An integrated population model for a long-lived ungulate: more efficient data use with Bayesian methods

Journal:	Oikos
Manuscript ID:	OIK-01924
Wiley - Manuscript type:	Research
Date Submitted by the Author:	14-Jul-2014
Complete List of Authors:	Lee, Aline; Norwegian University of Science and Technology, Centre for Biodiversity Dynamics, Department of Biology; University of California, Berkeley, Department of Environmental Science, Policy \& Management Bjørkvoll, Eirin; Norwegian University of Science and Technology, Centre for Biodiversity Dynamics, Department of Biology Hansen, Brage; Norwegian University of Science and Technology, Centre for Biodiversity Dynamics, Department of Biology
	Albon, Steve; The James Hutton Institute, Stien, Audun; Norwegian Institute for Nature Research, Arctic Ecology Department, Fram Centre Sæther, Bernt-Erik; Norwegian University of Science and Technology,
Centre for Biodiversity Dynamics, Department of Biology	
Engen, Steinar; Norwegian University of Science and Technology, Centre	
for Biodiversity Dynamics, Department of Mathematical Science	
Veiberg, Vebjorn; Norwegian Institute for Nature Research, Terrestrial	
Ecology Department	
Loe, Leif Egil; Norwegian University of Life Science, Department of Ecology	
and Natural Resource Management	
Grøtan, Vidar; Norwegian University of Science and Technology, Centre for	
Biodiversity Dynamics, Department of Biology	

	modeling can be used to increase the amount of information extracted from collections of data. This includes estimating age structure from non- age-structured census data and combining it with estimates of age-specific life history parameters, while accounting for different sources of variability. This represents an important step towards increasing the predictive ability of population growth models for long-lived species.

SCHOLARONE ${ }^{\text {m }}$
 Manuscripts

An integrated population model for a long-lived ungulate: more efficient data use with Bayesian methods

Aline M. Lee, Eirin M. Bjørkvoll, Brage B. Hansen, Steve D. Albon, Audun Stien, Bernt-Erik Sæther, Steinar Engen, Vebjørn Veiberg, Leif E. Loe, Vidar Grøtan

A. M. Lee (aline.lee@berkeley.edu), E. M. Bjørkvoll, B. B. Hansen, B.-E. Sæther, S. Engen, and V. Grøtan, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway,
A. M. Lee, Department of Environmental Science, Policy \& Management, University of California, Berkeley, CA 94720-3114, USA,
S. Albon, The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK, A. Stien, Norwegian Institute for Nature Research, Arctic Ecology Department, Fram Centre, NO-9296 Troms \varnothing, Norway,
V. Veiberg, Norwegian Institute for Nature Research, Terrestrial Ecology Department, NO-7485 Trondheim, Norway,
L. E. Loe, Department of Ecology and Natural Resource Management, Norwegian University of Life Science, NO-1432 Ås, Norway

Abstract

We develop an integrated population model for a population of Svalbard reindeer (Rangifer tarandus platyrhynchus), and show how the model succeeds in extracting more information from the data and separating different sources of variability in population estimates. The model combines individual mark-recapture data with population counts and harvesting data within a Bayesian model framework, and accounts for observation error, environmental and demographic stochasticity and age structure. From this model we obtain estimates of population size, as well as age-specific survival and fecundity over time. The model provides estimates of age structure at a finer scale than that found in the census data, and enables us to estimate a survival parameter for which there is no information in the mark-recapture data. We use data from independent censuses of the same population to evaluate population estimates obtained from the model, and show that it is successful at correcting for different types of observation error. Our work demonstrates how integrated Bayesian population modeling can be used to increase the amount of information extracted from collections of data. This includes estimating age structure from non-age-structured census data and combining it with estimates of age-specific life history parameters, while accounting for different sources of variability. This represents an important step towards increasing the predictive ability of population growth models for long-lived species.

Introduction

Understanding demographic processes and how they are influenced by the environment is a fundamental goal of ecological research. This task is becoming ever more important as environments are changing and many populations are in decline (Hirsch 2010). However, there are a number of challenges involved in analyzing the dynamics and demography of wild populations.

Biological systems are complex, and population dynamics are often influenced by a large number of factors, including interspecific interactions, life history traits, density effects, migration, and a multitude of environmental variables. In order to make meaningful predictions about how a population might respond to changed conditions one must understand how these different effects interact. This requires both good data and population models that capture the underlying processes (Buckland et al. 2007).

Disentangling the different processes is made harder by the fact that observational data are subject to measurement error (Clark and Bjørnstad 2004). Thus, observed fluctuations in population size and demographic rates reflect both true demographic variability and variation caused by observation error (e.g. Ahrestani et al. 2013). In addition, population dynamics are influenced by two types of stochasticity (Lande et al. 2003). Chance realizations of survival and reproduction create variation among individuals, known as demographic stochasticity (May 1973, Roughgarden 1975), whereas fluctuations in the environment lead to environmental stochasticity (May 1973, Leigh 1981). This causes the observed survival and fecundity to differ from expected rates. To make
matters more complicated, population structure can have a substantial influence on how populations respond to perturbations. Different types of individuals (e.g. individuals of different ages) often respond differently to factors such as density and climate, causing potentially large differences in population dynamics in populations of equal size, even when they are exposed to the same conditions (Coulson et al. 2001).

Separating these different sources of variability in the data can be tricky. Hidden process models provide a useful way of dealing with the observation error (Newman et al. 2006) by using separate, but parallel and linked models of the underlying (unknown) population process and of our observations. Integrated population modeling (IPM) is a technique that has been developing rapidly over recent years and that allows one to combine different types of observations in a single model framework that utilizes hidden process models (Besbeas et al. 2002, Buckland et al. 2007, Schaub and Abadi 2011). In this way it is possible to account for different types of uncertainty in the data, and to exploit available data in a more efficient manner (Schaub and Abadi 2011). By combining population count data with different types of demographic data in a single model one can obtain more precise estimates of demographic parameters, and even estimate parameters that have not been measured directly (Besbeas et al. 2002, Tavecchia et al. 2009, Abadi et al. 2010).

