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Abstract: This theoretical paper presents a methodology for instructional design in mathematics. It 
is a theoretical analysis of a proposed model for instructional design, where tasks are embedded in 
situations that preserve meaning with respect to particular pieces of mathematical knowledge. The 
model is applicable when there is an intention of teaching someone some particular mathematical 
knowledge. It is structured into four phases: epistemological analysis; development of an 
epistemological model; implementation; and, institutionalisation. The methodology is rooted in the 
theory of didactical situations in mathematics, and is built on two epistemological principles: the 
target knowledge should be an optimal solution to a task embedded in a situation; and, the milieu of 
the situation should provide feedback to students, whether their responses are adequate with respect 
to the target knowledge. These principles place the generic and epistemic student at the centre of 
instructional design in such a way that the focal point is on the student’s opportunities to develop 
the knowledge aimed at—from an epistemological viewpoint. My research goal is to develop a 
model for instructional design where students will need some particular knowledge to solve a task 
and where the solution process is managed by features of the milieu with which the students 
interact. Through the concept of an epistemological model, the methodology enables a profound 
understanding of one of the phases of didactical engineering: conception and a priori analysis. 
Empirical data are provided to support the viability of the proposed model. The data are from an 
empirical investigation of student teachers’ engagement with a situation where the target knowledge 
is a theorem in elementary number theory.  

Keywords: mathematical task, methodology, epistemological model, adidactical situation, milieu, 
institutionalisation.   

 
1 Introduction 
The centrality of tasks as instruments in mathematics classroom instruction is reported in the 
TIMSS 1999 Video Study: In the eighth-grade classrooms that were investigated (in Australia, the 
Czech Republic, Hong Kong SAR, Japan, the Netherlands, Switzerland, and the United States), at 
least 80 percent of lesson time, on average, was spent on solving mathematical tasks (Hiebert et al. 
2003). Shimizu et al. (2010) outline how the classroom performance of a task is a unique synthesis 
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of task, teacher, students and situation. I aim to provide insight into such syntheses by the 
methodology proposed in this paper. The methodology deals with how tasks can be designed from a 
student perspective, focusing on students’ perceptions of purpose and utility of the mathematical 
knowledge at stake.  

Using the theory of didactical situations in mathematics, TDS (Brousseau 1997) as a framework, I 
present a theoretical analysis of a model for instructional design in mathematics (i.e., a 
methodology), where the generic and epistemic student is the focal point of design of situations. 
The proposed methodology is rooted in the methodological principle of TDS: the idea that a piece 
of mathematical knowledge is represented by a situation that involves a task (or tasks) that can be 
solved in an optimal manner using this knowledge. Brousseau (1997) refers to such a situation as a 
fundamental situation, and postulates that each item of knowledge can be characterised by some 
fundamental situation that preserves meaning. 

TDS is a holistic theory that encompasses a research methodology, didactical engineering. 
According to Artigue (2015), didactical engineering as a research methodology is structured into 
four phases: preliminary analyses; conception and a priori analysis; realization, observation and 
data collection; and, a posteriori analysis and validation. Of these phases, the first two have to do 
with design of situations, and the last two have to do with implementation of, and carrying out 
research into, situations. The methodology for instructional design proposed in this paper is about 
design and implementation of mathematics instruction. It theorizes the phase of conception and a 
priori analysis (of didactical engineering) through the construct of an epistemological model. The 
research goal is to develop a model for instructional design in which students perceive tasks and the 
mathematical knowledge necessary to solve them, as meaningful. 

Ainley and Margolinas (2015), in their advocacy for students’ perspectives in task design, propose 
‘robustness’ as a topic for future research on mathematical tasks: “The robustness of tasks might be 
intended as resistant to changes from the teacher but also understandable and useful for all the 
students” (p. 137). This feature is related to Ainley et al.’s (2006) constructs of purpose and utility 
in their framework for pedagogic task design. ‘Purpose’ refers to the student’s perceptions, rather 
than to relevance of the mathematics at stake outside the classroom context. A purposeful task is 
defined as one that is meaningful for the student in terms of an actual or virtual outcome, or in terms 
of the solution of a stimulating problem (Ainley et al. 2006). ‘Utility’ of mathematical ideas refers 
to the feature that the learning of mathematics involves the construction of meaning for the ways in 
which those mathematical ideas are useful (Ainley et al., 2006). Purpose and utility are 
interconnected in the way that recognition of the utility of mathematical ideas can best be developed 
within purposeful tasks.   

The methodology presented in this paper provides an analysis of how a student perspective on 
instructional design in mathematics is attended to by using TDS as a theoretical framework. The 
methodology is based on two principles that represent the student perspective: first, the target 
knowledge should be necessary or in some sense optimal to solve a task embedded in a situation; 
second, the material and intellectual reality on which the students act when solving the task (i.e., the 
milieu) should provide feedback to them, whether their responses are adequate with respect to the 
target knowledge. Purpose and utility are substantiated through the first principle, which means that 
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the students will need the target knowledge to succeed—this provides a rationale for and meaning 
of the knowledge they develop. The second principle means that the students’ engagement in the 
situation should be managed by features of the milieu rather than by teacher intervention. It can be 
noted that the purpose of engaging in a situation, as perceived by the student, likely is not the target 
knowledge, but to solve the task defined by the situation. Utility of the underlying mathematical 
idea—what it can be used for—is experienced by the students through solution of the task defined 
by the situation, and further reinforced by the teacher during decontextualisation of the situated 
knowledge (i.e., institutionalisation).  

The methodology will be presented after TDS has been introduced in the next section.  

