Begge metodene gir eksakt løsning. Den første metoden er taut
string-algoritmen. For denne metoden antar vi at det ikke er noen lineærtransformasjon
av dataene. Den andre metoden er en lasso-algoritme som er modifisert ved å utlede for
totalvariasjonsregularisering. Oppgaven fokuserer på utledningen av disse algoritmene.
Taut string-algoritmen har lavere kjøretid enn lasso-algoritmen, men den fungerer kun
på ikke-transformerte data og beregner løsningen for en enkelt regulariseringsparameter.
Lasso-algoritmen kan brukes på alle lineærtransformasjoner, og beregner løsningen for
alle regulariseringsparametre i et intervall samtidig. Til slutt tester vi begge algoritmene
med noen numeriske eksperimenter. Vi tester taut string-algoritmen for et blokksignal,
og vi klarer å rekonstruere signalet med moderat mengde støy til stede. Vi tester lasso-
algoritmen på det samme blokksignalet med forskjellige lineære likningssystemer, spe-
sielt for glidende/bevegde gjennomsnitt og for tilfeldige målinger. Generelt klarer vi å
rekonstruere de signifikante hoppene, skjønt ikke helt eksakt, når det ikke er for mye støy.
Problemet er mye vanskeligere for de tilfeldige matrisene, der vi brukte færre målinger enn
antall ukjente. Allikevel klarte vi å finne en god rekontruksjon hvis antall hopp i signalet
ikke var for stort.

i



Preface

This master thesis was written during my final four months at the Norwegian University
of Science and Technology in Trondheim. Its submission marks the completion of my
five year long integrated M.Sc. in Applied Physics and Mathematics, with specialization
Industrial Mathematics.

I would like to thank my supervisor, Associate Professor Markus Grasmair, for propos-
ing an interesting topic, and for guiding me the last year. Thank you for the countless hours
you spent helping me and answering my questions. I would also like to thank Eirik and
my family for their support.

ii



Contents

Abstract i

Sammendrag i

Preface ii

Table of Contents iii

1 Introduction 1

2 Convex Analysis 3

3 Optimality Conditions 7
3.1 Existence of Minimizers . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Optimality Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Lasso-Path Algorithm for TV Regularization 13
4.1 Continuous Dependence of α . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Main Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Derivation of Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Computational Modifications . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Taut String Algorithm 23
5.1 Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Derivation of the Method . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Numerical Experiments with Taut String Algorithm 31
6.1 Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Influence of Parameter in Reconstruction . . . . . . . . . . . . . . . . . . 32
6.3 Influence of Noise in Reconstruction . . . . . . . . . . . . . . . . . . . . 33
6.4 Piecewise Smooth Test Data . . . . . . . . . . . . . . . . . . . . . . . . 37

iii



7 Numerical Experiments with Lasso-Path Algorithm for TV Regularization 39
7.1 Reconstruction from Moving Averages . . . . . . . . . . . . . . . . . . . 39
7.2 Reconstruction from Noisy Moving Averages . . . . . . . . . . . . . . . 43
7.3 Reconstruction from Randomly Transformed Data . . . . . . . . . . . . . 45

8 Conclusion 49

References 51

iv



Chapter 1
Introduction

The problem of reconstructing a signal u0 from measurements f , also known as an inverse
problem, arises in many applications. For all measurements there will always be some
noise present, and in addition, the signal might also be transformed in some way. That is,
we have to solve an equation of the form

f = Au0 + ε (1.1)

for u0, where f is the given data, A is a transformation and ε some unknown noise.
For example, an audio signal might be subject to some form of damping in a micro-

phone or speaker, or we have a frequency dependent damping in a integrated circuit.
Another example is that of compressive sampling. There are times the cost of sampling

is so high, that we try to find a way to reconstruct the original signal by gathering fewer
measurements than there are unknown values. That is, we try to solve an underdetermined
system. An example is to limit the radiation exposure during a CT scan. The aim is to
reconstruct the best image using few measurements. This kind of sampling is referred to
as compressive sampling, or compressed sensing, which is expanded on in [1].

These are all continuous problems, and in this thesis we will try to solve a discretized
version of such a problem. We assume that u0 is the discretization of a univariate function
û0.

In particular, we will consider the problem of reconstructing u0 ∈ Rn from some
noisy data f ∈ Rm. We assume that u0 is operated on by a linear operator A ∈ Rm×n. In
practice this means that we have m measurements of an n-dimensional vector.

The transformation A can take many forms depending on the problem one is studying.
For example, it can be a discretized convolution operator, or another integral operator, or
it can be a random matrix. The latter is described in e.g. the article about compressive
sampling, [1].

We will not assume anything about A, other than that it is a real m × n matrix. The
goal of this thesis is to find a solution method to the general problem, and we will test our
method for signals subject to a few different linear operators.

1



Generally, we have m equations and m + n unknowns (u0 and ε). With no prior
knowledge of the true solution, it is difficult to find a good model to fit the data. Therefore
it is necessary to assume something about the signal u0. We assume that is it piecewise
constant with a small number of jumps.

As proposed in [9], one can try to compute the least squares estimates with a total
variation (TV) regularization term. Then for some regularization parameter α > 0 we
have the minimization problem

min
u∈Rn

1

2
‖Au− f‖22 + α‖Du‖1. (1.2)

Here D is the forward difference matrix

D =

−1 1
. . . . . .

−1 1

 . (1.3)

In Chapter 4 and 5 we derive two different algorithms for solving (1.2). The first
algorithm solves for the general case where A is any linear transformation, and the second
solves (1.2) whenA is the identity matrix. The algorithm for the latter is known as the taut
string algorithm, see e.g. [10] and [8].

The algorithm for the general case is a variant of the lasso path algorithm, which
is described in [7]. In the original lasso-path algorithm one minimizes the functional
1
2‖Au − f‖

2
2 + α‖u‖1. In our case, we have the regularization term α‖Du‖1 instead of

α‖u‖1, but up to some modifications the algorithm is still applicable.
The main outline of this thesis is as follows. In Chapter 2 we go through some theory

of convex analysis, which we need to derive the algorithms. We discuss the existence of
minimizers, and derive the optimality conditions for the problem in Chapter 3, before we
in Chapter 4 and 5 derive the algorithms. Chapter 6 takes on some numerical experiments
with the taut string algorithm, and Chapter 7 does the same for the lasso-path algorithm
for total variation.

2



Chapter 2
Convex Analysis

We go through some of the theory of convex analysis needed in later chapters. A reader
familiar with convex functions, subdifferentials and conditions for existence of optimizers
of a convex optimization problem may skip this chapter.

Definition 2.1 (Convex function). A function f : Rn → R is convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) (2.1)

for all points x, y ∈ Rn and 0 < α < 1. The function f is strictly convex if the inequality
holds strictly for all distinct points x and y.

Similarly, a function f is concave if f(αx + (1 − α)y) ≥ αf(x) + (1 − α)f(y) for
x, y ∈ Rn and 0 < α < 1. Equivalently, a function f is convex if and only if −f is
concave.

Example 2.2 (Convex function). We show that the function f : R→ R, x 7→ |x| is convex.
Take 0 < α < 1 and x, y ∈ R. Then we have

f(αx+ (1− α)y) = |αx+ (1− α)y|
≤ |αx|+ |(1− α)y|
= |α||x|+ |(1− α)||y|
= α|x|+ (1− α)|y|
= αf(x) + (1− α)f(y).

(2.2)

If we know that we are working with a differentiable function f it can be proved, cf. [5,
p. 183], that the following relation holds:

Lemma 2.3 (Convexity by first order differentiation). Let f : Rn → R be differentiable
on Rn. Then f is convex if and only if f(y) ≥ f(x) + 〈∇f(x), y − x〉 for all points
x, y ∈ Rn. The function f is strictly convex if the inequality holds strictly for all distinct
points x and y.

3



We introduce a generalization of a monotone function to higher dimensions:

Definition 2.4 (Monotone mapping). A mapping T : Rn → Rn is said to be monotonically
increasing if

〈T (x)− T (y), x− y〉 ≥ 0 (2.3)

for all x, y ∈ Rn.

If n = 1, the condition in Definition 2.4 becomes (T (x)− T (y)) · (x − y) ≥ 0 for
all x, y ∈ R. Equivalently, for any x and y such that x ≤ y we have that T (x) ≤ T (y),
which is the standard definition of a monotonically increasing scalar function. Similarly,
for a monotonically decreasing function we define the generalization to higher dimensions
by reversing the inequality in Definition 2.4. We can now define the relation between a
differentiable function f and its gradient ∇f .

Theorem 2.5 (Monotone gradient). Let f : Rn → R be differentiable on Rn. Then f is
convex on Rn if and only if its gradient∇f is monotonically increasing.

Proof. Cf. [5, p. 185].

An analogue of Theorem 2.5 also holds for concave functions. The function f is
concave if and only if its gradient is monotonically decreasing. If we know that we are
working with a twice differentiable function f , then it can be proved, cf. [5, p. 190], that
the following relation holds:

Lemma 2.6 (Convexity by second order differentiation). Let f : Rn → R be a twice
differentiable function on Rn. Then f is convex at x if and only if the Hessian of f at x,
denoted by ∇2f(x), is positive semi-definite for all x ∈ Rn. The function f is strictly
convex iff ∇2f(x) is positive definite for all x.

We have looked at several ways to characterize a convex function. Often we build func-
tions using simpler ones, which is the motivation for presenting the following convexity
preserving operation

Theorem 2.7 (Sum of convex functions). Let f1, f2, . . . , fm be convex functions and

t1, t2, . . . , tm be positive numbers. Then f :=
m∑
i=1

tifi is a convex function. If at least

one of the functions fi is strictly convex, then f is strictly convex.

Proof. For any fi satisfying (2.1) the product tifi will also satisfy (2.1) when ti > 0.
Then,

f(αx+ (1− α)y) =

m∑
i=1

tifi(αx+ (1− α)y)

≤
m∑
i=1

(αtifi(x) + (1− α)tifi(y)) = αf(x) + (1− α)f(y),

which by Definition 2.1 shows that f is convex. If at least one fi is strictly convex, then
the inequality will be strict and hence f will be strictly convex.

4



Definition 2.8 (Subdifferential). The subdifferential ∂f(x) of a convex function f : Rn →
R at x is the set of all vectors s ∈ Rn such that

f(y) ≥ f(x) + 〈s, y − x〉 (2.4)

for all y ∈ Rn. Any such vector s is called a subgradient of f .

The subdifferential is set-valued. In the case where f is convex and differentiable at x,
the subdifferential contains only one element, the vector ∇f(x). We look at a simple yet
fitting example to illustrate this concept.

Example 2.9 (Subdifferential). Again we consider the convex function f(x) = |x|. For
x 6= 0 we know that f is differentiable and hence ∂f(x) = f ′(x) = sgn(x) = |x|

x . We
know that f is not differentiable at x = 0. Inserting x = 0 in (2.4) we obtain the condition
|y| ≥ sy, which implies that 

s ≤ |y|
y

= 1 if y > 0,

s ≥ |y|
y

= −1 if y < 0.
(2.5)

Hence we have ∂f(0) = [−1, 1]. Summarized we define the notation for the subdifferen-
tial of f as

∂f(x) =
|x|
x

:=

{
sgn(x) if x 6= 0

[−1, 1] if x = 0.
(2.6)

Theorem 2.10 (Optimality condition). Let f be a convex function. Then x̄ is a minimizer
of f if and only if 0 ∈ ∂f(x̄).

