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Sammendrag

Om lag 70 millioner hørselshemmede personer bruker tegnspråk som sitt førstespråk eller
morsmål, men mangelen på et felles språk mellom hørselshemmede og andre gjør den
genrelle kommunikasjonen vanskelig. Målet med denne avhandlingen er å undersøke
potensialet for å benytte elektromyografi som et verktøy for å bedre den genrelle kom-
munikasjonen.

Myo armbåndet, utviklet av Thalmic Labs, er en bevegelse- og kontrollenhet som benyt-
ter elektromyografiske sensorer, samt gyroskop, akselerometer og magnetometer for å
gjenkjenne bevegelser. Denne avhandlingen beskriver utviklingen av et prototype sys-
tem som benytter Myo armbåndets elektromyografiske sensorer for å oppdage og tolke
enkle tegnspråktegn.

Basert på resultatene fra det tidligere arbeidet og det tilhørende rammeverket utviklet for å
gjenkjenne og tolke håndbevegelser ved bruk av IMU (inertial måleenhet) og elektromyo-
grafisk data fra Myo armbåndet, vil denne avhandlingen fokusere på utvinning av elek-
tromyografiske egenskaper, og bruke maskinlæring for klassifisering.

Denne avhandlingen presenterer et rammeverk for bevegelsesgjenkjenning, og oppnår en
nøyaktighet på 85 % for 10 forskjellige tegnspråk tegn.





Abstract

About 70 million deaf people use sign language as their first language or mother tongue,
but the lack of a common language between the deaf and hearing individuals makes the
general communication difficult. This thesis aims to explore the potential of utilizing
electromyography to improve the general communication for deaf people.

The Myo armband, developed by Thalmic Labs, is a wearable gesture and motion con-
trol device that use a set of electromyographic sensors, combined with a gyroscope, ac-
celerometer and magnetometer, to detect movements and gestures. This thesis presents
a development of a prototype-level system that utilize the Myo armband’s electromyo-
graphic sensors to detect and translate sign language signs to something intelligible for the
hearing individuals.

Based on the previous work and the associated framework developed for gesture recogni-
tion using the Inertial Measurement Units (IMU) and Electromyography (EMG) sensors
from the Myo armband, this thesis focuses on the EMG feature extraction and using ma-
chine learning for gestures classification.

This thesis propose a framework for gesture recognition, which achieved an accuracy of
85 % for 10 different gestures.
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Chapter 1
Introduction

This chapter gives an introduction to this thesis. In addition to the motivation and problem
description, a outline of the thesis is provided.

1.1. Motivation

People tend to move their hands when they talk, they make gestures. Gesturing is a well-
known phenomenon, found across cultures, ages, and work. Gestures are even found in
individuals that are blind from birth [22]. Body movement is a powerful medium for
non-verbal interaction [7]. If computers were trained to recognize gestures on top of the
traditional user interface elements, like text and speech input, it allows the expand for
better expressions and new control alternatives. Speech is a very natural way of communi-
cating, but sound may be inappropriate in certain circumstances that require silence, such
as police or military infiltrations, or can even be impossible in the case of deaf people
[44].

Sign language is a form for human communication based on visual perception. According
to World Federation of the Deaf, there are about 70 million deaf people who use sign
language as their first language or mother tongue [41]. Deaf and hard-hearing individuals,
who learn the sign language from an early age have to learn both the signed and non-
signed varieties that co-exist in the society [5]. However, the majority of people in the
society do not use a formal sign language, such as the American Sign Language (ASL).
Consequently, this creates communication difficulties between deaf people and hearing
people.

This creates a demand for a device that is able to interpret sign languages. A such device is
not only practical for the sign language communication, but in every context where gesture

1



Chapter 1. Introduction

based communication is favorable, such as in a military operation or other circumstances
where sound based communication is not appropriate.

1.2. Problem Description

The purpose of this thesis is to use the Myo armband to detect and interpret gestures, with
the intention of improving the communication for people using signs, such as orchestra
directors, traffic policemen, football referees, and deaf people. The purpose of this the-
sis is not to develop a system for practical purpose, but rather explore capabilities and
applications of utilizing Electromyography (EMG) for gesture recognition.

The Myo armband is an out-of-the-box gesture recognition device that uses a set of elec-
tromyographic sensors, combined with gyroscope, accelerometer and magnetometer to
detect motion or recognize gestures. This thesis focuses on analyzing and classifying the
EMG data. EMG is an electrodiagnostic medicine technique for evaluating and recording
the electrical activity produced by skeletal muscles.

1.3. Project Scope and Outline

Based on previous work and the associated framework developed for gesture recognition
using the Inertial Measurement Units (IMU) and EMG sensors from the Myo armband,
this thesis focuses on EMG feature extraction and applying machine learning for gesture
classification, mainly focusing on Neural Networks and Deep Learning techniques.

Chapter 2 introduces the essential background theories for relevant elements and concepts,
such as the Myo armband, deep learning and wavelet analysis. The theoretical back-
grounds gives a good basis for understanding the underlying elements of the proposed
framework. A detailed description of the framework is given in chapter 4. Chapter 3
introduces related work within the field of gesture recognition and control.

Chapter 5 presents the achieved accuracy and performance of the framework, which is
analyzed in chapter 6. Chapter 7 propose the overall summary of the thesis, and presents
possible future improvements of the framework.
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Chapter 2
Theoretical Background

This chapter introduces the essential elements and concepts that are relevant to this thesis.
The goal of this chapter, is to give a basis for understanding the underlying operations of
essential concepts of the framework, such as the neural networks and the wavelet trans-
forms. Introduction to necessary elements, such as the American Sign Language (ASL),
EMG, and the Myo armband, is also given in this chapter.

2.1. American Sign Language (ASL)

The pre-defined gestures implemented in the framework are taken from the ASL. The list
of pre-defined gestures is given in appendix B. Sign language is a form for human com-
munication based on visual perception, and ASL serves as the predominant sign language
of deaf in the United States. ASL signs, in addition to the arm gestures, includes impor-
tant phonemic components such as movement of the face and torso, but this thesis does
not take this into consideration. While ASL utilize the movements of both hands, and a
mirrored movement have the same meaning, this thesis focuses only on gestures that are
using one hand.

2.2. Electromyography (EMG)

Electromyography (EMG) is an electrodiagnostic medicine technique to measure muscle
responses or electrical activity produced by skeletal muscles. The nerves control the mus-
cles by electrical signals called impulse, these impulses can be measured and analyzed
with the help of EMG sensors [61]. There are several techniques to measure EMG signals,
but this thesis utilize only the surface EMG. Surface EMG is a technique where electrodes
are placed on the skin overlying a muscle to detect nerve impulses.

3



Chapter 2. Theoretical Background

EMG can be used to sense isometric muscular activity which does not translate into move-
ments. This makes it possible to detect motionless gestures. One of the main difficulties in
analyzing the EMG signals, are the noisy characteristics. Compared to other bio-signals,
EMG contains complicated types of noises that is caused by the environment. Interfering
factors could be inherent equipment noise, electromagnetic radiations, motion artifacts,
and the interaction of different tissues. Pre-processing is required to filter out the unwanted
noises in EMG [28]. Because surface EMG does not get direct measurement from the mo-
tor unit activation, and many factors can affect the signals, these relations are frequently
misinterpreted. Although surface EMG can be a useful measure of muscle activation, there
are limits to the information that can be extracted from the signals [18].

2.3. The Myo Armband

This thesis is based on data given by the Myo armband. An introduction of the Myo
armband is given in this section. The Myo armband (figure 2.1), developed by Thalmic
Labs, is a wearable gesture and motion control device that uses a set of EMG sensors,
combined with IMU sensors, including gyroscope, accelerometer, and magnetometer, to
recognize gestures [56].

Figure 2.1: The Myo Armband
Source: https://www.myo.com/techspecs [65]

2.3.1. Hardware

The Myo armband consist of eight EMG sensors and a nine-axis IMU containing gy-
roscope, accelerometer and magnetometer. The hardware specification is given in ta-
ble 2.1.

4
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2.3. The Myo Armband

Sensors

EMG sensor,
Gyroscope,
Accelerometer,
Magnetometer

Processor ARM Cortex M4 Processor

Feedback Dual Indicator LEDs,
Short, Medium, and Long Vibrations

Table 2.1: List of the Myo armband hardware specifications

2.3.2. The Myo SDK

Thalmic Labs provides a SDK that allows developers to obtain the data measured by the
Myo armband. The library at the core of the Myo SDK allows applications to interact
with the Myo armband. Functionalities in libmyo are exposed through a plain C API.
Typically, applications do not interact with the libmyo C API directly, but use a language
binding corresponding to the programming language used by the application [57]. Fig-
ure 2.2 illustrates the Myo development stack from an application using the SDK down to
a physical Myo armband. The Myo armband provides two type of data: Spatial data and
gestural data.

2.3.2.1. Spatial Data (IMU)

Spatial data represents the position of the armband, and provide information about the
orientations and the movements. These data are provided by the IMU. The Myo armband
provides IMU data from three different sources:

• Accelerometer

• gyroscope

• and megnetometer

The IMU have a sampling rate of 50 hz. The data from the accelerometer and gyroscope
are represented by 3D-vectors, with g-force (accelerometer) and deg/s (gyroscope) as the
units, The orientations from the magnetometer are represented as quaternions. Quaternion
representation is an alternative orientation representation to Eulers angles.

2.3.2.2. Electromyographic Data (EMG)

The EMG data give information about the orientation independent movements, such as
hand gestures. The EMG sensors have a sampling rate of 200 hz. The MyoSDK docu-
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Figure 2.2: The Myo SDK stack: Myo development stack from an application using the
SDK down to a physical Myo armband.

Source: https://developer.thalmic.com/docs/api reference/platform/the-sdk.html[66]

mentation [57] does not include information about the unit, but the values are converted
into 8-bit values ranging from -128 to 128.

2.4. Artificial Neural Network (ANN)

Deep learning and Artificial Neural Network (ANN) are the main classification methods
used in this thesis, and this section aims to give a basic understanding of the concepts of
deep learning and ANN.

2.4.1. Introduction to Artificial Neural Networks

ANNs are computational models used in machine learning, consisting of a large collection
of simple interconnected processing units called artificial neurons. A simple ANN is given
in figure 2.3. The concept of ANNs are inspired by the biological neural networks and tries
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2.4. Artificial Neural Network (ANN)

to simulate the biological learning processes. The ANNs are designed to solve problems
like a human, by learning from examples, rather than being explicitly programmed.

Like other machine learning methods, ANNs are used to solve a wide variety of tasks
within areas that are difficult to solve using ordinary rule-based programming, such as
computer vision and speech recognition.

Figure 2.3: A simple Feed-Forward Neural Network with two hidden layers. The circles
labeled ”+1” are called bias units.

There are many types of ANN, which are described in section 2.4.5, but this chapter mainly
focuses on the description and behavior of a multilayer feed-forward neural network with
supervised learning.

ANNs are composed of a number of neurons (nodes) with links (synapses) connecting
them. The operations of a neuron are given in figure 2.4. Each link have a numeric
weight, which are the primary long-term storage of the network, and the learning involves
modifying these weights. Figure 2.3 shows that the collection of neurons can be divided
into three types of layers:

• The input layer

• The hidden layer(s)

• The output layer

7
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Neurons are connected between layers and signals travel from the input layer, to the out-
put layer. The neurons in the input layer and output layer are connected to the external
environment. The weights are calibrated to try to bring the network’s output closer to the
environment providing the inputs. Some of the neurons, the hidden units, have no direct
connection to the external environment, and cannot be directly observed by noting the in-
put and output behavior. A network can have n hidden layers, hence the use of the term
Deep Learning. The hidden layers follow a black-box model, and helps the network extract
information of something complex, contextual, or non-obvious, such as an image.

In machine learning, there are two types of learning: Supervised and Unsupervised learn-
ing. An ANN is said to learn supervised, if the desired output is known. In unsupervised
learning, the network learn by input data with no associated output. This paper will only
focus on neural network with supervised learning, which consist of two main operations:
Forward Propagation and Back Propagation.

Figure 2.4: A diagram illustrating the operation of a Neural Network Unit (neuron). An
input goes through an (a) input function, which returns a value Σ. The final
neuron output, the activation (c) a is obtained by applying the (b) activation
function on Σ, given by g(Σ) = a.

2.4.2. Forward Propagation

In forward propagation, the input travels through the network while getting applied to a set
of weights. Each neuron, except for those in the output layer, returns an activation value
that travels to the neurons of the next layer. The computation of the activation value is
illustrated in figure 2.4. When a neuron receive values from the linked neurons from the
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previous layer, the neuron calculates a value Σ, which is given by

Σ =
∑
i

wi ∗ ai (2.1)

where wi and ai is the weight and the activation from the linked neuron i. The activation
value a is obtained by applying an activation function g(x) on Σ, such that

a = g(Σ) (2.2)

The activation function of a neuron defines the activation value given by a set of inputs.
There are many types of activation functions, such as linear, sigmoid, ReLu and softmax,
but this thesis focuses on the sigmoid activation function, which is defined as

f(x) = sigmoid(x) =
1

1− e−x
(2.3)

The graphical representation of the sigmoid function is given in figure 2.5b. The purpose
of the activation functions is presented in section 2.4.4.1. Forward propagation is the op-
eration to compute the output. The output could be used to obtain an error of the network.
The error is obtained by comparing the given output with a desired output. To minimize
the error, the network propagate backwards by finding the derivative of error with respect
to each weight and then subtracting this value from the weight value, the operation is called
Back Propagation.

2.4.3. Back Propagation

The purpose of back propagation is to calibrate the weight, so that the network causes the
output to be closer to the desired output, thus minimizing the error for each output neuron.
A cost function is used to calculate the error of the output neurons. A cost function returns
a single value Etot, refereed to as the total error. More details about the cost function is
given in section 2.4.4.2

The back propagation process can be divided into two levels, the output layer and the
hidden layer.

2.4.3.1. Output Layer

Consider an output neuron ox, connected with a link of weight wi. The goal is to calculate
how much a change inwi affects the total errorEtot, which can be written as the derivative
of Etot with respect to wi,

δi =
∂

∂wi
Etot (2.4)
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Consider now ax and Σx as the activation value and input value of ox. By applying the
chain rule, equation (2.4) can be written as

δi =
∂Etot
∂ax

∗ ∂ax
∂Σx

∗ ∂Σx
∂wi

(2.5)

where ax and Σx are calculated by the activation function and the input function, respec-
tively. To decrease the error, a new weight ŵi is calculated by subtracting δi from the
current weight

ŵi = wi − ηδi (2.6)

where η is the learning rate.

