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Abstract
Optimization of structures in a domain with large uncertainties is rather difficult. This also applies for the
offshore wind energy sector. For current offshore wind energy development locations with monopile-based
support structures the fatigue limit state is the driving design criteria. These analyses are connected with long
time domain evaluations to cover non-linearities. Model, statistical and data uncertainties lead to a combined
fatigue damage prediction uncertainty. The former are either covered by a design fatigue factor or a material
factor, which are stated in certification standards, e.g. DNVGL-ST-0126. The influence of mass changes
regarding different lifetimes and the impact of this design fatigue factor has not been published yet.

Based on this, within this graduation project, the monopile support structure is optimized for different lifetimes
in order to identify mass changes and influences of the design fatigue factor. Literature shows that automatized
optimization using genetic algorithms in offshore wind energy is possible but limited, due to the algorithm
methodology including a large number of design evaluations. This graduation project shows the applicability of
Importance Sampling for load case reduction in a genetic algorithm optimization for offshore wind. Compared
to previous approaches Importance Sampling assists to use a full certification procedure for fatigue limit state
computations in a feasible amount of time with high fatigue life estimation accuracies. Subsequently, the fatigue
limit state load case table is reduced by 93%. By optimizing the monopile with this reduced amount of load
cases the algorithm is computationally feasible for the industry.

Rambøll simulation software for offshore wind turbine support structure design is used in combination with the
genetic algorithm function in Matlab®. The combination of the software leads to the optimization of monopile
based offshore wind support structures for different lifetimes. The algorithm runs with a reduced amount of
load cases. Resulting critical fatigue damage values of converged designs are showing deviations from actual
fatigue damage values using full fatigue limit state load case tables at maximum 6.6% and minimum 1.7%. This
high accuracy leads to an optimization of monopile structures for desired lifetimes and consequently to the mass
versus lifetime curve. A mass increase of approximately 22% is observed from 25 to 100 years lifetime. After
reaching 75 years lifetime the curve shows a flattening behavior. Besides, parameter evolutions of optimized
monopile designs are discussed in terms of different fatigue life. The design variables are embedment depth,
cone angle, and corresponding wall thicknesses of monopile sections.

Summarized, this thesis proved the implementation of a full state of the art fatigue limit state computation in
the genetic algorithm by Importance Sampling with reduced load cases and also visualized the impact of mass
changes for different projected lifetimes. As a conclusive remark, the application of Importance Sampling for
load case reduction in the design process opens new possibilities of optimization in the offshore wind energy
sector.
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1 | Introduction
Offshore wind energy is gaining territory on the global wind energy market. The offshore location brings new
structural and maintenance challenges compared to onshore wind energy, but also advantages due to higher
wind speeds leading to higher energy output and no influences by urban planning issues caused by shadowing,
noise and alleged view pollution. Ambitious but possible are the offshore wind energy EWEA goals for 2020
and 2030, i.e. 40 GW by 2020 and 150 GW by 2030 [9].

Currently, most selected commissioned offshore wind turbine (OWT) support structure in Europe is, according
to the 2015 EWEA report [1], the monopile (MP), see Figure 1.1. There, the cumulative share of wind support
structures within the European Union is shown.

Figure 1.1: Cumulative wind support structure types within the European Union [1].

The structure selection is mainly based on the fact that the mean water depth of installed OWT is 22 meters
according to a 2013 EWEA report [10]. For this water depth, the MP is a favorable support structure [11].
Optimization and cost reduction of the MP structure is the aim of the wind turbine industry to increase offshore
wind energy profitability and competition with other energy resources. Energy profitability is measured by the
cost of energy (COE). This parameter can be decreased by lowering expenditures or increasing profit by:

- Reduction of capital expenditures

- Reduction of operation and maintenance expenditures

- Installing larger rated power capacity wind turbines

- Projection for longer lifetimes/life time extension

Capital expenditure (CAPEX) reduction is accomplished by structure optimization and cost reduction in the
design, fabrication, installation and de-commissioning period. CAPEX reduction leads to a shift of the financial
amortization point towards the commissioning date. This needs to be planned in the design phase, since the
influence of costs decreases rapidly after passing this stage.

Operational expenditure (OPEX) reduction deals with the maintenance strategy of the operating wind turbine.
Identified strategies taken from [12] are: corrective, preventive, condition-based/predictive and opportunity
maintenance. These depend on decisions made in the design process for each wind farm in particular, e.g.
harbor distance to shore, wind farm and turbine size. Additionally, many sub-domains are in development for
industrial use in offshore wind, such as structural monitoring.

Larger rated power capacities lead to a higher possible energy output with more energy dispensed into the
electrical grid. This leads to a higher possible profit.
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Lifetime extension or longer projected lifetime due to conservatism and loading uncertainties in design leads to
possible extension of profitable years after the financial amortization point.

The four possible COE reduction possibilities influence each other during the design and operation phase. Future
trends of projected OWT locations are leading to deeper water depths and larger rated turbine power capacities
towards 2018 [1]. Changes in water depth and rated power will lead to new challenges coming hand in hand with
new opportunities. On one hand larger turbines lead to more energy output and on the other hand to heavier
rotor nacelle assemblies. These heavier rotor nacelle assemblies will subsequently influence the whole design of
the support structure. Deeper water depths will increase the share of wave fatigue loading [13], making fatigue
damage to the design driving criteria [13, 14, 15]. The MP fatigue damage vulnerability is caused by the close
proximity of the structures natural frequencies towards the environmental and operational excitation frequencies.

In terms of design for fatigue damage in offshore wind energy, the process is connected with high uncertainties.
Currently, the state of the art in offshore wind structure design for fatigue damage is following specific
regulations, determined in DNV-GL-0126 and DNVGL-RP-C203 [6, 8]. There, the characteristic fatigue damage
results are emphasized by one specific factor to cover data, statistical and model uncertainties. This factor,
called design fatigue factor, is depending on the maintenance strategy and the regarded structural part [6], and
is introducing possible conservatism leading to more material consumption, i.e. higher CAPEX. Optimization
of OWT MP-based structures is therefore limited by the size of the implemented factor at the end.

1.1 Motivation and Objectives

Optimization of structures for different lifetimes and elaborating the resulting MP mass changes will give an
indication of the influence of the design fatigue factor, but also an indication for the worth of higher lifetimes.
The automated structure optimization of offshore wind support structures in intermediate water depths is
brought to its computation ability limits, since full fatigue limit state (FLS) load case table (LCT) analysis are
computationally expensive. This limitation reflects itself in the research completed in the offshore wind domain
using the genetic algorithm (GA). Researchers in [16, 17, 18, 19, 20] optimized OWT support structures, i.e.
jacket or MP foundations, using the GA. The large amount of design evaluations are tackled by including fatigue
and ultimate limit states with reduced LCTs [16, 17, 18]. Additionally, [19, 20] reduced the simulation time per
load case of a lumped FLS LCT to 90 seconds. The FLS LCT reductions are justified by assembling a set of
governing load cases for a given location. The outcome of load case reduction especially for MP structures is
deviating from the full LCT. Subsequently, the GA design evaluations are not completely following the standard
regulations [5, 21] for OWT certification.

The graduation project objectives including a MP-based wind support structure optimization by use of the GA
are the following:

- Implementation of a FLS LCT reduction technique in the GA with fatigue damage estimation for an
accurate MP fatigue lifetime optimization, including time domain simulations following FLS LCT recom-
mendations [5, 21].

- MP optimization with realistic manufacturing requirements, i.e. discrete wall thickness steps.

- Insight into GA performance with changing constraint evaluation, i.e. augmenting accuracy with increasing
generation number.

- Setting up a steel mass versus lifetime curve. This curve acts as an indicator for primary steel masses
between different optimized MP lifetimes and for the worth of higher design lifetimes.

The implementation of current FLS state of the art LCT in the GA is contributing to current offshore wind
energy research. This implementation will help to find optimized MP structures for specific lifetimes and answer
the research question:

Is it worth planning for lifetime extension for monopile-based offshore wind turbines?

The project is completed by connecting the Rambøll analysis software with the GA function in Matlab® serving
as the main operating tool. The GA optimizes a MP-based OWT taken from a Rambøll reference project. Long
GA FLS LCT design evaluations are tackled with cluster computation and FLS LCT reduction, including fatigue
damage estimation.
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1.2 Project Structure

Chapter two gives relevant background information about current state of the art in OWT support
structure design and the large optimization space of MP-based OWT. In addition, the GA general
functionality description is presented.

Chapter three deals with the implemented GA model description, including the OWT design tools.
Subsequently, the methodologies for FLS LCT reduction, including fatigue damage estimation and imple-
mentation in the GA optimization are presented. The final section discusses the model and simulation
software limitations.

Chapter four compares different FLS LCT reduction techniques with each other. Additionally, different
methodologies are tested for FLS LCT reduction implementation in the GA. Subsequently, the best FLS
LCT reduction and methodology is implemented in the GA and multiple runs with different projected
structure lifetimes are completed. Next, the converged GA MP designs for different lifetimes are compared
to full FLS LCT simulations. This full FLS analysis results in the simulated true structure lifetime.
Combination of the converged design mass and true structure lifetime leads to the mass versus lifetime
curve as indication of mass changes with increasing lifetime.

Chapter five discusses conclusions of obtained results and closes with further research recommendations.
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2 | Background
This chapter contains a literature review on structural optimization of monopile-based offshore wind support
structures and computational optimization, using evolutionary algorithms.

Firstly, the monopile (MP) support structure is discussed in section 2.1, followed by section 2.2 with current
state of the art for designing a MP-based offshore wind support structure. Within this section load and soil
modeling practices are introduced. Next, general structural requirements, that an offshore wind turbine (OWT)
needs to be designed for, are discussed. Section 2.3 is presenting computational optimization with emphasis on
genetic algorithms (GAs).

2.1 Wind Support Structures - Monopile

Figure 2.1 taken from [2], illustrates the main components from a monopile-based OWT.

Figure 2.1: Monopile wind support structure terminology taken from [2].

The monopile (MP) support structure, suited for shallow to intermediate water depths [11] and soft soils
with large horizontal loading [22], is a cylinder on which a transition piece (TP) is mounted [6]. The TP is
a connective element between MP and the tower [6]. On the tower top, the rotor nacelle assembly (RNA),
containing the nacelle, hub and blades, is fixed, as shown in Figure 2.1. The height of the MP and the TP are
site specific and also result from environmental conditions: water depth, soil conditions, wave, wind, current
and tide environment [23]. The tower specifications are mostly designed by the wind turbine manufacturer in
combination with the RNA and handed over to the foundation designer with fixed lengths and specifications.
Starting from the structure-bottom in Figure 2.1 the MP support structure consists of a primary steel tube [6],
which ensures to transfer the resulting forces and overturning moment into the soil. The structure is maintained
in position by the lateral and the vertical support capacity. The MP with an uniform or multiple diameter and
different wall thicknesses over height is rammed into the soil and acts as a cantilever beam. In case of a multiple
diameter MP, the sections are connected by a cone section. Cone sections are used to obtain a larger diameter
at the mudline. Firstly, due to structural requirements and secondly to keep loading of the structure close to
the interface level small. Secondary steel parts, also called appurtenances, are mounted on the primary steel
structure to enforce specific parts or for accessibility reasons.
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Access to offshore wind turbines is completed by boat or helicopter in case of too high wind and waves [24].
Boat access requires boat landing and ladder constructions at the TP. The helicopter access in [24] is placed on
the nacelle top.

The tower is mostly a conical shaped tower with a large diameter on the bottom and a smaller on the top [25].
Firstly, this is due to the fact that the stiffness needs to be increased at the bottom. Secondly, to reduce the
oscillating added mass at the top, that would increase loads, i.e. especially the bending moment for the MP
close to mudline.

Soil erosion around the pile, due to wave and current, needs to be prevented or accounted for. Since to a certain
degree, the integrity of the structure would be endangered by scour, due to a changing geotechnical capacity
[6].

Last element shown in Figure 2.1 is the power cable, which is transferring the produced energy to the closest
transformation station off-/ or onshore. For most offshore wind turbines the power cable is lead through a steel
J-tube above the mudline towards the transformation station [26].

2.2 Structural Optimization of Wind Support Structures

The aim of structural optimization is to create a more efficient and cost reduced structure. The ability of
influencing the costs within early stages of the life cycle is high and decreases rapidly as soon as the design is
handed over to manufacturing. Therefore the design process is essential for the overall cost evolution.

The cost function of MP-based OWT primary steel can be almost directly related to the weight of the structure,
whereas a weight reduction for other structure types, e.g. jacket-type structures, usually is not directly related
to lower costs. This is due to possible complicated welding, which is resulting in increased manufacturing costs
[14]. A trade-off needs to be completed here to find a safe and in all life cycle stages cost efficient structure.

Examples for cost reduction considerations for OWTs life cycle phases after the concept and design stage are:

- Manufacturing: Lowering the costs by using available materials, delivery lengths and thicknesses in
accordance with the manufacturer processing capabilities.

- Transport&Installation: Costs are dependent on the carrying capacity of available ships in the planned
construction period and the required driving energy [14].

- Operation&Maintenance: Ensuring structural integrity (static&dynamic) for safe load carrying during
operation by selection of an appropriate and economic advantageous maintenance strategy. The latter is
influencing the structure in already design phase. There, the design is performed according to maintenance
strategies. These are defined by design fatigue factors [6]. During operation monitoring plays an important
role to perform the selected operation and maintenance strategy by strain, acceleration and deformation
measurements.

- Decommissioning: Additional lifetime for decommissioning should be accounted in the design phase,
i.e. the structure needs to be safe after the projected lifetime expired until decommissioning is completed.
Decommissioning costs are wind farm dependent expenses due to pricing dependency on: wind farm size,
vessel carrying capacity, support structure type and distance to feasible storage harbor [27]. Additionally
recycling benefits are unknown, e.g. difficulty to predict an accurate steel price decades ahead. Up to now
an economically feasible recycling of composite material based wind turbine blades is not possible [28].

The consideration of these cost reduction possibilities in design phase is a strategy to optimize the structure by
best means of feasibility and costs for each life cycle phase. The main challenges in design phase for OWTs,
repeated from [15] are:

- Complex environment (wind/waves/current) with limited available information interacting with the coupled
structure systems [15].

- Design driving fatigue loads, which demand computationally expensive simulations, due to a high amount
of load cases [15].

- Overall non-linearities in loading conditions and support structure design [15].
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2.2.1 State of the Art

Due to structural dynamic dependency between the OWT support structure and the RNA, an integrated design
of the structure is unavoidable. Integrated design is the combined computation of the different structural parts
of the offshore wind turbine, such as tower, TP, MP and the wind turbine. This simulates the wind turbine
in combination with the interaction of the sea environment on the support structure. A loop of iterations is
recommended in order to obtain an optimized structure for the desired lifetime. This design process can be
either manually or automatic/computer based.

Hitherto design optimization is completed in a manual way by the empirical knowledge and experience of the
engineer. Since time is playing an important role, this manual optimization can only be completed by several
iterations. Subsequently, this might lead to an over-designed/conservative structure, but on the other hand the
experienced engineer might find an optimized design in a smaller amount of time, compared to computer based
optimization.

Nevertheless, within these iterations the structure is analyzed following the standards DNVGL and DNV
GL-0126 [21, 6] in two different types of analysis, depending on the regarded design situation:

- Time domain

- Frequency domain

The time domain analysis is the required method to analyze offshore structures, because the method is taking
the non-linear effects, that are encountered while designing a offshore wind support structure, into account [29].
Hence this method is also the most time consuming method, due to the calculation of the dynamic response for
each time increment [29].

For the frequency domain OWT applicability, the method requires simplifications, since non-linearities can not
be accounted using this method [29]. Therefore, all non-linearities need to be linearized [29], e.g. soil models,
wave and current particle velocities in the Morison equation.