Proof. We easily see when inserting s = 0 into (2.4) that we obtain f(y) ≥ f(x̄) for all
y, and hence x̄ is a minimizer. In order to prove the converse, let x̄ be a minimizer. Then
f(y) ≥ f(x̄) for all y, and hence s = 0 is a subgradient of f .

Theorem 2.11 (Linear mappings and subdifferentials). Let A ∈ Rm×n, and let g : Rn →
R be convex. Then g ◦A is convex and ∂(g ◦A)(x) = AT∂g(Ax).

Proof. Cf. [5, p. 263]

Theorem 2.12. Let f1, f2, . . . , fm be convex functions and t1, t2, . . . , tm be positive num-
bers. Then

∂

(
m∑
i=1

tifi

)
(x) =

m∑
i=1

ti∂fi(x). (2.7)

Proof. Cf. [5, p. 262].

Theorem 2.13. Let f : Rn → R be a strictly convex function. Then f has at most one
global minimizer.

5



Proof. Assume to the contrary that f has more than one global minimizer, say x̄ 6= ȳ.
Then we have f(x̄) = f(ȳ). Take the point x = 1

2 x̄+ 1
2 ȳ. Then by the strict convexity of

f we have

f(x) = f

(
1

2
x̄+

1

2
ȳ

)
<

1

2
f(x̄) +

1

2
f(ȳ) = f(x̄)

which contradicts the assumption that x̄ and ȳ are global minimizers. Hence we cannot
have more than one minimizer when f is strictly convex.

Definition 2.14. A function f : Rn → R is said to be coercive if

f(x)→∞ whenever ‖x‖ → ∞. (2.8)

This definition is equivalent to all sublevel sets of f being compact. In particular, f
is coercive if and only if for every r ∈ R there exists an M ∈ R such that ‖x‖ ≤ M
whenever f(x) ≤ r.

Theorem 2.15. Let f : Rn → R be coercive and continuous. Then f has at least one
global minimizer.

Proof. Cf. [4, p. 34].

6



Chapter 3
Optimality Conditions

Recall that we want to solve the minimization problem

min
u∈Rn

1

2
‖Au− f‖22 + α‖Du‖1. (3.1)

As we presented in the introduction, we will derive two different algorithms for solving
the problem, the taut string algorithm and the lasso-path algorithm for total variation. The
taut string algorithm solves the problem when A ∈ Rn×n is the identity operator, the
lasso-path algorithm solves the problem for any A ∈ Rm×n. Independent of which of
these algorithms we shall derive, we can still draw several common conditions that must
hold for both problems.

In Chapter 3.2, we apply the first order necessary optimality condition to the general
problem where A can be any linear operator. For the taut string algorithm, we simply have
to insert the identity matrix for A to have the same conditions. In Chapter 3.1 we explore
the existence of minimizers.

Before we start, we want to emphasize that there are other ways of deriving these
conditions and presenting them. For instance, in some cases the derivation of the dual
problem gives additional insight. Here we have only included what is necessary for our
goal.

3.1 Existence of Minimizers
We want to examine if, and when, there exists a solution to (3.1), and in which cases that
minimizer is unique. We can draw conclusions about the existence and uniqueness by
looking at the coerciveness and convexity, respectively, of the functional.

First, we examine the convexity of the functional. If we differentiate the first term
of (3.1) twice, we get that the Hessian is ∇2 1

2‖Au − f‖22 = ATA, which is positive
semi-definite. From Theorem 2.6 we then know that 1

2‖Au− f‖
2
2 is a convex function.

For the second term, the function ‖ · ‖1 is a sum of absolute values, which we know
from Example 2.2 is convex. Since all the scalars are positive, we can from Theorem 2.7

7



draw the conclusion that the functional in (3.1) is convex. Hence any solution u of (3.1) is
a global minimizer.

In the case where A is an invertible matrix, it follows that ATA is positive definite.
Hence, by the same theorems as above, ‖Au − f‖2, and consequently the whole func-
tional in (3.1), is strictly convex. Then from Theorem 2.13 we know that the minimization
problem (3.1) has at most one solution. That is, if A is invertible and we have found a
solution, we know that this is the only solution.

Further, we examine the coercivity of the functional. Let 1 denote the n × 1 vector
where all elements are equal to 1. We propose the following:

Lemma 3.1.1. If 1 /∈ ker(A), the functional in (3.1) is coercive for all α > 0. In particular
(3.1) has a solution for all α > 0.

Proof. Define the functional Fα(u) = 1
2‖Au − f‖22 + α‖Du‖1. We prove that u can

be bounded in terms of Fα(u) under the assumption 1 /∈ ker(A), which is equivalent to
showing coercivity of Fα.

Choose t > 0 and u such that Fα(u) ≤ t. We want to show that we can always find an
expression gα(t) such that ‖u‖1 ≤ gα(t), i.e., show that u is bounded.

We decompose u into

u = projker(D)u+ proj(ker(D))⊥u, (3.2)

and to shorten notation we define

T := projker(D) and Q := proj(ker(D))⊥ . (3.3)

We have already specified that we are working with D : Rn → Rn−1 as the finite
difference operator given in (1.3). Then we know that the null space of D is the set of all
constant functions:

ker(D) = {c · 1 : c ∈ R}. (3.4)

The projection of u onto the kernel of D is the constant part of u. We have

u = cu · 1+ (u− cu · 1) = cu · 1+Qu, (3.5)

where cu = 1
n 〈u,1〉. From this decomposition of u we have

‖u‖1 = ‖cu · 1+Qu‖1 ≤ |cu|‖1‖1 + ‖Qu‖1. (3.6)

If we restrict D to (ker(D))⊥, or ran(Q), we have that ker(D|(ker(D))⊥) is trivial, and
hence D|(ker(D))⊥ is injective. Since dim(ker(D)) = 1 it follows that dim(ker(D))⊥ =

n− 1, and hence D|(ker(D))⊥ : (ker(D))⊥ → Rn−1 is invertible. We can write

Qu = (D|ran(Q))
−1 ◦DQu (3.7)

which gives us

‖Qu‖1 = ‖(Dran(Q))
−1DQu‖1 ≤ ‖(D|ran(Q))

−1‖1‖DQu‖1
= ‖(D|ran(Q))

−1‖1 · ‖Du‖1.
(3.8)

8



The last inequality comes from Du = D(Tu+Qu) where Tu is a constant function, and
hence DTu = 0. Since Fα(u) ≤ t we have from (3.1) that ‖Du‖1 ≤ t

α , which gives

‖u‖1 ≤ |cu|‖1‖1 +
t

α
‖(D|ran(Q))

−1‖1. (3.9)

To find an upper bound for |cu|‖1‖1 we use the fact that

‖ATu‖1 = ‖A(cu · 1)‖1 = |cu|‖A1‖1, (3.10)

which gives us

|cu|‖1‖1 = ‖ATu‖1
‖1‖1
‖A1‖1

, (3.11)

which holds because of the assumption 1 /∈ ker(A), which is equivalent to ‖A1‖ 6= 0. We
have

‖ATu‖1 ≤ ‖ATu+AQu−AQu‖1
= ‖A(Tu+Qu)−AQu‖1
= ‖Au−AQu‖1
≤ ‖Au‖1 + ‖AQu‖1
= ‖Au+ f − f‖1 + ‖AQu‖1
≤ ‖Au− f‖1 + ‖f‖1 + ‖A‖1‖Qu‖1

≤
√
m‖Au− f‖2 + ‖f‖1 + ‖A‖1‖(D|ran(Q))

−1‖1
t

α
.

(3.12)

From (3.1) we have ‖Au− f‖2 ≤
√

2t, which gives us

‖ATu‖1 ≤
√

2mt+ ‖f‖1 + ‖A‖1‖(D|ran(Q))
−1‖1

t

α
. (3.13)

Then we have showed that if Fα(u) ≤ t we have

‖u‖1 ≤
(√

2mt+ ‖f‖1 + ‖A‖1‖(D|ran(Q))
−1‖ t

α

)
‖1‖1
‖A1‖1

+
t

α
‖(D|ran(Q))

−1‖1 =: gα(t),

(3.14)

and hence Fα is coercive and thus has a minimizer. In particular, say u minimizes Fα(u).
Then

Fα(uα) ≤ Fα(0) =
1

2
‖f‖22, (3.15)

which implies that

‖uα‖1 ≤ gα
(

1

2
‖f‖22

)
. (3.16)

9



In the case where A is invertible, we have that ker(A) = 0, and the functional in
(3.1) is therefore coercive. From theorem 2.15 we know that if the functional is coercive,
we have at least one minimizer. Combining this with the strict convexity result, we have
shown for invertible A that (3.1) has a unique, global minimizer. In the other cases when
A 6= I , any minimizer u is still a global minimizer, and it exists as long as 1 /∈ ker(A).

We will in the rest of this thesis assume that 1 /∈ ker(A) is satisfied, which implies that
there exists a minimizer. We will also assume that the minimizer is unique, even when A
is not necessarily invertible. We will come back to why and in which cases we can assume
this in the end of Chapter 4.3.

3.2 Optimality Condition
Before we apply the optimality condition to our problem we introduce the function

G : Rn → R, x 7→ α‖x‖1. (3.17)

In this way the minimization problem becomes

min
u∈Rn

1

2
‖Au− f‖22 +G(Du). (3.18)

For u to be a solution to (3.1), we know from Theorem 2.10 that 0 must be a subgradient
of I(u). That is, we must have

∂
1

2
‖Au− f‖22 + ∂(G ◦D)(u) = AT (Au− f) +DT∂G(Du) 3 0. (3.19)

Here ∂ denotes the subdifferential, which we defined in Definition 2.8. This general-
ization of the derivative is necessary in the cases where the function we are working with
is not differentiable in all points, as is the case for G when (Du)i = 0.

The subdifferential is set valued, hence the inclusion sign in (3.19). We can rewrite the
expression by introducing a new variable, say p, such that (3.19) becomes

0 = AT (Au− f) +DT p where p ∈ ∂G(Du). (3.20)

Now we have a reformulated optimality condition which is perhaps easier to work with.
In this way we have separated out the element of (3.19) that is set valued into its own
problem.

To sum up we have now shown that the vector u is a minimizer of (3.18) if and only if

DT p = AT f −ATAu where p ∈ ∂G(Du). (3.21)

Now we take a closer look at the expression ∂G(Du). By following the same argumen-

tation as in Example 2.9, we see that the jth element of the vector ∂G(Du) is α
|(Du)j |
(Du)j

.