In this paper we present an IPM for a population of wild Svalbard reindeer (Rangifer tarandus platyrhynchus) and demonstrate how the above issues can be dealt with to improve estimates of population size and demographic parameters.

This system has several characteristics that makes it particularly useful for overcoming some of the described challenges. Svalbard reindeer are fairly stationary, and show little fear of humans (Tyler and Øritsland 1989). They are found in small groups in areas with high visibility and no predators, making them easier to observe and count than many other large ungulates. Svalbard reindeer are long lived and are part of a simple community with no other competing herbivores (Hansen et al. 2013), but experience extreme fluctuations in weather and environmental conditions. This makes the system a suitable candidate for studying effects of climate and density on mammal life history and population processes. Previous studies of the system have demonstrated strong inter-annual variation in survival, fecundity and population growth rates (Aanes et al. 2000, Solberg et al. 2001, Albon et al. 2002, Stien et al. 2002, Hansen et al. 2011), indicating that there are also substantial fluctuations in age structure. This means that age should be accounted for in future studies, but also provides an opportunity to examine how this variation in population structure influences population dynamics. In this paper we combine individual mark-recapture data with census data in a model that not only accounts for age effects, but also estimates population numbers at a finer scale of age structure than is directly represented in the census data. Estimates are then compared to count data from independent censuses in the same study area.

The study species and data

This study is based on data from a population of Svalbard reindeer, a wild sub-species of Rangifer that is endemic to Svalbard. Data were collected in the

Reindalen-Semmeldalen-Colesdalen valley system (approx. 78N, 16E) in central Spitsbergen, the largest island in the Svalbard archipelago (see Solberg et al. 2001, Stien et al. 2012, for a detailed description of the study area). In Svalbard, suitable vegetated reindeer habitat is mainly restricted to semi-isolated valleys and lowland plains separated by glaciers, mountains or fjords. Thus, in contrast to most other Rangifer, Svalbard reindeer do not migrate and are fairly stationary year-round, typically with overlapping seasonal ranges and annual home range sizes of a few km^{2} (Tyler and Øritsland 1989). The reindeer occur alone or in small groups of up to about five animals. Females produce their first calf at two years of age or later, and calving is highly synchronous, with 90% of calves being born within the first ten days of June (Tyler 1987). Twinning has never been reported.

Previous studies have shown that female Svalbard reindeer can live to an age of at least 16 years (Tyler and Øritsland 1999). They are unlikely to be subject to strong interspecific competition for resources, being the only large herbivore in Svalbard, and they also experience no significant predation. Only a handful of observations exist of reindeer being killed by polar bears (Ursus maritimus; Derocher et al. 2000), and predation on newborn reindeer calves (by Arctic fox, Vulpes lagopus) has only been observed once (Prestrud 1992). However, each fall approximately 150-200 Svalbard reindeer are shot by local hunters (about 39% of these within the study area; Governor of Svalbard 2009).

In 1994, 23 female reindeer were caught and marked in late summer. Since then, between 10 and 90 new females (mainly calves) have been caught and marked in winter (around April) each year, and previously marked individuals have been
recaught (on average 60-70 animals recaught each winter, although numbers vary). The current study uses data from 1994-2012. In addition, summer censuses have been conducted in July-August each year since 1996, in which numbers of unmarked animals (identified as calves, yearling females, yearling males, adult females, or adult males) and the identity of observed marked individuals have been recorded, along with information about their reproductive status (with or without calf at heel).

Winter captures and summer censuses have been carried out in the main valleys Reindalen, Semmeldalen and Colesdalen as well as in smaller side valleys (hereafter referred to as the study or census area). High mountains, glaciers and the ocean keep the study area quite isolated from surrounding valleys and populations, and observations of marked individuals outside the defined study area are infrequent. From GPS-collars fitted on 38 adult females for the period 2009-2012 (Meland 2014), only 9% of downloaded positions during the summer censuses were located outside the study area. During the winter capture field work the number was higher, with 27% outside, but a large proportion of these positions were close to the study area border (typically at a slightly higher elevation than the 300 meters above sea level limit set for detection in summer). These excursions out of the study area are usually of a temporary nature, with the animals returning either in the same season or later. This demonstrates the high site fidelity of female Svalbard reindeer in this semi-isolated system, wherein they return to the same calving areas each summer (Hansen et al. 2010), and suggests that the exchange of individuals with surrounding populations is limited.

Summer censuses are conducted on foot by two or more observers, using binoculars and telescopes. The length of these censuses has varied from 5-12 days due to parallel studies performed in some years. Because of the study area's open landscape, animals are often spotted at long distances (up to several km), regardless of whether they are collared or not, and observers rarely fail to identify marked individuals. During the whole study period there were only 21 cases of unidentified marked females. Unmarked individuals are recorded as calves, male yearlings, female yearlings, male adults or female adults. In this study we only use data on females (except for calves, in which sex is not known; see section on Population Model). All observations of marked individuals during the census period are recorded, both within and outside the actual census. Observed calves are assigned to females by their behavior. Calves usually stay close to their mothers, so females with no unassigned calves nearby are recorded as not having a calf (after a period of observation). In this way, the reproductive status has been reliably determined for more than 90% of observed marked females. Repeated observations of females and calves during the summer season have shown that the misclassification rate of reproductive status using these methods is lower than 2%. In addition to the mark-recapture data and summer census data we have used hunting statistics from the Governor of Svalbard (a total of 531 female reindeer hunted in the study area between 1994 and 2011) and information about 285 females that were culled between 1994 and 2008 for the purpose of an experimental parasite study (Albon et al. 2002, Stien et al. 2002). These animals are hereafter referred to as "hunted" and "culled," respectively. Furthermore,
estimates from the IPM are compared with counts from independent census data (from transects walked through the study area; see Solberg et al. 2001). This independent census also recorded the number of reindeer carcasses. Carcasses of reindeer that died within the last year (typically the previous winter; Tyler 1987) are easily detected as white (fur) patches on the tundra and are quite distinguishable from older carcasses. Therefore, the number of carcasses found may serve as a proxy of winter mortality (Tyler 1987).

