
Modeling of mobile information systems

Espen Strømjordet

Master of Science in Informatics

Supervisor: John Krogstie, IDI

Department of Computer Science

Submission date: May 2017

Norwegian University of Science and Technology

ABSTRACT

Abstract

Conceptual modeling languages are used for among other things sensemaking and analysis of
information systems. In the field of mobile information systems, there is a lack of modeling
notations that cover the specific components which are common in this domain. This thesis
explores creating a conceptual modeling notation suited for modeling the main components of
interest for mobile systems. Particularly the Internet of Things (IoT) and sensor networks have
been covered in the notation.

The approach used in this thesis has been a theoretical review of existing modeling notations
to use as a base notation, which were further extended with constructs specifically targeting the
mobile domain. Testing was conducted on an actual case to evaluate and improve the relevancy
and usefulness of the notation.The result is a notation that is capable of representing a variety of
IoT and sensor-related objects while maintaining best practices for visual modeling notations.
The notation could readily be extended in the future to support other types of systems as well. In
practice it still needs to be further tested and applied to other real cases, in order to accurately
determine the domain appropriateness of the notation as well as whether it is comprehensible
and useful for organizational needs.

1

Sammendrag

Konseptuelle modelleringsspråk brukes til blant annet å gi mening til og analyse av informasjon-
ssystemer. I domenet mobile informasjonssystemer er det en mangel på modelleringsnotasjoner
som er ekspressivt sterke nok til å dekke de spesifikke komponentene som er typiske i dette
domenet. Denne rapporten dokumenterer et forsøk på å skape en konseptuell modelleringsno-
tasjon egnet til å modellere hovedkomponentene av interesse innen mobile systemer. Spesielt
områdene tingenes internett (IoT) og sensornettverk har blitt dekket i notasjonen.

Tilnærmingen i denne rapporten har vært en teoretisk gjennomgang av eksisterende model-
leringsnotasjoner som dannet grunnlaget for en ny notasjon, og deretter har blitt videre utvidet
med objekter spesielt rettet mot det mobile domenet. Testing ble gjennomført ved å modellere et
eksisterende IoT-relatert prosjekt for å evaluere og forbedre relevansen og nytten av notasjonen.
Resultatet er en notasjon som kan representere en rekke IoT- og sensorrelaterte objekter, og
samtidig opprettholder god praksis for visuelle modelleringsnotasjoner. Notasjonen har potensial
til å bli utvidet i fremtiden for å støtte andre typer systemer enn det som har blitt fokusert på her.
I praksis trenger notasjonen fortsatt testing og utprøving på andre eksisterende systemer, for å
vurdere hvorvidt notasjonen dekker domenet på en god måte og blir oppfattet som forståelig og
nyttig for organisatoriske behov.

2

ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof. John Krogstie for the advice and feedback throughout
the duration of this project, as well as providing useful literature and assisting with the evaluation
of the developed notation. I also want to express gratitude to Dr. Dirk Ahlers for his useful
feedback during the evaluation of this project.

3

Contents

Abstract 1

Acknowledgements 3

1 Introduction 7
1.1 Problem description . 7

1.2 Structure of thesis . 8

2 Related work 11
2.1 Existing projects . 11

2.2 Existing notations . 13

2.2.1 Data flow diagrams . 13

2.2.2 BPMN . 13

2.2.3 Extensions . 14

3 Research method 15
3.1 Research goals . 15

3.2 Research approach . 16

4 Carbon Track and Trace 17

5 Implementation of notation 21
5.1 Creating a unified notation . 22

5.1.1 New constructs . 22

5.1.2 Imported constructs from BPMN . 33

5.2 Other constructs . 37

6 Evaluation 39
6.1 Empirical evaluation . 39

6.2 SEQUAL . 40

5

6.3 Moody . 42
6.4 Constraints and deficiencies . 45

6.4.1 BPMN constraints . 45
6.4.2 Mobile notation constraints . 46

7 Discussion 49

8 Conclusion and further work 53

Bibliography 55

A Conceptual models 59
A.1 Carbon Track and Trace models . 59

B Installation instructions 65

6

CHAPTER 1

INTRODUCTION

Conceptual modeling languages are an integral part of systems engineering. They are used
for a variety of tasks such as requirements engineering, sensemaking for internal and external
stakeholders, or for improving understanding about the system itself. A variety of modeling
notations exist for different usage areas, and it is important to use a notation that is suitable to
represent the most relevant parts of the system. General modeling notations are flexible in their
ability to model many different systems, but specialized notations also exist, usually being more
effective than general languages at creating models in their target domain [1]. This introductory
chapter introduces the modeling problem to be solved in this thesis and gives an outline for the
rest of the report.

1.1 Problem description

The Internet of Things (IoT) have become an important part of the Internet infrastructure, with
"things" such as sensors and actuators that generate data which can be combined and processed
into valuable information. The thesis presented here is an attempt at creating a conceptual
modeling notation for the field of mobile information systems, focusing on representing unique
aspects of these systems that other notations are insufficiently able to represent. This project
primarily focuses on the mobile domains of IoT and wireless sensor networks (WSN), and
applying the notation to a real case. Some key concepts for the notation are: Sensors, actuators,
locations, data sources, data transformations, and data processing.

The metamodeling effort is concentrated on the analytical aspect of system modeling. It is
intended to be used for sensemaking and communication rather than automatic execution. In a
distributed mobile environment, many actors and many data sources exist. The main purpose of
the developed notation is to support creating an analytical overview of how the multitude of data
sources and actors interact, how data is transformed in the various steps, as well as providing

7

high level overviews of these systems. The forms of modeling which have been focused on are
data flow modeling and process modeling. The developed notation uses parts of various existing
notations. However it is not merely an extension of pre-existing notations, but rather a standalone
original notation that borrows elements from other standardized notations.

A case study has been used in this thesis as an example case that the notation should be able
to represent. The case in question is the Carbon Track and Trace (CTT) project[2][3], which is
related to Smart Cities and tracking the emission of greenhouse gases (GHG) in big cities. This
is a topic that is also related to IoT and is therefore a relevant case for this project. The CTT case
is described in more detail in Chapter 4.

Mobile information systems have unique properties compared to traditional systems. These
include such factors as geographically distributed components, specialized devices, and complex
interactions between many actors. In order to visualize systems like this, a specialized modeling
notation could be desirable to ensure that domain knowledge is captured while keeping the
complexity of the models reasonably low and understandable.

In order to understand the work in this thesis and the developed notation, it is an advantage
if the reader is familiar with conceptual modeling of information systems, in particular the
notations of Business Process Model and Notation (BPMN) and Data Flow Diagrams (DFD)
which are central to the work in this thesis.

1.2 Structure of thesis

In this chapter, a brief introduction to the problem at hand has been given. The fields of IoT
and sensor networks have been introduced, as well as the main goals and expectations for this
project.

Chapter 2 features a review of existing research and literature that is considered relevant for
the case, and current state of the art efforts which have been inspirations for this project. The
chapter also provides some background discussion about the modeling notations that are featured
in this thesis, to make the following chapters more understandable.

Chapter 3 describes the methods used for conducting the research and implementing the
modeling notation. It goes more into detail regarding the goals of the project and the feasibility
of achieving them. The steps involved in the creation of the notation are elaborated upon and
justified with regards to the project goals.

8

Chapter 4 goes further into detail about the case which is used as a baseline for this project.
It elaborates on the artifacts that make up the CTT systems as these make up the base for the
modeling notation. This chapter also discusses how CTT relates to the domains of IoT and
mobile systems.

Chapter 5 provides an in-depth breakdown of the implemented notation, covering details
and origins of the modeling constructs as well as justifications for the choices made during the
modeling process. This chapter also serves as a reference for modelers using the notation, as it
contains the details of usage and properties of all the concepts found in it.

Chapter 6 evaluates the developed notation by using empirical evaluation of the testing results.
Notable quality frameworks from existing literature are also used, to give a more analytical
evaluation of the notation. Any discovered advantages and limitations of the framework are
expanded upon in this chapter based on the evaluation results.

Chapter 7 discusses the project as a whole, how to interpret the results as well as threats to the
validity of the results. This chapter also puts the project in perspective, as to how it contributes
to the field of conceptual modeling and how current practices and the research approach have
impacted the results.

Chapter 8 concludes the thesis with a brief reflection on the project including possibilities for
future work. The main results and findings are summarized here.

9

CHAPTER 2

RELATED WORK

This chapter discusses existing work that has influenced the notation and modeling effort
presented here, which includes reviewing pre-existing modeling notations that were found to be
suitable for modeling aspects of mobile systems.

2.1 Existing projects

This section reviews projects related to IoT and conceptual modeling. Some of these projects
may not be directly related to the modeling task conducted in this thesis, but could be relevant in
advancing the scope of the modeling notation beyond creating conceptual models.

One qualitative study investigated how people understand visual models from a cognitive
point of view [4], using the BPMN notation. This study highlighted in particular the importance
of the participant’s existing knowledge about notations and domains. A participant’s knowledge
of the modeling language or the domain being modeled seemed to be a central factor for the
difficulty the participant would have with the language. As BPMN is a general language used
to model many different domains, the domain knowledge of BPMN models is separated from
the knowledge of BPMN itself. However in a domain specific notation like the one described in
this thesis, domain knowledge will naturally have an impact on both understanding the models
and understanding the notation itself. Therefore, users who have expert knowledge in the IoT
domain would be expected to have fewer issues with a domain-specific language targeted at
the IoT domain (assuming that the modeling notation is indeed an accurate representation of
the domain). A different study compared participants with high and low domain knowledge of
information systems [5]. The study found that application domain knowledge mainly has a large
impact on problem solving tasks that involve conceptual schemas, while general knowledge of
information systems impacts all types of tasks involving schema understanding.