Here we use the same definition of the notation as in the example:

|(Du)j |
(Du)j

:=

{
sgn((Du)j) if (Du)j 6= 0,

[−1, 1] if (Du)j = 0.
(3.22)

10



Hence

p ∈ ∂G(Du)⇐⇒

{
pi = α · sgn((Du)i) if (Du)i 6= 0,

|pi| ≤ α if (Du)i = 0.
(3.23)

Now we look at the system of equations

DT p = AT f −ATAu. (3.24)

We know that for (3.24) to be satisfied, we must have

AT f −ATAu ∈ ran
(
DT
)

(3.25)

which is equivalent to
AT f −ATAu ∈ ker(D)⊥. (3.26)

Recall that the null space of D is the set of all constant functions:

ker(D) = {c · 1 : c ∈ R}. (3.27)

The orthogonal complement of ker(D) is consequently

(Ker D)
⊥

= {x : c〈x,1〉 = 0, x ∈ Rn, c ∈ R} = {x : 〈x,1〉 = 0, x ∈ Rn}. (3.28)

Then, for (3.26) to be satisfied we must have that

1T
(
AT f −ATAu

)
= 0, (3.29)

or, written using summation:
n∑
i=1

(
AT f −ATAu

)
i

= 0. (3.30)

Hence for u to be a solution to (3.1) it is necessary that
n∑
i=1

(
AT f

)
i

=

n∑
i=1

(
ATAu

)
i
. (3.31)

Further, to illustrate the system in (3.24), we have in vector form

DT p =



−p1
p1 − p2

...
pj−1 − pj

...
pn−1

← row j.
(3.32)

We see that if we take the cumulative sum of DT p we get a vector containing only one pj
in each element. This suggests the following. We take the cumulative sum of the system
of equations in (3.24) and rearrange the terms. Then we get the new system

pj =

j∑
i=1

(
ATAu−AT f

)
i
, for j = 1, . . . , n− 1. (3.33)

11



For the last element, all pjs cancel, and we are left with

n∑
i=1

(
ATAu−AT f

)
i

= 0, (3.34)

which is the same restriction we arrived at in (3.31).
Taking the cumulative sums is an invertible operation. Hence the equations we derived

here are still sufficient optimality conditions. We sum up the results in the following
theorem:

Theorem 3.2.1. The vector u is a minimizer of (3.1) if and only if the following are
satisfied:

pj =

j∑
i=1

(
ATAu−AT f

)
i

for j = 1, . . . , n− 1, (3.35)

n∑
i=1

(
ATAu−AT f

)
i

= 0, (3.36)

pi = α · sgn((Du)i) if (Du)i 6= 0, (3.37)
|pi| ≤ α. (3.38)

The results we arrived at here are what we will continue with in the derivation of the
algorithms. We make a junction here, as the continued work with each of the algorithms
differ from this point on.

12



Chapter 4
Lasso-Path Algorithm for TV
Regularization

In this chapter we will present the lasso-path algorithm for total variation for solving the
problem given in (3.1). The algorithm is named such, because it is a variant of the lasso-
path algorithm, which is described in [7]. In the original lasso algorithm one minimizes
the functional 1

2‖Au−f‖
2
2+α‖u‖1. In our case, we have the regularization term α‖Du‖1

instead of α‖u‖1, but up to some modifications the algorithm is still applicable.
In Chapter 3.2 we derived the optimality condition for the problem, which we will use

here to derive the algorithm. We repeat both the minimization problem and the optimality
conditions here for readability. We want to solve

min
u

1

2
‖Au− f‖22 + α‖Du‖1. (4.1)

The optimality conditions states that (u, p) is the primal-dual solution to (4.1) if and only
if the following are satisfied:

pj =

j∑
i=1

(
ATAu−AT f

)
i

for j = 1, . . . , n− 1, (4.2)

n∑
i=1

(
ATAu−AT f

)
i

= 0, (4.3)

pi = α · sgn((Du)i) if (Du)i 6= 0, (4.4)
|pi| ≤ α. (4.5)

For simplicity, we will often in the following chapters denote (4.1) as Pα. The primal-
dual solutions (u, p) are dependent of α, therefore we use the notation (uα, pα) as the
solution to Pα.

In Chapter 4.1 we show that both the primal solution uα and the dual solution pα are
continuously dependent of α. We will need this result later in Chapter 4.3, where we

13



derive the lasso-path algorithm for total variation. At the end of Chapter 4.3 we revisit
the assumption of uniqueness of solutions and explain why the assumption we made in
Chapter 3.1 holds. Chapter 4.2 presents the main idea of the algorithm. In Chapter 4.4 and
4.5 we discuss computational simplifications and modifications we made.

4.1 Continuous Dependence of α
Lemma 4.1.1. A sequence (vk) ∈ Rn converges to v∗ ∈ Rn if and only if every subse-
quence vk′ has a subsequence vk′′ that converges to v∗.

Proof. If a sequence (vk) converges to v∗ , then clearly every subsequence has a subse-
quence that also converges to v∗, namely the subsequence itself. To prove the converse,
we assume that the sequence (vk) does not converge to v∗. Then there exists an ε > 0 and
a subsequence vk′ such that ‖vk′ − v∗‖ > ε and then vk′ does not have a subsequence that
converges to v∗, and we have a contradiction.

Theorem 4.1.2. Denote the minimization problem in (3.1), with regularization parameter
α, as Pα. Assume Pα has a unique solution, and let uα, pα be the unique primal-dual
solution. Then the function α 7→ (uα, pα) is continuous.

Proof. Denote (uαk
, pαk

) as the unique primal-dual solutions of Pαk
. Let α̂ > 0 and

let αk → α̂. Then (3.35)–(3.38) is satisfied for α = αk. As we proved in the proof for
Lemma 3.1.1, any solution uα to Pα is bounded. In particular, ‖uα‖1 ≤ gα( 1

2‖f‖
2
2) where

the function g is defined in (3.14). We have gαk
( 1
2‖f‖

2
2) → gα̂( 1

2‖f‖
2
2) < ∞, therefore,

the sequence (uαk
)k is bounded. The sequence (pαk

)k is clearly also bounded, because is
satisfies (4.5). The Bolzano-Weierstrass theorem states that any bounded sequence in Rn
has a convergent subsequence. We denote the subsequence of (uαk

, pαk
) as (uαk′ , pαk′ )

and its limit as (u∗, p∗).
Now we need to show that (u∗, p∗) satisfies (3.35)–(3.38) for α = α̂. We see that

(3.35), (3.36) and (3.38) are clearly satisfied. If (Du∗)j 6= 0 then there exists a k′ large
enough such that (Duαk′ )j 6= 0 while sgn((Du∗)j) = sgn((Duαk′ )j).

Since uαk′ is a solution to Pαk′ , we have that (pαk′ )j = αk′sgn((Duαk′ )j) when
(Duαk′ )j 6= 0 which in the limit gives us (p∗)j = α̂sgn((Du∗)j). Hence all the optimality
conditions (3.35)–(3.38) are satisfied, and (u∗, p∗) is a solution to Pα̂. Since we have
assumed uniqueness of solutions, we have that (u∗, p∗) = (uα̂, pα̂).

We want to show that (uα, pα) → (uα̂, pα̂) when α → α̂. We have shown that every
subsequence (uαk

, pαk
) has a subsequence (uαk′ , pαk′ ) that converges to (uα̂, pα̂). Then,

by Lemma 4.1.1 we have shown that (uα, pα)→ (uα̂, pα̂), and hence proven continuity.

4.2 Main Idea
The lasso-path algorithm for total variation is an iterative algorithm. In each step it solves
Pα for a range of α-values. More exactly, in the range of α-values, the algorithm finds
a general expression for the solution, dependent of α. This results in an algorithm that
solves Pα for all parameter values in the given range.

14



The algorithm works its ways through decreasing values of α, and for each iteration
the number of jumps in the solution changes. The main idea is to start with a constant
solution uα which one obtains for all α-values greater than some lower bound, say α0.
Then for α-values lower than α0, we find a general solution with one jump that is valid
until we reach some lower bound, say α1. Again, we find a new solution, now with two
jumps, that is valid in a new interval. We continue this process until we reach the desired
number of jumps in the solution, or until we reach some predetermined value of α.

Finding the new α-value for where the characteristics of the solution changes is done
by finding the smallest step in the direction of decreasing α, for which the optimality
conditions no longer hold. Then, because the solutions are continuously dependent of
α, we find where the new jump appears or disappears. Also, we do not have to make the
distinction between the solutions at these α-knot-points. That is, say u1α is the solution that
is valid for α ≥ α0, and u2α is the solution for α1 ≤ α ≤ α0, then we have u1α0

= u2α0
.

4.3 Derivation of Algorithm
We start by considering if a constant function can be a solution to (4.1). (One would expect
this to be the case for really large values of α.) We see what the optimality conditions yield,
and for which values of α a constant function is a solution.

Now let u be a constant function, which means we can write

u = c · 1, (4.6)

for some c ∈ R. Then u is a minimizer of (4.1) if and only if the conditions in (4.2)–(4.5)
are satisfied. Of course we don’t need to check condition (4.4) since we have assumed u
is constant and hence (Du)i = 0 for all i = 1, . . . , n − 1. We start with condition (4.3):
we need

n∑
i=1

(
ATA(c1)−AT f

)
i

= 0, (4.7)

which is the same as

1T
(
ATA(c1)−AT f

)
= c‖A1‖22 − 〈1, AT f〉 = 0. (4.8)

Hence for a constant function u = c · 1 to be a minimizer we must have

c =
〈1, AT f〉
‖A1‖22

. (4.9)

From condition (4.5) and (4.2) we have

|pj | ≤ α if and only if |
j∑
i=1

(
ATAu−AT f

)
i
| ≤ α, (4.10)

which by inserting for u, and then c, leads to∣∣∣∣∣
j∑
i=1

(
〈1, AT f〉
‖A1‖22

·ATA1−AT f
)
j

∣∣∣∣∣ ≤ α. (4.11)

15



Since we assume uniqueness of solutions, we have that (4.11) holds for a certain α if and
only if the solution u is given by

u =
〈1, AT f〉
‖A1‖22

· 1. (4.12)

Then the dual solution p is given by

pj =

j∑
i=1

(
〈1, AT f〉
‖A1‖22

·ATA1−AT f
)
j

. (4.13)

Now we define

α0 = max
j

∣∣∣∣∣
j∑
i=1

(
〈1, AT f〉
‖A1‖22

·ATA1−AT f
)
j

∣∣∣∣∣ = max
j
|pj |. (4.14)

Then if α0 ≤ α <∞, we know that u and p as given in (4.12) and (4.13) are the solutions
to Pα.

Now, if α < α0 we know that a constant function can no longer be a solution to (4.1),
and must hence contain at least one jump. We assume that the maximum in (4.14) is
obtained in a single coefficient. From this assumption we can only have that one jump
appear at the time. Then, when α = α0, because the solution (uα, pα) is continuously
dependent of α, as shown in Chapter 4.1, we know that uα0 obtains a jump in the index
arg maxj |pj |.

As we have seen, for α-values in the interval [α0,+∞), the solution to Pα remains the
same, and with zero jumps. Now, as we find the α-value where the solution obtains a jump,
we will see that this property will characterize the solution in the range α1 < α < α0,
where α1 represents a value where the numbers of jumps in the solution changes again. In
other words, the solution uα will always have one jump when α1 ≤ α < α0. Then, for a
given α2, when α2 ≤ α < α1, the solution will have two jumps.