The model

In this integrated population model we combine individual mark-recapture data, census data and hunt/cull data in a common Bayesian model framework. A population process model is used to describe the changes in population size and structure over time. This is the underlying biological system that we are trying to understand. Observation models are used to link the different types of observed data to this latent process.

Individual mark-recapture data from winter and resighting data from summer are used to estimate natural (apparent) survival rates. Survival of hunted and culled individuals (up until death) is included in the estimation process, but their death is not since it does not represent natural mortality. The summer resighting data is also used to estimate fecundity based on observed reproductive status. In addition, census data on unmarked individuals help to inform these rates. We distinguish between the observation probability of marked individuals within the census period (assumed to be equal to that of unmarked individuals; see
model section 3 below) and the observation probability of marked individuals outside the census period. Both types of observations are included in the estimation of survival and fecundity rates (model section 2). An overview of different types of data and where they enter the model is presented in Fig. 1, and a list of the main parameters can be found in Table 1.

1. Population model

The population model describes how the study population changes in size and structure over time. Due to the nature of the available data, the population model is a combination of stochastic and deterministic processes. Natural survival is modeled as a binomial process with a mean survival rate, $q_{a, t}$, where a is age and t is year. However, each year a number of individuals are killed by humans, either hunted or culled for scientific purposes. These numbers are treated as known, and therefore have to be subtracted from the population in a deterministic manner. Given the number of individuals of age a in year t, we therefore have (for yearlings and adults, $a>0$)

$$
\begin{equation*}
N_{a+1, t+1} \sim \operatorname{Bin}\left(N_{a, t}-H_{a, t}, q_{a, t}\right) \tag{1}
\end{equation*}
$$

where $N_{a, t}$ is the number of females of age a in the population at time t, and $H_{a, t}$ is the number of females of age a that were killed by humans at time t. A year in the model runs from August to August.

Female Svalbard reindeer do not produce more than a single calf per season (Tyler 1987). Therefore, the number of calves present from females of age a at a given time step can be modeled as a binomial distribution,

$$
\begin{equation*}
C_{a, t} \sim \operatorname{Bin}\left(N_{a, t}, f_{a, t}\right) \tag{2}
\end{equation*}
$$

where $f_{a, t}$ is the probability of a female of age a having a calf at heel at time t. For simplicity, we will refer to the probability of having a calf at heel during the census as fecundity, but it is important to note that early calf mortality affects this rate. The total number of calves in the population is then $N_{C, t}=\sum_{a} C_{a, t}$, and the number of female calves can be modeled as $N_{0, t} \sim \operatorname{Bin}\left(N_{C, t}, r\right)$, where r is the calf sex ratio. We have set $r=0.5$, as we do not have sufficient data to estimate this sex ratio accurately, nor any evidence that it is skewed.

The population at time t, N_{t}, consists of two types of individuals; marked $\left(M_{t}\right)$ and unmarked $\left(U_{t}\right)$, such that $N_{t}=M_{t}+U_{t}$. Information about M_{t} is contained in the mark-recapture data, whereas information about U_{t} is found in the census data. Because we assume that the whole population follows the same growth model (Eq. 1 and Eq. 2 above) the two subpopulations have shared parameters that can be jointly estimated from the two types of data, as described in each of the model sections below. Note that individuals that are caught and marked for the first time transition out of the unmarked subpopulation and into the marked one. These transitions are known and can be entered directly into the model without any stochasticity.

2. Model for individual mark-recapture data

The likelihood of the mark-recapture data is constructed based on a state-space formulation of the Cormack-Jolly-Seber model (Lebreton et al. 1992, Gimenez et al.

2007, Royle 2008, Kéry and Schaub 2012). Thus, a state process governs whether an individual is alive $(z=1)$ or dead $(z=0)$, and the total number of marked animals in the population at time t is estimated as $\sum z$ over all individuals (note that subscripts for individual and time have been left off here for simplicity). The probability of an individual being resighted at a given time step is then modeled as the product of an observation probability, p_{t}, and the state z of that individual, thus ensuring that dead individuals can never be resighted. Because females in our population only produce single calves, we have also treated the presence or absence of a calf as a female state. We are not interested in the probabilities of females moving between these two states, and have therefore chosen not to use a multistate model, but rather to add a second state process similar to the survival process. Thus, the reproductive state of an individual is treated as the outcome of a Bernoulli process with a probability consisting of the product of fecundity $\left(f_{a, t}\right)$ and the alive/dead state variable z.

Because our data is collected twice a year we estimate seasonal survival (August to April, and April to August), instead of yearly survival. We have

$$
\begin{equation*}
\operatorname{logit}\left(s_{a, i}\right)=\mu_{s, a}+\epsilon_{s, i}+\gamma_{s, a, i} \tag{3}
\end{equation*}
$$

where the subscript a signifies age (from yearling and up, $a>0$), i denotes time (in seasonal periods), and $\epsilon_{s, i} \sim \mathrm{~N}\left(0, \sigma_{s}^{2}\right)$. The term $\epsilon_{s, i}$ represents temporal fluctuations that are shared across all age groups (e.g. common responses to density and environmental effects). The term $\gamma_{s, a, i} \sim \mathrm{~N}\left(0, \sigma_{s \gamma}^{2}\right)$ accounts for differences among age groups in the temporal fluctuations. Then, $q_{a, t}$ in Eq. 1 is
equal to $s_{a, i} \times s_{a, i+1}$, where i and $i+1$ are the two seasonal periods (August to April and April to August) of year t. Estimates of recapture probability in winter and observation probability within and outside the census period in summer are allowed to vary randomly from year to year.