2.4.3.2. Hidden Layers

The operation on the hidden layers is similar to the operation on the output layer, but
slightly different since the activation value of each hidden neuron contributes to the acti-
vation value of multiple neurons on the next layer.

Consider a hidden neuron hy , connected to a link of weight wj . Let ay and Σy denote
the activation value and input value, respectively. Given by the same calculations as equa-
tion (2.5), the given equation is obtained

δj =
∂Etot
∂ay

∗ ∂ay
∂Σy

∗ ∂Σy
∂wj

(2.7)

where δj tells how much a change in wj affects the Etot. Since aj affects all the activation
values of the connected neurons on the next level, ∂Etot

∂ay
needs to take consideration to its

effect on output neurons. Let L denote all neurons receiving input value from neuron hy ,
then

∂Etot
∂ay

=
∑
n∈L

∂

∂Σn
Etot

∂

∂ay
Σn (2.8)

Since
∂Σk
∂ay

= wyk

where wyk is the weight of the link from neuron hy to neuron nk. equation (2.8) can be
written as

∂Etot
∂ay

=
∑
n∈L

∂Etot
∂an

∂an
∂Σn

wyk (2.9)

Note that the original weight of wyk is used, and not the updated weight. The equa-
tion (2.9) shows that the derivative with respect to ay can be calculated if all the derivatives
with respect to the activation values an of the next layer.
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As with equation (2.6), the calculation of the new weight is given by

ŵj = wj − ηδj (2.10)

where η is the learning rate.

2.4.4. Neural Network Components

Sections 2.4.2 and 2.4.3 describe the behavior of a multilayer feed-forward neural network
with supervised learning. While these sections introduce terms as Activation Function,
Cost Function and Bias Units, there are no explanation of these components. This section
aims to give a more detailed understanding of the various components in the ANNs.

2.4.4.1. Activation Functions

The activation functions determines the activation value of neurons given by a set of inputs,
and makes the ANNs non-linear. To understand the importance of the activation functions,
consider a fully-connected feed-forward neural network. Let Li denotes the activation
values of the i-th layer, and let i = 0 be the input layer. Then, by the equation for a
fully-connected feed-forward network, Li is given by

Li = g(WiLi−1), for i ≥ 1

where g is the activation function and Wi is the weight of the links to the i-th layer. If the
activation function g is removed, then

Li = WiLi−1

= WiWi−1Li−2

= W ∗ L0

(2.11)

where W = WiWi−1 · · ·W1. Equation (2.11) shows a linear transformation, which is not
strong enough to model many kinds of data.

There are many types of activation functions, such as Binary Step, Sigmoid, ReLu, and
TanH. The graph representation of the activation functions mentioned are given in fig-
ure 2.5. Different activation functions have different properties, and choosing the most op-
timal activation function is difficult. In [36], a research of choosing the activation function
is presented. While a network allow multiple different activation functions, it is common
that all neurons in the network use the same activation function [52, p. 567].
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0 for x < 0
1 for x ≥ 0

(a) Binary step

1
1+e−x

(b) Sigmoid

0 for x < 0
x for x ≥ 0

(c) Rectified Linear Unit (ReLu)

2
1+e−2x − 1

(d) TanH

Figure 2.5: Several Activation Functions

2.4.4.2. Cost Functions

In back propagation, the cost function is used to compute the error of the output layer, and
can be defined as

C(W,B,Xj , Yj)

where W is the weights, B is the bias units, X is the input of a training instance j, and
Y is the targeted output of the training instance j. There are many different cost func-
tions, and without going into more details, a list of some common cost functions is given
below.

• Quadratic cost (Mean Squared Error)

• Cross-entropy cost (Bernoulli negative log-likelihood)

• Exponentional cost

• Hellinger distance

• Kullback–Leibler divergence

There are no generalized rules for choosing the the most optimazed cost function for the
problem, and for the simplicity of this thesis, only the Mean Squared Error (MSE) is used.
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MSE is defined as

MSE =
1

n

n∑
i=0

(ŷi − yi)2 (2.12)

where n is the number of output neurons, ŷi and yi is the targeted and actual output value
of output neuron i, respectively.

A cost function must satisfy a few properties:

1. The cost function C must be able to be written as an average

C =
1

n

∑
x

Cx

over a set of cost functions Cx for individual training instances x.

2. The cost function C must only be dependent on the activation values of the output
layer, since the equation for finding the gradient of the output layer is the only layer
that is dependent on the cost function, while the other layers are dependent on the
layer on the next level.

3. In order for the gradient descent to work, the cost function C must be differentiable
with respect to all the outputs (y ∈ Y ).

2.4.4.3. Bias Units

The Bias Units, labeled ”+1” in figure 2.3, are neurons that are attached to the end of the
input layer and the hidden layers. The bias units do not have any incoming links, and are
therefore not affected by the activation values from the previous layer, but they contribute
to the activation values of the next layer.

Consider a simple network G, illustrated in figure 2.6a, with one input x and one output y,
connected with a link of weight w1. Let g(Σ) be the activation function, then the output y
is given by

y = g(w1x) (2.13)

The calibration of w1 will essentially change the steepness of the activation function. The
main purpose of the bias unit is to provide every node with a trainable constant value.
Adding a bias unit to the simple network G, as shown in figure 2.6b, allow the activation
function to be shifted to left or right, given by

y = g(w1x+ w2) (2.14)

A graphical representation is given in figure 2.7.
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(a) (b)

Figure 2.6: Two simple Neural Networks with only one input x and one output y, where
the left network (a) miss the bias unit b, while the right network (b) have.

(a) (b)

Figure 2.7: The effect of the Bias Unit on the sigmoid function. figure (a), without the
bias unit, shows the changes of steepness, while figure (b), with the bias unit,
shows the shift of the activation function.

2.4.5. Types of Neural Networks

This thesis mainly focuses on the simple fully connected Deep Feed Forward Network
(DFF)s. A brief introduction to relevant networks is given in this section. A chart showing
characteristic of some network architectures is given in figure 2.8.
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Figure 2.8: A chart showing different types of neural network architectures.
Source: http://www.datasciencecentral.com/m/blogpost?id=6448529:BlogPost:470286[64]

2.4.5.1. Deep Neural Network (DNN)

A Deep Neural Network (DNN) is an ANN that contains more than one hidden layer. The
DFF is a type of DNN. Each layer trains on a distinct set of features, that are based on
the features given by the previous layer. The principle is the further the data advance into
the network, the more complex features the network is able to recognize. This is because
the deeper layers utilize and combine the features from the previous layer, and is known
as hierarchical Feature Learning. Hierarchical feature learning was used before the field
of deep learning, but suffered from major issues such as the vanishing gradient problem
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where the gradients became too small to provide a learning signal for very deep layers, thus
making these architectures perform poorly when compared to shallow learning algorithms
[15].

2.4.5.2. Convolutional Neural Networks (CNN)

There are many type of DNNs, and one type which may be relevant for this thesis are
the Convolutional Neural Network (CNN). The name ”convolutional” indicates that the
network employs the mathematical operation, convolution. A convolution is an integral
that expresses the amount of overlap of one function g as it is shifted over another function
f . Convolutional networks are simply ANNs that use convolution in place of general
matrix multiplication in at least one of their layers [23, p. 330].

The primary purpose of convolution in CNNs is to extract features from the input. CNNs
process data in a grid-like topology, such as time-series data, which can be thought of as
an 1D-grid with samples at regular time intervals. The CNNs use a set of smaller ”win-
dows”, called filters. Each filter is replicated across the input. These replicated units share
the same parameterization (weights and bias) and form a feature map. Weight sharing in-
creases learning efficiency by substantially lower the degrees of freedom of the problem.
Figure 2.9 illustrate an example of 3 hidden units that belongs to the same feature map with
the shared weightsw1, w2 andw3. In the back propagation operation, gradient descent can
still be used to update the weights, but with a small change to the algorithm. The gradient
of a shared weights is simply the sum of the gradients of the parameters being shared.
The strength of CNNs is that it can legitimately make stronger assumptions by extracting
features from local areas of the input, instead of analyzing the input globally.

Figure 2.9: 3 hidden units that belongs to the same feature map.

2.4.5.3. Recurrent Neural Network (RNN)

Up until now, only networks that make the input move from the input layer to the out-
put layer, the feed-forward networks, have been explained. The feed-forward networks
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assume all inputs are independent, and can be categorized as networks without memory.
This section gives an introduction to another type of network, the Recurrent Neural Net-
work (RNN). RNNs are a class of ANN where connections between units form a directed
cycle.

Unlike the feed-foward networks, RNNs make use of the sequential information. To pre-
dict the next word in a sentence, it is helpful to know the previous words. Figure 2.10
illustrates a RNN unrolled. Unrolling means to extract the RNN into a sequense of net-
works. For example, if the interesting sequence is 5 words, the network would be unrolled
into a 5-layer network.

Figure 2.10: This figure illustrates a RNN unrolled into a sequence of networks, where x
is some input, s is the hidden state, and o is some output.

Theoretically, RNNs should be able to handle context from the beginning of the sequence,
which would allow a more accurate predictions of a word at the end of the sequence, but
in practice, RNNs are limited to only a few previous steps [21]. The approach is the Long
Short Term Memory Network (LSTM)s. LSTMs are a special type of RNNs, which are
capable of learning long-term dependencies. In standard RNNs, the repeating module s
will have a very simple structure, while LSTMs the repeating module in LSTMs are more
complex [43]. This thesis does not explore the behavior of the LSTMs, but it is worth
mentioning that the LSTM units includes a memory cell that can maintain information in
the memory for a long period of time.

2.4.6. TensorFlow

The framework use the TensorFlow library developed by the Google Brain Team. Google
Brain Team is Google’s machine intelligence team that focuses on deep learning. Ten-
sorFlow provides a Python API, as well as C++, Haskell, Java, Go, and Rust APIs.
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TensorFlow is an open source software library for machine learning, that use computa-
tional graphs for numerical computations [55]. A computational or dataflow graph can
be thought of as a form of directed graph, where nodes describe operations and edges
represent the data flowing between these operations. The major advantage of represent-
ing an algorithm with a computational graph is the ability to show a visual expression of
dependencies between units of a computational model, such as the TensorBoard graph,
illustrated in figure 2.11. TensorBoard is a suite of web applications for inspecting and
understanding the TensorFlow runs and graphs.

Figure 2.11: A TensorBoard graph showing a simple fully conneted neural network, with
3 layers. The big nodes labeled theta0 and theta0 refers to the hidden and
output layer, respectively. The smaller nodes in the graph are the operation
nodes.

In TensorFlow, edges represent data flowing from node to node, and are referred to as
tensors. Mathematically, a tensor is the generalization of a N-dimensional matrix. In
terms of computational graphs, a tensor can be seen as a connection between operations. A
tensor does not hold or store values in the memory, but provides an interface for retrieving
the values referenced by the tensor.
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Python was the first client language supported by TensorFlow, and the Python API is cur-
rently the API that supports the most features [55]. There is a performance loss of Python
compared to C++, which is discussed in section 4.2. However, TensorFlow’s core back-
end is implementation using C++, which makes it compiler optimized. It is also worth
mentioning that the Python API integrates well with NumPy, a package for scientific com-
puting. The TensorFlow graph runs in sessions, where the API specify which operations
to execute in the run-function. Outside data may be supplied to placeholders so the graph
can run multiple times with different inputs.

TensorFlow supports both CPU and GPU devices. This is an important note, because back
propagation, can be stated as a set of matrix multiplications. The performance of CPU and
GPU version is discussed in section 6.1.1.1.

2.5. Signal Processing

EMG signal processing is a vital part of this thesis, and this section introduces the signal
processing technique used, the Wavelet Transform (WT).

In signal processing, mathematical transformations are applied to signals to obtain infor-
mation that is not readily available in the raw signals. This section uses the notation raw
signals for the time-domain signals, and processed signals for the signals that have been
transformed by any mathematical transformations.

Usually, measurable signals are time-domain signals, in other words, a signal given by a
function of time. In many cases, distinguished information can be hidden in the frequency
content of the signal. When the time-domain signal is plotted, a time-amplitude represen-
tation is obtained. The time-amplitude representation have one of the axes representing
the time, and the other the amplitude. In comparison, the frequency-amplitude represen-
tation have one of the axes representing the frequency and the other being the amplitude.
The frequency-amplitude representation gives information of how much each frequency
exist in our signal. To obtain the frequency-amplitude representation, an transformations,
such as the Fourier Transform (FT), can be applied on the signal. Since the WT was de-
veloped as an alternative to Short Time Fourier Transform (STFT), and to overcome some
resolution related problems coming with the STFT [47], the FT was mentioned specifi-
cally. Signals represented in the frequency domain allow the signals to be manipulated on
a different perspective, in areas such as reducing noise, compress data, modulate, filter and
encode.

2.5.1. The Fourier Transform

To get a better understanding of the WT, an introduction to Fourier Transform (FT), which
is a necessary background, is provided. Only essential theory is provided, since this subject
is fairly wide.
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The FT decomposes a signal from the time-amplitude representation into the frequency-
amplitude representation, an illustration is given in figure 2.12. FT is based on the principle
that any signal can be represented by an equation consisting of a combination of sin and
cos functions.

Frequency

Time

Magnitude

Figure 2.12: A visual representation of the FT.

The FT of a signal f(t), is defined as

f̂(ξ) =

∫ ∞
−∞

f(t) eitξ dt (2.15)

for any real number ξ. The FT is a reversible transform, meaning it has the property to
go back and forward between the raw signal and processed signal. The Fourier Transform
(FT) is given by

f(t) =
1

2π

∫ ∞
−∞

f̂(ξ) eitξ dξ (2.16)

An important note are the limits −∞ and∞, meaning the signal f(t) get integrated over
all time. This is an important note that is explained later.

