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Problem Description

Design and analysis of a video scaler suited for FPGA implementation

Video scaling is the process by which an input color image is converted to an output

color image of a different size. The Video Scaler module is supposed to provide scaling

solution for up/down scaling.

Furthermore, the implemented Scaler module is supposed to be incorporated into

AXI-Stream Vivado Video system (containing Test Pattern Generator, VDMA modules,

DDR memory, HDMI/VGA sink module, etc) and to be tested for various resolutions

and frame rates.
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Sammendrag

En video-skalerer, er en module som tar inn et bilde, forstørrer eller forminsker det, og

det sender tilbake. Video-skaleringsmodule i denne oppgaven ble laget for å være en

del av et AXI-Stream video-system som skal være tilpasset for å kjøre på en FPGA.

Systemet kan deles i tre deler: en video-skaleringsmodul, en videomodul og en kom-

munikasjonsmodul. Hovedoppgaven til systemet er å hente data fra minne ved hjelp

av kommunikasjonsmodulen, for å så sende det til video-skaleren, som da ville skalere

oppløsningen opp eller ned, for så i sende det nye bildet enten tilbake til minne eller

til video-modulen, som tilpasser bildet til HDMI/VGA-format slik at det kan vises på

en skjerm.

Video-skalereren bruker en algoritme for å firedoble antall piksler i et bilde. For å gjøre

dette trenger skalereren informasjon om bildets bredde og høyde, ellers vil bildet bli

forvrengt eller forskjøvet. Skalereren kan lett tilpasses bilder med andre mål.

For å nedskalere bilder, brukes en form for sammenslåing av 4 og 4 piksler om gan-

gen. Både oppskalereren og nedskalereren ble testet på de samme bildene, og de har

samme grensesnitt ettersom de skal kunne tilpasse seg et større system uten at det

påvirker resten av systemet.

Oppskalereren ble kun brukt til simulering, mens nedskalereren ble brukt både til

simulering og implementering. Systemet som nedskaleringsmodulen ble satt inn i

kunne kommunisere med minne da det ble kjørt på en FPGA.
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Summary

A video scaler, is a module that receives a picture, enlarge or shrink it, and sends it

back. The video scaler in this thesis was made to be part of an AXI-Stream Video Sys-

tem that is suited to be implemented on a FPGA.

The system is divided into three parts: the video scaler module, the video module and

the communication module, where the final goal was to use the communication mod-

ule to send data from memory, to the video scaler, scale the video up or down, send it

either back to memory or to the video module where it could be displayed on a screen

by a HDMI/VGA-port.

In the video scaler, an algorithm was used to scale the images up or down by a factor

of 4. The scaler needs to know the pixel-width and pixel-height of the image prior to

the scaling in order to prevent the post-scaled image from being distorted or askewed.

Width and height can easily be configured to fit new images.

For the downscaling, a form of merging was used to reduce the number of pixels. It

was tested on the same images as the upscaler, and both of the scalers use the same

interfaces since they have to fit into the same larger video system.

The downscaler was simulated and implemented into a system where it communi-

cated with memory, which was running on the FPGA, while the upscaler was only sim-

ulated.
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Chapter 1

Introduction

1.1 Motivation

A video scaler is used to convert signals from one display resolution to another, either

to a higher or a lower resolution. Take television for example, where video is broadcast

to consumers who have televisions with different dimensions. To make the resolu-

tion of the video fit the display of each television, the images must be scaled or/and

cropped locally in each TV.

Video scalers are often used in combination with other video processing devices or

algorithms to improve the apparent definition of the video signals. Some the improve-

ment techniques are encoding, digital filtering and scan interpolation, Bovik [5]. The

final AXI4-Stream video system is intended to be a part of a Post-Doctoral project

where some of these techniques will be present.
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Since video is a sequence of images, which should be scaled rapidly, the algorithm that

is implemented needs to be efficient as it should display a sufficient amount of frames

per second and a satisfactory result on each frame rather than a few frames per second

with 4K quality (normally referred to as lag) or 60 frames per second with a distorted

image.

The FPGA, which the system has been implemented onto, is a integrated circuit devel-

oped to be reconfigurable and the board that has been used is ZedBoard Zynq-7000

ARM/FPGA SoC Development Board. The reason for using a FPGA is that it is signifi-

cantly faster than other processors for some specific tasks, because of its use of paral-

lelism as well as optimizing the number of gates it uses.

1.2 Report Outline

Please note that all images of block designs and simulations have been included as

pictures in the attachments.

Chapter 2: A presentation of AXI-Stream and all the cores used for communication.

AXI-Stream is used to send data from memory to the video scaler and to send data

from the video scaler to memory or to the video subsystem. The chapter also contains

the block design created for this project and an example design where the video scaler

was implemented.

Chapter 3: A presentation of the video subsystem, which is responsible for sending

video to the HDMI/VGA-port. The chapter contains information about all the cores

that are present in the subsystem and a block design of the video subsystem.
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Chapter 4: A presentation of the video scalers, as well as their visual results. The chap-

ter contains several images that have been scaled up or down with some variations in

how the algorithm is implemented. The chapter also includes the theory behind the

video scalers and how it was approached.

Chapter 5: Discussion about the results, in terms of utilization and timing when im-

plementing the scaler in larger system. The chapter also includes results of improve-

ments made to the downscaler and some suggestions for future work.

Chapter 6: Conclusion of the thesis.

Appendix A.1: The code for the implemented downscaler.

Appendix A.2: The code for the simulated downscaler.

Appendix B: The code for the simulated upscaler.

3



Chapter 2

Communication

2.1 Advanced eXtensible Interface

In this project, the Advanced eXtensible Interface (AXI) is used to communicate. AXI

is a standardized IP interface protocol based on the Advanced Microcontroller Bus

Architecture (AMBA) specification. AXI is suited for designs that requires high band-

width and low latency. There are three types of AXI4 interfaces:

- AXI4 - For high-performance memory-mapped requirements
- AXI4-Lite - For simple, low-throughput memory-mapped communication
- AXI4-Stream - For high-speed streaming data

The benefits of AXI4 is increased productivity, flexibility and availability. The produc-

tivity is increased by standardizing the AXI interface, since all communication cores

provided by Xilinx follow the same protocol.

The protocol is flexible by providing three different versions based on what is needed.

In this thesis it is AXI-Lite for control signals and AXI-Stream for data. Both AXI4 and

4



AXI4-Lite consists of five different channels:

- Read Address Channel
- Write Address Channel
- Read Data Channel
- Write Data Channel
- Write Response Channel

Data can move in both directions between the master and slave simultaneously, and

data transfer sizes can vary. AXI4 allows burst transaction up to 256 data transfers,

while AXI4-Lite allows only 1 data transfer per transaction. To achieve very high data

throughput, AXI4-compliant systems have some features, in addition to bursting, like

data up sizing and downsizing, multiple outstanding addresses, and out-of-order

transaction processing. It also allows different clocks for each master-slave pair and

insertion of register slices to aid in timing closure, AXI-Guide-Xilinx [2].

2.2 AXI4-Stream

The AXI4-Stream protocol defines a single channel for transmission of streaming data.

The channel is modeled after the Write Data channel of AXI4, but it can burst an un-

limited amount of data.

AXI4-Stream is used for applications that typically focus on data-flow where the con-

cept of an address is not present or not required. Each AXI4-Stream acts as a single

unidirectional channel for a handshake data flow. A DMA (Direct Memory Access)

or VDMA (Video Direct Memory Access) can be used to move streams in and out of

memory.
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Figure 2.5 shows both inputs and outputs of Master AXI-Stream and Slave AXI-Stream.

All the AXI-Stream master signals is outputted from the AXI-peripheral, except for

m_axi s_tr ead y , which is an input signal.

The RE ADY signal is used together with the V ALI D signal to create a handshake. The

handshake is used to transfer data and control information. The master will send a

V ALI D signal to indicate that a transfer of control information or data is available.

The slave accepts the data or control information by asserting the RE ADY signal back

to the master. A transfer will only occur when both V ALI D and RE ADY are H IG H .

There are three ways to create a handshake as shown in figure 2.2 and table 2.1.

Signal order Reaction
Both V ALI D and RE ADY are set HIGH Immediate transfer
V ALI D is set HIGH before RE ADY Transfer when slave asserts RE ADY , master is waiting
RE ADY is set HIGH before V ALI D Transfer when master sends V ALI D , slave is ready

Table 2.1: Handshake

6



CLK 0 1 2 3 4 5

P0 P1 P2XDATA

VALID

READY

0 1 2 3 4 5

P0 P1 P2X

CLK 0 1 2 3 4 5

P0 P1 P2XDATA

VALID

READY

Figure 2.1: All types of valid handshake where VALID and READY is set in different or-
der

2.3 AXI Interconnect

The AXI Interconnect core IP connects on or more AXI memory-mapped master de-

vices to one or more memory-mapped slave devices. In the project it is used to con-

nect the master (e.g. processor, DMA/VDMA) and slave (e.g. memory, HDMI). The

interconnect multiplexes and demultiplexes data and control information between

connected masters and slaves and it ensures which bus master is allowed to initiate

data transfers.
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The AXI Interconnect core allows any mixture of master and slave devices to be con-

nected to it, which can vary from one another in terms of data width, clock domain

and AXI sub-protocol (AXI4-Stream, AXI4 or AXI4-Lite).

When the interface characteristics of any connected master or slave device differ from

those of the crossbar switch inside the interconnect, the appropriate infrastructure

cores are automatically inferred and connected within the interconnect to perform the

necessary conversions. Interconnect is general-purpose, and is typically deployed in

all systems using AXI memory-mapped transfers, AXI-Interconnect-Xilinx [3].

2.4 AXI-Stream FIFO

The AXI4-Stream FIFO core allows memory mapped access to AXI4-Stream interface.

The IP is easily manageable as the AXI4-Stream interfaces are transparent and no extra

signaling is needed. The FIFO have configurable data width of 32, 64, 128, 256 or 512

bits and for this project 32 bits were used as the data width needed is 8 bits, AXI-FIFO-

Xilinx [1].