11

In [6], a modeling environment was created specifically for IoT services and ontologies. In
this environment it is possible to make formal descriptions and visualizations of IoT ontologies,
which shows object instances and the communication between them. It is also possible to
model sensors and actuators and query these objects for information. Another IoT project of
note is the OpenIoT project[7]. This project provides a service framework with a variety of
tools for IoT-based systems such as middleware for sensor networks, semantic models of the
systems, and cloud-based services. IoT systems have significant challenges due to the size and
geographical dispersity of these systems. In [8], an architectural approach is presented which
details the composition and orchestration of large IoT systems. Another project which is relevant
for complex IoT systems is the data MULE project [9]. This project analyzed the architecture
of sensor networks and how to improve the architecture for saving power and reducing latency
in networks of sensors. Architectural guidelines like this could be implemented in conceptual
modeling notations as well, since the conceptual models are abstractions of the real architecture
employed by the systems being modeled. Thus, if creating models of future systems, following
efficient architectural guidelines could impact the cost and performance of actual sensor networks
as well.

A modeling language called ThingML[10] was developed by the research organization SIN-
TEF with the purpose of providing model-driven tools used to develop embedded systems. The
focus on embedded systems can be tied in to the mobile IoT systems worked on in this thesis, as
these systems often feature embedded components. This thesis primarily considers conceptual
modeling rather than system generation which ThingML provides. Despite this, many of the
properties of ThingML are transferable to conceptual models and some of the ideas presented in
ThingML may apply for this type of modeling as well. ThingML takes into consideration that
embedded devices typically have many limitations such as CPU, memory and battery power.
These limitations could also be a relevant consideration for a conceptual modeling notation
which is the case here. The formalization presented in ThingML may be a venue for extension
of this notation in the future, if system generation is desirable.

12

2.2 Existing notations

This section briefly discusses the existing notations used in this project and potentially useful
extensions of BPMN.

2.2.1 Data flow diagrams

DFD is a high level conceptual modeling languages mainly used for showing the movement of
data between entities. The main purpose of this notation is to create architectural overviews of
systems with a low level of detail. DFD makes it simple to visualize how data moves throughout
a system, how data is processed and where it is stored. This makes DFD useful for modeling
systems where movement of data is common.

Processes may be used to show how data is produced and consumed, but not on the same
amount of detail as a dedicated process diagram. Traditional DFD imposes very few restrictions
and rules upon modeling. Using the ideas from DFD, the main points of interest are the flow
of data between physical entities, as well as the processes that manipulate this data. In an IoT
setting, DFD entities represent IoT objects such as sensors and gateways, showing how data
is moved, aggregated, and processed throughout the system. Since traditional DFD does not
provide for visualizations of details, rules and restrictions needed to be imposed on the notation
to achieve better accuracy and formalization of the models.

2.2.2 BPMN

BPMN allows for detailed modeling of business processes. A process is contained in a swim
lane, and there can be multiple swim lanes in a swim lane diagram. With BPMN models it is
possible to illustrate the inner workings of the data exchanges, manipulations, or any other part
of the system. This leads to possibilities of better insight and analysis in the model. Currently
BPMN is a main standard for process modeling, and is consequently widely used and understood
by business stakeholders.

BPMN is a notation consisting of many concepts. There are basic elements which are
extended with specialized types for special cases. Some objects are commonly found in most
diagrams, such as activities and events, while other objects are considerably less frequently
used. The entire scope of the BPMN 2.0 notation was excessive for the requirements of the
new notation, so a basic subset of elements was considered sufficient. This subset is described
in Chapter 5 and discussed further in Chapter 6. BPMN is strictly used for business process
modeling, and since the new notation included structural and data modeling as well, integration
was necessary between BPMN elements and non-BPMN elements.

13

2.2.3 Extensions

There exist several attempts to extend BPMN to include aspects of other domains, of which some
notable ones regarding mobile systems include:

• An extension to BPMN exists that enables BPMN to support choreographies between
one-to-many and many-to-many interactions, among other things [11]. This extension
introduces the concept of sets, which are multiplicities of objects. The extensions makes it
possible to model interactions and referencing in BPMN on a level of detail which is not
possible in standard BPMN.

• BPMN4WSN extends BPMN to support WSN [12]. This notation extends traditional
BPMN with the concepts of WSN task, WSN pool and performance annotations on tasks.
The extension simplifies business processes involving sensors and networks, and also
allows for a higher level of detail in modeling these domain-specific concepts.

• A 2013 project attempted to add formal descriptions of IoT devices and services to standard
process modeling [13]. This was an early approach toward mapping IoT resources to
formal models and being able to generate systems that included these resources. While
this approach proposes stricter and more formalized rules than what is required for a
conceptual notation, it could be of interest if formalization of the notation is going to be
relevant in future work.

Not many attempts at making extensive conceptual modeling notations specifically for aspects
of IoT or mobile networks have been found at the time of writing this thesis. Therefore, some
of the existing projects and studies discussed in this chapter were used as starting points and/or
guidelines for this notation. The notation brings together concepts from several of these sources
and adds some new concepts with the goal of creating a notation that is both extensive and
understandable. Chapter 5 provides a more in-depth description of every object in the notation
and their sources.

14

CHAPTER 3

RESEARCH METHOD

This chapter discusses the main goals of the research and details the approach used to meet these
goals, including the reasons for the methods that were used.

3.1 Research goals

The goals of this study coincide with the general goals of any conceptual modeling notation.
Some general metrics of quality for a conceptual modeling language are described in the
SEQUAL framework described in (Krogstie, 2012) [14], which include that the language should
ideally be (in general terms):

• Suited to model the parts of a mobile information system that are deemed relevant by those
involved in the modeling efforts.

• Understandable by modelers and viewers of the model based on empirical principles for
good visual design.

• Having a strong correlation between the participants’ perception of reality and the con-
structs used in the modeling notation.

• Lending itself to representing all the knowledge held by the modelers.

• Consistent with current organizational standards to facilitate adoption of the notation.

Naturally, no modeling language is without flaws or compromise. For example, increasing
the expressive power of a notation tends to reduce its understandability. The notation should
therefore strive to reach an acceptable balance of meeting the various goals. The extent to which
the notation was able to meet these goals has been determined through the testing and evaluations
detailed in Chapter 6. The notation’s primary function was to be a prototype for experimenting

15

with this type of domain specific modeling. That is also why a test case was used in order to
evaluate the applicability of the notation in a realistic setting.

3.2 Research approach

The research methodology used for developing the modeling notation is twofold, consisting of a
theoretical literature study followed by empirical and analytical testing.

Initially a theoretical approach was used to create an initial version of the notation. This
approach involved studying previous projects and articles in order to get a sense of which
concepts were most relevant to be able to represent conceptually. These previous works were
discussed in Chapter 2. This primary research was focused on the subject of IoT and sensor
networks. Relevant concepts regarding IoT were chosen to be used as conceptual objects for
the modeling notation. Anything that was considered relevant for the purposes of this modeling
language were candidates to be used in the metamodel. Based on the primary study, an initial
conceptual metamodel was built in the Metis platform, developed by Troux[15]. This tool is not
widely used in practice, however it facilitates rapid creation of new modeling constructs with
usage rules, and many templates of popular modeling languages exist within it such as BPMN
and Unified Modeling Language (UML). The details on how to access the metamodel within
Metis can be found in Appendix B.

For the second part of the research, the initial metamodel was tested on the CTT project,
which had previously been decided on as a target case for the metamodel. This was done by
preparing example models and consulting with one of the researchers on the CTT project to give
feedback on the models. This provided an evaluation of the model at that point and showed how
the model needed to be further improved to fit with the CTT case, which led to further additions
and refinements of the model. The benefit of focusing on one relevant case was to get a starting
point to establish the notation as relevant and useful for modeling this domain. Alternatively
multiple test cases could be used, or the initial notation could have been made without a test
case. However, with multiple test cases there might have been a conflict between the interests of
each case, leading to a notation that could not sufficiently model any one case. Conversely if the
notation had been made without a test case, evaluating its usefulness on an empirical level would
have been difficult.

16

CHAPTER 4

CARBON TRACK AND TRACE

This chapter contains a case review of the CTT project, which is a project related to the fields of
mobile systems and IoT, and was therefore desirable to be able to make models of. The contents
of this review are mainly based on the various deliverables available for the CTT project [2][3].

The CTT project attempts to provide cities with tools to improve the monitoring and reduction
of GHG emission in the atmosphere. This is done by placing sensors throughout various cities in
the world and collecting real-time data of emission. The sensors involved are typically low-cost
alternatives with limitations such as range of detection, price, and types of gases measured.
Sensors are connected to sensing units, which are responsible for sending the sensor data through
the network to cloud storage. Each sensing unit may have multiple sensors connected to it, and
the sensing units are identified by hardware ID or MAC address. Figure 4.1 shows one such
sensing unit, installed with attached sensors and powered by a solar panel. A variety of sensor
data types are captured and stored, including GHG emissions, air quality data and temperature
data.

The sensor data from the various sensors around the city is sent through scalable gateways and
collected in a cloud platform. The gateways are locally installed devices that receive sensor data
encoded in the LoRaWAN protocol, which they then forward over a TCP/IP wireless network to
the analytical backend. The gateways used are Kerlink gateways as shown in Figure 4.2.

The collected data sets are analyzed on an analytical backend. These systems are designed
to be able to integrate with existing IoT systems in the cases where cities already employ such
backbone systems. The backend is managed by The things network (TTN). All nodes and sensors
are part of a pool where every device in the pool has a unique ID to identify it. TTN manages
this pool and applications can get the data from individual devices by accessing them through
TTN, identified by their ID in the pool. Figure 4.3 illustrates this interaction.

17

Figure 4.1: A libelium sensing unit with attached sensors (Source: http://www.libelium.
com/).