Calves are born in June, but do not get marked until the following April. Thus, new individuals do not enter the mark-recapture data until they are about 10 months old. This leaves a gap in the survival estimates. In the data used for this study we have no information about calves before the summer census, and therefore use the number of calves seen in summer as a measure of fecundity. We know from previous studies that the survival of calves from shortly after birth through their first summer is extremely high (close to one; Tyler 1987), but survival from a calf's first August until the next April is not known. However, because we are using an integrated population model that links all the different available data and processes, we still have the opportunity to estimate these "missing" survival rates (based on information such as the number of calves seen in August compared to the number of yearlings seen next August, combined with survival estimates for the period from when they are marked at 10 months old until the August census). We let (female) survival in this initial age step $\left(s_{0, i}\right)$ follow the same type of model as survival from August to April in older individuals (Eq. 3), with a calf-specific mean $\left(\mu_{s, 0}\right)$, the same temporal residual as other ages $\left(\epsilon_{s, i}\right)$, and a calf-specific temporal residual term $\left(\gamma_{s, 0, i} \sim \mathrm{~N}\left(0, \sigma_{s \gamma, c}^{2}\right)\right)$.

The oldest female in our data set had an estimated age of 19 years at death, but nearly all females die before they turn 16. Based on visual inspection of
the age variation in the survival and fecundity estimates from a fully age-structured model, we pool the ages into six age classes; 0 years, $1,2,3-8,9-11$, and 12 and older; and estimate seasonal survivals within each.

For fecundity we use a similar model,

$$
\begin{equation*}
\operatorname{logit}\left(f_{a, t}\right)=\mu_{f, a}+\epsilon_{f, t}+\gamma_{f, a, t}, \tag{4}
\end{equation*}
$$

where $a>1$ because Svalbard reindeer never produce calves before two years of age. Here we again assume that $\epsilon_{f, t} \sim \mathrm{~N}\left(0, \sigma_{f}^{2}\right)$ and $\gamma_{f, a, t} \sim \mathrm{~N}\left(0, \sigma_{f \gamma}^{2}\right)$. Note that time here is given in whole years, rather than seasons, since calves are produced only once a year. Fecundity (probability of giving birth to a calf, or more precisely having a calf (of either sex) in August) is estimated for age classes 2 years, 3, 4-9, 10-12, and 13 and over. Thus, each fecundity estimate can be paired with a (annual) survival estimate during pregnancy (e.g. fecundity of 4-9-year-olds is linked to survival of 3-8-year-olds).

3. Model for census data

We assume that the observation probability of unmarked animals equals that of marked individuals within the census. We therefore use a binomial model to describe the relationship between our counts of unmarked animals and the true size
of the unmarked population each year,

$$
\begin{align*}
U_{1, t}^{c} & \sim \operatorname{Bin}\left(U_{1, t}, p_{t}\right) \\
U_{a d, t}^{c} & \sim \operatorname{Bin}\left(\sum_{a>1} U_{a, t}, p_{t}\right), \tag{5}
\end{align*}
$$

where U^{c} is the number of unmarked individuals of an age class (yearling, adult) counted in year t, U represents the total population of unmarked individuals (modeled by Eq. 1), and p_{t} is the observation probability which is also estimated from individual mark-recapture data within the census.

In summer, calves are not marked and therefore do not have an observation probability estimated from the mark-recapture data. However, calf observations in this system are not independent of adult observations, because calves stay close to their mothers. We assume that if a calf is counted, so is its mother. We believe that the converse is also true, but have chosen to let the model estimate the observation probability of calves given that their mother was counted, to allow for the possibility that calves are more difficult to spot in the field than adults. A more detailed description of this can be found in the appendix.

Model implementation

About 80% of marked individuals were marked as calves and are therefore of known age. Animals that were marked as adults and are later hunted, culled, or recovered as carcasses have ages estimated from tooth eruption patterns or counts of tooth cementum annuli (see Veiberg et al. 2007). Those individuals without an estimated
year of birth are reassigned as unmarked individuals for the purpose of the model (i.e. they are removed from the individual mark-recapture data and reassigned as unmarked in the census data). This leaves a total of 464 individuals in the mark-recapture data.

Some unmarked animals are recorded with unknown sex. We use the sex ratio in the rest of the (unmarked) census data each year to estimate how many of these were females. This is, however, the case for only a small proportion of individuals (0.01 of adults and 0.13 of yearlings).

Because the census periods go over multiple days, it is possible that the same individual could be counted several times. We have therefore calculated the average number of times each (observed) marked animal was seen during a given census (the average ranges from 1.03 to 1.46 in different years), and adjusted the counts of unmarked animals accordingly.

We use annual hunting statistics and the age estimates described above (as well as known ages of marked individuals, calves and yearlings), to estimate numbers and ages of hunted females during the study period. The hunting statistics from before the year 2000 do not contain information about location. From 2000 forward the statistics show that an average of 39% of the hunted individuals were shot in our study area, and that the proportion varied little from year to year. We have assumed that this proportion was the same for earlier years, as there have been no significant changes in the hunting regime. Hunted individuals without records of age and/or sex are assigned an age and sex by extrapolation of the estimated sex and age distributions among the rest of the hunted individuals.

In addition to the hunted individuals, 285 females (of these, 25 marked) were culled between 1994 and 2008 for scientific purposes (Albon et al. 2002). Fifteen of these were of unknown age and therefore had an age assigned to them based on the mean annual age distribution of culled individuals.

Posterior distributions were found from Markov Chain Monte Carlo techniques using OpenBUGS (Lunn et al. 2009) via the R2WinBUGS package (Sturtz et al. 2005) in R 3.0.1 (R Core Team 2013). Uninformative priors were used throughout the model $(\operatorname{Unif}(0,1)$ for all probabilities/rates, or $\mathrm{N}(0,0.001)$ if on logit scale; $\operatorname{Unif}(0,10)$ for all σ^{2}, except σ_{f}^{2} and $\left.\sigma_{f \gamma}^{2} \sim \operatorname{Unif}(0,7)\right)$. Our results are based on 3 chains of 1600000 iterations, discarding the first 1300000 iterations as a burn in and retaining 3000 (i.e. every 100th) of the remaining values from each chain. With this approach convergence was reached for most of the nodes as indicated by Gelman and Rubin's diagnostics (Gelman and Rubin 1992). However, there were four years in which not all age classes had converged size estimates (2-year-olds in 1996, 3-8-year-olds in 1996, 2000 and 2002, 9-11-year-olds in 2002 and 2005, and 12 years and older in 2005). Despite this, estimates of total population size reached convergence for all years.