The depth of the FIFO is between 512 to 128 000 locations. The image with the greatest

width in this project had a width of 640 pixels and a height of 480 pixels. Since each of

the pixels hold three different values, each representing red, green or blue, the image

will require 892 800 locations if the whole image should be stored temporary, but this

is neither possible (unless multiple FIFOs are used) nor necessary.
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The maximum number of locations needed in the FIFO with the current design is ap-

proximately 960 (320 pixels), which is the number cycles the S_AX I S_T D AT A will be

suspended while the video scaler is writing to the M_AX I S_T D AT A. The scaler will

suspend reading from S_AX I S_T D AT A when writing to the AXI4-Stream to avoid er-

rors. The equation for the FIFO size for a downscaling module is:

3(RGB)×W I DT H

2
(2.1)

For the upscaling module, the number of locations needed in the FIFO is eighth times

greater than the downscaling module for an image with the same size. As seen in fig-

ure 2.4, the scaled up version contains 16 times the amount of pixels that the scaled

down version, and four times the amount of original image. This results in a larger

load of data in the FIFO, which can be calculated by:

2(Row s)×2×3(RGB)×W I DT H (2.2)

The equation is based on the fact that the upscaling module will write two rows of pix-

els for every row it reads as well as each of the rows being twice as long as the original.

For the image with a width of 640 pixels, the FIFO will need at least 7680 locations. The

FIFO depth is therefore set to 8192 locations.
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DOWNSCALING

2x2
4x4

8x8

Figure 2.2: Different sizes of original image, downscaled image and upscaled image

2.5 AXI DMA - Direct Memory Access

The Xilinx AXI Direct Memory Access (AXI DMA) core is a soft Xilinx IP core. It pro-

vides high bandwidth direct memory access between memory and AXI4-Stream target

peripherals. It supports AXI4-Stream data width of 8, 16, 32, 64, 128, 256 and 1024 bits.

Primary high-speed DMA data movement between system memory and stream target

is through the AXI4 Read Master to AXI4 memory mapped to stream (MM2S) Mas-

ter, and AXI-Stream to to memory-mapped (S2MM) Slave to AXI4 Write Master. AXI

DMA also enables up to 16 multiple channels of data movement on both MM2S and

S2MM paths in scatter/gather mode. The AXI DMA provides the ability to queue mul-

tiple transfer requests using nearly the full bandwidth capabilities of the AXI4-Stream

buses.
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DDR Memory
Controller

AXI DMA

Processor

AXI
Data
FIFO

AXI_MM2S AXIS_MM2S

AXI_S2MM AXIS_S2MM

AXI-Lite

Figure 2.3: Block Diagram of AXI DMA system, provided by FPGA-Developer [7]

Figure 2.5 show a design provided by FPGA-Developer. In this design, the proces-

sor and DDR memory controller are contained within the Zynq’s processing system

(PS), while the DMA and AXI Data FIFO are implemented in the Zynq’s programmable

logic (PL). The AXI-lite bus allows the processor to communicate with the AXI DMA to

setup, initiate and monitor data transfers. The AX I S_M M2S and AX I S_S2M M are

memory-mapped AXI4 buses and provide the DMA access to the DDR memory. The

AX I S_M M2S and AX I S_S2M M are AXI4-streaming buses, which source and sink a

continuous stream of data, without addresses, DMA-Xilinx [6].

2.6 AXI VDMA - Video Direct Memory Access

The Video Direct Memory Access (VDMA) provides high-bandwidth direct memory

access between memory and AXI4-Stream video type target peripherals. It is designed

to allow for efficient high-bandwidth access between the AXI4-Stream video interface

and the AXI4 interface.
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The VDMA is suited for 2D-transfers such as video/image-transfer. Figure 2.4 is a

block diagram of the VDMA core. The "control and status"-block receives commands

based on how the registers are programmed and respond accordingly with READ/WRITE

commands to the DataMover, VDMA-Xilinx [13].

AXI4 Memory Map

AXI4-StreamLine BufferDataMover

Control and
Status

Registers AXI4-Lite

Figure 2.4: AXI VDMA Block Diagram
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2.7 System

The complete video scaling system will consist of three large modules, the video mod-

ule, (which contains the video scaler and the all the IP cores needed to transfer data to

a HDMI-port,), the video scaler module, and the communication module. The com-

munication module consists of a processor module and a memory module, along with

all the IP cores needed to transfer data between memory and the video scaler. AXI4-

Stream and AXI4-Lite will be the means of communication between the modules.

Figure 2.5 is a custom made AXI4-Stream generator, which developed from Vivado’s

I P Packag er . To initiate it, press "Tools", then "Create and Package New IP", then

"Create a new AXI4 peripheral". When you have created an AXI4 peripheral, add both

an AXI4-Stream Slave and an AXI4-Stream Master, to provide the correct ports in and

out of the custom IP. The IP can then be edited to create a AXI4-Stream generator. The

most important signals in the AXI-Stream generator is D AT A, V ALI D and RE ADY , as

all of them are crucial for the AXI-Stream generator to send and receive data.

In the complete version, the AXI-Stream generator was replaced with the scaling mod-

ule as the generator was meant to create traffic to ensure that the communication be-

tween the module worked as planned. In the AXI-Stream generator, the L AST signal

was low until a burst of 8 transfers has occurred. The number of transfers in one burst

could be changed, but 8 was the default when creating an AXI peripheral. For the scal-

ing module, the L AST signal was set high when the scaling module had completed

writing a row to the M_AX I S_T D AT A, since it would not send more data until two

more rows had been read through the S-channel.
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Figure 2.5: AXI4-Stream inputs and outputs for both Master and Slave

Figure 2.6 shows a block diagram of the system where the AXI-Stream generator is

generating traffic by reading and writing to memory, through the DMA and MIG (Mem-

ory Interface Generator). The system was intended to be a simple system which could

both read and write through the use of the AXI-Stream generator before adding more

cores to the system.

Figure 2.7 illustrates the communication of the system, excluding the video module, as

the modules have not been able to work together in this project. The block diagram is

based upon the block design made in Vivado, which is shown in figure 2.8. The block

design has a lot of similarity to the processor subsystem of the AXI VDMA Reference

Design, XAPP742 from Xilinx [17]. The AXI VDMA Reference Design contains a video

module, showing which cores are needed to get video out by HDMI. Since the design

from this thesis does not have a functional video-out subsystem, the data have been

read to the scaling module, scaled and sent back.
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DDRMIG

DMA
AXI-Stream
Generator

Processor

Figure 2.6: Block Diagram of communcation between AXI-Stream Generator and
memory

The block design in figure 2.8 is made for writing to memory, since the AXI-Stream

generator does not have any inputs on the AXI-slave interface. The changes needed to

make the generator both read and write from memory are easy to implement, but the

system was made this way to establish one-way communication. Apart from this and

the lack of a AXI-Stream FIFO, the system contains all the cores needed to communi-

cate with memory. The module does also contain an AXI GPIO core, which is a general

purpose input/output interface for AXI-Lite that can be used to control external de-

vices or access internal properties.
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ZYNQ 7 DDRFIXED_IO

System Reset

AXI Interconnect (AXI Lite)

AXI-Stream
Generator

DMA

AXI Interconnect MM

AXI GPIO

Figure 2.7: Block diagram of a AXI System with a ZYNQ 7 Processor
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Figure 2.8: Block Design of AXI Stream System made in Vivado
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2.8 DMA Interrupt example

Since the communication between the control module and the video module did not

work as intended, an example provided by Xilinx-DMA-ex [19] was used to test the

video scaler on the FPGA. The system in figure 2.9 shows a lot of similarities to figure

2.8.

The block design of figure 2.10 and figure 2.9 are both part of the same block design.

The signals M_AX I _M M2S and M_AX I _S2M M , from figure 2.10 are outputs of the

AXI DMA, which are the input signals of AXI Interconect 2 from figure 2.9. The input

signals are named S_AX I _DM A_M M2S and S_AX I _DM A_S2M M . The use of S

as the initial letter is to indicate a sl ave-port or input-port, though the slave-ports

have output-pins such as the s_axi s_tr ead y , from the downscale module in figure

2.10. Likewise, the M indicates master -port which is an output-port. The signals

mm2s_i ntr out [0 : 0] and s2mm_i ntr out [0 : 0] from figure 2.10 are also connected

to the signals dma_mm2s_i r q[0 : 0] and dma_s2mm_i r q[0 : 0] from figure 2.9.

The system is designed to send an interrupt-signal to the processor system for each

transaction, which makes the system wait for the next input to the system. The DDR

and F I X ED_IO signals are the only signals that can be reached by SDK, which is used

to test the system. To read from the FPGA, a PuTTY-terminal, which is a serial console,

was used on the UART-pin J14 with the speed set to 115200.
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Figure 2.9: Control part of AXI4-Stream system with downscaler19



Figure 2.10: Datapath part of AXI4-Stream system with downscaler20



Chapter 3

Video Module

The video subsystem is intended to display the scaled video, or in this case, images,

which has been read by the memory module and rescaled by the video scaler. The

scaled video was intended to be sent through the video module and out by HDMI. Fig-

ure 3.1 is the block design of the video subsystem created with Vivado IP Integrator.
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Figure 3.1: Block Design of the video module, designed from Xilinx [17]

3.1 Video Test Pattern Generator

The Video Test Pattern Generator generates test patterns which can be used when de-

veloping video processing cores or bringing up a video system. The test patterns can

be used to evaluate and debug color, quality, edge, and motion performance, debug

and assess video system color, quality, edge, and motion performance of a system, or

stress the video processing to ensure proper functionality.
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The Video Test Pattern Generator core supports bidirectional data throttling between

its AXI4-Stream Slave and Master interfaces. The core uses handshake, which is men-

tioned in chapter 5, meaning that if the slave side data source is not providing valid

data samples, the core cannot produce valid output samples after its internal buffers

are depleted, VTPG-Xilinx [16].

3.2 Video On Screen Display

The Video On Screen Display core is used for alpha blending, composition and simple

text and graphics generation. Alpha blending indicate the degree of opaqueness in a

picture, or how translucent a color is in the picture. In figure 3.2, there are three layers,

where each layer resides closer or further from the observer. The order in the figure is

green in the back, red in the middle and blue in the front, which can be observed at

the left figure with no transparency. The right figure contains the same colors, in the

same order, but due to opacity at 50%, the edges around all of the circles are visible,

and the combination of different colors give each overlapping area a new shade. The

red figure below shows a black filter with increasing opacity from left to right.