Figure 4.2: A Kerlink gateway used in the CTT project (Source https://www.
thethingsnetwork.org/).

The state of the sensor network is monitored by the DataPort tool, which creates visualiza-
tions of all the connected networks in the pool and their signals. The captured sensor data is
eventually stored on a MonetDB database before being sent to an analytics engine. The analytics
engine uses a combination of the captured data as well as external historical data to create visual
representations for end users. It is one of the main goals of CTT to provide detailed emission
data to end users such as decision makers and general citizens. These visualizations can be made
for a variety of purposes, such as illustrating the correlation between traffic and air quality, or
showing the variance in GHG emission over a period of time.

18

http://www.libelium.com/
http://www.libelium.com/
https://www.thethingsnetwork.org/
https://www.thethingsnetwork.org/

Figure 4.3: An application accessing sensor data through TTN (Made in https://www.draw.
io/).

This architecture forms the core of what the project provides for participating cities. Figure
4.4 illustrates this architecture. It is a high level architecture intended to allow switching out
components as necessary. Two prototype instantiations of this architecture have been employed
in the Norwegian city of Trondheim and the Danish city of Vejle.

Figure 4.4: Architecture of CTT (source: CTT deliverable 2.4 [5]).

CTT also connects with other climate-focused projects. The carbonn Climate Registry (cCR)
is a global project that allows local governments to measure and report their climate actions. The
goals of cCR are to improve the standards of measured data and to encourage governments to
report their climate actions to reduce GHG emissions [16]. The way that CTT sends their data to
cCR is through the ClearPath tool. ClearPath is a reporting tool that provides a standardized way
of reporting emission inventories [17]. It is also fully integrated with the cCR project, ensuring
that reported data is compliant with cCR standards.

19

https://www.draw.io/
https://www.draw.io/

CTT builds upon previous efforts involving sensor technology. One study provided a large
scale overview of the many modeling and assessment practices around Europe, concluding that
there was a wide variety of types and quality regarding models of emission data, and that a
standard way of doing this was needed [18]. Another relevant study reviewed some of the many
modern sensing technologies available for air quality monitoring and provided comparisons
of them [19]. CTT builds on modern studies such as these and was considered a good case of
what should be able to be represented by the notation. It is a case that involves WSN, IoT, and
geographically dispersed systems, which were all aspects that the modeling notation needed to
support. CTT also has a defined architecture with specific physical objects that make up the
basic architecture. The objects have resource limitations which is typical in IoT systems. The
case also involves various data interfaces and stakeholders who can access the data, as well as
frequent data movement. All these factors are part of what makes the CTT case representative of
an IoT environment and what makes it a relevant case to model conceptually. By using CTT as
a starting point for conceptual modeling, ideally it would result in a notation that is capable of
representing all the relevant aspects of the case, as well as the potential to extend the notation for
modeling other similar cases.

CTT has been ongoing simultaneously to this thesis. Models related to this project have been
created and discussed with a researcher involved in the CTT project, as a means of evaluating
the developed notation. The revised models can be found with explanations in Appendix A. The
evaluation itself is described in Chapter 6.

20

CHAPTER 5

IMPLEMENTATION OF NOTATION

The proposed notation integrates aspects of BPMN and DFD. Process modeling and data mod-
eling complement each other during the analysis phase when determining requirements, as
highlighted in green in Figure 5.1 [20]. The modeling notation in this thesis provides an inte-
grated notation that includes both process and data modeling. A combined focus on data flow
modeling and process modeling makes it better suited for focusing on the data transformation
processes and distributed structural elements in the system. The notation is meant to be used at
the analytic and conceptual level for facilitating system analysis and requirements elicitation.

Figure 5.1: Integration of data modeling and process modeling at the conceptual level[21].

21

The notation also extends the existing notations with concepts that are relevant to the domain
of mobile systems and IoT. Tolvanen & Kelly [22] discuss that in the case of integrating lan-
guages, often when integrating multiple languages in a single language, the resulting language
becomes too unwieldy, thereby increasing the complexity. On the other hand, it allows the
modeler to express many aspects in one view instead of having to create separate views due to
no integration. There is a trade-off between complexity and expressiveness to consider when
making the choice for a new notation. A single, fully integrated model, versus separate models
that reference each other. The way that the notation proposed here deals with this issue is by
using a restricted subset of elements from BPMN, integrated with a limited set of IoT-related
constructs. This approach limits complexity while attempting to maximize expressiveness, for
the purposes of the mobile domain.

The developed notation allows for explicit representation of data flow and data transformation
among distributed constructs in a mobile system. The constructs that can be represented are
specific to the mobile field, such as sensors, actuators and constructs that filter or aggregate
data flow from various sources. The constructs borrowed from the BPMN notation generally
retain their original use, while also being extended to interact with the domain specific constructs
developed for this notation.

5.1 Creating a unified notation

By integrating the two notations of BPMN and DFD, a single notation is proposed here which
covers aspects of both these notations. The notation is based on existing constructs from the
two notations, as well as a number of new constructs which address the specifics of mobile
information systems. This chapter explains origins and usages for all the constructs that are a
part of the notation. For practical usage examples of the constructs, refer to Appendix A, where
these constructs were used to create conceptual models of the CTT case.

5.1.1 New constructs

sensor and actuator

File reference:
(actuator) http://xml.master/xml/object_types/actuator.kmd
(sensor) http://xml.master/xml/object_types/sensor.kmd
(sensor actuator) http://xml.master/xml/object_types/sensor_actuator.kmd

Sensors and actuators are standard IoT entities. Their purpose is to observe the environment
(sensor) or act upon the environment (actuator). In short, sensors are sources of data and actuators

22

are destinations of data. This leads to a restriction on these entities; sensors may only have
outgoing data movement and not incoming data. Actuators work in the opposite way, as they
may only have incoming data movement and not outgoing ones. The representation for sensor
and actuator is an entity marked by a symbol in the upper left corner. For sensors, this symbol is
a circle with an outgoing arrow, while for actuators the symbol is a circle with an incoming arrow.
In addition, a third entity type exist called Sensor Actuator. As the name suggests, this entity has
the properties of both sensors and actuators, i.e. it can be used as both a source and destination
for data. Figure 5.2 shows the sensor, actuator and sensor actuator entities. An example of what
could constitute a sensor actuator is a thermostat, which can be responsible for both sensing and
controlling the temperature of a system.

Sensors and actuators are included in the notation because these objects often exist in dis-
tributed mobile systems that involve data processing. Especially in the case of IoT where physical
devices have to interact with software and the Internet, sensing and acting upon the environment
becomes even more relevant. The symbols used to represent these constructs are intended to be
simple. The circle with an outgoing arrow represents a source of data which is a sensor. Similarly
the circle with an inbound arrow represents a destination of data which the actuator is. Following
this logic, the sensor actuator construct is represented by a circle with both outgoing and inbound
arrows. These symbols are similar to the ones used in BPMN4WSN[12]. BPMN4WSN does not
make a distinction between sensors and actuators, while in this notation a distinction is made
based on the function of the object.

Notes:

• A sensor is a source of data flow (1-n outgoing flows). However it may not be the
destination of a data flow.

• An actuator is a destination of data flow (1-n incoming flows). However it may not be the
source of a data flow.

• A sensor actuator is either a source of data flow (1-n outgoing flows), or the destination of
data flow (1-n incoming flows), or both.

• A sensor may exist inside a sensing unit object, and in this case the sensing unit manages
the sensor and is responsible for sending out the sensor’s acquired sensor data.

23

Attribute name Description / Usage
Name A short text which describes what the sensor / actuator / sensor actuator is.

Cost The monetary cost of this unit.

Expected lifetime
How long the unit expected to function properly, typically expressed in years
or months.

Detected properties (sen-
sor)

Lists the properties that the sensor can detect (gases, temperature, air humid-
ity, etc).

Detection range (sensor)
Describes the range that the sensor can detect properties within. Typically
expressed in parts per million (ppm).

Figure 5.2: From left to right: Sensor, actuator, sensor actuator

Replicated entities

File reference:
(replicated actuator) http://xml.master/xml/object_types/replicated_actuator.kmd
(replicated sensor) http://xml.master/xml/object_types/replicated_sensor.kmd
(replicated sensor actuator) http://xml.master/xml/object_types/replicated_sensor_actuator.kmd

Replicated entities represent multiple instances of the same type of entity, e.g. multiple sen-
sors distributed over a limited geographical area. This can be used for sensor and actuator objects.
The representation of multiple instances of an object is an overlapping stack of boxes behind
the construct. This way of representing replicated entities is similar to an existing project where
replication was used in modeling complex choreographies in BPMN [11]. By utilizing replicated
entities, it keeps the model cleaner and less complex because it eliminates the need to model the
same concept multiple times. Figure 5.3 illustrates the replicated entities available in the notation.

This way of representing multiple instances is additionally sometimes used in network dia-
grams and data models, such as for a group of computers connected to a wireless router. The
stacked boxes make it clear that there are multiples of something, and the box at the front gives
the description of what they represent. In a mobile setting, there are many examples where there
are multiple instances of something. It could be a group of sensors in an enclosed geographical
area, a cluster of servers that all process incoming weather data, or many other things.

24

Notes:

• A replicated sensor has the same properties and connect rules as a regular sensor.

– The same applies to replicated actuator and replicated sensor actuator.

Attribute name Description / Usage

Name
A short text which describes what the replicated sensor / actuator
/ sensor actuator is.

Number of items
A numeral representing how many single objects make up the
replicated object.

Cost The monetary cost of each unit.

Expected lifetime
How long each unit expected to function properly, typically
expressed in years or months.

Detected properties
(replicated sensor)

Lists the properties that the sensors can detect (gases, tempera-
ture, air humidity, etc).

Detection range (repli-
cated sensor)

Describes the range that the sensors can detect properties within.
Typically expressed in parts per million (ppm).