Nevertheless, within detail design process, the engineer is referring to the current codes and recommendations, in
which current practice for designing the wind turbine and its support structure design are described. Since time
domain simulations take non-linear effects into account [29], time domain simulations are required to certify
a OWT. The encountered non-linear effects for OWTs are repeated in a summarized manner from [30, 31]
hereafter:

- Aero-elastic effects increase the relative wind velocity and thus the thrust [30].

- Blade pitch, soil-structure interaction modeling and rotational speed depending blade dynamics [30].

- Breaking waves in case of large wave heights or shallow water depths [30].

- Second order effects for heavy RNAs that influence the frequency [31]. Due to the influence on the
frequency, this effect might have also influences on buckling and fatigue damage.

- Second order effects need to be accounted for large rotor blade displacements [30].

2.2.2 Load and Soil Modeling

The MP presented in section 2.1 is mainly loaded by hydro-and aerodynamic loads. Hydrodynamic MP load
modeling is mostly completed by use of the Morison equation. The aerodynamic loading instead, is implemented
with a BEM (Blade Element Momentum) code. Soil-structure interaction is inserted in the modeling by
non-linear springs.

Hydrodynamic loading - Morison equation

The Morison equation in expression 2.1 taken from [32], shows the discrete wave force dFw acting on a cylinder
segment dS:

dFw =
1

2
ρwC

w
Du|u|DdS +

π

4
ρwCMaD

2dS (2.1)

u = uwave + ucurr (2.2)
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dFw ... Force on pile segment [N/m] dS ... Pile segment [m]
ρw ... Water density [kg/m3] D ... Pile diameter [m]
Cw

D ... Water drag coefficient [-] CM ... Inertia coefficient [-]
u ... Horizontal particle velocity [m/s] a ... Horizontal particle acceleration [m/s2]

In case of water current presence, the current ucurr and wave uwave in eq. 2.2 velocities add up as described in
[2], and form the new velocity input u for the drag term in eq. 2.1.

Eq. 2.1 consists superimposed drag and an inertia term. For small pile diameters, larger wave steepness and
shallow water drag is governing [32]. Hence, it is the inertia component for large pile diameters and small
wave steepnesses [32]. The empirical inertial parameter CM in expression 2.1 has been further evaluated by
MacCamy&Fuchs, since the original Morison equation is not taking diffraction into account. Diffraction occurs
when the structure influences the incoming waves [2]. The presented solution in [33], modifies the inertial part
of the Morison equation in 2.1 to account for diffraction [34]. There the factor CM , depending on the cylinder
diameter D and the wave length λ, is decreasing the inertia contribution of expression 2.1 with increasing MP
diameter or decreasing wave length. The limit for a vertical cylindrical structure, below which diffraction needs
to be accounted for, is λ/D < 5 [34, 35].

Aerodynamic loading - Blade Element Momentum

Similar to the hydrodynamic forces the total load on a rotor blade can be split up into two parts, a drag and
a lift force. The forces result from the incoming wind speed V0 and the angle of attack α with respect to the
airfoil [2]. Figures in 2.2 and expression 2.3 are taken from [3] and [2].

Figure 2.2: Velocity triangle showing angle of attack α, pitch angle θ and main descriptive parameters taken from [3] .

dF a =
1

2
ρairCL(α)V 2

relc cos(φ)dr +
1

2
ρairC

a
D(α)V 2

relc sin(φ)dr (2.3)

dF a ... Aerodynamic blade load [N/m] ρair ... Air density [kg/3]
c ... Airfoil cord length [m] Vrel ... Relative wind speed at airfoil [m/s]
Ca

D(α) ... Drag coefficient [-] CL(α) ... Lift coefficient [-]
α ... Angle of attack [deg] θ ... Blade pitch angle [deg]
φ ... Inflow angle [deg] V0 ... Incoming wind speed [m/s]
a′ ... Tangential induction factor [-] a ... Axial induction factor [-]
dr ... Discrete blade element [m] ω ... Rotational speed [rad/s]

The lift and drag coefficients are a function of the angle of attack with respect to the airfoil of the current blade
section. For each airfoil, corresponding lift and drag curves exist.

Soil modeling

One option to account for the soil-structure interaction is by a Winkler (1867) based method, recommended by
standards such as API, DNV and ISO. This method is taken as a mean to describe the soil-structure interaction
by replacing the linear springs from the original model by uncoupled non-linear springs (p-y curves) [36]. Input
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parameters are soil properties of the different soil layers, i.e. variations of sand and clay.

2.2.3 Structural Requirements for the Design - Natural Frequency

Structural requirements are set to maintain a safe operation during the whole lifetime of the structure. Since
an OWT is exposed to a highly dynamic environment, the structures frequencies need to be placed outside of
the excitation ranges [14].

Primary excitation ranges are defined by the wave and wind frequency spectrum, 1P and 3P region. 1P
represents the rotor frequency and 3P the blade passing frequency. The OWTs first natural frequency should
not be placed neither in the 1P nor in the 3P region to prevent resonance [2]. This also applies for higher
support structure frequencies for multiplicatives of the rotor dynamic regions (3P, 6P, 9P etc. for a three bladed
rotor) [37]. The region below 1P is called: soft-soft, the intermediate between 1P and 3P: soft-stiff and above
3P: stiff-stiff [38, 2]. Problems arise in the soft-soft region for ultimate and fatigue limit states, since within
this region the wave and wind spectrum are located [38]. Hence, obtaining a MP frequency above 3P requires
a large amount of steel and thus is economically expensive [13]. Therefore, the soft-stiff region is the region of
interest [39].

For tower optimization the best optimization objective function, according to [40], is the weighted sum of the
natural frequencies, i.e. a stiffer structure. The first two natural frequencies of a MP-based OWT are almost
compliant, since the first two are representing the bending modes in the horizontal planes. These frequencies
are close together, due to the approximately symmetric structure.

2.2.4 Structural Requirements for the Design - Limit States

According to [6] a support structure needs to be checked against fatigue (FLS), ultimate (ULS), service ability
and accidental limit states. FLS and ULS are based on load case tables (LCTs) for the verification that the
critical component is within the safe limits, while the service ability is taking the highest possible loading of
the ULS and verifying that the deflection is not exceeding a certain limit. The accidental limit state, also based
on LCTs, need to be defined to cover possible accidental events. More emphasis is put on FLS, since this limit
state will be regarded more precisely within this graduation project.

Fatigue Limit State

Fatigue limit states are regarding the failure of the structure due to cyclic loading, i.e. cumulative damage [6].
The fatigue limit state is the design driving criteria, when designing a MP-based OWT in intermediate water
depths, due to the highly dynamic environment [13, 14, 15, 41]. Since the whole structure is as strong as its
weakest link, FLS is governing at the detail of the structure with the highest fatigue damage.
The following FLS explanation is split into the following characteristic bullet points:

- Load Cases (LCs)

- Stress cycle counting methods

- SN-Curve and Miner sum

- Design Fatigue Factor (DFF)

(a) Load Cases

For design verification, the occurring environment and also situations, that deviate from normal operation,
need to be simulated. This ensures to a certain extend that a structure is withstanding the encountered
events. For this in standard code IEC-61400 [5], design load cases (DLC) are set as a benchmark to design the
structure. These are representing the minimum number of LCs that need to be considered to certify an OWT.
Categorization of the latter is completed by different loading situations and are repeated in Table 2.1:
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Table 2.1: Design LCs for fatigue summarized from IEC-61400 [5].

Design Situation DLC Wind Condition Directionality
Power Production 1.2 Vin ≤ Vhub ≤ Vout COD,MUL
Power Production with fault occurrence 2.4 Vin ≤ Vhub ≤ Vout COD,UNI
Start-Up 3.1 Vin ≤ Vhub ≤ Vout COD,UNI
Normal Shut Down 4.1 Vin ≤ Vhub ≤ Vout COD,UNI
Parked/Idling 6.4 Vhub ≤ 0.7 · Vref COD,MUL
Parked with fault 7.2 Vhub ≤ 0.7 · V1 COD,MUL
Transport, assembly,maintenance and repair 8.3 Vhub ≤ 0.7 · Vref COD, MUL

In IEC-61400 [5] the wave generation for all fatigue LCs presented in Table 2.1, are completed by a normal sea
state (NSS). For this peak periods Tp, significant wave heights Hs and the corresponding wind velocities at the
wind turbine hub, Vhub are required. The latter parameters are from a site specific scatter diagram based on
environment measurements. There, the significant wave heights, peak periods and wind velocity combinations
are defined with their probability of occurrence in terms of direction.

The abbreviations COD, UNI and MUL used in Table 2.1 are defining the directionality of the combined wind
and waves: co-, uni- and multi directional. The directionality takes either a worst case scenario (UNI) or
many directions (MUL) into account, to which the resulting loads are depending on the degree of the non-axis
symmetry of the structure [5]. The variables Vin and Vout are the cut-in and cut-out wind speed, i.e. at which
the turbine starts/stops the operation. A minimum discretization of ±2 meters per second for all wind speeds
are required according to [5]. The reference wind speed Vref is set as the average velocity of a ten minutes
signal and represents the upper limit of the occurring wind speeds.

According to [5] per LC a minimum of six simulations, with a duration of ten minutes, need to be completed.
The combined probabilities of a load case P10min with a simulation duration tSim of 600 seconds each is resulting
from the environmental condition probability of occurrence PEnvi, up-scaled to the total structure lifetime LT ,
see expression 2.4. This is completed in order to simulate the occurrences of a specific loading situation during
the structures lifetime.

P10min =
PEnvi · LT

tSim
(2.4)

Further, OWT availability influences the probabilities. The availability of the turbine is a guarantee of the
turbine manufacturer, based on the operation and maintenance strategy, at which share of the total lifetime the
wind turbine will be operating. The presented DLC 6.4 is partially resulting by the OWT projected availability
for the simulation of a non-operational wind turbine within and outside the range of possible production wind
speeds [14]. This DLC is particularly important for the MP fatigue damage, since due to the non-presence of
aerodynamic damping during non-operational times the fatigue loading is higher [14].

(b) Stress cycle counting methods

Several methods for cycle counting for stress histories are listed in [42], such as zero crossing, peak, range pair
and rainflow counting. Rainflow counting is pointed out to be a more favorable method for welded components
in comparison to others [43]. Further information about rainflow counting is found in [44].

(c) SN-Curve and Miner sum

Fatigue detail design is completed by use of SN-curves. These curves are expected to be selected according to
DNV-RP-C203 [8] for a given structure by detail geometry, stress direction, fabrication and inspection.

The unmodified SN-curve is a bi-linear line with the negative inverse slope m on a double logarithmic plot, on
which the x-axis represents the number of cycles and the y-axis the stress range, usually in Mega Pascal. The
basic design SN-curve according to [8] is defined by expression 2.5:

logN = log (a)−m log (∆σ) (2.5)

N ... Number of cycles [#]
m ... Negative inverse slope [-]
log (a) ... Interception of SN-curve with the x-axis [m]
∆σ ... Stress range [MPa]
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Equation 2.5 is extended to expression 2.6, that is taking the plate thickness into account [8]. In equation 2.6,
t represents the structure detail plate thickness, tref the reference thickness and k the thickness exponent [8].

logN = log a−m log ∆σ
( t

tref

)k
(2.6)

The SN-curves in [8], obtained from experiments, are defined with a 2.3% chance of failure, i.e. two times the
standard deviation is subtracted from the experiments mean value. The experiments behind the SN-curves are
performed by testing small specimens with no stress redistribution possibility until failure by through cracks
[8]. According to the DNV-RP-C203 design recommendations [8] fatigue life needs to be checked for different
failure cases by pointing out the failure mode: ”weld toe into base material”.

Fatigue damage DDMG, according to the Miner rule (1945) of linear cumulative damage [43], is calculated by
combining the stress bins ni of the loading history with the SN-curve, see expression 2.7:

DDMG =
∑
i=1

ni
Ni

(2.7)

For cycles below the fatigue limit, the SN curve can either be linearly extended or the Haibach approach can be
applied [43]. The latter is the SN-curve slope change due to material degradation by cycles above the fatigue
limit [43].

(d) Design Fatigue Factor (DFF)

The calculated characteristic damage DDMG from expression 2.7 is emphasized by a partial safety factor DFF,
leading to the design damage [6]. The fatigue damage design requirement is that the cumulative fatigue damage
is below one. This DFF is depended on type and accessibility of the structure, maintenance philosophy and
applied corrosion protection [6]. The different DFF factors are repeated in a summarized way from [6] in
Table 2.2.

Table 2.2: Design fatigue factors (DFF) taken from [6].

Location Accessibility [Yes|No] Value
Atmospheric Zone Y&N 1|2|3

Splash Zone Y|N 1|2|3
Submerged Zone Y|N 1|2|3

Scour Zone N 3
Below Scour N 3

Another option for the design damage elaboration is by material factors [6]. According to Table 2.2 the structure
below the scour zone needs to be designed for three times the lifetime that the structure is actually designed
for, e.g. a structure design life of 25 years results in a MP-below-scour zone design of 75 years. For structure
parts that can be inspected, the DFF can be set equal to one or two. The required inspection intervals are
computed as follows: the design lifetime divided by three times the applied DFF [6].

This shows the high uncertainty of the fatigue damage prediction, even though many load cases and load
situations are considered. Uncertainties reach from the real environmental structure loading uncertainty to
uncertainties in the prediction model. Therefore, this factor might lead to a too conservative design. In case
it can be certified that the safety level of an lifetime extended structure is given, lifetime extension is feasible.
This implies that the fatigue damage of non-inspectable parts are below the margin of the extended lifetime.

Ultimate Limit State

The ultimate limit state of offshore wind support structures is defined in [6] as a ultimate load carrying capacity
check. The LCTs include extreme loads with return periods, e.g. one, five and 50 years. According to [6] all
elements of a structure need to be checked against amongst other failure criteria:

- Yielding and buckling

- Brittleness

Possible failure modes for yielding and buckling of components need to be considered [6]. Guidance for the
design of tubular members is given in the NORSOK standard N-004 [45] by stating a diameter to wall thickness
ratio (D/t).
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Brittleness must be avoided for the structural parts or a verification of additional resistance must be completed
[6]. Since brittle failure may occur abruptly, whereas with ductile failure the structure is redistributing the
loads [6] and might be predicted beforehand by measurements and inspections.

Service Ability Limit State

SLS is connected to the deflections and vibrations of the structure or structural elements that might influence
the service ability of the structure [6]. A limited permanent structure rotation during the entire lifetime is
allowed. This includes an installation and the loading induced rotation tolerance. In general, in case of fulfilling
the requirements of ULS and FLS of a wind support structure, the SLS criteria is not the limiting state.

Accidental limit state

The ALS is defined as a resistance verification of a structure during and after the accidental event [6].

2.2.5 Manufacturing Requirements

Parallel to the presented structural requirements in sub-section 2.2.3 and 2.2.4, the design is restricted by the
manufacturing requirements. Availability of materials, dimensions and welding ability is essential to keep the
costs low or even for feasibility purposes in fabrication. The following information is based on Rambøll project
experience:

Firstly, plate thicknesses are only available in discrete and not continuous steps. Costs are kept low by choosing
from standard thicknesses. Utilization of non-available thicknesses may cause higher costs, even though the
overall steel mass is less, i.e. mainly due to production waiting times of the non-standard plate thicknesses.
The MP diameter is rolled from a continuous steel plate.

Secondly, manufacturers are only able to handle a specific maximum dimension and/or weight of a section,
depending on their available machinery. These are limited by space and crane capabilities within the factory. A
minimum length of a section is also defined to keep the welding costs low. Besides, each wall thickness change
requires a different rolled plate and thus includes more welding during fabrication. This rises not only the
manufacturing costs, but also increases the amount of locations that are vulnerable to fatigue. These limiting
values are defined in the design phase, i.e. when the manufacturer is selected and his capabilities are known.

Thirdly, maximum wall thickness changes are representing a limit at which manufacturers are still able to
perform the weld between two sections.