In general, in the range of α-values where the solution uα has a given number of jumps,
we remark that the actual solutions still changes. This is because we find an expression
for the solution uα dependent of α, the number of jumps, the sign of the jumps and where
the jumps appear, which holds for the whole interval. Therefore, the main focus is to
determine for which values of α the number of jumps of the solution changes, where the
jumps appear and what sign the jumps have.

As in (4.14), where we needed the constant solution to find the α-value where the
solution obtains a jump, we will always need the solution in the previous step to find the
α-value where the number of jumps changes. That is, we need to work iteratively through
the decreasing values of α and ”solve” the problem in each step.

In summary, we start with α so large that the solution is constant. From this constant
solution we find α0, the α-value where the solution obtains a jump. We formulate this new
one-jump solution, depending on α, and find for which α-value a new jump appears. We
continue this until we reach the desired α-value, or until we obtain the desired number of
jumps.

We introduce the following notation to show which iteration we are in. Let the constant
solution u discussed previously be denoted u0, and its corresponding dual p0.

16



Then
α0 = max

i
|p0i |, (4.15)

i1 = arg max
i

|p0i |. (4.16)

We also need to keep track of the sign of the jump that appear at i1. We define

si1 = sgn(p0i1). (4.17)

Hence, we have that
p0i1 = αsi1 . (4.18)

Now, our goal is to find an expression for u1α and find α1, such that u1α is a valid
solution to Pα, when α1 ≤ α ≤ α0. We know that for α ∈ [α1, α0], the solution u1α has a
jump at i1.

Let I11 = [1, . . . , i1] and I12 = [i1 + 1, . . . , n] denote the intervals over which u1α
is constant. Also, let 1I denote the n × 1 vector with ones on the interval I , and zeros
otherwise:

(1I)i =

{
0 if i /∈ I,
1 if i ∈ I,

(4.19)

or, in vector form
1I = [0, . . . , 0, 1, . . . , 1,︸ ︷︷ ︸

I

0, . . . , 0]T . (4.20)

We use the notation c11(α) and c12(α) to denote the parameter dependent coefficients of u1α,
such that we can write

u1(α) = c11(α)1I11 + c12(α)1I12 =

2∑
j=1

c1j (α)1I1j . (4.21)

Now if we multiply (3.24) by each of the vectors 1I11 ,1I12 we get

1TI11
DT p = −pi1 = −αsi1 = 1TI11

(
AT f −ATAu

)
,

1TI12
DT p = pi1 = αsi1 = 1TI12

(
AT f −ATAu

)
.

(4.22)

Inserting for (4.21), we get

−αsi1 = 1TI11

(
AT f − c11(α)ATA1I11 − c

1
2(α)ATA1I12

)
,

αsi1 = 1TI12

(
AT f − c11(α)ATA1I11 − c

1
2(α)ATA1I12

)
.

(4.23)

Now we can solve for c11(α), c12(α). We get(
c11(α)
c12(α)

)
= S−11

[(
1T
I11
AT f

1T
I12
AT f

)
+ α

(
si1
−si1

)]
, (4.24)

17



where

S1 =

[
1T
I11
ATA1I11 1T

I11
ATA1I12

1T
I12
ATA1I11 1T

I12
ATA1I12

]
. (4.25)

(Here the subscript 1 in S1 represents the iteration index.) To shorten the notation, we
define the vectors

c1(α) =

(
c11(α)
c12(α)

)
, d1 = S−11

(
1T
I11
AT f

1T
I12
AT f

)
and e1 = S−11

(
si1
−si1

)
, (4.26)

so we have
c1(α) = d1 + αe1. (4.27)

Now if we insert α = α0 in (4.27), we get the constants c11, c
1
2, which would give us the

one-jump solution to Pα0
. But this is not our goal. We continue by finding the expression

for u1α. By inserting (4.27) into (4.21), we get

u1(α) =

2∑
j=1

(
d1j + αe1j

)
1I1j (4.28)

To shorten notation we define d̂1 =
2∑
j=1

d1j1I1j and ê1 =
2∑
j=1

e1j1I1j . Inserting u1(α) into

(4.2), we have

p1j (α) =

j∑
i=1

(
ATAu1(α)−AT f

)
i

=

=

j∑
i=1

(
ATAd̂1

)
i
+ α

j∑
i=1

(
ATAê1

)
i
−

j∑
i=1

(
AT f

)
i
,

(4.29)

which we shorten as
p1j (α) = ψ1

j + αξ1j − ϕj . (4.30)

Now we have found the solution u1α and p1α for α1 ≤ α ≤ α0, where α1 remains to be
found. We know condition (4.5) is satisfied in that interval, i.e.,

|p1j (α)| ≤ α when α ∈ [α1, α0]. (4.31)

To find where the solution obtains a new jump, that is, to find α1, we must solve

‖p1(α)‖∞ = α for α < α0. (4.32)

That is, we need to find the largest α < α0 such that |p1j (α)| = α for some j. Specifically,
we solve

p1j (α) = ±α (4.33)

for α for each j = 1, . . . . , n− 1. Using the notation in (4.30), we denote the solutions as

α̂±j =
ψ1
j − φ1j
±1− ξ1j

. (4.34)

18



The values of α̂±j are the α-values for when the corresponding constraint (4.5) holds with
equality. Then, since p(α) is linear in α, the largest of the α̂±j -values correspond to the
first element in the vector p for which the restriction (4.5) does not hold when we decrease
α, and in turn the corresponding index at which we obtain a new jump. Hence, we set

α1 = max
i
{|α̂±i | : 0 < α̂±i < α0}. (4.35)

In that case, we obtain a new jump in index j, where

j = arg max
i
{|α̂±i | : 0 < α̂±i < α0}, (4.36)

and the sign of the jump is

sj = sgn(p1j ). (4.37)

Now we follow the same procedure as is the previous iteration: we find the index and
the sign of the new jump, and define the new expression for the solution u2(α). From this
we derive the S2-matrix, and the d2- and e2-vectors. We then find c2(α), u2(α) and then
p2(α). By solving ‖p2(α)‖∞ = α for α < α1, we find α2, where the solution obtains a
new jump. Then we know u2(α) is valid for α ∈ [α2, α1]

To generalize, we now assume that we are in a later iteration r where we have found
that ur(α) has k jumps in the indices i1 < . . . < ik, with signs si1 , . . . , sik . (The reason
we do not assume k = r, is because a jump may disappear. We will discuss this case
shortly.) Then u is piecewise constant over k+1 intervals. We denote these intervals as Irj ,
for j = 1, . . . , k+1. We define the interval Irj := [ij−1 +1, . . . , ij ]

T for j = 2, . . . , k−1.
The first and last intervals are, respectively, Ir1 = [1, . . . , i1]T and Irk+1 = [ik+1, . . . , n]T .
Then we can write u as

ur(α) =

k+1∑
j=1

crj(α)1Irj . (4.38)

Following the same argumentation as before, we get the system

 cr1(α)
...

crk+1(α)

 = S−1r


 1Ir1A

T f
...

1Irk+1
AT f

+ α


si1
...

sij − sij−1

...
−sik



 , (4.39)

where

Sr =

 1TIr1
ATA1Ir1 · · · 1TIr1

ATA1Irk+1

...
. . .

...
1TIrk+1

ATA1Ir1 · · · 1TIrk+1
ATA1Irk+1

 . (4.40)

19



Again, we define the vectors

cr(α) =

 cr1(α)
...

crk+1(α)

 , dr = S−1r

 1Ir1A
T f

...
1Irk+1

AT f

 , er = S−1r


si1
...

sij − sij−1

...
−sik

 , (4.41)

so (4.39) becomes
cr(α) = dr + αer. (4.42)

Define d̂r =
k+1∑
j=1

drj1Irj and ê1 =
k+1∑
j=1

erj1Irj . Then ur(α) = d̂r + αêr, and

prj(α) =

j∑
i=1

(
ATAd̂r

)
i
+ α

j∑
i=1

(
ATAêr

)
i
−

j∑
i=1

(
AT f

)
i

= ψrj + αξrj − ϕj .

(4.43)

Say ur(α) is the solution for α ∈ [αr, αr−1] where αr is still unknown. Denote αs as
the α-value calculated by solving ‖pr(α)‖∞ = α for α < αr−1. The solution yields

αs = max
i
{|α̂±i | : 0 < α̂±i < αr−1}, (4.44)

where
α̂±i =

ψri − φri
±1− ξ1i

. (4.45)

That is, αs is the value of α where the next jump appears. Denote the index where the
jump appears as

̂ = arg max
i
{|α̂±i | : 0 < α̂±i < αr−1}, (4.46)

and the sign of the jumps as

ŝ =

{
+1 if αs was obtained from α̂+

i ,

−1 if αs was obtained from α̂−i .
(4.47)

Lastly, we need to consider that a jump may disappear. We might for some α-value
have that two adjacent constants in cr(α) are equal. That is, the jump between them disap-
pears. If we have that crj(αq) = crj+1(αq) for αq < αr−1, we know that the corresponding
jump at ij is the first to disappear when we are decreasing α.

Therefore, in each iteration we need to calculate the α̃js that solve

crj(α) = crj+1(α), (4.48)

for j = 1, . . . , k, given that ur(α) has k jumps. The solution is

α̃j =
drj − drj+1

erj+1 − erj
for j = 1, . . . , k, (4.49)

20



and hence
αq = max

j
{α̃j : α̃j < αr−1}, (4.50)

and
ij = arg max

j
{α̃j : α̃j < αr−1}, (4.51)

where the maximum is only over indices of current jumps. To sum up, say we are in
iteration r. Let αs, as defined in (4.44), denote the α-value where the next jump appear,
and αq , as defined in (4.50), denote the α-value where the next jump disappear. Define

αr = max{αs, αq}. (4.52)

Then the solution ur(α) is valid for α ∈ [αr, αr−1] If max is attained for αq we must
remove the jump at index ij . If it is attained for αs, we add a new jump at index ̂ with
sign ŝ as defined in (4.47). We continue the iterations until we reach a desired α-value, or
until we obtain the desired number of jumps. Using the latter as a stopping criterion one
must keep in mind that jumps might be deleted, so one can reach a given number of jumps
in the solution several times.

Remark. We revisit the question of unique minimizers. Before we derived the lasso-path
algorithm for total variation, at the end of Chapter 3.1 we assumed that the minimizer was
always unique, even when A was not invertible. Now, with more insight to the solution
method, we see that this is almost correct. We know that we have a unique solution as
long as S is invertible. If we add the assumption that rank(A) = m, where m ≤ n, we
can expect that S is invertible as long as the solution u has no more than m jumps. So if
we restrict the algorithm to stop when the solution has reached m jumps, we know that the
solutions are unique for each α.

4.4 Simplifications

We bring attention to a computational simplification we can use when calculating the new
S matrix. As we notice, each row and column in S corresponds to an interval Iij . By
correspond, we mean that Iij is used to calculate each element in the row and column.
Specifically, an interval Iij corresponds to the jth row and column of S.