 
2 The theory of didactical situations in mathematics 
The theory of didactical situations in mathematics, TDS, provides a systemic framework for 
investigating teaching and learning processes and for supporting didactical design in mathematics, 
where the particularity of the knowledge taught plays a significant role. In TDS, knowledge is 
defined as solutions to problems, a principle influenced by the French philosopher Gaston 
Bachelard (1938/2001, p. 25): “For a scientific mind, all knowledge is an answer to a question. If 
there has been no question, there can be no scientific knowledge.” TDS’ methodology is therefore 
based on creating a situation with a task to be solved, where the knowledge aimed at is necessary or 
in some sense optimal to solve the given task. In order to explain this principle further, I need to 
explain some concepts of TDS first.2  

An adidactical situation is a situation in which the student takes a mathematical task as his own and 
tries to solve it without the teacher’s guidance and without didactical reasoning (i.e., not trying to 
interpret the teacher’s intention with it). In addition to responsibility for handling the evolution of 
an adidactical situation, the teacher has two main roles in the broader didactical situation: One is 
devolution of an adidactical situation to the students. This means to introduce the task to be solved, 
inform about the rules for operating in the adidactical situation, and make the students accept the 
responsibility for solving the task. The other main role is institutionalisation of the knowledge 
developed by the students in the adidactical situation. This means to transform the responses 
produced by the students into scholarly knowledge in conventional notation, so that it can be reused 
in situations other than the one arranged by the teacher.  

The didactical contract refers to the phenomenon that the interaction between the teacher and 
students in a didactical situation is regulated by rules related to the knowledge at stake. These rules 
form a set of reciprocal obligations. The didactical contract deals with relationships between the 
adidactical and didactical dimensions of a situation, and it is the teacher’s role to organise them 
(Artigue et al. 2014). This takes place in devolution, where the teacher (implicitly) negotiates a 
contract that involves a temporary transfer of responsibility for the knowledge at stake, from the 
teacher to the students.  

                                                
2 The explication is based on the writings of Brousseau (1997), in cases where no other sources are listed. 
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The milieu represents the elements of the material and intellectual reality on which the students act 
when solving a task—these elements are conditions for the students’ actions and reasoning 
(Laborde and Perrin-Glorian 2005). The milieu may comprise: the task to be solved; material or 
symbolic tools provided (artefacts, informative texts, data, etc.); students’ prior knowledge; other 
students; and arrangement of the classroom and rules for operating in the situation (determinative of 
who is supposed to interact with whom). The milieu of an adidactical situation is called an 
adidactical milieu. An appropriate adidactical milieu provides feedback to the students, whether 
their responses are adequate with respect to the knowledge at stake. This involves that the milieu is 
designed with conditions that are incentives for the student to choose one “model” or strategy to 
solve the task rather than another, where the chosen one corresponds to the target knowledge. In this 
way, the adidactical milieu takes care of the student perspective in design of situations—the milieu 
is organized so as to make the student interact with it in a way that corresponds to using the target 
knowledge.  

After devolution, four situations follow where the role of the teacher and the status of knowledge 
change: Situations of action, formulation, and validation are (intentionally) adidactical, whereas the 
situation of institutionalisation is didactical. The adidactical situations are designed with milieus 
that are supposed to give feedback to the students, as explained above. Particulars of how milieus 
are designed are explained in Section 3.2. The situation of action is where the students engage with 
the given task on the basis of its inner logic, without the teacher’s intervention. The students 
construct a representation of the situation that serves as a “model” that guides them in their 
decisions. The knowledge represented by this implicit model has the status of a protomathematical 
notion (Chevallard 1990). The model is an example of relationships between certain objects, or 
rules that the students have perceived as relevant in the situation. The situation of formulation is 
where the students’ formulations are useful in order to act indirectly on the material milieu—that is, 
to formulate a strategy (i.e., an explicit model) enabling somebody else to operate on the milieu. In 
the situation of formulation the teacher’s role is to make different formulations “visible” in the 
classroom. The status of the knowledge is that of paramathematical notions (Brousseau 1997, p. 
59), where an implicit model from the situation of action is made explicit. The situation of 
validation is where the students try to explain a phenomenon or verify a conjecture. In the situation 
of validation the teacher’s role is to act as a chair of a scientific debate, and (ideally) intervene only 
to structure the debate and try to make the students express themselves in more precise 
mathematical language. Knowledge in the situation of validation appears as mathematical notions. 
The situation of institutionalisation is where the teacher connects the knowledge built by the 
students with forms of knowledge that are socially shared, culturally embedded and institutionally 
legitimised (Artigue et al. 2014).  

The development of knowledge towards gradually more explicit and formal forms, as described 
above, is related to the way knowledge and learning is understood in TDS. Students’ learning is 
seen as a combination of processes of adaptation and acculturation (Artigue et al. 2014). 
Adaptation is explained in the way that “[t]he student learns by adapting herself to a milieu which 
generates contradictions, difficulties and disequilibria, rather as human society does. This 
knowledge, the result of the students’ adaptation, manifests itself by new responses which provide 
evidence for learning.” (Brousseau 1997, p. 30). But this adaptation needs to be combined with 
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acculturation, which links students’ constructions to scholarly and decontextualised forms of 
knowledge. For such a change in the status of knowledge to take place, the teacher needs to carry 
out didactic interventions. The two processes are explained by Artigue et al. (2014) this way: 
independent adaptation is explained through the concepts of adidactical situation and milieu; 
acculturation is explained through the concepts of didactical situation and didactical contract; and 
the relationships between adaptation and acculturation are explained through the concepts of 
devolution and institutionalisation. In the next section, I use the presented framework in the analysis 
of a model for instructional design in mathematics.  