2.2.6 Transport Installation Requirements and Recommendations

The transport and installation possibilities of the MP are mainly restricted by the lifting capacities of the vessel.
The lifting capacities depend on the regarded installation vessel and reach from approximately 800 tons up to
5000 tons, i.e. jack-up and floating crane [46]. The current availability of the vessels, as well as driving hammers
need to be checked for the current project. From Rambøll project experience the main constraining parameter
for MP hammers is the MP top diameter. The diameter difference can be adjusted to a certain extend by a
conical piece between hammer and MP. Additionally, hammers need to be selected according to the geotechnical
situation on site.

2.3 The Genetic Algorithm

Computational optimization of processes and quantities is used by the industry in many domains, mostly to
reduce costs. The main goal of the computational optimization approach is to reach an equal or better result
compared to manual iteration of experienced engineers, in equal or smaller amount of time. This approach in
engineering practice is brought to a limit due to longer computation times of specific steps [7], e.g. structural
analysis. The small allowable time frame, in which the optimizer needs to run through, is defined by the industry
pressure to deliver results and offers to clients. Therefore, the main restriction of computational optimizers is
time. Having this restriction set, this leads to cut-offs and simplifications of the computational model. These
cut offs lead in further steps to a result accuracy influence.

With future increasing computational capacities, todays models may be computed in a smaller amount of
time, but since also the analysis models will improve, it will lead to the same issue. Considering this, the
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main attention, after setting the design constraints, is to find ways to save computational resources by not
losing accuracy of the results. Within the following paragraph the optimization algorithm, namely the genetic
algorithm (GA), is presented.

The GA origins from nature, in which the survival of the strongest/fittest is part of the evolutionary process since
the beginning of time. Basis of the algorithm are the individuals, which are containing the design variables, and
the population, an assembly of individuals in one generation [7]. The fitness function evaluates the individuals
along with the constraints, with which the combination of different optimization variables are compared [7].
By procreation, evaluated individuals of a previous generation are forming the following population [7]. For
illustrative purposes the general work flow within a GA generation is shown in Figure 2.3:

Generation i 

Constraints Fitness Breeding 

Generation i+1 

Mutation Cross-over 

Figure 2.3: General GA work flow within one generation.

Population

Having a wide population size, the optimization space is covered to a larger extend, but with the drawback that
the computation time is increasing [7]. The initial population is created with random values of the optimization
variables to envelop a large optimization space [47]. Following populations are created on basis of the previous
generation, see Figure 2.3.

Constraints & Fitness

First the variables in ~x that define the fitness function need to be elaborated. The minimization of y in eq. 2.8
by optimizing the variables in the vector ~x is the objective. Therefore, y represents the corresponding fitness
evaluation of ~x.

f(~x) = min(y) (2.8)

For each optimization problem, the fitness function needs to be defined. The optimization using GAs may
be constrained or unconstrained. Unconstrained problems imply that the optimization variables in ~x are
not required to fulfill any specific requirements. Hence, a constrained optimization restricts the optimization
variables and thus the search space is limited [47]. In case the requirements are not fulfilled the fitness function
outcome is penalized [47], i.e. a factor is artificially increasing the value of y.

Breeding

In the breeding stage new individuals are formed for a new generation [7]. This process is consisting three steps:
parent selection, crossover and mutation [7]. The selection as a parent of an individual depends on the fitness
evaluation and its ranking compared to the other individuals within the population [47]. The most striking
selection techniques described in [7, 47] are repeated and summarized below:

- Roulette wheel selection is based on a rotating wheel, divided according to fitness evaluations of individuals
within a population [7]. This method may not select the best individuals, due to the random selection
[7, 48].

- Random selection selects the individuals randomly and emphasizes that the fittest individuals may not
be selected [7].

- Rank selection, ranks the fitness values of the individuals within one population [7]. Later convergence,
but diversity is emphasized by this method [7].

- Tournament selection is completed by running tournaments of randomly selected individuals [47]. In each
tournament the best individual is selected [7, 49].
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Cross-overs are generating new individuals generating after parent selection. Crossing occurs at single or
multi-crossover points [7, 47] and is defined by a crossover-mutation ratio [50].

The Mutation is an important parameter to keep diversity within the population and the wide search space
active [7]. Nevertheless, a large mutation rate would degenerate the GA to a random search, i.e. no links
between generations are created [7].

Convergence behavior

The algorithm terminates if one of the following criteria is met:

- Generation limit [7, 47, 49]

- Time limit [7, 49]

- No improvement of best fitness for a set number of generations [7, 47, 49]

Advantages and challenges of the GA are partially repeated from [7] in Table 2.3:

Table 2.3: Selected advantages and disadvantages of GAs repeated from [7].

Advantage Challenge
+ Parallelism - Finding the fitness function
+ Applicable in many domains - Numerous design evaluations
+ Larger optimization space - Early convergence
+ Not getting stuck in local optima - Uncertain to find the global optimum

The most striking challenge of the GA is to tackle numerous fitness evaluations [7]. This is an actual problem of
the algorithm applicability in engineering design, since each individual usually includes extensive calculations,
e.g. a large LCTs or complicated structural analysis models. Therefore, pre-processing work needs to be
completed before starting the algorithm to throttle down the computation time by not loosing accuracy.
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3 | Primary Steel Optimization
This chapter deals with the model and structure description for a monopile (MP) based offshore wind turbine
(OWT) support structure optimization using the genetic algorithm (GA). Section 3.1 presents the model
description. There, soil and environment, wind turbine and support structure modeling, as well as load cases
(LCs) and used software are presented. Section 3.2 describes the GA implementation in the design process
addressing variables, constraints and settings. In section 3.3 fatigue limit state (FLS) load case table (LCT)
reduction techniques are presented, followed by Section 3.4 with possible GA FLS LCT implementations. Next,
Section 3.5 discusses selected GA tuning parameters. The last Section 3.6 points out model and simulation
software assumptions and uncertainties.

3.1 Model Description

3.1.1 Loading, Soil & Environment

The information in this sub-section is obtained from a design basis of a Rambøll reference project. Details
about the site and structural features are not listed due to confidentiality.

(a) Loads

Loading on OWTs is a combination of permanent, variable and primarily horizontal environmental loading.
Permanent vertical loadings are dead loads originating from structural primary, secondary steel and the rotor
nacelle assembly (RNA) mass. Variable loads change in magnitude and location for a short time period regarding
the total design life time, e.g. installation or maintenance. Environmental loading originates from wind, waves
and current. For this thesis only permanent and environmental loads are included, while variable loadings are
disregarded.

(b) Waves & Current

Directional velocities of wind and current as well as tide elevations are taken from a Rambøll reference project
with available met-ocean data. The normal sea state for the FLS LCT are defined by a Joint North Sea Wave
Observation Project (JONSWAP) spectrum [51] with peak periods and significant wave heights as parameters.
The significant wave height is given as a function of wind speed. Subsequently, peak periods are computed from
the significant wave heights. With the latter information the JONSWAP spectrum is formed.

(c) Wind

The wind probability distribution is described by a Weibull distribution [52]. Weibull scale and shape parameters,
as well as turbulence intensities and standard deviations per wind speed are obtained from the Rambøll reference
project. Wind speeds are extrapolated by a power law profile to hub height [52].

(d) FLS Design Load Cases 1.2 & 6.4

Within this graduation project, only fatigue limit state design load cases (DLC) in power production (DLC 1.2)
and in idling/non-production (DLC 6.4) [5, 21] are regarded, see sub-Section 2.2.4. The environmental loads
are combined for possible design situations within those DLCs as described in sub-Section 2.2.4. In Table 3.1
the LCT creation specifications are listed. There, V represents the wind speed, DV the wind direction, DV,W

the misalignment of wind and wave, and Yerr as the nacelle yaw error:

Table 3.1: DLC 1.2 and DLC 6.4 combinations partially repeated from [5].

DLC V [m/s] Yerr [Yes|No] DV [Deg] DV,W [Deg]
1.2 Vin ≤ ∆V ≤ Vout Y [0,330] ∆DV = 30 [0,90] ∆DV,W = 30
6.4 Vidl,low ≤ ∆V ≤ Vidl,up N [0,330] ∆DV = 30 [0,90] ∆DV,W = 30

The wind velocity discretization ∆V is set to two meters per second and the direction discretization ∆DV to
30 degrees. In the operational DLC 1.2 the wind velocity limits are the cut-in Vin and cut-out Vout wind speeds
of the wind turbine.
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The non-operational DLC 6.4 is partially formed by the non-availability parameter and wind speeds below/above
Vin and Vout, according to wind speed probabilities. Therefore, the DLC 6.4 velocity range reaches from below
cut-in to above cut-out wind speed, Vidl,low and Vidl,up. For wind speeds above cut out, the wind turbine blades
are pitched out. The water depth for the location is intermediate. Therefore the fatigue damage is expected to
be wave-governed [14].

The probabilities of each LC inside the considered DLCs are formed by available met-ocean data. OWT
availability is implemented by factorizing the wind speed probabilities by the availability ratio. Subsequently,
the total LC probability is obtained by consulting a scatter diagram, including wind speeds and wind/wave
misalignment combined with the yaw error probability. For DLC 6.4, no yaw error is included. The resulting
LC probability is subsequently scaled to a ten minute duration load as described in eq. 2.4.

(e) Soil

Soil-structure interaction is modeled by a Winkler based non-linear spring model presented in sub-section 2.2.2
from the API recommendation [36]. These include non-linear springs, such as p-y, t-z and q-w for lateral,
frictional and tip resistance respectively.

Soil specifications are based on cone penetration tests and laboratory tests (triaxial, oedometer) taken from the
Rambøll reference project. General soil composition for this site is a combination of different layers of sand and
clay.

3.1.2 Geometrical Definitions

Monopile

The MP is divided into three blocks as illustrated in Figure 3.1:

α

Figure 3.1: Schematic illustration of the MP-model including the transition piece TP and the interface level (IFL).

Block one reaches from the MP top until below the splash zone and the MP-TP overlap. The conical section is
forming block two. The third block reaches from the end of the cone section above the mudline until the pile
tip. Block one and three are defined by a constant diameter and wall thickness. Block three is depending on
the cone angle and length of block two. For more specifications regarding the MP structure see section 2.1.

- Block I is defined by the splash zone, for which a upper and an lower limit exists. Those limits are obtained
by combining the highest and lowest water level with an occurrence of one year, including 60% and 40%



16 Delft University of Technology

Master Thesis Chapter 3. Primary Steel Optimization

of the wave height and the vertical installation tolerance [11]. Influences of climate change on the sea level
are included in the upper limit. A length tolerance for the MP-TP overlap close to the cone section top
is included.

- Block II is defined by the cone angle α, a cone length, an upper and a resulting lower diameter. The cone
angle α is defined with a minimum of 2.5 up to a maximum of 3 degrees.

- Block III is defined by a constant diameter and a wall thickness. The minimum length above mudline is
seven meter, due to the cable guidance radius and the peak stress prevention. The maximum length is
defined by the drive ability for the given soil conditions.

TP, Tower and Appurtenances

The secondary steel and the platform are included as a fixed added mass distributed along the pile. The
implementation of appurtenances is especially important for the hydrodynamic force computation. Access
ladders and boat landing are fixed along the TP, cathodic protection along the MP. The corresponding masses
and length specifications of secondary steel, platform, TP and tower specifications are taken from a Rambøll
reference project and are not part of the optimization. Primary and secondary steel material is considered to
be S355 steel with a density of 7850 kg/m3.

Wind turbine

The RNA is taken from a Rambøll reference project and due to confidentiality issues no further details are given
within this report.

3.1.3 Simulation Model Definitions

The Rambøll sequentially design tool is a combination of two simulation programs, namely Sheila and LACFlex.
Sheila is the structural analysis execution program and LACFlex the wind turbine simulation tool. The steps of
the semi-integrated design loop in case of a monopile (MP) geometry modification are illustrated in Figure 3.2:

Super-Element 

Sheila 

Turbine Analysis Fatigue Analysis 

Geometry Modification  

Wavegen Wavegen 

Rosa Rosa 

Fatima 

LACFlex Sheila 

Figure 3.2: Design work flow using the Rambøll analysis software.

Starting from the left in Figure 3.2, Sheila reads all the input files and redirects the information to the
modular based sub-programs for specific OWT foundation analysis and saves the data for post processing.
The modular sub-programs can be activated or deactivated for specific computations. Activated sub-programs
for this graduation project are:

- Wavegen creates the wave state for the structural analysis of the super-element and FLS computations.
Irregular waves, generated by the spectrum are a summation of linear regular waves with different
frequencies and amplitudes. The corresponding velocities and accelerations are stretched to the instanta-
neous water surface by Wheeler stretching [53]. Current is defined as a constant volume discharge using
the surface velocity and is aligned with the waves.

- Rosa represents the finite element structural analysis program and is called in the super-element and
fatigue analysis [4]. The hydrodynamic forces on the substructure are computed with the Morison
equation, see sub-section. 2.2.2. The inertia parameter CM in eq. 2.1 is implemented by the MacCamy&
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Fuchs [33] correction, changing with the corresponding MP section diameter and incoming wave length.
The drag coefficient CD is depended on the Reynolds number and Keulegan-Carpenter number. Marine
growth values from [6] are included in the sub-surface locations by implementing an increased diameter
in the Morison equation, see expression 2.1.

- Fatima performs the fatigue damage computation as described in 3.1.1. All type of welds, such as
circumferential and longitudinal can be implemented and verified. Knowing from Rambøll project exper-
ience, circumferential welds (CWs) are design driving elements for MP-based wind support structures.
Therefore only these welds are enabled. CW governing fatigue damage is caused by the mainly horizontal
loading leading to large stress cycles in vertical direction in the tubular elements. CW locations are
allocated by Sheila depending on pre-defined maximum/minimum weight/length per element according
to manufacturing possibilities and at locations with changes of the cross section geometry. Since the
circumferential weld locations and segment lengths are varying in the GA, due to changing geometries,
fixed circumferential weld locations over the MP height are implemented, see Table 3.2.

Table 3.2: Circumferential weld (CW) locations (z) measured from mean sea level.

CW [#] z [m] CW [#] z [m] CW [#] z [m] CW [#] z [m]
01 +4.5 07 -9.0 13 -23.0 19 -33.0
02 +2.5 08 -11.5 14 -24.0 20 -35.5
03 +0.5 09 -14.0 15 -26.0 21 -38.0
04 -1.5 10 -16.5 16 -27.5 22 -40.5
05 -4.0 11 -19.0 17 -29.0 23 -43.0
06 -6.5 12 -21.5 18 -30.5 24 -45.5

Stress cycle counting is completed by rainflow counting and the used specification SN-curve is: D with
cathodic protection from [8], see Table 3.3.

First design loop step of Figure 3.2 is the super-element generation performed by Sheila. There, the sub-structure
with the hydrodynamic environment is simulated. Subsequently, the MP structure is condensed into a generated
super-element including the hydrodynamic loads in transfer files. Next, the super-element is handed over to the
Rambøll wind turbine analysis program LACFlex.

LACFlex is an aero-elastic wind turbine simulation program based on FLEX5 [54], originally developed for
onshore wind turbines. The simulation program represents the wind turbine including blades, nacelle, rotor,
drive train, tower and foundation [55]. The model include a full turbine dynamics simulation with reduced 28
degrees of freedom [55]. LACFlex simulates the LCs with a super-element at the tower bottom. Next, the
forces at the interface are included in transfer files. The forces include time series of forces and moments at the
interface. For further reading on the aero-elastic simulation software, the reader is referred to [54, 55].

The last step of the sequentially integrated design loop is the inclusion of the hydro- and aerodynamic forces in
the finite element program Sheila. Afterwards, the fatigue damage analysis performed in Fatima at each CW
for twelve radial positions (RPs) at the circumference of the MP, see Figure 3.3 and Table 3.2 for specifications.
The RP are set to record the fatigue damage for wind-wave misalignments sufficiently.

Figure 3.3: Radial position (RP) numbers taken from [4].
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Table 3.3: SN-curve parameters D repeated from [8].