There are two type of signals, stationary signals and non-stationary signals. Signals whose
frequency content do not change by time are called stationary signals, and in contrast
the non-stationary signals change the frequency content over time. Consider a stationary
signal f1(t), shown in figure 2.13a, and given by

f1(t) = cos(2π · 10t) + cos(2π · 25t)

+ cos(2π · 50t) + cos(2π · 100t)
(2.17)
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and a non-stationary signal f2(t), shown in figure 2.13b, and given by

f2(t) =


sin(2π · 100t) if 0 ≤ t < 0.2

sin(2π · 50t) if 0.2 ≤ t < 0.5

sin(2π · 25t) if 0.5 ≤ t < 0.8

sin(2π · 10t) if 0.8 ≤ t ≤ 1

(2.18)

where t is 0 ≤ t ≤ 1 and given in seconds. In f1(t) the frequencies 10, 25, 50 and 100
exist at all time, while in f2(t) the same frequencies exist, but not simultaneously. By
applying the FT, such that

f1(t)
F−→ f̂1(ξ) (2.19)

f2(t)
F−→ f̂2(ξ) (2.20)

The obtained signals f̂1(ξ) and f̂2(ξ) are given in figure 2.14. While we can see that the
figure 2.14a and 2.14b are not entirely the same, we can see that both graphs have four
major peaks at the same frequencies values, that are 10, 25, 50 and 100 hz. The noise in
f̂2(ξ), that is representet as the small ripples in figure 2.14b, is due to sudden changes from
one frequency component to another. The difference of the amplitudes of the frequencies
is due to the duration of the frequencies. The point of this example is to show the close
similarity of two processed signals, even though the raw signals are quite different.

The FT makes the frequency information readily available, but in exchange readily avail-
able information about time. The FT is quite useful on analyzing stationary signal, but
because of the loss of time information, it may not always be as useful on non-stationary
signal . Unfortunately, most of the natural signals are non-stationary, such as the electrical
activity of the body (electrocardiograph, electroencephalograph and electromyography).
To approach those signals it is more useful to use a revised version of the FT that gives
information of both time and frequencies, the STFT.

2.5.2. The Short-Time Fourier Transform and The Uncertainty
Principle

The FT is a common method to extract frequency-information from a signal, but it is not
always useful when time plays an essential part of the signal analysis. Short Time Fourier
Transform (STFT) is an approach on the FT that introduces some time dependence into
the FT, a sliding window function w(t− u). Mathematically this can be written as

f̂s(u, ξ) =

∫ ∞
−∞

f(t) w(t− u) e−itξ dt (2.21)
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t

f(t)

(a) A stationary signal with frequencies of 10, 25, 50, and 100

t

f(t)

(b) A non-stationary signal with frequencies of 10, 25, 50, and 100, on different times.

Figure 2.13: A stationary signal and a non-stationary signal are given in figure (a) and (b),
respectively. Both graphs contain the frequencies 10, 25, 50 and 100.

Like the FT, the STFT is also reversible. The Inverse Short Time Fourier Transform
(ISTFT) is given by

f(t) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

f̂s(u, ξ) w(t− u) eixξ dξ du (2.22)

Instead of processing the whole signal, STFT divide the raw signal into shorter segments of
equal length, called windows. Then applies the FT separately on each segment. The STFT
gives a time-frequency representation as shown in the spectrograms given in figure 2.15.
Figures 2.15a and 2.15b are the spectrogram of the signals given by the equations (2.17)
and (2.18), respectively. The spectrograms give information about which frequencies ap-
pear at a given time interval.

The limitation is referred to as Gabor limit. It is related to Heisenberg’s Uncertainty Prin-
ciple. In psychics, the uncertainty principle says that we cannot measure both the position
and the momentum of a particle with absolute precision. In other words, the more accu-
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ξ

f̂(ξ)

(a) The Fourier Transform of the stationary sig-
nal in figure 2.13a.

ξ

f̂(ξ)

(b) The Fourier Transform of the non-stationary
signal in figure 2.13b.

Figure 2.14: The FT of a stationary signal and a non-stationary signal is given in figure
(a) and (b), respectively. Both graphs have major peaks at the frequency of
10, 25, 50 and 100.

rately one value is known, the less accurately the other value is known. In signal process-
ing, the Gabor limit is about the time–frequency resolution limit. If we define the standard
deviations σt of the time and standard deviations σf frequency, then we can formally write
Gabor limit as

σfσt ≥
1

4π
(2.23)

The width of the windows determine whether there is good frequency resolution or good
time resolution, and the limit of STFT is the fixed resolution.

A wide window gives better a frequency resolution but a poor time resolution. A nar-
rower window gives good a time resolution but poor frequency resolution. The problem
is choosing an optimal window function for the analysis. If the frequency components are
well separated in the raw signal, then one may sacrifice some frequency resolution and
choose a good time resolution, since the spectral components already are well separated.
However, if this is not the case, then a good window function could be more difficult than
finding a good stock to invest in [47]. WT seems to be an approach to the limit problem of
STFT [12].

2.5.3. Wavelet Transform

The FT transforms a signal from the time domain to the frequency domain by decomposing
the raw signal into a formula consisting of sin and cos functions. In comparison, the
Wavelet Transform (WT) uses the wavelets. Unlike sin and cos waves, that are infinite, the
wavelets are limited waves that decreas back to zero. The Continuous Wavelet Transform
(CWT) is obtained by convolving a signal with an infinite number of wavelet functions,

23



Chapter 2. Theoretical Background

(a) (b)

Figure 2.15: Figure (a) and (b) shows the spectrogram of the STFT with the same window
size of the signal represented in figure 2.13, respectively.

generated by translating (τ ) and scaling (s) a certain mother wavelet function.

2.5.3.1. Definition

The mother wavelet function is defined as ψ(t) ∈ L2(R), which is limited in the time
domain. That is, ψ(t) has values in a certain range and zeros elsewhere. The basic wavelets
ψs,τ (t) are generated from the mother wavelet ψ(t), given by

ψs,τ (t) =
1√
s
ψ(
t− τ
s

) (2.24)

The CWT is formally written as

γ(s, τ) =

∫ ∞
−∞

f(t)ψ∗s,τ (t) dt

=
1√
s

∫ ∞
−∞

f(t)ψ∗(
t− τ
s

) dt

(2.25)

where ∗ denotes complex conjugation. The variables s and τ are the new dimensions after
the WT, scale and translation, respectively. Equation (2.25) shows how the signal f(t) is
decomposed into a set of basic wavelets ψs,τ (t), and maps an one-dimensional signal to a
two dimensional coefficients γ(s, τ). The transform makes it possible to locate a particular
frequency s at a certain time instant τ .

As with FT and STFT, the WT have an inverse. If the signal f(t) is a L2(R) function, the
Inverse Continuous Wavelet Transform (ICWT) can formally be written as

f(t) =
1

Cψ

∫ ∞
0

∫ ∞
−∞

γ(s, τ)
1√
s
ψ(
t− τ
s

) dτ
ds

s2
(2.26)
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where Cψ is defined as

Cψ =

∫ ∞
0

|Ψ(ξ)|2

ξ
dξ <∞ (2.27)

Ψ(ξ) is the Fourier transform of the mother wavelet ψ(t). That is,

ψ(t)
F−→ Ψ(ξ)

Equation (2.27) is the admissibility condition. The most important properties of the wavelets
are the admissibility and the regularity conditions [60]. The admissibility condition makes
the wavelet a wave and the regularity condition gives it the fast decay.

2.5.4. Discrete Wavelet Transform

Most signals are given by a discrete representation, and smooth varying parameters is not
always necessarily to obtain interesting signal features or reconstruct the signal from the
wavelet coefficients. For this kind of signals, the Discrete Wavelet Transform (DWT) may
be sufficient. The main concept of the DWT is the same as the CWT, but with a significant
reduction of computation time. Unlike the Discret Fourier Transform (DFT), which is a
discrete version of the FT, the DWT is not really a discrete version of the CWT.

The CWT is computed by continuously shifting a continuously scalable function over
a signal and calculating the correlation between those two. In DWT, different cutoff fre-
quency filters are used to analyze the signal at different scales. The signal is passed through
a series of high-pass filters, the mother wavelet, to analyze the high frequencies. Then the
singal is passed through a series of low-pass filters, the father wavelet, to analyze the low
frequencies.

The basic DWT passes the raw signal x through a half-band digital low-pass filter with
impulse response g. A half-band low pass filter removes all frequencies that are above half
of the highest frequencies. Filtering a signal corresponds to the mathematical operation of
convolution of the signal with the impulse response of the filter. The convolution operation
in discrete time is defined as

y[n] = (x ∗ h)[n] =

∞∑
k=−∞

x[k] · h[n− k] (2.28)

The signal is decomposed simultaneously using a high-pass filter h. As illustrated in the
diagram given in figure 2.16, the filters return the detail coefficients (the high-pass filter)
and approximation coefficients (the low-pass). The detail coefficients and approximation
coefficients is then subsampled by the factor of 2. Subsampling by a factor n is to reduce
the number of samples in a signal by n times. Since half of the frequencies of the signal
have been removed from the cutoff frequency filters, half the samples can be discarded
according to Nyquist’s rule, which says the sampling’s frequency must not be above half
the sampling frequency [6]. On this point the scale of the signal have been doubled.
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Even though low-pass filtering removes the high frequency information, the scale remain
unchanged. By the subsampling process the scale get changed. Resolution is related to the
amount of information in the signal, and it is affected by the filtering operations. Filtering
half of the frequencies with a half-band low-pass filter can be interpreted as losing half of
the information, and this will affect the resolution. However, the subsampling operation
after filtering does not affect the resolution, since removing half of the spectral components
from the signal makes half the number of samples redundant.

Let the subsampling operator be defined by ↓, given by

(y ↓ k) = y[kn] (2.29)

Then mathematically, the process can be express as follow

ylow[k] = (x ∗ g) ↓ 2 (2.30)
yhigh[k] = (x ∗ h) ↓ 2 (2.31)

where ylow[k] and yhigh[k] are the outputs of the low-pass and high-pass filters after sub-
sampling by the factor of 2, respectively.

Figure 2.16: Wavelet decomposition at level 1. We apply a low-pass filter g and a high-
pass filter h to a signal x, then subsample the output by the factor of 2.

The described decomposition is repeated for further decompositions. On each level the
approximation coefficients from the low-pass filter is decomposed with high and low-pass
filters and then subsampled. At each level, the filtering and subsampling will result in
halve the time resolution and double the frequency resolution.

The DWT can be interpreted as computing the wavelet coefficients of a discrete set of
child wavelets for a given mother wavelet ψ(t). The mother wavelet is shifted and scaled
by powers of two, and by a little modification of the equation (2.24) we get

ψj,k(t) =
1√
2j
ψ(
t− k2j

2j
) (2.32)
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DWT is used to decompose signals, but can be assembled back into the original signal
without loss of information. This process is refereed to as reconstruction, and is done
by the the Inverse Discrete Wavelet Transform (IDWT). Wavelet decomposition involves
filtering and downsampling, while the wavelet reconstruction consists of upsampling and
filtering. The reconstruction is shown in figure 2.17. Upsampling is the opposite of down-
sampling, the process of lengthening a signal component by inserting zeros between sam-
ples.

Figure 2.17: A wavelet reconstruction diagram, where gr and hr are the low reconstruc-
tion and high reconstruction filters, respectively.

2.5.5. Comparison of Wavelet and Short-Time Fourier
Transform

WT and STFT are both developed to approach the problem with time information by
FT. This section present some differences and similarities of the features of WT and
STFT.

2.5.5.1. Resolution

In STFT, the flexibility is restricted by that one fixed size of the time window is selected
for all the frequencies. The limit of flexibility causes problems when the signal requires
more accurate information for the other element. The WT approach this by a windowing
technique with variable-sized regions. The ability to changes the time extension in wavelet
transform, allow the use of

• long time intervals where more precise low frequency information is required and

• shorter time intervals where high-frequency information is required.

A comparison of the resolution of STFT and WT is shown in figure 2.18, where each box
represents an equal portion of the time-frequency plane. Note that the area for both the
WT and the STFT resolution are constant, determined by the uncertainty principle.
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t

f

(a) Resolution of short-time Fourier Transform

τ

s

(b) Resolution of wavelet transform

Figure 2.18: Comparison of (a) STFT and (b) WT resolution.

2.5.5.2. Scale and Translation

Unlike the STFT, WT dose not give a time-frequency representation by time and fre-
quency, rather by the translation τ and scale s.

The term translation is strictly related to time, and corresponds to time information in the
transform domain. Translation gives information of where the mother wavelet is located.
The translation of the mother wavelet can be thought of as the time elapsed since t =
0.

The WT does not have the frequency parameter, instead the scale parameter is used. The
scale is inverse of frequency. That is, high scales correspond to low frequencies, and low
scales correspond to high frequencies. The relationship between the wavelet scale and the
equivalent Fourier frequency depends on the wavelet and the sampling frequency.

2.5.5.3. PyWavelets

The framework is implemented in Python, and uses PyWavelets for the wavelet analysis.
PyWavelets seem to be the only well-developed library for the wavelet calculation for
Python. PyWavelets is a free and Open Source wavelet transform software for the Python
programming language [49].

Some main features of PyWavelets are:

• 1D, 2D and nD DWT and IDWT

• 1D CWT

• Computing Approximations of wavelet and scaling functions

• Over 100 built-in wavelet filters and support for custom wavelets

• Single and double precision calculations

28



2.5. Signal Processing

• Real and complex calculations

The most important relevant features are DWT and IDWT, and the built-in wavelet fil-
ters.
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Chapter 3
Background

This chapter present some related work for gesture control and recognition. Section 3.2
covers the machine learning relevant related work, while section 3.1 covers the generalized
case.

3.1. Related Work

In this section, work related to gesture recognition is presented. This includes both re-
search on gesture controlled devices and gesture recognition.

3.1.1. EMG-based Controlled Robots

Various interface systems and prosthetics have been developed to support handicapped
people with limited manipulation capability of the upper limb due to traffic accidents,
cerebral apoplexy, or other afflictions. Many prosthetic arms have been developed for am-
putees since the 1970’s, and in [19], the concept of an EMG-based human-robot interface
as rehabilitation aids is proposed. In [3], a methodology for controlling an anthropomor-
phic robot arm using nine surface EMG electrodes to record the muscular activities is
proposed. A control interface is proposed, according to which, the user performs motions
with the user’s upper limb. The recorded electromyographic activity of the muscles can
be transformed into kinematic variables that are used to control an anthropomorphic robot
arm.

In [13], a project to help amputee Johnny Matheny that lost his arm to cancer in 2008
is presented. At the Johns Hopkins Applied Physics Laboratory, Matheny worked with
a prosthetic arm attached directly to his skeleton, this prosthetic arm is controlled by the
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use of two Myo armbands on the upper arm that detects the electrical activity of the mus-
cles.

3.1.2. Gesture Recognition

The study of human-computer interaction has developed to put a significant amount of
effort on user-friendly interfaces employing voice, vision, gesture, and other innovative
I/O channels. One of the most challenging approaches in this research field is to link neural
signals with computers by exploiting the electrical nature of the human nervous system.
The development of an EMG-based interface for hand gesture recognition is presented in
[28], where an EMG-sensor is positioned on the inside of the forearm to recognize control
signs in the gestures.