The Video On-Screen Display produces output video from multiple external video

sources and multiple internal graphics controllers, where each video and graphics

source is assigned an image layer that can be dynamically positioned, resized, brought

forward or backward, and combined using alpha-blending. It supports AXI4-Stream

Video Protocol on the input interfaces, allowing easy integration with other Video IP

cores such as AXI VDMA, Video Scaler, Color Space Converters, Chroma Resampler

and Video Timing Controller, VOSD-Xilinx [14].
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The maximum throughput of the Video On-Screen Display can be calculated by:

c ycles per second × l i nes per f r ame × channel s per pi xel × bi t s per channel

c ycles per f r ame
(3.1)

The maximum output of the AXI4-Stream can be calculated by:

c ycles per second ×4096 × channel s per pi xel × bi t s per channel

4097
(3.2)

100% Opacity 50% Opacity

ALPHA BLENDING

Figure 3.2: Variation in opacity
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3.3 RGB to YCrCb Color-Space Converter

The RGB to YCrCB Color-Space Converter IP is provided by Xilinx, and it is set by de-

fault to 1920 pixels per scanline and 1080 scanlines per frame, but both of these values

can be set anywhere between 32 and 7680, which is needed as since the default val-

ues does not fit any of the images in this thesis. The converter use the SD ITU 601 or

Rec. 601, which is a recommended standard for encoding interlaced analog video sig-

nals in digital video form. It uses a color encoding scheme which is known as Y’CbCr

4:2:2. Y’CbCr consists of the Y’ which luma and it represents the brightness or the

black-and-white portion in an image. Cb is chroma-blue and Cr is chroma-red, which

represents the color information needed to add colors to a monochrome image. The

luma and the chroma are separated because human vision has finer sensitivity to lu-

minance differences than chromatic differences, giving video systems the opportunity

to have lower resolution on chromatic information than the luminance information,

RGB2YCBCR-Xilinx [12]. The basic equations for finding the conversion is:

Y = R ×0.257+G ×0.504+B ×0.098+16 (3.3)

C b =−R ×0.148−G ×0.291+B ×0.439+128 (3.4)

Cr = R ×0.439−G ×0.368−B ×0.071+128 (3.5)

Table 3.1 shows the RGB values of all the colors named in figure 3.3 where all the col-

ors are a product of red, green and blue. All colors have three values between 0 and

255 (8 bits), where darker shades of color have lower values and lighter shades have

higher values.
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Black has the value (0, 0, 0) and is therefore origo in the system, while white has the

highest value (255, 255, 255). As the name RGB indicates, RGB, (255, 0, 0) are red, (0,

255, 0) are green and (0, 0, 255) are blue, and all other colors are a mixture of these

three.

Black Red Green Yellow Blue Magneta Cyan White
R 0 255 0 255 0 255 0 255
G 0 0 255 255 0 0 255 255
B 0 0 0 0 255 255 255 255

Table 3.1: RGB Color bars

When converting the colors of table 3.1 to Y’CbCr using the equations (6.3), (6.4) and

(6.5), the result will be as presented in table 3.2, where 16 is the lowest possible value,

and 240 is the highest possible value. Note that black and white, which were opposite

in all aspects of RGB got the same Cb and Cr values, making Y’ or brightness the differ-

ence between them.

Black Red Green Yellow Blue Magneta Cyan White
Y’ 16 82 145 210 41 107 177 235
Cb 128 90 54 16 240 202 166 128
Cr 128 240 34 146 110 221 16 128

Table 3.2: Y’CbCr Color bars
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Figure 3.3: RGB represented as three dimensional space

3.4 Chroma Resampler

The human eye is not as receptive to details regarding color details as it is to bright-

ness details, which is why using the YCbCr color-space have some benefits compared

to RGB. When using YCbCr, the Y-layer (Luma-layer or brightness) will be sampled at

the same speed as all layers in RGB would have done, but the Cb (Chroma Blue) and

Cr (Chroma Red) can be sampled at a lower rate as the changes are less visible.

The Chroma Resampler LogiCORE IP converts video data between commonly used

chroma formats. The supported formats are 4:4:4, 4:2:2 and 4:2:0. The conversion re-

quires fast VRAM calculations on 2x2 pixels for compression using a sliding average on

each pixel grouped in 2x2, resampler Xilinx [11].
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When converting from YUV4:4:4 to YUV4:2:2 the following reduction would be imple-

mented:

Y: Luma, U: Chroma, V: Chroma.

For YUV4:4:4:

There are 3 octet (one byte) values for each pixel in YCbCr.

4×8+4×8+4×8 = 96 bi t s per 4 pi xel s = 24 bi t s per pi xel

For YUV4:2:2: For a 2x2 group of pixels there are 4 Y samples and 2 U and 2 V samples

each.

4×8+2×8+2×8 = 64 bi t s per 4 pi xel s = 16 bi t s per pi xel

This resampling will reduce the number of bits per pixel sent to HDMI by 1/3.

3.5 Video Timing Controller

The Video Timing Controller (VTC) core is a general purpose video timing generator

and detector. The core is highly programmable and it provides easy integration into

a processor system for in-system control. It also contains an optional AXI4-Lite inter-

face and it supports video frame sizes up to 8192 x 8192 pixels. The IP can automati-

cally detect and generate horizontal and vertical video timing signals, which is useful

for managing the synchronize processes, VTC-Xilinx [15].
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3.6 AXI4-Stream to Video Out

The AXI4-Stream to Video Out core is the interface from AXI4-Stream interface to a

video source such as HDMI. The core works with the Video Timing Controller core,

which provides the video timing generation when the AXI4-Stream to Video Out core

is in slave mode. If it is in master mode, it will automatically synchronize AXI4-Stream

Video to video timing. The IP is able to handle asynchronous clock boundry crossing

between AXI4-Stream clock domain and video clock domain and it contains a FIFO

depth from 64 to 8192 locations with input width of 8-256 bits, AXI2VIDEO-Xilinx [4].
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Chapter 4

Video Scaler

A video scaler is used to convert signals from one display resolution to another. The

most common use is to convert signals from a lower (e.g. 480p) resolution to a higher

resolution (e.g. 1080p), but it is also used to downscale the resolution of the video sig-

nals, to fit on smaller displays such as a mobile phone or a tablet. A video scaler is of-

ten combined with other video processing devices or algorithms to create a video pro-

cessor that improves the definition of the video signals. To create a scaler that scales

up an image, the first step was to expand every pixel, which in this case was by 2x2

pixels (see figure 4.6), creating a new image with four times the size of the original pic-

ture. In the first version, each pixel was multiplied both horisontally and vertically,

where all the pixels had the same color as the original pixel. The next step was to cre-

ate the scale2x-algorithm, which compares neighboring pixels to decide the color of

the new pixels, though the results did not impress as the algorithm was not able to rec-

ognize patterns. Figure 4 is a block diagram, showing how the video scaler will fit into

the AXI4 system.
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Figure 4.1: Location of Video Scaler

4.1 Data to Vivado

In order to read data from an image, a conversion is needed as Vivado does not con-

tain a library that supports reading Portable Network Graphics (PNG) files. The con-

verted data can either be stored in a text-file or COE-file. The COE-file can be directly

put into either Block RAM or Block ROM before running the program, making it easier

to use when implemented on the FPGA.
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The BRAM does however have limited space as each BRAM have a size of 36K bit each.

This would not be enough for either of the pre-scaled images as even the smallest of

the images exceeds the 36K bit limit.

To instantiate the COE file the two keywords in table 4.1 is used. Memory_initialization_radix

can be set to 2 for bit values, 10 for decimal values or 16 for hexadecimal values.

Memory_initialization_radix contains all the data which should be preinserted into

the BRAM in whatever format is set by the initializated radix.

Table 4.1: COE keywords
Keyword Description
MEMORY_INITIALIZATION_RADIX Used for memory initialization values to specify the radix used.
MEMORY_INITIALIZATION_VECTOR Used for block and distributed memories.

To put the COE-file into the BRAM, press IP Catalog as shown in figure 4.2 and load it

into the RAM as shown in figure 4.3.
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Figure 4.2: Adding RAM to the design

The following calculations are meant to illustrate the size of the images compared to

limits of the BRAM. For the image in figure 4.4, with 128x64 pixels, the minimum num-

ber of bits needed is:

8 bi t s ×3×128×64 = 196 608 bi t s (4.1)

This is over five times the amount which can be stored in a single BRAM, which means

the image must be divided among at least six BRAMs in order to fit, if the BRAM had 8

bit data width.
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Figure 4.3: Loading data into BRAM

The different data widths of the BRAM is 3, 6, 12, 24, 48, 96 and 192, making 12 bit

width the preferred data width. Another approach is to store the three different 8-bits

values in a 24 bit width data slot, but it has not been done in this project.

For the scaled up version with 256x128 pixels, the result is 786 432 bits, and for the

scaled down version with 64x32 pixels, the result is 49 152 bits. As for the picture in fig-

ure 4.7 the number of pixels are 480x480 making the minimum number of bits needed:
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8 bi t s ×3×480×480 = 5 529 600 bi t s (4.2)

The scaled up version of the picture, which is 960x960 pixels, will require 22 118 400

bits, which would require 615 BRAMs to store all the data. The scaled down version

will require at least 1 382 400 bits.

The BRAM may not be suited for large amounts of data, but it would be possible to use

it to store data locally which is read from external memory over AXI4-Stream.

As this approach offers some challenges, reading the values from a txt-file has proven

to be less complicated when simulating the scaling module. To read from a txt-file,

the textio-library has to be included in Vivado. The library includes several functions

as read, readline, write, writeline, open file and close file. These functions are only for

simulation use as they are not synthesisable. They do not require the timing restric-

tions that come with the AXI communication, but they are helpful for creating and

testing the video scaler. The functions of textio can be replaced by AXI and a FIFO for

implementation.