Parameter Value Unit
a1 5.808 · 1011 [-]
m 3 [-]
tref 25 [mm]
k 0.20 [-]

Application of the design fatigue factor, presented in sub-section 2.2.4, is set to one. This does not reflect the
state of the art, see Section 2.2.1, but for the purpose of this graduation project it is sufficient and is not biasing
the results. Since the thesis goal is to identify the relation between optimized MP primary steel masses for
different design lifetimes, the application of a constant parameter can be excluded.

To cover non-linearities all simulations are completed in the time domain.

3.2 Genetic Algorithm Implementation

The geometry modification from Figure 3.2 is now completed by the genetic algorithm (GA), see Figure 3.4.
There the offshore wind turbine (OWT) analysis tools presented in section 3.1.3 are used to optimize a monopile
(MP) based OWT with respect to the requirements presented in sub-section 2.2.3 with an emphasis on frequency
and fatigue limit states (FLSs).

Super-Element 

Sheila 

Turbine Analysis Fatigue Analysis 

Wavegen Wavegen 

Rosa Rosa 

Fatima 

LACFlex Sheila 

GA 

Population 

Figure 3.4: General overview of the design loop inside the GA including analysis softwares.

Firstly, main GA definitions from sub-section 2.3 are defined in sub-section 3.2.1, followed the penalty and
exiting mechanism description in sub-section 3.2.2. GA tuning parameters are defined in sub-section 3.5.

The present GA optimization is containing partially continuous and discrete steps, resulting from available
material delivery dimensions. Therefore, integer computation in the GA Matlab® function is selected. Scripts
for MP geometry modification, analysis program steering and result evaluation are created.

3.2.1 Genetic Algorithm - Variables and Constraints

Optimized Variables

The optimization variable vector ~x of expression 2.8, is defined in expression 3.1. The vector ~x consists of
parameters, that describe the MP primary steel structure geometry, i.e. cone angle α, section length L3 and
corresponding block wall thicknesses t1 to t3. The structure illustration is shown in Figure 3.1.

f(~x) = G (3.1)

With the aim to reduce the MP weight G, the fitness function f evaluates the optimization variables ~x in each
loop, see Figure 3.4. In Table 3.4 the constrained optimization variables with their minimum and maximum
values are listed:
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Table 3.4: Constrained optimization variables.

Variable Min. Max. Unit
α 2.5 3.0 [deg]
L3 30 50 [m]
t1,2,3 55 113 [mm]

The diameter is defined within the computation resulting from block length two, the cone angle α and the pile
top diameter.

Fitness Function

The design fitness evaluations are divided into three blocks, see Figure 3.1. Mass computations of block I and
block III are equivalent due to a constant diameter, see expression 3.2:

GI,III = ρ
π

4

[
Do

2 − (Do − 2t1,3)2
]
L1,3 (3.2)

The conical section, i.e. block II, the mass evaluation is computed by eq. 3.3:

GII = ρSteel
π

3

[(Do,top
2

4
+
Do,topDo,tip

2
+
Do,tip

2

4

)
− (

Di,top
2

4
+
Di,topDo,tip

2
+
Di,tip

2

4

)]
L2 (3.3)

Di,top = Do,top − 2t2 Di,tip = Do,tip − 2t2

Do,top ... Outer cone top section diameter [m] Do,tip ... Outer cone tip section diameter [m]
Di,top ... Inner cone top section diameter [m] Di,tip ... Inner cone tip section diameter [m]
L1,2,3 ... Block length [m] ρSteel ... Steel density [kg/m3]

By summing the block masses GI , GII and GIII the overall total monopile mass G is obtained. The latter
represents the fitness evaluation f of the design vector ~x .

Constraint Function

The MP weight minimization without constraints would reduce the optimization variables to their minimum
in the intervals given in Table 3.4. Subsequently, the structure would not meet the requirements for a safe
operation during its lifetime. Therefore, the weight minimization is constrained by requirements presented in
sub-section 2.2.1. Those requirements are re-formulated in mathematical definitions in Table 3.5:

Table 3.5: GA design constraints.

Variable Formulation Origin
cb D/t <120 Buckling [11, 45]
ct tn−1/tn <10% Weld ability
cf1 f1 > flow Lower soft-stiff frequency
cf2 f1 < fup Upper soft-stiff Frequency
cFLS Dcrit < DLim Limiting Damage

cb is the requirement for buckling prevention. ct in Table 3.5 refers to the thickness change of two adjacent
sections. The design frequency f1 is the average value of the first two natural frequencies, since due to MP
structure symmetry, the two bending modes are close together. fup and flow are the soft-stiff frequency
boundaries. Dcrit represents the critical fatigue damage of the current structure. Since the structure is as
strong as its weakest link, only the maximum damage is handed over to the GA constraint function. DLim is
the projected maximum fatigue damage during the design lifetime, i.e. 0.04 for a lifetime of 25 years without
any design fatigue factor.

For each design the constraints are evaluated and subsequently create a basis for design comparison within a
population.
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3.2.2 Exiting Mechanism & Constraint Violations

Since the GA constraint evaluation is stepwise, see Figure 3.5, a conditional exiting mechanism is activated,
when buckling and frequency constraints are not fulfilled. These designs will not be selected as a final design.
This ensures that computational recourses are only allocated for feasible designs. Feasible designs for this
graduation project are MP structures fulfilling all the constraints in Table 3.5.

In case the exiting mechanism is activated, an artificial fatigue constraint value is handed over to the GA. This
constraint value is set to be a fixed value, which is violating the FLS constraint. If the exiting mechanism is
not activated, the FLS computation is completed and the real fatigue constraint value is calculated, which is
crucial for the evaluation of the design.

After the artificial or real constraint FLS, the weld ability constraint is evaluated. This constraint is not part
of the exiting mechanism, since the importance of this manufacturing constraint is lower compared to the
structural constraints.

Design GA 

SE/WT/FLS 

NFA cb 

Fulfilled
? 

cf 

Individual evaluation including possible constraint penalties  

cFLS 

yes 

no 

artificial cFLS 

ct ct 

Figure 3.5: Computation process inside the genetic algorithm including the exiting mechanisms.

For each constraint violation a penalty is applied by the GA. The penalties are implemented in the Matlab®

GA function as described in [50]. There, for constraint violating designs, the number of normalized constraint
violations of the current designs is summed with the populations worst, but feasible fitness value [50, 56]. Thus,
comparison of unfeasible designs is completed with their constraint function, while feasible designs are compared
with their fitness function [56]. The severity of constraint violations also influences the design comparison and
influences further selections [56]. For further reading on the penalty implementation in the GA, the reader is
referred to [50, 56].

3.3 FLS Load Case Reduction - Methodology

In cluster computation a full fatigue limit state (FLS) load case table (LCT) computation varies from a maximum
of approximately two hours to a minimum of 45 minutes, depending on the current cluster loading degree. This
Section presents required load case (LC) reduction techniques with the aim of high accuracy. Assuming the
computation time of each LC is equal, the maximum LC number is set to 120, i.e. approximately five minutes
per individual or design evaluation. This implies a LC reduction from the original FLS LCT in Section 3.1.1
of approximately 90%. Without the time reduction the genetic algorithm (GA) optimization of offshore wind
turbine (OWT) MP primary steel including the FLS would not be feasible.

The methodology of LC reduction techniques within this graduation project is based on a sensitivity analysis,
containing a FLS analysis using the full LCT for a design set. This design set contains different MP geometries
obtained by a prior GA run. The designs are fulfilling the frequency and weld ability listed in Table 3.5.
Differences in geometry imply a variation of embedment depths, cone angles and thickness distributions. In
Table 3.6 design set formative parameters, including their maximum, minimum, mean values µ and standard
deviations σ, are listed:
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Table 3.6: Covered geometry and frequency parameters of the design set, which is containing 41 designs.

Physical Quantity µ σ Min. Max. Unit
Frequency 0.21 1.2·10−2 0.19 0.23 [Hz]
Wall thicknesses 93.40 12.12 45.00 113.00 [mm]
Penetration depth 32.14 7.68 45.24 23.6 [m]

For each design, fatigue damage is evaluated at 24 circumferential welds (CWs) at twelve radial positions (RPs)
using the full FLS LCT. The information about damage contribution per LC over the design set will create
the basis for the estimation techniques presented in Section 3.3.1-3.3.4. For RP and CW specifications, see
Figure 3.3 and Table 3.2.

Four techniques for LC reduction using fatigue damage estimation are described in the sub-Sections 3.3.1 - 3.3.4:

- Load Case Ranking

- Random load case set

- Factor approach

- Importance Sampling

The LC reduction with fatigue estimation using the techniques mentioned above is completed in gradually
increasing complexity steps as listed in Table 3.7. Fatigue damage estimation techniques are tested, starting
from a single position, i.e. one CW and one RP, to the full three dimensional MP structure, i.e. all 24 CWs
and twelve RPs.

Table 3.7: Prospected steps for damage estimation technique comparison for
circumferential welds (CWs) for each radial position (RP).

Step [#] CW [#] RP [#]
1 1 1
2 1 1-12
3 1-24 1
4 1-24 1-12

Technique comparison is completed by use of statistical values: mean value and standard deviation of fatigue
damage. The nomenclature of the fatigue damage mean value and standard deviation is following the steps
stated in Table 3.7 and is listed in Table 3.8:

Table 3.8: Nomenclature of fatigue estimation mean value µ
and standard deviation σ of LC reduction techniques.

Step [#] µ [-] σ [-]
1 µest σest
2 µRP

est σRP
est

3 µCW
est σCW

est

4 µCWRP
est σCWRP

est

3.3.1 Load Case Ranking

The LC ranking approach includes the computation of LCs following different LC sortings and adding the
corresponding design set fatigue damage mean value of un-computed LCs. In other words, the true fatigue
damage values from a reduced set of LCs of a design are combined with the fatigue damage mean value and
consequently result in the fatigue damage prediction of a particular RP or CW. Three expressions to estimate
the fatigue damage of a particular point (CW, RP) on the MP are presented below, see eq. 3.4, 3.6 and 3.8. The
LC sortings are obtained taking the design set fatigue damage LC contribution into account, e.g. computation
of LCs, from which the fatigue damage outcome variates largely over the design set. Eq. 3.4 shows the first
fatigue estimation Dest technique:

Dest =

N∑
i=1

Dreal
i +

LCmax∑
j=N+1

µj (3.4)
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Dest ... Fatigue damage estimation [-]
Dreal

i ... Real LC damage of LCi [-]
N ... Number of computed LCs [#]
LCmax ... Maximum number of LCs in LCT [#]
µj ... Mean value of un-computed LCs in the [-]

LCT of remaining designs in the design set

Inclusion of an increasing amount of LCs leads to a reduction of the total damage estimation variance, since for
each computed LCs, the corresponding LC variance is reduced to zero. Possible improvement can be obtained by
introduction of a global scaling factor f , applied to the design set fatigue damage mean value µj of the remaining

LCs in eq. 3.4. The global scaling factor f is the mean value of factors fi per LC. fi is obtained by dividing the
computed LC damage Dreal

i with the corresponding LC mean value µi of the design set, i.e. fi = Dreal
i /µi, see

eq. 3.5. With increasing amount of computed LCs, the number of fi is increasing proportionally.

f =

N∑
i=1

Dreal
i

µi
(3.5)

Dest =

N∑
i=1

Dreal
i + f

LCmax∑
j=N+1

µj (3.6)

Another approach of factorizing the remaining LC fatigue damage mean value µj is by computing the median

value f̃ of factors fi, see eq. 3.7. f̃ is forming the new eq. 3.8.

f̃ =

N∑
i=1

Dreal
i

µi
(3.7)

Dest = Dreal
i + f̃

LCmax∑
j=N+1

µj (3.8)

3.3.2 Random Load Case Set

This approach is using eq. 3.6 and 3.8. In comparison to the LC ranking approach the LCs are selected randomly.
For each design in the design set the computation is repeated in many seeds. In each seed one random LC is
inserted in the eq. 3.6 and 3.8. The outcome of each seed results in a scaling factor fi of the random LC. This
factor scale the remaining LC fatigue damage mean value µj . The LC creating the smallest error to the true
damage value is saved for each design. Assembling the single LC of each design forms the random LC set, i.e.
LCrand.

3.3.3 Factor Approach

This approach is used for step one and step three, see Table 3.7. The goal is to compute the damage with LC
ranking in eq. 3.6 for one CW or RP and estimate the remaining CWs or RPs, using factors fCW and fRP . The
factors are computed by use of the CW or RP fatigue damage mean values, i.e. µCW

DMG µRP
DMG, and standard

deviations, i.e. σCW
DMG and σRP

DMG, over the design set. This ensures that fatigue damage is only computed for
one CW RP. The remaining fatigue damage of the eleven RPs or 23 CWs are obtained by multiplying the factors
with the outcome of the fatigue damage estimation of eq. 3.6. In case of step two in Table 3.7, the factors fRP

are obtained by normalizing all radial positions n = [1, 12] in the nominator by RP j in the denominator, see
eq. 3.9. In case of step three in Table 3.7, fCW is obtained similarly by normalizing all circumferential welds
n = [1, 24] by CW j, see eq. 3.10.

fRP =
µRP
DMGn

+ 3 · σRP
DMGn

µRP
DMGj

+ 3 · σRP
DMGj

(3.9)

fCW =
µCW
DMGn

+ 3 · σCW
DMGn

µCW
DMGj

+ 3 · σCW
DMGj

(3.10)
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3.3.4 Importance Sampling

The integral over a volume V in eq. 3.11, taken from [57], can be either computed random sampling of xi from V
with the probability distribution p(xi) or with samples yi from a different non-uniform probability distribution
g(yi) [57, 58]. ∫

fdV =

∫
f

g
gdV (3.11)

f/g represents the weighted sample. Knowing from Monte Carlo (MC) simulation, the integral of a function
IMC , i.e. left hand side of eq. 3.11, can be expressed as a sum of N randomly selected samples xi, see eq. 3.12
taken from [57]:

IMC ≈
∑N

i=1 f(xi)

N
±

√√√√√∑N
i=1 f(xi)

2

N
−
(∑N

i=1 f(xi)

N

)2

N
(3.12)

Expression 3.12 represents the mean value µMC plus/minus the standard error σMC [57], see eq. 3.13:

IMC ≈ µMC ± σMC (3.13)

If N → ∞, the integral is estimated perfectly, the standard error goes to zero σMC → 0 and the Importance
Sampling (IS) integral estimate IIS converges to the actual value [58]. Applying this methodology for the right
hand side of eq. 3.11 leads to eq. 3.14 taken from [57]:

IIS ≈

∑N
i=1

f(yi)

g(yi)

N
±

√√√√√√√
∑N

i=1

(f(yi)

g(yi)

)2
N

−

(∑N
i=1

f(yi)

g(yi)

N

)2

N
(3.14)

The IS integral estimate IIS from eq. 3.14 reduces to eq. 3.12 in case the probability densities p and g collide, i.e.
p/g = 1 [57]. The standard error defines how well a sample mean is estimating the actual mean of the original
distribution [57] and is also known to decrease with increasing amount of samples N , as shown in eq. 3.15:

σM =
σ√
N

(3.15)

σM is the standard error of the mean and σ the standard deviation of the sample distribution. The fatigue
damage estimation in eq. 3.16 is representing the sample mean value estimation in eq. 3.14, using a different
sample distribution g:

Dest =

∑N
i=1

Dreal
i

gi
N

(3.16)

Dest ... Fatigue damage estimation [-]
Dreal

i ... Real LC fatigue damage of LC i [-]
gi ... IS weight [-]
N ... Number of included LCs [#]

The non-normally distributed cumulative probability density g is formed by the fatigue damage mean value
over the design set, ranging from zero to one. The number of circumferential welds and radial positions taken
into account for the cumulative probability curve depends on the current accuracy step, see Table 3.7.