 
3 A model for instructional design in mathematics 
A model for instructional design is a theoretical model that gives a simplified representation of the 
reality of instructional design. It focuses on essential features of that reality, and leaves out other 
features. The theoretical model for instructional design presented here is centred on the construct of 
an epistemological model of some piece of knowledge. It is essential to explain the different 
meanings of ‘model’ used here; the distinction can be made between a ‘model for’ and a ‘model of’. 
The theoretical model for instructional design is a hypothetical description of the system of 
elements to be used as guidance in instructional design, where these elements, and the relationships 
between them, are represented and explained by concepts and principles from TDS. An 
epistemological model of a piece of knowledge is one of the elements contained in the model for 
instructional design. It is a hypothetical description of three components that substantiate the 
knowledge at stake and an image of its learning: a model of the target knowledge (possibly an 
iconic representation); a situation that preserves meaning (with respect to the target knowledge); 
and, milieus of situations of action, formulation and validation (according to an image of a generic 
and epistemic student’s learning of the target knowledge).    

The model for instructional design in mathematics presented here contains four phases: 
epistemological analysis; development of an epistemological model; implementation; and, 
institutionalisation. The first two phases are about design of situations that preserve meaning for 
particular pieces of mathematical knowledge; the last two are about realization of these situations. 
Realization is part of the model for instructional design because this is where knowledge can 
progress towards increasingly explicit and mathematical forms. The four phases of the proposed 
model correspond to phases of didactical engineering (Artigue 2015): epistemological analysis 
corresponds to ‘preliminary analyses’;3 development of an epistemological model corresponds to 
‘conception and a priori analysis’; and implementation followed by institutionalisation corresponds 
to ‘realization’. The methodology for instructional design proposed here theorizes the phase of 
conception and a priori analysis, the aim of which is to enable a profound understanding of the 
construct and design of a situation that preserves meaning with respect to some particular 
knowledge. This is done through the analysis of an epistemological model of the target knowledge. 

                                                
3 Preliminary analyses (in didactical engineering as a research methodology) consist of a third dimension: an 
institutional analysis, the purpose of which is to identify the characteristics of the context in which the didactical 
engineering takes place, in terms of the conditions and constraints it faces. 
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The model for instructional design is illustrated by a flow chart in Figure 1. Its viability is supported 
by empirical data in Section 4. I now turn to a presentation of the four phases of the proposed 
model.  

3.1 Epistemological analysis 

The first phase involves an epistemological analysis of the knowledge at stake. It consists of two 
components: an analysis of the knowledge itself, and a didactical analysis. These components are 
informed by two of the three dimensions of preliminary analyses of didactical engineering 
(epistemological analysis, institutional analysis, and didactical analysis), as explained by Artigue 
(2015). 

An analysis of the knowledge itself aims to identify possible epistemological obstacles, and it 
supports the search for fundamental situations that represents the knowledge. Drawing on the work 
of Bosch et al. (2006), central questions here are as follows: Where does this knowledge come 
from? What place does it have in school mathematics? Why should the students learn it? What is it 
for? What questions motivated its genesis? How is it related to other mathematical concepts or 
topics? How can its validity be justified? What conditions are conducive to students’ use of the 
target knowledge? That is, what conditions must be fulfilled for a situation to implement the 
knowledge it defines? Answers to these questions provide information about what task(s) should be 
solved, and under which conditions.  

A didactical analysis aims at surveying what published research can provide regarding the teaching 
and learning of the mathematics at stake—knowledge likely to guide the design. The outcome of the 
epistemological analysis informs the next phase, the development of an epistemological model. 

3.2 Development of an epistemological model 

The second phase involves development of an epistemological model of the knowledge at stake, 
based on the outcome of the epistemological analysis. In this paper, an epistemological model is a 
construct that consists of three components: first, a model of the target knowledge—possibly an 
iconic representation; second, a situation that preserves meaning—involving a task that can be 
solved in an optimal manner using the target knowledge; and, third, milieus of situations of action, 
formulation and validation—designed so as to make students’ knowledge progress towards 
gradually more explicit and mathematical forms, based on an image of students’ adaptations to the 
milieus. The second and third component together can be considered a model of the generic and 
epistemic student’s intended learning.  

An epistemological model focuses on a generic and epistemic student’s opportunities to learn the 
target knowledge, based on an epistemological analysis. It is designed so as to make students use 
the target knowledge through adaptation to a milieu.4 The fact that different types of interaction 
with the milieu and different forms of knowledge are justified a priori (for epistemological reasons) 
allows the teacher to identify the properties of the milieu that are necessary in order to provoke the 
interactions and knowledge aimed at. Questions such as the following, “Why would the student do 

                                                
4 The singular ‘milieu’ is used as a generic form to refer to milieus of action, formulation and validation. 
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or say this rather than that?”, “What must happen if the student does or does not do it?” are suitable 
for imposing important conditions on the milieu.  

