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Abstract

Recurrent Neural Networks (RNNs) is a prominent concept within artificial intelligence.
RNNs are inspired by Biological Neural Networks (BNNs) and provide an intuitive repre-
sentation of how BNNs work. Derived from the more generic Artificial Neural Networks,
the recurrent ones are meant to be used for temporal tasks such as speech recognition
because they are capable of memorizing historic input. However, RNNs are very time
consuming to train as a result of their inherent nature. Recent inventions such as Echo
State Networks and Liquid State Machines have been proposed as RNN alternatives, un-
der the name of Reservoir Computing (RC). RC systems are far more easy to train.

In this thesis, a Cellular Automata (CA) based Reservoir Computing (ReCA) system
is implemented. Methods to map both binary and non-binary input data onto automata are
employed, in addition to a recurrent architecture to handle sequential input. Furthermore,
several ReCA systems are orchestrated in layers (deepReCA), where the input to layer
l is the output of layer l− 1. The DeepReCA is benchmarked with the long short-term
memory tasks 5- and 20-bit, and the Japanese vowels time series classification dataset.
Results of benchmarks are compared to state-of-the-art results.

Subsequent layers were found to improve upon previous layers, though the improve-
ment was observed to reach an asymptote. CA rules did have different effect on reservoir
dynamics, some proved to be better in layer 1, and some proved to be better in subse-
quent layers. Some results came close to state-of-the-art performance, which makes the
proposed system a viable option if less memory at the cost of accuracy is desired. Further
tuning of system parameters as well as designing a more advanced input encoding stage
is suggested as future work.

i





Sammendrag

Rekurrente nevrale nettverk (RNN-er) er et prominent konsept innenfor kunstig intelli-
gens. RNN-er er inspirert av biologiske nevrale nettverk (BNN-er) og gir en intuitiv
representasjon av hvordan BNN-er fungerer. RNN-er er en kategori av kunstige nevrale
nettverk og ment for temporære oppgaver, som for eksempel talegjenkjenning, fordi de
er i stand til å huske tidligere input. Slike nettverk er imidlertid tidkrevende å trene på
grunn av deres egenart. Oppfinnelser som Echo State-nettverk (ESN-er) og Liquid State-
maskiner (LSM-er) er nylig foreslått som alternativer til RNN-er, under navnet Reservoir
Computing (RC).

I denne masteroppgaven er et RC-system basert på cellulære tilstandsmaskiner (CA),
kalt ReCA, implementert. Metoder for å oversette både binær og ikke-binær input data
til tilstandsmaskinene er presentert og anvendt, i tillegg til en rekurrent arkitektur for
å håndtere sekvensiell input. Videre er flere ReCA-systemer stablet lagvis til en hier-
arkisk arkitektur (deepReCA), hvor input til lag l er output fra lag l−1. DeepReCA-en er
testet på lang-kort-tidshukommelsesoppgavene 5- og 20-bit, og tidsklassifiseringsdataset-
tet Japanske vokaler. Resultatene av testingen er sammenlignet med resultater til andre
ledende systemer.

Påfølgende lag i arkitekturen ble funnet å forbedre resultatene til tidligere lag, dog
var forbedringen observert til å nå en asymptote. Forskjellige implementasjoner av CA-
ene hadde forskjellig effekt på reservoar-dynamikken; noen viste seg å være bedre i lag
1, og andre viste seg å være bedre i påfølgende lag. Noen resultater kom nærme re-
sultatene til andre ledende systemer, noe som gjør det foreslåtte systemet til et mulig
foretrukket system hvis mindre minnebruk fremfor presisjon er ønsket. Som fremtidig
arbeid er det foreslått videre testing av systemparametre samt utvikle et mer avansert
input-oversettingssteg.
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Chapter 1

Introduction

Temporal tasks, which humans experience daily, are a great source of inspiration for re-
search within the field of biologically-inspired artificial intelligence. Humans contin-
uously perceive the real-world environment through e.g. visual and audible events, and
consequently act based upon these, while taking past temporal context into account. Imag-
ine a ball traveling with great velocity towards your head. If you are not able to know
where the ball was a fraction of a second ago, you can neither reach an understanding of
in what direction the ball is traveling nor at what speed. Whether it be human or artificial,
systems capable of solving temporal tasks must be able to memorize historical informa-
tion. A Recurrent Neural Network (RNN) is an example of an artificial system, and have
been studied for many years. However, training RNNs are usually compute intensive. An
alternative is to treat these networks as static reservoirs of neurons, with rich dynamics
that allows only the need to train a readout layer [1, 2]. The rich dynamics are to provide
the necessary projection of the input features onto a discriminative, and high dimensional
space, so it can be linearly separable at readout.

In general, any substrate equipped with these properties can be used as reservoir. The
original reservoirs, i.e. Echo State Networks (ESNs), used traditional non-linear units to
realize the dynamical system [1]. On the contrary, examples of unconventional material
include using waves produced on the surface of water to solve a speech recognition task
[3], and extracting information from the primary visual cortex of an anesthesized cat in
[4]. The use of Cellular Automata (CA) as the computing substrate was introduced by Yil-
maz [5], and several other researchers have proposed related architectures in its aftermath.
CA at a microscopic scale are seemingly simple systems that exhibit simple physics, but at
a macroscopic scale can reveal complex behavior which might render desired properties.
The desired properties are those that makes CA able to support transmission, storage, and
modification of information [6], all of which are necessities for computation.

In Deep Learning, increasing the number of layers in an NN can increase its capacity
of representation and abstraction, and hence increase performance [7]. Some researchers
have adopted this idea and employed it in RC by substituting layers of neurons with reser-
voirs of dynamical systems [8]. Reservoirs stacked in such a hierarchical manner are able
to operate at different time-scales, and thus have diverse temporal representation of the
input [9].
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CHAPTER 1. INTRODUCTION

In this work, the goal is to unite the effectiveness of cellular automata based reservoir
computing and the paradigm of deep learning. This is a continuation of the semester
specialization project which showed promising preliminary results [10], and is currently
in press in the journal of Complex Systems [11]. Herein, it is proposed a system with
deeper architecture than the preliminary work, where the input to layer l is the output
of layer l − 1, and to some extent uses different rules. It is thereafter tested on state-
of-the-art problems in the categories of synthetic- and real-world dataset. The work also
presents and introduces novel mapping methods concerning mapping external input to CA
configuration in addition to inter-layer communication, some of which are inspired from
other work. Ultimately, the goal is to attempt to answer the following research questions:

Q1 How much can several hierarchical layers improve upon a single layer?

Q2 How able is CA as a RC substrate to represent and discriminate different rep-
resentations of external input?

Q3 To what degree is a CA based deep RC system a viable option?

The rest of the thesis is organized as follows. Chapter 2 covers the background mate-
rial by introducing the concepts of RC and CA. It furthermore presents relevant CA based
RC architectures by going through the different components of such a system. Chapter 3
announces the chosen benchmarks and presents in detail the architecture opted for. The
chapter’s composition lets the reader revisit the components introduced in Chapter 2 in
the same order. Chapter 4 explains the benchmarks in detail, presents the results, and dis-
cusses the results individually. Chapter 5 analyzes the results and observations in a more
generic fashion, and gives some general advice and recommendations. Finally, Chapter 6
concludes the thesis and includes suggestions for future work.
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Chapter 2

Background

2.1 Complex Systems

In the real world, some systems contain elements that interact with each other in a variety
of ways. An example on one extreme, is two connected cogwheels in which the elements
interact with each other by being strongly coupled. A mechanical force in one rotation on
one wheel will transfer to equal amount of force into the other. On the other extreme, ran-
dom coin tosses is an example in which the elements have no interaction at all. These two
are examples of simple systems, where the elements therein interact in a simple manner,
if at all.

Many systems in the real world do not exhibit such simplicity. These lie a place in be-
tween the systems with strongly coupled, and the systems with decoupled elements. They
are called complex systems [12, 13], and their elements interact in a nonlinear manner.
Examples include the ocean, the brain, an artificial neural network, a riot, an ant colony,
a termite ”cathedral”, or the weather. Within complex systems science, which is a field
of research that goes across many disciplines, there are two main concepts that concern
the majority of systems: Emergence and self-organization. Emergence is present when
it is not possible to describe the property of the system as a whole by solely looking at
the physics of the individual elements. It is about scale and the non-trivial relationship
between the microscopic and macroscopic properties of a system. The other concept, self-
organization, concerns properties or behavior that arises or changes in a system as a whole
over time. While the concept of emergence emphasizes on the micro-macro relationship,
self-organization is rather about the nonlinear macroscopic behavior of the system over
time. A self-organizing system may spontaneously change behavior or organize itself into
a different structure. There exist systems that show emergence but not self-organization,
show self-organization but not emergence, and show both [14].

An illustration of emergence and self-organization coexisting in a system, a flock of
boids, is depicted in Figure 2.1. A boid is a bird-oid, or a bird like, object [15]. Here,
the physics for each individual are governed by three rules. First, a boid will steer away
from other boids to avoid crashing (separation), depicted in Figure 2.1a. Second, a boid
will steer towards the average heading of other boids in the proximity (alignment). Third,
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CHAPTER 2. BACKGROUND

a boid will steer towards the average position of other boids in the proximity (cohesion).
The summation of all these three forces determines the boids direction and velocity. Even
though it is three simple rules, the collective behavior of the whole lets them organize
themselves into coherent structures, as seen in Figure 2.1b. In Figure 2.1c, it is added a
predator-like object that has the same behavior as all other boids, however, all other boids
are programmed with a ”flee” rule that has precedence. After the predator has left the
scene, the boids rearrange themselves back into the structures seen in Figure 2.1b.

(a) (b)

(c)

Figure 2.1: Self-organizing bird-like objects. In (a), the boids only follow the separation rule.
The boids show self-organizing behavior in (b), when all three rules influence every boid. In (c),
a predator enters the scene, and causes chaos, but when it has left, the boids rearrange themselves
into similar structures as in (b)

Models of systems in the real world, like the boids are for flocks of birds or schools
of fish, are useful analysis tools for scientists. One of the models often used, among
others in this thesis, is Cellular Automata (CA). A single cell in CA is simple in its form,
yet, through local cell interaction and large number of cells, it can give rise to emergent
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behavior. The next section introduces another model, specifically the concept of Reservoir
Computing (RC), a computational tool utilizing a ”reservoir” of dynamical interconnected
units.

2.2 Reservoir Computing

2.2.1 Fundamentals

Information in feedforward neural networks, are sent one way through layers of neurons;
from an input, through a hidden, to an output layer. Neurons in each layer are connected
to neurons in the subsequent layer (except for the last one) with weighted edges, and
each neuron propagates signals according to its activation function. A Recurrent Neural
Network (RNN) contains the same basic elements. However, it has recurrent connections
that feed portions of the information back to the internal neurons in the network, making
the RNN capable of memorization [16], hence RNNs are a subject for sequential tasks
such as speech recognition. RNNs can be trained by different variants of backpropagation
[17, 16], all with different computational complexity and time consumption.

One subsequent discovery based upon the fundamentals of RNNs is Echo State Net-
works (ESNs) by Jaeger [1]. An ESN is a randomly generated RNN, in which the network
does not exhibit any layer structure and its internal connection strengths remain fixed, and
can be treated as a reservoir of units. The ”echo” is the activation state of the whole net-
work being a function of previous activation states. Training of such a network involves
adapting only the weights of a set of output connections.

Another similar discovery is Liquid State Machines (LSMs) by Maas et al. [2]. It
is similar to ESN in terms of topology, with an internal randomly generated neural net-
work and problem-specific trained output weights. What differs ESNs and LSMs is more
their history. The original LSMs was inspired by biological scenarios, dealt with noise or
perturbations, and emphasized on spiking networks, whereas the ESN had a more math-
ematical approach and performed best without noise. Both inventions were developed
simultaneously but independently.

The basic idea of readout nodes that have weighted edges connected to an arbitrary
number of neurons inside a reservoir, and only adapting these weights for training, has
been named Reservoir Computing (RC). Figure 2.2 depicts this general idea, which is to
let the dynamics of the reservoir project the input onto an expressive and discriminative
space, so that it becomes linearly separable during readout.