IS includes random LC selection. Therefore, random numbers between zero and one are selected, pointing to
one LC each. LCs with large contribution to the total fatigue damage have a higher chance to be selected.
The randomly selected numbers are also the corresponding LC weighting factors gi. By the weighting the LC
damage outcome Dreal

i by gi, fast convergence is expected, see eq. 3.15, e.g. by inclusion of four LCs, the
standard error towards true damage mean reduces by approximately 50%.
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3.4 Genetic Algorithm - Load Case Reduction Implementation

In Section 3.3 different techniques for fatigue damage estimation were presented and will be compared in
Section 4.1 regarding the criteria: accuracy and amount of LCs. The best resulting technique is implemented in
the GA fatigue limit state constraint evaluation, see Table 3.5. First, two possible methodologies are presented
in sub-Section 3.4.1. Next, in sub-Section 3.4.2 the critical MP fatigue damage for the GA FLS constraint
evaluation is explained.

3.4.1 Genetic Algorithm Load Case Reduction Implementation Methods

3.4.1.1 Refining Accuracy

Since in the early generations of the GA the search space is quite coarse, it is assumed that the required
accuracy is lower compared to the later generations, i.e. the search space refines towards later generations. To
save computation time, less LCs with a lower accuracy are implemented in early generations. With increasing
generation number the LC number is augmented. Towards later generations the GA constraint will be close
to the constrained limits. Therefore, higher accuracy is essential if a design is passing or failing the constraint
criteria.

Simplest approach to tackle the refinement, is by implementing the LC sets in stages k. Here, four stages are
implemented. 30 LCs are set as minimum since file-loading times by the programs presented in sub-section 3.1.3
is the same for the first 30 LCs. LC numbers in the following stages k = [2, 4] are set to 50, 90 and 120.
Subsequently, this approach follows a variable constraint evaluation during the GA optimization. In Figure 3.6
the damage refinement stages, including generation numbers, are illustrated.
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50 LC 
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90 LC 

Stage 4 
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Increasing generation number 

Figure 3.6: Implemented LC reduction using Importance Sampling in the genetic algorithm MP optimization.

3.4.1.2 Constant load case number

This approach is following a constant constraint evaluation during the whole genetic algorithm optimization.
For this, the stage k = 4 of the LC refinement shown in Figure 3.6 is used.

3.4.2 Critical damage for genetic algorithm constraint function

The actual constraint evaluation inside the genetic algorithm is completed with one critical fatigue damage
value. LCs of the actual stage k are computed, see Figure 3.6, and emphasized by the corresponding damage
estimation technique mean value µCWRP

ijk and standard deviation σCWRP
ijk , with i=[1,24] and j=[1,12]. This

implies that for each stage k one µCWRP
ijk and also one σCWRP

ijk [24x12] matrix is created.

Fatigue damage in a refinement stage k is combined with the obtained σijk around the mean value µijk, see
eq. 3.17 with a multiplicand n. There, the [24x12] matrix Dk represents the fatigue damage estimate of the
three dimensional MP structure including statistical factors and the [24x12] matrix Ik the un-factorized fatigue
damage of the MP in stage k for each CW and RP.

Dk = Ik · (µCWRP
ijk + n · σCWRP

ijk ) (3.17)
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From Dk the scalar critical fatigue damage Dcrit, i.e. the largest fatigue damage value, is selected as the genetic
algorithm constraint value, since the structure is as strong as its weakest link, see eq. 3.18:

Dcrit = max(Dk) (3.18)

3.5 Genetic Algorithm - Settings

GA implementation in the design process is completed by use of the GA Matlab® function. Since mixed integer
computation for discrete steps of the wall thickness is applied, several genetic algorithm options are restricted.
Relevant restrictions are repeated from [50]:

- No linear constraints. These can be circumvented by two non-linear constraints.

- No custom cross-over, mutation and creation functions.

- Tournament selection is the fixed parent selection technique.

- No custom penalty factors.

In Table 3.9 several set GA key parameters are defined:

Table 3.9: GA tuning parameters.

Variable Value Unit
Gmax 45 [-]
P 15 [-]
ftol 10−3 [ton]
Gstall 20 [#]
Ecount 1 [-]
Cover 0.8 [-]

Gmax is the predefined maximum GA generations after which the algorithm stops the global optimum search.
Since the prospected maximum evaluation time per individual or design is five minutes, the algorithm would
stop after 2.3 days depending on the cluster loading.

Population size P is influencing the convergence of the algorithm, since with a larger pool of individuals the
optimum is more likely to be reached. On the other hand, a larger population implies more individual evaluations
and subsequently higher computation time per generation. In a prior run the GA is tested with populations
containing 15 and 20 individuals. Both optimizations led to the same converged results. Therefore, the smaller
population size is selected.

ftol is representing the function tolerance. In case of a 1000 ton MP, an accuracy of one ton is assumed to be an
appropriate resolution for a discrete optimization problem. This limit is important for discrete optimizations,
since the algorithm might jump between two possible wall thicknesses and not converge in case the tolerance
benchmark is set too low.

Maximum stall generations Gstall are set to terminate the GA in case the best fitness value is not improving
over set generations [50] in the range of ftol.

Ecount is defining the number of best designs that are copied from one generation to another without modification
by cross-over and mutation. Regarding the small population size P the recommended elite count according to
[50] is one.

The cross-over fraction Cover is the ratio of the cross-overs and mutation between designs within one generation.
In the Matlab® GA function a crossover ratio of 0.8 is set as default [50] and is also used for this optimization.
This ensures that a population is formed by previous generations, but also to keep the search space wide. The
mutation is Gaussian distributed [50] and is performed by random number selection.
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3.6 Model Assumptions, Uncertainties and Limitations

Assumptions for different parts in the model are simplifications and lead to model limitations. Those limitations
combined with model, statistical and data uncertainties form the whole limitation of the computation model.
Regarding the monopile (MP) structure optimization for different fatigue life times, the assumptions and
uncertainties of the current model are sorted by themes: environment, structural and wind turbine analysis,
and genetic algorithm (GA).

3.6.1 Environment Modeling

Assumptions

- Waves and current are aligned.

- Environment is represented by the eight seeds per wind speed in the discretization proposed in [5] and is
considered to be sufficient to describe the fatigue loading on the OWT.

- Marine growth is implemented according to [59], depending on the water depth for the given site location.

- For this location no occurring ice loads are considered.

- Availability percentage of the wind turbine is assumed. In case the true availability of the OWT is higher
than expected the structural system experiences more damping during its lifetime. Subsequently, the
structure oscillations would be expected to be lower. Hence, a lower availability is leading to higher
oscillations and to possible under conservatism in the design.

- The yaw error is set as a fixed ± value to the true wind direction in DLC 1.2. The true value of
misalignment may be obtained by measurements in operation.

Uncertainties

- Data is obtained from measurements and is subsequently used for the load evaluation, that a structure
is facing during its lifetime. For extended design lifetime, uncertainties of the environment prediction are
rising.

- Lumping of wind-wave misalignments to four directions, i.e. 0, 30, 60, and 90 degrees.

- Resolution of two meters per second is assumed to be sufficient according to [59]. This resolution
assumption should be evaluated on real OWT by measurements.

- The equal un- and loading path is not fully representing the dynamic soil loading behavior, i.e. hysteresis
[55, 60]. Therefore, no accurate beneficial soil damping can be applied. Additionally, the p-y curve
inputs of a soil layer are described by a limited amount of parameters, i.e. soil density and a soil specific
parameter of the soil layer (friction angle for sand and undrained shear strength for clay).

- Uncertainty of API based methods are rising, because the industry is moving towards larger foundations,
for which the p-y curves were not calibrated [61]. These curves, obtained from long flexible small diameter
pile experiments, are used for relatively short MPs with a large diameter [60, 62].

- Soil is heterogeneous and may not be in horizontal layers as modeled.

- Soil conditions are not evaluated for each OWT location. The OWTs within a wind farm are clustered
with the assumption of equal soil conditions within a cluster.

3.6.2 Structural and Wind Turbine Analysis

Assumptions

- The first two bending mode natural frequencies are taken into account for the placement in the soft-stiff
region. Locations of higher frequencies are not verified.

- There is no occurring soil erosion due to applied scour protection.

- LCs with probabilities lower than 10−7 have negligible contribution to fatigue damage.

- Circumferential welds are considered to be the governing welds for fatigue design.
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- Structural, soil and hydrodynamic damping are left unchanged from the Rambøll reference project. This
value results from project experience. Possible reduction of fatigue damage is shown in [63], in which
damping ratios between one and five percent are applied for fatigue prediction. Actual drag damping can
not be implemented since the MP is assumed to be a rigid structure in the Morison equation [32, 55].

- MP, TP and tower modeling is taken from a Rambøll reference project. The model is a linear finite
element model with Timoshenko beam elements. This beam theory takes, in contrast to the Bernoulli
beam theory, shear deformation of sections into account.

- The MP sub-structure is considered as Craig-Bampton super-element in the aeroelastic analysis [64].

- Wheeler stretching is applied for the wave particle acceleration and velocities at the free surface elevation
[53].

Uncertainties

- Hydrodynamic damping values are inserted from Rambøll project experience, but may deviate from real
behavior.

- Non-linear soil behaviour is linerarized in the super-element approach.

- Cut-in and cut-out wind speeds are considered as exact as given from the wind turbine manufacturer. This
is important for the border between the operational and non-operational LCs in terms of aerodynamic
damping.

- Rainflow counting is considered the most accurate counting technique, but the influence of sequence effects
is not taken into account [43].

- In reality the applied material is not fully homogeneous with the equal parameters over the whole section or
thickness. Especially for FLS computation, in which characteristic loads are applied, this adds additional
uncertainty in the true lifetime of the structure.

- Breaking down the complex fatigue phenomenon to a single parameter by the Miner Rule is leading to
uncertainties in the lifetime prediction [43].

- Cycles below the fatigue limit are considered non-damaging, according to [43]. Using the Miner rule, the
fatigue damage caused by previous cycles are disregarded [43]. This introduces an error, since the damage
of an already degraded material should be higher compared to an undamaged one.

- The weld classification does not imply that the structural fatigue resistance of the whole assembly is the
same as for single specimens in experiments.

- The time depended phenomenon corrosion plays an important role for a structure in the marine environment,
especially in the air-water transition zone, since corrosion is a process of material degradation and
influences the fatigue lifetime of a structure [43]. The influence of corrosion on fatigue is large, due
to the fatigue limit reduction and large crack grow rates depending on the wave shape [43]. Additionally,
the SN curves for free-corrosion are expected being 1/3 of the in air SN-curve [65].

3.6.3 Genetic Algorithm

Uncertainties

- There is no certainty that the global optimum is found. This strongly depends on the meters, see
section 3.5.

- Optimal number of wall thicknesses, that should be optimized, need to be defined by several GA runs. A
high number of wall thicknesses may not lead directly to smaller costs, since the manufacturing expenses
are higher, if many sections with different wall thicknesses need to be assembled. Additionally the GA
may take longer to converge.

- Block length one and two are kept unchanged. It is unclear if the global optimum may be found by
including these two block lengths into the optimization.

- High sensitivity on inputs, such as function tolerance, cross-over fraction and mutation rate and number
of individuals in a population influence the convergence behavior of the algorithm. Changing the inputs
have different impact on the outcome of the algorithm.
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- Corresponding fatigue life accuracy of converged genetic algorithm design, i.e. the global optimum design,
depends on the current load estimation accuracy step and fatigue damage estimation technique, see
Figure 3.6. In other words the estimation of the fatigue damage and the corresponding lifetime of the
structure is highest, when the algorithm converges in the last stage, i.e. stage four.

- In design optimization it is very difficult to design a structure for an exact lifetime. Small changes in
geometry influences the whole dynamics of the structure and may lead to a different governing detail on
the structure.

- Possible errors are introduced with the fatigue damage estimation model. The critical fatigue damage
result handed over to the GA constraint evaluation is on the conservative side. Difficulties will arise to
acquire an exact projected life time.
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4 | Results and Discussion
This chapter presents the results of the elaborated model in chapter 3. Section 4.1 discusses the results of
the load case (LC) reduction techniques and their comparison. Section 4.2 presents the evaluation of the LC
reduction implementation within the genetic algorithm (GA). In Section 4.3, the comparison of converged GA
results for different lifetimes with a full fatigue limit state (FLS) load case table (LCT) analysis including the
monopile (MP) mass versus lifetime graph is presented.

4.1 FLS Load Case Reduction - Results

Within this sub-section different results of LC reduction techniques are presented. Following the accuracy
steps from Table 3.7, these techniques are compared. First, one dimensional LC reduction, including the
fatigue damage estimation is presented in sub-section 4.1.1. Next, results of the two dimensional LC reduction,
including fatigue damage estimation, are shown in sub-section 4.1.2 and 4.1.3 and finally, three dimensional, in
sub-section 4.1.4. The main challenge is to find a robust and exact method, that is able to cover the directionality
dependence of the MP fatigue damage.

4.1.1 Step 1: Damage Estimation of one circumferential weld position

The first step from Table 3.7 is the FLS LC reduction, including fatigue damage estimation of the circumferential
weld one (CW1) at radial position one (RP1), see Table 3.2 and Figure 3.3. Within the following sub-sections
three different LC reduction approaches are evaluated and compared with each other:

- Load case ranking

- Random load case set

- Importance Sampling (IS)

The three approaches are tested and compared with each other at the end of this sub-section. The fatigue damage
estimation Dest of each design is normalized by the true fatigue damage value Dreal

fin of a design location (CW)
and position (RP) obtained from a full FLS LCT analysis, resulting in ||Dest||.

4.1.1.1 Load case ranking - Results

The fatigue damage mean values µDMG and standard deviations σDMG per LC over the design set at CW1 RP1
are illustrated in Figure 4.1. There, the contribution of each LC to the total fatigue damage can be observed.
The boarder between DLC 1.2 and 6.4 [5] is marked by the dashed red line. For this OWT site, idling LCs
contribute 53.7% and production LCs 46.3% in average to the design set mean damage µDMG for CW1 RP1.
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Figure 4.1: Unsorted σDMG and µDMG per FLS LC .

In Figure 4.2 the LCs are sorted in descending σDMG order from highest to lowest, LCHtL respectively. A similar
trend is observed in terms of the mean value by using the LCHtL sorting. This can be seen by comparing the
upper and lower illustration in figure 4.2.

Figure 4.2: Fatigue damage standard deviation σDMG and mean value µDMG with LCHtL sorting.

Subsequently, fatigue damage estimation eq. 3.4 is conducted for fatigue damage estimations with LC sorting
LCHtL. Using eq. 3.4 for each design in the design set, the normalized fatigue damage estimate ||Dest|| results
in Figure 4.3. Additionally, the designs best/worst ||Dest|| are compared. The required LCs to reach an error
equal to 1% are: 650 and 1315 respectively. Due to large differences of the designs in terms of geometry and
frequency, ||Dest|| are largely over-/underestimated, since Dreal

fin values are close or far away from the overall
fatigue damage mean of the remaining 40 designs. This implies that the geometry and frequency are statistical
outliers within the design set.
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X: 1315
Y: 1.01

X: 650
Y: 0.99

Figure 4.3: Normalized fatigue damage estimates of all designs in the design set (upper figure) and best/worst
estimates of the design set (lower figure) CW1 RP1 with sorting LCHtL and estimation expression 3.4.

In Table 4.1 the corresponding fatigue damage estimation mean values µest and standard deviations σest over
the design set at different amounts of computed LCs are listed.

Table 4.1: Estimation mean values µest and standard deviations σest

at different amounts of computed LCs using LCHtL sorting and eq. 3.4.

LC [#] µest [-] σest [-]
50 4.12 4.19
100 3.19 2.95
200 2.27 1.72
400 1.54 0.88
800 1.09 0.19
1600 1.00 2.9·10−5

In Figure 4.4 the updated damage estimation eq. 3.6 is leading to a clear fatigue damage estimation improvement
using the LC ranking LCHtL:
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X: 183
Y: 1.01

X: 831
Y: 0.99

Figure 4.4: Normalized fatigue damage estimates of all designs in the design set (upper Figure) and the best/worst
estimates of the design set (lower Figure) CW1 RP1 with sorting LCHtL using eq. 3.6.