Results

Annual survival estimates vary among age classes and exhibit strong temporal variation (Fig. 2a). The highest survival rates are found in the three age classes containing individuals aged one to eight years. Calves and individuals that are nine
years old or above (age classes 9-11 and 12+) have significantly lower mean survival and also exhibit higher temporal fluctuations in annual survival. Temporal fluctuations in survival follow similar patterns in all age classes, but there is also clear evidence of age-year interactions (Fig. 2a; $\sigma_{s}^{2}=1.75$ (Credible interval (CI):1.23-2.46); $\sigma_{s \gamma}^{2}=0.52$, (CI:0.18-0.85)). In calves, survival from August to April is estimated to be high in most years (higher than 0.90 in 14 of the 18 years), but very low in some years, causing the corresponding variance component to be large (although with high uncertainty; $\sigma_{s, c}^{2}=3.01$, CI:0.54-8.67).

Fecundity is estimated to be quite low for 2-year-olds ($0.12, \mathrm{CI}: 0.07-0.19$, Fig. 2b) and to increase until prime age at 4-9 years when a mean proportion of 0.62 (CI:0.58-0.65) of the individuals produce a calf each year. Fecundity decreases for older individuals, and those aged 13 years or above are shown to have significantly lower fecundity than prime-aged individuals ($0.37, \mathrm{CI}: 0.24-0.51$). Our estimates show large temporal fluctuations in fecundity. For example, only 12% (CI:8-16) of prime-aged females (4-9 years) produced a calf in 2008, while in 1999 85% (CI:79-91) of the individuals in this age class contributed an offspring. These large fluctuations are seen in all age classes. Overall, the different age classes are shown to have responded similarly to time effects, with the variance in the interaction term between time and age in the fecundity model $\left(\sigma_{f \gamma}^{2}=0.18\right.$, CI:0.01-0.48) being substantially lower than the variance in the term accounting for time effects alone ($\sigma_{f}^{2}=1.14, \mathrm{CI}: 0.80-1.65$).

The estimated total number of female individuals in the population fluctuates between 792 (CI:715-891) and 1284 (CI:1206-1371) within the study
period with available census data (1996-2012, Fig. 3a). This is on average approximately two to three times the number of individuals observed in the annual censuses. The 95% credible intervals are narrow for all population estimates (Fig. 3). The population is dominated by prime-aged individuals (3-8-year-olds). The calves are the second largest age class in most years, but some years are characterized by very low calf production causing large fluctuations in the proportion of calves (from 0.04 (CI:0.04-0.05) to 0.25 (CI:0.23-0.27)), and thus also in the total population size (Fig. 2b, 3b).

The estimated total population size correlates well with the original census counts to which the model has been fitted (including both marked and unmarked females observed within the census; Pearson correlation coefficient of 0.52 (0.40-0.62), Fig. 3a). Compared to independent counts of the same population (covering roughly the same area but conducted along transects through the valleys) the correlation is slightly higher (0.59 (0.46-0.71), Fig. 3a). Comparing the estimated annual mortalities to the number of carcasses observed in the study area each year, we see that spikes in mortality are accompanied by a high incidence of observed carcasses, whereas years with lower mortality typically show so few carcass observations that direct comparisons of numbers become difficult (Fig. 4).

The recapture probability in winter is estimated to have fluctuated between 0.25 (CI:0.16-0.36) and 0.68 (CI:0.61-0.76), while the observation probability within the summer census period ranged between 0.21 (CI:0.18-0.25) and 0.63 (CI:0.56-0.72). At the beginning of the study period (1995-1999) marked individuals were also observed outside the census, due to parallel studies and
somewhat longer periods with observers present in the study area, but in later summers most observations were made within the census. The estimated observation probability of calves of observed females was 0.96 (CI:0.92-1.00), supporting our notion that if a mother is observed her calf is usually observed as well. This is also reflected in a close correspondence between the observed and estimated numbers of calves per female (Fig. 4c).

Discussion

Combining several different types of data in a common framework for analysis makes it possible to exploit available data in a more efficient manner than with separate analyses. Here, the integrated population model allows us to extract more information about each age class than would be possible by analyzing each data set separately. The joint framework allows information to flow between the different sections of the model through shared parameters. The data that contain the most information about a parameter will automatically be given greater weight in the analysis. In our model we see that the majority of information about survival and fecundity is found in the individual mark-recapture data. Analysis of this data on its own produces similar estimates of survival and fecundity as those obtained from the complete model (although with somewhat higher uncertainties). However, the IPM allows us to estimate survival for an age class for which we have no individual survival data (calf survival from August to April). This would not be possible without the joint model framework. The flow of information from the individual
mark-recapture data to the population estimates is high and allows us to obtain much more detailed population estimates than we would be able to get from the census data alone. The available census data for this population consists of counts of calves, yearlings and adults, and does not contain any information about the age structure within the adult population. By linking the individual mark-recapture data to this count data through the IPM we have obtained information about this age structure and how it varies. There are four years for which the model is unable to separate all age classes reliably (seen by a few estimates that do not converge). The estimates involved indicate that the model has trouble separating the two cohorts born in 1993 and 1994. This is not altogether surprising, given that relatively few individuals were caught in the first year of the study, and there was no census data, giving the model little information with which to separate the two cohorts that were calves and yearlings when the individual mark-recapture study started.

Differential variation in survival among age classes (Fig. 2a), combined with large fluctuations in fecundity (Fig. 2b), causes changes in the population age structure that persist over long time periods (Fig. 3b). If different age groups respond differently to environmental conditions, population density etc., these changes in age structure could potentially have an important influence on the way population size responds to different conditions (Coulson et al. 2001, Haridas and Tuljapurkar 2007, Sæther et al. 2013). In addition to accounting for age structure, our model incorporates variability among individuals in their realized fecundity and survival, and also allows the expected values of these rates to vary across time
steps. In this way, age structure, demographic stochasticity and environmental stochasticity are all incorporated, making it possible to analyze age structure effects on population growth, as well as separating out age and demographic stochasticity effects from those of density dependence and environmental stochasticity in studies of climate effects and population dynamics.