A model of students’ intended learning is developed according to the conditions that must be 
fulfilled for a situation to implement the knowledge it defines, as identified through the 
epistemological analysis. The point is to design milieus of situations of action, formulation and 
validation with conditions so that the responses produced by the students in the successive 
situations will become gradually more explicit and mathematical (i.e., independent adaptation), and 
ultimately can be institutionalised to become the scholarly knowledge aimed at by the teacher (i.e., 
acculturation). The milieu of the situation of action is the material milieu, which is derived from the 
model of the target knowledge. The material milieu is something concrete (or iconic) for the 
students to act on. It can be manipulatives, diagrams, etc. An example of a material milieu would be 
the first few iconic elements (i.e., geometrical configurations) of a shape pattern, where the task 
given to the students might be to find the number of components (e.g., dots) of the general element 
of the pattern. The milieu of the situation of formulation is the outcome of the situation of action—
that is, an implicit strategy to solve the task (cf. Section 2). The way of making the knowledge (the 
implicit strategy) more formal, is to make the students act indirectly on the material milieu. That is, 
to create a need for them to explain to someone else how to act on the material milieu. In the 
example with the shape pattern, it would involve explaining one’s strategy in order to make 
someone else draw the next element of the pattern (e.g., by explaining how to add components to 
get the next element). The milieu of the situation of validation is the outcome of the situation of 
formulation—that is, an explicit strategy to solve the task. The way of making the knowledge (the 
explicit strategy) more formal is to use mathematical notions to explain how the strategy will solve 
the task. In the example with the shape pattern, it would involve verifying that the explicit strategy 
applies to all elements (e.g., providing a generic example that shows how the explicit strategy will 
keep the structure of the pattern).   

The epistemological model is the basis for the teacher’s devolution of a situation (including a task) 
aiming at students’ adidactical interaction with its milieu. This is the next phase, implementation of 
an epistemological model. 

3.3 Implementation 

The third phase involves implementation in the classroom. This means devolution of a 
(fundamental) situation based on the epistemological model, followed by students’ interaction with 
the milieus of situations of action, formulation and validation. The student perspective on the 
instructional design will facilitate the transfer of responsibility from the teacher to the students for 
solving the task (i.e., the devolution). This facilitation is explained by the following points: first, the 
purpose of the task involves that the students will need the target knowledge to succeed in the 
situation; second, utility of the underlying mathematical idea will be constructed by the students as 
their experience (in the fundamental situation) of what this knowledge is for. 

Students’ learning in this phase is understood as independent adaptation through the concepts of 
adidactical situation and milieu. The results are responses (forms of knowledge) that gradually 
develop towards more explicit and mathematical forms, as described in the previous section.  
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3.4. Institutionalisation 

The fourth phase involves institutionalisation of the solution to the task into scholarly and 
decontextualised forms of knowledge. This is a didactical phase informed by the epistemological 
analysis, where the teacher compares the contextualised knowledge (students’ solutions) with the 
scholarly knowledge aimed at by the institution. It involves informing students about formal 
mathematical terminology, definitions and results that are important in order for the contextualised 
knowledge to gain status as cultural knowledge that can be used in other situations. Students’ 
learning in this phase is understood as acculturation, which enables them to know the place, 
importance, and future of the mathematical knowledge reached.  

In didactical engineering, the phase of realization involves both implementation and 
institutionalisation. In the model for instructional design proposed here, I have chosen to structure 
them in two phases. The reason for this is that it makes the distinction between adaptation and 
acculturation clearer—that is, the distinction between adidactical and didactical phases. Figure 1 
illustrates the model for instructional design. The dotted curve signifies that the epistemological 
analysis informs the institutionalisation of the target knowledge. The model gives an overview of 
the different elements involved in design and realization of particular pieces of mathematical 
knowledge. Further, it displays the teacher’s roles in this enterprise: the process of didactical 
transposition (Chevallard 1989) transforms the epistemological analysis into an epistemological 
model; the process of devolution transforms an epistemological model into a task embedded in a 
situation; and, the process of institutionalisation transforms the solution to the task into scholarly 
and decontextualised forms of knowledge. 

In the next section, I provide empirical data to support the viability of the proposed model. The data 
are from an investigation of student teachers’ engagement with a situation, where the target 
knowledge is a theorem in elementary number theory.  
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Figure 1. A model for instructional design in mathematics 

 
4 Viability of the theoretical model supported by empirical data  
In this section, I provide data from an empirical investigation to demonstrate how the model for 
instructional design is eligible to integrate a student perspective in the design and implementation of 
a task embedded in a situation. The target knowledge is a theorem expressing that the sum of the 
first n odd numbers is equal to the square of n. The investigation was carried out with 20 student 
teachers (henceforth ‘students’) within a mathematics education course that was part of two 
different Master’s programmes in mathematics education at a Norwegian university college—one 
geared towards Grades 1-7, the other towards Grades 5-10. It can be noted that in Norway it is not 
required that students enrolled in such teacher education programmes have taken advanced 
mathematics courses at upper secondary school. Mathematics courses in such programmes therefore 
contain topics from both mathematics and didactics of mathematics. For the situation analysed here, 
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it is relevant that the students were not familiar with the theorem aimed at. Hence, it was a 
didactical situation intended to teach them this theorem, so the data provided here should be 
comparable to data collected in school. However, because the observed students were student 
teachers, institutionalisation was extended by a meta-level, where the designed situation (and its 
realization) was taken as an object of discussion. This aspect is explained in Section 4.3. 

I designed the instruction and taught the observed lesson (90 minutes) to test the viability of the 
theoretical model proposed in this paper. It is beyond the scope of this paper to present a complete 
report from the empirical investigation; only parts of the data and analysis of them are presented 
here as illustrations. The data of the investigation are as follows: an epistemological analysis of the 
target knowledge; an epistemological model of the target knowledge; classroom observations of 
implementation and institutionalisation; and, students’ written solutions. The classroom 
observations were video recorded by three cameras on tripods. The first camera recorded the 
activity of John and Claire, the second camera recorded the activity of Tina and Anne, and the third 
camera was directed towards the blackboard to record activity in devolution, validation and 
institutionalisation. The names are pseudonyms. In the following sections, I discuss glimpses of the 
data.  