Again, as in the lower illustration in Figure 4.3, the comparison of best/worst normalized fatigue damage
estimate ||Dest|| within the design set are shown in Figure 4.4. There, the required LCs to reach an accuracy
of 1% are reduced by 28% and 29% with respect to the total LC amount. In the uppermost sub-Figure 4.5, the
scaled overall mean value µcorr

DMG is plotted next to the unscaled µDMG. Underneath the latter Figure, the factor
fi of eq. 3.5 is illustrated per LC. Dreal in the bottom sub-Figure is representing damage value evolution in
case all LCs are computed following the LCT numbering. The latter converges towards Dreal

fin at approximately
800 LCs. In comparison ||Dest|| is showing a fast convergence for an exemplary design.

Figure 4.5: Scaled overall mean value µcorr
DMG of an exemplary design by use of a global factor f per LC, depending on

the number of simulated LCs.

Resulting µest and σest obtained with eq. 3.6 are tabulated in Table 4.2 and show a clear improvement in
comparison to Table 4.1. Firstly, µest reaches Dreal

fin with less included LCs. Secondly, significant reduction of
σest per LC stage is observed, i.e. for 50 LCs with a factor of approximately 36.
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Table 4.2: Fatigue damage estimation mean value µest and standard deviation σest at different
amounts of computed LC for the global factor approach using LCHtL sorting and eq. 3.6.

LC [#] µest [-] σest [-]
50 0.87 0.12
100 0.91 0.10
200 0.94 0.07
400 0.97 0.03
800 1.00 4.7 · 10−3

1600 1.00 2.0 · 10−6

Further, the highest to lowest standard deviation sorting LCHtL is probability weighted by the probability of
occurrence and by the relative contribution of µDMG to the overall fatigue damage mean sum: µDMG/

∑
µDMG,

leading to a new sorting LCPw
HtL, see Figure 4.6. Some LCs with higher contribution to the mean value are now

shifted and computed earlier.

Figure 4.6: σDMG and µDMG of the LCs with LCPw
HtL sorting.

Normalized fatigue damage estimates ||Dest|| of all designs using eq. 3.6 with LC ranking of Figure 4.6 are
illustrated in Figure 4.7. Corresponding µest and σest values are tabulated in Table 4.3.
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X: 585
Y: 1.01

X: 459
Y: 0.99

Figure 4.7: ||Dest|| of all designs in the design set (upper Figure) and the best/worst estimates of the design
set (lower Figure), including the with LCPw

HtL sorting and estimation eq. 3.6.

Table 4.3: µest and σest at different amounts of computed LC for the global average factor f approach with a LCPw
HtL

sorting using eq. 3.6.

LC [#] µest [-] σest [-]
50 0.88 0.12
100 0.91 0.09
200 0.97 0.03
400 1.01 0.01
800 1.00 3.8 · 10−3

1600 1.00 5.4 · 10−7

In comparison to the LCHtL sorting, convergence has not improved significantly, see Table 4.2 and 4.3. Improv-
ements can only be observed for σest from LC 800 on, but also a small deterioration for stages 50, 100, 200 and
400 LCs. µest remained approximately the same.

Inferring from the three presented methods, the influence of the global factor f , defined in eq. 3.5, is high. In
case of computing a LC, that is resulting in a damage value Dreal

i with a large deviation to the LC corresponding
mean value, the scaling is completed using a too high/low factor. This results in a late convergence to the true
value Dreal

fin in early stages. Estimations with LC sorting LCHtL by use of the median f̃ for the obtained factors
fi in estimation eq. 3.8 are illustrated in Figure 4.8 and Table 4.4. ||Dest|| deteriorates in all LC stages in terms
of mean and standard deviation.
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X: 488
Y: 0.99

X: 927
Y: 0.99

Figure 4.8: ||Dest|| of all designs in the design set (upper Figure) and the best/worst estimates of the design set (lower
Figure), including the damage standard deviation ranking of CW1 RP1 with the updated estimation expression 3.8 and

LCHtL sorting.

Table 4.4: µest and σest at different amounts of computed LC for the global median factor f̃ approach with a LCHtL

sorting using eq. 3.8.

LC [#] µest [-] σest [-]
50 0.80 0.17
100 0.85 0.12
200 0.91 0.08
400 0.95 0.04
800 0.99 7.3 · 10−3

1600 1.00 2.4 · 10−6

The most efficient and robust technique within the LC ranking approach leading to faster convergence towards
the true damage value Dreal

fin is by taking the average of the scaling factors fi per LC and apply it as a global

factor f to µj , i.e. eq. 3.6. For further fatigue damage estimations only eq. 3.6 with LCHtL sorting will be
considered.

4.1.1.2 Random load case set - Results

Fatigue damage estimations ||Dest|| using eq. 3.6 per design is completed multiple times by selecting one
randomly selected LC. The remaining LCs are included by the factorized fatigue damage mean value sum
of the remaining designs and LCs in eq. 3.6 using the factor fi from the design LC outcome. In Figure 4.9
||Dest|| scatter with high/low deviation to Dreal

fin is illustrated. The conclusion is that some LCs result in a
factor fi, that is scaling the mean value of the remaining 1687 LCs in such a way, leading to an estimation close
to Dreal

fin using only one LC per design.
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Figure 4.9: Damage estimation per design including one LC using 500 seeds.

The random LC set LCrand is created by taking the best resulting scaling factor fi from a LC per design. This
leads to a random LC set LCrand of 41 designs by assembling the best scaling factor fi per design. Due to
similar designs for the same locations the LC numbers may repeat themselves within the LC set LCrand. Only
unique LC numbers are used in LCrand. This implies that the number of LCs within LCrand may be smaller
than the design set of 41 designs, e.g. for the present case the LC set LCrand consists of 41 load cases. Locations
of these LCs in the FLS LCT are illustrated in Figure 4.10. The resulting normalized fatigue damage estimate
||Dest|| per design, using LCrand in combination with eq. 3.6, is illustrated in Figure 4.11. Application of LCrand

per design leads for some designs to a high fatigue damage estimation standard deviation σest. By including
more LCs in the design set LCrand with an accuracy better or equal to 0.5, 1, 2 and 3% deviation to one in the
scatter Figure 4.9, deterioration of fatigue damage estimates is observed in Figure 4.11 and Table 4.5.

Figure 4.10: Location of LC numbers in LCrand within the LCT .
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Figure 4.11: ||Dest|| per design by use of 41 LCs and eq. 3.6.

Unlike in the previous approach, increasing the amount of LCs decreases the accuracy. This can again be
tracked back to the influence of the global factor in eq. 3.6. Best results are obtained by including 41 LCs, i.e.
the LCs connected by the blue line in Figure 4.9.

Table 4.5: µest and σest at different amounts of computed LCs using random LCrand sets with eq. 3.6.

Dev. [%] LCs [#] µest [-] σest [-]
- 41 1.20 0.28

0.5 113 1.20 0.27
1.0 223 1.17 0.24
2.0 381 1.14 0.18
3.0 529 1.15 0.20

The median factor computation of eq. 3.8 is leading to better results in terms of the fatigue damage estimation
mean value µest and standard deviation σest over the design set by including 41 LCs, see Table 4.5. Again, a
fatigue damage estimation deterioration is observed by including more LCs. This shows, that this method with
random LC selection is not robust in this applied form. Therefore, due to the non-ability of improvement, this
method is disregarded in further estimation steps, see Table 3.7.

Table 4.6: µest and σest at different amounts of computed LCs using random LC sets eq. 3.8.

Dev. [%] LC [#] µest [-] σest [-]
- 41 1.14 0.13

0.5 113 1.06 0.15
1.0 223 1.02 0.10
2.0 381 1.00 0.06
3.0 529 1.01 0.07

4.1.1.3 Importance Sampling - Results

The probability distribution mentioned in eq. 3.14, used for random LC selection is illustrated in Appendix A.1,
specifically µDMG CW1 RP1. The curve shows the different contributions of specific LCs in the LCT with steep
parts for high contributions to the fatigue damage mean value and flat curve for low contributions. Figure 4.12
shows the IS fatigue damage estimation, completed for CW1 RP1 using up to 5000 random LC selections within
one randomly selected LC set.



38 Delft University of Technology

Master Thesis Chapter 4. Results and Discussion

Figure 4.12: IS CW1 RP1 fatigue damage estimation using eq. 3.16.

To evaluate the IS method, 500 randomly selected LC sets with 1600 LC each are computed and the resulting
µest and σest are listed in Table 4.7:

Table 4.7: µest and σest at different amounts of computed LCs using the IS approach in eq. 3.16.

LC [#] µest [-] σest [-]
50 1.00 0.08
100 1.00 0.06
200 1.00 0.04
400 1.00 0.03
800 1.00 0.02
1600 1.00 0.02

Comparison of the CW1 RP1 fatigue damage estimation using LC ranking, random LC set and IS method is
summarized in Figure 4.13. There, different fatigue damage estimation mean values µest and standard deviations
σest from Table 4.1 up to Table 4.7 are illustrated.
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Figure 4.13: Comparison of mean and standard deviation values of the four presented approaches within this
sub-section.

- The LC ranking approach is producing best results with eq. 3.6 using LCHtL sorting, defined in Figure 4.2.
The probability weighted LC sorting LCPw

HtL, defined in Figure 4.6, is less favorable in comparison. σest
is reduced in both LC sortings from 800 LC on significantly. The worst results using the LC ranking
approach are obtained by the factorless method, using eq. 3.4. There, µest convergence can be detected
after 800 LCs.

- The random LC selection, that produces the optimal scaling factor for µj , shows as only method within
this sub-section no significant improvement of σest and µest by including a higher amount of LCs.

- IS is the most favourable fatigue damage estimation method for CW1 RP1. IS stands out by a fast
convergence of µest. In terms of standard deviation, IS is decreasing with 1/

√
N , while LC ranking

methods are more accurate from 800 LC on. Since the objective is to find the most accurate method
within the first 120 LCs, IS is still in favor. The single mean for IS improvement is by changing the
density function in Appendix A.1. The only requirements of this curve are: monotonically increasing
and between values of zero and one. Therefore, it looks promising, that the IS method is leading to a
satisfactory damage estimation for the other steps mentioned in Table 3.7.

4.1.2 Step 2: Damage estimation of weld location for 12 positions

This sub-section presents the results of different methods for estimating the twelve radial positions (RP1-12)
fatigue damage for circumferential weld one (CW1), i.e. step two in Table 3.7. the MP fatigue damage
directionality dependence is the difficult part to tackle, see Appendix A.2. There, the standard deviations over
different radial positions variate. Highest variance can be observed in the range of load case (LC) 200-400 and
1200-1500 over the design set. These are also different in height over the radial positions (RPs). For other
LCs, the fatigue damage standard deviation is small compared to the latter regions, but the directionality is
visible as well, i.e. LC 1-250 and from 1500 on. Fatigue damage standard deviation differences of opposite
radial positions are illustrated in Appendix A.3. Those are rather small, due to the bending axis of the almost
symmetric structure.

The following approaches are discussed and compared within this sub-section:

- Load case ranking

- Factor approach

- Importance Sampling (IS)

The three approaches are tested and compared with each other at the end of this sub-section. The damage
estimation Dest of each design is normalized by the true fatigue damage value Dreal

fin of a design location (CW)
and RP obtained from a full FLS LCT analysis, resulting in ||Dest||.
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4.1.2.1 Load case ranking - Results

Figure 4.14 shows the normalized fatigue damage estimation ||Dest|| over the design set with optimal LC
sorting for each RP, LCopt

HtL respectively. LCopt
HtL represents the LC sorting for each RP from highest to the

lowest standard deviation σDMG, similar to Figure 4.2. Due to directional dependency, the LCopt
HtL differs per

RP. This leads to a high number of required LCs and disagrees with the main LC reduction objective: high
accuracy with less required LCs. Therefore, the single LC sorting LCHtL, defined in Figure 4.2, for one RP
is used to estimate fatigue damage as well. Radial ||Dest|| for one exemplary design is illustrated for both LC
sortings in Figure 4.14, i.e. upper sub-figure with LCopt

HtL and lower with LCHtL using eq. 3.6:

Figure 4.14: Fatigue damage estimation of location CW1 at 12 RPs for one exemplary design with LCopt
HtL sorting and

eq. 3.6.

The overall design set fatigue damage estimation standard deviations σest and mean values µest of the optimal
and single sorting are illustrated in Figure 4.15 and 4.16

Figure 4.15: Design set µRP
est and σRP

est of location CW1 at 12 RPs with LCopt
HtL for each RP.
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Figure 4.16: Design set fatigue damage mean value µRP
est and standard deviation σRP

est of location CW1 at 12 RPs with
LCHtL using eq. 3.6.

The conclusion is that the LCopt
HtL sorting is not a viable option, since for example at LC step 500, 921 different

LCs are required due to different LC sorting. Therefore, the sorting LCopt
HtL will not be considered in further

fatigue damage estimation steps, see Table 3.7.

Single RP sorting LCHtL is covering the requirements of a small LC set, hence acceptable ||Dest|| accuracy is
reached after 1600 LCs only, see Figure 4.16. There, the fatigue damage estimation mean value µRP

est and the
standard deviation σRP

est show a converging behavior after 94% of the LCT is computed. Therefore, the LC
ranking approach for RP damage estimation will not be regarded anymore for step four in sub-section 4.1.4 for
the fatigue estimation of all 24 CWs and twelve RPs.

4.1.2.2 Factor approach - Results

Even though the directional dependence for MP fatigue damage is present over the FLS LCT, Dreal
fin per position

do not differ much from other positions, see Figure 4.17. Values of the upper two figures are normalized by
RP1. The distribution of the fatigue mean damage damage µRP

DMG is approximately circular shaped, i.e. is not
showing any peaks at any RP. The largest standard deviation σRP

DMG of 5% is observed at RP4 and RP10.

Figure 4.17: Upper left figure: RP1 normalized circumferential weld CW1 µRP
DMG, upper right figure: RP1 normalized

σRP
DMG, bottom figure: Maximum fatigue damage Dmax radial position (RP) index count.
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Maximum damage position count over all designs is shown in the bottom figure. RP4 and RP10 are the
governing RPs over the design set, which can be related to the occurring environmental conditions. Based on
this knowledge, a fatigue damage estimation factor fRP is computed by use of eq. 3.9 with fatigue damage
mean value µRP

est and standard deviation σRP
DMG of the design set for n = [1, 12] and j = 4, see Table 4.8. In

Figure 4.18 the RP fatigue damage estimation mean value µRP
est and the standard deviation σRP

est per design are
listed.

Table 4.8: Factors fRP obtained by eq. 3.9 for position P1-12 damage estimation.

RP fRP [-] RP fRP [-]
1 0.99 7 0.99
2 1.00 8 1.00
3 1.00 9 1.00
4 1.00 10 1.00
5 0.97 11 0.97
6 0.97 12 0.97

The clear shift of µest in Figure 4.18 due to the applied factors is visible. An improvement is possible as long
as the RP4 ||Dest|| accuracy is increasing. When the latter has reached the maximum accuracy, the resulting
deviations of ||Dest|| are due to the factors in Table 4.8.

Figure 4.18: µRP
est and standard deviation σRP

est for an exemplary design CW1 RP1-12 using factor fRP .

4.1.2.3 Importance Sampling - Results

The probability distribution for IS is formed by the mean value for each LC over all twelve RPs for CW1, i.e.
µDMG CW1RP1−12 in Appendix A.1. The IS fatigue damage estimation using the new probability distribution
in eq. 3.16, is illustrated in Figure 4.19.



43 Delft University of Technology

Master Thesis Chapter 4. Results and Discussion

Figure 4.19: IS ||Dest|| for twelve radial positions using eq. 3.16 with one randomly selected LC set.

For the accuracy of the IS method, 500 seeds with random LC sets are used for fatigue damage estimation over
the design set. The mean value over all seeds is used to compute the standard deviation σRP

est and the mean
value µRP

est .

Comparison of the three presented approaches are shown in Appendix A.6 and A.7 in which the fatigue damage
estimation standard deviations σRP

est over twelve RPs are illustrated. The corresponding twelve fatigue damage
estimation mean values µRP

est are shown in Appendix A.8 and A.9 .