2.2.2 Deep Reservoirs

Deep learning [7, 18, 19] is a technique that makes NNs capable of learning more ad-
vanced functions than what conventional machine learning can. In conventional machine
learning, careful feature extraction on raw statistical data is needed, and will often require
expert knowledge on the data’s domain. Machine learning systems trained on these fea-
tures can generally predict well on unseen data, but will encounter difficulties when the
data’s semantics are represented in several levels, or in higher dimensions. Here is when
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Readout layer

Input layer

W

Figure 2.2: A generic reservoir. There is only need to adapt weights W towards a certain target.

deep learning is a more viable approach, because it can automatically learn representa-
tions, and in several levels: The model is composed of non-linear layers of modules or
processing units, each of which transforms one representation to another more abstract
representation.

An example on which deep learning outperforms conventional machine learning is
image classification. The initial representation of an image is the very pixels (no features
are manually extracted). With deep learning, the first layer typically extracts edges of
particular objects in the scene. The second layer can operate on these edges and their ar-
rangements and find motifs. The third layer subsequently can use these motifs further, and
so on. Krizhevsky et al. [20] achieved record breaking results on the image classification
contest ImageNet LSVRC-2010 with use of a deep convolutional neural network.

Inspired by deep learning and deep neural networks, it has within the reservoir com-
puting research field sprung out ideas on how to improve reservoir computing networks’
performance by stacking multiple reservoirs [8, 21, 22]. One reservoir together with its
associated readout layer acts then as one layer. Since the hidden units in a reservoir are
not trainable, the reservoir’s readout layer is trained, and which readout values are sent as
input to a subsequent layer.

There are at least two different ways to enter inputs into such systems. One way is to
have all subsequent layers operate on only the output of each of their respective previous
layer. Another way is to supply the initial input to all layers in addition to outputs of
previous layers, which is called Input to All. A third possible way is to supply only
the initial input to each layer, which is not really a hierarchical architecture because the
”layers” cannot influence each other. The most popular training targets for every layer are
the final desired output, i.e. the labels corresponding to the initial input.

One argument for stacking multiple reservoir systems is that the errors of one reservoir
system can be corrected by the following one. The following one may learn the semantics
of the pattern that it gets as input. However, in order for a subsequent layer to refine a
decision, it must take past temporal context into account; a single static decision cannot
be refined because it has no temporal semantics.
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In [9], it is given an empirical analysis with more emphasis on time-scale and a gen-
eral view of the potentiality of deep ESN reservoir computing. The authors of it thus has a
different, but necessary to science, approach to analyzing deep ESNs than the first propos-
als of hierarchical reservoirs. In particular, all neurons in layer l are fully connected to all
neurons in layer l+1, which means no specific trainable readout layer between the ESNs.
The reason for that is to further investigate the hierarchical dynamics of RC separately
from the learning aspect. On a minor note, although the focus of the paper was critical
analysis, the deepESN system was also tested on a short-term memory task. Training then
involved concatenating the states of all reservoirs, and adapting a readout model with all
these states. It is furthermore presented theoretical ground work in [23]. Overall, it seems
that deep reservoir computing is by no means an outdated research area.

2.2.3 Physical Reservoir Implementations

Since the inventions of LSM and ESN, there has been experimented with different phys-
ical substances, also called substrates, that replace the RNN as the reservoir. Potentially,
any high dimensional dynamic medium or system that has the right dynamic properties
can be used. For example, in [4], a linear classifier was used to extract information from
the primary visual cortex of an anesthesized cat. In [3], waves produced on the surface
of water were used as an LSM to solve a speech recognition task. The genetic regulatory
network of the Escherichia Coli bacterium (E. coli) was used as an ESN in [24] and as an
LSM in [25]. In [26, 27, 28], unconventional carbon-nanotube materials have been config-
ured as reservoirs through artificial evolution. An optoelectronic reservoir implementation
is presented in [29, 30].

2.3 Cellular Automata
Cellular Automata1 (CA) were inspired by and designed from the study of self-reproducing
cells, by von Neumann in the 1940s [31]. They are one of many examples of emergence
in complex systems, i.e., the macroscopic properties are hard to explain from solely look-
ing at the microscopic properties. Within a cellular automaton, simple cells communicate
locally over discrete time. Locally means that a cell only interacts with its immediate
neighbors, thus it has no global insight. The cells are discrete and placed on a regular
grid of arbitrary dimension, though the most common ones are 1D and 2D. At each time
step, all cells on the grid are updated synchronously based on their physics, where the
physics is a transition to a new state based on the previous state of itself and its neighbors.
Transition functions are also known as rules.

Regarding the rule space, if K is the number of states a cell can be in, and N is the
number of neighbors (including itself), then KN is the total number of possible neighbor-
hood states. Further, each element is transitioning to one of K states, thus, the transition
function space is of size KKN

. For example, in a universe where cells have 5 possible
states and three neighbors, there are 553 ≈ 2.4×1087 different rules or possible transition
functions.

1Singular: automaton
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Elementary CA (ECA) are one of the simplest kinds of CA. It comprises cells laid out
in one dimension, in which K = 2 and N = 3. The rule space can be enumerated in a base-
2 system; each of the 28 = 256 transition functions can be represented by a base-2 number
of length 8, as for example rule 110 in Figure 2.4 that is represented as (01101110)2.

(a) (b)

(c) (d)

Figure 2.3: Elementary cellular automata iterating downwards. (a) and (b) are cut short. A black
cell represents 1. These four are examples of each of Wolfram’s classes: (a) is Class I with rule 40,
(b) is Class II with rule 108, (c) is Class III with rule 150, and (d) is Class IV with rule 110.

Evolving 1D CA can easily be visualized by plotting the whole automaton, iteration
by iteration, downwards, see Figure 2.3 for illustrations. The initial state of an automaton
is referred to as a configuration. Wolfram [32, 33] has categorized all one-dimensional
CA into four qualitative classes based on what the evolution looks like. CA in class I will
always evolve to homogeneous cell states, independent of the initial states, Figure 2.3a.
Class II leads to periodic patterns or single everlasting structures, either of which out-
come is dependent on initial local regions of cell states, Figure 2.3b. Class III leads to
a chaotic and seemingly random pattern, Figure 2.3c. Finally, class IV leads to complex
localized structures which are difficult to predict, and may only be found by simulation,
see Figure 2.3d.

Langton [6] introduced a scheme for parameterizing rule spaces, called λ . Briefly
explained, within a transition function, the value of λ signifies the fraction of transitions
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Figure 2.4: ECA rule 110. (01101110)2 = (110)10

that leads to a quiescent state. As an example, rule 110 in Figure 2.4 has λ = 0.625.
If λ = 0.0, then everything will transition to 0, and the automaton will clearly lead to a
homogeneous state. λ is especially useful for large rule spaces where it is hard to ex-
haustively enumerate all, because it can be used to generate rules with desired behavior.
Langton [6] did a qualitative survey on throughout the rule space on 1D CA with K = 4
and N = 5; rules were generated from different values of λ , from which CA were evolved
and analyzed. As the parameter increased from 0.0, the observed behavior underwent var-
ious phases, all the way from activity quickly dying out to fully chaotic. In the vicinity of
phase transition between ordered and chaotic, a subset of all CA rules, there was observed
complex behavior that composed long structures and large correlation lengths. Langton
suggested that in this ”edge of chaos” is where computation is located.

2.4 Cellular Automata in Reservoir Computing

2.4.1 Overview

The first found published paper of CA based reservoir computing is by Yilmaz [5]. Re-
cently, several other researchers have adopted this approach [34, 35, 10, 36, 37, 38] named
ReCA, some of which have had success. ReCA is a novel approach of computing, where
CA simply replace ESN as the reservoir substrate, and thereafter is used as an ordinary RC
system. There are, however, some clear differences in how CA as a substrate is treated and
read compared to ESN. In a classical ESN, input excites neurons, and the state vector is
the activation values of all neurons. This state vector is subsequently used in conventional
machine learning techniques. In ReCA, the input is translated to a CA configuration,
which is then evolved for a certain number of iterations, and then this whole evolution is
said to be the state vector. This is to exploit the possible properties that CA can offer.

An example simulation of a ReCA system is presented in Figure 2.5 (rule 90 is used).
The initial configuration of the automaton is at the top of the figure, and CA iterations
(time) is downwards. Each tick on the vertical axis is external input entering the system
by being added to the last automaton iteration before the tick. The whole figure looks like
an ordinary CA evolution as in Figure 2.3c, which it is until the second vertical tick. As
external input is added with, and not overwrites, CA iterations, there should be indirect
traces of the initial input in the very last iterations at the bottom of the figure.

9
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Figure 2.5: An example ReCA simulation. The tics on the vertical axis are where external input is
injected (perturbing), and the tics on the horizontal axis are simply multiple versions of the input.

2.4.2 Relevant Work

Encoding

Since the automaton cells take on values from a discrete and finite set, there may be need
for mapping schemes to translate input onto them. For tasks of binary nature such as
N-bit memory tasks [39] or temporal bit parity and density [40], this is relatively straight-
forward.

For input with real values, there are several approaches in the literature. First, there is
proposed one by Yilmaz [5] in which each cell receives a weighted sum of input features.
The weighted sum is then binarized prior to evolution. With this method, one cell can be
a receiver of a subset of feature dimensions, and the input can be processed by specific
cells.

To other possible binarization schemes for real-valued input are inspired by Binarized
Neural Networks (BNNs) [41]. The first one is deterministic binarization:

xb =

{
1 if x≥ 0.5,
0 otherwise,

(2.1)

where xb is the binarized variable of real-valued x. The second one is stochastic:

xb =

{
1 with probability p = σ(x),
0 with probability 1− p,

(2.2)

10
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where σ is the hard sigmoid function:

σ(x) = clip(
x+1

2
,0,1) = max(0,min(1,

x+1
2

)) (2.3)

Both functions are here changed from producing {−1,+1} to fit the two states of elemen-
tary CA. Indeed, these two schemes have coarse granularity, which can limit what they
can express, however, both have proved to be successful with BNNs [41].

Kleyko et al. [37] proposed to quantize real-valued input. Quantization maps a con-
tinuous set of input values to a discrete smaller set of elements. This is a rather attractive
method because one can adjust the granularity by choosing more of fewer thresholds. In
addition, the encoding used to represent each element or level can be composed to what-
ever works best in the system at hand. Kleyko et al. chose to quantize the input features in
their dataset into 4 levels, and each level was encoded to a three-bit representation: 111,
011, 001, and 000.

McDonald [38] used unary encoding, where one element in the encoded string repre-
sents one possible input. It was argued that it can be inefficient for large input values, but
used there for simplicity. McDonald also suggested to use gray coding, which is similar
to standard binary encoding, but in which only one element changes from one level to a
higher level. For example, change in binary representation from integer 3 to 4 are 011 to
100 (three bits change), and in gray coding it renders 011 to 010 (one bit change). This
asymmetric change in binary encoding can cause minor variations in input data to have a
drastic effect in the response of the ReCA [38]. This is further augmented by Margem et
al. [36] stating that when they translated input that originally had unary encoding (Ran-
dom Permutation and 20-bit memory task [42]) into binary, it lead the task to become
harder.

Thus far, the input has been translated into a representation that is feasible to imprint
onto elementary cellular automaton cells, i.e. the initial vector, whether it be originally
binary input or non-binary as in image pixel intensities or real-valued coefficients. Each
feature of the representation can thereafter be mapped randomly onto an automaton, see
Figure 2.6a, and evolved through a certain number of iterations I. Increasing the number
of random mappings can increase performance [5, 34, 35, 10, 37]. The number of random
mappings R can be treated in at least to ways, both of which described by Yilmaz in [34]:
Let X be the input vector, XP1 be a single random permutation of it, and function Z be the
application of the CA rule. The first way is to treat each XPR as separate automata, and let
them evolve separately:

AP1
0 = XP1 (2.4)

AP1
1 = Z(AP1

0 ) (2.5)

AP1
2 = Z(AP1

1 ) (2.6)

...