Gesture-based control is one of the major application for hand gesture recognition tech-
nologies. Another major application is sign language recognition. Sign Language recog-
nition aim to help the deaf communicate with the hearing society conveniently. In [63],
a framework for hand gesture recognition based on the information of a three-axis ac-
celerometer and multichannel EMG sensors is presented.

3.1.3. Alternative Gesture Control Methods

The ability of tracking position and movement for gesture recognition can be achieved
by various approaches. The Myo armband uses accelerometer, gyroscope, and magne-
tometer to keep track of the orientation, and EMG-sensors to measure electric activity
of the muscle. Other tools such as Kinect and Leap Motion is based on a more visual
approach.

3.1.3.1. Gesture Gloves

Hand gestures are movements of the arms and fingers, and one possible approach to track
movement of the arms and fingers is to place sensors directly on the fingers, for example
in the form of a glove. Two University of Washington undergraduates have won a $10,000
Lemelson-MIT Student Prize for gloves that can translate sign language into text or speech
[42]. Another example is the out-of-the-self gesture glove from Maestro Gesture Glove
[20].

3.1.3.2. Image-based Gesture Control

Leap Motion [31] and Kinect [29] are two commonly used sensors for tracking motions
by utilizing technology such as infrared cameras, infrared LEDs, RGB camera, and depth
sensor. Unlike the other mentioned devices, Leap Motion and Kinect observe the move-
ments, instead of touching the user. Leap Motion and Kinect utilize different technologies,
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thus have different advantages and disadvantages, but conceptually, they work in the same
manner. There are some different ASL related work based on both Leap Motion [48, 11]
and Kinect [62, 30, 8], but also work that tries to utilize the advantage of both by combin-
ing the sensors [35].

3.1.4. SCEPTRE

This thesis was mainly inspired by a project SCEPTRE by some researchers from Arizona
State University [44]. The primary goal of SCEPTRE is to match gestures.

The system SCEPTRE is comprised of an Android smartphone or a Bluetooth enabled
computer and one to two Myo devices. The goal is to develop a system using two Myo
devices to decipher ASL gestures, and display the meaning on a smartphone or com-
puter. SCEPTRE utilizes the data from the accelerator, magnetometer, and EMG-sensors.
The project is an attempt to develop a system toward a system which is ubiquitous, non-
invasive, works in real-time, and can be trained interactively by the user.

The system is envisioned to be used in two primary applications:

• User-to-User interaction

• User-to-Computer interaction

20 ASL signs with training instances for each gesture were chosen to test the system. It is
also possible for the user to train the system with additional signs, either in guided mode
or ASL mode. In guided mode the system compares the new gesture data with the existing
data collection to ensure there are no clashes, meaning too much overlapping data. Unlike
guided mode, the ASL mode does not make this guarantee.

Dynamic Time Wrapping (DTW) is used to compare accelerometer and orientation data.
For the EMG data, an energy based comparison was used. By using a combination of data
from the accelerometer, magnetometer and EMG sensors the system was able to achieve
an accuracy of 97 %.

3.2. Machine Learning

This section introduces related work that utilize machine learning technique for gesture
recognition. Section 3.2.1 focuses on work using ANNs and deep learning, while sec-
tion 3.2.2 focuses on work using other machine learning techniques such as the Hidden
Markov Model (HMM).
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3.2.1. Neural Network

There are many researches on classification of EMG signals using ANN. An example can
be found in [54, 25, 4]. The method presented in [54] use a Wavelet Neural Network
(WNN) to classify neuromuscular disorders. WNN is described as a class of networks that
combine the classic ANN and the wavelet analysis [2]. Unlike the use of wavelet analysis
in this thesis, the discrete wavelet function is used as the neuron’s activation function, and
not in feature extraction for the inputs. In [25], a prosthesis is designed to be controlled
by EMG signals detected by surface electrodes attached to the user’s arm. A similar work
is introduced in [4], where CNNs are used for classification of movements for prosthetic
hands

3.2.2. Alternative Machine Learning Techniques

HMM are a tool for modelling time series data, which dominate speech recognition [26].
Speech recognition have some relations with gesture recognition. In [32], an EMG based
speech recognition system is introduced, and [9] demonstrate that myoelectric signal au-
tomatic speech recognition using an HMM classifier is resilient to temporal variance. The
HMM used for continuous gesture recognition is presented in [33, 16, 10]. Note that these
works are not based EMG data, but on orientation and trajectories.
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Methodology

This chapter introduces the concepts and methods used to develope the framework. The
framework is based on the previous work, and section 4.1 provide a description and
achievements of this preliminary work.

4.1. Previous Work

The core of the current framework was developed in the preliminary work of this thesis.
This section uses the term preliminary framework to refer to framework developed in the
previous work and current framework to the framework developed for this thesis. The
preliminary system consisted of a Myo armband, connected via Bluetooth to a computer.
The preliminary framework was implemented using C++, because the C++ bindings was
included in the Myo SDK.

Cross Correlation and Dynamic Time Wrapping (DTW) are the two methods used in the
preliminary framework to classify gestures. Cross correlation and Dynamic Time Wrap-
ping (DTW) are two different methods to measure the similarity of two graphs. Classifi-
cation of a gesture was determined by the similarity of the data of the unknown gesture to
the data from a set of known gestures. Cross correlation is a method to estimate the de-
gree of similarity of two series. Dynamic Time Wrapping (DTW) is a technique to find an
optimal alignment between two given time-dependent sequences. The goal is to align two
sequences of graph by warping the time axis iteratively until an optimal match between
the two graphs is found.

Unlike the current framework, the preliminary framework utilized all data provided by the
Myo armband. The scope of this thesis is only to analyze the data given by the EMG
senors, thus the data given by the IMU sensors are ignored. The preliminary framework
using cross correlation and Dynamic Time Wrapping (DTW) achieved an accuracy around
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90% by utilizing both IMU and EMG data. However, removing the analysis of the EMG
data improved the results slightly. Removing the analysis of the IMU data, on the other
hand gave results without any clear characteristics. From the results of the previous work,
one can assume with high certainty that cross correlation and Dynamic Time Wrapping
(DTW) are not practical to extract information from the EMG signals. It is worth men-
tioning that the test for these results was fairly small, with only 10 instances of 5 different
gestures.

4.2. System Description

The system developed with this thesis consists of a Myo armband, connected via Bluetooth
to a computer. The outer-overview of the system is shown in figure 4.1. The computer
uses Myo Connect, drivers provided by Thalmic, to receive data from the Myo armband.
By using the MyoSDK, described in section 2.3.2, the framework gets an easy access to
the sampled data. Unlike the preliminary framework, described in section 4.1, the current
framework is implemented in Python instead of C++. The Myo development stack diagram
is given in figure 2.2.

Unlike C++, which is a compiled language, Python is an interpreted language. Compiled
languages are known to have a better run time than interpreted languages, because of op-
timization achieved by directly using the native code of the target machine. The tests used
on the preliminary work, with cross correlation, was approximately four time faster on
the C++ implantation, than on the equivalent Python implementation. The higher level of
abstraction is the main reason for the choice to transit to a Python implementation. Python
has a strong position in scientific computing [27]. Open source libraries, such as NumPy,
give Python a high performance for numerical calculations. Numerical calculations are an
essential part of the EMG feature extraction procedure.

This thesis focuses mainly on ANN and EMG feature extraction techniques, and Python
have support for a number of well developed deep learning and signal processing technique
libraries, and therefore seems like a acceptable choice for this thesis. While TensorFlow,
the machine learning library used in the framework, support a C++ interface, the Python
API seem more developed at the moment, and comes with a more comprehensive docu-
mentation.

The source code of the current framework is published in the git repository given in ap-
pendix A.1.

4.3. Neural Network

The framework use ANN to classify gestures based on the EMG signals obtained from
the Myo armband. The theory of the ANN is explained in section 2.4, and this section
describes the practical use of ANN in the framework.
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(a) (b)

Figure 4.1: Figure (a) shows a user wearing the Myo armband performing a gesture. Fig-
ure (b) shows the Myo armband connected to the system on a computer.

There are many open source libraries developed for machine learning, and specifically for
ANNs. As mentioned in section 4.2, the early version of the framework was implemented
in C++. The early phase of framework used an ANN library called FANN, Fast Artifi-
cial Neural Network Library [40]. FANN is a free open source ANN library providing
features for a simple ANN. While FANN provides a simple implementation, it is limited
to simple networks. The leading libraries for deep learning seem to be TensorFlow[55]
and Theano[58]. Both libraries mainly implemented for Python. There are no concrete
reasons for the system to use TensorFlow over Theano, but TensorFlow seem to be bet-
ter marketed. Although, FANN provide enough features to produce the networks for the
current framework, TensorFlow opens the possibility for future development with more
complex networks such as the RNNs, introduced in section 2.4.5.3. A brief performance
review of FANN and TensorFlow will be presented in chapter 5.

4.3.1. Architeture

There exist many type of ANN architectures as shown in figure 2.8. However, this the-
sis focuses only on the DFF architecture. While the chart given in figure 2.8 shows the
characteristics of many different types of network, there are still underlying structures of
network.

The network architecture used in this thesis are the fully connected multi-layer DFF de-
scribed in section 2.4. In this types of network there are some parameters to determine the
structure,

• the number of input neurons,

• the number of output neurons,
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• the depth of the network,

• and the number of hidden neurons on each hidden layer.

The number of input neurons in the input layer θ0 is determined by the EMG features, more
details about the EMG features are given in section 4.4. The number of output neurons in
the output layer θn is determined by the number of gestures the network can recognize.
Each gesture is linked with an output neuron. The link is determined by the position of
the neuron in the output and the gesture ID. When we apply some input into the network,
each output neuron will return some value. This values range from 0 to 1, and the closer
the value is to 1, the higher the possibility is for the input to be the data from the gesture
that the output neuron is linked with.

The depth of the network and the number of hidden neurons is each layer are two param-
eters with more uncertainty. If a network is too big, it can memorize all the examples by
forming a large lookup table, but may not be the most optimal for inputs that the network
have not seen before. In other words, ANN are subjected to overfitting when there are
too many parameters. It is known that a feed-forward network with one hidden layer can
approximate any continuous function of the inputs, and a network with two hidden layers
can approximate any function at all [52].

This thesis experiments with different values for the mentioned parameters, and examines
if there are any significant change on the results. The main structure used in this thesis
is illustrated in figure 4.2. The number of hidden neurons on each hidden layer θi is
determined by the size of the input layer θ0, but does not necessarily have to be the same.
The determination of size of the hidden layer is given by a simple rule that the size of
the hidden layer has to be greater than the size of the input layer, so size(θi) > size(θ0),
where i ∈ [1, n − 1]. This thesis also experiments with the depth n of the network. For
the simplicity of experimenting with different value of n, the number of neurons in each
hidden layer θi is the same.

4.3.2. The Implementation

The framework is implemented using TensorFlow, introduced in section 2.4.6. The frame-
work provides a simple method to create networks of different depth and customizable
size for each hidden layer. It also provide a simple method to construct the network with
different activation functions for each layer, but this thesis mainly focuses on the sigmoid
activation function. On the other hand, the system gives no opportunity to change the cost
function without editing the source code, and only MSE is used.

When the system creates a new network, it creates the associated training file and network
metadata file. The training file gives information about the number of training instances,
the input size, the output size, and most importantly, it contains the pre-calculated input
values. More information regarding the input is presented in section 4.4.3.

The network metadata file contains details about the network, such as
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Figure 4.2: A diagram showing the structure of the networks used in this thesis. θi for i ∈
[1, n− 1] are the hidden layers, while θ0 and θn are the input layer and output
layer, respectively. The clouds represent a set of neurons, and the heights of
the clouds indicate the size of layer.

• layer sizes,

• epoch count,

• activation function for each layer,

• wavelet level,

• and which features are used.

The layer sizes are represented by an array, and includes information about size of the
input and output, and also gives information about the depth of the network by the length
of the array. Each element in the array represent the the number of neurons (excluding the
bias units) in the layer level corresponding to the element’s index. An epoch is defined
as one forward and one backward propagation of all the training instances, in other word,
a forward and backward propagation of all training instances given in the training file.
The information about the wavelet level and the features makes it easier for the system to
analyze the unprocessed data with the right features. The information of which features
are used is represented by an array, with the value 0 or 1. 1 means the feature is included,
while 0 means the feature is excluded.

The information about the structure of the different networks given in appendix E is based
on the information given in the network metadata file.
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4.4. EMG Feature Extraction

EMG signals have the properties of non-stationary, nonlinear, complexity, and large varia-
tion, which makes it difficult to analyze and classify. To build a system based on EMG, we
have to extract some information from the signals. There are various approaches and meth-
ods for EMG feature extraction, such as the Wavelet Analysis, Auto Regressive Analysis,
Spectral Magnitude Averages and Fourier Analysis [53].

EMG feature extraction is a technique to extract essential and usable information that may
be hidden in the EMG signal, in addition to remove unnecessary parts and interference.
The feature analyze of EMG signals can be divided into three main groups [46]:

• Time domain,

• frequency domain, and

• time-frequency domain

This thesis focuses on feature extraction from the time domain and time-frequency domain.
This thesis choose to use the wavelet analysis, since the WT is a time-frequency analysis
method that is designed for analyzing non-stationary signals such as the EMG signals,
and seems to be an effective tool to extract useful information from the EMG signals
[45].

4.4.1. Wavelet Transform

WT can process signals that are non-stationary and time varying in nature. A technical
description of WT is given in section 2.5, and this section covers the basis of how wavelets
analysis are used in the framework.

There are two types of WT methods, the DWT and CWT. As explained in sections 2.5.3
and 2.5.4, DWT have a significant reduction in the computation time compared to
CWT, and therefor the DWT is chosen as main supplement for the EMG feature extrac-
tion.

There exist many types of wavelets, but there is no generalized method to choose the
mother wavelet [39]. The Daubechies Wavelets is chosen because it is one of the most
common wavelet family. Daubechies wavelets are a family of orthogonal wavelets that
are characterized by a maximal number of vanishing moments. Daubechies wavelets is
refered to as dbN . Each wavelet has a number of vanishing moments equal to the number
N of coefficients. For simplicity, this thesis only uses db1.

If an EMG signal S, pass through a low-pass filter and a high-pass filter, we obtain an
approximation coefficient subset cA and a detail coefficient subset cD. A diagram of the
progress is given in figure 4.3. The coefficients of filter depends on wavelet function type.
The depth of the decomposition tree is determined by the wavelet decomposition level
(wavelet level).
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Figure 4.3: Wavelet decomposition of level 3. We apply a low-pass filter and a high-pass
filter to the EMG signal S, to obtain an approximation coefficient subset cA
and a detail coefficient subset cD.