4.2 Image-text conversion

The conversion from PNG to txt, was executed using Python. To use the skimage-

library which enables the conversion, both the scipy-library and numpy-mkl library

are needed. All of the libraries can be downloaded from Gohlke [8]. The following code

is the Python code used to convert from image to text.
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As the skimage-library use four values, where every forth is 255, which is the maxi-

mum value for pixels with 8-bit depth, it was not needed, and therefore not written to

the text-file. The three other values are R or red-layer, the G or green-layer and the B or

blue-layer.

import skimage

import skimage.io

i = skimage.io.imread('input_image.png')

p = 0

h = open ('image2text.txt', 'w')

for pixelVal in i[:,:,:].flat:

p = p + 1

if (p < 4):

h.write(str(pixelVal) + '\n')

if (p == 4):

p = 0

h.close()

4.3 Text-image conversion

After the image has been scaled up or down, another Python program is used to con-

vert it from text to image. Note that three lines are placed at each location in the ma-

trix. It is important to change the numbers inside the imageDimensions-matrix to the

intended resolution of the new image.
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In this case, it is the image in figure 4.7, where the 480x480 pixel picture has been

scaled down to 240x240 pixels. The image that is created already be at least of the

same pixel size, as writing to a smaller image will cause errors.

import skimage

import skimage.io

inputImage = skimage.io.imread('empty_image.png')

h = open ('text2image.txt', 'r')

imageDimensions = [240,240] #Change to the desired dimensions

for i in range(0, imageDimensions[0]):

for j in range(0, imageDimensions[1]):

pixelValue = int (h.readline())

inputImage [i][j][0] = pixelValue

pixelValue = int (h.readline())

inputImage [i][j][1] = pixelValue

pixelValue = int (h.readline())

inputImage [i][j][2] = pixelValue

skimage.io.imsave('scaled_image.png', inputImage)

h.close()
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4.4 Drawn image

Figure 4.4 is one of the four images that have been used in this project. This image

was originally 128x64 pixels, and it was scaled down to 64x32 pixels and scaled up to

256x128 pixels. The image was created in the program paint and saved as a PNG-file.

Figure 4.5 shows a monochrome version of the image, where all of the RGB-values

have been set to the same value between 0 and 255. All colors will appear "colorless"

or monochrome when using the same value on the three different values in the RGB

color-space. The image was created when exploring the skimage-library and it gave

an illusion that the library used YCbCr instead of RGB, but figure 4.6 shows the three

different layers of the image, which is red, green and blue.

Figure 4.4: 128x64 pixel image in original size

Figure 4.5: 128x64 pixel image - Monochrome
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Figure 4.6: 128x64 pixel image - R, G and B layers

4.5 Picture image

The second image used in this thesis is a picture in order to have tested both a drawing

and a real picture. The picture in figure 4.7 is larger than the one in figure 4.4, and is

easier to use as a benchmark as humans tend to focus on details such as the face to

recognize other humans and therefore will be able to tell if the new image has been

distorted compared to the original.
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Figure 4.7: The original 480x480 pixel picture
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The images can easily be exchanged with other images as long as HEIGHT and WIDTH

are changed to fit the new image, in both Vivado and in Python.

4.6 Scale2x Algorithm

Scale2x is a pixel art scaling algorithm which was originally developed to improve

quality of old video games. The algorithm runs in real-time and it is best suited for

enhancing 2D graphics. There are some similarities between the Scale2x-algorithm

and an algorithm called EPX, where both will produce the same output, but EPX runs

considerably slower (Mazzoleni [9]).

The Scale2x algorithm will do a repeating computation pattern for every pixel of the

original image. The pattern starts from a square of 9 pixels and expands the central

pixel computing 4 new pixels. Figure 4.6 is an illustration of how the center pixel, E ,

expands into four pixels, E0, E1, E2 and E3.

A B C

D E F

G H I

E0 E1

E2 E3

Figure 4.8: Upscaling with Scale2x-Algorithm
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The color of each pixel is calculated by the algorithm below (written in C). The algo-

rithm will check if the surrounding pixels are equal, to determinate the value of each

of the new pixels.

if (B != H && D != F)
{

E0 = D == B ? D : E;
E1 = B == F ? F : E;
E2 = D == H ? D : E;
E3 = H == F ? F : E;

}
else
{

E0 = E;
E1 = E;
E2 = E;
E3 = E;

}

Besides Scale2x there are two other versions; Scale3x and Scale4x. Scale3x increases

the number of pixels by 3x3 (9 pixels) and Scale4x increases the number of pixels by

4x4 (16 pixels). Image 4.11 is the result of using Scale2x and Scale4x on an image from

an old video game, Mazzoleni [10]. The algorithms increases the resolution of the im-

age and use the added pixels to make the edges smoother.

The main problem with Scale2x is that it do not care about the values of the pixels

which are placed diagonally relative to the currently scaled pixel, which leads to the

"wave"-effect that can be seen in figure 4.17.
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Figure 4.9: Scale2x transition

If the diagonal pixels were included in the calculation of the new pixel, the total num-

ber of overlapping values used between neighbouring pixels to decide the values of

the new pixel would increase from 2 to 6. On the left in figure 4.6, the current version

of scale2x uses both of the gray pixels, E and F in the upscaling of two neighbouring

pixels. On the right, the gray pixels are the pixels that would be included by two neig-

bouring pixels when calculating the values of the upscaled pixels. Since the number

of overlapping pixels have increased, the probability of the new pixels in both neigh-

bours being somewhat equal have increased, and it may remove the "wave"-effect

caused by Scale2x. None of these statements have been proven as it has not been

tested.

G H J

D E F

A B C A B C

D E F

G H I

Figure 4.10: Scale2x neighbouring pixels
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Figure 4.11: Image of Scale2x and Scale4x, source Mazzoleni [10].

The scale2x algorithm does not always provide satisfactory results as can be seen in

image 4.20, where the different scale-algorithms smoothen out edges of objects which

are supposed to have sharp edges.

Figure 4.12: Image of Scale2x, Scale3x and Scale4x from Mazzoleni [9].
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The process of scaling up is more complex than scaling down in VHDL, especially

when implementing the scaler into the AXI4-Stream due to timing the scaler to match

AXI4-Stream. Writing four times the amount that is read will require a FIFO in or-

der make sure all data is received and sent in the correct order. The FIFO can either

be implemented in the block diagram as a Xilinx IP or implemented directly into the

read/write module.

For the simulation, three rows of pixels were used as algorithm uses data from all three

in order to decide the color of the new pixels. For the picture 4.7 the number of pixels

in one row was 480, but since each pixel had 3 values, the rows had a length of 1440

elements. As figure 4.6 shows, three rows were needed in use the scale2x-algorithm.

The algorithm would use a column mod 3 = 0 calculation in order to read all three

layers of RGB before use the pixel in any calculation. In total, scale2x was tested with

four variations:

1. Red scaling, where green and blue will not affect the result.
2. Red scaling, where Y-values with less than 10 in value-difference would be treated as equal.
3. Scaling based on all three layers
4. Scaling based on all three layers, allowing a difference of up to 10 as equal

All of the different implementations created some kind of variation when implemented,

which can be seen in figure 4.18. When the different variations were tested on a pic-

ture, the differences were insignificant and they all made the picture look worse than it

did when it was just enlarged. The red-layer scaling was mostly used to test how much

of a difference one calculation would make compared to three and the results did not

differ much.
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Row 0

Row 1

Row 2

Data(0) D(1) D(2) ... D(1437) D(1438) D(1439)

Data(0) D(1) D(2) ... D(1437) D(1438) D(1439)

Data(0) D(1) D(2) ... D(1437) D(1438) D(1439)

Y Cb Cr Y Cb Cr

Figure 4.13: Reading from memory and storing in arrays for fig 4.7

The order of the rows will rotate based upon which row contains the newest data,

where, as in figure 4.6 the bottom row will always contain the newest data, and the

top row will contain the oldest data and therefore be exchanged it with new data when

the next row will be read.

Row 2

Row 1

Row 0

Row 0

Row 2

Row 1

Row 1

Row 0

Row 2Row
0 read

Row
1 read

Row 2 read

Figure 4.14: Order of which row receives data

When writing the scaled up image to memory, the reading will be suspended to ensure

that none of the rows get new data when their current values are being used by the

algorithm.

46



The data that has been scaled up will be stored in six new arrays. The new arrays are

R_0, R_1, G_0, G_1, B_0 and B_1, all of which will store up to 2 W I DT H −1, which in

figure 4.7 is 960 elements. The data have been divided between R, G and B to keep the

arrays from containing too much data as simulation in Vivado will yield the following

warning:

WARNING: Can’t add object to the wave window because it exceeds the display limit of

65536 bits.

The problem does not cause any problem for the implementation of the design, so the

different arrays are a workaround for simulation only.

R_0 and R_1 are the red-values of each their row, where R_0 is the top row and R_1 on

the bottom row. From figure 4.6, E0 and E1 will be stored in R_0 while E2 and E3 will

be stored in R_1. G_0, G_1, B_0 and B_1 will likewise store their associated green and

blue values respectively.

Row_0(0) Row_0(1) Row_0(2) ... Row_0(1437) Row_0(1438) Row_0(1439)

R_0(0) G_0(0) B_0(0) ... R_0(959) G_0(959) B_0(959)

R_1(0) G_1(0) B_1(0) ... R_1(959) G_1(959) B_1(959)

Row_1(0) Row_1(1) Row_1(2) ... Row_1(1437) Row_1(1438) Row_1(1439)

READ

WRITE

WRITE

READ

WRITE

WRITE

R_0(0) G_0(0) B_0(0) ... R_0(959) G_0(959) B_0(959)

R_1(0) G_1(0) B_1(0) ... R_1(959) G_1(959) B_1(959)

Figure 4.15: Order of reading and writing
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Figure 4.6 shows the rate between reading and writing in the program. It will read one

row and write two back after it has been through the algorithm. The the pixels that are

at the edge of the image, along with their neighboring pixels will copy their data to all

four pixels of the new image. That means the first two rows at the top the image and

the last two rows at the bottom as well as the first two elements and last two elements

of each row, as illustrated in figure 4.6.

Figure 4.16: Edge pixels

These pixels are expanded without any algorithm for two reasons, which is practicality

and timing. The timing is the main reason as any sort of algorithm would require the

program to read two rows before writing. The data in these two rows would most likely

not be of much significance as most pictures try to center around the main object and

the edges are often overlooked.

4.6.1 Results

The results of implementing the Scale2x algorithm has not always been satisfactory

and it was tested on four different images.
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In picture 4.17 the weakness of Scale2x is clear, as the image appear more pixelated

and the straigth lines from picture 4.7 such as on the arm has turned into "waves". The

image has also been distorted in such a way that it makes the eyes look like they view

in different directions. As previously stated, the different variations of scale2x did not

create any significant differences. The image was scaled from 480 x 480 pixels to 960 x

960 pixels.