AP1
I = Z(AP1

I−1) (2.7)
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AP1
1 through AP1

I constitutes the evolution of the automaton, and are concatenated to form
AP1 :

AP1 = [AP1
1 ;AP1

2 ; . . .AP1
I ] (2.8)

Every configuration of random permutation is evolved this way, and is concatenated
to form the state vector:

A = [AP1 ;AP2 ; . . .APR ] (2.9)

The second way is to concatenate each random permutation into one vector prior to
evolution, and not after:

X = [XP1 ;XP2 ; . . .XPR ] (2.10)

A0 = X (2.11)

A1 = Z(A0) (2.12)

...

X is then evolved from A1 to AI according to Z, and further used for estimation or clas-
sification. It is possible to include the permuted version of the input, i.e. A0, which for
example is the case for the feedforward architecture in [34].

It is also possible to diffuse or use padding in addition to random mappings. Padding
is the method of adding elements of no information, in this case zeros, at one or both ends
of the mapped vector. These buffers are meant to hold some activity outside of the area
where the input is perturbing. Bye [43] invented the idea of diffusing (denoted input area
therein); it is a sort of padding by inserting zeros at random positions instead of at the
end, see Figure 2.6b. It disperses the input to a larger area. ReCA systems that employed
diffusing were further investigated in [35, 10].

Regarding the edges of an automaton, they can be considered in one of two cases.
If they are ”cyclic”, then the edges are neighbors of each other. In other words, the
automaton is orchestrated in a circle, so that the rightmost cell has the leftmost cell as its
right neighbor, and vice versa. In the other case, if the edge cells are ”fixed”, then they
are not subject for rule application, and they remain in a fixed state, typically 0 [38].

Recurrent Architectures

There is a variety of methods on how recurrency in the CA as a reservoir computing
medium can be ensured. Yilmaz [5, 34] sat the baseline for these types of systems, and the
more recent architectures in the literature seem to follow these guidelines. As mentioned,
after translation, a rule is applied to the automaton for some iterations. Each iteration is
recorded so the non-linear evolution becomes a projection of the input onto a state space.
For sequential tasks, the system needs to be able to handle several successive inputs,
and contain recurrent connectivity to memorize the historical input. ESNs have natively
internal recurrent connections and are fed input one step at a time [42]. However, CA do
not natively have the same support. One possibility to remedy this, is to flatten the whole
input sequence and input it all at once [5], thus it becomes a feedforward architecture. Due
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Figure 2.6: Encoding input onto automata by (a) Yilmaz’ method [34], and (b) Bye’s method [43].
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Figure 2.7: Bye’s recurrent architecture [43]. The green squares are traces from A4 in Figure 2.6b
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to flattening, it can be memory intensive. This was the first proposed ReCA architecture,
and proved to be capable of long short-term memory [5, 34]. Another possibility, is to
combine the last iteration of the state vector from one time step with the input at the next,
which uses a more intuitive representation of sequential tasks:

At
0 = [At−1

I +X t,P] (2.13)

where X t,P is the permuted version of the input vector at time step t, and the square
brackets represent the addition. Several addition methods exist. Since the vectors are
binary, one can use any bitwise operation such as XOR [38] or OR. Yilmaz [34] opted for
normalized addition, which is a third option, though still bitwise. In normalized addition,
if the sum of the two bits is 1, i.e. either 0+ 1 or 1+ 0, then the output bit is decided
randomly {0,1}, otherwise by OR.

Bye [43] proposed another rather unconventional recurrent architecture, which was
later adopted by [35, 10]. For the next time step, the last iteration of the previous state
vector is duplicated, after which the next input is permuted and written onto. In other
words, instead of mapping the input onto a zero vector as in Figure 2.6b, it is done onto a
vector that already contains information as in Figure 2.7:

At
0 = F(At−1

I ,X t) (2.14)

where F is the function that overwrites At−1
I with the permuted elements of X t .

Readout

The reservoir readout stage can be any conventional machine learning techniques, such
as linear regression or Support Vector Machine (SVM). Linear regression was used in
Jaeger’s [42] ESN to solve long short-term memory tasks, which implementation was
further used without much modification by Yilmaz [5] except for with CA instead of
ESN. Inspired by Yilmaz, other ReCA related work that used linear regression include
[34, 43, 10]. The SVM approach was employed by Nichele and Gundersen [35], though
with a linear kernel.

Kleyko et al. [37] chose to use another classifier for their ReCA system, namely a
hyperdimensional classifier. That Cellular Automata/Hyperdimensional Computing based
classifier (CAHC) is based on class prototypes and similarities (distance) between them
and the computed CA state vectors. The class prototypes are vectors that are formed
from each of their respective classes in the transformed training dataset. It is a simple
procedure, and does not require any optimization routine [37].

2.4.3 Benefits of Cellular Automata Based Reservoir Computing
Sipper [44] states that the efficiency of cellular computing2 comes from its simplicity,
vast parallelism, and locality. These three principles separate it from the conventional von
Neumann architecture, and hence provide new means of computation.

CA as reservoirs provides several benefits over ESNs. One is that the selection of
reservoir dynamics or CA is trivial; choosing a rule, or more generic, choosing λ (the

2CA are a specific case of cellular computing.
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number of quiescent states in the rule) and generate rules accordingly. Even in elemen-
tary CA, one of the simplest forms of CA, there exists rules that are Turing complete,
i.e. capable of universal computation [45, 33]. Another improvement is the aspect of
computational complexity: According to Yilmaz [5], the speedups and energy savings for
the 5- and 20-bit memory task are almost two orders of magnitude because of the type
(bitwise) and number of operations. Moreover, in the case of the use of additive rules,
the implementation can be with bitwise logic, which is suitable for Field Programmable
Gate Arrays (FPGAs). Furthermore, the use of linear regression or Support Vector Ma-
chine (SVM) for adapting the readout layer can be substituted with summation [5, 38],
completely freeing the system from multiplication and division. Such an energy efficient
artificial intelligent system may have many domains of application.

Using binary states has also proven to be viable in deep neural networks. In [41, 46],
it was proposed Binarized Neural Networks (BNNs) which drastically reduced memory
requirements and which implementation ran faster due to binary storage and bitwise op-
erations. BNNs are also feasible to implement on FPGAs [47].

A vast sea of possibilities exists in how to set up ReCA systems. For example, a re-
cent paper by Margem and Yilmaz [36] explores memory enhancements of the CA by
adopting more advanced methods prior to evolution. McDonald [38] presented an archi-
tecture that combined RC with Extreme Learning Machines (ELMs), in which one CA
reservoir state consisted of rules heterogeneous in time; hyperdimensional projection and
short-term memory. The preliminary work of this thesis [10] presenting a two-layered hi-
erarchical ReCA for the first time, both with equal parameters, showed promising results.
It indicated that two hierarchical reservoirs, where the second operated on the binary out-
puts of the first, could improve on the performance of a single one. Further research with
these possibilities and within this field can provide new understanding and insight in the
field of Cellular Automata based Reservoir Computing.
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Chapter 3

Methodology

3.1 Benchmarks

To provide means of comparability towards state-of-the-art, it is necessary with bench-
marks. Therefore, three tasks within two categories are selected. Not only will the result
of benchmarking the system be compared towards earlier work, but also towards variants
of the very system presented throughout this chapter, meaning e.g. CA rule or the number
of layers.

Pathological synthetic tasks are the first category, specifically some of those proposed
by Hochreiter and Schmidhuber [39]. These tasks consist of sequences of inputs, and
were designed to test how capable Long Short-Term Memory (LTSM) networks were to
learn long term dependencies. Jaeger used these benchmarks to test LSTM performace
on ESNs [42], and other researchers have as well (with a narrower selection of tasks)
with ReCA in [5, 34, 36, 35, 10]. 5- and 20-bit memory tasks are well known benchmarks
within the RC community, and are selected as the benchmarks for the work herein. The re-
sulting performance and results are compared towards Yilmaz’ [34] recurrent one-layered
architecture of ReCA, and furthermore analyzed with respect to the multi-layered ReCA
(deepReCA) proposed in this thesis.

Time series classification is the second category. This is chosen to test the range of
ReCA applicability by introducing a real-world, i.e. non-synthetic, scenario to the system.
It is an attempt to contribute to others whom also have applied ReCA on non-synthetic
tasks, such as Kleyko et al. [37] which succeeded in classifying modalities of medical
images, and McDonald [38] which demonstrated excellent results on among others iris
classification [48]. Japanese vowels dataset first presented by Kudo et al. [49] is selected
for this work. The performance will be compared towards the earlier ReCA system of
Bye [43], and other state-of-the-art systems.
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3.2 Architecture

3.2.1 Overview
The chosen architecture is presented in detail in this section, which will contain refer-
ences to Chapter 2. Some parts are inspired from literature, and some is designed during
the work. The architecture bifurcates slightly and uses different methods when handling
different tasks. Note that the selected synthetic tasks have binary input and fixed se-
quence lengths, and the selected time series one has real-valued input and variable se-
quence lengths. The architecture described applies on any task, unless stated otherwise.

Figure 3.1 depicts the main components of a layer in the system, and can be seen as
one layer in Figure 3.2. Encoders receive either external input or input from a preceding
layer, and translate it into a binary representation. The reservoirs are simply evolving
cellular automata along with the recurrent architecture. Readout layers are linear models,
intrinsically matrices, that are either adapted during training, or used in matrix multipli-
cation during testing.

Encoder Readout modelCA substrate

Figure 3.1: One ReCA layer. Dashed arrow implies CA iterations (time). Dotted arrow is informa-
tion re-entering the system (recurrent).

Encoder 1 Readout model 1Reservoir 1 Encoder 2 Readout model 2Reservoir 2

Figure 3.2: A holistic view over the system architecture. Dotted arrow is information re-entering
the system (recurrent). Input to All (IA) is also seen.

3.2.2 Encoding
Input is first altered in the encoding stage of ReCA. As mentioned in Chapter 2, there
exists many viable methods to opt for in the literature. It really depends on whether
the input features already are binary, or need translation. Most benchmarks with data
extracted from the real world will have some sort of coefficients, including the Japanese
vowels dataset used here. These coefficients are the digitalized versions of the analogue
data in the real world. Nevertheless, the simplest encoding scheme used in this work takes
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binary input (from the synthetic tasks) and maps it onto CA. For the real-world task, input
is first binarized, and thereafter used as binary input.

The base scheme takes binary input, and is relatively simple. If X is the binary input
vector, then it is randomly mapped onto a CA configuration as depicted in Figure 2.6a, and
with cyclic automaton edges. Thus, X is neither padded nor diffused in any way, and the
raw input features are preserved. One reason to choose this method is to allow comparison
with literature [34]. This is a different approach than the ”diffuse” (see Figure 2.6b) used
with modification in the preliminary work of this thesis [10]. One reason for not choosing
the diffuse method is because it was experimentally observed to cause too much instability
in the system and to yield much variance in the individual runs. Large variance may be
due to the large area to which the input is mapped: separate elements of mapped input
can both be very far apart and very close. In addition, through visualizing the activity
in all but the first reservoir, they had little cell activity (fewer cells were activated), thus
diffusing may not be necessary here.

Real-valued input encoding is slightly more advanced, and can be seen as a prepro-
cessing step to the base scheme. Quantization is chosen to be the main method for real-
valued encoding scheme, inspired by Kleyko et al. [37]. The thresholds are generated
using quantize levels from all values in the whole training data (using test data here would
render the experiment invalid). A question to bring up is whether it is needed differ-
ent thresholds for different independent input features, e.g. four thresholds for each of
the 12 coefficients in Japanese vowels. If the input is compound and represents two or
more completely separate concepts, or which feature values come in completely different
ranges, then it could be necessary. However, if related to image features, i.e. pixel and
color intensities, it would be cumbersome to keep track of every threshold. For example,
a single CIFAR-10 image has 322 pixels, each with red, green, and blue channel values
[50]. In this work, the Japanese vowels dataset is the only dataset that needs to be bi-
narized. Each feature x is quantized into five levels using four thresholds or percentiles,
where each level is represented with 3 bits in gray code according to Equation 3.1. These
entities of 3 bits are subsequently randomly mapped onto an automaton configuration, see
Figure 3.3. Quantization is in itself lossy compression, and the main idea is to preserve
input as features at the expense of losing details.