- The LC ranking approach following the LCHtL sorting shows a large variability in terms of σRP
est . Only

fast converging estimation is observed for RP4 and RP10, for which the optimal LC sorting is completed.
Similar behavior is observed for µRP

est . There, the convergence towards Dreal
fin is late, apart from RP4 and

RP10. Overall, this method is not suited for RP fatigue damage estimations, due to the large variations
of the estimations, apart from RP4 and RP10.

- The design set based factor approach produces better results compared to the LC ranking approach
regarding σRP

est . There, up to LC 200 σRP
est is lower compared to IS and the mean value estimation is close

to IS. The highest accuracy increase for RP other than for RP4 and RP10 is reached from approximately LC
400 on. From this point on, the shift is visible due to the factor approach, by the following approximately
straight line of the estimation mean value µRP

est .

- IS is showing satisfying results for σRP
est and µRP

est . The variability of σRP
est over radial positions is the

smallest one compared to the other approaches. Also µRP
est convergence towards the final true damage

value Dreal
fin is reached with a lower amount of LCs.

The conclusion is that the IS method is clear in favor in terms of required LCs and accuracy. Therefore, the
IS method is selected for the RP fatigue damage estimation for the last accuracy step in Table 3.7, due to its
robust estimations over all RPs.

4.1.3 Step 3: Damage Estimation of 24 weld locations for one position

Since the fatigue damage standard deviation σDMG for CW1-24 RP1 over the design set for each LC in
Figures A.4 and A.5 shows a similarity pattern over all LCs, the following techniques are used for fatigue
damage estimation:

- Load case ranking

- Factor approach

- Importance Sampling (IS)

The three approaches are tested and compared with each other at the end of this sub-section. The fatigue damage
estimation Dest of each design is normalized by the true fatigue damage value Dreal

fin of a design location (CW)
and position (RP) obtained from a full FLS LCT analysis, resulting in ||Dest||.
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4.1.3.1 Load Case Ranking - Results

In Figure 4.20 the fatigue damage estimation mean value µCW
est and standard deviation σCW

est , over all 24
circumferential welds for RP1 using LC sorting LCHtL, see Section 4.1.1, are illustrated. The resulting large
deviations of 22% occur at LC 50 but decrease with increasing computed LC amount. Convergence occurs,
similar to accuracy step one of Table 3.7 in Section 4.1.1, at approximately LC 800. Additionally, σCW

est decreases
significantly from LC 800 as well.

Figure 4.20: Design set µCW
est and σCW

est with LCHtL for CW1-24 RP1 using eq. 3.6.

4.1.3.2 Factor approach - Results

The factors fCW from eq. 3.10 are obtained by taking the mean value µDMG and the standard deviation σDMG

over all circumferential welds at RP1, see Figure 4.21. The factors are listed up in Table 4.9. The fatigue damage
estimation ||Dest|| is completed by computing actual values of CW1 RP1 with the corresponding LCHtL sorting
and eq. 3.6. At the remaining welds the normalized fatigue damage estimations ||Dest|| are computed by the
obtained factors fCW .

Figure 4.21: Mean value and standard deviation of damage values over the monopile height.
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Table 4.9: Factors fCW obtained by eq. 3.10 for circumferential weld CW1-24 damage estimation.

CW fCW [-] CW fCW [-] CW fCW [-] CW fCW [-]
1 1.00 7 0.66 13 0.46 19 0.59
2 1.10 8 0.44 14 0.34 20 0.85
3 1.06 9 0.38 15 0.37 21 0.39
4 1.16 10 0.34 16 0.44 22 0.48
5 0.67 11 0.35 17 0.48 23 0.32
6 0.77 12 0.31 18 0.58 24 0.21

σCW
est is showing the shift of µCW

est from the real damage value is high and therefore this method will not be
selected, see Figure 4.22.

Figure 4.22: Fatigue damage estimation mean values µCW
est and standard deviations σCW

est for CW1-24 RP1 following
the factor approach.

4.1.3.3 Importance Sampling - Results

The IS fatigue damage estimations over all locations (CW1-24) are compared directly to other methods by
creating a cumulative probability density distribution, formed by the fatigue damage mean value of all LCs
over all locations (CW1−24 RP1), see Appendix A.1. Next, eq. 3.16 is used to estimate the fatigue damage
estimation ||Dest|| over the design set, with which the µCW

est and σCW
est are computed. The comparison of the IS

σCW
est to other techniques within this sub-section is illustrated in Appendix A.10 to A.13. Additionally µCW

est is
shown in Appendix A.14 to A.17.

- For the LC ranking approach µCW
est reaches Dreal

fin at approximately LC 200 for CW1-12. Lower CWs reach

convergence between 400 and 800 LCs. The corresponding σCW
est is approximately 1% higher compared to

IS for all CWs up to LC 200, but shifts to a lower and rapidly decreasing value from LC 400 on. Therefore,
this method is a competitor for the IS method regarding the overall accuracy.

- The design set based factor approach produces the worst results in comparison. Large deviations in µCW
est

and high σCW
est show that this method is not estimating fatigue damage over the MP circumferential welds

accurately apart from CW1, i.e. the fatigue damage estimations for this CW are completed with the LC
sorting from CW1 RP1 LCHtL. Due to inaccuracy and no indication of improvement the factor approach
will be disregarded in step four, see Table 3.7.

- The IS method shows fast convergence at LC 50 for µCW
est and decreasing σCW

est , as shown eq. 4.1 over all
CWs.

In general, the latter mentioned figures clearly show that by use of IS σCW
est is small and decreasing with similar

pattern over all CWs. But also µCW
est is converging faster to the normalized true values compared to the LC



46 Delft University of Technology

Master Thesis Chapter 4. Results and Discussion

ranking or factor approach. The significant parameter for the approach selection is the µCW
est . Therefore, the IS

is recommended for the fatigue damage estimation over the three dimensional MP.

4.1.4 Step 4: Damage Estimation of all weld locations and positions

Step four of Table 3.7 is the damage estimation for the complete three dimensional MP, i.e. all 24 circumferential
welds (CW) and 12 radial positions (RP). The best LC reduction technique from step one to three in Table 3.7 is
used as only method within this sub-Section, i.e. the Importance Sampling (IS) method. The RP fatigue damage
standard deviation per weld over the design set is illustrated from Appendix A.18 to A.21. The corresponding
mean value is shown from Appendix A.22 up to A.25. This shows that the fatigue damage mean value over
the RPs is circular shaped and the highest deviations occur at RP4 and RP10, similar to Section 4.1.2. The
required IS cumulative probability density is formed by the mean value of all CWs and RPs µDMGCW1−24
RP1−12 over the design set, see Appendix A.1.

The fatigue damage estimation standard deviations σCWRP
est and mean values µCWRP

est of all CWs and RPs are
illustrated in Appendix from A.26 to A.31 . The latter figures are obtained by computing 20 seeds of random
1600 LC sets. Even with a small amount of LCs, the converging behavior is high for all locations and positions.
σCWRP
est are in the order of 10−2 and decreasing up to 10−3. This confirms the IS method as a general robust

and accurate fatigue damage estimation technique and will therefore be used in Section 4.2.

4.2 Genetic Algorithm - Critical Damage and Load Case Reduction
Implementation

4.2.1 Critical Damage Evaluation

Implementation of the load case (LC) reduction is completed, as described by eq. 3.17 and 3.18. For this, the
accuracies of the IS method over the three dimensional MP are evaluated by the evaluation of v seeds of random
LC sets containing stage k LCs, see Figure 3.6. Taking the mean value over all seeds v is leading to σCWRP

ijk

and µCWRP
ijk , see eq. 4.1 and 4.2.

σCWRP
ijk = σCWRP

vijk (4.1)

µCWRP
ijk = µCWRP

vijk (4.2)

Results for LC steps between 30 and 120 in steps of 10 LCs are given in Appendix A.32 up to A.36. The latter
expressions are used in eq. 3.17 for fatigue damage estimation.

A fatigue damage estimation trial of stage k = 4 is shown in Figure 4.23. There, the difference between the
fatigue damage values of a converged GA result are computed by using the full FLS LCT and the IS estimation
with n = 3, see eq. 3.17. The resulting graphical illustration is shown in Figure 4.23. Negative values imply a
fatigue damage over-estimation. Hence, positive values an under-estimation.
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Figure 4.23: Difference of a full FLS LCT and estimated fatigue damage results using IS at 120 LCs with a
multiplicative n = 3 in eq. 4.2, normalized by the fatigue damage values of the full FLS LCT analysis.

Fatigue damage over- and underestimation can be explained by the applied IS method. There, LCs are selected
randomly from the cumulative probability distribution, see section 3.3.4. Subsequently, the random selection
is influenced by the probability distribution. There, LCs with a higher contribution to the mean value have
a higher probability to be chosen, compared to others with a low contribution. This causes that LCs with
a certain wind/wave misalignment are selected multiple times. This affects the corresponding RPs regarding
the bending axis. Since final fatigue damage values per RP do not differ much from each other, a small error
between the estimation and the full FLS LCT analysis is expected.

In Figure 4.24 the positions and locations containing the maximum fatigue damage per design are counted over
the design set. These positions and locations are also over-estimated in Figure 4.23, specifically RP four, eight,
nine, ten and eleven.

Figure 4.24: Fatigue damage maximum count per RP and CW.

Additionally the governing locations over height are located in the upper MP sections (around CW4) and some
at the lower sections (around CW20). Governing RPs can be tracked back to the environmental conditions
within this area. MP height does not influence the latter governing RP statement, see Figure 4.23. Therefore, it
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can be concluded that the governing fatigue positions are the located in the over-estimated RPs for this OWT
site. Deviations of the critical damage values ∆Dcrit between the full FLS LCT analysis and an IS stage k = 4
fatigue estimation are listed up in Table 4.10 by variation of the multiplicative factor n in eq. 3.17:

Table 4.10: Comparison of critical fatigue damage Dcrit estimations using
120 LCs with full FLS LCT fatigue damage results.

n 3 2 1 0
∆Dcrit[%] 22.57 15.28 7.99 0.71

Three dimensional fatigue damage estimation by including n = 1 in eq. 3.17 Figure 4.25 is obtained:

Figure 4.25: Difference of a full FLS LCT and estimated fatigue damage results using IS at 120 LCs with a
multiplicative n = 1 in eq. 4.2, normalized by the fatigue damage values of the full FLS LCT analysis.

Implementing a multiplicative factor n smaller than three in eq. 3.17 still leads to an over-estimation for the
governing RPs, but also an under-estimation in other positions. A smaller error towards the critical fatigue
damage weld is more important than over-estimating all welds. Additionally, the multiplicative n is not set to
zero, even though the accuracy is high, since a fatigue damage estimation safety factor in form of a statistical
value should be included, due to the appearance of different design geometries in the genetic algorithm (GA).
In other words by factorizing Ik in eq. 3.17 with n = 1, the whole fatigue damage estimation is less conservative
for the regions of interest and will allow the GA to converge closer to the the real fatigue damage constraint
cFLS . Therefore, the multiplicative factor n is set equal to one in Section 4.3.

4.2.2 Load Case Reduction Methodology Comparison

Two methodologies presented in Section 3.4.1 are evaluated in Figure 4.26. The first approach follows a constant
FLS constraint evaluation over all generations and the second an accuracy refinement with increasing generation.
In other words the constant LC approach contains 120 LCs and the refining accuracy approach is following the
LCs increase from Figure 3.6.
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Figure 4.26: Comparison of the FLS implementation methodologies showing the best fitness values per generation
(upper Figure) and the best/mean/worst scores per generation (lower Figure).

Sub-figures of Figure 4.26 show a fitness decrease at generation five. This can be explained by the change of
accuracy at the 5th generation in the FLS constraint evaluation, see Figure 3.6. There, an increase from 30 to
50 LCs is recorded. The fitness increases for the refining accuracy approach after generation five and does not
show fitness decreases in the following generations. The constant LC approach increases fitness by 0.8% from
generation five on. Both methods converged at generation 23. In terms of computation time, the stage approach
converged 40% faster compared to the constant LC number approach with a final MP weight deviation of +9%
to the constant LC approach. By setting the function tolerance to a lower value, the GA would converge in a
later generation, but might find the same optimum of the constant LC number approach. The refining accuracy
approach is a viable and faster method to optimize the structure. Improvement of the accuracy in LC stage 30
is required. This can be completed by changing the multiplicative factor n in the critical damage estimation
eq. 3.17, or augmenting the LCs for this step. Also, an optimization of the stage generation number and LCs can
be completed. Overall, this would not be time efficient for the application in this form for another OWT location.

Nevertheless, taking the disadvantage of a higher computation time, but having a higher accuracy for the
creation of the primary steel mass versus lifetime graph, the constant LC approach is applied in Section 4.3,
in which 120 LCs for the GA FLS constraint evaluation are used.

4.3 Genetic Algorithm - Mass versus Lifetime Curve

For each projected lifetime, two converged GA results are obtained by use of the constant LC approach with
120 LCs, explained in Section 3.4.1 . The converged GA results are subsequently evaluated with a full FLS
LCT analysis. This full analysis results to the governing limiting actual lifetime. The resulting lifetime, critical
weld location of full and reduced FLS LCT and generation number of GA convergence are shown in Table 4.11.

Table 4.11: Key points of converged GA results including the projected lifetime (PLT), actual lifetime (ALT),
converged generation number (CGN) location Dloc

crit with circumferential weld (CW) and radial position information
(RP) compared to the full (FLS LCT) analysis.

PLT [yrs] ALT [yrs] Dloc
crit Est. [CW|RP] Dloc

crit Full [CW|RP] CGN[#]

25
26.65 4|10 4|10 33
26.37 4|10 4|4 37

50
49.05 5|4 4|12 23
49.11 4|4 4|12 23

75
76.26 21|10 22|9 41
74.07 21|10 21|9 27

100
106.18 5|10 23|9 32
106.15 5|10 22|9 39
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In the upper sub-Figures 4.27, 4.28, 4.29 and 4.30 the best fitness over generation number is illustrated.
Additionally, in the lower subplots the populations best/worst and mean fitness per generation are shown.

The GA best fitness evolution for a projected lifetime of 25 years, seen in Figure 4.27, converges towards the
same optimum over different paths. At generation four a fitness increase of approximately 15% for both GA runs
is recorded. Also, the best/worst/mean fitness in the lower subplot is the same for the first eight generations.
This can be explained by the methodology of the GA. The first generation is the same for both runs, since the
GA forms the first population with the given optimization parameter boundaries, shown in Table 3.4. There,
the GA uses the extreme values of the constrained parameters for a broad search space at the starting generation.

The best fitness increases significantly by 10% at generation 17 for the second GA run, see Figure 4.27, and
increases with a small slope until convergence at different amount of generations. Hence, for the first run, the
increase in fitness starts at generation 13 and increases smoother in comparison to the second GA run. Both
runs, for a projected lifetime of 25 years, converge at a different amount of generations, but reach approximately
the same MP mass and lifetime with a difference of 0.07% and 1.04% from run number one.

Figure 4.27: Normalized GA best fitness (upper figure) and the populations best/worst and mean scores (lower Figure)
for two GA MP optimization runs for a projected lifetime of 25 years.

Figure 4.28 shows two GA runs with a projected lifetime of 50 years. There, the GA finds the same global
optimum with the same best fitness evolution, but with different fitness distributions over the population after
generation six. The fitness in Figure 4.28 increases per generation in small portions and converges at the same
amount of generations. The final converged MP masses and lifetimes deviate by +0.28% and 0.12% from run
number one.
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Figure 4.28: Normalized GA best fitness (upper figure) and the populations best/worst and mean scores (lower Figure)
for two GA MP optimization runs for a projected 50 years lifetime.

The GA run for a projected lifetime of 75 years is illustrated in Figure 4.29. Both GA runs converge towards
approximately the same MP mass and lifetime with a difference of +0.31% and -2.86% from run number one.
Large fitness increases are recorded at different generations for both runs, i.e. generation 13, 18, 22 for GA run
one and generation 13, 23. Significant difference between the runs is the generation number of convergence,
which is 26 for run two and 41 for run one.