Consider a decomposition of level n, then from the wavelet decomposition we obtain the
wavelet coefficient subsets

cD1, . . . , cDn, and cAn

Each coefficient subset can be reconstructed to obtain an effective EMG signal part. Re-
construction of a signal is done by using the IDWT, explained in section 2.5.4. Generally,
the IDWT is performed by using the final-level approximation coefficient cAn and all the
detail coefficients cDi. However, this thesis define the reconstruction of the EMG signal
by the inversion of subset dependence. The reconstructed EMG signals, namely

D1, . . . , Dn, and An

are reconstructed from wavelet coefficient subsets cD1, . . . , cDn, cAn, respectively. For
example the reconstructed EMG signalAn is reconstructed by using the coefficients of the
final-level approximation coefficient cAn only.

The obtained wavelet coefficient subsets and the reconstructed EMG signals are further
used in the feature analysis that is explained in section 4.4.2.
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4.4.2. Features

There are thirty-seven features presented in [46], where the majority are defined in time
domain, and only a minority are defined for the frequency domain. Many of the presented
features share similarities, and it is therefore not necessary to use all features. For this
thesis, using [34] as the basis for the choice, the Mean Absolute Value (MAV), Root Mean
Square (RMS), and Waveform Length (WL) is used. The mathematical operations for
MAV, RMS, and WL is given in sections 4.4.2.1 to 4.4.2.3. The diagram in figure 4.4
shows the procedure of the EMG feature extraction from the wavelet decomposition and
reconstruction of the EMG signal.

Figure 4.4: The EMG feature extraction procedure from an EMG signal

4.4.2.1. Mean Absolute Value

Mean Absolute Value (MAV) is one of the most popular feature in EMG signal analysis
[46]. MAV is the average of the absolute values of the EMG signal amplitudes, and is
defined as

MAV =
1

N

N∑
n=1

|xn| (4.1)
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4.4.2.2. Root Mean Square

Root Mean Square (RMS) is also another popular feature in EMG signal analysis [46]. It is
modeled as amplitude modulated Gaussian random process whose relates to constant force
and non-fatiguing contraction. The mathematical definition of RMS can be expressed
as

RMS =

√√√√ 1

N

N∑
n=1

(xn)2 (4.2)

4.4.2.3. Waveform Length

Waveform Length (WL) measure the complexity of the EMG signal, and we define it as
the cumulative length of the EMG waveform over the time segment. Mathematically given
by

WL =

N∑
n=1

|xn+1 − xn| (4.3)

4.4.3. Network Inputs

The size of the input layer is determined by the features, which is described in sec-
tions 4.4.1 and 4.4.2. The wavelet level defines the depth of the decomposition, which
determines the number of wavelet coefficient subsets and reconstructed EMG signals. An
example of a wavelet decomposition of level 3 is given in figure 4.3.

Consider a wavelet decomposition of level n, this decomposition will give n detail coef-
ficient subsets and 1 approximation coefficient subsets. As described in section 4.4.1, the
reconstructed EMG signals are reconstructed from each of the wavelet coefficient subsets,
giving a total of n + 1 reconstructed EMG signals. In addition, the raw EMG signal S is
used in the analysis. The Myo armband have in total 8 EMG sensors. Let the number of
features be denoted by k, then the number of input I is given by

I = ((2(n+ 1) + 1) · 8) · k

The implemented structure of the input is given in appendix D.2.

The values of of the input are normalized by using NumPy’s normalization function
numpy.linalg.norm, given by

an(a) =
a

numpy.linalg.norm(a)
(4.4)

where an is the normalized array of a. Normalization is done in groups of eight, the
grouping is given in the input structure described in appendix D.2.
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The Normalization by grouping seems to have a bug on the input, creating duplicate values.
Given the input function described in appendix D.2, if the the isRecosntructed parameter
is the only different parameter, then the normalization will return the same value. Such
that

a1 = [ i n p u t ( 0 , n , FALSE , k ) , . . . , i n p u t ( 8 , n , FALSE , k ) ]
a2 = [ i n p u t ( 0 , n , TRUE, k ) , . . . , i n p u t ( 8 , n , TRUE, k ) ]

by the normalization given in equation (4.4) give

an(a1) = an(a2)

This is further discussed in section 6.1.2.6.

4.5. Datasets

This thesis deals with two independent types of dataset. Two type of dataset were nec-
essary because the ANNs needs a sufficient amount of data for the training phase. The
dataset is refereed to as the hackathon dataset and the recorded dataset.

4.5.1. Hackathon Dataset

The hackathon dataset is a dataset received from the author of [17]. The author claims he
obtained the data from a hackathon he participated, and cannot give any guarantee for the
data. It is stated in the report that the data files was provided by Thalmic Labs, but there
are still no garantee of the data is simulated or sampled.

The dataset is given as a collection of CSV files, given by the following name

GestureM ExampleN .CSV

where M is the gesture ID and N is the example ID. The original received dataset used txt
filetype instead of CSV, but this has no effect on the data. The dataset includes 6 different
gestures, with 2000 instances of each gesture. It is stated in the actual hackathon challenge
task that each file contains a 50×8-matrix representing the EMG signals, but this statement
is not true. Some files contains a matrix with the row length from 40 to 49.

In section 2.3.2.2, it was mentioned that the EMG sensors returned values ranging from
−128 to 128. It is not stated that the values are sampled from the Myo armband, but it is
worth noting that the hackathon dataset values range from 0 to 2218.

4.5.2. Recorded Dataset

The Recorded Dataset is the dataset recorded by the framework, and unlike the hackathon
dataset, it is control on the data in the recorded dataset. The data is obtained directly from
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the Myo API, and stored in JSON-files. The whole dataset is provided in the git repository
given in appendix A.2.

It is worth mentioning, that the networks created in the early phase of the framework
includes training data from a small deprecated dataset that was not sampled by the frame-
work. From the preliminary framework and the early phase of the current framework, the
data was obtained from Pewter. Pewter is an open-source project developed for acquisi-
tion, analysis and visualization of raw data from the Myo Armband [14]. Pewter worked
for creating a small dataset, but due to ANNs necessity of a large training set, a more
suitable method was implemented.

The framework, samples signals from the Myo armband with a time interval. The time
interval is set to 4.5 seconds, starting from the user presses the enter-button. 4.5 seconds
gives EMG data arrays of size 900 and IMU data arrays of size 225, the sampling rate of
the EMG sensors and IMU sensors are 200 hz and 50 hz, respectively. The raw sampling
files include a margin. Each gesture takes 1 to 2 seconds to perform, and the raw files
includes unnecessary data of the gestures being held in their final positions. To reduce
the computing time, the framework provides a method to remove the unnecessary data at
the end. As for this thesis, the framework uses 3 seconds of the data. While this method
reduce the unnecessary data at the end, the unnecessary data of when the user presses the
enter-button before doing the actual gesture is still used in the analyzes.

The method for creating gesture data files uses one of the pre-trained networks. The net-
work is trained from earlier data to try to recognize the right gesture for the given data.
This method is implemented to optimize the production of training data. The framework
allows the user to correct the classification when the system recognizes the wrong ges-
ture.

The recorded dataset files are given by the following name

recorded-X-N .json

where X is the gesture name and N is the example id. The framework is implemented
with 10 pre-defined gestures given in appendix B. The structure of the json-files is given
in appendix D.1. Although the framework does not utilize the IMU data, it is still stored
and may be used for future work.

The framework also allows sampling of data with an user id. These data are used to
evaluate the framework for a more generalized case. These files are given by the following
name

I-NotMe-X-N .json

where I is the user id, X is the gesture name and N is the example id. In this thesis, these
files is refereed to as the ”NotMe” dataset.
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Chapter 5
Results

This chapter provides the results achieved by the framework. The results include both the
performance and accuracy results, given in sections 5.3 and 5.4, respectively. The require-
ments and conditions for the analyzes is given in section 5.1. The results are discussed
more thoroughly in chapter 6.

5.1. Result Background

This section gives information about the requirements and conditions for the analysis, in
other word the background of the results.

5.2. Gesturs

The framework is implemented with 10 pre-defined gestures given in appendix B. Ta-
ble B.1 provides a lsit of pre-defined gesture with the gesture names and their correspond-
ing gesture id. Since there is no assurance from a qualified sign language user, it is uncer-
tain whether the gesture is correct or wrong in terms of meaning. However, this should not
affect the results, as long as the gesture are consistent. The gestures are imitated move-
ment from the ASL dictionary [59]. The gestures are randomly chosen from common
words with consideration of signs that mainly use one hand, the other hand may have a
supporting role. All the data is sampled from the Myo armband on the right hand.

As described in section 4.5, this thesis uses two different types of dataset. There is no
information about the gestures represented in the hackathon dataset, but in this thesis,
the gesture name is used to refer to the gesture with the corresponding id for a better
readability.
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5.2.1. Hardware Specifications

The framework has been tested on two different computers, referred to as desktop and lap-
top. The information about the specifications of the computers is given in appendix C. The
specifications is important, because the preformance analysis is dependent on the hard-
ware. In this thesis, processes that run on the laptop only utilize the CPU. When Tensor-
Flow is used on the desktop, the GPU version is used, unless otherwise specified.

5.2.2. Training

In order for an ANN to achieve satisfying accuracy of gesture classification, it need a suffi-
cient amount of training data. The hackathon data set consist of 2000 files of each gesture.
1500 of files are used for training, while the other are used for testing. The recorded dataset
consist of 601 files, and 501 are used for training. The ”NotMe” dataset, the dataset sam-
pled from other users, range from 24 to 37 files for each gesture. The ”NotMe” dataset is
not used to train any network, and the purpose is to experiment if networks, trained from
only one user, are able recognize the gestures from another user.

This thesis gives analysis of the training time, and briefly discuss the quantity of sufficient
training. The earlier networks was trained with less than 150 instances for each gesture.
The analysis compares the network that used a small training set with the network that
used a significantly bigger training set.

Unless otherwise specified, the training set is of size 9000 and 5010 for the hackathon
dataset and recorded dataset, respectively.

5.2.3. Testing

To compare accuracy of the network structures, the tests are based on a unseen dataset.
In the hackathon dataset the test consist of 500 instances for each gesture, and the in the
recorded dataset the test consist of 100 instances for each gesture.

Since there is limited information about the hackathon dataset, the files with the highest
example id is chosen to be the test samples, meaning, example id N from 1501 to 2000.
For the recorded dataset, the test files are sampled with some parameters in mind. Param-
eters such as the time of the day, mood, and place.

5.2.4. Network Structure Notation

This thesis represents the networks in a table format based on the information from the
network metadata files described in section 4.3.2.

While not all created networks are used, information of all the created networks is given
in appendix E. Table 5.1 shows an example of a table containing the network information.
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xN i is the network reference, where x indicate which dataset the network is based on.
x = r indicates the recorded dataset and x = h indicates the hackathon dataset.

rN 0

Dataset Recorded dataset
Number of gestures 10

Layer Sizes [120, 150, 24, 10]
Epoch count 4970000

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 1

[MAV, RMS, WL] [1, 1, 1]

Table 5.1: A example of a table that is used to represent a network. It is based on the
information from the network metadata files.

5.3. Performance

This section focuses on the performance of the framework. Unless otherwise stated, the
GPU version of TensorFlow is used.

5.3.1. Training

For even the relatively small networks used in this thesis, the training took several days.
This section purpose the training performance. The analysis includes changes in parame-
ters, such as Network Depth n, Number of Inputs I , or Size of Hidden Layers h, and see
if it has any effect on the training time. The run time is calculated by the average of 5 runs
on 5000 epochs.

5.3.1.1. Network Depth

Given a network structure with n hidden layers, given by

Layer Sizes [120, h1, . . . , hn, 6]

where h1, . . . , hn = 150. Table 5.2 shows the training time comparison of run time of
5000 epochs for different values of n.
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n
Run time

5000 epochs

1 3 m 12 s

2 3 m 12 s

3 3 m 13 s

4 3 m 14 s

Table 5.2: Training time comparison of network with different depth.

5.3.1.2. Number of Inputs

Let the input size be denoted by I . Given a network structure

Layer Sizes [I , 300, 300, 6]

Table 5.3 shows the training time comparison of run time of 5000 epochs for different
values of I .

I
Run time

5000 epochs

24 1 m 30 s

120 3 m 25 s

168 4 m 14 s

216 5 m 2 s

Table 5.3: Training time comparison of network with different input size

5.3.1.3. Size of Hidden Layers

This section presented the performance results for changing the size of the hidden lay-
ers. For simplicity, all the hidden layers are given the same size. Given a network struc-
ture

Layer Sizes [120, h, h, 6]

Table 5.4 shows the training comparison of run time of 5000 epochs for different values of
h.
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h
Run time

5000 epochs

150 3 m 12 s

200 3 m 10 s

300 3 m 25 s

600 3 m 50 s

Table 5.4: Training time comparison of network with different hidden layer size h

5.3.2. The Forward Propagation

The run time of the the forward propagation includes EMG feature extraction compu-
tation, such as the wavelet decomposition and reconstruction. Unlike the results of the
training performance, the forward propagation dose not seem to be noticeably affected
by any changes in the network structure. Each gesture is analyzed by approximately
0.1 seconds

5.4. Accuracy

Section 5.3 presented results of the performance, this section covers the accuracy. In this
thesis, accuracy is used as a mesurment of how good the network is to recognize the correct
gesture. This thesis has analyzed three type of data, the hackathon dataset and recorded
dataset (and ”NotMe”-dataset). Note that the recorded dataset consists of two type of
dataset. The ”NotMe”-dataset is the dataset with data sampled from various unique users.
The details about the test sets are given in section 5.2.3.

The framework supports two types of analyzes, raw analysis and analysis with parameters.
The result of the raw analysis is presented in section 5.4.1, and the analysis with parameters
is presented in section 5.4.2. Note that the network training is dependent on the number of
epochs, and not the error rate of the training. This means the network finishes the training
when the epoch count reaches a given number.

5.4.1. Raw Results

This section present the raw results. Raw results means that the system classify the ges-
tures by choosing the output neuron with the highest value.

Table 5.5 shows the output from a forward propagation in network rN 5 with inputs ex-
tracted from the data file recorded-YES-320.json. With the raw result analysis, the network
categorize this YES gesture as a SLEEP gesture, even though all the values are quite far
from 1 and the output values for SLEEP and YES is relatively close.
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File: recorded-YES-320.json

EAT 0.019150

HELP 0.000259

SLEEP 0.176043

THANKYOU 0.000256

WHY 0.000270

NO 0.015150

YES 0.157366

DRINK 0.003311

HELLO 0.000002

SORRY 0.001016

Table 5.5: The output of a forward propagation of network rN 5. The file consist data of a
YES gesture, but the network recognized it as a SLEEP gesture in the raw result
analysis.