Figure 4.17: Scale2x of picture

Figure 4.18 is just a small snippet of an image to show some details when using Scale2x.
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The image was scaled from 640 x 480 pixels to 1280 x 960 pixels and the snippets are

around 90 x 90 pixels each.

Figure 4.18: Scale2x with some variations

Image Descrition
Top Left The original Mario image, resized to the same size as the others
Top Middle Scale2x based on the red layer
Top Right Scale2x, based on red layer, accepts difference in R-values less than

10 as equal
Bottom Left Scale2x, based on red, green and blue
Bottom Right Scale2x, based on red, green and blue and accepts difference in R, G

and B values less than 10 as equal

Table 4.2: Explaination of figure 4.18
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The differences in the Mario-images are not easy to spot, but all the scaled images

seem less blurry than the original at the top left iamge. The top middle image is the

one that base the algorithm on the red layer, which have caused some pixels to stand

out, like the two black pixels at the left side of the left eye.

The top right image is the same as the middle, but with some tolerance to the differ-

ence in pixel-values.

This improved the quality in regards to the middle as only one pixel stood out, which

is the black pixel in the green grass behind Mario.

The image at the bottom left is the same as the top middle, but the algorithm includes

calculation of all the layers, Red, Green and Blue, making all the values of RGB equally

important. The "wave"-problem that was described in figure 4.17 was not present in

any of the scaling attemps for the Mario picture, which indicate that the algorithm is

more suitable for low-resolution videogame images.

Figure 4.19 was the figure that was most affected by the variations. The top left is the

original image, while the three others are different versions of scale2x. Note that the

black line on the right side has shifted in some pixels at the top right, faded on the bot-

tom right, and the line is completely gone on the bottom left.

The images has also had some distortion in the speech bubble and the dot. The top

right, which is the luma layer scaler, has also had some pixels sticking out at the cross,

the "T" and the dot.

4.7 Hqx Algorithm

Another algorithm that is used in image processing is the hqx, which stands for high

quality magnification.
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Figure 4.19: Four variations of Scale2x

Hqx is used in several emulators and it has three filters, hq2x, hq3x and hq4x, which

magnify by a factor of 2, 3 and 4 respectively. Just as the Scale2x-algorithm, the hq2x-

algorithm will check all of the 8 pixels surrounding it, but it has far more complicated,

enabling up to 28 different combinations for each pixel. The algorithm detects shapes

by checking for pixel of similar colors. When expanding by 2x2, 3x3 or 4x4, the algo-

rithm uses LUTs (lookup tables), which are generated relatively slow, but it makes the

render stage fast. Figure 4.20 is a comparison of nearest-neighbor interpolation and

hq3x, both of which can be implemented instead of scale2x in the future.
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Figure 4.20: Left: 3x enlarged with nearest-neighbor interpolation. Right: 3x enlarged
with hq3x

4.8 Downscaling

A0 A1

A2 A3
A

Figure 4.21: Downscaling of 4:1 ratio

The process of scaling down is easier than scaling up as the downscaler will have a

lower data flow, which makes it easier to implement on the FPGA. The ratio of data

in:out is 4:1 for this project, and a few different implementation have been tested.

The program will read two rows of pixels, scale it down to one fourth of the original

size and write one row back to memory. As the data of each row is only used once, the

memory space which the previous rows occupied in the program can be overwritten

by the next two rows of pixels. Figure 4.22 illustrates how the program read from mem-

ory and writes back the scaled down data. The equation used for downscaling is:

X (A) = X (A0)+X (A1)+X (A2)+X (A4)

4
(4.3)
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READ

READ

WRITE

READ

READ

WRITE

...

...

...

...

...

...

row_0(0) row_0(1) row_0(2) row_0(381) row_0(382) row_0(383)

row_1(0) row_1(1) row_1(2) row_1(381) row_1(382) row_1(383)

R(0) G(0) B(0) R(381/6) G(381/6) B(381/6)

row_0(0) row_0(1) row_0(2) row_0(381) row_0(382) row_0(383)

row_1(0) row_1(1) row_1(2) row_1(381) row_1(382) row_1(383)

R(0) G(0) B(0) R(381/6) G(381/6) B(381/6)

Figure 4.22: Read/Write Ratio for scaling down figure 4.4 for simulation

Figure 4.23: Scaled down versions of figure 4.4 scaled down to 64 x 32 pixels

In figure 4.23, four different versions of downscaling is presented. The images have

been scaled down from 128x64 pixels to 64x32 pixels.
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Figure 4.24: Setting the RGB values of 3 out of 4 pixels to 0

The top left image was the first version of the downscaler, where every second row and

column were removed, which is why some of the black lines have completely disap-

peared, while others have not been altered in any way. Figure 4.24 is the same image

as the top left of figure 4.23, where the removed pixels have been turned black instead.

The lines that are discolored is due to timing error.
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The top left was made by adding the R-value of the four pixels, A0, A1, A2 and A3 as

presented in figure 4.8 and divide it by four to pass the new R-value to A. The G and

B values are passed on from the A0 pixel, which is why some of the black lines have

disappeared. The lower left image is almost identical to the top right, but it bases G

and B on the A2 pixel, which in this instance gave a result that looked more like the

original than the top right. For larger images, this subtle change wont make enough of

a difference to be noticed.

The bottom right image is a scaled down version where the RGB-values of A is based

on equation 4.3. The X represents R, G or B as all use the same calculation respectively.

Some of the noticable differences when scaling with all layers is that the black lines

does not disappear, but it gets "watered" down since each pixel is a mixture of all the

surrounding pixels.
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Figure 4.25: Downscaling by removal

Figure 4.25 and 4.26 are two versions of the downscaled image of Mario. They are rel-

atively equal in terms of how they look, but figure 4.25 has been scaled down by keep-

ing one in four pixels (the A0 pixel) and removing the three others completely. Figure

4.26 is scaled down by using equation 4.3 with the R-values of the four pixels, A0, A1,

A2 and A3, and copy the G and B values from A0. The last version is figure 4.27 which

yield the best result in regards to the quality. The image is downscaled by using the 4.3

on R, G and B.
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Figure 4.26: R-based downscaling

To get a closer look on the details of the image, one enlarged screencap from each of

the three figures can be seen in figure 4.28 where the right image, which is from the

RGB downscaled version, has more details on the red outline of the back.
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Figure 4.27: RGB-based downscaling

Figure 4.28: Left: Removal, Middle: R-scale, Right: RGB-scale

The three images 4.29, 4.30 and 4.31 are as the previous images downscaled by remov-

ing 3 out of 4 pixels, downscaled by R-value and keeping G and B from A0, and down-

scaled by RGB-values, respectively. All of the images was scaled from 480x480 pixels to

240x240 pixels.
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Figure 4.29: Reduction by removal

Image 4.29, or the reduction-version have two major flaw compared to the RGB-downscaled

version, which is the pixelated look of the image, giving the impression of lower reso-

lution than it actually have. The second flaw is the visible transition between vertical

rows, which is caused by removing every second row. When implementing the red-

layer downscaler, the quality improves, as seen in figure 4.30. The vertical transitions

are mostly invisible, but the pixelated look is still present in several places such as the

left arm.
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Figure 4.30: Reduction by R-downscaling

The RGB-downscaler, image 4.31 provided the best result. The image still have some

pixelated areas, but the quality has improved in comparison to the two other imple-

mentations.
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Figure 4.31: Reduction by RGB-downscaling

Figure 4.32 is a close up snippet of the face in the three scaled down images. The left

is the reduction-version, the middle is the R-downscaled version and the right is the

RGB-downscaled version.

The last image, 4.33, show in three different sizes, where the right image is the original

512 x 512 pixels, the middle is the scaled down 256 x 256 pixel image and the left is the

1024 x 1024 pixel image. The images are displayed to show how the images actually

look next to each other.
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Figure 4.32: Close-up image of the head in downscaled picture

Figure 4.33: Lena

The upscaled image showed good results in terms of quality compared to some of the

other images.
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Chapter 5

Discussion and Results

The main goal of this thesis was to implement a video scaler module into an AXI-

Stream video system which is suited to run on a FPGA. The final result is divided into

several parts, as the different parts of the system does not yet fit together. The communication-

system, the video system and the two scaling modules are therefore kept separate as it

will requires more work to fit it all together. The downscaler was implemented into

a premade AXI-DMA system for testing on the FPGA since the system did not work

properly.

5.1 Video Scaler

The video scaler has been the part with the most freedom of choice in this project.

When choosing which algorithm to use, it was important to have something that would

be fast enough for the timing constraints and provide good results in terms of visual

quality and utilization.
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5.1.1 Upscaler

The upscaling algorithm, Scale2x, is fast and it was intended for old video games with

low resolution, but the algorithm provided good results on pictures as well. As the up-

scaler has not been implemented into an AXI4-Stream, the timing constraints and uti-

lization can not be calculated, but the utilization of the downscaler in the DMA In-

terrupt example in figure 5.9 show only a small percent is used compared to what is

available on the Zedboard, which indicates that the utilization will not be the limiting

factor.

For the timing constraints, the performance is likely to be critical, since the down-

scaler needed to decrease the frequency of the clock in order meet the timing con-

straints as seen i figure 5.10 and figure 5.11. It can therefore be expected that the up-

scaler will need to run at a lower frequency than the downscaler as it calculates the

values of 4 pixels each cycle, while the downscaler calculates one pixel for every other

cycle. In order to increase the performance of the upscaler, a second clock with twice

the frequency of the first should be added. The purpose of the second clock is to en-

able faster output of data as it is likely to be the bottleneck of the upscaler. Other tech-

niques which should be implemented is pipelining, so that the clock can stay at a

higher frequency while the upscaler divides the work between multiple cycles.
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Figure 5.1 is a snippet of the simulation of the upscaler where r ow_0 is filling the last

slot (1535) at 740,831 ns, resulting in col resetting from 1535 to 0, setting suspend to

1, and updating all the output-rows, R_0, R_1, G_0, G_1, B_0 and B_1 and sending

all of the updated data. This is only possible in the simulation as AXI4-Stream is not

able to send 6144 values in one cycle. When the outputs are sent, suspend is reset,

increasing r ow to 241 and the simulation start reading data to r ow_1. See appendix B

for the code for the upscaler.

The following equation is used to calculate the theoretical maximum frequency based

on current period time and worst negative slack.