When we obtain a new jump in the solution, say at node l where ij−1 < l < ij , where
we already have jumps at ij−1 and ij , we have to split the interval Ij into two. When
it comes to calculating S, this means that we only have to update the row and column
corresponding to Ij , namely row j and column j. Since we gain a jump, we have to
”split” row/column j by inserting an adjacent row and column. Then we insert the correct
calculations in the two rows and columns corresponding to the old row j and column j.

In the event we lose a jump, we have to delete the corresponding row and column, and
update the row below and the column to the right.

Another trait worth noticing is that uα is linearly dependent of α. It follows that we
only need to store the solutions at the nodes where the number of jump changes. For

21



example, say we have the solutions uαi and uαi+1 . Then we can find the solution uα for
any α such that αi+1 < α < αi by

u(α) =
α− αi+1

αi − αi+1
uαi +

αi − α
αi − αi+ 1

uαi+1 . (4.53)

4.5 Computational Modifications
We present briefly the modifications needed to make the code work properly.

A problem we ran into was that when a jump was added, it was immediately deleted
in the following iteration, or if a jump was deleted, it was added back again in the next
iteration. This was probably due to rounding error. In the case where a jump is added to
the solution, say where the solution is valid for α ∈ [αk+1, αk], the size of the jump is 0
for α = αk. Therefore, when we calculate α̃-values for when jump disappears, we should
find that the α̃-value corresponding to the newly added jump is equal to αk, but because
of rounding error it is slightly smaller. Hence, it was chosen as the next α-value, αk+1,
and the jump was deleted again. We solved this problem by demanding that a newly added
or deleted jump could not, respectively, be deleted or added again in the next iteration.
In the implementation we solved this by making a temporary index containing the newly
added or deleted jump, and then force to ignore this index in the next iteration by setting
its corresponding α̂- or α̃ value to −∞.

We also experienced that ‖p‖∞ ≤ α was not always satisfied, and that we obtain a
jump in the wrong direction in the solution. These problems can arise from the same
circumstance: say two adjacent values of p are almost equal and gives the α-value for
when a new jump is added, that is, pj(α) ≈ pj+1(α) ≈ α. Then we have two cases that
can go wrong. Either, the solution is supposed to obtain two new jumps, in j and j + 1,
where the first jump appears for αk and the second for αk+1 = αk − ε for some ε > 0.
What might happen, is that in the given iteration the second jump is added and the first
jump is not found. Then, in the next iteration, the first jump might have a corresponding
α̂-value that is larger than the α-value in the previous iteration, and therefore that jump is
never found.

The other case is that the solution is only supposed to obtain one of the jumps, but due
to rounding error the algorithm adds the wrong jump, which resulted in a solution with a
jump in the wrong direction.

Both of these cases results in an invalid solution. To solve this problem, we check in
each iteration that ‖p‖∞ ≤ α is satisfied. If we find a value of p which is greater than
α, we add the corresponding index to the solution. We also check that the sign of the
reconstructed jumps are the same as the sign of the corresponding values of p. If that is
not the case in an index, we remove the jump from the index set and update the solution.

22



Chapter 5
Taut String Algorithm

In this chapter we derive the taut string algorithm. We remind the reader that the mini-
mization problem we are solving is

min
u

1

2
‖u− f‖22 + α‖Du‖1. (5.1)

We start by stating the optimality conditions in Chapter 5.1, before we continue with de-
riving a new, equivalent problem. In Chapter 5.2 we finish deriving the algorithm. We also
discuss the complexity of the algorithm and compare it to the lasso-path algorithm.

5.1 Optimality Conditions
By inserting for A = I into the optimality conditions (3.35)–(3.38), we see that the con-
ditions (3.37) and (3.38) remain the same, but (3.35) and (3.36) simplify to

0 =

i∑
j=1

uj −
i∑

j=1

fj − pi for i = 1, . . . , n− 1, (5.2)

0 =

i∑
j=1

uj −
i∑

j=1

fj for i = n. (5.3)

We denote Fu(i) :=
∑i
j=1 uj and Ff (i) :=

∑i
j=1 fj . Our aim is to derive a new problem

depending on Fu and then solve for u. We define Fu(0) = Ff (0) = 0 such that we can
find

ui = Fu(i)− Fu(i− 1) for i = 1, . . . , n. (5.4)

With the new notation (5.2) and (5.3) become

0 = Fu(i)− Ff (i)− pi for i = 1, . . . , n− 1, (5.5)
0 = Fu(i)− Ff (i) for i = n. (5.6)

23



We will use (5.5) and (5.6) to derive two other conditions depending on (Du)i. First, we
know that if (Du)i 6= 0 then pi ∈ |(Du)i|/(Du)i is either −α or +α. Hence we obtain
for i = 1, . . . , n− 1

Fu(i) = Ff (i) + pi, (5.7)

or, more specifically,

Fu(i) =

{
Ff (i) + α if (Du)i > 0,

Ff (i)− α if (Du)i < 0.
(5.8)

If (Du)i = 0 we obtain

|Ff (i)− Fu(i)| ≤ α for i = 1, . . . , n− 1. (5.9)

The conditions derived here characterize a new problem. Finding a minimizer u to the
original problem (5.1) is equivalent to finding Fu ∈ Rn+1 such that these conditions are
satisfied. We state this as a theorem:

Theorem 5.1.1. The vector u is a minimizer of (5.1) if and only if we have that ui =
Fu(i)− Fu(i− 1), where Fu ∈ Rn+1 satisfies

T1 Fu(0) = Ff (0) = 0,

T2 Fu(n) = Ff (n),

T3 Fu(i) =

{
Ff (i) + α if (Du)i > 0

Ff (i)− α if (Du)i < 0,
for i = 1, . . . , n− 1,

T4 |Ff (i)− Fu(i)| ≤ α for i = 1, . . . , n− 1.

Reinterpreting the Solution Vectors
Until now we have regarded, appropriately, u and Fu as vectors with respectively n and
n+ 1 elements. To gain more insight to our problem we want to change this perception of
u and Fu. We do this to make the upcoming argumentation easier to follow. Additionally
it allows for some explanatory figures which also help give us a better understanding.

Thus, without loss of generality, we interpret in the following u and Fu as (non dis-
crete) functions on the domain [0, n]. More specifically, u is regarded as a piecewise
constant spline function, and Fu as a piecewise linear spline function. We take u such that
it is constant between the nodes 0, 1, . . . , n. Hence for the ith element of the vector u, ui,
we have that the function u is constant equal to ui on (i − 1, i], for i = 1, . . . , n. For Fu
we have that the function takes the value Fu(i) in node i, and is linear between the nodes
0, 1, . . . , n. Hence the function Fu can be interpreted as the linear interpolation between
the points Fu(i), for i = 0, . . . , n.

The relation Fu(i) =
∑i
j=1 uj implies that ui is the slope of Fu between node i and

i + 1. Hence ui represent the derivative of Fu between node i and i + 1. Analogously, f
and Ff can be interpreted in the same way as u and Fu, respectively.

24



5.2 Derivation of the Method
With this new interpretation of u, Fu, f and Ff in mind, we go through and reinterpret the
conditions T1-T4. Condition T1-T2 states that the function Fu starts in the point (0, 0)
and ends in (n, Ff (n)). From T3-T4 we read that Fu(i) must lie in a tube of diameter
2α centered around Ff (i) for i = 1, . . . , n − 1. Since Fu is linear between the nodes we
can ”close” the tube with a linear spline between the end points and the upper and lower
bounds, and state that the solution Fu must lie in this closed tube. See figure 5.1, left, for
an illustration of such a tube.

Figure 5.1: The figure to the right shows an example of a tube with radius α = 2 centered around
Ff , where Ff is constructed from 25 randomly generated data points fi between −2.5 and +2.5.
The black lines represent the walls of the tube, Ff ±α, and the red line is the center of the tube, Ff .
In the figure to the right, the black lines represent the same walls as in the figure to the left. The red
line represents the solution Fu, which resembles a taut string.

Here we have used 25 randomly generated numbers between −2.5 and +2.5 for the
data points fi. We set α = 2, and included the walls of the tube, Ff + α and Ff − α as
well as the center Ff .

It is shown in [3] that finding the minimizer u in Theorem 5.1.1 is equivalent to min-
imizing the length of the graph of Fu inside the tube. Therefore we can interpret Fu as
a taut string fixed at the end points of the tube. This is the reason the algorithm we are
deriving is called the taut string algorithm. Figure 5.1, right, gives an illustration of the
solution Fu to the tube in figure 5.1, left.

Next, we consider a node i at which the slope of Fu changes. This is equivalent to u
changing value, or (Du)i 6= 0. If (Du)i > 0 we know that u is monotonically increasing
near i. Then it follows from Theorem 2.5 that Fu is convex at node i. For (Du)i < 0 we
use the same argument to show that u is monotonically decreasing which implies that Fu
is concave at i. At the same time, if (Du)i 6= 0, we know from T3 that Fu(i) is on the
boundary of the tube, i.e., Fu(i) = Ff (i) + α if (Du)i > 0 and Fu(i) = Ff (i) − α if
(Du)i < 0.

The preceding derivation only holds for points where the slope of Fu changes. Since
Fu is a piecewise linear spline those points are the only points we need to describe Fu. We

25



will from now on call them knot points. Between the knot points Fu is linear with slope
given by u. Hence, since all knot points represent a change in slope of Fu, we know that
all knot points must lie on the boundary of the tube, and that Fu is convex or concave in
that knot point, as discussed in the previous paragraph.

The main idea of the taut string algorithm is to find Fu by working with two functions
that serve as an upper and lower bound to Fu. Lets call the upper bound F+

u and the
lower bound F−u . The algorithm works iteratively through the data points fi and builds
the functions F+

u , F
−
u and Fu from left to right through a dynamic process.

Construction of F+
u and F−

u

The upper and lower bound F+
u and F−u are only defined on the part of the interval where

Fu is not yet constructed. They must for the most part satisfy the same conditions as Fu,
with a few exceptions, which we will name shortly. Assume in the following that Fu has
been found on [0, j].

For F+
u and F−u condition T1 becomes F+

u (j) = F−u (j) = Fu(j) when Fu is con-
structed on [0, j]. The upper bound F+

u shall only have knot points on the upper wall of
the tube, while F−u will only have knot points on the lower wall. Then it follows that F+

u

must be convex, and F−u must be concave.
For each node 2 ≤ i ≤ n− 1 the algorithm adds the boundary point (i, Ff (i) + α) as

knot point to F+
u and the boundary point (i, Ff (i) − α) to F−u . After a new knot point is

added we need to make sure that F+
u is still convex, and F−u is still concave.

We start with initializing Fu(0) = F+
u (0) = F−u (0) = 0. In the first step we add the

points (1, Ff (1) + α) and (1, Ff (1)− α) to F+
u and F−u , respectively. Then F+

u and F−u
will always be linear, and checking for convexity and concavity is not necessary.