5.4.1.1. Network Depth

Consider the networks hN 9, hN 8, hN 5, and hN 7, the networks with layer sizes given
by

Layer Sizes [120, h1, . . . , hn, 6]

where n is the number of hidden layers and hi = 150 for i ∈ [1, n]. Table 5.6 shows the
comparison of the mentioned networks with different values of n.

n Accuracy [%]

1 78.53

2 76.50

3 76.43

4 76.97

Table 5.6: Raw results of the networks with different number of hidden layers n, namely
hN 9, hN 8, hN 5, and hN 7.

Consider also the networks rN 7 and rN 5 given by

Layer Sizes [216, h1, . . . , hn, 10]

with hi = 300 for i ∈ [1, n]. Table 5.7 shows the comparison for rN 7 and rN 5 with
different values of n.
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n Accuracy [%]

1 95.80

2 96.60

Table 5.7: Raw results of the networks with different number of hidden layers n, namely
rN 7 and rN 5.

5.4.1.2. Wavelet Level

Consider the networks hN 11, hN 8, and hN 6, with wavelet level 0, 1, and 3, respectively.
Table 5.8 shows the comparison of the results for the networks using the hackathon dataset.
For the recorded dataset networks, rN 4, rN 3, rN 6, and rN 5, with wavelet level 0, 1, 2,
and 3, respectively, the results are shown in table 5.9.

Wavelet Level Accuracy [%]

0 78.70
1 76.50
3 77.33

Table 5.8: Raw results of the networks of different wavelet levels, namely hN 11, hN 8,
and hN 6.

Wavelet Level Accuracy [%]

0 90.30

1 94.80

2 95.10

3 96.60

Table 5.9: Raw results of the networks of different wavelet levels, namely rN 4, rN 3, rN 6,
and rN 5.

5.4.1.3. Features

This thesis uses three EMG features, MAV, RMS, and WL. This section presents the com-
parison of networks that use different combination of these features. Consider the net-
works rN 10, rN 14, and rN 5. Table 5.10 shows the comparison of the results for these
networks.
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MAV RMS WL Accuracy [%]

1 0 0 94.70

1 1 0 94.70

1 1 1 96.60

Table 5.10: Raw results of the networks with different features functions, namely rN 10,
rN 14, and rN 5.

5.4.2. Analysis with Condition Parameters

In this thesis, the Condition Parameters is used to give the definition of correct recognized
gesture stricter requirements.

5.4.2.1. The Condition Parameters

The system have three condition parameters for analysis. The condition parameters are
defined as Gesture Margin (gm), Difference Margin (dm), and Value Threshold (vt). The
output values given in table 5.11 are used as an example to explain the condition parame-
ters.

File: recorded-THANKYOU-520.json

EAT 0.008738

HELP 0.000742

SLEEP 0.125932

THANKYOU 0.364630

WHY 0.000061

NO 0.000079

YES 0.000001

DRINK 0.001851

HELLO 0.695881

SORRY 0.000000

Table 5.11: The output values of a forward propagation of network rN 4. The file consist
of data from a THANKYOU gesture.

Consider gm = a, then the analysis considers it a success if the right gesture is among the
gestures with the a highest output value. If gm = 2, then the the analysis will consider the
given example a success, since oTHANKYOU is the second highest output value.
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The Difference Margin, say how far the output value of the recognized gesture have to be,
to be considered. Let dm = b where 0 < b < 1, then the output value of the recognized
gesture o0 have to be b greater than the second highest output value o1. mathematically,
this is written as o0 ≥ o1 + b. If gm > 1, then o0 is the lowest output value in the group,
and o1 is the highest output value of the gestures not in the group. If o0 < o1 + b, then the
system takes out the gesture with the lowest output, and sets the o0 → o1. The new o0 is the
lowest value in the new group. For instance, let dm = 0.3 and gm = 2, then the analysis
will not consider it a success, since oTHANKYOU < oSLEEP +0.3, but analysis conider that the
network recognized the data as a HELLO gesture since oHELLO ≥ oTHANKYOU +0.3.

The Value Threshold is the threshold for the output value of gesture g to considered g in
the group of potential gestures. Let vt = c, then g is only considered as a potential gesture
if og ≥ c. For example, if vt = 0.5 then THANKYOU would not be a potential gesture,
while HELLO would be a potential gesture.

For the values gm = 1, dm = 0.7, vt = 0.9, this thesis uses the term strictest condition
parameter setting.

5.4.2.2. Results with Condition Parameters

Unlike section 5.4.1, this section dose not presents the results in categories, but shows a
list of tables with the results from different networks with different values for the condition
parameters.

Tables 5.12 to 5.16 show results from some of the hacakthon dataset based networks,
while tables 5.17 to 5.20 shows the results for some of the recorded dataset based net-
works.

Although the results are not given in any categorization, there are still some underlaying
categories. The difference of the networks with the results given in tables 5.12 to 5.15,
are the number of hidden layers. Tables 5.16 and 5.18 show the results for networks
using only the raw EMG signals. Tables 5.17, 5.20 and 5.21 shows results from networks
using different features (MAV, RMS, WL). The difference of the networks with the results
presented in tables 5.17 and 5.19 is the wavelet level.

Gesture margin Difference margin Value threshold Accuracy [%]

1 0.00 0.00 78.53

2 0.00 0.00 89.93

1 0.00 0.70 66.60

1 0.00 0.90 54.33

1 0.70 0.90 50.93

Table 5.12: The result for different values of the parameters, using a network with 1 hidden
layers and wavelet level 1, hN 9.
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Gesture margin Difference margin Value threshold Accuracy [%]

1 0.00 0.00 76.50

2 0.00 0.00 87.83

1 0.00 0.70 69.77

1 0.00 0.90 64.70

1 0.70 0.90 59.90

Table 5.13: The result for different values of the parameters, using a network with 2 hidden
layers and wavelet level 1, hN 8.

Gesture margin Difference margin Value threshold Accuracy [%]

1 0.00 0.00 76.43

2 0.00 0.00 87.70

1 0.00 0.70 70.00

1 0.00 0.90 65.03

1 0.70 0.90 61.60

Table 5.14: The result for different values of the parameters, using a network with 3 hidden
layers and wavelet level 1, hN 5.

Gesture margin Difference margin Value threshold Accuracy [%]

1 0.00 0.00 76.97

2 0.00 0.00 88.27

1 0.00 0.70 72.07

1 0.00 0.90 68.53

1 0.70 0.90 65.80

Table 5.15: The result for different values of the parameters, using a network with 4 hidden
layers and wavelet level 1, hN 7.
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Gesture margin Difference margin Value threshold Accuracy [%]

1 0.00 0.00 78.70

2 0.00 0.00 90.43

1 0.00 0.70 63.60

1 0.00 0.90 46.20

1 0.70 0.90 45.10

Table 5.16: The result for different values of the parameters, using a network with 2 hidden
layers and the raw EMG signals, hN 11.

Gesture margin Difference margin Value threshold Accuracy [%]

1 0.00 0.00 96.60

2 0.00 0.00 98.00

1 0.00 0.70 92.30

1 0.50 0.70 91.30

1 0.00 0.90 85.50

1 0.70 0.90 84.50

Table 5.17: The result for different values of the parameters, using a network with 2 hidden
layers and wavelet level 3, rN 5.

Gesture margin Difference margin Value threshold Accuracy [%]

1 0.00 0.00 90.80

2 0.00 0.00 93.80

1 0.00 0.70 84.10

1 0.50 0.70 82.40

1 0.00 0.90 71.90

1 0.70 0.90 70.90

Table 5.18: The result for different values of the parameters, using a network with 2 hidden
layers and only the raw EMG signals, rN 4.
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Gesture margin Difference margin Value threshold Accuracy [%]

1 0.00 0.00 94.80

2 0.00 0.00 96.30

1 0.00 0.90 82.60

1 0.70 0.90 81.80

Table 5.19: The result for different values of the parameters, using a network with 2 hidden
layers and wavelet level 1, rN 3.

Gesture margin Difference margin Value threshold Accuracy [%]

1 0.00 0.00 94.70

1 0.00 0.70 88.00

1 0.00 0.90 71.50

1 0.70 0.90 69.90

Table 5.20: The result for different values of the parameters, using a network with 2 hidden
layers, wavelet level 3, and only the MAV feature rN 10.

Gesture margin Difference margin Value threshold Accuracy [%]

1 0.00 0.00 94.70

1 0.00 0.70 89.70

1 0.00 0.90 82.40

1 0.70 0.90 80.10

Table 5.21: The result for different values of the parameters, using a network with 2 hidden
layers, wavelet level 3, and MAV and RMS features, rN 14.

5.4.3. Gesture Accuracy

This section will give results from a more micro level, and present the results of the ac-
curacy for each gesture, instead an overall presentation. The strict condition parameters
and the networks rN5 , rN4 , and rN3 will be used. The result from the hackathon dataset
will not be presented, since not enough information is given about the data. The results
are shown in table 5.22.
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Gestur ID Gesture Name rN5 [%] rN4 [%] rN3 [%]

0 EAT 79.00 69.00 75.00
1 HELP 75.00 64.00 79.00
2 SLEEP 86.00 82.00 87.00
3 THANKYOU 90.00 76.00 92.00
4 WHY 87.00 76.00 89.00
5 NO 82.00 66.00 90.00
6 YES 89.00 86.00 90.00
7 DRINK 79.00 71.00 81.00
8 HELLO 93.00 67.00 78.00
9 SORRY 75.00 52.00 68.00

Table 5.22: The results for different gestures for different networks, using the strict con-
dition parameter settings gm = 1, dm = 0.7, vt = 0.9

5.4.4. Training Set Size

The results of a network trained with a few instances is given in table 5.23.

Gesture margin Difference margin Value threshold Accuracy [%]

1 0.00 0.00 60.10

1 0.70 0.90 42.80

Table 5.23: The results for different values of the parameters, using a network with 2
hidden layers and wavelet level 3, rN 0.

5.4.5. Global Normalization

As mentioned in section 4.4.3, the normalization of groups of the input seems to generate
a bug. The bug creates duplicated values in the input. This section present the results of a
network using a global normalization method. The normalization function is the same as
the one explained in section 4.4.3, but a is an array with all the calculated values instead
of a fragment of input. Table 5.24 shows the results with different condition parameter
settings.
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Gesture margin Difference margin Value threshold Accuracy [%]

1 0.00 0.00 93.40

1 0.00 0.70 86.60

1 0.00 0.90 70.90

1 0.70 0.90 69.30

Table 5.24: The results for different values of the parameters, using a network with 2
hidden layers, wavelet level 3, and a global input normalization, rN 13.

5.4.6. ”NotMe” Dataset

The ”NotMe” dataset, is data sampled from different users than the user of standard
recorded dataset. The dataset is sampled from 7 different users. Table 5.25 shows the
results from the ”NotMe” dataset on the current most accurate network, namely rN 5. Ta-
ble 5.26 shows the accuracy for each gesture on rN 5, using vt = 0.7.

Gesture margin Difference margin Value threshold Accuracy [%]

1 0.00 0.00 36.83

2 0.00 0.00 57.78

1 0.00 0.70 21.90

1 0.50 0.70 20.00

1 0.00 0.90 13.65

1 0.70 0.90 12.38

Table 5.25: The result for ”NotMe” dataset with different values of the parameters, using
a network with 2 hidden layers and wavelet level 3, rN 5.
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Gestur ID Gesture Name Accuracy [%]

0 EAT 37.14
1 HELP 21.42
2 SLEEP 9.38
3 THANKYOU 28.00
4 WHY 13.79
5 NO 37.93
6 YES 37.14
7 DRINK 2.67
8 HELLO 18.42
9 SORRY 15.38

Table 5.26: The result for ”NotMe” dataset for different gestures, using a network with 2
hidden layers and wavelet level 3, and condition parameter vt = 0 .7 , rN 5.
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Chapter 6
Discussion

This chapter provides a more detailed discussion of the results presented in chapter 5 and
a review of the general system.

6.1. Result Analysis

This section aims to give a more detailed analysis of the results presented in chapter 5.
The performance is discussed in section 6.1.1 and the accuracy in section 6.1.2

6.1.1. Performance

While the run time of the forward propagation was relatively constant (dependent on the
hardware), the training time varied with the change of network structure. Therefore, it is
more interesting to analyse the training time regarding the network structure. However, it is
worth mentioning that the reason for relatively constant forward propagation run time can
be that the computation time of the input values dominates the run time, and one iteration
of the forward propagation is not significant. It is hard to give a precise performance
analysis, since the performance is affected by the background tasks.

6.1.1.1. CPU vs GPU

Before the actual discussion of the results, it is worth looking at the performance improve-
ment from the GPU version of TensorFlow.

TensorFlow supports a GPU implementation. It is worth mentioning, that the GPU im-
plementation of TensorFlow utilize both computing power from the CPU and GPU. The
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comparison of the CPU and GPU implementation, is done only on the desktop. The laptop
has a considerable weaker CPU than the desktop.

Testing for both the hackathon dataset and the recorded dataset, the framework seems to
achieve a performance boost of 200 % to 300 %, depending on the network structure. For
instance, the training time using the hackathon dataset with 5000 epochs on a network
with the structure given by

Layer Sizes [120, 150, 150, 6]

was approximately 3 minutes for the GPU version, and 7 minutes for the CPU version.
While the training with the same criteria, for the network with the structure

Layer Sizes [120, 300, 300, 6]

was approximately 3.5 minutes for the GPU version, and 13 minutes for the CPU ver-
sion. The performance boost of the training seems to be dependent on the size of the
network.

With a relativaly constant about 0.1 seconds, the forward propagation did not seem to get
any noticeable performance improvement. The forward propagation performance includes
the computing of the input values, and this computation is not implemented for the GPU,
therefor the whole progress of categorizing a gesture data may be dominated by the com-
putation of the input values and not the forward propagation itself.

6.1.1.2. Depth

Given by table 5.2, there is no significant changes in the run times. The increase of run
time with the higher values of n could be random, since the run time are computed from
an average of a small quantity, and the run time for running 5000 epochs were not always
higher for network with ni, compared to a network with nk, where ni > nk. However, it
may have a greater affect on the run time if hi � 150, since 150 is a relatively small value.
For hi = 150 it seems like the performance is more affected by the external factors.