Fm a x (Mhz) = 1
C l k_per i od×10−9−W N S×10−9

1 000 000

(5.1)
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Figure 5.1: Simulation of upscaler on 512 x 512 image
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5.1.2 Downscaler

The downscaler was both simulated and implemented, providing visual results, which

can be found in chapter 4, as well as utilization and timing report. The code for the

implemented scaler can be found in appendix A.1 and the code for the simulated

scaler can be found in appendix A.2. The AXI DMA system uses a 100 Mhz clock, and

therefore the goal was to create a scaler that was able operate at the same frequency.

The first implementation of the downscaler focused on functionality over efficiency

which forced the period time up to 50 ns. The results can be seen in figure 5.2, where

the only number standing out is the number of input/outputs, since it is 23%. The

number does not matter, since most of the I/O-ports are just needed for simulation.

The numbers indicate how much of a Zedboard FPGA the design would occupy.

The utilization has the same amount of flip-flops as both the utilization for 30 ns and

20 ns, which is due to both of the implementations using the same calculations.

Figure 5.2: Utilization of downscaler with 50 ns period

Since timing constraints were not considered in the first implementation, and the

maximum frequency of the implementation was 21,33 Mhz calculated by using equa-

tion 5.1. This is equal to a period of rougly 46,89 ns, meaning that a faster period would

not meet timing constraints.

68



Figure 5.3 shows the timing constraints for the implemented downscaler at a 50 ns pe-

riod. The second implementation, which met timing constraints set to 30 ns, was a

Figure 5.3: timing of of downscaler with 50 ns period

AXI-Stream version of the simulation downscaler from appendix A.2 with some added

improvements. The utilization of this implementation can be found in figure 5.4. The

main difference between this implementation and the previous, was the increased

number of LUTs and the reduced number of I/Os. The timing of the second imple-

Figure 5.4: Utilization of downscaler with 30 ns period

mentation was improved compared to the first, as it reduced the timing constraints to

30 ns, while having over 7 ns of slack as seen in figure 5.5. It would have been safe to

reduce the period to 25 ns since the minimum slack was over 23%, meaning that even

the slowest of operation would spend 23% of a cycle waiting. The maximum frequency

was 44,25 Mhz and the fastest clock period would have been 22,60 ns.
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Figure 5.5: timing of of downscaler with 30 ns period

The final implementation of the downscaler can be found in appendix A.1. For this de-

sign, the read/write-ratio was altered by putting both functions in the same process.

The bottleneck of this implementation is the read-function as the scaling and writing

have to wait for the read-function in order to continue. To improve this further, a sepa-

rate clock should be added to the input AXI-Stream at double the frequency of the rest

of the system, and some pipelining to make the downscaling into a two-cycle process

rather than one cycle at half the frequency.

Figure 5.6 is the final utilization of the downscaler and the results show low usage

which is good.

Figure 5.6: Utilization of downscaler with 20 ns period

Figure 5.7 is the timing constraints of the final implementation. The implementation

used a 20 ns clock period, which was the best achieved results for the downscaler. The

maximum frequency is 57,81 Mhz, which gives a minimum period time of 17,30 ns.
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For an image with a resolution of 512 x 512 pixels, the theoretically achievable frames

per second would be around 63 frames per second with a 50 Mhz frequency.

Figure 5.7: timing of of downscaler with 20 ns period

Figure 5.8 is the simulation of the downscaler. The image on top shows when the first

row of pixels has been read by the module. All arrays are empty except for r ow_0, until

the time is 3,073 ns, which is when r ow_1 is filled up. The row starts to fill one cycle

after r ow is increased from 0 to 1. There is no writing at this stage since the simulation

will fill r ow_1 before it writes. The bottom image shows when r ow_1 is filled when

the time is 6,144 ns. The r ow number increases from 1 to 2 at this point, and the three

output-arrays, R, G and B are filled and sent. As stated previously, sending data like

this would not be possible with AXI-Stream.
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Figure 5.8: Simulation of downscaler
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5.1.3 Downscaling DMA System

The downscaler was tested in the DMA Interrupt example, which is referred to as the

AXI DMA system, to see how it would fit in an AXI-system. Figure 5.9 shows the num-

ber of flip-flops, look-up tables and block RAMs that have been used when the down-

scaling module have been implemented into the AXI4-Stream DMA example from

Xilinx-DMA-ex [19]. The Avai l abl e-column shows the maximum number of the dif-

ferent resources on the Zedboard, while the left column, U ti l i zati on, shows how

many percent of the total resources was used.

Figure 5.9: Utilization for the downscaler implemented into the DMA interrupt exam-
ple

Figure 5.10 show two of the timing reports for the design, which was not met with a

clock running each cycle at 10 ns or frequency of 100 Mhz. Since the number of fail-

ing endpoints in both are fairly small compared to the total number of endpoints it

indicates that there may be one part of the design which slower than the rest. The tim-

ing report in the right side has some improvements compared to the left, but none of

them are efficient enough to run at 100 Mhz.

To calculate what the maximum frequency of the design was, equation 5.1 was used

and the result was 64,89 Mhz for the left report and 70,69 Mhz, which would make the

fastest possible clock period just over 15,4 ns for the left report and 14,1 ns for the right

report.
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To adjust for unforeseen slack that may occur at a later point due to hardware delay

which may not have been taken into account, it would be safe to increase the clock

period to 20 ns which means a frequency of 50 Mhz.

Figure 5.10: Timing constraints for 10 ns clock period

To fix the timing constraints of the design, the Zynq7 processing system must be con-

figured as it is the source of the clock in the design. The frequency was changed from

100 Mhz to 50 Mhz, which changed the clock period from 10 ns to 20 ns, and the re-

sults of the change can be seen in figure 5.11, where all timing constraint are met.

Figure 5.11: Timing constraints for 20 ns clock period
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The downscaler that was implemented into the DMA example was more efficient

than the one used for simulation, due to an error that could only be bypassed by us-

ing Linux according to Xilinx Forum, [18]. This error only occured when using the

textio-library, which is not needed in the implementation as it will not read from files

files, but rather get access through SDK. The visual results of both the upscaler and the

downscaler would not have been any different if the error had not existed, just their

efficiency when simulating.

5.2 Design

The design consists mostly of IP cores provided by Xilinx, where most of them can be

configured to fit the needs of the system. As for the AXI-communication, the cores

can be connected by dragging their pins together. This simplifies the making of the

system, but a lot of knowledge is needed in order to make it work as intended. All of

the cores are essentially black boxes, but Xilinx provides product guides for all their IPs

along with practical examples on how to use some of them.

The video system and the control system did not communicate the way they were

supposed to, which was partially due to restricted testing as running synthesis is time

consuming and in worst case scenario would run for up to 45 minutes. The block de-

sign system was not simulated as it is seen as a black box, leaving no information of

the internal signals.
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5.3 Environment

The video system was made in Vivado 2015.1 which is the design platform for the AXI

DMA example, where the downscaler was implemented. One of the main concerns

when using a certain version of Vivado is that some IP cores may have a somewhat

different use or they may be replaced by new IPs. Xilinx are in the process of removing

XMD, which is essential to build the AXI DMA example, but it has not been removed in

Vivado 2016.4 or any earlier versions, at least.

It should be noted that a powerful computer would be preferred when working with

Vivado as running synthesis would often take up to 30 minutes to complete. To pro-

gram the FPGA, Xilinx SDK was used along with PuTTY, which is a serial console used

to read the data that is sent out from the FPGAs UART-port.

For the simulation, two different Python programs was used since they offered a fast

method to convert the images to text-based files, which in turn worked great with the

textio-library of Vivado. The second program reversed the process by converting from

text to PNG.
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5.4 Future Work

The future work of this project would be to put it all together so that it would fit into

the Post-Doctoral project that it is intended to be a part of. The upscaler should be im-

plemented into the video system, as it currently only works in simulation. Checking

the differences in the downscaler used for simulation and implementation should

provide some guidance on how to do this. The scalers should also be improved in

terms of efficiency, as the current versions do have room for improvements. Insert-

ing an additional clock for reading into the downscaler and writing from the upscaler

at double frequency as well as pipelining the scalers might be good techniques to

achieve faster performance and make the system able to run at a clock period of 10

ns.
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Chapter 6

Conclusion

This thesis is a presentation of the different aspects of making a video scaler suited

for FPGA implementation. The system uses Xilinx Viviado and Xilinx SDK to create,

implement and run the video system on a ZedBoard Zynq-7000 ARM/FPGA SoC De-

velopment Board.

Both an upscaler and a downscaler was made, both of which scale by a factor of four.

The upscaler uses a Scale2x-algorithm, with some variations, which provided some

good results, but it was not implemented on the FPGA due to limited time. The down-

scaler uses merging to downscale the image and it was implemented on the FPGA by

rewriting some of the simulation-functions to fit AXI4-Stream instead. The scalers are

easy to reconfigure for other resolutions, and the downscaler can in theory achieve

up 63 frame per second for an image of 512 x 512 resolution, though it has not been

proven in this thesis. The downscaler is currently fast enough to run at a 20 ns clock

period, which equals a frequency of 50 Mhz and as the utilization reports showed, the

scaler use a very small amount of what is available, which is great.
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The results of the thesis was satisfactory in some aspects, such as the video scaler,

but it will need more work to put together the video scaler, the video module and the

control module to a complete system. The system uses AXI4-Stream and AXI4-Lite as

communication and dataflow between the modules, and the downscaler was proven

to work with these protocols.
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Appendix A

Downscaler

A.1 Implemented Downscaler

------------------------------------------------------------------
-- Company: NTNU
-- Engineer: Tom Erik Tysse
-- Design Name: Downscaler
-- Module Name: Scaler
-- Additional Comments: Implemented downscaling module
-- Remember to change HEIGHT and WIDTH to fit the image
------------------------------------------------------------------

--include this library for file handling in VHDL.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std;
USE ieee.numeric_std.ALL;
--library std;
--use std.textio.all;

entity scaler is
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Port (
s_axis_tdata : in std_logic_vector(31 downto 0);
aclk : in std_logic;
aresetn : in std_logic;
s_axis_tvalid : in std_logic;
s_axis_tready : out std_logic := '0';
m_axis_tdata : out std_logic_vector(31 downto 0)

:= (others => '0');
m_axis_tvalid : out std_logic := '0';
m_axis_tready : in std_logic;
m_axis_tlast : out std_logic