110010100011011

100100011100011

-0.2-0.20.3-0.21.9

110010100011011

Figure 3.3: An example on how quantizing and random mapping is done. The representations are
treated in blocks of three.
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xb =



000 if x <−0.2984444,
001 if −0.2984444≤ x <−0.1379516,
011 if −0.1379516≤ x < 0.004259,
010 if 0.004259≤ x < 0.2079332,
110 otherwise.

(3.1)

In [43], Bye investigated a different ReCA encoding scheme for the Japanese vowels.
As every coefficient in this dataset is a real-value, it was therein proposed to use their
direct floating point encoding, meaning using the binary exponent and mantissa field,
with minor adjustments. With a double-precision floating-point number, it meant almost
64 bits of information. In addition to the large representation which will require close to
64 cells, due to the nature of how these representations are constructed, little variation
in input can mean that a vast portion of the bits are flipped, and hence cause drastic
change in CA projection. Analogies can be drawn to binary representation explained in
Section 2.4.2. A compression method like quantization can suffice.

So far, the encoding of input has been described. However, because there are multiple
layers, there is also needed some translation of the output of one layer that are to enter the
next reservoir. Two different methods are used in this work, depending on the category of
the task at hand, even though the original output values of any readout layer are floating
points. For the two tasks of binary nature, every predicted value is binarized according to
Equation 2.1, and further used as this representation.

The output for Japanese vowels is quantized and encoded according to Equation 3.2:

ob =


000 if o < ql

1,

001 if ql
1 ≤ o < ql

2,

011 if ql
2 ≤ o < ql

3,

010 otherwise,

(3.2)

where the thresholds (ql
1,q

l
2,q

l
3) are quantize levels (25,50,75) of all output of the training

phase at layer l, and o and ob are respectively the activation value of one output node and
its binarized version. The thresholds are observed to change from one reservoir with one
specific dynamics, i.e. rule and (I,R), to another. Thus, they are generated after training
(based on the all readout activation values), and stored until testing phase. Online gen-
eration is necessary because it is infeasible to manually inspect and set the levels during
run-time. The regression model can produce several competing outputs, even though any
label in any task in this thesis have only one non-zero element per time step. Quantizing
the inter-layer values is an attempt to preserve the information in competing outputs in a
way so that the succeeding layer can receive more information per prediction, as opposed
to deterministic binarization.

Another detail regarding the Japanese vowels architecture, is that external input is also
supplied to every succeeding layer by being concatenated to the output of layer l−1. This
can be referred to as deepReCA Input to All when using the terms from [9] but replacing
ESN with CA. The external input always follows the scheme in Equation 3.1, and the
output from layer l−1 as aforementioned.
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3.2.3 Recurrent Architecture
Elementary cellular automaton replaces the ESN as the reservoir substrate, i.e. cells have
three neighbors (including itself), each of which can be in one of two states. This space
means that there are 256 rules that can be applied, not all of which are used in this work.
After the input has been encoded and prepared for CA evolution, it is randomly mapped R
times onto CA states, concatenated to a single configuration (Equation 2.10), and evolved
for I iterations according to a specific rule. Normalized addition is used as addition of
previous time step and input vector. Essentially, permutation, concatenation, and addition
are adopted from the recurrent architecture of Yilmaz in [34], and is the main algorithm
used.

In the case of the speech task, only some state vectors are selected to be the ultimate
output of the first reservoir. Alternative 3 in [51] with a modification is employed at the
first layer, and Alternative 4 is at the final layer:

3. Choose a small integer D, partition each state vector sequence of length li into
D parts, and select the last state vector An j (n j = j× li/D, j = 1, ...,D) in each
partition. If D is no divisor of li, then select the closest vector (Jaeger et al. [51]
chose to interpolate between states here), see an example in Figure 3.4. This gives
D vectors per sequence, which are meant to reflect a few equally spaced snapshots
of the evolved sequence.

4. Concatenate all state vectors An j into a single joined vector.

When Alternative 3 is applied on the state vectors at the first layer, the set of samples
(also referred to as time steps) for the rest of the layers will all have sequence lengths
li = D. D = 4 in these experiments. Alternative 3 is also applied on external input in the
case of Input to All. Alternative 4 in [51] was intended as a method for a one-layered ESN
architecture, meaning it would generate one state vector (from D snapshots). However,
it was implemented here as a method on the final layer, which already takes in D sized
sequences, as a way to produce one ultimate hypothesis/prediction per sequence (this is
classification after all). The idea is to let j ”section experts” generate hypotheses, and to
let subsequent layers refine and aggregate them. An advantage is the shorter sequence
length, hence less computation overall for subsequent layers. A possible disadvantage is
to lose temporal context, as D is recommended to be a small integer (D≤ lmin).

3.2.4 Readout Layer
As one can infer from what described earlier, the number of readout values from the reser-
voir depends on the input length, and the number of random mappings and iterations. The
readout values from one time step, i.e. state vector, is sent into a linear regression model
together with its corresponding label. Specifically the linear model.LinearRe-
gression class from scikit-learn which is implemented with plain Ordinary Least Squares
[52]. For the ease of training, the model is fitted (offline) all at once with every state vector
in every sequence, together with their labels. Every model if fitted towards the same target
labels. Even though the elements are from different time steps from different locations
in the training set, they are weighted and treated equally because they each retain (to a
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7

4.67

2.33

N R I 

Figure 3.4: An example of how Alternative 3 is applied on a sequence where D is no divisor of li.
Each bold horizontal line represents a state vector. A bold line surrounded by a red rectangle is the
selected vector. Here, li = 7, D = 3

greater or lesser degree) history from their respective ”time lines”. Each corresponding
label represent semantics from which the model is to interpret the readout values.

After the model is fit, it can be used to predict. Because of regression, the output
values from the predictions are floating points, and are further processed according to one
of the two encoding schemes described earlier.

3.3 Training Algorithm

Training the system as a whole involves the procedure that follows. Inputs is binarized,
encoded, and mapped onto automata from which the first reservoir computes state vectors.
The first regression model is fitted with these vectors towards their corresponding labels.
Normally, new state vectors are computed for prediction afterwards, i.e. prediction on
training set still because the next reservoir should train on the output of the preceding.
This diverges when it comes to the 5-bit task, where the training set equals the testing
set (only 32 unique sequences available), so fitting and prediction are performed on the
same vectors (as were done in [42]). These predictions or hypotheses are then binarized,
encoded, and mapped onto automata that are to be used by the second reservoir – here
with the same labels. Using the same training targets for every layer seems to be the trend
in multi-layered reservoir computing systems. Every following layer is trained using this
procedure.

Testing the trained system involves merely for every layer to consume the output of the
previous (external input in the case of the first layer), compute state vectors, and predict.
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3.4 Platform
The software itself [53] is implemented in Python [54] programming language version
2.7. Vector operations are provided by The NumPy Array [55], and graphical illustrations
are provided by Matplotlib [56]. Python is chosen because of the support and the avail-
able packages within its machine learning community. All experiments were run on a
computer1 limited to 4 cores 2.20 GHz compute power. RAM resources varied according
to the task and parameters. ”Tot. fit time” mentioned in Chapter 4, refers to the time
spent on linear regression only (e.g. no CA evolution), and is the sum of time used for
regression in each layer.

1Supercomputer. 27 nodes of type Dell PE630 with 2 x E5-2630 v4 10 cores 2.20 GHz, 128GB RAM
compute power.
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Chapter 4

Experiments

4.1 Preliminary Work

Prior to this thesis, there was carried out some preliminary work and preparation [10]. The
work is currently in press in the journal of Complex Systems [11]. That was the project
that began to investigate the possibilities of deep reservoir computing systems based on
cellular automata. It presented some experimental results which showed potential and
which encouraged the work of this thesis.

A parameterizable reservoir computing system with cellular automata as reservoir
substrate was implemented1. It was then tested with several different parameters on the
5-bit memory task. The system was thereafter expanded with another layer, where the
output of the first reservoir inputted to the second one. Output of the first reservoir was
used to compare the result towards state-of-the-art work of that time, as well as towards
the layered version. The motivation to opt for the two-layered system was that the second
reservoir would act as a system that corrects some of the mispredictions of the first one.

The results for the layered system showed noticeable improvements when compared
to the single-layered. A selection of the findings is presented in Table 4.1. Note that the
architecture used differs from the method presented in this thesis; diffusing (Figure 2.6b)
was used, and overwriting (Figure 2.7) instead of normalized addition. The greatest im-
provement (53.4 %) was achieved by rule 165 at (I,R) = (4,4). Again, R is the number of
random permutations of the input, and I is the number of CA iterations. Rule 165 proved
to be promising in general with its highest average improvement.

1The whole code repository can be found on GitHub at https://github.com/andreasmolund/
reca.
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Table 4.1: Improvement of adding a second reservoir (%). Note that Ld = 40

Rule (I,R) = (2,4) (2,8) (4,4) (4,8) (8,8)
90 -10.3 7.6 30.1 11.8 0.0
150 0.0 0.0 0.0 17.8 1.1
60 0.0 32.2 19.5 4.5 0.0
102 0.0 32.9 25.3 3.2 0.0
105 0.0 0.0 0.0 17.4 1.1
153 0.0 21.8 22.5 4.7 0.0
165 0.0 19.9 53.4 13.5 1.1
195 0.0 27.6 26.8 6.7 1.0

4.2 5-bit Memory Task

4.2.1 Synopsis
The 5-bit memory task is a pathological synthetic task designed by Hochreiter and Schmid-
huber [39]. It is a memory task to test for long-short-term-memory in systems. Sequences
of binary vectors are presented to the system, and the pattern of bits in the first part of the
sequences are to be memorized by the system and replicated after a distractor period.

4.2.2 Task Details
A sequence of binary vectors of size four are presented to the system, where each vector
represents one time step. The four elements therein are said to be channels and act as
signals, thus, only one of them can be activated at a time. This constraint also applies
on the output which also is a binary vector, but rather with three elements. In [39], the
problem was formulated with four output bits, but the fourth is ”unused” (always 0), hence
it is omitted in this implementation. In the input, the two first channels carry the memory
pattern, the third is the waiting-for-cue or distractor signal, and the fourth is the cue.

For the first 5 time steps in one run, the first two channels in the vector is toggled
between on and off. If one of them is on, the other one is off, and vice versa, hence, there
are a total of 32 possible combinations for the 5-bit task. From time step 6 throughout
the rest of the sequences, the third channel is on, except at time Td + 5 where the fourth
channel is on. As an example, a distractor period of Td = 200, means a total sequence
length of T = Td +2×5 = 210. As for the output, for all time steps until Td +5 inclusive,
the third channel is on. Thereafter, the first and second channel are to replicate the 5 first
input signals. See Figure 4.1 for an example.

Jaeger [42] defined a successful run as one where at all time steps and in all four (three)
output channels, the absolute difference between the network output and its target is less
than 0.5. In this thesis, the success criteria are almost the equivalent: Each output vector
from a layer is binarized deterministically according to Equation 2.1 and thus have to
equal the target output. That means a total of 3×T bits correctly predicted. In particular,
a single value > 1.5 would be binarized to 1, whereas Jaeger’s system would render that
a failure. Furthermore, the number of successful runs in each trial is recorded, which
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serves as the performance measurement. For the sake of clarity, a run is one sequence
sent though the system, and a trial here is 32 runs. In theory, this differs from how e.g.
Jaeger [42] and Yilmaz [34] measured performance, because they counted the number
of successful trials, one of which is successful if less than 1 percent of the runs fail. In
practice, 32 successful runs can be said to be equivalent to 1 successful trial. With respect
to analyzing the improvement over several layers, recording only the number of successful
trials would yield too weak of a precision. The work that presents the most precision for
this task, found in literature, gives results down to the number of false bits [36].