Figure 5.3: From left to right: Replicated sensor, replicated actuator, replicated sensor actuator

Sensing Unit

File reference:
http://xml.master/xml/object_types/sensing_unit.kmd

A sensing unit represents a node that contains a number of sensors or sensor actuators.
Sensing units are responsible for transferring sensor data to other objects and managing the
connected sensors. A sensing unit is identified by its hardware ID and/or its MAC address. It is
also possible to specify the communication protocol used and the number of ports on the node.
Figure 5.4 illustrates a sensing unit.

The visual symbol of the sensing unit is split into two halves. The upper half contains all the
properties of the sensing unit while the lower half is the container part of the symbol, which is
where sensor objects should be put. It is also possible to add BPMN processes to the bottom part

25

of the sensing unit, which is relevant for cases such as showing how a sensing unit changes its
output interval when it receives instructions over the network.

Notes:

• A sensing unit can contain sensor, sensor actuators, as well as the replicated varieties of
these objects.

• The amount of objects inside the sensing unit should not exceed the number of ports
specified on the properties of the sensing unit.

Attribute name Description / Usage
Name A short text that describes what the unit is.

Hardware ID The unit’s hardware ID. Can be used to identify the unit.

MAC address The unit’s MAC address. Can be used to identify the unit.

Protocol The communication protocol used by this unit.

Number of ports
The number of ports restricts how many sensors can be connected to this
unit.

Figure 5.4: Sensing Unit

26

Data Flow

File reference:
(data flow) http://xml.master/xml/relationship_types/data_flow.kmd
(data flow timer event) http://xml.master/xml/relationship_types/data_flow_timer_event.kmd

Data flow represents the “flow”, or movement of data, as in standard DFD. It is used for
data from physical entities like sensor and actuators, as well as data objects. This is the main
relationship used to show how data moves throughout an interconnected mobile system.

A second type of this relationship is called Data flow timer event. This functions the same
way as a standard data flow, with the addition of a timer event at its source and the possibility of
defining an interval, which is how frequently the data flow gets captured along this relationship.
The timer event symbol used on this relationship is the same symbol as a timer event in BPMN.
Both kinds of relationships are shown in Figures 5.5 and 5.6 respectively.

Notes:

• The data flow relationship can be used on the following objects:

– Sensors / Actuators / Sensor Actuators

– Replicated entities

– Sensing units

– Data objects

– Aggregates and filters

• To show that data is being moved and transformed simultaneously, this relationship needs
to be used in conjunction with the transformation relationship.

Attribute name Description / Usage
From text Text describing the source end of the relation. Default: “From”.

To text
Text describing the destination end of the relation. Default:
“To”.

Details (data flow)
A block of text which may be used to provide more in depth
detail of the purpose of this relation.

Interval (data flow timer
event)

A time interval which defines the frequency of the data flow
getting captured (e.g. 30 minutes).

27

Figure 5.5: Data Flow relationship

Figure 5.6: Data Flow relationship with timer event

Data object

File reference:
http://xml.master/xml/object_types/data_object.kmd

A data object represents a piece of data that can be transformed. It does not represent a
physical object, but rather a bundle of related data, such as an hour’s worth of emission data
from a CO2 sensor. Typically a data object is related to one or more concrete entities which
produce(s) that data. Allowed connections are data movement and data transformation from one
data object to another, or from a data object to an entity. A data object may also exist within a
BPMN swim lane as a replacement of the original data object that exists in BPMN 2.0. A data
object may contain other data objects within itself to show that a big data set is composed of
different kinds of smaller data sets. This type of structuring is frequently used in ArchiMate [23]
for showing sub-parts of a whole. Figure 5.7 illustrates a data object.

A data object is represented as a rectangular box, similar to an entity, but made up of stippled
lines instead of solid ones. The stippled lines used for this construct are sometimes used in other
modeling languages for showing weaker relations and temporary objects. An example of this
is in BPMN where stippled arrows are used for association relationships and stippled boxes
are used to show groups of tasks. Similarly the data object construct is a bundle of data which
normally is moved or transformed into something else in a mobile system.

28

Notes:

• A data object may be a source of transformation flow (0-n outgoing flows). It may also be
the destination of transformation flow (0-n incoming flows).

• A data object may be a source of data flow (0-n outgoing flows). It may also be the
destination of data flow (0-n incoming flows).

• Transformation flow is used to show that the data is being processed or altered in some
way, while data flow is used to show actual movement of the data. If both transformation
and movement is required, both types of relationships may be used together.

• Data objects can contain smaller data objects to illustrate more detailed decomposition of
data.

Attribute name Description / Usage
Name A short text which describes what the data object is.

Details
A block of text which may be used to provide more in depth
detail of the purpose of this object.

Figure 5.7: Data object

Data transformation

File reference:
http://xml.master/xml/relationship_types/transforms_to-transformed_by.kmd

A unique relationship arrow is used for showing data transformation. This is in addition to
the data flow relation which has a different usage. While regular data flow shows movement
of data, a transformation relationship means that the data itself is changed in some way. This
arrow can be annotated with the cost of doing the transformation, e.g. by consumption of time,
energy, or money. The relationship is represented by a stippled arrow with triangular dots on
either end. The transformation changes one data object to another one. It may also be combined
with a regular solid line to show that data is both moving and transforming. If it is desired to
show the transformation process in detail, this can be done by having an outgoing transformation
arrow to the swim lane containing the BPMN process and from the swim lane have an outgoing

29

transformation arrow to the destination data object. Figure 5.8 illustrates a data transformation
transforming one data object into another. Figure 5.9 shows a data transformation with a BPMN
diagram in the middle, where the incoming arrow shows the original data and the outgoing arrow
is the transformed data after the process is finished.

The motivation for this construct was that DFD originally is only able to represent data
movement. With the addition of this construct, it is possible to separately visualize movement
and processing of data. In mobile and interconnected systems, data tends to move and change
rapidly and in complex ways. Therefore it is useful to have a way such as this to show the
transformation processes separately from the movement of data. Graphically, the transformation
arrow is designed to be clearly distinguishable from the regular data flow arrow at a glance, while
still having the appearance of a typical relationship to avoid confusion.

Notes:

• This relationship can be used on the following objects:

– Data objects.

– Aggregates and filters.

– swim lane diagrams and swim lanes.

• To show that data is being moved and transformed simultaneously, this relationship needs
to be used in conjunction with the data flow relationship.

Attribute name Description / Usage
From text Text describing the source end of the relation. Default: “Transforms to”.

To text
Text describing the destination end of the relation. Default: “Transformed
by”.

Cost / Description
A block of text which may be used to provide more in depth detail of the
purpose of this relation, or the cost of performing the transformation.

Figure 5.8: Data transformation relationship

30

Figure 5.9: Data transformation with BPMN diagram

Location

File reference:
http://xml.master/xml/object_types/location.kmd

Geographical location can be represented on a high level by this object, a stippled box
annotated with the location name in the upper left corner. It is a container object, and may be
used to hold any other object in the notation. This construct encourages grouping of elements
according to location. The purpose of this construct is to improve visual clarity and grouping
of related entities. It does not impose any restriction on the entities within the box. It is only a
high-level construct, and can not directly interact in any way with other constructs. Figure 5.10
shows a location container.

This way of modeling location as a pool was discussed as one of several alternatives for
modeling of location in (Krogstie, 2012, p.256) [14]. Using containers to denote grouping can
also sometimes be seen in UML use case modeling [24], In addition, BPMN has a "group"
construct that is used to show which tasks are related without imposing any restrictions on the
tasks within the group. That same idea is used for this location construct in order to be a construct
only for visual clarity and no limitations on the objects within. The way that location is modeled
in ArchiMate is very semantically similar to this as well, where a location is container for other
objects and represents a conceptual point in space [23].

Notes:

• Location is a container that can fit any number and any type of other object.

• Locations may contain other locations, such as a research facility which has multiple
departments within it.

• The location itself does not accept any incoming or outgoing relationships. The objects
within the location are the ones that interact because the location is only a container.

31

Attribute name Description / Usage
Name A short text which describes what the location is.

Facilities A block of text which list all the facilities available at this location.

Figure 5.10: A location container

Aggregate and Filter

File reference:
(aggregate) http://xml.master/xml/object_types/aggregate.kmd
(filter) http://xml.master/xml/object_types/filter.kmd

Aggregate and filter objects are used to control the data flow. An aggregate is an object
that accepts multiple input data flows (2-n) and aggregates them into a single output data flow.
Conversely, a filter is an object that accepts a single input data flow and filters it into multiple
output data flows (2-n). Both objects can also be used in this fashion for the transformation
relationship.

The Aggregate symbol shows a stippled diamond containing an arrow. The arrow consists of
two branches joining into a single point, to signify the way an aggregate object merges separate
sets of input data into a single output. Conversely, the filter object shows a single arrow branching
out into two end points to show how a filter splits a set of data into multiple output streams. The
objects look similar to gateways in BPMN, which is because they share similar functionality
(gateways control process flow, while aggregate and filter objects control data flow). These
objects are illustrated in Figure 5.11

32

The aggregate and filter objects correspond to entities in the real world that control the flow
of data, such as an antenna which aggregates signals from multiple sensors, or a data analysis
tool which filters out relevant information to make visualizations of data. This means that these
objects perform actual work on the data flows, as aggregating and filtering data usually entails
more than simple joining and splitting of data.

Attribute name Description / Usage
Name A short text which describes what the object is.