);
end scaler;

architecture Behavioral of scaler is
-- Change WIDTH and HEIGHT to fit image
constant WIDTH : integer := 512;
constant HEIGHT : integer := 512;

subtype pixel is integer range 0 to 255;
type mem_type is array (integer range 0 to ((3*WIDTH)-1)) of pixel;

signal row_0 : mem_type;
signal row_1 : mem_type;
signal end_of_file : std_logic := '0';
signal col : integer := 0;
signal row : integer := 0;
signal en : integer := 0;

begin
endfile : process (aclk)
begin
if (aclk = '1' and aclk'event) then

if (row = HEIGHT) then
end_of_file <= '1';

end if;
end if;
end process;
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read_write : process (aclk)
begin
if (aclk = '1' and aclk'event) then

if (end_of_file = '0') then
if (s_axis_tvalid = '1') then

s_axis_tready <= '1';
en <= 1;
if (row mod 2 = 0) then

row_0(col) <= to_integer(unsigned(s_axis_tdata));
else

row_1(col) <= to_integer(unsigned(s_axis_tdata));
end if;

else
en <= 0;

end if;
if(row mod 2 = 1) then

if (col mod 6 > 2) then
if (col mod 6 = 3) then

m_axis_tvalid <= '1';
m_axis_tdata <= std_logic_vector
(to_unsigned((row_0(col-3) + row_0(col)
+ row_1(col-3) + row_1(col)) / 4,32));

elsif (col mod 6 = 4) then
m_axis_tdata <= std_logic_vector
(to_unsigned((row_0(col-3) + row_0(col)
+ row_1(col-3) + row_1(col)) / 4,32));

elsif (col mod 6 = 5) then
m_axis_tdata <= std_logic_vector
(to_unsigned((row_0(col-3) + row_0(col)
+ row_1(col-3) + row_1(col)) / 4,32));
m_axis_tvalid <= '0';

end if;
end if;

else
en <= 1;

end if;
if (en = 1) then
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col <= col + 1;
if (col = 3*WIDTH-1) then

col <= 0;
row <= row + 1;

end if;
end if;

else
null;

end if;
end if;
end process;
end Behavioral;
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A.2 Simulated Downscaler

------------------------------------------------------------------
-- Company: NTNU
-- Engineer: Tom Erik Tysse
-- Design Name: Downscale_module
-- Additional Comments: Downscaler used for simulation
-- Change HEIGHT, WIDTH and file-path to fit image
------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
library std;
use std.textio.all;

entity downscale_module is
-- Port ( );
end downscale_module;

architecture Behavioral of downscale_module is
constant WIDTH : integer := 512;
constant HEIGHT : integer := 512;
subtype pixel is integer range 0 to 255;
type mem_type is array (integer range 0 to 3*WIDTH-1) of pixel;
type out_mem_type is array (integer range 0 to WIDTH/2) of pixel;
signal row_0 : mem_type;
signal row_1 : mem_type;
signal R : out_mem_type;
signal G : out_mem_type;
signal B : out_mem_type;
signal col : integer := 0;
signal row : integer := 0;
signal clock : bit := '0';
signal endoffile: bit := '0';
signal row_order: integer := 0;
signal cont_read: integer := 0;
signal suspend : integer := 0;
begin

87



clock <= not (clock) after 1 ns;

read_proc : process
file in_file : text is in

"C:\Users\Tom\Desktop\in_image.txt";
variable in_line : line;
variable data_read : integer;

begin
wait until clock = '1' and clock'event;
if (not endfile(in_file)) then
if (suspend = 0) then

readline(in_file, in_line);
read(in_line, data_read);
if (row_order = 0) then

row_0(col) <= data_read;
elsif (row_order = 1) then

row_1(col) <= data_read;
end if;
col <= col + 1;
if (col = 3*WIDTH-1) then

col <= 0;
row <= row + 1;
suspend <= 1;
row_order <= row_order + 1;
if (row_order = 2) then

row_order <= 0;
end if;

end if;
end if;
else

endoffile <= '1';
end if;
if (cont_read = 1) then

suspend <= 0;
end if;
end process read_proc;

write_proc : process
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file out_file : text is out
"C:\Users\Tom\Desktop\out_image.txt";

variable out_line : line;
begin
wait until clock = '0' and clock'event;
if(endoffile='0') then

if (suspend = 1) then
if (row mod 2 = 1) then
for j in 0 to (3*WIDTH-1) loop

if (j mod 6 = 0) then
R(j/6) <= (row_0(j)+ row_1(j)

+ row_0(j+3) + row_1(j+3)) / 4;
G(j/6) <= (row_0(j+1)+ row_1(j+1)

+ row_0(j+4) + row_1(j+4)) / 4;
B(j/6) <= (row_0(j+2)+ row_1(j+2)

+ row_0(j+5) + row_1(j+5)) / 4;
end if;

end loop;
for j in 0 to ((WIDTH/2) - 1) loop

write(out_line,R(j));
writeline(out_file,out_line);
write(out_line,G(j));
writeline(out_file,out_line);
write(out_line,B(j));
writeline(out_file,out_line);

end loop;
end if;
cont_read <= 1;

else
cont_read <= 0;

end if;
else
null;
end if;
end process write_proc;
end Behavioral;
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Appendix B

Simulated Upscaler

------------------------------------------------------------------
-- Company: NTNU
-- Engineer: Tom Erik Tysse
-- Design Name: Upscaler_module
-- Additional Comments: Upscaler for simulation
-- Change HEIGHT, WIDTH and file-path to fit image
------------------------------------------------------------------

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
library std;
use std.textio.all;

entity upscale_module is
-- Port ( );
end upscale_module;

architecture Behavioral of upscale_module is
-- Change to fit the image before scaling
constant WIDTH : integer := 512;
constant HEIGHT : integer := 512;
subtype pixel is integer range 0 to 255;
type mem_type is array (integer range 0 to 3*WIDTH-1) of pixel;
type out_mem_type is array (integer range 0 to 2*WIDTH-1) of pixel;
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signal row_0 : mem_type;
signal row_1 : mem_type;
signal row_2 : mem_type;
signal R_0 : out_mem_type;
signal R_1 : out_mem_type;
signal G_0 : out_mem_type;
signal G_1 : out_mem_type;
signal B_0 : out_mem_type;
signal B_1 : out_mem_type;
signal col : integer := 0;
signal row : integer := 0;
signal clock : bit := '0';
signal endoffile : bit := '0';
signal row_order : integer := 0;
signal cont_read : integer := 0;
signal suspend : integer := 0;

begin

clock <= not (clock) after 1 ns;

read_proc : process
-- Insert file path
file in_file : text is in

"C:\Users\Tom\Desktop\in_image.txt";
variable in_line : line;
variable data_read : integer;

begin
wait until clock = '1' and clock'event;
if (not endfile(in_file)) then

if (suspend = 0) then
readline(in_file, in_line);
read(in_line, data_read);
if (row_order = 0) then

row_0(col) <= data_read;
elsif (row_order = 1) then

row_1(col) <= data_read;
elsif(row_order = 2) then
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row_2 (col) <= data_read;
end if;
col <= col + 1;
if (col = 3*WIDTH-1) then

col <= 0;
row <= row + 1;
suspend <= 1;
row_order <= row_order + 1;
if (row_order = 3) then

row_order <= 0;
end if;

end if;
end if;

else
endoffile <= '1';

end if;
if (cont_read = 1) then

suspend <= 0;
end if;
end process read_proc;

write_proc : process
-- Insert file-path
file out_file : text is out

"C:\Users\Tom\Desktop\out_image.txt";
variable out_line : line;

begin
wait until clock = '0' and clock'event;
if(endoffile = '0') then

if (suspend = 1) then
for j in 0 to (3*WIDTH-1) loop
if (j mod 3 = 0) then

if (row < 2 or row > (HEIGHT-3)) then
if (row_order = 0) then

R_0((j/3)*2) <= row_0(j);
G_0((j/3)*2) <= row_0(j+1);
B_0((j/3)*2) <= row_0(j+2);
R_1((j/3)*2) <= row_0(j);
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G_1((j/3)*2) <= row_0(j+1);
B_1((j/3)*2) <= row_0(j+2);
R_0(((j/3)*2)+1) <= row_0(j);
G_0(((j/3)*2)+1) <= row_0(j+1);
B_0(((j/3)*2)+1) <= row_0(j+2);
R_1(((j/3)*2)+1) <= row_0(j);
G_1(((j/3)*2)+1) <= row_0(j+1);
B_1(((j/3)*2)+1) <= row_0(j+2);

elsif(row_order = 1) then
R_0((j/3)*2) <= row_1(j);
G_0((j/3)*2) <= row_1(j+1);
B_0((j/3)*2) <= row_1(j+2);
R_1((j/3)*2) <= row_1(j);
G_1((j/3)*2) <= row_1(j+1);
B_1((j/3)*2) <= row_1(j+2);
R_0(((j/3)*2)+1) <= row_1(j);
G_0(((j/3)*2)+1) <= row_1(j+1);
B_0(((j/3)*2)+1) <= row_1(j+2);
R_1(((j/3)*2)+1) <= row_1(j);
G_1(((j/3)*2)+1) <= row_1(j+1);
B_1(((j/3)*2)+1) <= row_1(j+2);

elsif(row_order = 2) then
R_0((j/3)*2) <= row_2(j);
G_0((j/3)*2) <= row_2(j+1);
B_0((j/3)*2) <= row_2(j+2);
R_1((j/3)*2) <= row_2(j);
G_1((j/3)*2) <= row_2(j+1);
B_1((j/3)*2) <= row_2(j+2);
R_0(((j/3)*2)+1) <= row_2(j);
G_0(((j/3)*2)+1) <= row_2(j+1);
B_0(((j/3)*2)+1) <= row_2(j+2);
R_1(((j/3)*2)+1) <= row_2(j);
G_1(((j/3)*2)+1) <= row_2(j+1);
B_1(((j/3)*2)+1) <= row_2(j+2);