4.1 Epistemological analysis of the target knowledge 

The chosen piece of knowledge is the general numerical statement expressing that the sum of the 
first n odd numbers is equivalent to the square of n, possibly represented in algebraic notation as 

(2𝑖 − 1)'
()* = 𝑛-, or 1 + 3 + 5 +⋯+ 2𝑛 − 1 = 𝑛-. It is related to polygonal numbers—a type 

of figurate numbers. A polygonal number is a generalisation of triangular numbers, square numbers, 
pentagonal numbers, etc., to an n-gon for n an arbitrary natural number (Weisstein 2009, Vol. 3).  

According to Reed (1972), humans have a natural inclination to observe patterns, and to impose 
patterns on different experiences. Steen (1988) claims that mathematics is the science of patterns. 
Mathematicians seek patterns in different areas, including numbers (arithmetic and number theory), 
possibilities (probability theory), reasoning (logic), form (geometry), motion (calculus), and 
position (topology). The equivalence statement (2𝑖 − 1)'

()* = 𝑛- is a generalisation of a pattern in 
elementary number theory. Its basis is empirical and consists of a pattern of arithmetic 
equivalences: 1 = 1-, 1 + 3 = 2-, 1 + 3 + 5 = 3-, and so on. This pattern is illustrated by a 
sequence of geometrical configurations (a shape pattern), the first four elements of which are 
illustrated in Figure 2. The same figure also illustrates the recursive relationships: 2- − 1- = 2 ∙
2 − 1; 	3- − 2- = 2 ∙ 3 − 1;	4- − 3- = 2 ∙ 4 − 1; and so on.  

 
Figure 2. The first four members of a sequence of square numbers represented iconically as sums of 

odd numbers  
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The mathematical object at stake is a mathematical statement (theorem) of equivalence of the 
square of n and the sum of the first n odd numbers, (2𝑖 − 1)'

()* = 𝑛-. The truth of the statement 
can be established geometrically or algebraically. Geometrically, it can be done by a representation-
based proof (a generic example)—e.g., the fourth configuration in Figure 2. This diagram (the 
fourth configuration) satisfies Schifter’s (2009) three criteria of validity of a proof by 
representation: (a) the meaning of the operation involved is represented in the diagram (the sum of 
the first four odd numbers is equivalent to the fourth square number); (b) this diagram is accessible 
for a class of instances (every square can be configured by adding odd numbers); and, (c) the 
conclusion of the claim follows from the structure of the diagram. Algebraically, the truth of the 
statement can be established in different ways (those described here do not constitute an exhaustive 
list): One way is by a direct proof, using the Gaussian method—that is, adding the first and the last 
term, then the second and the last but one term, and so on. Another way to prove the statement is to 
add the terms twice, one series with terms in reverse order, which yields twice the sum sought. Yet 
another proof involves using the property (2𝑖 − 1)'

()* = 2 𝑖	– 1'
()* .'

()*  Or, the statement can 
be proved by mathematical induction.  

A purpose of engagement with shape patterns in school mathematics is to provide physical or iconic 
reference contexts for generalisation and algebraic thinking. Generalisation of shape patterns and 
numerical sequences is part of the elementary and secondary curriculum in many countries, for 
example England (Department for Education 2014), Canada (Ontario Ministry of Education and 
Training 2005), Norway (Directorate for Education and Training 2013), and it is included in 
curriculum guidelines in the United States (National Council of Teachers of Mathematics 2000). 
Several studies have documented students’ difficulties in establishing algebraic formulae from 
patterns and tables (e.g., Barbosa and Vale 2015; MacGregor and Stacey 1993; Orton and Orton 
1996; Warren et al. 2006). Further, research indicates that it is not generalisation tasks in 
themselves that are difficult; the problems that students encounter are rather due to the way tasks 
are designed and limitations of the teaching approaches employed (Moss and Beatty 2006; Noss et 
al. 1997). These findings motivated me to conduct a study of conditions that constitute obstacles to 
students’ establishment of algebraic generalisations of patterns. Results from this study are reported 
in my dissertation (Strømskag Måsøval 2011): the tasks with which the students engaged were not 
sharply focused on the target knowledge; and, the milieus did not provide appropriate feedback 
whether students’ responses were adequate with regard to the target knowledge (see also Strømskag 
Måsøval 2013). These phenomena encouraged me to explore different ways of designing tasks and 
milieus, the result of which is reported here.   

Based on the above epistemological analysis, I developed an epistemological model of the 
knowledge at stake, the result of which is presented in the next section. 

4.2 An epistemological model of the target knowledge  

As explained in Section 3, an epistemological model of a piece of knowledge consists of a model of 
the knowledge and a model of the students’ intended learning, where the latter is made of two 
parts—a situation that preserves meaning, and milieus of action, formulation and validation.  
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4.2.1  A model of the theorem (2𝑖-1)'
()* = 𝑛- 

A model of the target knowledge is created using a dissection of a square into L-forms consisting of 
consecutive odd numbers of unit squares (where 1 is represented by one unit square, hence a 
degenerated L). A generic example is given in Figure 3, illustrating that (2𝑖 − 1):

()* = 4-.  

 
Figure 3. A model of the target knowledge 

It is made of a dissection of the fourth square into the first four odd numbers. This model is not to 
be shown to the students. It is a tool for developing a model of the students’ intended learning, of 
which I give an account below. 

4.2.2  A situation that preserves meaning of the target knowledge 

I invented a situation based on an imaginary company called TILEL, which sells a special kind of 
tile formations that can be used to cover squares. The tile formations have shapes as L-forms, and 
consist of an odd number of unit squares. The idea of this situation is derived from the model of the 
target knowledge, shown in Figure 3.  

The task has two main parts:  

- Find a method for building a square of side length a natural number, using L-forms from 
TILEL.   

- Explain why the method will work for any natural number. 