Figure 4.29: Normalized GA best fitness (upper figure) and the populations best/worst and mean scores (lower Figure)
for two GA MP optimization runs for a projected lifetime of 75 years.

Figure 4.30 shows a large fitness increase at generation four, ten and twelve, of 6.5% 12.9% and 3.3% respectively.
The difference of the MP with respect to mass and lifetime results to +1.01% and -0.03% from run number
one. This result has the largest difference in terms of MP weight, whereas the lifetime difference is the smallest
compared to the projected lifetime GA runs for 25, 50 and 75 years.
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Figure 4.30: Normalized GA best fitness (upper figure) and the populations best/worst and mean scores (lower Figure)
for two GA MP optimization runs for a projected lifetime of 100 years.

The overall time of one exemplary GA run is illustrated in Figure 4.31. This illustration gives an indication of the
computation times per each individual, but may change depending on the cluster loading degree. The evaluation
average per individual is at 7.85 minutes. This is approximately 60% higher than anticipated, i.e. the limit of
approximately five minutes per individual. Computation times per individual in the individual range between
75-90, 270-305 and 335-360 are increased due to cluster loading within this time frame. Other computations are
completed with an average of 6.6 minutes. This is still approximately 30% higher than planned. Results close
to zero are designs that did not pass the frequency and buckling constraint and are therefore not evaluated for
the FLS, i.e. the exiting mechanism explained Section 3.2.2 is activated.

Figure 4.31: Exemplary required time per individual for a GA optimization with a projected lifetime of 25 years.

In Figure 4.32 the structure identifying parameters of converged GA results are plotted per projected lifetime.
All results are normalized by the first GA run variables with a projected lifetime of 25 years. The averaged
frequency is increasing approximately linearly by +3.4% from a projected lifetime of 25 to 75 years by +4.6%
up to a projected lifetime of 100 years. Overall, the natural frequencies move towards the upper limit of the
soft-stiff region. In comparison to other parameters in Figure 4.32 the frequency is the only increasing trend
that can be observed in both GA runs. Therefore, it can be concluded that for one projected lifetime many
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different designs with different geometries are possible, but the resulting frequencies and masses are similar.
Also, the hot spots in terms of critical fatigue damage show similarities, see Table 4.11.

Figure 4.32: Evolution of converged GA MP normalized designs parameters.

For run number one the cone angle decreased from a projected lifetime of 25 to 50 years by -10-4% and by -2.78%
towards a projected lifetime of 75 years and -3.36% for 100 years. The cone angle decrease is leading to a MP
tip diameter decrease for run number one of 2.2·10−3 at 50 years, -0.68% at 75 years and additional -0.83% for
a projected lifetime of 100 years. Run number two instead leads to decreases for 50, 75 and a projected lifetime
of 100 years of -3.34%, -0.01%, -4.65% and -3.17%.

The block length L3 for run number one increased by +13.38% from a projected lifetime of 50 to 75 years, while
for run number two the increase results to only 1.01%. Thus, in the first run, the GA increased the structure
frequency for a projected lifetime of 75 years significantly by augmenting the embedment depth, decreasing the
wall thicknesses of block one and two and increasing the block three wall thickness. Hence, for run number
two the frequency increase is reached by an increase of all wall thicknesses. From 75 years for GA run number
one, the embedment depth L3 of 100 years decreases by -4.85%, but the wall thicknesses t1, t2 and t3 instead
are increasing by 6.76%, 6.94% and 8.33% from 75 to 100 years. From a projected lifetime of 75 years the
embedment depth L3 increases by +12.9% and the wall thicknesses t1, t2 and t3 decreases from a projected
lifetime of 75 years by -4.1%, -4.2% and -6.9%

Significant differences in geometry between the GA runs for one projected lifetime can be observed at projected
lifetimes of 75 and 100 years at block one, two and three wall thicknesses, i.e. t1, t2 and t3. Nevertheless, for
all runs the projected lifetimes are similar in terms of lifetime and MP mass.

Figure 4.33 and 4.34 show box plots for the optimization variables from eq. 3.1. The box plots are sorted by
the projected lifetime and GA runs, i.e. two per projected lifetime, and normalized by the design of the first
GA run with a projected lifetime of 25 years.
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Figure 4.33: Normalized cone angle α and segment length L3 box plots per lifetime GA optimization runs.

Overall, the cone angle is in the upper half of the boundaries listed in Table 3.4. The cone angle for a projected
lifetime of 25 years shows a thin distribution containing some outliers. In comparison the cone angle distribution
over the populations of a projected lifetime of 75 and 100 years are larger. Thus, the GA with a projected
lifetime of 75 and 100 years searched in a larger cone angle region compared to a projected lifetime of 25 years.
The algorithm searched for the global optimum more by variation of L3 and the wall thicknesses as shown in
sub-Figure 4.34.

Figure 4.34: Normalized wall thickness t1,t2 and t3 box plots per lifetime GA optimization runs.

Figure 4.34 shows larger variable distributions for all block wall thicknesses box plots. Combining the lifetime
of Table 4.11 with the corresponding primary steel MP masses leads to the mass versus life time graph in
Figure 4.35.
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Figure 4.35: Normalized primary steel mass versus lifetime curve with converged GA MP designs.

The latter figure shows the average of the MP masses and lifetimes. The dashed red linear line is the linear
extension of the MP mass with a projected lifetime of 25 and 50 years. A small deviation from the linear line
can be observed at a projected lifetime of 75 years, i.e. 0.65% and a significant deviation at a projected lifetime
of 100 years, i.e. 5.74%. Overall steepness of the curve is moderate. In terms of an extended projected lifetime,
the flattening of the Curve towards a lifetime of 100 years illustrates an important finding, i.e. 90 years of
projected lifetime with a design fatigue factor (DFF) equal to three results to 30 years. There, the steel mass
required is approximately 3% lower compared to the linear line in Figure 4.35. The flattening curve of a physical
point of view makes sense by regarding Figure 4.32. There, the increase of the frequency is almost linear. This
implies that the first natural frequency is moving away from the wave excitation frequencies 4.36 and that the
stiffness of the structure increases. It is expected that the flattening continues until reaching the 3P region, i.e.
the right end of the soft-stiff region. The required frequency increase, on the basis of a projected lifetime of 25
years, to reach the lower 3P soft-stiff limit is approximately 25%. An increase of that rate until reaching the 3P
region would be out of the feasible lifetime range, i.e. approximately 580 years with a DFF of one. Therefore,
the conclusion is that the potential of a longer design lifetime with current fatigue estimation methods is present.

Figure 4.36: Schematic illustration including averaged frequencies of the GA MP designs and the considered
JONSWAP wave spectra.
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Note that the curve in Figure 4.35 is created for one specific OWT location. Since fatigue damage is influenced
strongly by the environment, the steepness of the curve may change for other locations. Therefore, the presented
curve should be interpreted as trend but not in terms of absolute numbers.
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5 | Conclusions and Future Research
Within this graduation project a connection of the genetic algorithm (GA) with current state of the art in
offshore wind energy fatigue limit state (FLS) monopile (MP) support structure certification is completed.

Firstly, different methodologies of load case reduction and GA implementations are presented. Best results in
terms of accuracy and load case reduction are obtained by Importance Sampling (IS). With the latter, load case
reductions of 93% of the original FLS load case table (LCT) can be achieved with a fatigue damage critical weld
estimation accuracy up to 93.4%, compared to the full FLS LCT simulation for a full three dimensional MP
support structure. An important outcome of this graduation project is the prove that the projected lifetime can
be included in the GA as a constraint, despite numerous design evaluations with current state of the art rules
and recommendations using industry design tools for OWT certification, in a feasible time frame. Therefore,
the successful implementation of the IS method opened new doors for offshore wind energy support structure
optimization.

Secondly, in terms of GA implementation a simple form of changing FLS constraint evaluations for overall
optimization speed improvement is compared to a constant evaluation. The time reduction with changing
constraint evaluation is attaining a 9% MP mass result difference by 60% faster computation. Therefore, the
changing evaluation is a feasible candidate for fast optimization.

Thirdly, the implementation of discrete wall thickness steps in the GA optimization brought the resulting
MP design towards real design conditions and produced satisfying results without the appearance of problems
within the GA optimization. Similar to the changing constraint evaluation, discrete wall thickness steps are an
intervention in the methodology of the original GA.

Fourthly, the GA model leads to converged GA MP designs for different projected lifetimes. Connection of
the latter are results in the primary steel MP mass versus lifetime curve in Figure 4.35. The curve shows that
the required added mass for this OWT site with a design fatigue factor of three and a projected lifetime of 25
years is below 18%. The flattening of the curve towards 100 years reaches 22% mass increase measured from
a projected lifetime of 25 years with a design fatigue factor of three. This is considered to be an indicator of
possible worth of extended design lifetime.

The completion of the four graduation project objectives mentioned above, leads in further steps to the answer
of the research question in Chapter 1:

Is it worth planning for lifetime extension for monopile-based offshore wind turbines?

The answer is, yes, there is potential worth of planning for extended lifetime for offshore wind turbine MP
based support structures for this location. In case the MP steel mass is directly related to the structure costs,
the MP lifetime can be extended by additional small investments in steel mass compared to the full structure
costs. Outcoming additional years of service will possibly decrease and in further steps the cost of energy. By
use of this curve, a trade-off between maintenance strategy and additional mass can be completed. The chosen
maintenance strategy is leading to a design fatigue factor and by comparison of the resulting additional steel
and maintenance costs, the most favourable solution should be selected. Most striking point for this trade-off,
is the location dependent distance to a nearby harbor. The maintenance planning over a lifetime brings larger
uncertainty compared to more steel investments in the design phase, because maintenance is strongly depended
on the weather windows for safe offshore work, which cannot be predicted far ahead. Therefore, in case of a
tie in terms of costs, steel investments may be favored. Concluding from this, the possibility to complete an
automatized optimization of OWT MP support structures following regulations can lead to a decision basis for
the most favourable solution for a specific OWT site.

Within the trade-off between the increased projected lifetime and maintenance costs, the expenditures for the
installation of the MPs, need to be accounted for. Subsequently, with increasing MP mass the amount of ships
with the appropriate lifting capacity is decreasing. Therefore, the installation concepts with respect to the
distance to the storage harbor, related operation costs and required conical piece for the driving hammer need
to be included in the decision.



58 Delft University of Technology

Master Thesis Chapter 5. Conclusions and Future Research

The presented mass versus lifetime graph is representing the primary MP steel mass. The secondary steel mass,
such as cathodic protection, access ladders and boat landing steel masses are kept constant for all different
designs. For different projected lifetimes the appurtenance wall thicknesses may increase as well, due to fatigue
loading. Additionally, the cathodic protection mass increases with the diameter of the MP sections. This would
increase the added mass along the structure and affect the frequency, i.e. a lowering effect. Since the changes
are expected to be small, their overall impact on the graph is as well. Changes in geometry of the access ladders
and boat landing in terms of size are not expected, since the water depth and sea environment, for which the
wind turbine is planned, stays approximately the same, e.g. due to inclusion of sea level rise.

The turbine, tower and TP are not part of the optimization process within this graduation project. In case
the turbine size increases, it leads to a tower and transition piece mass increase. With a larger mass to carry,
the MP mass would increase as well. Subsequently, to match the frequency criteria, the MP diameter would
increase. Further, the wave forcing would increase and thus also the fatigue loading, due to the larger diameter.
Higher fatigue loading leads to larger wall thicknesses. From a certain point on, the heavy top mass has a
frequency lowering effect [31]. The frequency for different lifetimes in Section 4.3 is almost increasing linearly,
therefore the MP would need additional stiffness to cover the frequency requirement and to move away from
the excitation range for the fatigue loading. An assessment for each specific project following the mentioned
trade-off methodology is recommended.

Future research recommendations for offshore MP optimization using the GA on the basis of this thesis are:

- Implementation of more optimization variables. The inclusion of more parameters, such as wall
thickness segments and cone section length, may lead to more a optimized structure. Also, the implementa-
tion of the TP and tower in the optimization process may lead to an overall optimized support structure.

- An FE model for the soil modeling may be implemented for the possibility of higher accuracy of soil
damping instead of a constant parameter from experience.

- Variation of the damping values in order to obtain the effect on the mass versus lifetime curve.

- Implementation of ultimate limit states in the constraint evaluation would complete the full certification
primary steel analysis. There, a pre- analysis of governing load cases should be completed in order to save
computational effort.

- Further analysis of the changing constraint evaluation within the GA. Within this graduation project
a simplified accuracy step is tested. In case of creating a conditional based accuracy increase, the
methodology may lead to a faster convergence of the algorithm. Also, the same methodology can be
pursued by implementing different safety factors of the IS fatigue damage load case reduction for different
accuracy steps.

- Within this thesis only mass optimization is completed. By implementation of a logistic cost reduction
and other optimization processes the optimization can be increased to a multi-objective optimization.

- Elaboration of the mass versus lifetime graph with different settings, such as location, water depth,
environment. This will show the changing slope for different influencing parameters. In general, this study
can be completed for each project. This curve can give the worth of extended design lifetimes for a given
site beforehand.

- Performance testing of the Importance Sampling method. This includes the application for other
offshore wind turbine locations. The creation of the probability distribution curve for the load case
selection by only one or two designs of a location will show the fast applicability of the method for the
offshore wind industry. Also the applicability of the IS method for variating and not fixed circumferential
weld locations over the MP height should be elaborated. Since the methodology is dealing with design
load cases, it is recommended to test this method for other support structure types, e.g. jackets. Due to
the complicated geometry of the latter structure type, this method may be limited.
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A | Figures

Figure A.1: Cumulative probability curves according to different fatigue damage mean values over the MP.
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Figure A.26: Importance Sampling fatigue damage mean value µCWRP
est and standard deviation σCWRP

est after 50
computed LCs using 20 seeds.

Figure A.27: Importance Sampling fatigue damage mean value µCWRP
est and standard deviation σCWRP

est after 100
computed LCs using 20 seeds.
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Figure A.28: Importance Sampling fatigue damage mean value µCWRP
est and standard deviation σCWRP

est after 200
computed LCs using 20 seeds.

Figure A.29: Importance Sampling fatigue damage mean value µCWRP
est and standard deviation σCWRP

est after 400
computed LCs using 20 seeds.
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Figure A.30: Importance Sampling fatigue damage mean value µCWRP
est and standard deviation σCWRP

est after 800
computed LCs using 20 seeds.

Figure A.31: Importance Sampling fatigue damage mean value µCWRP
est and standard deviation σCWRP

est after 1600
computed LCs using 20 seeds.
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Figure A.32: Resulting fatigue damage estimate mean µCWRP
est and standard deviation µCWRP

est after repeating 100
random load case selection loops for 30 and 40 computed load cases using Importance Sampling.

Figure A.33: Resulting fatigue damage estimate mean µCWRP
est and standard deviation µCWRP

est after repeating 100
random load case selection loops for 50 and 60 computed load cases using Importance Sampling.
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Figure A.34: Resulting fatigue damage estimate mean µCWRP
est and standard deviation µCWRP

est after repeating 100
random load case selection loops for 70 and 80 computed load cases using Importance Sampling.

Figure A.35: Resulting fatigue damage estimate mean µCWRP
est and standard deviation µCWRP

est after repeating 100
random load case selection loops for 90 and 100 computed load cases using Importance Sampling.
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Figure A.36: Resulting fatigue damage estimate mean µCWRP
DMG and standard deviation µCWRP

DMG after repeating 100
random load case selection loops for 110 and 120 computed load cases using Importance Sampling.

Figure A.37: Final fatigue damage mean value µCWRP
DMGest and standard deviation σCWRP

est combination for GA IS FLS
reduction implementation for LC set 30 and 50.
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Figure A.38: Final fatigue damage mean value µCWRP
DMGest and standard deviation σCWRP

est combination for GA IS FLS
reduction implementation for LC set 90 and 120.
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