end if;
elsif (j < 6 or j > (3*WIDTH-7)) then

if (row_order = 0) then
R_0((j/3)*2) <= row_0(j);
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G_0((j/3)*2) <= row_0(j+1);
B_0((j/3)*2) <= row_0(j+2);
R_1((j/3)*2) <= row_0(j);
G_1((j/3)*2) <= row_0(j+1);
B_1((j/3)*2) <= row_0(j+2);
R_0(((j/3)*2)+1) <= row_0(j);
G_0(((j/3)*2)+1) <= row_0(j+1);
B_0(((j/3)*2)+1) <= row_0(j+2);
R_1(((j/3)*2)+1) <= row_0(j);
G_1(((j/3)*2)+1) <= row_0(j+1);
B_1(((j/3)*2)+1) <= row_0(j+2);

elsif(row_order = 1) then
R_0((j/3)*2) <= row_1(j);
G_0((j/3)*2) <= row_1(j+1);
B_0((j/3)*2) <= row_1(j+2);
R_1((j/3)*2) <= row_1(j);
G_1((j/3)*2) <= row_1(j+1);
B_1((j/3)*2) <= row_1(j+2);
R_0(((j/3)*2)+1) <= row_1(j);
G_0(((j/3)*2)+1) <= row_1(j+1);
B_0(((j/3)*2)+1) <= row_1(j+2);
R_1(((j/3)*2)+1) <= row_1(j);
G_1(((j/3)*2)+1) <= row_1(j+1);
B_1(((j/3)*2)+1) <= row_1(j+2);

elsif(row_order = 2) then
R_0((j/3)*2) <= row_2(j);
G_0((j/3)*2) <= row_2(j+1);
B_0((j/3)*2) <= row_2(j+2);
R_1((j/3)*2) <= row_2(j);
G_1((j/3)*2) <= row_2(j+1);
B_1((j/3)*2) <= row_2(j+2);
R_0(((j/3)*2)+1) <= row_2(j);
G_0(((j/3)*2)+1) <= row_2(j+1);
B_0(((j/3)*2)+1) <= row_2(j+2);
R_1(((j/3)*2)+1) <= row_2(j);
G_1(((j/3)*2)+1) <= row_2(j+1);
B_1(((j/3)*2)+1) <= row_2(j+2);

end if;
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else
if (row_order = 0) then

-- Row 1
-- Row 2
-- Row 0
if (abs(row_2(j-3) - row_2(j+3)) < 10 and
abs(row_0(j) - row_1(j)) < 10) then

if (abs(row_1(j) - row_2(j-3)) < 10) then
R_0((j/3)*2) <= row_2(j-3);
G_0((j/3)*2) <= row_2(j-2);
B_0((j/3)*2) <= row_2(j-1);

else
R_0((j/3)*2) <= row_2(j);
G_0((j/3)*2) <= row_2(j+1);
B_0((j/3)*2) <= row_2(j+2);

end if;
if (abs(row_1(j) - row_2(j+3)) < 10) then

R_0((j/3)*2+1) <= row_2(j+3);
G_0((j/3)*2+1) <= row_2(j+4);
B_0((j/3)*2+1) <= row_2(j+5);

else
R_0((j/3)*2+1) <= row_2(j);
G_0((j/3)*2+1) <= row_2(j+1);
B_0((j/3)*2+1) <= row_2(j+2);

end if;
if (abs(row_2(j-3) - row_0(j)) < 10) then

R_1((j/3)*2) <= row_2(j-3);
G_1((j/3)*2) <= row_2(j-2);
B_1((j/3)*2) <= row_2(j-1);

else
R_1((j/3)*2) <= row_2(j);
G_1((j/3)*2) <= row_2(j+1);
B_1((j/3)*2) <= row_2(j+2);

end if;
if (abs (row_0(j) - row_2(j+3)) < 10) then

R_1((j/3)*2+1) <= row_2(j+3);
G_1((j/3)*2+1) <= row_2(j+4);
B_1((j/3)*2+1) <= row_2(j+5);
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else
R_1((j/3)*2+1) <= row_2(j);
G_1((j/3)*2+1) <= row_2(j+1);
B_1((j/3)*2+1) <= row_2(j+2);

end if;
else

R_0((j/3)*2) <= row_2(j);
G_0((j/3)*2) <= row_2(j+1);
B_0((j/3)*2) <= row_2(j+2);
R_0((j/3)*2+1) <= row_2(j);
G_0((j/3)*2+1) <= row_2(j+1);
B_0((j/3)*2+1) <= row_2(j+2);
R_1((j/3)*2) <= row_2(j);
G_1((j/3)*2) <= row_2(j+1);
B_1((j/3)*2) <= row_2(j+2);
R_1((j/3)*2+1) <= row_2(j);
G_1((j/3)*2+1) <= row_2(j+1);
B_1((j/3)*2+1) <= row_2(j+2);

end if;
elsif(row_order = 1) then

-- Row 2
-- Row 0
-- Row 1
if (abs(row_0(j-3) - row_0(j+3)) < 10 and
abs(row_1(j) - row_2(j)) < 10) then

if (abs(row_2(j) - row_0(j-3)) < 10) then
R_0((j/3)*2) <= row_0(j-3);
G_0((j/3)*2) <= row_0(j-2);
B_0((j/3)*2) <= row_0(j-1);

else
R_0((j/3)*2) <= row_0(j);
G_0((j/3)*2) <= row_0(j+1);
B_0((j/3)*2) <= row_0(j+2);

end if;
if (abs(row_2(j) - row_0(j+3)) < 10) then

R_0((j/3)*2+1) <= row_0(j+3);
G_0((j/3)*2+1) <= row_0(j+4);
B_0((j/3)*2+1) <= row_0(j+5);
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else
R_0((j/3)*2+1) <= row_0(j);
G_0((j/3)*2+1) <= row_0(j+1);
B_0((j/3)*2+1) <= row_0(j+2);

end if;
if (abs(row_0(j-3) - row_1(j)) < 10) then

R_1((j/3)*2) <= row_0(j-3);
G_1((j/3)*2) <= row_0(j-2);
B_1((j/3)*2) <= row_0(j-1);

else
R_1((j/3)*2) <= row_0(j);
G_1((j/3)*2) <= row_0(j+1);
B_1((j/3)*2) <= row_0(j+2);

end if;
if (abs(row_1(j) - row_0(j+3)) < 10) then

R_1((j/3)*2+1) <= row_0(j+3);
G_1((j/3)*2+1) <= row_0(j+4);
B_1((j/3)*2+1) <= row_0(j+5);

else
R_1((j/3)*2+1) <= row_0(j);
G_1((j/3)*2+1) <= row_0(j+1);
B_1((j/3)*2+1) <= row_0(j+2);

end if;
else

R_0((j/3)*2) <= row_0(j);
G_0((j/3)*2) <= row_0(j+1);
B_0((j/3)*2) <= row_0(j+2);
R_0((j/3)*2+1) <= row_0(j);
G_0((j/3)*2+1) <= row_0(j+1);
B_0((j/3)*2+1) <= row_0(j+2);
R_1((j/3)*2) <= row_0(j);
G_1((j/3)*2) <= row_0(j+1);
B_1((j/3)*2) <= row_0(j+2);
R_1((j/3)*2+1) <= row_0(j);
G_1((j/3)*2+1) <= row_0(j+1);
B_1((j/3)*2+1) <= row_0(j+2);

end if;
elsif(row_order = 2) then
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-- Row 0
-- Row 1
-- Row 2
if (abs(row_1(j-3) - row_1(j+3)) < 10 and
abs(row_0(j) - row_2(j)) < 10) then

if (abs(row_0(j) - row_1(j-3)) < 10) then
R_0((j/3)*2) <= row_1(j-3);
G_0((j/3)*2) <= row_1(j-2);
B_0((j/3)*2) <= row_1(j-1);

else
R_0((j/3)*2) <= row_1(j);
G_0((j/3)*2) <= row_1(j+1);
B_0((j/3)*2) <= row_1(j+2);

end if;
if (abs(row_0(j) - row_1(j+3)) < 10) then

R_0((j/3)*2+1) <= row_1(j+3);
G_0((j/3)*2+1) <= row_1(j+4);
B_0((j/3)*2+1) <= row_1(j+5);

else
R_0((j/3)*2+1) <= row_1(j);
G_0((j/3)*2+1) <= row_1(j+1);
B_0((j/3)*2+1) <= row_1(j+2);

end if;
if (abs(row_1(j-3) - row_2(j)) < 10) then

R_1((j/3)*2) <= row_1(j-3);
G_1((j/3)*2) <= row_1(j-2);
B_1((j/3)*2) <= row_1(j-1);

else
R_1((j/3)*2) <= row_1(j);
G_1((j/3)*2) <= row_1(j+1);
B_1((j/3)*2) <= row_1(j+2);

end if;
if (abs(row_2(j) - row_1(j+3)) < 10) then

R_1((j/3)*2+1) <= row_1(j+3);
G_1((j/3)*2+1) <= row_1(j+4);
B_1((j/3)*2+1) <= row_1(j+5);

else
R_1((j/3)*2+1) <= row_1(j);
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G_1((j/3)*2+1) <= row_1(j+1);
B_1((j/3)*2+1) <= row_1(j+2);

end if;
else

R_0((j/3)*2) <= row_1(j);
G_0((j/3)*2) <= row_1(j+1);
B_0((j/3)*2) <= row_1(j+2);
R_0((j/3)*2+1) <= row_1(j);
G_0((j/3)*2+1) <= row_1(j+1);
B_0((j/3)*2+1) <= row_1(j+2);
R_1((j/3)*2) <= row_1(j);
G_1((j/3)*2) <= row_1(j+1);
B_1((j/3)*2) <= row_1(j+2);
R_1((j/3)*2+1) <= row_1(j);
G_1((j/3)*2+1) <= row_1(j+1);
B_1((j/3)*2+1) <= row_1(j+2);

end if;
end if;

end if;
end if;

end loop;
for i in 0 to 1 loop

if (i = 0) then
for j in 0 to (2*WIDTH-1) loop

write(outline, R_0(j));
writeline(outfile, outline);
write(outline, G_0(j));
writeline(outfile, outline);
write(outline, B_0(j));
writeline(outfile, outline);

end loop;
else

for j in 0 to (2*WIDTH-1) loop
write(outline, R_1(j));
writeline(outfile, outline);
write(outline, G_1(j));
writeline(outfile, outline);
write(outline, B_1(j));
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writeline(outfile, outline);
end loop;

end if;
end loop;
cont_read <= 1;
else

cont_read <= 0;
end if;

else
null;
end if;
end process write_proc;
end Behavioral;
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