(a) An aggregate object (b) A filter object

Figure 5.11: Aggregate and filter objects

5.1.2 Imported constructs from BPMN

Some of the most commonly used BPMN 2.0 constructs are imported to the new notation. By
keeping a subset of the original notation, the new notation stays in line with the original one and
allows for modeling the same constructs. The basic elements of BPMN that have been used are
briefly described below, as conceived by the OMG group [25]:

Events

File reference:
(start event) http://xml.master/xml/object_types/process_start.kmd
(intermediate event) http://xml.master/xml/object_types/process_intermediate.kmd
(end event) http://xml.master/xml/object_types/process_end.kmd
(timer event) http://xml.master/xml/object_types/process_timer_event.kmd
(message event) http://xml.master/xml/object_types/process_message_event.kmd

An event is an occurrence which has a trigger and/or an impact. The supported types of
events are: Start, intermediate, end, message and timer respectively as shown in figure 5.12.
Events function the same way as standard BPMN.

33

Figure 5.12: The five supported events

Activity

File reference:
(activity) http://xml.master/xml/object_types/process_task.kmd
(sub-process) http://xml.master/xml/object_types/process_subprocess.kmd

A process consists of activities, each represented as a rounded rectangular box. It represents
a single activity of work to be performed. Activities can be tasks or sub-processes. These objects
function the same as in standard BPMN. The sub-process object is a Metis container, which
means it can be open or closed. An open sub-process reveals the details of the sub-process while
a closed sub-process appears as in the above image. Figure 5.13 shows these objects.

(a) Process task (b) Subprocess

Figure 5.13: Process task and subprocess

Gateways

File reference:
http://xml.master/xml/object_types/process_gateway.kmd

A diamond shape representing points of choice that control the sequence flows. Used for
branching and merging multiple paths, and there exist many specialized types of gateways. Not
all the specialized types were considered necessary for this notation, so only the basic types are
implemented. As shown in Figure 5.14, the supported gateways are: exclusive gateway (follow
a single flow based on condition), inclusive gateway (follow one or more flows) and parallel
gateway (follow all flows simultaneously).

34

Gateways may also be used on either data flow relationships or transformation relationships
with the same function as they have in BPMN sequence flows, in order to provide flow control
on any part of the model. This is different from the aggregate and filter objects in that a gateway
does not perform any work, it can only split or join flows whereas aggregate and filters can
perform changes to their flows.

Figure 5.14: The three supported gateway types

Sequence Flow

File reference:
http://xml.master/xml/relationship_types/process_flow.kmd

A solid black line that represents the sequential order of activities in a process. This functions
the same way as in standard BPMN, with the addition of a “Details” property for describing the
relationship. Figure 5.15 illustrates this relationship.

Figure 5.15: Sequence flow

Message Flow

File reference:
http://xml.master/xml/relationship_types/message_flow.kmd

A stippled line that represents message flow between tasks or swim lanes This functions the
same way as in standard BPMN, with the addition of a “Description” property for describing the
relationship. Figure 5.16 illustrates this relationship.

Additionally, a message flow may be used to connect data objects with swim lanes or
individual BPMN tasks. This signifies that the source data objects are used in the destination

35

processes or tasks. If used in reverse, it signifies that a source process or task modifies the
destination data object in some way. The advantage of being able to show specific relationships
on an individual task level like this is that it is possible to represent exactly which data object is
used in specific parts of a process, and in which parts of the process data is processed.

Figure 5.16: Message flow

Swim lane diagram and swim lane

File reference:
(swim lane) http://xml.master/xml/object_types/swimlane.kmd
(swim lane diagram) http://xml.master/xml/object_types/swimlane_diagram.kmd

A swim lane diagram contains one or more swim lanes, as in standard BPMN. Within the
swim lanes, other BPMN objects may be used to describe the processes performed within.
Additionally, non-BPMN objects such as sensors and data objects may not exist within swim
lane diagrams. This is to stay true to BPMN as being a process modeling notation, therefore not
including structural objects. Such objects may still interact with BPMN tasks and diagrams by
using relationships.

A swim lane diagram exists as part of a larger model. The swim lane diagram in this notation
may have incoming and outgoing data transformation relations, denoting that the swim lane
diagram transforms the source data object(s) to the destination data object(s).

36

Figure 5.17: Swim lane and Swim lane diagram

5.2 Other constructs

Actors in a process are represented in the same way as in BPMN, where an actor is represented
by a lane in the swim lane diagram. Examples of what constitutes an actor are a person or an
organization. The swim lane construct is kept for processes while the naming convention is
added to DFD entities.

Overlapping aspects are merged to remove redundancy, e.g. processes in DFD are replaced
by BPMN processes which have a higher level of detail and make the DFD processes unnec-
essary. The process can be attached to entities or started by data transformations. The BPMN
process entity is used much in the same way as a DFD process, i.e. it can be initiated by other
entities/actors or data transformations. The BPMN model is used to give a detailed overview of
the data transformation or data creation processes that exist in the mobile information system.

Data storage objects exist in both notation with the same conceptual meaning, and in this
notation the more general Data object construct is used instead. This object can represent data
storage, temporary data, and decomposition of data all with the same object, rather than having
specified object types for specific types of data. This could be considered both an advantage
and a disadvantage. While the use of a single object reduces complexity and allows high level
modeling, it removes the possibility of differentiating between types of data.

37

CHAPTER 6

EVALUATION

This chapter evaluates the notation that has been developed, focusing on the evaluations that
were done regarding the CTT case through discussions with a lead researcher on this project.
Following this is an evaluation of the notation using existing model evaluation frameworks. A
number of frameworks exist for evaluating the quality of modeling languages and conceptual
models. As there does not exist a single standard framework used in practice, this evaluation has
been approached by using two separate frameworks with different quality metrics, in order to
conduct a well-rounded evaluation.

6.1 Empirical evaluation

After an initial version of the notation was created, some tests were conducted, attempting to
model parts of the CTT case. These tests illuminated some things to be added or changed in the
notation. This section discusses some of the findings of this testing as well as what measures
were done with the results.

After an initial model of the case was created, the model was discussed with Dr. Dirk Ahlers
from the CTT project. During this meeting, some limitations of the notation were discovered.
Sensors were at that point modeled as individual structures, existing on their own. However
this was inaccurate to reality as sensors exist as part of sensing units that manage all the sensors
connected to them. Because the sensing units were an integral part to the systems and because
there was no way to adequately show them with the existing constructs, a new specific construct
sensing unit was created for this.

Some relevant properties of the objects were also discussed, such as sensing units being
identified by their hardware ID’s or MAC addresses, as well as the different properties of the
individual sensors. The notation was refined to account for the relevant properties. The notation

39

was also made more flexible to allow certain connections that were previously impossible. An
example of this was allowing data objects to connect directly to individual BPMN tasks which
use that specific data object, rather than just having a general transformation relationship from
the data object to the BPMN diagram. Another example was allowing BPMN diagrams to exist
inside sensing units, thereby showing details of the relevant processes in these units and being
able to show how the sensing units address the feedback data they receive from other parts of the
system. The original BPMN diagrams used in the models were too basic to provide an analysis
on them, which was a problem at the model level rather than at the metamodel level. Following
the meeting, these parts of the model were expanded and the BPMN diagrams were coupled
more tightly with related external objects to make the overall model more cohesive.

6.2 SEQUAL

In (Krogstie, 2012) [14], a framework for how to evaluate the quality of conceptual modeling
languages for performing a modeling task is described. This framework is called SEQUAL and
evaluates the modeling language based on the perspectives of the domain, comprehensibility,
participants, modelers, tool, and organization.

Domain appropriateness

Domain appropriateness evaluates the modeling language’s ability to express all the objects in a
certain domain. In this case, the domain was IoT, also including sensor networks. The ideal was
that the language should be powerful enough to express everything within the domain. However
in this case, the IoT domain has a massive amount of distinguishable objects. Therefore the
evaluation focuses primarily on the parts of the domain that have been considered useful for
the modeling task at hand, which was the CTT case in this project. To achieve this, parts of the
modeling notation were designed after the CTT architecture shown in Figure 4.4, as well as
meeting with a researcher on this project to reveal other constructs important to represent in the
notation.

Comprehensibility appropriateness

Comprehensibility requires that the actors involved in the modeling effort are able to understand
the language. To accomplish this, the amount of objects in the notation should be kept at a
reasonable level, while keeping the language flexible in regards to amount of detail shown in
models. The objects must also be easily distinguishable from each other. In section 6.3, the
notation is evaluated more in detail from empirical and cognitive principles that are highly related
to the concept of comprehensibility. At a high level, the effort was focused on keeping a limited

40

set of objects that were distinguishable while still being explicit enough to fulfill the modeling
task at hand.

Participant appropriateness

Appropriating the language towards the participants’ knowledge means that the conceptual basis
of the language must correspond as much as possible to the participants’ perception of reality. In
the case of a domain specific language, the constructs are very specific in meaning and usage, as
they are related to things within the same domain in the real world. If the participants who are
to use these models are already familiar with the target domain, it may make the notation more
intuitive and easier to learn.

The notation used parts of the BPMN notation. BPMN is widely used for process modeling
in enterprises and is therefore regarded to be well understood. Participants who have previous
knowledge of BPMN, should find the models easier to understand in such cases as it cuts down
the amount of objects that need to be learned significantly.

Modeler appropriateness

Most of the points discussed in Participant appropriateness also apply to modeler appropriateness.
This principle also requires that the modeler is able to express all their knowledge in the notation.
To facilitate this, objects in the notation were variable in how much detail could be expressed
with them.

Tool appropriateness

Tool appropriateness requires that the notation lends itself to automatic reasoning or execution.
This notation’s main purpose was to be used for conceptual and analytical purposes, and was
therefore primarily aimed at manual techniques involving stakeholders, rather than supporting
executable environments. If automatic reasoning is to be a future prospect of the notation, a
higher degree of formalization would be required first.