For the second iteration we will only discuss F+
u . First we add the linear interpolation

with the knot point (2, Ff (2) + α) to F+
u . Then we must check if F+

u is convex. If that
is not the case, we have a contradiction with F+

u being a convex function, and we remove
the second knot point of F+

u , and calculate a new linear interpolation between F+
u (0) and

F+
u (2), which we set equal to F+

u .
The same approach is repeated for all nodes: after (i, Ff (i)+α) is added to F+

u we go
to the node to the left, i− 1, and check for convexity. If F+

u is not convex around i− 1 we
delete the knot point. Then we compute a new interpolation between the penultimate knot
point and (i, Ff (i) + α). Then we check again whether the new function F+

u is convex.
We repeat the process until convexity of F+

u is achieved.
Analogously, we do the same computation for F−u , but instead of adding (i, Ff (i)+α)

we add (i, Ff (i)− α), and we check for concavity instead of convexity.
Figure 5.2 and 5.3 shows an example of how F+

u is computed. Here we have only
included a part of the upper tube wall (the blue line) as a reference point. Figure 5.2 is an
example of an iteration where F+

u remains convex when a new knot point is added.
Figure 5.3 shows the opposite. Starting in figure 5.3a and adding the next knot point

in figure 5.3b makes F+
u no longer convex. We see the intermediate steps taken in order

to make F+
u convex again in figure 5.3c and 5.3d.

26



Figure 5.2: The figures show one iteration in the construction of F+
u where F+

u remains convex
when a new knot point is added. To the left we have F+

u (the blue line) before the iteration. To
the right the red and blue line together make up F+

u . The red line represents the newly added line
segment. In both pictures the black line shows a section of the upper wall of the tube.

(a) (b) (c) (d)

Figure 5.3: The figures show one iteration in the construction of F+
u where convexity of F+

u is not
automatically remained when a new knot point is added. The figure to the left shows F+

u (the blue
line) before the iteration. The two figures in the middle show the intermediate steps we need to make
to ensure convexity. Here both the red and the blue line together make up F+

u . Convexity is achieved
in the figure to the right. Here F+

u is represented by the red line. In all the figures the black line
shows a section of the upper wall of the tube.

Assume now that we are in iteration i, where i > j, and that F+
u and F−u have been

computed over the interval [j, i]. Then F+
u is the largest convex minorant of the upper wall

of the tube on the interval [j, i], and F−u is the smallest concave majorant of the lower wall
of the tube on the interval [j, i].

Extension of Fu

Now assume that
F+
u < F−u (5.10)

somewhere on [j, i], and that this hasn’t happened before for the same j. Then we can find
the next line segment to our solution Fu.

To find this new line segment of Fu we need to make some observations. By the
convexity of F+

u , the concavity of F−u and the fact that F+
u (j) = F−u (j) = Fu(j), we

know that (5.10) can only occur if F+
u < F−u on (j, j + 1]. This implies that either F+

u or
F−u has been changed on the interval (j, j + 1] in the last iteration, which means we have
deleted all knot points between j and i. The function this holds for will consequently be a
straight line between j and i.

27



For the rest of the derivation we assume this is the case for F+
u . We do this to make the

argumentation easier to follow, and the theory is easily extended to the other case. Hence,
F+
u is now a function that is linear between the nodes j and i.

Denote j′ the first knot point of F−u after j. Then we have that

F+
u (j′) < F−u (j′), (5.11)

and since F−u (j′) is on the lower wall of the tube, we know that F+
u has to lie partly outside

of the tube.
We want to find the next knot in Fu, and decide on which wall it lies. We denote the

next knot point as ̂. Then Fu is linear between j and ̂, and since all knot points lie on one
of the walls, we have that

Fu(̂) = Ff (̂) + α or
Fu(̂) = Ff (̂)− α.

(5.12)

Now we need to decide at which node ̂ has to be. If ̂ ≥ j′, then we must have that
Fu(j′) ≥ F−u (j′), else Fu would lie partly outside of the tube.

We consider the case ̂ ≥ i. Since Fu and F+
u are in this case linear on [j, i] we must

always have that Fu(i) ≤ F+
u (i). If not, Fu would lie partly outside the upper wall of the

tube, since all knot points of F+
u are on the upper wall. But because of (5.11), that would

imply that Fu(j′) ≤ F+
u (j′) < F−u (j′), i.e, Fu would lie outside the lower wall of the

tube. Hence we must have ̂ < i.
The only possible knot point for Fu on the upper wall would be (i, F+

u (i)), since all
knot points to the left have been removed since they contradict T1-T4. We have thus
proved that all knots ̂ > i are invalid, and therefore the only remaining knot points to be
considered will lie on the lower wall.

Because of the concavity of F−u , the next node of Fu, ̂, cannot lie between j′ and i,
because then we would have that Fu(̂) < F−u (j′), and hence Fu would lie partly outside
of the tube. Also ̂ cannot come before j′, since j′ is already constructed as the first knot
after j on the lower wall which doesn’t contradict T1-T4. The only possible next knot
point for Fu is therefore j′.

In conclusion, if F+
u is linear and F+

u < F−u , we can add the knot point (j′, F−u (j′))
to Fu, where j′ is the first knot point of F−u after j.

After the new line segment is appended to Fu, we need to update F+
u and F−u . First

we remove the knot point (j, Fu(j)) from both F+
u and F−u . Then we set F+

u equal to the
interpolation between (j′, Fu(j′)) and (i, F+

u (i)).
Hence, j′ is now the new start point for F+

u and F−u . The function F+
u is still a straight

line, and if F+
u < F−u in (j′, j′ + 1], the procedure of extending Fu has to be repeated.

The case considered here was that F+
u is a function which is linear between j and i.

The other possibility when (5.10) occurs, is that F−u is linear. The same arguments hold for
this case. Hence, the second knot point of F+

u is added to Fu. The knot point (j, Fu(j))
is removed from F+

u and F−u , and F−u is equal to the interpolation between the last knot
point of Fu and (i, F−u (i)).

Figure 5.4 shows an example of the construction of Fu including the intermediate
values of F+

u and F−u . The figures on the top show how Fu looks when F+
u and F−u are

constructed as illustrated in the figures on the bottom.

28



(a) (b) (c)

(d) (e) (f)

Figure 5.4: The figures on the top show the construction of Fu (the red line), parallel to the update
of F+

u and F−
u in the bottom figures. Figure 5.4d shows an example of the first time F+

u (the red
line) is linear and lies below F−

u (the blue line). Then figure 5.4b shows the first line segment of Fu,
and then F+

u and F−
u is updated in figure 5.4e. In figure 5.4c a new line segment is added to Fu,

before F+
u and F−

u is updated in figure 5.4f.

Computational Simplification
Now we have derived the concept of the solution method. Before going further with the
pseudo-code, we make an observation which simplifies our process.

We know that checking for convexity or concavity for F+
u or F−u , respectively, is

equivalent to looking at their slopes. Hence, since u is the slope of Fu we will now work
with u+ and u− to represent the upper and lower bounds. These are now vectors containing
the slopes of F+

u and F−u respectively.
When we add a line segment to F+

u and F−u its slope is

Ff (i) + α− (Ff (i− 1) + α) = Ff (i)− α− (Ff (i− 1)− α) = fi (5.13)

for i = 2, ..., n − 1. For the first line segment, when i = 1, the slope is f1 + α for F+
u

and f1 −α for F−u . For the last line segment, when i = n, the slope is fn −α for F+
u and

fn + α for F−u .
Now when we go through the algorithm, we create two new variables s+ and s− which

represent the slope of the new line segments. Thus in node i, where 2 ≤ i ≤ n − 1, we
have s+ = s− = fi. Then we check convexity and concavity by simply comparing s+

and s− to the last element of u+ and u−, respectively.

29



When we must remove a knot point from u+, we compute the new slope as the
weighted mean of s+ and the last element of u+ over the new interval and replace this
as the last element of u+. The same computation holds for removal of knots points of the
lower bound u− as well. To check if the first line segment of the upper bound is above that
of the lower bound we can simply compare the first elements of u+ and u−.

Complexity
We argue that the complexity of the taut string algorithm is O(n):

Each index is added to the index sets only one time. If we have k jumps, that means
n−k indices have been removed. If an index is removed, it is never added back. Removing
indices takes a constant number of calculations, as we only have to calculate the new slope.
Also, adding indices to the solution only takes a constant number of calculations, as we
only have to calculate a new slope for one of the bounds. In total, for each index we only
have to make a constant number of calculations, and therefore the complexity is O(n).

Possibility of a Taut String Algorithm for A 6= I

We looked into whether we could derive a similar taut string algorithm for non-diagonal
A. It turned out we could not, which we will explain briefly. If we look at (4.2), we see
why the taut string approach is not possible for when A is not diagonal. If we have a
general matrix A such that the matrix ATA is a full matrix, the right hand side of (4.2) is
a linear combination of all uis, instead of just the cumulative sum of the uis for i ≤ j. In
particular, in the first iteration we would have p1 = (ATAu)1 − (AT f)1, where p1 only
depends on (Du)1, but (ATAu)1 is dependent of ui for all i = 1, . . . , n. Therefore, if we
choose an upper bound for u1 and u2 as we do in the taut string algorithm, there is no way
we can see if condition (3.35) holds or not. Therefore, we can not solve the problem using
the same approach.

Comparison to Lasso-Path Algorithm
There are some differences between the taut string algorithm and the lasso-path algorithm
worth mentioning. One difference is that when a jump is added to the solution in the taut
string algorithm, it is never removed. That is, if we solve (5.1) for decreasing values of
α, the solution will only obtain new jumps as α decreases. In the lasso-path for A 6= I
on the other hand, jumps will often, even in the easier examples, disappear. We will see
examples of this in Chapter 7, in particular in figure 7.3. Therefore, when using the taut
string algorithm, if we have obtained a jump, we know that it will always be part of the
solution for all smaller values of α, while for the lasso-path, the main features of the
solution might change.

Another difference is that with the taut string algorithm, we are only solving for one
value of α at the time. The lasso-path on the other hand, solves for all values of α as
long as we still have a unique solution. This means that if we know for which parameter
values we want to solve the problem, the taut string can be expected to be faster. If we
are trying to find the best solution, whatever that may be, and need to run simulations for
many parameter values, the lasso-path algorithm can be a better choice.

30



Chapter 6
Numerical Experiments with Taut
String Algorithm

In this chapter we will present some numerical experiments with the taut string algorithm.
In Chapter 6.1 we present the test functions we will be using. We test the influence the
parameter α and the level of added noise have on the reconstructed function, in Chapter 6.2
and 6.3 respectively. In Chapter 6.4 we test the algorithm for a piecewise smooth signal.

6.1 Test Functions
The test function we will be using for most of the experiments is a block signal, which
shown in figure 6.1a. It is inspired by a similar block signal in [2], and is defined as
follows:

u0(t) =
∑

hjK(t− tj) where

K(t) = (1− sgn(t))/2,

(tj) = (0.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81),

(hj) = (4,−5, 3,−4, 5,−4.2, 2.1, 4.3,−3.1, 2.1,−4.2).

(6.1)

We will also test the algorithm on the heavisine signal shown in figure 6.1b also from [2],
which is defined as

u0(t) = 2 sin(4πt)− sgn(t− 0.3)− sgn(0.72− t). (6.2)

For all the experiments we set n = 300.