6.1.1.3. Number of Inputs

Varying the number of input had a much greater impact on the training time. Given in ta-
ble 5.3, the training time a relatively clear increase with the number of inputs. An increase
of the input size I from 24 to 216, leads to an increase of training time with over 3 times.
Considering that the training file is pre-generated and all the inputs are pre-computed, we
can ignore the input computing time.

6.1.1.4. Size of the Hidden Layers

The training time of networks with different size of the hidden layers is shown in table 5.4.
While there is not an equally clear increase of run time, as with the input size given in
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table 5.3, there is still a notable increase. The run time of h = 150 is higher than h =
200 may be due to the external factors, since an increase of 50 neurons of each layer is
relativaly small.

6.1.2. Accuracy

The accuracy is the most important value, and is one of the factor that determines if the
framework has a potential for a real world usability. With a comprehensive overview, the
network based on the hackathon dataset have an accuracy over 75 %, while the network
based on the recorded dataset have an accuracy over 90 %, that is for the raw analysis.
This section discusses the accuracy of the networks divided into categories determined
by parameters such as network depth, wavelet level and features. The results with the
condition parameters is used to measure the certainty of the raw results. Note that not all
the results used in this section is represented in section 5.4.2.2.

6.1.2.1. Depth

By the raw analysis, the network depth seems have little impact on the accuracy. Given by
tables 5.6 and 5.7, there are no significant difference in accuracy. However, analysis with
the strictest condition parameter settings, given in tables 6.1 and 6.2, shows a greater differ-
ence. Tables 5.12 to 5.15 shows that noticeable difference dose not occur before dm = 0.7.
Meaning the error rate of the networks are lower for the deeper networks.

n Accuracy [%]

1 50.93

2 59.90

3 61.60

4 65.97

Table 6.1: Results from the same networks as in table 5.6, namely hN 9, hN 8, hN 5, and
hN 7, but with strict condition parameters gm = 1, dm = 0.7, vt = 0.9. n is
the number of hidden layers.

6.1.2.2. Wavelet Level

As with the different network depth, there no significant difference of the values in ta-
bles 5.8 and 5.9, except for the rN 4 in table 5.9, which is a network that only use the
raw EMG signals. That the network hN 11, also only using the raw EMG signals, have a
similar result as the other results in table 5.8 may be due to a coincidences.
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n Accuracy [%]

1 71.90

2 84.50

Table 6.2: Results from the same networks as in table 5.7, namely rN 7, and rN 5, but with
strict condition parameters gm = 1, dm = 0.7, vt = 0.9. n is the number of
hidden layers.

The tables 6.3 and 6.4 is the results of the same network as in tables 5.8 and 5.9, but with
the strict condition parameter settings. From these values, it is hard to tell any pattern for
change of the wavelet level, except for wavelet level 0. Wavelet level 0 means excluding
the wavelet transform, and use the raw EMG signals. We can see from the tables 6.3
and 6.4 that we obtain a noticeable improved results given the wavelet level i is higher
than 0, that is i > 0. Even though in table 5.9, i = 0 get a better result, it seems like the
wavelet transform creates a more certain result.

wavelet level Accuracy [%]

0 48.10

1 59.90

3 58.63

Table 6.3: Results from the same networks as in table 5.8, namely hN 11, hN 8, and rN 6,
but with strict condition parameters gm = 1, dm = 0.7, vt = 0.9.

wavelet level Accuracy [%]

0 70.90

1 81.80

2 80.70

3 84.50

Table 6.4: Results from the same networks as in table 5.9, namely rN 4, rN 3, rN 6, and
rN 5, but with strict condition parameters gm = 1, dm = 0.7, vt = 0.9.

6.1.2.3. Features

A comparison of network with different feature functions is given in table 5.10. Also here
it is difficult to say any pattern with certainty. Note that the feature functions are not tested
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separately, rather the feature functions is added for rN 10, rN 14, and rN 5, respectively.
Given the values from tables 5.17, 5.20 and 5.21, a comparison table with the strict condi-
tion parameter settings is given in table 6.5. Given by table 5.20, the large drop of accuracy
occur when the value threshold increases from vt = 0.7 to vt = 0.9. The accuracy with
vt = 0.7 for the three networks are relatively close.

MAV RMS WL Accuracy [%]

1 0 0 69.90

1 1 0 80.70

1 1 1 85.50

Table 6.5: Results from the same networks as in table 5.10, namely rN 10, rN 14, and rN 5,
but with strict condition parameters gm = 1, dm = 0.7, vt = 0.9.

6.1.2.4. Training Set Size

Table 5.23 shows the result for network rN 0, that only uses a small training set of less than
150 instance per gesture. The accuracy is not too low, but the accuracy of the networks
with the bigger training set are twice as high. This thesis does not provide any thoroughly
analysis of the number of training instance a network need before it get reliable.

6.1.2.5. Gesture Accuracy

Gesture Accuracy, means the accuracy of the gestures separately. Table 5.22 present the
accuracy for all the gestures for the networks rN 5, rN 4, and rN 3. The rN 4 is a network
using only the raw EMG signals. From the values, it seems like the WT improve the accu-
racy of some of the gestures, such as the THANKYOU, HELLO and NO gesture.

6.1.2.6. Overall Accuracy

As an overall accuracy with the strict condition parameter settings, the networks based on
the hackathon dataset have an accuracy mostly over 50 %, while the networks based on the
recorded dataset have an accuracy mostly over 70 %.

65 % and 85 % from the networks based on hackathon dataset and recorded dataset, re-
spectively, are the highest accuracy achieved in this thesis. The networks are hN7 and
rN5 . The key structure of these networks is the network depth in hN7 , with 4 hidden
layers, and the wavelet level in rN5 . Note that none of the networks based on the recorded
dataset is deeper than 2 hidden layers, meaning, the rN5 is the deepest network in it’s
group. Also the only network with wavelet level 3 in the network based on the hackathon
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dataset is rh6 . However, this network gives a weaker accuracy than hN8 , which has the
almost same structure, but with wavelet level 1. This is given in table 6.3.

As mentioned, there was a bug in the grouped normalization, which may affect the results.
As an attempt to fix this bug, a global normalization method is used. The method is
explained in section 5.4.5, and the results of the network using the global normalization
rN13 is given in table 5.24. The structure is the same as network rN5 , and the results
from table 5.17 can be used as a comparison. While rN13 have a higher epoch count
than rN5 , it can be mentioned that the rN13 returned approximately the same results at
2500000 epochs, which is nearly the same as the epoch count for rN5 . As rN13 produced
a much weaker result than rN5 for all tested condition parameter settings, the used global
normalization method do not seem to be the fix for the bug.

6.1.2.7. Various Users Accuracy

An user independent system is not the main focus this thesis, and therefore a detailed
analysis of is not provided. Table 5.25 present the accuracy table from other users using
the network with the highest accuracy, namely rN5 . The results are relativly weak, but not
totally random. With gm = 2, the network achieve an accuracy of over 50 %. Table 5.26
shows the accuracy for different gestures, with vt = 0.7, and it seems like the network is
able to recognize some of the gestures better than others, especially the DRINK gesture
has a low accuracy. The network did not give a reliable accuracy for the generalized case.
It is not strange that the networks are weak on these data, because the network is trained
on a singal user. How the gesture should be done varies from people to people, such as
thumb the placement. People also have different size of the forearm, causing the EMG
sensors to measure EMG data from different areas of the forearm. The ”NotMe” dataset is
also relatively small and it is hard to give any reliable conclusion to the data.

6.1.2.8. Different Activation Functions

Some of the network provided in appendix E use the ReLu and SoftMax activation func-
tion, but these networks produced strange results where some of the output values al-
ways returned 0, thus this thesis choose to focuses on the sigmoid activation function
only.

6.2. System Analysis

This section provides an analysis of the limitation of the framework given in section 6.2.1,
and section 6.2.2 gives a comparison with the results of the previous work.
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6.2.1. Limitations

The framework for this thesis is a prototype level system, and includes strict constraints
and limitation. The framework is a isolated gesture recognition system, which means it
cannot separate a sequence of gestures. The framework isolates the gestures with a time
interval, starting from when the user press the initialization button. This time interval is
constant, and the framework have no method to locate the relevant gesture data.

The framework requires that the Myo armband should be placed on an approximately fixed
location of the forearm. This causes the user to be cautious of the placement of the Myo
armband. The framework is not able to detect which arm the Myo armband is on, but
this functionality is already pre-implemented in the myo SDK, making this functionality
simple to integrate.

6.2.2. Comparison with the Previous Work

The preliminary framework, described in section 4.1, used cross correlation and DTW to
find similarity to known gesture data. Note that the test for the previous work was relatively
small, and the results may not be too reliable. The results for cross correlation and DTW
had a relatively good accuracy on the IMU data, but poor accuracy for the EMG data. It
does not seem like method to measure the similarity of two series work with EMG signals.
In figure 6.1, the visual similarity of figures 6.1a and 6.1b is shown. These graphs represent
one of the axis of the orientation given by the magnetometer. Cross correlation and DTW
seem to work well for these graphs. As seen in figures 6.1a and 6.1b, there exist a visual
similarity, but the signals are noisy. The noise seems to affect the result of cross correlation
and DTW, and these methods dose not preform well on the EMG signals. From the results
of this thesis, feature extraction and machine learning classification seem to be a relatively
good solution for classification of EMG signals, compared to cross correlation and DTW.
The current framework, that only utilize the data from the EMG sensors, was able to get
an accuracy higher than the accuracy of the preliminary framework. Note that the results
of the current system is more reliable with a greater quantity. It is worth to mention that
the current system is able to recognize 10 different gestures, while the previous system
was only able to recognize 5.

Performance-wise, the preliminary framework used over 10 seconds to analyze a gesture,
while the current framework use under 0.2 seconds. Note this performance is given from
the same hardware, the laptop. The preliminary framework was implemented using a non-
optimized algorithm for cross correlation and DTW, but an improvement of over 5000 %
would be hard to beat even with an optimized algorithm.

In both performance and accuracy, the current framework gave better results. However,
the preliminary framework has an advantage that it do not require a large quantity of
training instances. The preliminary framework used 3 known gesture data to measure
the similarity of the unknown data. The current framework, on the other hand, requires a
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(a) (b)

Figure 6.1: The graphs given in (a) and (b) are two independent graphs, representing data
from one of the axis of the orientation data given by the magnetometer.

(a) (b)

Figure 6.2: The graphs given in (a) and (b) are two independent graphs, representing the
EMG data from the same sensor of the same gesture.

sufficient amount of training, and for the produced results, this amount was a training set
of 500 instance per gesture.
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Chapter 7
Conclusion and Future Work

This chapter provides a summary of this thesis, and includes a review of the framework
and the main reasons for the choices. Future improvments of this framework are given in
section 7.2.

7.1. Conclusion

An ideal EMG based gesture recognition system would be an EMG signal analysis system
which is accurate, simple, fast and reliable. The limitations presented in section 6.2.1
makes the framework presented in this thesis unpractical, not for practical uses that is.
However, the scope of this thesis is not to develop a system for a practical purpose, but to
explore the features of EMG signals, and utilize different structures of neural networks to
classify gesture data based on these features.

This thesis propose the development of a framework for gesture recognition which utilize
surface EMG. The framework uses the Myo armband to measure the EMG signals from
the arm. While the Myo armband also provides IMU data, only utilization of the EMG data
is implemented in the framework. The previous work, which the framework is based on,
proposed relatively good results for gesture recognition using IMU data by using methods
to measure similarity between graphs. However, unlike IMU data, the EMG signals con-
tains a lot of noises. For EMG signals, which are complex sets of data, feature extraction
is presumably a better solution.

The purpose of this thesis is to look at the potentials of using deep learning to classify
EMG data. The framework only supports the simplest neural network architecture, the
fully connected feed forward neural networks. This thesis experiments with different types
of network structures, with the aim to find out which parameters are important for the
accuracy, and possibly preformance.
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Raw EMG signals are represented by the time-amplitude representation, but distinguished
information can be hidden in the frequency content of the signal. This thesis uses the
wavelet analysis to extract frequency dependent features from the EMG signals. The
Wavelet Transform captures both frequency and location information, which is an ad-
vantage when working with non-stationary signals such as the EMG signals. The results
shows that the wavelet analysis improve the accuracy.

The achieved accuracy was relatively high, but the networks trained in this thesis is user
dependent, and dose not achieve a high accuracy for the generalized case. All the network
achieved an accuracy over 90 % with the least strict classification method, while most of
the networks structures achieved an accuracy over 75 % with stricter conditions. The high-
est accuracy with the strict condition was 85 %. The framework shows good performance
with an analyze time below 0.2 seconds for each gesture data. This gives the framework,
performance-wise, a good base for a practical purpose.

The results of this thesis is relatively good, and even though the data was sampled from a
single individual, the application still have great potentials. This thesis also deals with a
larger and maybe more generalized dataset, but since there is limited information about this
dataset, the results comes with a little uncertainty. The framework is still a prototype-level
system, and is far from practical system. Possible future improvements of the framework
is discussed in section 7.2.

7.2. Future Work

This section provides possible improvement and potentials to the framework.

7.2.1. Normalization Bug

As explained in section 4.4.3, there is a bug with the normalization. While the framework
produced relatively good results with the bug, some of the data become redundant since
the bug create duplication of the values. It is not clear why this bug occur, but it looks like
it occur from the grouped normalization. A global normalization was used as a quick fix
for the bug, but as shown in section 5.4.5, the fix did not improve the results.

7.2.2. Two-Handed Gestures

The framework only support one Myo device, but as mentioned in section 2.1, ASL uti-
lize both hands. An improvement for the framework would be to implement support for
analyzing data from two Myo armbands. This may lead to an improvement in accuracy,
because the framework receive more information about the gestures. Note that while most
of the gesture in this thesis are one-handed gestures, the gesture HELP use the left hand as
a supporting factor.
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7.2.3. IMU Utilization

The Myo armband provides data from both IMU and EMG sensors, but this thesis only
utiliz the data provided by the EMG sensors. With information of the position and orienta-
tion of the arm, it will be easier to classify the gesture. The framework, from the previous
work described in section 4.1, utilized the IMU data to classify gestures by using cross cor-
relation and DTW. While the analysis from the previous work produced relatively good
results for the IMU data, the performance was relatively slow compared to the current
framework.

The current framework is dependent on that the EMG sensor have to sample EMG data
from approximately the same position on the forearm. By using IMU data, it is possible
to determined the position of the Myo armband on the forearm, and remove one constrain
from the user. The SCEPTERE prosject [44], includes a method to determind the position
of the forearm.