The tool used to develop the notation was Metis by Troux architect[15]. This tool contains
most of the basic functions necessary to quickly implement constructs and add properties to them.
This was useful for the purposes of making a prototype notation as new constructs were needed
throughout the project timeline and the existing constructs frequently needed to be changed. On
the other hand the tool was difficult to use for some advanced purposes such as changing an
object’s symbol based on its property values. This, accompanied by the fact that the built-in
symbol editor was very basic compared to modern graphic design software, made the tool seem
somewhat outdated overall. Section 6.4.2 describes these Metis-related constraints in more detail
while Chapter 7 discusses the impact that the tool limitations had on the notation itself.

41

Organizational appropriateness

The modeling language should conform to the modeling methods and standards of the orga-
nizations that are going to use the notation, which leads to the principle of organizational
appropriateness. One way the notation lent itself to organizational standards was by using BPMN
constructs, which is already a leading standard for process modeling. Additionally, by using the
CTT case as a target case, this made it possible to hold discussions on how to make the notation
fulfill the organizational needs of the target case. A weakness of the notation was that it had
been implemented in the Metis tool, which is not widely used. However this weakness could be
considered negligible in this case because the notation was primarily an experimental prototype,
as mentioned in section 3.1. Because of this, the Metis tool was considered acceptable for the
purposes of this project.

6.3 Moody

Moody [26] has proposed nine principles for visual notations. These principles were derived
from empirical evaluations as well as other disciplines such as cognitive psychology, linguistics,
semiotics and graphic design. Following the principles makes it possible to test and evaluate
visual notations, and others have already applied this for testing the cognitive effectiveness of
BPMN [27]. The notation proposed in this thesis has also been evaluated using these principles,
which are briefly described in Table 6.1.

Name Meaning

Semiotic Clarity
Having a 1:1 mapping between concepts and symbols of the
notation.

Perceptual Discriminability
Different symbols should be easily distinguishable from each
other.

Semantic Transparency
Symbols should be semantically related to its meaning so that it
is intuitive to understand.

Complexity Management
The notation should be able to have ways of reducing complexity
in diagrams, such as abstracting parts of the model into views.

Cognitive integration The notation should make it easy to navigate between diagrams.
Visual Expressiveness Using a variety of visual constructs in the notation.

Dual Coding
Using both text and visual constructs in an integrated manner
so they complement each other.

Graphic economy
Reducing the amount of different symbols to keep the notation
simple. A high number of different symbols can make the model
cognitively difficult to interpret.

Cognitive fit
Making the notation adapted to different tasks, and for different
audiences.

Table 6.1: Moody’s nine principles

42

The following is an overview of how the developed mobile notation fulfills these nine
principles:

1. Semiotic Clarity: Every symbol in the notation is distinct in meaning and appearance. No
concept has multiple symbols, and conversely no symbol has multiple meanings. Due to
the notation being domain specific to the field of mobile and IoT systems, the modeling
constructs represent very specific objects from real life, such as a sensor. This makes it less
likely that different constructs overlap due to their correlation with real objects. Despite
this, there may be real constructs that cannot be represented in the notation due to this
specificity. In that case there would be a symbol deficit in the notation which would require
the addition of new elements that cannot currently be represented. Some examples of
potential symbol deficit in the current notation are non-sensor networked devices that are a
part of the IoT, such as vehicles and smartphones. These are just some examples of things
with embedded devices that make up the IoT and might be relevant to include in models.
Another possible addition would be explicit symbols for the actors involved, which could
include organizations as well as individual persons. Actors can not be explicitly modeled
in the current notation outside of processes even though visualizing them may be useful in
some situations.

2. Perceptual Discriminability: Moody argues that visual differentiation is more efficient
than textual differentiation between objects. This is realized in the notation as all the main
types of objects can be differentiated by their shapes, line types, or graphical symbols.
However some similar objects such as sensors and actuators may require some experience
to tell apart at a glance. These objects look the same but can be told apart from the icon
denoting their use. A similar situation exists with aggregate and filter objects.

3. Semantic Transparency: Symbols have been frequently used to guide the user towards
understanding the constructs. Examples of this include sensors which show a symbol of
incoming data, actuators showing outgoing data, aggregating objects showing converging
flows, and filters showing separating flows. Physical objects typically are modeled in
solid lines, while anything involving abstract objects like data objects are modeled with
stippled lines. The notation uses spatial overlap where possible to show subtypes or
encompassment, which is something Moody argues can be a more semantically transparent
mechanic than using object relationships.

4. Complexity Management: Location objects are used for logical groupings of objects,
increasing the readability of the model. Some parts of the model can be modeled on a
general level such as BPMN diagrams or subprocesses. The degree of details on the model
can be varied, allowing the user to make more or less complex diagrams. However, the
model can quickly get complicated when many objects are needed in the same view. An
attempt to counteract this is to make use of the replicated entities of the notation rather

43

than showing each individual one. Also, making use of the spatial overlap reduces the
number of relationships needed in a model, which may further reduce the complexity and
clutter.

5. Cognitive integration: The Metis tool has some mechanics for breaking up models into
separate views. This requires the modeler to first create the views and filling one with
objects, then replicating the necessary objects into the second view. However one view
is the source view and the other is the dependent view, meaning that the dependent view
responds to changes in the source, but not the other way around. There does not seem to
be a way of creating fully integrated diagrams in Metis, and creating multiple views from
an existing model is laborious. It would be advantageous to reimplement the notation on a
different platform that allows view creation in a more modern way. The notation itself also
does not have any explicit ways of separating diagrams.

6. Visual Expressiveness: The notation attempts to use the most variety possible within
the Metis 5.2 tool. Line types, shapes and symbols are used to distinguish the different
constructs. Color is not used, which could have led to a higher degree of variety but
could also cause a problem for color blind users, as discussed by (Krogstie, 2016, pp.111-
117)[28]. Another point of note is that graphical encoding is preferred over textual
encoding, which is realized in the notation as discussed in the point regarding Perceptual
Discriminability.

7. Dual Coding: Text is primarily used to show properties or additional details on objects.
Most of the text is optional, meaning the viewer can include as much or as little text on
the models as desired. Some objects can be freely annotated with a descriptive text, and
relationships have default text on them to supplement the meaning of the visual symbols.

8. Graphic economy: As this notation is domain specific, the objects tend to also be specific
rather than general. Some generalized objects exist in the notation such as data objects
which can be a variety of things. However if all objects of the IoT domain were to have a
representative modeling symbol, there would be a case of symbol overload in the notation.
Therefore the number of constructs in the notation is intentionally kept at a manageable
number. This principle of graphic economy could become more of an issue if the notation
were to be extended to be able to represent more concepts.

9. Cognitive fit: This principle suggests the need to develop separate dialects of the notation
for novice and expert users. As this notation is specific rather than for general use, it is
geared more towards expert users. The notation is certainly harder to learn for someone
without BPMN experience, as a subset of BPMN is used in the notation. For users
experienced with BPMN, the learning curve is gentler.

44

6.4 Constraints and deficiencies

All modeling languages have certain deficiencies, due to the fact that every modeling language
has a focus and therefore is typically unable to model things outside its focus. Certain trade-offs
must be made between maximizing the expressiveness of the language versus the simplicity and
clarity in order to be understandable. This section will discuss the main deficiencies of BPMN,
some of which have been covered by the integrated notation as well as potential new deficiencies
that may have arisen. Regarding DFD, its main deficiency is that it lacks formal expressive
power due to the low amount of constructs. The new notation covers this by extending it with
new constructs for more specialized usage and adds restrictions to them, as well as introducing
BPMN constructs to the notation.

6.4.1 BPMN constraints

(Krogstie, 2016, pp.209-218)[28] discusses some of the deficiencies of BPMN. BPMN lacks the
power to represent states of objects. Without states, there is a risk of some business rules not
being captured properly in the diagrams. BPMN also cannot properly represent the structure of
things in a system, as it only covers business processes. The new notation needed to address this
due to IoT being a focus point and system structure being important when data flow modeling is
involved. Resources can also not be modeled properly in BPMN. This is another relevant point
for the new notation, as resources are present in IoT and IoT objects often have limitations on
available resources such as cost and sensor range. These aspects should therefore be a part of an
IoT modeling notation.

BPMN contains many advanced concepts and has multiple representations for similar things.
The sheer amount of constructs causes significant complexity if trying to understand every
concept in the notation. This issue is mitigated in the new notation because only a basic subset
of BPMN is used. This raises the possibility that the subset used in the new notation lacks the
expressiveness that standard BPMN provides. However [29] discusses how only a small portion
of BPMN elements are used in practice, and how different subsets are common to find. The
study includes a frequency chart showing how commonly each BPMN object was found to be
used in practice. Only 19 objects showed an occurrence of at least 25% in the study, and the
subset used in this thesis covers 16 of those. The three objects not covered by the subset are
association relationship, text annotation, and end terminate event. An analysis done by Moody
on the BPMN notation[30] built further upon this and concluded that the graphical complexity
of BPMN is a major issue for its general usability. Moody also argued in favor of using subsets
of the notation for analysis tasks. These studies indicate that using a representative subset of
BPMN actually leads to more benefits than disadvantages, as has been done in this thesis.

45

6.4.2 Mobile notation constraints

The developed notation is fairly specific in what it is able to represent because of the focus on IoT.
Due to this specificity, it may limit the possibilities of extending the notation for other purposes
than the one originally intended. The modeling effort in this thesis has been predominantly
focused on the CTT case, and thus the notation would need further testing to discuss how its
usefulness could extend to other projects. Effort has been put into making the notation general
rather than specific wherever possible, however some trade-offs needed to be made in order to
represent the necessary parts of the CTT case. One instance of this is the sensing unit object,
which was discovered to be important during an evaluation meeting. Thus since there was no
way to represent something like a sensing unit at the time, it was implemented in the notation for
the express purpose of being able to include it in the case model. This was useful for modeling
the CTT case, however it also increased the graphic complexity of the notation and may not be
useful for modeling other cases.