It can be noted that the theorem at stake was not known to the students involved in the 
investigation. The intention was that the students’ methods should be such that when they argued 
that their method applies to any natural number, they would have to make use of the fact that the L-
forms represent odd numbers. This means that the target knowledge—the statement that n squared 
is equivalent to the sum of the first n odd numbers—should be an optimal solution to the task. For 
this to happen I designed milieus to which the generic and epistemic student would adapt and 
thereby develop increasingly formal responses consistent with the target knowledge. The designed 
milieus provide a student perspective to the TILEL situation in the way the milieus afford purpose 
for the task, and utility of the intended theorem, to the students.  

4.2.3  The milieus 

Here I explain how the milieus are formed to make the knowledge needed in the adidactical 
situations progress towards gradually more explicit and formal forms.   

The milieu of action    

The milieu of action is the material milieu on which the students are supposed to operate. I created 
a material milieu in terms of ten paper cut-outs, consisting of 1, 3, 5,⋯ , 19	unit squares that 
represent the first ten odd numbers, as illustrated in Figure 4. 
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Figure 4. Material milieu for the intended theorem (the first ten L-forms) 

The task in the situation of action is to find a method of building a square of side length a natural 
number up to ten, using L-forms of different sizes. The L-forms should be available for the students 
to access as needed. The adidactical features of the milieu (common for action, formulation, and 
validation) are the following:   

- The material milieu made of the L-forms does provide feedback: it is visible for the students 
whether or not they succeed in building a square, and whether or not the square is of the 
intended size.  

- The obligation to use L-forms of different sizes is to ensure that the students use consecutive 
odd number—that is, that they engage with the knowledge at stake. This obligation is part of the 
didactical contract. 

- There is a principle to be followed: it is only the size of the resulting square that matters, which 
means that the students need not distinguish between different configurations of L-forms. This 
is to ensure that the students focus on the intended knowledge (and not on, say, combinatorics). 
This principle is part of the didactical contract. Two (of many possible) configurations of a 
square of size 4 are illustrated in Figures 5 and 6—these are not to be presented to the students.   

 

 
Figure 5. Example 1 of a configuration of L-forms to make a 4 x 4 square 

 

 
Figure 6. Example 2 of a configuration of L-forms to make a 4 x 4 square
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The purpose of the situation of action is to create an implicit model of the knowledge at stake, 
through direct operation on the material milieu. After having chosen L-forms of different sizes, the 
students will try to arrange them into a square. It is expected that they will find out that they will 
have to use consecutive L-forms from 1 and upwards (not skipping any). Further, they will need to 
solve the rank problem—that is, observing that for a square of a particular size, they will need the 
L-forms up to and including the one with the same rank as the chosen square.  

The milieu of formulation 

The purpose of the situation of formulation is to create a need for an explicit model of the solution 
to the task (see Section 3.2). Such a need is created through students’ indirect operation on the 
material milieu. This is done through the task of requiring a student (from one pair) to direct another 
student (from a second pair) to build a square of a certain size using Ls. The milieu of formulation 
is the outcome of the situation of action—this is, an implicit model of the solution to the task. The 
point here is that the one who is following the directions needs to operate directly on the L-forms, 
whereas the one who is directing does not. Further, the task for both parts is to write down the 
method in the general case—how to build an 𝑛	𝑥	𝑛 square using L-forms (for n a natural number). 
This may create a need for labelling the L-forms, possibly by 𝐿*, 𝐿-, 𝐿>,⋯ , 𝐿*?, and in the general 
case, formulating that to build a square of a particular size, say n, one will need all the L-forms from 
𝐿* up to and including 𝐿'. The solution at this stage may be written as	𝐿* + 𝐿- + 𝐿> + ⋯+ 𝐿' =
𝑛-. 

The milieu of validation 

The purpose of the situation of validation is to create a need for a further change in the status of the 
knowledge—that is, to turn the solution to the task into mathematical form. Such a need is created 
through the task of making one pair of students explain to another pair why their method (described 
in the situation of formulation) will work for any natural number.  So, why do we get a square when 
adding L-forms from 1 and upwards? Here it is necessary to look at, and argue on the basis of, the 
nature of the Ls. This was crucial in all the proofs of the theorem, (2𝑖 − 1)'

()* = 𝑛-, which were 
presented in Section 4.1. 

In the next section, I present a brief account of how the epistemological model described above was 
realized in the classroom. 

4.3 Realization in the classroom  

4.3.1  Implementation 

Here I present glimpses from realization in the classroom of the epistemological model described in 
Section 4.2. I will refer to the L-forms as 𝐿*,⋯ , 𝐿*?, where 𝐿@ consists of 2𝑘 − 1 unit squares, even 
if the students may have used different denotations. The material milieu (piles of different L-forms) 
was placed on a table at the back of the classroom. In devolution, I presented the problem situation, 
the material milieu, and the rules for operating on the milieu. 

Under each of the adidactical situations, I give a brief, general description of the students’ activity, 
and present excerpts of the transcript of John, Claire, Tina and Anne’s utterances. These excerpts 
illustrate how the knowledge appears (its status), and how it evolves towards gradually more 
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explicit and formal forms. To show the variety of reasoning in the situation of validation, I use the 
collected material (students’ written solutions) to present Selma and Lucas’ justification of their 
method (theorem).  

Action realized 

The students in each pair decided on the size of a square and went to the table at the back of the 
classroom to get a selection of L-forms. Further, they experimented (some needed supplements of 
L-forms) and found a method for precisely covering the square they set out to build.  

John and Claire have collected one piece of each L-form (𝐿* up to  𝐿*?). 

John:  If we start with the L that has 5 squares on the side, we can build a square of size 5. We just 
place them inside each other. [Claire arranges the first five L-forms similarly to Figure 5]. 