Using shared parameters to link different data sets in this way can cause problems if the same individuals are found both in the individual data and in the census data (Kéry and Schaub 2012). The likelihood of the complete model is formulated based on an assumption that the different data sets are independent, and a violation of this assumption can cause problems in certain cases (Abadi et al. 2010, Besbeas et al. 2009). We have avoided this by only including unmarked individuals in the census data (model section 3), while the marked animals are used in the individual mark-recapture data (model section 2).

Our survival estimates show that after their first year of life, female Svalbard reindeer in the study population generally have a very high survival until they are about nine years of age (Fig. 2a). This corresponds well with survival estimates found in a different Svalbard reindeer population by comparing carcass counts to live counts the previous year (Tyler and Øritsland 1999). However, we also find quite high survival in the remaining age groups in most years, but with dramatic decreases in some years. In particular, 1995-1996, 2001-2002 and 2007-2008 were characterized by low survival (and low fecundity and population growth rates). These drops in vital rates coincide with years of high animal density combined with icy conditions due to rain-on-snow events, and low population sizes
in the following years were also found in a neighboring study population in Adventdalen (Hansen et al. 2013). The environment therefore seems to have a strong effect on the survival of the youngest and oldest female reindeer, suggesting that changes in age structure would modify the response of the population growth rate to environmental fluctuations. The model presented here makes it possible to quantify these age-specific environmental effects by separating them from other factors influencing survival, such as population density (Tyler and Øritsland 1999, Solberg et al. 2001, Ahrestani et al. 2013). In the current analysis we have not separated out effects of density on survival and fecundity, but incorporating such effects more explicitly is a natural next step.

The survival probabilities estimated in this model represent apparent survival, because mortality cannot be separated from permanent emigration out of the study area. This is common in CJS models (Kéry and Schaub 2012). However, as described previously, results from a study of GPS-collared females indicate that permanent emigration is low in this population, at least among adult females, in which case the estimated survival rates should be close to the true rates in the study population. Temporary movement in and out of the study area does take place, so the "true" study area is larger than the area in which data have been collected. Howevever, exchange of individuals with surrounding populations seems to be limited, so this does not represent a major problem.

The fecundity estimates follow the same annual pattern as survival rates and correspond well to previous fecundity estimates based on observations of marked females aged 3 years and above (Stien et al. 2012), showing the same
dramatic fluctuations among years and the same basic patterns (Fig. 2b). However, using the model presented here we have been able to investigate how fecundity varies among the different age classes (Fig. 2b). Although two-year-olds show significantly lower fecundity than older individuals, all ages show similar fluctuations in fecundity from year to year. Thus, none of the age classes are protected from the extreme drops in offspring production that are seen periodically throughout the study period (Fig. 2b). Nevertheless, accounting for age-specific fecundity (along with age structure) could improve the ability of future studies to predict trends in population growth and how they might be affected by e.g. climate change. In addition, the extreme drops in fecundity are shown to coincide with years with lowered survival in some age groups, in particular calves and old individuals. This means that each of these bad years has a strong negative effect on two consecutive cohorts (calves and unborn offspring), and thus substantial influences on future age structure in the population.

The strong covariation in fecundity and survival rates in Svalbard reindeer has also been indicated in previous studies based on live calf:female counts and carcass counts in summer (Tyler and Øritsland 1999, Solberg et al. 2001). Through comparison with our independent estimates of survival and population size, we have shown here that such carcass data can, when compared to population size estimates the previous year, provide valuable information on extreme drops in overall survival rates in the population as a whole. Thus, such data can function as an indicator of population performance, particularly in years with high mortality. However, carcass data do not (neither alone nor combined with only population
counts) provide detailed information on age-specific survival in this population.
Our population estimates correlate quite well with the original census data that went into the model. However, we have also compared our population estimates to independent counts of the same population. These counts were carried out along transects with a focus on keeping the search effort and length of census period as stable as possible from year to year. Having an independent data set of this kind gives us a unique opportunity to evaluate the population estimates obtained from the IPM. We see that the population estimates from the IPM correlate more closely with this independent count data than with the census data that were included in the model. This indicates that the model has been successful at correcting for the variation in observation probability in the input census data, demonstrating the strength of this modeling approach in dealing with observation error.

Using the census data as direct population estimates would indicate population changes that are inconsistent with the breeding biology of this species. For example, the census data show a 68% increase in the number of females from 2002 to 2003. This is unlikely in a population without twinning, unless the calf sex ratio were extremely female biased or a substantial immigration event occurred. Looking more closely at the data, the number of adult females counted increased by 130 individuals in 2003 , despite only 5 female yearlings being counted in 2002. The integrated population model has successfully weeded out these inconsistencies from the population estimates. The increase in the estimated number of females from 2002 to 2003 in the model is a much more realistic 22%.

Svalbard reindeer are considered easier to observe and count than many other ungulates (Tyler and Øritsland 1999). Despite this, population estimates found from the IPM are about two to three times higher than the number of individuals registered in annual censuses. Thus, our study clearly demonstrates the importance of using models that account for observation error, rather than relying directly on count data for obtaining population estimates.

In conclusion, using a Bayesian IPM framework has enabled us to combine individual mark-recapture data, census data and harvesting data in a way that greatly increases the amount of information provided by the model. In particular, being able to estimate age structure from non-age-structured census data and to combine this with estimates of age-specific life history parameters, while accounting for different sources of variability, is an important step for increasing the predictive ability of population growth models for long-lived species.