31



(a) (b)

Figure 6.1: Test signals. To the left is the block signal. Heavisine signal to the right.

6.2 Influence of Parameter in Reconstruction
We start by comparing the results for different values of α using a noise free signal. We use
the test data f = u0 where u0 is the block signal. The results for four different α-values
are shown in figure 6.2.

The results are shown from larger to smaller α-values. We have included these exam-
ples as they illustrate the algorithm well.

We see that for a large enough value of α, say α = 100 in this case, we get that u is a
constant function. As we decrease α we see that the solution gains more and more jumps.
For small values of α the algorithm reconstructs all of the jumps of u0.

This result is what we expect, both from the construction of the functional, but also
if we think about the lasso-path algorithm. There we know that we gain more and more
jumps as we decrease α. This is exactly what happens here.

We observe that the smallest details appear last. The largest jumps, or the jumps be-
longing to the larger blocks, appear earlier than the smaller jumps.

32



Figure 6.2: Some selected results of the taut string algorithm applied to the noise free block signal.
The red lines show the reconstructed function u and the blue lines show the function u0. From left
to right we have, top level: α = 100 and α = 50, bottom level: α = 25 and α = 2. The number of
jumps in u increases as α decreases, and all the jumps are reconstructed for small enough values of
α.

6.3 Influence of Noise in Reconstruction

We want to examine how different levels of noise affect the results. We use the test data
f = u0 + ε, where u0 is still the block function, and where the noise ε are normally
distributed random numbers.

We choose the noise ε by using the built-in MATLAB function randn to draw the
noise from the standard normal distribution. In order to obtain different levels of noise for
the different experiments, we scale the noise drawn from the standard normal distribution
with a scalar c. Hence, for each experiment we have that ε ∼ N (1, c2).

We start with small noise, and use c = 0.1. A selected result, for when α = 2, is
shown in figure 6.3. The results are fairly similar to the results of the algorithm applied
to the noise free signal. We are able to reconstruct all the jumps of u0, and the appear
in the same order, that is, the more ”significant” jumps appear first. As α decreases the

33



Figure 6.3: Results of the taut string algorithm applied to block signal with small noise (c = 0.1).
The dots show the data f , the blue line show the original signal u0, and the red line show the
reconstructed function u. The results are shown for regularization parameter α = 2. All the correct
jumps are reconstructed, but we have also obtained some small, wrong jumps.

reconstruction gets closer to u0. Although we also have some small, wrongly detected
jumps, they are so small we can separate between them and the correct ones.

We continue with a larger noise level, achieved by setting c = 0.5. See figure 6.4 for
the results. We show the result for the same regularization parameter as in the last exper-
iment, so α = 2. Though the variance in the noise is much larger than in the previous
example, we still achieve good results. We are able to reconstruct all the jumps. However,
now we have in addition obtained a lot of wrong jumps. Nevertheless, all of the wrongly
detected jumps are small compared to the correct jumps, so we can still distinguish be-
tween them. Also, the wring jumps are only ”smoothing out” the correct jumps. That is,
we have not obtained any new local maxima/minima in the reconstructed function.

We set c = 1 to obtain a large level of noise. We see the results in figure 6.5. Here we
have included the results for two different α-values, in particular α = 4 and α = 2. What
is interesting here, is that for α = 4, we still have the same type of wrongly detected jumps
as we did in the result for c = 0.5, that is, the jumps are small and does not contribute to
any new maxima/minima. But we are not able to construct all the jumps of the original
signal, as we see, we are missing the rightmost positive jump. For α = 2, we have obtained
the last correct jump, but at the same time we also obtained a new type of wrongly detected
jumps, which have given new local maxima/minima to the reconstructed function. They
are still smaller than most of the correct jumps of u, except from the last correct jump we
obtained. This means that we can still find most of the main jumps of the signal, but not
all, and the number of maxima/minima has changed.

If the goal is to find the maximum or minimum value of the function, or how many
local maxima/minima there are, then we can still find that when small to medium noise is
present. The extra jumps we obtain in those cases doesn’t affect those features.

For large noise, however, this is no longer the case. The extra jumps obtained in the
reconstruction changes the number of local maxima/minima. Still, we have not yet reached
a level of noise such that we can’t distinguish between those false maxima/minima and

34



Figure 6.4: Results of the taut string algorithm applied to block signal with medium noise (c = 0.5).
The dots show the data f , the blue line shows the original signal u0, and the red line shows the
reconstructed function u. The results are shown for α = 2. We reconstruct all the jumps in the
original signal, while obtaining many small, wrong jumps.

the correct ones. Except perhaps for the rightmost positive, correct jump in u, all of the
correct jumps in u are much larger than the wrong ones, and therefore we can still separate
between them.

We run another experiment for c = 2.2, that is, a variance of almost 5. See the results
in figure 6.6. We have included the result for α = 4, which is when we obtained the last
jump of the original signal, the rightmost positive jump. Through all these experiments we
see that this is the hardest jump to find. The jumps still appear roughly in the same order,
that is, the more ”significant” jumps appear first. For the large level of noise in this last
experiment, the wrongly detected jumps are so large that they are indistinguishable from
the correct ones.

35



Figure 6.5: Results of the taut string algorithm applied to block signal with large noise (c = 1).
The dots show the data f , the blue line shows the original signal u0, and the red line shows the
reconstructed function u. The upper plots are the results for α = 4, and the lower ones for α = 2.
We reconstruct all of the jumps in the original signal, but we also obtain many wrongly detected
jumps.

36



Figure 6.6: Results of the taut string algorithm applied to block signal with large noise c = 2.2).
The dots show the data f , the blue line shows the original signal u0, and the red line shows the
reconstructed function u. The regularization parameter is α = 4. The noise is so large that we
cannot separate between the wrongly detected jumps and the correct ones.

6.4 Piecewise Smooth Test Data
We have seen that the taut string algorithm is good at reconstructing piecewise constant
signals. Now we want to test the algorithm on a piecewise smooth signal. We use the
heavisine signal we introduced in Chapter 6.1. We do the experiment without noise. The
results are shown in figure 6.7.

Figure 6.7: Results of the taut string algorithm applied to the heavisine signal. The blue line is the
original signal, the red line is the reconstructed signal. To the left α = 20, to the right α = 1.

We show the result for both large and small values of α. For both of them, we see that
the reconstruction u of the signal is either constant, or equal to the original function u0.
Also, u is constant near every extrema of u0. We see that if we choose α small enough,
we are able to find the correct number of extrema of u0.

37



38



Chapter 7
Numerical Experiments with
Lasso-Path Algorithm for TV
Regularization

In this chapter we introduce some numerical experiments with the lasso-path algorithm for
total variation regularization. In Chapter 7.1 and 7.2 we look at the reconstruction when
the signal is transformed by moving averages. In Chapter 7.3 we test the algorithm on
signals transformed by random matrices.

7.1 Reconstruction from Moving Averages

We start with A ∈ R300×300 as the moving average over 2k + 1 elements. In other words,
define A by

(Au)i =
1

2k + 1

i+k∑
j=i−k

uj , (7.1)

which results in a banded matrix with 2k + 1 diagonals:

A =
1

2k + 1

[
1

]
. (7.2)

In the following experiments we choose k = 3, that is, we take the average over 7 adjacent
nodes. We use the noise free test data f = Au0 where u0 is the block signal defined in
(6.1). The original signal u0 and the transformed signal f are shown in figure 7.1, for
comparison. We see that A averages out the jumps, while we still see all the features of
the signal.

39



Figure 7.1: The block signal to the left. The result of taking the moving average of the block signal
over 7 adjacent nodes, to the right.

Some selected results are shown in figure 7.2. Here we have chosen the solutions for
α = 68.3296, α = 37.3173, α = 25.9434 and α = 0.9819. We see that when α decreases
towards zero, the reconstruction u comes closer to the original signal u0, as expected.

It is perhaps not easy to spot in the plots, but the jumps are not always at the correct
indices. Sometimes, the jumps are even moving, as we have illustrated in figure 7.3. As
the jump moves to the left, we obviously have to delete the old jump. Therefore, we see
that even in this relatively ”easy” example, it is still important to take into consideration
that we might have disappearing jumps.

40



Figure 7.2: Results of the lasso-path algorithm applied to the transformed block signal. The red line
represents the reconstructed signal u, and the blue line shows the original function u0.

41



Figure 7.3: Illustration of how a jump in the reconstructed function u (red line) moves over several
iterations when we apply the lasso-path algorithm to the noise free block signal transformed by the
moving average over 7 adjacent nodes. The blue line represents the original function u0. In each
iteration, and hence for smaller values of α, the jump comes closer to the correct jump.

42



7.2 Reconstruction from Noisy Moving Averages

We continue with the same transformation as before, where A ∈ R300×300 is given as in
(7.2), for k = 3. Now the test data is given as f = Au0 + ε, where u0 is the block signal,
and ε ∼ N (1, c2), for different values of c.

We start with c = 0.2. A few results are displayed in figure 7.4, where we have plotted
both the transformed solution and the solution. From the lower level of the figure we see
that we are able to recreate all significant jumps. It took 55 iterations to obtain all the
significant jumps, and then the solution contained 20 jumps in total.

We have also obtained a wrong jump. This does not change the number of max-
ima/minima from that of the true solution, so the method works well in that regard.

Figure 7.4: Results of lasso-path algorithm applied to the transformed block signal with small noise
present (c = 0.2). To the left is the data f (dots), and the red line is the transformation of the
reconstructed signal, Au. To the right is the original signal u0 (blue), and the reconstructed signal u
us the red line. The top level is the first time the solution contains 20 jumps. The bottom level is the
third, and last, time the solution contains 20 jumps.

We decided to show the results for when we reached a given number of jumps in the
solution. In this case we chose 20 jumps. Since the algorithm also deletes jumps, it is

43



not given that we only reach 20 jumps one time, which we display here. In this case, the
solution had 20 jumps three times, and we plotted the first and last occurrence. We see
how different the results are: in the first case we had not yet obtained the last jump of the
original function, but the third time we had.

However, we still see that we have a lot more jumps than the original function, which
has 11 jumps. Most of them, all except one in this case, are adjacent jumps making up the
correct jumps. In other words, we have only found one jump in the wrong position.

Figure 7.5: Results of lasso-path algorithm applied to the transformed block signal with large noise
present (c = 1). To the left is the data f (dots), and the red line is the transformation of the
reconstructed signal, Au. To the right is the original signal u0 (blue), and the reconstructed signal u
us the red line. The top level shows the solution when it has 20 jumps. The bottom level shows that
we can recreate all the significant jumps.

For c = 1, we show some results in figure 7.5. The upper level shows the result when
the number of jumps in the solution is 20, which happens several times, but the results
are almost the same each time. In the lower level we have found all the significant jumps.
When we find all the significant jumps, we have 24 jumps in the solution. Many are still
adjacent ”correct” jumps, but we see that we also have many more wrong jumps. Some
of the wrong jumps alter the number of maxima/minima, so in that regard the method is

44



no longer so good. The wrong jumps are so large that we can’t differentiate between the
rightmost positive, correct jump and the wrong ones. It took 82 iterations to find all the
significant jumps this time.