001010013
001010012
010010011
010010010
00101009
10010008
10001007
10001006
10000015
10000014
10000103
10000102
10000011

Timestep Input Output

Figure 4.1: An example of the 5-bit memory task with a distractor period Td = 3. The cue signal
occurs at timestep 8, after which the first and second bit of the output are replicating the equivalent
bits in the input (marked in gray).

4.2.3 Results

100 trials were run per combination of rule and reservoir size, and averaged to yield
one result figure. Throughout the thesis, the combination of number of CA iterations
and random mappings (i.e. random permutations of the input on the initial automaton
configuration) are denoted (I,R). All result figures are measured in the average number
of successful runs, meaning a max of 32. Precision is given down to two decimal points
because of 100 trials. Since the performance from trial to trial did not fluctuate too much,
the standard deviations is presented in the appendix instead of here.

Only a sub group of all ECA rules were used, and the selection was based on what
has been proven to work in other ReCA systems in literature. Rules from different classes
has been tested, e.g. 110 and 54 from Class IV, 90 and 182 from Class III. Class I rules
have not been investigated since they cancel out any initial activity. Rule 2, 16, and 36 are
Class II rules, which are not necessarily attractive use, but have been tested here for the
sake of experimentation, partially inspired by McDonald’s ELM architecture [38]. Some

27



CHAPTER 4. EXPERIMENTS

equivalent rules are also tested, as will be discussed later.

To compare and verify this architecture towards [34], it is tested with similar rules
and (I,R), see Table 4.2. Table 4.3 presents first findings from the initial deepReCA runs.
The whole group of rules that are subject for testing has been tested on the same reservoir
parameters to find individual good performance rules. This is a broad testing to eliminate
bad rules. Furthermore, the rules that shows most total improvement have been selected
for further testing with quite smaller subsequent reservoirs, which results are presented in
Figure 4.2. Finally, Figure 4.3 and 4.4 shows results from the run with deepest architecture
also using these rules, as an attempt to achieve full score 5-bit task with deeper layers.

Table 4.2: Average number of successful runs for the 5-bit task. One layer. (I,R) = (32,40). Sorted
by rule. Standard deviations are located in Table A.1.

Rule Tot. fit time Layer 1
54 44.3 31.76
62 44.3 31.78
90 52.8 31.82
102 37.4 31.98
110 37.2 32.00
146 49.8 32.00
150 53.3 32.00
165 54.1 32.00
195 51.7 32.00
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Figure 4.2: Average number of successful runs for the 5-bit task. (I,R) =
(30,30),(30,20),(30,20). Standard deviations and accurate numbers are located in Table A.3.
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Table 4.3: Average number of successful runs for the 5-bit task. (I,R) =
(30,30),(30,35),(30,35),(30,35). Sorted by total improvement, i.e. the difference between
Layer 4 and Layer 1, descending. Standard deviations are located in Table A.2.

Rule Tot. fit time Layer 1 Layer 2 Layer 3 Layer 4
36 236.5 0.05 6.77 28.27 30.91
62 46.0 3.58 17.71 25.76 29.50
54 46.8 5.50 19.32 26.69 29.64
102 41.9 3.70 16.24 22.89 26.72
146 46.3 5.18 17.59 24.70 28.20
195 45.3 3.86 16.27 22.76 26.65
110 46.6 3.70 15.48 22.18 26.30
165 44.7 3.53 15.57 21.87 26.08
60 47.5 4.36 16.33 22.89 26.84
153 44.5 4.28 15.66 22.15 26.36
90 47.6 4.05 15.93 22.35 25.81
45 46.8 4.08 15.02 21.66 25.76
182 47.5 4.51 13.02 19.14 22.22
106 40.6 4.88 12.11 17.66 22.18
41 40.6 3.38 10.34 16.16 20.59
30 44.3 3.83 8.84 12.03 14.51
22 41.0 4.02 6.64 8.18 8.87
126 45.7 4.07 6.01 7.16 7.32
2 248.2 0.00 0.00 0.08 0.16
16 244.8 0.00 0.00 0.03 0.13
150 42.5 4.33 1.31 0.87 0.59
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Figure 4.3: Average number of successful runs for the 5-bit task. (I,R) =
(30,30),(30,30),(30,30),(30,30),(30,30). Standard deviations and accurate numbers are
located in Table A.4.
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Figure 4.4: Average number of successful runs for the 5-bit task. Every subsequent layer uses rule
62. (I,R) = (30,30),(30,30),(30,30),(30,30),(30,30). Standard deviations and accurate numbers
are located in Table A.4.
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4.2.4 Discussion

Opting for a quite similar recurrent architecture as Yilmaz [34] is to have some point of
reference. First, the results from Table 4.2 can be used for comparison and verification to-
wards Yilmaz’ work in terms of similar performance. Second, the same results can serve
as a reference point to compare against the performance of the deeper architecture. Find-
ings from [34] are reported in Figure 4.5 for the ease of discussion. Figure 4.5 presents
the minimum number R that the different rules need in order to get zero error on the 5-bit
task with varying distractor period, with I is fixed to 32. Although Yilmaz found that dif-
ferent rules needed different R, all rules were set to the same R in this thesis. Comparing
the results, it is seen that rule 150 gives equal performance in both systems. Rule 90 in
Table 4.2 did not manage to get full score, however, it had 4 fewer random mappings to
make use of. On the contrary, rule 110 in Table 4.2 did manage to get full score, even
though R was set to a smaller value. This might be caused from fine detail differences
in the success criteria. Yilmaz’ architecture uses the same criteria as Jaeger [42], which
means that individual readput values < −0.5 and > 1.5 is said to be failure, whereas it
would not be in this thesis. In other words, the success criteria in this thesis are more
relaxed.
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Figure 4.5: Performance of Yilmaz’ ReCA [34] on the 5-bit memory task. The points indicate the
minimum number of random mappings needed in order to obtain zero error. I = 32.

Some rules presented in Table 4.3 are essentially equivalent. Rule 102 is black-white
equivalent with 153, i.e. they interchange the black and white cells, and left-right equiva-
lent with rule 60, i.e. they interchange left and right cells. Rule 102 is furthermore both
black-white and left-right equivalent with rule 195. With these rules being some form of
equivalent, it is not easy to spot major similarities of performance for them in Layer 1
in Table 4.3 (taking other rules also into account). However, noticing the improvement
over more layers, the theoretical similar performance become more noticeable, being only
maximum 0.48 points away from each other at Layer 4. Not only does this point out that
they can perform equal in one setting, but it also indicates that they have similar perfor-
mance with respect to different representations. Emphasized again, the first layer holds
representation of external input, while the second (and successive) holds representations
of the first layer’s hypotheses.
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Some of the best rules in [34], does not necessarily perform as well in a layered setup.
An example of that is rule 150, which was presented to be the best in [34] (Figure 4.5)
for the same amount of distractor period, and also reproduced in a one-layered setup in
Table 4.2. Rule 150 applied in deepReCA does not differ a lot in performance in the
first layer compared to other rules (Table 4.3). Its drastic performance decrease occurs
at subsequent layers. Additional checks were performed to verify if the divergence was
genuine. Rule 90 and 110 did not diverge as noticeable from the main findings, but did
not either become the best.

Table 4.3 is sorted by total improvement, i.e. the difference between Layer 4 and
Layer 1, descending. The rules that have most improvement are selected for further ex-
perimentation, omitting equivalent rules and rule 36 because of its non-dynamical behav-
ior. The next experiment illustrates what happens when the reservoir is too small, or more
specifically, decreasing R from 35 to 20 in all subsequent layers. Figure 4.2 presents the
findings, and it becomes immediately evident that the decreased reservoir size (computa-
tional complexity) affects performance. Even though the first layer’s size has been proven
to produce sufficient information for subsequent reservoirs to improve upon (Table 4.3),
these smaller layers cannot capture the dynamic information.

Finally, Figure 4.3 presents the result of trials with the deepest ReCA, in which every
layer has (30,30). All rules have lost a certain degree of capabilities, some more and some
less, which is to be expected due to lower R. Rules that have lost minor capabilities in-
clude 54, 62, and 146, whereas rules that have lost major capabilities include 102 and 165.
In the case of rule 165, layered architecture benefits the final performance only marginally.
Inspecting Figure 4.3, the result at the final layer varies more than the equivalent in Ta-
ble 4.3. Maybe what is found is a bifurcation point between where rules are capable of
capturing the necessary information, and where they are not. Another explanation may be
that, as long as the individual layers in deepReCA have sufficient computational capacity
to capture the necessary information, almost any rule will perform good, and almost any
rule will reach this asymptotic performance as seen in Table 4.3, hence approximately
equal results in the final layer.

It was observed that rule 62 had not the best single-layer performance, but the best
improvement overall. Therefore, an idea was to use the best single-layer performance rule
at Layer 1, and use rule 62 in every subsequent layer. In Figure 4.4, rules have the letter i
as postfix to indicate results of this experiment. Here it becomes apparent that every rule
now is improved, up until, and even surpassing, the performance of rule 62. Inspecting
the average number of correct runs does not give as clear results as opposed to inspecting
average number of mispredicted time steps. A time step is said to be mispredicted if any
of its binarized values does not equal the target output. Rule 62 yielded a mean of 7.6
mispredicted time steps in layer 5. Changing the rule in the first layer to 146, gave a mean
of 6.2. These observations suggest that different rules have different ability to represent a
certain concept. In other words, rule 62 was better at representing the hypotheses from a
previous layer, whereas rule 146 was better at representing the external input.
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4.3 20-bit Memory Task

4.3.1 Synopsis

This task is another task designed by Hochreiter and Schmidhuber [39]. It is of similar
structure and type as the 5-bit memory task, although more difficult since it has a more
complex pattern to memorize. The memory pattern spans over more time steps and more
dimensions. Again, sequences of binary vectors are presented to the system, and the
pattern of bits in the first part of the sequences are to be memorized by the system and
replicated after a distractor period.

4.3.2 Task Details

The type of vectors that are presented to the system are same as in the 5-bit version. In
the input vectors, the last and second to last channels are still the waiting-for-cue and cue,
respectively. However, the number of memory channels is increased from 2 to 5, and the
duration of the pattern is increased from 5 to 10, see Figure 4.6 for an example. Again,
input and output vector channels act as signals, thus only one channel can be active at a
certain time step. Possible pattern combinations are therefore in the number of 510, which
is slightly more than 20-bits of information, hence the task’s name. Due to the vast quan-
tity of samples, it is infeasible to use all of them for training and testing. Usually, samples
for benchmarking is obtained by generating a chosen number of unique sequences, and
thereafter selecting one portion for training and the rest for testing. Outputs are in the
same format as for the 5-bit task, meaning that for all time steps until Td + 10 inclusive,
channel 6 is activated. After Td + 10, the first 5 channels are replicating the memory
pattern.

Success criteria here are the same as for the 5-bit task. Each regression output is
binarized deterministically (Equation 2.1) and must then equal the target output.

4.3.3 Results

100 trials were run per combination of rule and reservoir size, and averaged to yield one
result figure. 500 sequences or runs were used for training, and 100 for testing, all with
distractor period of Td = 50. All result figures were originally measured in the average
number of successful runs, meaning a max of 100. However, because no combination of
rule and (I,R) was able to produce a single correct run, the number of mispredicted time
steps is given instead. Recall that the target output for a time step is 7 bits, and if any bit
in the binarized version of the readout values for a time step does not equal the 7 target
bits, then it is said to be mispredicted.

All rules that were used in the main experiment of the 5-bit task, were tested here as
well, though only for a certain (I,R), see Table 4.4. A narrower selection of rules has also
been tested with the lowest possible (I,R), Table 4.5. Table 4.6 presents the maximum
computational complexity attempted. Above this ”maximum”, linear regression becomes
very time-consuming, towards impractical to run on a desktop computer.
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Figure 4.6: An example of the 20-bit memory task with a distractor period Td = 3. The cue signal
occurs at timestep 13, after which the first 5 bits of the output are replicating the equivalent bits in
the input (marked in gray).
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Table 4.4: Misclassified time steps for the 20-bit memory task. Here, (I,R) =
(16,20),(16,20),(16,20). Standard deviations are located in Table A.5.