Acknowledgements

This study was financed by the Norwegian Research Council (NORKLIMA project 178561/S30 and POLARPROG project 216051), Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology, and the European Research Council (Advanced Grant to project STOCHPOP). We thank the Governor of Svalbard for permitting the field research and data collection underlying this study, and for access to hunting data. We also thank numerous field assistants and the technical staff at the University in Svalbard (UNIS) for
supporting the field campaigns, as well as Rolf Langvatn and Odd Halvorsen who helped design the initial field project. The data collection was mainly supported by grants from the Norwegian Research Council, the UK Natural Environment Research Council, and the Macaulay Development Trust. Additional financial support has come from the Norwegian Institute for Nature Research, Centre for Ecology and Hydrology, UNIS, the James Hutton Institute (and its predecessor the Macaulay Institute), the Norwegian School of Veterinary Science, the Amundsen Foundation and Arctic Field Grant.

References

Aanes, R., Sæther, B.-E. and Øritsland, N. A. 2000. Fluctuations of an introduced population of Svalbard reindeer: the effects of density dependence and climatic variation. Ecography 23: 437-443.

Abadi, F., Gimenez, O., Arlettaz, R. and Schaub, M. 2010. An assessment of integrated population models: bias, accuracy, and violation of the assumption of independence. Ecology 91: 7-14.

Ahrestani, F. S., Hebblewhite, M. and Post, E. 2013. The importance of observation versus process error in analyses of global ungulate populations. Sci. Rep. 3: 3125.

Albon, S. D., Stien, A., Irvine, R. J., Langvatn, R., Ropstad, E. and Halvorsen, O. 2002. The role of parasites in the dynamics of a reindeer population. Proc. R Soc. Lond. B Biol. Sci. 269: 1625-1632.

Besbeas, P., Freeman, S. N., Morgan, B. J. T. and Catchpole, E. A. 2002. Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters. Biometrics 58: 540-547.

Besbeas, P., Borysiewicz, R. S. and Morgan, B. J. T. 2009. Completing the ecological jigsaw. In: Thomson, D. L., Cooch, E. G. and Conroy, M. J. (eds.), Modeling demographic processes in marked populations, volume v. 3 of Environmental and ecological statistics, pp. 513-539. Springer, New York, London.

Buckland, S. T., Newman, K. B., Fernández, C., Thomas, L. and Harwood, J. 2007. Embedding population dynamics models in inference. Statistical Science 22: 44-58.

Clark, J. S. and Bjørnstad, O. N. 2004. Population time series: process variability, observation errors, missing values, lags, and hidden states. Ecology 85: 3140-3150.

Coulson, T., Catchpole, E. A., Albon, S. D., Morgan, B. J. T., Pemberton, J. M., Clutton-Brock, T. H., Crawley, M. J. and Grenfell, B. T. 2001. Age, sex, density, winter weather, and population crashes in Soay sheep. Science 292: 1528-1531.

Derocher, A. E., Wiig, Ø. and Bangjord, G. 2000. Predation of Svalbard reindeer by polar bears. Polar Biol. 23: 675-678.

Gelman, A. and Rubin, D. B. 1992. Inference from Iterative Simulation Using Multiple Sequences. Statistical Science 7: 457-472.

Gimenez, O., Rossi, V., Choquet, R., Dehais, C., Doris, B., Varella, H., Vila, J.-P. and Pradel, R. 2007. State-space modelling of data on marked individuals. Ecol. Model. 206: 431-438.

Governor of Svalbard 2009. Plan for forvaltning av Svalbardrein. Longyearbyen, Norway.

Hansen, B. B., Aanes, R. and Sæther, B.-E. 2010. Partial seasonal migration in high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus). Can. J. Zool. 88: 1202-1209.

Hansen, B. B., Aanes, R., Herfindal, I., Kohler, J. and Sæther, B.-E. 2011. Climate, icing, and wild Arctic reindeer: past relationships and future prospects. Ecology 92: 1917-1923.

Hansen, B. B., Grøtan, V., Aanes, R., Sæther, B.-E., Stien, A., Fuglei, E., Ims, R. A., Yoccoz, N. G. and Pedersen, A. O. 2013. Climate events synchronize the dynamics of a resident vertebrate community in the high Arctic. Science 339: 313-315.

Haridas, C. V. and Tuljapurkar, S. 2007. Time, transients and elasticity. Ecol. Lett. 10: 1143-1153.

Hirsch, T. 2010. Global biodiversity outlook 3. Secretariat of the Convention on Biological Diversity, Montreal, Quebec, Canada.

Kéry, M. and Schaub, M. 2012. Bayesian population analysis using WinBUGS: A hierarchical perspective. Academic Press, Waltham, MA, first edition.

Lande, R., Engen, S. and Sæther, B.-E. 2003. Stochastic population dynamics in ecology and conservation. Oxford series in ecology and evolution. Oxford University Press, Oxford.

Lebreton, J.-D., Burnham, K. P., Clobert, J. and Anderson, D. R. 1992. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol. Monogr. 62: 67.

Leigh, E. G. 1981. The average lifetime of a population in a varying environment. J. Theor. Biol. 90: 213-239.

Lunn, D., Spiegelhalter, D., Thomas, A. and Best, N. 2009. The BUGS project: evolution, critique and future directions. Statistics in Medicine 28: 3049-3067.

May, R. M. 1973. Stability and complexity in model ecosystems, volume 6 of Monographs in population biology. Princeton University Press, Princeton, N.J.

Meland, M. 2014. Partial migration as a response to ground icing events in a high arctic ungulate: MSc thesis. Norwegian University of Life Sciences, Ås, Norway.

Newman, K. B., Buckland, S. T., Lindley, S. T., Thomas, L. and Fernández, C. 2006. Hidden process models for animal population dynamics. Ecol. Appl. 16: 74-86.

Prestrud, P. 1992. Food-habits and observations of the hunting behavior of Arctic foxes, Alopex lagopus, in Svalbard. Can. Field-Nat. 106: 225-236.

R Core Team 2013. R: a language and environment for statistical computing.

Roughgarden, J. 1975. A simple model for population dynamics in stochastic environments. Am. Nat. 109: 713.

Royle, J. A. 2008. Modeling individual effects in the Cormack-Jolly-Seber model: a state-space formulation. Biometrics 64: 364-370.