Some objects could benefit from more specialization. One example of this is the data object,
which is a general representation of abstract data. It is currently not possible to differentiate
between different types of data, which could be relevant when dealing with sensitive data that
has multiple levels of security clearance, or for differentiating between data in transit and data at
rest.

Some constraints are a result of limitations with the tool used. As mentioned in the tool
appropriateness section, Metis was useful for making a prototype notation, but had some issues
related to it being outdated. Some of the main issues found are listed below, while the impacts of
these issues are discussed in Chapter 7:

• The tool was difficult to use for some advanced purposes such as changing an object’s
symbol based on its property values. The tool did support implementing methods that
could actively manipulate the objects, but the way of implementing this was convoluted
and not very user friendly.

• The built-in symbol editor was very basic compared to modern graphic design software. It
lacked ways to adjust specific shapes and sizes in a nice and consistent way. Most of the
symbol creation had to be done in a manual way. Additionally when creating relationships
there were a limited number of line types and ways to represent the arrows.

• While creating the models themselves, resizing objects often had adverse effects on the
text and symbols on the objects. This sometimes led to mangled graphics and text that was
too small or too big. This was especially bad on objects that contained custom symbols, as
the symbols would often look disfigured when being scaled up or down.

46

• Metis contains existing notations such as BPMN which can be used in modeling and
metamodeling. However, mixing and matching objects from existing notations and trying
to create new objects that interact nicely with these existing objects, proved to be difficult
to do. Most existing objects were tightly connected to other objects from the same notation
by their design and usage, which made it impractical to export individual objects from
BPMN to the new notation.

47

CHAPTER 7

DISCUSSION

This chapter discusses how the developed modeling notation solves the problem stated in the
introduction, while interpreting the results and putting them in context with the fields of IoT and
modeling in general.

In every modeling notation, a compromise has to be made between adding enough constructs
to make the notation able to express as many cases as possible, but keeping the number of
constructs concise enough that the notation is understandable and easy to use. For the mobile
notation, the focus has been on being able to model sensor networks and the choices of constructs
were been made based on the CTT case previously discussed. For the reasons discussed in
Chapter 3, a single case was focused on in the initial version, and the notation can be applied
to additional cases hereafter. While the notation provides a base for modeling cases related to
IoT and mobile systems, it can easily be further extended as needed to include more constructs.
The notation could also be refined further to enable expressing more precise properties on the
IoT objects, thus tailoring it more specifically to the case being modeled. The risk involved in
doing this is that by tailoring the properties towards specific cases, the notation might lose its
suitability for general purpose modeling of IoT systems.

The decision to include elements of BPMN in the notation was partly to keep the notation
following standard practices. Being able to model business processes was central in the notation
to show how the data transformation processes occur in detail, as well as other event-based parts
of mobile systems. The BPMN constructs themselves were constructed from scratch in Metis,
while adhering to the existing BPMN 2.0 notation. Some benefits of using the BPMN standards
instead of creating entirely new constructs include:

49

• BPMN is a widely used notation in practice and by using it, experienced modelers will
have fewer new constructs to learn. Therefore the notation should also be easier to learn
and cause fewer modeling mistakes, assuming that the modeler has previous experience
with BPMN.

• Time is saved on designing and conceptualizing the modeling constructs as they already
exist in BPMN and simply needed to be recreated in Metis.

• The new modeling constructs have been designed to fit together with the BPMN symbols,
both visually and functionally. In this way, BPMN functions as a base notation and all
new constructs were designed on top of this standardized base notation. Ideally this would
mean that the new constructs adhere to the style and standards of BPMN.

However, as discussed in Section 6.2 on the topic of tool appropriateness and in Section 6.4.2,
there were limitations of Metis that impacted the final notation in some ways. One such way
was that originally, sensors and actuators were intended to be a single object with a changeable
symbol to indicate whether it was a sensor or an actuator. Modeling these as a single object
would be logical due to their similar function and properties, but due to challenges in Metis
regarding actively changing the symbols on objects, they were instead created as separate indi-
vidual objects. This led to an increase in the amount of objects and therefore an increase in the
complexity of the notation. Because of the simplicity of the symbol editor, some parts of the
notation ended up being more similar to each other than intended. This was primarily a concern
for the relationships, as there were four distinct relationship types in the notation (data flow,
sequence flow, transformation flow, and message flow). The intent was for these to be clearly
distinguishable from each, but because of limitations in the editor they may be more difficult
to distinguish from each other than preferred. It is also worth noting that the graphical issues
regarding the model creation make it somewhat convoluted to make visually appealing models.
This is mainly a problem with how Metis scales objects, and it is certainly possible to make
visually good models, although it often requires some fiddling where it could benefit from better
automatic scaling. As discussed, the BPMN objects were also made from scratch, which was not
the original plan. Originally the idea was to implement existing BPMN objects to integrate these
with the new constructs. This was another difficult task to accomplish in Metis, so it was found
easier to make the needed BPMN objects from scratch instead. This could be considered a benefit
in the end, as it made the BPMN elements have the same visual style as other objects, and their
function could be precisely tailored to the purposes of the notation. This was beneficial because
in some cases the BPMN objects had their function slightly altered from their original use, or
had a reduced functionality. As an end note regarding the Metis tool, it was quite simple to
implement the basic constructs, symbols, and rules within it. This was the main justification for
using it to begin with, as there were expected to be frequent changes and additions to the notation.

50

Previous modeling efforts that include IoT and sensor networks typically focus on smaller
optimizations or extensions to existing languages. Some service-oriented approaches have
also been performed, as discussed in Chapter 2. This notation was an attempt at conceptually
modeling such systems on a larger scale, capable of expressing many different parts of IoT and
mobile systems. This kind of modeling has become more relevant in the modern society where
constantly more devices become interlinked in complex networks, over geographically dispersed
areas.

The notation is still at an early prototype stage, and it has the potential to be extended and
formalized by future research to allow a higher degree of expressive power. As it currently stands,
its main contributions to the domains of IoT and mobile information systems are the specific
visual constructs that make it possible to create structural and process oriented models, which
facilitates the analysis of the systems being modeled. The next logical steps for the notation are
more thorough empirical testing, as well as reimplementing and formalizing the notation on a
more modern platform.

51

CHAPTER 8

CONCLUSION AND FURTHER WORK

This chapter concludes the project with a summary of the work up until this point and discusses
potential future work.

This thesis has conducted an approach at creating a conceptual modeling notation that is
able to represent key parts of IoT systems and sensor networks. the main motivation for this
was that domain specific notations typically are able to represent objects on a higher level of
details than general notations, and often more efficiently as well. The notation has been based
on existing notations and standards used in practice, taking inspiration mainly from the process
modeling found in BPMN and the structural modeling used in DFD. The project has used the
CTT project as a case study for a system that was desirable to model with the notation. A
set of specific and some general constructs were used to represent parts of this system with
variable levels of detail. The notation has also been evaluated by using two general frame-
works for modeling language quality, as well as empirical testing by discussing the models with
a researcher on the CTT case. The notation could still be refined to enable expressing more
precise properties on the IoT objects, thus tailoring it more specifically to the case being modeled.

A modeling notation can always be refined and extended to fit other cases and purposes
than it has been previously used for. The same applies in this case, as the notation has been
tested on several cases. These cases have mainly been related to IoT and sensor networks as this
has been the focus of the notation, however it is conceivable that the notation can be applied
to a number of other systems as well. Sensor networks exist in many areas of today’s society,
such as traffic systems, the Internet, weather radar networks, and so on. The notation could be
modified and extended to model these types of systems, however the amount of objects have
been kept at a manageable level in the initial version to make the notation easier to learn and
reduce model complexity. Additionally, the model would benefit from being reimplemented
in a more stable and widely available tool before any further standardization or refinement

53

takes place. Metis was a useful tool for creating a prototype, but is too outdated for creating a
more formalized modeling language used in practice. Model-driven system generation is also a
possibility for future extension, such as in ThingML[10]. This was not done in the initial model
due to the focus being on conceptual visual models for analysis purposes. For generating sys-
tems, a more formal structure would need to be imposed on the notation, like the approach in [13].

54

BIBLIOGRAPHY

[1] J. Visser A. van Deursen, P. Klint. Domain-specific languages: An annotated bibliography.
ACM SIGPLAN NOTICES, 35:26–36, 2000.

[2] F. A. Kraemer F. Anthonisen J. Krogstie D. Ahlers, P. A. Driscoll. A measurement-driven
approach to understand urban greenhouse gas emissions in nordic cities. In NIK: Norsk

Informatikkonferanse 2016. NIK, 2016.

[3] J. Krogstie A. Wyckmans D. Ahlers, P. A. Driscoll. Carbon track and trace (ctt). https:
//www.ntnu.edu/ad/ctt, 2016-2017. Accessed: 10-05-2017.

[4] S.Y. Lim B. Weber C. Haisjackl, P. Soffer. How do humans inspect bpmn models: an
exploratory study. In Editorial Board of SoSyM, editor, Software & Systems Modeling.
Springer, 2016.

[5] P.C.V. Ramesh S.-J. Park V. Khatri, I. Vessey. Understanding conceptual schemas: Explor-
ing the role of application and is domain knowledge. In Information Systems Research

17(1), pages 81–99, 2006.

[6] W.-S. Rhee H.-S. Choi. Iot-based user-driven service modeling environment for a smart
space management system. In L. Lavagno, editor, Sensors, Basel, Switzerland, 2014.
Multidisciplinary Digital Publishing Institute (MDPI).

[7] J.-W. Lee J. Kim. Openiot: An open service framework for the internet of things. In 2014

IEEE World Forum on Internet of Things (WF-IoT), pages 89–93, 2014.