Rule Tot. fit time Layer 1 Layer 2 Layer 3
2 41.4 1000.6 2058.7 1018.2
16 41.9 1000.6 2049.7 1016.4
22 45.8 1000.6 1001.3 1001.1
30 38.8 1000.8 1000.6 1000.6
36 47.6 1037.2 2090.0 1160.0
41 49.3 1001.3 1002.4 1002.2
45 50.2 1000.7 1000.6 1000.6
54 46.0 1005.9 1063.0 1033.3
60 39.8 1080.5 2538.2 1252.4
62 38.3 1001.1 1002.7 1002.8
90 39.1 1036.6 1821.6 1317.8
102 38.6 1086.9 2572.2 1283.8
106 44.0 1033.0 1187.6 1137.3
110 39.9 1000.6 1000.9 1000.9
126 38.7 1000.6 1000.7 1000.9
146 45.3 1002.4 1169.3 1116.0
150 41.8 1026.5 1242.8 1158.5
182 47.5 1000.7 1000.8 1000.7

Table 4.5: Misclassified time steps for the 20-bit memory task where (I,R) = (1,0),(1,0),(1,0).
Standard deviations are located in Table A.6.

Rule Tot. fit time Layer 1 Layer 2 Layer 3
2 0.2 1000 1000 1000
16 0.2 1000 1000 1000
22 0.2 1000 1000 1000
54 0.2 1000 1000 1000
90 0.2 1000 1000 1000
110 0.2 1000 1000 1000

Table 4.6: Misclassified time steps for the 20-bit memory task where (I,R) =
(16,100),(16,100),(16,100). Standard deviations are located in Table A.7.

Rule Tot. fit time Layer 1 Layer 2 Layer 3
54 1318.8 1430.3 1810.9 1497.8
62 1351.6 1422.2 1482.2 1468.5
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4.3.4 Discussion

It is not found any use of this recurrent ReCA architecture on the 20-bit memory task
in literature. In [34], Yilmaz proposed a feedforward 2D ReCA architecture on which
both 5- and 20-bit task were applied. Only the 5-bit version was furthermore tested with
elementary CA rules, and only the 5-bit version was tested with recurrent architecture (as
mentioned in Section 4.2). It was observed no major increase in (I,R) demand when going
from 2D to elementary, but some increase when going from feedforward to recurrent
(although decreased memory usage because of the non-flattening). It is reasonable to
believe this observation would also relate to the 20-bit memory task. Table 4.7 presents
the estimated reservoir size demands for the 20-bit task based on the findings for the 5-bit.
These estimates are by no means said to be true, but they give an idea of how much the
reservoir size has to be increased in order to produce something useful.

Table 4.7: Minimum (I,R) needed in order for different CA type and architecture to get zero error,
found by Yilmaz [34]. Td = 200 for feedforward, and Td = 50 for recurrent. Italic numbers are
estimates.

Task Game of life, feedforward ECA, feedforward ECA, recurrent
5-bit (16,32) (16,32) (32,16)
20-bit (16,384) (16,384) (32,192)

Margem and Yilmaz [36] used a very different architecture which proved well on
the 20-bit task. They opted for a more advanced non-linear preprocessing stage prior to
reservoir computing stage, and using linear rules in the reservoir for feature expansion
(multilayer CA architecture). However, that is a vastly different architecture than used in
this thesis, and can be subject for investigation in future work. In addition, their design
was meant for only pathological synthetic tasks, whereas the aim for this thesis is among
others to apply ReCA in real-world tasks.

1000 mispredicted time steps is the spot at or above which all result figures lie, ac-
cording to Table 4.4, 4.5, and 4.6. 1000 is the average number of mispredicted time steps
per trial. In the sequences presented to the system, the target output of the last 10 time
steps differs from the other time steps, and because there are 100 runs per trial, this is
what causes 10× 100 = 1000 to be the line. In fact, if the system is parameterized with
the minimum of (1,0) as in Table 4.5, it becomes clear that the regression model has not
learned anything, and only produces the waiting-for-cue signal. R = 0 means that the ele-
ments in an input vector are used in the exact order that they appear, in practice, equivalent
performance as R = 1.
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4.4 Japanese Vowels

4.4.1 Synopsis

The Japanese Vowels dataset2 was originally collected to test a classifier for multidimen-
sional curves (using passing-through regions), first appearing in [49], and has been used
as a benchmark since. It contains time series of different length comprised of multiple
feature dimensions, each of which is uttered by one of nine males. The utterance is the
pronunciation of two Japanese vowels /ae/ successively.

4.4.2 Task Details

The dataset consists of 640 time series. Each of these time series are recordings of one
of nine male speakers uttering the Japanese vowels /ae/ successively. One utterance by
a speaker forms one time series whose length varies from 7 to 29 time steps. 12-degree
linear prediction analysis has already been applied on them to obtain discrete-time series
with 12 LPC cepstrum coefficients, and hence 12 feature dimensions. 270 out of the 640
are used for training, within which each male or class has 30 samples. The rest, i.e. 370
time series, are used for testing, and contains 24 to 88 samples for the same speakers.
Variable sequence length is due to the goal of the creators. The goal was to collect a
dataset closer to the natural expression of a sample and devise a classification method for
the case. One sample may be measured over a short period, another over a longer. A
sample is presented in Figure 4.7
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Figure 4.7: One sample, and its frequencies of 12 LPC coefficients through time. This is in fact the
first sample in the training set.

2Owners and donors: Mineichi Kudo, Jun Toyama, and Masaru Shimbo. Available at https://kdd.
ics.uci.edu/databases/JapaneseVowels/JapaneseVowels.html
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4.4.3 Results
100 trials were run per combination of rule and reservoir size, and averaged to yield one
result figure. All result figures are measured in testing recognition rate. In all but the last
layer, the rate is the percentage correct classifications out of D×370 (D = 4), where it is
out of only 370 in the last.

Table 4.8 presents first findings, from the initial runs. As in the 5-bit experiment,
the whole group of rules that are subject for testing has been tested on the same reservoir
parameters to find individual good performance rules. Furthermore, the top four rules have
been selected for further testing with different reservoir parameters in Figure 4.8. Finally,
Figure 4.9 is a rather special experiment, because, while Table 4.8 and Figure 4.8 presents
recognition rates for immediate successive layers, Figure 4.9 presents the recognition rate
at the final layer when the deepReCA has a specific number of layers.

Table 4.8: Recognition rate (%) for a three-layered architecture with (I,R) =
(20,20),(20,20),(20,20). Sorted by rule. Standard deviations are located in Table A.8.

Rule Tot. fit time Layer 1 Layer 2 Layer 3
2 15.82 31.08 19.70 72.92
16 15.81 32.17 18.60 69.35
22 13.70 25.49 30.15 58.47
30 13.35 27.77 33.18 65.96
36 15.37 26.30 35.25 65.92
41 13.63 31.86 37.27 67.74
45 15.56 31.70 38.26 68.76
54 13.64 32.52 38.55 64.03
60 13.62 46.98 51.78 72.91
62 13.50 31.62 34.89 61.23
90 13.76 46.29 49.88 72.72
102 13.47 46.40 51.04 73.42
106 13.93 43.52 49.44 74.19
110 13.66 31.92 37.49 68.21
126 13.77 27.86 33.98 64.31
146 13.77 35.17 39.38 64.85
150 13.80 19.33 27.63 56.98
153 17.07 46.77 51.65 72.97
165 16.15 46.35 50.15 72.45
182 13.88 27.27 32.31 59.39
195 16.72 46.46 50.79 72.87

4.4.4 Discussion
Consider first Table 4.8 which provides recognition rates for a greater selection of rules. It
becomes apparent that layer 2 improves upon the output of layer 1 for almost every rule,
though of minor scale. The exceptions are for class II rules 2 and 16, being left- and right
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Figure 4.8: Recognition rate (%) for a three layered architecture with (I,R) =
(20,30),(20,30),(20,30). Standard deviations and accurate numbers are located in Table A.9.
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Figure 4.9: Recognition rate (%) at the final layer when incrementing the number of layers. Each
layer have (I,R) = (20,50). Standard deviations and accurate numbers are located in Table A.10.
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shift rules, respectively. What is slightly off that trend is that even though rule 36 also a
class II rule, it is not one of these exceptions. A possible explanation is, while 2 and 16 as
transition functions completely discard all neighborhood configurations except for when
the left/right neighbor is 1 (λ = 1

8 ), 36 is slightly more dynamic (λ = 2
8 ).

Why the overall percentage increase from layer 1 to layer 2 is small may be due to
the low temporal context provided by layer 1. D is recommended to be a small integer
[51], D = 4 in this work, so there is not much past context to consider when subsequent
layers generate hypotheses. Let hl

m, j be the hypotheses that layer l produces for a sample,
m = 1, . . . ,9, j = 1, . . . ,D. In an extreme example scenario, layer 1 produces hypotheses
h1

m,1 = (0,0.9,0,0,0,0,0,0,0) where the desired output is d1
m,1 = (1,0,0,0,0,0,0,0,0). In

deepReCA, h1
m,1 is encoded and projected to the state space in layer 2. When layer 2 is

to interpret this state vector, which is the first state vector in the sequence, it is no past
information indicating that the meaning of h1

m,1 is really d1
m,1. This is partially adjusted

for by employing Input-to-All. On the other hand, maybe significant increase from layer
to layer (except for the final layer) is not needed in order for the final layer to predict well.
If layer 1 produces h1

2,1 = 1, h1
1,2 = 1, h1

1,3 = 1, and 0 for all other h1
m, j, yielding one vote

for male 1 followed by two votes for male 2, then it is most probable that male 2 is the
correct person.

Another observation from Table 4.8 is that the recognition rate increases drastically
in the last layer, which in general is the trend regardless of the number of layers. The
reason is because the last layer applies Alternative 4 (Section 3.2.3) to yield one predic-
tion. Alternative 4 concatenates all state vectors into one large that thus constitutes the
representations of all D hypotheses.

Increasing the number of random mappings should in theory improve performance
because it increases the computational complexity. For the 5-bit memory task, this was
true. Based on figures in Figure 4.8, it can be inferred to be true here as well, although it is
only observed to be true up to a certain degree. When R > 80 and I ≈ 20, the performance
starts to stagnate and extra random mappings become redundant.

Equivalent rules do exhibit quite as equal performance, as in the 5-bit task. Inspecting
rules 60, 102, 153, and 195 in Table 4.8, it is seen that they are 0.9 percentage points
away from each other. Although this can vary between trials, it is surprisingly close.
This strengthens the theory that equivalent rules do not have any important dissimilar
characteristics when evolved, hence can yield similar performance.

During experimentation with different (I,R) and different number of layers, the addi-
tion of more layers did not consistently improve the result at the last layer. This is depicted
in Figure 4.9, in which each N layer-column presents the recognition rate at the final layer
in an N-layered architecture. The individual rates are thus independent. Notice that when
using only 1 layer, the performance is significantly higher, roughly around 10 percentage
points. In a 1-layered architecture, the last layer also becomes the first layer, hence it ap-
plies Alternative 4 on the computed reservoir state vectors that holds representation of the
external input, and subsequently use the new state vectors for regression. Thus, it appears
that a readout model that is fitted with vectors that represents the external input (though
projected onto CA space), is better than a model that is fitted with vectors that represents
hypotheses.

State-of-the-art performance on this task is hard to compete with. The donors of the
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dataset presented the first results in [49] where they reached a recognition rate of 94.1
% on the test data. Their system was based on rule-based classification using passing-
through regions, exploiting that values in discrete time series curves were entering and
exiting thresholds and windows at different rate. For comparison, the dataset was also
tested there with a 5-state continuous Hidden Markov Model, reaching a higher success of
96.2 %. Strickert [57] used a 1000 neuron self-organizing neural gas and achieved an error
rate of 1.6 %, meaning a total of 6 misclassifications. Jaeger et al. [51] surpassed these
recognition rates using ESNs with leaky-integrator neurons, successfully recognizing all
utterances in the test data. Zero error was reached therein with 500 combined 4-neuron
ESNs (with ”section experts”), where the final hypothesis/prediction is the mean of the
individual ESN votes. Bye [43] was the first to apply the Japanese vowels dataset in
ReCA. The success rate there was in the range around 30 %, which is not an exceptional
performance.