Claire: Is this the only way to arrange them? If we start with the first, the one… We can place the 
second and third like this [arranges the first three L-forms similarly to Figure 6].  

John: But this is easier [refers to his own method].  

Anne and Tina have also collected one piece of each L-form (𝐿* up to  𝐿*?). 

Tina:  We just start with 1 and take the next L, place it to the right, take the next and do the same. 
Each time we get a bigger square [arranges the L-forms similarly to Figure 5]. 

Both groups’ utterances in the situation of action show that the knowledge appears as implicit 
models. That is, it appears as manipulations of and pointing at L-forms and squares. The status of 
the knowledge is that of protomathematical notions, characterized by students’ use of informal 
language to explain their methods. 

Formulation realized 

I introduced the situation of formulation by saying that the task here was to explain to somebody 
else how to solve the task. Each pair should write a recipe that would enable another student to 
build a square of an arbitrary integer size, imagining that they had L-forms of all ranks.  

John:  You start with the L that has the same number of [unit] squares on the side as [the size of] 
the square you have chosen, and continue with all L-forms down to 1. That’s the recipe. 

Claire: But we must tell how to arrange them. The recipe will be [writes]: 

“Start with the L that has the same size as the square you want. Place it like an L with the 
opening to the right. Then take all the smaller L-forms down to 1 and place them inside each 
other in descending order”. 

Claire then symbolized the relationship for a 10	𝑥	10 square: 𝐿1 + 𝐿2 +··· +𝐿10 = 10-. 

Anne and Tina have in front of them a 10	𝑥	10 square, arranged similarly to the one in Figure 5.  

Tina:  We can call them 𝑂* up to 𝑂*?. Because they are odd numbers.  

Anne: OK. The recipe is that 𝑂* plus 𝑂- plus 𝑂> up to 𝑂*? is equal to ten squared. [Writes  
                𝑂* + 𝑂- + 𝑂> +··· +𝑂*? = 10-]. 

Tina:  But this is just for a ten by ten square. It should be for any square. A recipe… the  
 square has side x. 
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Anne: Then you take all L-forms up to x.  

Tina: Yes. 𝑂* up to 𝑂E. This is equal to x squared. [Writes 𝑂* + 𝑂- + ⋯+ 𝑂E = 𝑥-]. 

Anne: Yes, the recipe is that you choose the side of a square and then you’ll have to get all the L-
forms from 1 up to the L with the same side. 

When Claire used the notion of the “size” of an L, she probably had in mind its rank. Her recipe is a 
generic example (𝑛 = 10). Anne and Tina presented an explicit model for the general case, and 
explained in natural language what it means. In the situation of formulation—through the 
requirement of indirect operation on the material milieu—the need for creating references to the L-
forms arose. Here, knowledge appears as students’ explicit models. Its status is that of 
paramathematical notions, evolved from protomathematical notions as an adaptation to the need for 
more formal language. 

Validation realized 

The task in validation was to justify that their method (recipe) would work for any square of an 
integer side length. The students worked in pairs on this, followed by a whole-class conversation 
led by me.  

Claire and John’s reasoning was as follows:   

Claire: Take the square you have and then pick the next L and place it on the other side. Then you’ll get the 
next square. [She illustrates by extending a 5 x 5 square with 𝐿F]. 

John: This will work because if you take this [points at 𝐿F], it is five and five and one for the corner.  

Anne and Tina’s outcome of formulation was 𝑂* + 𝑂- +⋯+ 𝑂E = 𝑥-, which they have verified for 
𝑥 = 10. Anne’s justification of the general case was as follows:  

Anne: We’ll show that it’s true for 100, a 100 square. You just take all L-forms from 1 and upwards to the 
100th. It is true for 𝑥 = 10 and it is just about getting all the next L-forms and do the same up to 
𝑂*??.  

A third example of students’ justification is reproduced from the written material collected from the 
class. Selma and Lucas’ solution is as follows: To build a square of size n you’ll need the first n odd 
numbers, which corresponds to 𝐿* up to 𝐿'. They justified it by writing down 1 + 3 +⋯+
2𝑛 − 3 + (2𝑛 − 1) and explaining that they added the first and last term, the second and last but 

one term, and so on. Further, they explained that this gives '
-
		sums of 2𝑛. That is, 1 + 3 +⋯+

2𝑛 − 3 + 2𝑛 − 1 = 	 '
-
∙ 2𝑛 = 𝑛-, which completes the proof. 

It is relevant to comment on the proofs given by the students. Claire and John’s proof has elements 
of a generic example. However, to become a valid proof, it would be necessary for them to explain 
that it is the property of odd numbers that makes this work in general: Starting with a square of size 
n, a square of size (𝑛 + 1) is built by adding two times n plus one for the corner. That is, adding the 
next odd number, 2𝑛 + 1 = 2 𝑛 + 1 − 1 = 𝐿'G*. This is also the step in an induction proof (it 
would be necessary though to show that it is true for, say, 𝑛 = 1). Anne’s argument can be 
interpreted as a crucial experiment (Balacheff 1988). It is a kind of naïve empiricism—it does not 
explain why their method works for all natural numbers. Anne does not utilise that the odd numbers 
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are involved. Selma and Lucas’ explanation is a valid proof—a direct algebraic proof, using the 
Gaussian method.  

Regarding the status of knowledge, I consider that Anne does not use mathematical notions, 
whereas the other pairs do use mathematical notions (even if Claire and John’s knowledge lacks 
some specification). During the whole-class discussion, I made the different arguments visible in 
the class. I got the students to explain their reasoning, to defend some justifications and act as critics 
of others. This served as a basis for the next phase, institutionalisation.  