Sæther, B.-E., Coulson, T., Grøtan, V., Engen, S., Altwegg, R., Armitage, K. B., Barbraud, C., Becker, P. H., Blumstein, D. T., Dobson, F. S., Festa-Bianchet, M., Gaillard, J.-M., Jenkins, A., Jones, C., Nicoll, Malcolm A. C., Norris, K., Oli, M. K., Ozgul, A. and Weimerskirch, H. 2013. How life history influences population dynamics in fluctuating environments. Am. Nat. 182: 743-759.

Schaub, M. and Abadi, F. 2011. Integrated population models: a novel analysis framework for deeper insights into population dynamics. J. Ornithol. 152: 227-237.

Solberg, E. J., Jordhøy, P., Strand, O., Aanes, R., Loison, A., Sæther, B.-E. and Linnell, J. D. C. 2001. Effects of density-dependence and climate on the dynamics of a Svalbard reindeer population. Ecography 24: 441-451.

Stien, A., Irvine, R. J., Ropstad, E., Halvorsen, O., Langvatn, R. and Albon, S. D. 2002. The impact of gastrointestinal nematodes on wild reindeer: experimental and cross-sectional studies. J. Anim. Ecol. 71: 937-945.

Stien, A., Ims, R. A., Albon, S. D., Fuglei, E., Irvine, R. J., Ropstad, E., Halvorsen, O., Langvatn, R., Loe, L. E., Veiberg, V. and Yoccoz, N. G. 2012.

Congruent responses to weather variability in high Arctic herbivores. Biol. Lett. 8: 1002-1005.

Sturtz, S., Ligges, U. and Gelman, A. 2005. R2WinBUGS: a package for running WinBUGS from R. Journal of Statistical Software 12: 1-16.

Tavecchia, G., Besbeas, P., Coulson, T., Morgan, Byron J. T. and Clutton-Brock, T. H. 2009. Estimating population size and hidden demographic parameters with state-space modeling. Am. Nat. 173: 722-733.

Tyler, N. J. C. 1987. Natural limitation of the abundance of the High Arctic Svalbard reindeer: PhD thesis. University of Cambridge, Cambridge.

Tyler, N. J. and Øritsland, N. A. 1989. Why don't Svalbard reindeer migrate? Holarctic Ecol. 12: 369-376.

Tyler, N. J. and Øritsland, N. A. 1999. Varig ustabilitet og bestandsregulering hos Svalbardrein. In: Bengtson, S.-A., Mehlum, F. and Severinsen, T. (eds.), Svalbardtundraens \varnothing kologi, volume 150 of Meddelelser (Norsk polarinstitutt), pp. 125-138. Norsk Polarinstitutt, Troms \varnothing.

Veiberg, V., Mysterud, A., Bjørkvoll, E., Langvatn, R., Loe, L. E., Irvine, R. J., Bonenfant, C., Couweleers, F. and Stenseth, N. C. 2007. Evidence for a trade-off between early growth and tooth wear in Svalbard reindeer. J. Anim. Ecol. 76: 1139-1148.

Table 1: Model parameters and notation

Figure captions

Figure 1. Overview of the different types of data and where they enter the model. The figure does not show all possible routes of information flow (e.g. counts of unmarked animals within the census period inform estimation of survival and fecundity), but is rather meant as a tool for understanding how the model is built up around the available data sources and where in this paper the different sections are described. Boxes with dashed outlines represent animals that are not observed. Blue backgrounds represent unmarked animals, while red backgrounds show marked individuals. Parameters are in boxes with rounded edges, while square boxes indicate data. Age is a special case because it enters the model as data, but is obtained from a combination of other data sources. S1, S2 and S3 indicate model sections in the text. U, M and N signify the unmarked, marked and total population, respectively.

697

698

Figure 2. (A) Estimated annual survival from each year to the next ($q_{a, t}$) and (B) estimated fecundity $\left(f_{a, t}\right)$ of different female age classes in Svalbard reindeer population. Parameter estimates are represented by the means of posterior distributions (lines) with associated 95% credible intervals (points at upper and lower limits) showing the uncertainty in the estimates.

Figure 3. Estimated size of female segment of Svalbard reindeer population. (A) Estimated total population size (black line), annual census of the total population to which the IPM is fitted (grey solid line), and independent census data of the population (grey dashed line). From 2008 the two census data sets were not independent (dotted line). (B) Estimated size of each age class (solid lines).

Estimates are represented by the means of posterior distributions (solid lines). The uncertainty of the estimates is shown by the 95% credible interval (points).

Figure 4. Predicted relationships between estimates and independent observations of female mortality and number of calves per adult female (black solid lines) with 95% credible intervals (black dotted lines). (A) Estimated number of dead calves from IPM vs. observed carcasses of calves. Intercept $=20.66$ (10.63-32.98), slope $=$ $3.40(2.78-3.99), R^{2}=0.85(0.72-0.95), n=16$. (B) Estimated number of dead adults from IPM vs. observed carcasses of adults. Intercept $=28.13$ (18.30, 38.70), slope $=4.39(3.30-5.56), R^{2}=0.76(0.59-0.89), n=16$. Parameter estimates are displayed by points (means of posterior distributions) with associated 95% credible intervals (vertical bars) showing the uncertainty of the estimates. The grey solid lines show the 1:1 relationships. Only female individuals are included. (C)
Estimated number of calves per adult female vs. observed number of calves per adult female. Intercept $=0.08(0.05-0.11)$, slope $=0.81(0.74-0.86), R^{2}=0.96$ (0.93-0.98), $n=12$.

Appendix: Observation probability of calves

We let the model estimate the observation probability of calves given that their mothers are observed. Observed females are of two types; marked and unmarked. The number of observed marked females that have calves is already estimated in the model as part of the reproductive state process, but the number of calves among observed unmarked females is unknown. We therefore use the ratio of the estimated number of calves produced by unmarked females (observed or unobserved) and the estimated number of unmarked females present in the population as the probability (in a binomial process) that an observed unmarked female is a mother. Adding these two estimates of calf numbers (among marked and unmarked females) gives an estimate of the total number of calves whose mothers are observed. The number of calves in our census data is then modeled as a binomial process in which these calves have a certain probability of being seen. We assume that this observation probability is the same across years.