For this deep architecture, the observed maximum recognition rate is 77.1 %, which
is better than Bye’s proposed ReCA architecture [43]. For the single layer, the maxi-
mum is approximately 85 %. One possible reason for not achieving a higher recognition
rate is that the quantization method is too coarse, meaning too few levels to properly dis-
criminate each time series. Another related possibility is that the quantize thresholds are
feature independent, treating every one of the 12 feature dimensions equally. This could
incur a problem considering what was found by Strickert [57]: Higher dimensions (→ 12)
is more important or relevant than lower dimensions, and that the articulation endings
are more discriminative than their beginnings. Appendix B presents four percentiles for
each of the 12 dimensions. A third possibility that can hamper recognition ability, is the
”snapshot” design Alternative 3 (Section 3.2.3). Jaeger’s equivalent alternative [51], in-
terpolates between state vectors when the sequence length is not divisible on D, whereas
deepReCA selects the closest vector. Interpolation can give more precision because the
snapshots becomes more evenly spaced apart. Selecting the closest vector, i.e. Alternative
3 in Section 3.2.3, which in general terms means to round up or down, can be interpreted
as a more unstable method. Non-interpolation was chosen herein because of uncertainty
of whether interpolation would destroy valuable CA information.

The deepReCA system can come close to state-of-the-art performance for the Japanese
vowels task. This shows that a deepReCA system can be applicable on real world tasks,
hence a proof of concept. Outperforming state-of-the-art systems is outside the scope of
work for this thesis. The use of CA as a reservoir substrate means speedups and lower
cost of computation in general. Moreover, the use of hierarchical reservoirs as in deep-
ReCA requires less memory because it is feasible to train and test one smaller layer at a
time. Thus, deepReCA systems may be suitable if greater efficiency at the cost of lesser
accuracy is desired.
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Chapter 5

Analysis

5.1 General

While the previous chapter focused the discussion and observations on specific experi-
ments, this chapter will try to present some general observations and analyze them in a
generic fashion. It also serves as advice and recommendation for other researchers who
are interested in implementing their own deepReCA system and enter further experimen-
tation and analysis.

5.2 Training Algorithm

The current training algorithm concerns not the linear regression itself, but training the
deepReCA as a whole. Section 3.3 presented the chosen algorithm which was designed
based upon what is found in literature concerning deep RC with ESNs in [8, 58, 22, 21].
The trend seems to be to use the training target labels as the target for every readout
model. Alternatively, in continuous speech recognition, train layer 1 to find short acoustic
units with high frequency, and subsequent layers to find longer acoustic units with lower
frequency [58].

Nevertheless, there is a problem that can arise when using the whole training dataset
for offline (all-at-once) training. When layer 1 has been fitted to a training dataset, it
must then predict in order for layer 2 to be trained. A requirement of this prediction
is to use no test data because it would render the experiment invalid. If the system is
deterministic, e.g. by using XOR as addition method between time steps, this prediction
is based upon already seen information, meaning a very low train error. When these
seemingly very good predictions are interpreted by layer 2, they cannot be refined much
as they already are close to the target. Now, when layer 1 sees the test dataset, and
subsequently predicts yielding a higher test error, layer 2 knows neither how to interpret
nor refine this higher error. This problem does not arise with use of the very architecture
presented in Section 3.3 since it uses normalized addition, a stochastic addition method.
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5.3 Reservoir Dynamics
It is by no surprise that different rules provide different dynamics. Each rule has its own
ability to express input of which the readout model can linearly separate, though equiva-
lent rules are found to yield similar results. This was observed and understood already in
the first use of CA as reservoir substrate [5], and also reproduced in the preliminary work
of this thesis [10]. Because only a subset of all 256 rules were used in this thesis, a thor-
ough and complete analysis on what λ provides useful behavior is difficult to elaborate.
However, for the rules used, it is observed that rules with λ ≥ 0.5 give good performance,
with one exception for rule 146 where λ = 0.375.

A careful consideration to make is the selection of rule and the addition method as
a combination. If the combination of the two is wrong, the ReCA is prone to enter an
attractor. An attractor is one or several successive states that have been repeated. In
general, a system that has reached an attractor cannot exit it unless it is perturbed [59]. In
ReCA, the perturbation comes in the form of external input as in Equation 2.13, however,
if the external input remains static, e.g. the waiting-for-cue signal in the memory tasks, the
attractor can be reached again. For the synthetic memory tasks, the danger about occurring
attractors is that it would render the length of the distractor period meaningless where it
should matter. After all, they are long-short term memory tasks. Examples of different
scenarios are provided in Figure 5.1, where different bitwise addition methods (addition
of input and CA state vector) act in combination with two different rules. Figure 5.1 is
a visualization of actual CA states as a ReCA system is solving the 5-bit memory task
(Td = 20, sample number 3 of 32). All 30 time steps are shown. Normalized addition is
a stochastic addition method, whereas bitwise OR and XOR are deterministic. Attractors
are seen in Figure 5.1f, and tend to appear after around 2 distractor periods. A few rules
were tried, and it appears to be only the additive (also called linear rules by Yilmaz [34])
rules that can enter attractors. For clarity, the additive ECA rules are 0, 60, 90, 102,
150, 170, 204, and 240 [33]. This is by no means a proof that additive rules under XOR
always enters attractors in ReCA, but rather an interesting observation that can be further
investigated in future work.

5.4 Temporal Context
Triefenbach et al. [8] proposed a phoneme recognition system using hierarchical ESNs
with leaky integrator neurons. The argument for stacking reservoirs was that additional
reservoirs could correct errors based on the output of the first reservoir, while implicitly
considering the past phonetic context. For the first reservoir, past context was the past
external input, and for all subsequent reservoirs, past context was past decisions. The hy-
pothesis turned out to be a valid one: A second reservoir was observed to produce clearer
difference between competing outputs than the first reservoir. Past phonetic context be-
comes past temporal context when speaking more generic, which can further relate to
any system consisting of multiple hierarchical reservoirs, including deepReCA. For tasks
with several time steps of output, past temporal context can become quite meaningful.
The longer the sequence, the more meaningful.

In a simple and extreme case, consider a classification task with sequences of length
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Runs of the 5-bit memory task with distractor period 20. The distractor bit starts at tick
80, and the cue bit is activated at tick 384. 32 random mappings and 16 iterations per time step.
Rule 110 (top), and rule 90 (bottom). Normalized addition (left), bitwise OR (middle), and bitwise
XOR (right).
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1, and the desired output to be {a,b}. This means that output channel 1 is allocated to a,
and channel 2 to b. In a layered reservoir computing system, if layer 1 outputs b where
the desired output is a, then layer 2 learns the mapping b→ a. When layer 1 thereafter
outputs b when that is the factual desired output, then layer 2 will reach an impasse.

In the proposed deepReCA, any layers’ output for a time step is not always mutually
exclusive, even though the desired output is. For the synthetic tasks, as mentioned in
Chapter 3, the raw output values are binarized deterministically by Equation 2.1. In par-
ticular, if two or more output values are above the threshold of 0.5, they will each become
1, or, if no value is above the threshold, the output will consist of only zeros. In either
case, it will mean a mispredicted time step. For the real-world task, output is binarized
by quantization. Ideally, values should be sent to the subsequent reservoir substrate un-
altered, which is the case in hierarchical ESNs, but due to the current reservoir substrate,
values need to be translated first.

The hypothesis is that non-mutually exclusive bits together with past temporal context
will aid a subsequent layer to make a decision. Temporal context may not only provide
past inputs as a utility, but also implicitly serve as a guidance for at which point in time
the current input is. In other words, how far the current input is from the initial input.
Table 5.1 presents selectively chosen sample outputs (binarized) from the 5-bit task, run
26 of 32. The 5-bit is chosen because of its simplicity. Keep in mind that at time step
t, a layer has not yet seen the input of time step t + 1. The first two bits in are the
memory pattern, and the third is ”waiting for recall cue” signal. Inspecting the table, even
though layer 1 outputs 000 both at time 207 and 208, the time at which they occur implies
different meaning. Indeed, layer 2 is able to interpret and correct these two mispredictions.
Layer 3 is thereafter able to correct all remaining bits.

Table 5.1: Sample binarized output (predictions) for the 5-bit memory task. Sequence 26 of 32.
Underlined bits are what layer l (L l) was able to correct. Rule 62, normalized addition, (I,R) =
(30,30),(30,35),(30,35)

Time step Desired L 1 L 2 L 3
206 100 001 001 100
207 010 000 010 010
208 100 000 100 100
209 010 001 001 010
210 010 010 010 010
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Conclusion and Future Work

6.1 Conclusion

In this thesis, an elementary cellular automata based deep reservoir computing architec-
ture (deepReCA) has been proposed for the first time. The goal was to unite the effective-
ness of cellular automata based reservoir computing and the paradigm of deep learning.
The main motivation is to let layer l refine and correct mispredictions from layer l− 1.
Furthermore, a system with the proposed architecture has been implemented and bench-
marked with pathological synthetic tasks and a real-world task. Specifically, the 5- and
20-bit memory task, and the Japanese vowels time series classification dataset. State-of-
the-art work has been used for comparison for each task, all of which are already RC
systems.

How much can several hierarchical layers improve upon a single layer (Research ques-
tion Q1)? It is shown that successive ReCA layers can improve upon the output of previ-
ous layers. The greatest improvements occur closer to the first layer, where there is more
mispredictions to correct. By measuring the success rate from layer to layer, it becomes
clear that the system as a whole reaches an asymptotic performance, analogous to ESN
based deep RC systems. If the goal of a task is to achieve 100 % recognition rate or 0
mispredictions, then the deeper (> 2) layers will have difficulties in accomplishing that,
due to the aforementioned asymptotic performance.

How able is CA as a RC substrate to represent and discriminate different representa-
tions of external input (Research question Q2)? Different reservoir parameters, i.e. rule,
the number of iterations I, and the number of random mappings R, are observed to affect
the reservoir’s ability to discriminate and represent input. In general, greater I and R in-
creased computational capacity. One exception was for the 20-bit memory task, where
increasing (I,R) was seen to decrease performance. However, the task was estimated to
demand much more (I,R) in order to be solved, rendering the system impractical to train
on a desktop computer. Rules were observed to have different impact on the reservoir
dynamics. In particular, in the 5-bit task, rule 62 proved better as an ”error correcting”
rule whereas rule 146 proved better as an ”initial hypothesis” rule. Both rules combined
surpassed one-ruled deepReCA.
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To what degree is a CA based deep RC system a viable option (Research question
Q3)? On the 5-bit memory task, the implemented deepReCA achieved results similar
to reproduced state-of-the-art results, and thus becomes a theoretical viable option with
respect to memory demand: DeepReCA makes it possible to train and test one smaller
layer at a time. On the Japanese vowels dataset, deepReCA reached a recognition rate of
77.1 %. Successfully classifying close to 80 %, i.e. the majority of the time series, means
that deepReCA is applicable on this real-world task. This thesis has thus given a proof of
concept, which opens up for further work based on the findings herein.

6.2 Future Work
This thesis touched upon some of the ideas mentioned in the preliminary work [10]. Yet,
there is a vast spectrum of options and methods to choose from. These include among
others mapping schemes for non-binary input, or more general, the preprocessing stage
before exciting the medium within the reservoirs. There may exist subtler and more ad-
vanced schemes in literature which are better at preserving input features. CA as a model
for computation is also worth investigating. DeepReCA in this thesis employed only ele-
mentary CA (ECA), one of the simplest kinds of CA. Totalistic CA is another type which
Wolfram [32] used when discussing the different CA classes. Continuous CA [33] is a
third possibility, where the cells take on vales not from a discrete set of states but rather
a continuous set, hence the name. Combining Continuous CA with real-valued external
input could be interesting, and may relate to Neural GPUs [60]. However, using one of
these two alternatives may lead to lack of the effectiveness that ECA offers.