7.2.4. User Independence

The discussion of the results from the ”NotMe” dataset is presented in section 6.1.2.7.
The networks trained for this thesis is based on a dataset sampled from one single user,
and the accuracy of the ”NotMe” dataset was relatively low compared to the other files in
the recorded dataset. While this thesis also present results given by the networks trained
with the hackathon dataset, it is not reliable since not enough information are given about
the quality of the data. To improve the reliability of the results, a more generalized dataset
have to be used.

7.2.5. Continuous Gesture Recognition

Gesture Recognition can be categorized as Continuous or Isolated Gesture Recognition.
The framework is an isolated gesture recognition system, and does not provide an on-
demand recognition functionally. An initial button is used to tell the framework to start
the sampling of data. This method helps the framework to isolate the gesture data, and
there is no need for the framework to locate the relevant data. Segmentation of a word is
important in gesture recognition because there may be many meaningless movements be-
tween words. For the framework to have a practical propose, it must be able to distinguish
between gesture and non-gesture movements, and segment a sequence of words.

Researchs on continuous gesture recognition based on the Hidden Markov Model (HMM)
are presented in [33, 16, 10]. In [38], a system utilizing a start posture and a Recurrent
Neural Network (RNN) architecture to achieve an continuous gesture recognition is pre-
sented. Note that these researches are not based on EMG data, but orientations [33, 38]
and spatio-temporal trajectories [16, 10].
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Continuous speech recognition is a close related field, and is more developed. There are
a lot of related researches on speech recognition based on ANN. In [51, 24], a research
on continuous speech recognition using RNN are presented. A hybrid HMM and HMM
approach is presented in [37].

7.2.6. Network Architectures

This thesis is based on the simplest deep network architecture. As shown in figure 2.8
there are many different network architectures, which have different advantages and dis-
advantages. The RNNs, described in section 2.4.5.3, has the ability to remember and make
use of the sequential information. This feature is useful for analyzing a sequence of ges-
tures. And as mentioned in section 7.2.5, RNNs has its applications within the continuous
gesture recognition.

The Convolutional Neural Network (CNN) architecture, described in section 2.4.5.2, is an
architecture widely used in image analysis. This networks are distinguishable by the ability
to extract features of local segments of the data, instead of using a global feature extraction.
While CNNs are widely used for image analysis, such as hand writing recognition, it also
has its applications on time-series data, such as speech recognition and gesture recognition.
A CNN based speech recognition is presented in [1, 50] and a CNN based classification
method of movements for prosthetic hands using EMG data is presented in [4].
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Appendix A
Git Repositories

A.1. Source Code

The git repository for the source code of the current system is

https://github.com/Tonychausan/MyoArmbandPython

A.2. Dataset

The data set for the hackathon dataset will not be provided, since the dataset was received
from the author of [17]. The git repository for the recorded dataset, TensorFlow networks
and results analysis is

https://github.com/Tonychausan/MyoArmbandProjectData
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Appendix B
Gesture Descriptions

A table of all the pre-defined gestures is show in table B.1. While all the gestures are taken
from the ASL dictonary [59], it probably contains errors since there is no proper quality
check from a qualified sign language user.
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Appendix B. Gesture Descriptions

Gestur ID Gesture Name Source

0 EAT http://www.lifeprint.com/asl101/pages-signs/e/eat.
htm

1 HELP http://www.lifeprint.com/asl101/pages-signs/h/
help.htm

2 SLEEP http://www.lifeprint.com/asl101/pages-signs/s/
sleep.htm

3 THANKYOU http://www.lifeprint.com/asl101/pages-signs/t/
thankyou.htm

4 WHY http://www.lifeprint.com/asl101/pages-signs/w/
why.htm

5 NO http://www.lifeprint.com/asl101/pages-signs/n/no.
htm

6 YES http://www.lifeprint.com/asl101/pages-signs/y/
yes.htm

7 DRINK http://www.lifeprint.com/asl101/pages-signs/d/
drink.htm

8 HELLO http://www.lifeprint.com/asl101/pages-signs/h/
hello.htm

9 SORRY http://www.lifeprint.com/asl101/pages-signs/s/
sorry.htm

Table B.1: Table of the pre-defined gestures.
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Appendix C
Computer Specifications

Tables C.1 and C.2 shows the specification of the computers used to train and run the
system.

Laptop

CPU type Intel Core i7-4500U
CPU speed 1.80 GHz

Graphics Intel HD 4400
OS Windows 10 Education

Table C.1: Laptop Specifications

Desktop

CPU type Intel Core i5-6500
CPU speed 3.2 GHz

Graphics MSI GeForce GTX 1060, 6 GB GDDR5
OS Windows 10 Home

Table C.2: Desktop Specifications
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Appendix D
Data Structure

D.1. Recorded Dataset Structure

{
” gyr ” :{

” d a t a ” : [
[ ] ,
[ ] ,
[ ]

]
} ,
” acc ” :{

” d a t a ” : [
[ ] ,
[ ] ,
[ ]

]
} ,
”emg ” :{

” d a t a ” : [
[ ] ,
[ ] ,
[ ] ,
[ ] ,
[ ] ,
[ ] ,
[ ] ,
[ ]
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Appendix D. Data Structure

]
} ,
” o r i ” :{

” d a t a ” : [
[ ] ,
[ ] ,
[ ] ,
[ ]

]
}

}

D.2. Network Input Structure

Consider a function that returns the input values given by some parameters

input (emg source, level , isRecosntructed , feature id )

where the parameter emg source is the EMG soruce id, the isRecosntructed parame-
ter tells the function if the segment is a coefficient subset or a reconstructed signal. If
isRecosntructed is FALSE, then the level parameter can be defined as the i in cDi as
given in figure 4.3 and if i = 0 then it means the input value is extracted from cAi. If
isRecosntructed is TRUE than it means it extract the input value from the corresponded
reconstructed signal. The feature id tells the functions to which feature functions to use.
if isRecosntructed is −1, then the function use the raw EMG signal. Then the input
structure of decomposition level n and m number of features is

[
[ i n p u t ( 0 , 0 , TRUE, 0 ) , . . . , i n p u t ( 8 , 0 , TRUE, 0 ) ] ,
[ i n p u t ( 0 , 1 , TRUE, 0 ) , . . . , i n p u t ( 8 , 1 , TRUE, 0 ) ] ,
. . .
[ i n p u t ( 0 , n , TRUE, 0 ) , . . . , i n p u t ( 8 , n , TRUE, 0 ) ] ,
[ i n p u t ( 0 , 0 , FALSE , 0 ) , . . . , i n p u t ( 8 , 0 , FALSE , 0 ) ] ,
[ i n p u t ( 0 , 1 , FALSE , 0 ) , . . . , i n p u t ( 8 , 1 , FALSE , 0 ) ] ,
. . .
[ i n p u t ( 0 , n , FALSE , 0 ) , . . . , i n p u t ( 8 , n , FALSE , 0 ) ] ,
[ i n p u t ( 0 , 0 , TRUE, k ) , . . . , i n p u t ( 8 , 0 , TRUE, k ) ] ,
[ i n p u t ( 0 , 1 , TRUE, k ) , . . . , i n p u t ( 8 , 1 , TRUE, k ) ] ,
. . .
[ i n p u t ( 0 , n , TRUE, k ) , . . . , i n p u t ( 8 , n , TRUE, k ) ] ,
[ i n p u t ( 0 , 0 , FALSE , k ) , . . . , i n p u t ( 8 , 0 , FALSE , k ) ] ,
[ i n p u t ( 0 , 1 , FALSE , k ) , . . . , i n p u t ( 8 , 1 , FALSE , k ) ] ,
. . .
[ i n p u t ( 0 , n , FALSE , k ) , . . . , i n p u t ( 8 , n , FALSE , k ) ] ,
[ i n p u t ( 0 , −1, FALSE , k ) , . . . , i n p u t ( 8 , −1, FALSE , k ) ]

]
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Appendix E
Network Structures

This chapter provide the metadata of all the network created for this thesis. The notation
is described in section 5.2.4. The system deals with two types of network, one based on
the hackathon dataset and the other based on the recorded dataset.

For the network based on recorded datast, some information is missing. The network
rN 13, use a globalized normalization operation as explained in section 5.4.5. And some of
the network use a smaller training set than the default described in section 5.2.2, namely
rN 0, rN 1, and rN 2. The smaller training set includes the deprecated data files from
Pewter, described in section 4.5.2.

E.1. Hackathon Dataset

hN 0

Dataset Hackathon dataset
Number of gestures 6

Layer Sizes [120, 150, 24, 6]
Epoch count 2170000

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 1

[MAV, RMS, WL] [1, 1, 1]
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Appendix E. Network Structures

hN 1

Dataset Hackathon dataset
Number of gestures 2

Layer Sizes [120, 150, 24, 2]
Epoch count 16950010

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 1

[MAV, RMS, WL] [1, 1, 1]

hN 2

Dataset Hackathon dataset
Number of gestures 2

Layer Sizes [120, 150, 150, 2]
Epoch count 4205000

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 1

[MAV, RMS, WL] [1, 1, 1]

hN 3

Dataset Hackathon dataset
Number of gestures 2

Layer Sizes [120, 150, 150, 2]
Epoch count 1800000

Activation [’ReLu’, ’ReLu’, ’Softmax’]
Wavelet level 1

[MAV, RMS, WL] [1, 1, 1]
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E.1. Hackathon Dataset

hN 4

Dataset Hackathon dataset
Number of gestures 2

Layer Sizes [16, 25, 25, 2]
Epoch count 5280000

Activation [’ReLu’, ’ReLu’, ’Softmax’]
Wavelet level 0

[MAV, RMS, WL] [1, 1, 0]

hN 5

Dataset Hackathon dataset
Number of gestures 6

Layer Sizes [120, 150, 150, 150, 6]
Epoch count 8055000

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 1

[MAV, RMS, WL] [1, 1, 1]

hN 6

Dataset Hackathon dataset
Number of gestures 6

Layer Sizes [216, 300, 300, 6]
Epoch count 10010000

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 3

[MAV, RMS, WL] [1, 1, 1]
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hN 7

Dataset Hackathon dataset
Number of gestures 6

Layer Sizes [120, 150, 150, 150, 150, 6]
Epoch count 10015000

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’, ’Sigmoid’,
’Sigmoid’, ’Sigmoid’]

Wavelet level 1

[MAV, RMS, WL] [1, 1, 1]

hN 8

Dataset Hackathon dataset
Number of gestures 6

Layer Sizes [120, 150, 150, 6]
Epoch count 10015000

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 1

[MAV, RMS, WL] [1, 1, 1]

hN 9

Dataset Hackathon dataset
Number of gestures 6

Layer Sizes [120, 150, 6]
Epoch count 10005000

Activation [’Sigmoid’, ’Sigmoid’]
Wavelet level 1

[MAV, RMS, WL] [1, 1, 1]
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E.2. Recorded Dataset

hN 10

Dataset Hackathon dataset
Number of gestures 2

Layer Sizes [16, 30, 30, 2]
Epoch count 5000000

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 0

[MAV, RMS, WL] [1, 1, 0]

hN 11

Dataset Hackathon dataset
Number of gestures 6

Layer Sizes [24, 60, 60, 6]
Epoch count 5000000

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 0

[MAV, RMS, WL] [1, 1, 1]

E.2. Recorded Dataset

rN 0

Dataset Recorded dataset
Number of gestures 10

Layer Sizes [120, 150, 24, 10]
Epoch count 4970000

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 1

[MAV, RMS, WL] [1, 1, 1]
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rN 1

Dataset Recorded dataset
Number of gestures 10

Layer Sizes [120, 150, 150, 10]
Epoch count 4030000

Activation [’ReLu’, ’ReLu’, ’Softmax’]
Wavelet level 1

[MAV, RMS, WL] [1, 1, 1]

rN 2

Dataset Recorded dataset
Number of gestures 10

Layer Sizes [120, 150, 150, 10]
Epoch count 5000000

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 1

[MAV, RMS, WL] [1, 1, 1]

rN 3

Dataset Recorded dataset
Number of gestures 10

Layer Sizes [120, 150, 150, 10]
Epoch count 3440000

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 1

[MAV, RMS, WL] [1, 1, 1]
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E.2. Recorded Dataset

rN 4

Dataset Recorded dataset
Number of gestures 10

Layer Sizes [24, 50, 50, 10]
Epoch count 5000000

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 0

[MAV, RMS, WL] [1, 1, 1]

rN 5

Dataset Recorded dataset
Number of gestures 10

Layer Sizes [216, 300, 300, 10]
Epoch count 2480000

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 3

[MAV, RMS, WL] [1, 1, 1]

rN 6

Dataset Recorded dataset
Number of gestures 10

Layer Sizes [168, 200, 200, 10]
Epoch count 2595000

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 2

[MAV, RMS, WL] [1, 1, 1]
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rN 7

Dataset Recorded dataset
Number of gestures 10

Layer Sizes [216, 300, 10]
Epoch count 2500000

Activation [’Sigmoid’, ’Sigmoid’]
Wavelet level 3

[MAV, RMS, WL] [1, 1, 1]

rN 8

Dataset Recorded dataset
Number of gestures 10

Layer Sizes [144, 150, 150, 10]
Epoch count 0

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 3

[MAV, RMS, WL] [1, 1, 0]

rN 9

Dataset Recorded dataset
Number of gestures 10

Layer Sizes [144, 300, 300, 10]
Epoch count 2500000

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 3

[MAV, RMS, WL] [1, 1, 0]
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E.2. Recorded Dataset

rN 10

Dataset Recorded dataset
Number of gestures 10

Layer Sizes [72, 150, 150, 10]
Epoch count 2225000

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 3

[MAV, RMS, WL] [1, 0, 0]

rN 11

Dataset Recorded dataset
Number of gestures 10

Layer Sizes [8, 10, 10]
Epoch count 0

Activation [’Sigmoid’, ’Sigmoid’]
Wavelet level 0

[MAV, RMS, WL] [1, 0, 0]

rN 12

Dataset Recorded dataset
Number of gestures 10

Layer Sizes [216, 300, 300, 10]
Epoch count 2500000

Activation [’ReLu’, ’ReLu’, ’Softmax’]
Wavelet level 3

[MAV, RMS, WL] [1, 1, 1]
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rN 13

Dataset Recorded dataset
Number of gestures 10

Layer Sizes [216, 300, 300, 10]
Epoch count 4000000

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 3

[MAV, RMS, WL] [1, 1, 1]

rN 14

Dataset Recorded dataset
Number of gestures 10

Layer Sizes [144, 300, 300, 10]
Epoch count 2500000

Activation [’Sigmoid’, ’Sigmoid’, ’Sigmoid’]
Wavelet level 3

[MAV, RMS, WL] [1, 1, 0]
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