4.3.2  Institutionalisation 

Institutionalisation is where students’ constructions resulting from adaptation are combined with 
acculturation. It is the teacher’s task to decontextualise the situated knowledge and link it to the 
scholarly knowledge aimed at by the institution. During institutionalisation I displayed students’ 
various methods for solving the task—that is, the recipes and justifications that had appeared in 
situations of formulation and validation. The representations used by the students (𝐿1 + 𝐿2 +···
+𝐿10 = 10-; 𝑂* + 𝑂- +⋯+ 𝑂E = 𝑥-;	 etc.) I compared with the target theorem, which I 
symbolized by 1 + 3 + 5 +··· + 2𝑛 − 1 = 𝑛- and commented that this might be written as 

(2𝑖 − 1)'
()* = 𝑛-. The students acknowledged that it stated that the sum of the first n odd 

numbers is equivalent to the n-th square number. Further, I categorised the different types of 
justifications used: naïve empiricism; generic example (using a diagram); and, direct algebraic 
proof. I discussed the distinction between naïve empiricism and a generic example—that explaining 
the reason why something works in a particular example makes it generic and valid as a proof 
(unlike naïve empiricism). Here, I drew on Schifter’s (2009) three criteria for the validity of a 
representation-based proof (as explained in Section 4.1).  

An objective of institutionalisation is enabling the students to know the place, importance, and 
future of the knowledge they have developed. This part was informed by elements from the 
epistemological analysis (see Section 4.1). Further, I compared the knowledge they had developed 
through the TILEL situation (i.e., a theorem in elementary number theory) to knowledge they had 
previously developed through another type of shape patterns (i.e., a functional relationship between 
position and numerical value of elements). (For an analysis of the two types of shape patterns, see 
Strømskag 2015).  

The last part of institutionalisation was related to the fact that the students were student teachers, 
enrolled in teacher education programmes for Grades 1-7 or 5-10. It was a meta-level expansion 
where the TILEL situation (and the students’ experiences with it) was taken as an object of 
discussion. I explained the two principles behind the design of the situation and its adidactical 
milieu. Further, it was discussed what adaptations would be necessary in order to implement the 
TILEL situation in various grades in school. For these students, the TILEL situation served as an 
introduction to later work on TDS.  

 
5 Discussion 
The data analysed in Section 4 showed that it was possible to use the proposed model for 
instructional design to create a situation that preserved meaning for the theorem at stake. The 
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student perspective was taken care of through the two principles of task design: The first principle 
was applied in the way that the solution to the task of building a square in the TILEL situation was 
adding consecutive L-forms from 1 and upwards; this was situated knowledge, subsequently 
institutionalised to become the theorem that was the aim of the task. Purpose and utility (Ainley et 
al. 2006) were substantiated through the first principle in the way the students needed the target 
knowledge to succeed—this provided a rationale for, and meaning of, the knowledge they 
developed. The second principle of task design was applied in the way that the material milieu and 
the clauses of the didactical contract (described in Section 4.2) made it possible for the students to 
develop the intended knowledge through adidactical engagement in the TILEL situation. The 
didactical contract (shaped by the knowledge at stake) governed what the students were allowed to 
do to solve the task, and the milieu gave feedback whether they succeeded or not.  

The proposed model for instructional design is applicable when there is an intention of teaching 
someone some particular mathematical knowledge, whether it is for students in school or college. 
To strengthen the claim about its relevance at tertiary level, it can be mentioned that TDS design 
principles have been used at the university. For instance, González-Martín et al. (2014) discuss 
three recent research cases—two on calculus and one on proof. These are stimulating with respect 
to the feasibility of designing epistemological models to teach university level mathematics (see 
also Artigue 2014). When the model is used for student teachers (who are also learning the 
mathematics at stake), it is relevant to extend the institutionalisation by a meta-level (didactical) 
discussion, similar to the one related to the TILEL situation described above.  

The methodology presented here is for instructional design, where the focal point is the generic and 
epistemic students’ opportunities to develop particular pieces of mathematical knowledge—from an 
epistemological viewpoint. The methodology might be extended to a research methodology by 
including phases of ‘observation and data collection’, and ‘a posteriori analysis and validation’—as 
in didactical engineering (Artigue 2015). An extension to a research methodology is possible, 
whether the instructional design is for teaching school mathematics or university level mathematics 
(be it teacher education or other programmes). Validation would be based on comparison between a 
priori and a posteriori analyses of the situations involved. The situation presented in Section 4 
resulted from such an extension of the methodology. Analysis of the data showed that the TILEL 
situation was valid for the theorem (2𝑖 − 1)'

()* = 𝑛-, because the students developed the intended 
theorem as a consequence of solving the task embedded in the situation. 

I plan to use the model for instructional design in a teacher education programme, in which I give 
student teachers the assignment of design and implementation (with students in secondary school) 
of epistemological models that preserve meaning for particular pieces of mathematical knowledge 
(of their own choice, using the model proposed here). Further, they will be given the task of doing 
research into the situations, and judging their validity based on comparison of a priori and a 
posteriori analyses. One goal is to give student teachers experiences with instructional design that 
aims at meaningful mathematics (i.e., perceived utility), learned in meaningful ways (i.e., perceived 
purpose). Another goal—through iterated cycles of design, implementation and development—is to 
establish a stock of robust epistemological models of various pieces of mathematical knowledge 
that can be used in school. I conjecture that the theoretical analysis of the model presented in this 



A methodology for instructional design in mathematics 
 

 

ZDM Mathematics Education 

paper will enable other researchers to use the model as a tool to do something similar to that 
outlined in this paragraph, beyond the local level described here.  
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