The space of (I,R) parameters have not been examined to full extent. A sugges-
tion here is to find optimal reservoir parameters by using a simple search algorithm, e.g.
hill climbing, simulated annealing, or even a simple evolutionary algorithm. Here, the
search objective would be to find small enough reservoirs to minimize training time and
-memory, yet large enough for them to produce meaningful output for their immediate
successor to interpret.

CA completely avoids floating point multiplications as opposed to ESNs. To fully
exploit the power of deepReCA, it can be desirable to implement it in FPGAs. Smaller
reservoirs mean less training time and -memory for linear regression, and implementation
on logic devices offers even more speedups. Taking the implementation another step fur-
ther would be to replace the linear regression with summation [5]. Combining summation
with using additive elementary CA rules, e.g. rule 90, one completely avoids multiplica-
tion in the whole system.
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Appendix A

Tables With Standard Deviation

A.1 5-bit

Table A.1: Average number of successful runs for the 5-bit task. One layer. (I,R) = (32,40)

.

Rule Tot. fit time Layer 1
54 44.3 31.76±0.51
62 44.3 31.78±0.44
90 52.8 31.82±0.61
102 37.4 31.98±0.14
110 37.2 32.00±0.00
146 49.8 32.00±0.00
150 53.3 32.00±0.00
165 54.1 32.00±0.00
195 51.7 32.00±0.00
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Table A.2: Average number of successful runs for the 5-bit task. (I,R) =
(30,30),(30,35),(30,35),(30,35).

Rule Tot. fit time Layer 1 Layer 2 Layer 3 Layer 4
2 248.2 0.00±0.00 0.00±0.00 0.08±0.31 0.16±0.50
16 244.8 0.00±0.00 0.00±0.00 0.03±0.17 0.13±0.36
22 41.0 4.02±1.92 6.64±2.33 8.18±2.48 8.87±3.08
30 44.3 3.83±2.07 8.84±3.06 12.03±3.03 14.51±2.70
36 236.5 0.05±0.22 6.77±2.53 28.27±2.86 30.91±0.97
41 40.6 3.38±1.79 10.34±2.77 16.16±2.78 20.59±2.50
45 46.8 4.08±2.06 15.02±3.72 21.66±3.01 25.76±2.63
54 46.8 5.50±2.17 19.32±3.21 26.69±2.20 29.64±1.62
60 47.5 4.36±2.15 16.33±3.07 22.89±2.58 26.84±2.24
62 46.0 3.58±1.86 17.71±2.51 25.76±2.28 29.50±1.49
90 47.6 4.05±2.03 15.93±3.47 22.35±3.01 25.81±2.65
102 41.9 3.70±1.96 16.24±2.81 22.89±2.60 26.72±2.04
106 40.6 4.88±2.18 12.11±2.86 17.66±3.11 22.18±2.74
110 46.6 3.70±1.95 15.48±2.92 22.18±2.55 26.30±2.13
126 45.7 4.07±2.10 6.01±2.74 7.16±2.95 7.32±2.67
146 46.3 5.18±2.37 17.59±3.53 24.70±2.40 28.20±1.88
150 42.5 4.33±2.28 1.31±1.10 0.87±0.97 0.59±0.83
182 47.5 4.51±2.14 13.02±3.57 19.14±3.52 22.22±3.64
153 44.5 4.28±2.08 15.66±3.34 22.15±3.10 26.36±2.45
165 44.7 3.53±1.81 15.57±2.80 21.87±2.71 26.08±2.45
195 45.3 3.86±1.86 16.27±3.00 22.76±2.73 26.65±2.07

Table A.3: Average number of successful runs for the 5-bit task. (I,R) = (30,30),(30,20),(30,20).

Rule Tot. fit time Layer 1 Layer 2 Layer 3
62 21.3 3.47±2.03 2.39±1.95 1.64±1.57
54 22.2 5.79±2.49 4.00±3.28 2.44±2.75
195 25.1 3.55±1.94 0.07±0.29 0.00±0.00
110 19.2 3.79±2.13 0.39±0.66 0.00±0.00
102 21.7 4.21±1.94 0.05±0.26 0.00±0.00
165 23.5 4.34±2.20 0.09±0.29 0.01±0.10
146 22.0 5.25±2.13 0.93±1.61 0.16±0.52
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Table A.4: Average number of successful runs for the 5-bit task. The letter i means that rule 62 is
used in all but Layer 1. (I,R) = (30,30),(30,30),(30,30),(30,30),(30,30).

Rule Tot. fit time Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
54 40.8 5.61±2.55 13.06±4.00 18.64±3.75 22.43±3.42 24.32±2.68
62 39.2 3.54±1.66 12.43±3.10 18.70±3.23 22.91±3.03 25.39±2.68
102 47.2 4.01±1.96 7.12±2.90 9.23±3.26 10.15±3.34 10.39±3.06
110 46.1 3.97±2.18 8.36±2.87 10.40±3.31 11.87±3.55 12.88±3.59
146 50.9 5.49±2.08 10.63±3.49 13.50±3.85 15.73±3.81 17.04±4.13
165 50.5 3.91±2.03 6.67±2.71 8.22±2.81 9.00±2.95 8.85±3.01
195 53.9 3.70±1.73 7.47±2.27 9.50±2.66 10.36±3.06 10.71±3.22
54i 49.2 5.56±2.41 14.95±3.26 19.74±3.58 23.24±3.17 25.30±2.44
102i 49.5 3.93±2.10 15.44±3.26 20.79±3.19 23.80±3.03 26.02±2.53
110i 49.2 4.05±1.79 15.93±3.00 20.95±3.26 23.89±2.86 25.93±2.81
146i 46.9 5.34±2.00 15.81±3.13 21.11±3.03 24.51±2.63 26.52±2.51
165i 49.0 4.17±2.00 15.43±3.38 20.64±2.94 23.90±2.83 25.73±2.49
195i 47.2 3.88±2.26 15.80±3.44 21.55±3.23 24.53±2.95 26.48±2.44
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A.2 20-bit

Table A.5: Misclassified time steps for the 20-bit memory task. Here, (I,R) =
(16,20),(16,20),(16,20)

Rule Layer 1 Layer 2 Layer 3
2 1000.63±1.02 2058.74±162.90 1018.17±35.32
16 1000.56±0.88 2049.70±185.06 1016.42±21.98
22 1000.55±0.74 1001.30±2.51 1001.10±1.01
30 1000.77±0.98 1000.57±0.75 1000.57±0.79
36 1037.20±11.81 2090.04±199.22 1159.97±99.65
41 1001.28±1.25 1002.40±1.71 1002.21±1.52
45 1000.72±0.88 1000.58±0.83 1000.58±0.83
54 1005.85±9.71 1063.02±94.23 1033.32±47.30
60 1080.48±21.70 2538.23±267.36 1252.39±165.95
62 1001.10±1.15 1002.74±3.14 1002.78±3.93
90 1036.63±22.21 1821.63±501.25 1317.83±508.83
102 1086.89±21.47 2572.22±270.32 1283.78±192.78
106 1033.04±9.25 1187.58±87.14 1137.31±87.48
110 1000.64±0.71 1000.87±0.90 1000.87±0.88
126 1000.56±0.77 1000.65±0.82 1000.85±1.00
146 1002.42±2.83 1169.30±324.35 1115.97±237.19
150 1026.47±29.78 1242.75±514.14 1158.52±329.06
182 1000.70±0.89 1000.83±1.06 1000.71±0.85

Table A.6: Misclassified time steps for the 20-bit memory task where (I,R) = (1,0),(1,0),(1,0)

Rule Layer 1 Layer 2 Layer 3
2 1000.00±0.00 1000.00±0.00 1000.00±0.00
16 1000.00±0.00 1000.00±0.00 1000.00±0.00
22 1000.00±0.00 1000.00±0.00 1000.00±0.00
54 1000.00±0.00 1000.00±0.00 1000.00±0.00
90 1000.00±0.00 1000.00±0.00 1000.00±0.00
110 1000.00±0.00 1000.00±0.00 1000.00±0.00

Table A.7: Misclassified time steps for the 20-bit memory task where (I,R) =
(16,100),(16,100),(16,100).

Rule Layer 1 Layer 2 Layer 3
54 1430.33±27.92 1810.92±95.31 1497.77±46.39
62 1422.20±22.08 1482.15±28.13 1468.48±30.65
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A.3 Japanese Vowels

Table A.8: Recognition rate (%) for a three-layered architecture with (I,R) =
(20,20),(20,20),(20,20).

Rule Tot. fit time Layer 1 Layer 2 Layer 3
2 15.82 31.08±1.91 19.70±1.10 72.92±2.61
16 15.81 32.17±2.27 18.60±1.29 69.35±8.18
22 13.70 25.49±1.24 30.15±1.12 58.47±2.53
30 13.35 27.77±1.06 33.18±1.34 65.96±2.49
36 15.37 26.30±1.21 35.25±1.29 65.92±2.22
41 13.63 31.86±1.19 37.27±1.27 67.74±2.22
45 15.56 31.70±1.27 38.26±1.19 68.76±2.06
54 13.64 32.52±1.15 38.55±1.35 64.03±2.74
60 13.62 46.98±1.05 51.78±1.14 72.91±1.87
62 13.50 31.62±1.07 34.89±1.19 61.23±3.53
90 13.76 46.29±1.11 49.88±1.07 72.72±1.89
102 13.47 46.40±1.24 51.04±1.08 73.42±1.83
106 13.93 43.52±1.32 49.44±1.16 74.19±2.07
110 13.66 31.92±1.32 37.49±1.17 68.21±1.93
126 13.77 27.86±1.15 33.98±1.00 64.31±3.02
146 13.77 35.17±1.18 39.38±1.44 64.85±2.58
150 13.80 19.33±1.07 27.63±0.85 56.98±3.52
153 17.07 46.77±1.44 51.65±1.31 72.97±2.01
165 16.15 46.35±1.20 50.15±1.03 72.45±2.15
182 13.88 27.27±1.31 32.31±1.24 59.39±2.67
195 16.72 46.46±1.27 50.79±1.20 72.87±1.82

Table A.9: Recognition rate (%) for a three layered architecture with (I,R) =
(20,30),(20,30),(20,30).

Rule Tot. fit time Layer 1 Layer 2 Layer 3
60 25.4 53.27±0.98 57.09±1.06 73.73±2.03
90 24.2 52.39±1.20 55.79±1.12 71.66±2.24
102 25.2 52.52±1.17 56.54±1.12 73.11±2.13
106 25.4 49.00±1.31 54.37±0.94 76.23±2.11
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Table A.10: Recognition rate (%) at the final layer when incrementing the number of layers. Each
layer have (I,R) = (20,50).

Rule Layer 1 Layer 2 Layer 3 Layer 4
60 85.40±1.36 73.05±1.51 75.38±1.57 75.83±1.89
90 84.89±1.26 72.38±1.72 73.88±1.66 76.19±1.81
102 84.97±1.12 72.91±1.75 75.03±1.55 75.06±2.47
106 84.20±1.26 78.92±1.28 78.02±1.97 77.14±2.41
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Appendix B

Percentiles for Japanese Vowels
Dataset

Table B.1: More percentiles for the Japanese vowels dataset. Percentiles for the training portion.

Dimension 20-percentile 40-percentile 60-percentile 80-percentile
1 0.3992096 0.7515878 1.0710998 1.3112078
2 -0.901036 -0.6735048 -0.4684772 -0.2016738
3 -0.0067518 0.1855464 0.341525 0.510599
4 -0.5584518 -0.3535176 -0.1743104 0.012458
5 -0.0043106 0.167279 0.3031056 0.460379
6 -0.3585752 -0.2462606 -0.156919 -0.0607078
7 -0.3159534 -0.2169332 -0.1375486 -0.0406686
8 -0.2207288 -0.113377 -0.0134242 0.1177824
9 -0.378214 -0.2623512 -0.1649274 -0.0364958
10 -0.2839054 -0.212775 -0.1528258 -0.0836962
11 -0.103221 -0.0386028 0.0084956 0.0608074
12 -0.0154532 0.065216 0.1268862 0.1960958
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