[8] R. Vitenberg R. Rouvoy F. Eliassen K. Dar, A. Taherkordi. Adaptable service composition
for very-large-scale internet of things systems. In Proceedings of the Workshop on Posters

and Demos Track (PDT ’11), pages 11:1–11:2, New York, NY, USA, 2011. ACM.

[9] S. Jain W. Brunette R. C. Shah, S. Roy. Data mules: modeling and analysis of a three-tier
architecture for sparse sensor networks. In IEEE SNPA WORKSHOP, pages 30–41, 2003.

55

https://www.ntnu.edu/ad/ctt
https://www.ntnu.edu/ad/ctt

[10] B. Morin F. Fleurey. Thingml documentation. http://thingml.org, 2011. Accessed:
15-03-2017.

[11] G. Decker & F. Puhlmann. Extending bpmn for complex choreographies. In Tari Z.
Meersman R., editor, On the Move to Meaningful Internet Systems, Berlin, Heidelberg,
2007. CoopIS, DOA, ODBASE, GADA, and IS. OTM 2007, Springer.

[12] N. Oertel O. Kopp C. T. Sungur, P. Spiess. Extending bpmn for wireless sensor networks. In
2013 IEEE 15th Conference on Business Informatics (CBI), Vienna, Austria, 2013. IEEE.

[13] C. Magerkurth S. Meyer, A. Ruppen. Internet of things-aware process modeling: Integrating
iot devices as business process resources. In Ó.C. Pastor C. Salinesi, M. Norrie, editor,
Advanced Information Systems Engineering: 25th International Conference, CAiSE 2013,

Valencia, Spain, June 17-21, 2013., pages 84–98, Berlin, Heidelberg, 2013. Springer.

[14] J. Krogstie. Model-based development and evolution of information systems: A quality
approach. pages 249–278, 327–388, London, 2012. Springer.

[15] Troux technologies. http://www.planview.com/products/troux/. Accessed:
15-03-2017.

[16] carbonn climate registry. http://carbonn.org/. Accessed: 28-05-2017.

[17] Clearpath. http://www.clearpath.global/. Accessed: 28-05-2017.

[18] P. Thunis et al. Overview of current regional and local scale air quality modelling practices:
Assessment and planning tools in the eu. In M. Beniston, editor, Environmental Science &

Policy, volume 65, pages 13–21. Elsevier, 2016.

[19] X. Querol N. Castell M. Viana M. C. Minguillón, C. Guerreiro. Real-world application of
new sensor technologies for air quality monitoring. European Topic Centre on Air Pollution
and Climate Change Mitigation (ETC/ACM), 2013.

[20] R. Sarfaty P.R. Smith. Creating a strategic plan for configuration management using com-
puter aided software engineering (case) tools. In Conference: 1993 National Department of

Energy (DOE)/contractors and facilities data acquisition and control user‘s group meeting,
Livermore, CA (United States), 1993.

[21] via Wikimedia Commons By Process_and_data_modeling.jpg: P. R. Smith. Redrawn by
M. D. Dekker Data_modeling_context.jpg: M. D. Dekker derivative work: Razorbliss [CC
BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)].

[22] S. Kelly J-P. Tolvanen. Integrating models with domain-specific modeling languages.
In Proceedings of the 10th Workshop on Domain-Specific Modeling, DSM ’10, pages
10:1–10:6, New York, NY, USA, 2010. ACM.

56

http://thingml.org
http://www.planview.com/products/troux/
http://carbonn.org/
http://www.clearpath.global/
http://creativecommons.org/licenses/by-sa/3.0

[23] The Open Group. Archimate R© 2.1 specification. http://pubs.opengroup.org/
architecture/archimate2-doc/, 2012-2013. Accessed: 18-01-2017.

[24] Microsoft. Uml use case diagram guidelines. https://msdn.microsoft.com/

en-us/library/dd409432.aspx#UsingSubsystemBoundaries, 2017. Ac-
cessed: 20-02-2017.

[25] Object management group Inc. (OMG). Business process model and notation (bpmn)
version 2.0. http://www.omg.org/spec/BPMN/2.0/, 2011. Accessed: 07-09-
2016.

[26] D. L. Moody. The“physics”of notations: Towards a scientific basis for constructing visual
notations in software engineering. IEEE Transactions on Software Engineering 35, 2009.

[27] D. Amyot N. Genon, P. Heymans. Analysing the cognitive effectiveness of the bpmn 2.0
visual notation. In Proceedings of the Third International Conference on Software Language

Engineering, SLE’10, pages 377–396, Berlin, Heidelberg, 2011. Springer-Verlag.

[28] J. Krogstie. Quality in business process modelling. pages 111–117, 209–218, London,
2016. Springer.

[29] J. Recker M.Z. Muehlen. How much language is enough? theoretical and practical use of
the business process modeling notation. In CAiSE 2008: Advanced Information Systems

Engineering, pages 465–479, Berlin, Heidelberg, 2008. Springer.

[30] D. L. Moody. Why a diagram is only sometimes worth a thousand words: An analysis of
the bpmn 2.0 visual notation. 2011.

57

http://pubs.opengroup.org/architecture/archimate2-doc/
http://pubs.opengroup.org/architecture/archimate2-doc/
https://msdn.microsoft.com/en-us/library/dd409432.aspx#Using Subsystem Boundaries
https://msdn.microsoft.com/en-us/library/dd409432.aspx#Using Subsystem Boundaries
http://www.omg.org/spec/BPMN/2.0/

APPENDIX A

CONCEPTUAL MODELS

This Appendix contains conceptual models that were created from the developed notation. These
models show some of the ways that the notation may be used to visualize mobile systems, or
parts of them.

A.1 Carbon Track and Trace models

This section contains conceptual models that capture some aspects of the information systems
used in the Carbon Track and Trace project[2][3]. Chapter 4 discussed the basic architecture
of the CTT project, while Figure 4.4 showed its architecture and the flow of data between its
components. Figure A.1 is a model that attempts to represent this architecture with the modeling
notation as well as additional information that could be useful to represent (the specific values
used in this model are not accurate to reality, but rather shows an example realization of the
architecture within the notation). This section will divide Figure A.1 into a number of smaller
parts and explain them.

Sensing data is observed at two locations in the model, shown in Figure A.2a and A.2b. Both
locations have a sensing unit that sends the sensor data to a gateway. Both sensing units have
some sensors inside them, and the unit in Figure A.2b also has a visual BPMN process in it
which shows that the unit recalculates its sending interval based on feedback that it receives. The
BPMN part of this figure is shown in a close-up in Figure A.3. All the data from the sensors is
aggregated at a research lab and the data is stored on a cloud storage. Figure A.4 shows the data
being stored at the research lab, and how it is composed of different kinds of data such as traffic,
air quality and emission data. This is the stored data which is used for further analysis. This data
is also used by the Dataport system which creates network visualization from the data.

59

Figure A.1: Conceptual model of the basic CTT architecture.

60

(a) A sensing unit (b) Another sensing unit with a BPMN process

Figure A.2: The two sensing units and the gateway used in the model

Figure A.3: Closeup of the BPMN process in Figure A.2b

61

Figure A.4: Data being stored in cloud storage

Figure A.5 shows a closeup of the BPMN diagram in Figure A.1. The top process is the
data extraction where the different kinds of data in cloud storage is fetched and compiled. The
compiled data is then used in the analytics process where the data is analyzed, then saved back
to the database and used for feedback to the sensing units. Figure A.1 shows the data going from
this process to the sensing unit in Figure A.2b. The final analyzed data is also used to create
visualizations of the data, which is shown in Figure A.6.

The different visualizations in Figure A.6 are useful to different end users. One end user
of interest is the cCR registry of GHG emissions. The ClearPath Suite in Figure A.6 is used to
report the data to the external cCR registry, which is shown in Figure A.7. As seen in this Figure,
the cCR registry and the external data used in the analysis process have been put outside of the
research lab location, because they are external factors outside of this location.

62

Figure A.5: BPMN process of extracting and analyzing sensor data

63

Figure A.6: Analyzed data being applied in visualizations

Figure A.7: External data

64

APPENDIX B

INSTALLATION INSTRUCTIONS

This section details how to access the metamodel described in the thesis, using the Metis tool.

Needed files:

• Metis client (version 5.2.2 used for creating the notation)

• The metamodel itself (folder named Xml.master)

Steps:

1. Copy the http folder from the metamodel into Metis http folder (default location: C:\Program
Files (x86)\Metis\Metis5.2\xml\http)

2. Copy the startup folder from the metamodel into Metis startup folder (default location:
C:\Program Files (x86)\Metis\Metis5.2\xml\startup)

3. Launch Metis in local license mode. the "mobile project modeling" metamodel should
be automatically loaded in the "metamodel" tab. This metamodel contains all the objects
used for modeling with the notation.

• If the notation does not load automatically, it can be opened manually from File ->

Open within Metis. The metamodels can be found in the "metamodels" folder within
xml.master.

4. To create models with the mobile notation, select File -> New -> Model, and select the
Project Blank Mobile template. This will create an empty model with all the mobile
notation constructs available.

5. For editing the notation, open the metamodel named "mobile". This metamodel contains
all the objects from the "mobile project modeling" metamodel, as well as all the typeviews
used by these objects.

65

	Abstract
	Acknowledgements
	Introduction
	Problem description
	Structure of thesis

	Related work
	Existing projects
	Existing notations
	Data flow diagrams
	BPMN
	Extensions

	Research method
	Research goals
	Research approach

	Carbon Track and Trace
	Implementation of notation
	Creating a unified notation
	New constructs
	Imported constructs from BPMN

	Other constructs

	Evaluation
	Empirical evaluation
	SEQUAL
	Moody
	Constraints and deficiencies
	BPMN constraints
	Mobile notation constraints

	Discussion
	Conclusion and further work
	Bibliography
	Conceptual models
	Carbon Track and Trace models

	Installation instructions