7.3 Reconstruction from Randomly Transformed Data
For all the experiments in this chapter, we let A be a m×n matrix of normally distributed
random numbers, where m = 50 and n = 300. Since this is a more difficult problem, we
start by using a simpler block signal, defined by

u0(t) =
∑

hjK(t− tj) where

K(t) = (1− sgn(t))/2,

(tj) = (0.1, 0.25, 0.46, 0.61, 0.70, 0.85),

(hj) = (4,−7, 3,−4, 5,−5.2,−3.1, 2.1,−4.2).

(7.3)

Now the test data is f = Au0 where u0 is defined in (7.3) and A is constructed using the
built in randn-function in MATLAB to draw numbers from the standard normal distribu-
tion. See figure 7.6 for some selected results.

Figure 7.6: Result of lasso-path algorithm to a block signal transformed by a random matrix of
m = 50 measurements, when no noise is present. The red line shows the reconstructed function u,
and the blue line shows the original signal u0. To the left we have the solution for α = 6.36 · 103,
and to the right the solution when α = 368. The method reconstruct the signal well.

We see that we are able to find all the jumps. We can reconstruct the original signal u0
very well using this noise free test data. We see that some jumps are displaced, but as we
decrease α, we come closer to the original signal. We obtain a few wrong jumps, but they
are much smaller than the correct ones, so we are able to separate between the two types
of jumps.

We run the algorithm again with the same block signal transformed by a random matrix
A plus some small noise. In this case, relatively small noise can be using c = 3, for which

45



we get the signal to noise ratio
‖Au0‖2
‖ε‖2

≈ 17. We see the result of this in figure 7.7.

Figure 7.7: Result of lasso-path algorithm applied to a block signal transformed by a random matrix
of m = 50 measurements, when small noise is present (signal to noise ratio is approximately 17).
The red line shows the reconstructed function u, and the blue line shows the original signal u0. To
the left we have the solution for α = 7.699 · 103, and to the right the solution when α = 365.55.
The method reconstructs the signal well.

We see that the results are very similar to when no noise is present. We see that we
are able to find all the jumps. The first jump is displaced, but as α decreases, we come
closer to the original signal. The wrong jumps we obtain are small compared to the correct
ones. Because of this good result, we try an even more difficult data set, by adding large
noise to the transformed signal. We use c = 20, for which we get a signal to noise ratio of
approximately 2.5. The results are shown in figure 7.8.

It seems like the method still works very well. We are able to reconstruct all of the
jumps, while we get some small, wrongly detected jumps. A difference from the ex-
periment with smaller noise, is that the middle block is detected but shifted to the left.
However, it is still a good reconstruction in regard to finding the number of blocks in the
function, and hence the number of maxima/minima. The results show that the significant
jumps appear first.

We now try the algorithm again, now for the more challenging situation of the block
signal in (6.1). We run it for both a noise free data set, and a data set with large noise, say
c = 10, which yields a signal to noise ratio of approximately 4.4. See figure 7.9 for the
results.

Now the method has more trouble reconstructing the signal. In the noise free case
(left), we are still able to find all the significant jumps, but we have also obtained several
wrong jumps. Some of these wrongly detected jumps has also changed the number of
maxima/minima in the function, and they are so large that it is difficult to distinguish
between them and the correct jumps.

In the case where we added a relatively large amount of noise to the signal, we see
from figure 7.9 (right) that we are no longer able to find all jumps of the original signal.
We have also obtained several wrong, large jumps, and also new maxima/minima. For this

46



Figure 7.8: Result of lasso-path algorithm applied to a block signal transformed by a random matrix
of m = 50 measurements, when large noise is present (signal to noise ratio is approximately 2.5).
The red line shows the reconstructed function u, and the blue line shows the original signal u0. To the
left we have the solution for α = 6.8485 · 103, and to the right the solution when α = 1.1277 · 103.
The method reconstructs the signal reasonably well.

much noise present the method does no longer work well.
Lastly, we run an experiment for a larger number of measurements in the random ma-

trix A. We want to see if we can find how many measurements one needs to obtain a
reasonable construction of the block signal in (6.1). We set m = 80 and run the experi-
ments for noiseless data. The results are shown in figure 7.10 (right).

As we see, with m = 80, we obtain a much better reconstruction than for m = 50
in figure 7.9 (left). All the jumps are clearly reconstructed, and the wrong jumps are
small in comparison. Since the results were so good, we try to decrease the number of
measurements to m = 60. The results are shown in figure 7.10 (left).

We see that the results are still much better than for m = 50. The only problem we
have is the recurring difficulty of reconstructing the rightmost positive jump. It remains
small in this experiment, even smaller than some of the wrongly detected jumps. All
the other correctly reconstructed jumps, however, are large compared to the wrong ones.
For both cases m = 60 and m = 80, the wrong jumps have not contributed to extra
maxima/minima, as they did for m = 50.

To sum up, we have found that with 50 measurements, we were able to reconstruct a
signal of 6 jumps very well, even with large noise present. When we increased the number
of jumps in the signal to 11, 50 measurements were not enough to reconstruct even the
noise free signal. When we increased the number of measurements to 60, we were able to
reconstruct the signal reasonably well. For 80 measurements, the reconstruction was even
better.

47



Figure 7.9: Result of lasso-path algorithm applied to a block signal transformed by a random matrix
with m = 50 measurements. The red line shows the reconstructed function u, and the blue line
shows the original signal u0. To the left is the result for a noise free test signal, and the solution
shown is for α = 22.1559. To the right is the result of noisy test signal (signal to noise ratio is
approximately 4.4), and the solution is for α = 47.3767. For this many jumps in the original signal,
we do not obtain a good reconstruction when m = 50.

Figure 7.10: Result of lasso-path algorithm applied to a block signal transformed by a random
matrix withm = 60 measurements to the left, andm = 80 measurements to the right. The blue line
shows the original signal u0, and the red line represents the reconstructed solution u. In both cases
the method reconstructs the signal reasonably well.

48



Chapter 8
Conclusion

We have successfully derived and implemented two methods for denoising one dimen-
sional signals. Both of the methods yield the unique, exact solution to the problem for
each regularization parameter.

First we derived the lasso-path algorithm for total variation regularization. We imple-
mented the algorithm and performed a small number of numerical experiments. In general
the results were very good, as we were able to recreate all of the jumps in the original
signal in most of the cases where not too much noise was present. In the case of the ran-
dom matrix operator, it was more difficult to produce good results. We saw that how well
the method reconstructed the signal was dependent of the number of measurements in the
random matrix, and also on the number of jumps in the original signal.

We also derived the taut string algorithm, which is used for solving the same total
variation regularization problem under the assumption that the original signal is not trans-
formed. We implemented the algorithm and performed a few numerical experiments. For
noiseless test data, we saw that the algorithm worked as expected, as the reconstructed
function came closer to the original signal as the regularization parameter was decreased.
When too much noise was added, we had trouble reconstructing the true solution as we
obtained too many wrong jumps that was indistinguishable from the correct jumps.

The largest difference between the two algorithms is that the taut string algorithm only
solves for one parameter-value at a time. In the lasso-path algorithm we obtained a solution
for a range of parameters in one iteration, which could lead one to think it would over all be
the best method. However, the taut string algorithm is very fast, as it is only of complexity
O(n), and can be applicable in some cases where we know in advance a specific parameter
value for which we want to solve the problem. If we do not know for which parameter
values to solve, and want to run several simulations, the lasso-path algorithm might be
faster. On the other hand, if the solution has many jumps, the lasso-path might be slow,
because in each iteration we have to solve a linear system where the size of the matrix S
depends of the number of jumps. Lastly, the taut string algorithm only works when A is
the identity matrix, while the lasso-path algorithm works for any linear transformation A,
so it has a wider range of use.

49



For the lasso-path algorithm we obtain over all more jumps in the solution than with
the taut string algorithm. We have seen that many of these wrong jumps are adjacent to a
correct jump, and some are wrong jumps at wrong positions. This means that we obtain
a lot more jumps in the reconstruction than there are in the original signal. This makes
it very difficult to estimate how many iterations it will take to find a good reconstruction,
because we cannot use the number of jumps as a reference point.

Obtaining good results heavily relies on choosing the right parameter values. This is
a difficult task, but a natural continuation in the study of the problem is this thesis. What
a ”good result” is, varies depending on the problem we are studying and what we want to
achieve. The best parameter for noise reduction is not necessarily the best parameter for
finding the correct number of maxima/minima of the function. Also, if we keep the lasso-
path algorithm in mind, it might be more interesting to consider the number of jumps in
the solution than the parameter value. One could perhaps try to find a way to distinguish
between the types of wrongly detected jumps. In addition, since we have seen that the
reconstruction for random matrices depends on the number of jumps in the signal, the
noise, and the number of measurements, this may also be a topic for further investigation.

50



References

[1] E. J. Candès. Compressive sampling. In Proceedings of the International Congress
of Mathematicians, volume III, page 1433–1452, Madrid, Spain, 2006. European
Mathematical Society.

[2] D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage.
biometrika, pages 425–455, 1994.

[3] M. Grasmair. The equivalence of the taut string algorithm and BV-regularization.
Journal of Mathematical Imaging and Vision, 27(1):59–66, 2007.

[4] O. Güler. Foundations of optimization, volume 258 of Graduate Texts in Mathemat-
ics. Springer Science & Business Media, 2010.

[5] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization algo-
rithms I: fundamentals. Springer science & business media, 1993.

[6] R. Kimmel, N. A. Sochen, and J. Weickert, editors. Scale Space and PDE Methods
in Computer Vision, Lecture Notes in Computer Science. Springer.

[7] J. Mairal and B. Yu. Complexity analysis of the lasso regularization path. arXiv
preprint arXiv:1205.0079, 2012.

[8] E. Mammen and S. van de Geer. Locally adaptive regression splines. The Annals of
Statistics, 25(1):387–413, 1997.

[9] L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena, 60(1–4):259 – 268, 1992.

[10] G. Steidl, S. Didas, and J. Neumann. Relations between higher order TV regulariza-
tion and support vector regression. In [6], pages 515–527, 2005.

51



52


	Abstract
	Sammendrag
	Preface
	Table of Contents
	Introduction
	Convex Analysis
	Optimality Conditions
	Existence of Minimizers 
	Optimality Condition

	Lasso-Path Algorithm for TV Regularization
	Continuous Dependence of 
	Main Idea
	Derivation of Algorithm
	Simplifications
	Computational Modifications

	Taut String Algorithm
	Optimality Conditions
	Derivation of the Method

	Numerical Experiments with Taut String Algorithm
	Test Functions
	Influence of Parameter in Reconstruction
	Influence of Noise in Reconstruction
	Piecewise Smooth Test Data

	Numerical Experiments with Lasso-Path Algorithm for TV Regularization
	Reconstruction from Moving Averages
	Reconstruction from Noisy Moving Averages
	Reconstruction from Randomly Transformed Data

	Conclusion
	References

