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Abstract

Heating is the primary energy consumer in an ice rink, and the ability to
optimise its use is a key factor in minimising energy expenditures. This
study performs parameter estimation on site-specific thermal parameters
using a Particle Filter. A numerical scheme of the transient heat con-
duction is developed, and the temperature distribution is simulated using
COMSOL. The thermal conductivity of an ice rink floor is estimated using
synthetic data, and the results show that this version of the Particle Filter
is able to successfully estimate the target parameter.
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Sammendrag

Energiforbruket i ishaller g̊ar hovedsakelig til oppvarming. Det er derfor
viktig å effektivisere bruken av energi som g̊ar til oppvarming. Denne opp-
gaven tar for seg parameterestimasjon av stedsavhengige termiske param-
etere ved bruk av et partikkelfilter. Et numerisk skjema for varmelednin-
gen utvikles og temperaturfordelingen blir simulert ved bruk av COMSOL.
Varmeoverføringskoeffisienten i en ishall blir s̊a estimert ved bruk av syn-
tetiske data. Resultatene indikerer at versjonen av partikkelfilteret utviklet
i denne opppgaven lykkes i å estimere den undersøkte parameteren.
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Chapter 1

Introduction

Most of the published research on ice rinks focus on energy savings by

optimising the performance of the major components, such as heating,

cooling and ventilation (Mun & Krarti, 2015; Gonzalez, 2002; Ferrantelli

& Viljanen, 2015). Because 43% of the energy used in an ice rink originates

from the cooling system, understanding and optimising this component is

vital to achieving an energy efficiency (Rogstam & Hjert, 2010). This study

focuses on the temperature distribution within the floor of an ice rink and

develops a method of estimating the site-specific thermal parameters using

the Parameter Particle Filter.

Ice pads differ from traditional building foundations because they contain

a piping system, a refrigeration unit and a heating component. Thus,

analysing the characteristics of an ice pad cannot be performed using the

same methods established for regular building foundations. Somrani et

al. (2008) investigate the heat transfer beneath the ice pad using a finite

difference scheme and an analytical solution. They are particularly inter-

ested in the temperature change in the soil beneath the ice pad. Their

numerical method accounts for details such as pipe composition and di-
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CHAPTER 1. INTRODUCTION

mension, size and volume of the water/ice layer and the insulation layer

beneath the pipes. Assuming that heat flux to the soil surface is governed

by Newton’s law, they develop an implicit numerical scheme with converg-

ing results.

The authors conduct a laboratory test using plywood sheets, copper and

plastic pipes and foam boards to verify the results. Using this approach,

they analyse the impact of certain parameters: floor insulation, water/ice

thickness, brine temperature, indoor temperature and convective heat trans-

fer above the ice pad. The study’s main finding is that the use of floor in-

sulation reduced the freezing time by more than 40%. Moreover, a thicker

water/ice layer increased freezing time, as did higher indoor temperature

and higher convective heat transfer above the ice pad. Maintaining the

cooling brine at a lower temperature, reduced freezing time.

Ferrantelli and Viljanen (2015) examine temperature development in and

the heat flux on the ice pad in an ice rink in Finland. They measure the

temperature and heat flux during both the cooling of the ice and when the

water had frozen. The main contributors to heat flux on the slab is ceiling

radiation (74%), lighting (14%), convection from water vapour (10%) and

condensation (2%). The autors also develop a generic formula for calculat-

ing the temperature in the ice pad given proper boundary conditions. The

boundary conditions used in the study is derived from measurements made

in the ice rink.

Mun and Krarti (2011) propose a heat transfer model with the intent of

integrating it into whole-building simulations for an ice rink. They model

the ice rink floor using the conduction transfer function method and inte-

grates the process into a general building simulation using EnergyPlus, a

simulation program for buildings. The study’s main focus is the simulation

and verification of the effect on the ice pad’s temperature and heat flux
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by considering the two most commonly used control methods: brine out-

let temperature and ice surface temperature. Using a small scale model,

the simulations are verified during laboratory conditions. The results show

that even though controlling the temperature in the ice slab by monitoring

the temperature of the cooling brine uses slightly less energy, the ability

to achieve constant temperature in the ice slab by basing the temperature

controls on the ice surface temperature is preferred.

Mun and Krarti (2015) also analyses the optimal insulation for an ice pad

with regard to the pad’s location and composition. Expanding on their pre-

viously proposed model, they add a life cycle cost function, which considers

the cost of energy use, installation and material in order to determine the

optimal insulation material and thickness. This model is tested in three US

locations with different climates; cold (Anchorage, Alaska), mild (Boulder,

Colorado) and warm (Tampa Bay, Florida). They find that in all three

locations, an insulation layer reduced the refrigeration cost. Moreover,

they find a linear relation between the mean ground temperature and the

thickness of the isolation.

In this report, we define a special version of the Particle Filter, called the

Parameter Particle Filter in order to estimate the time-constant thermal

conductivity of the ice rink. The forward model can be run only once,

making the Ensemble Kalman Filter and the traditional Particle Filter

difficult to use. To update the state space, the temperature profiles of the

low-weighted particles are shifted near the profiles of the high-weighted

particles. Finally, a parameter update is performed using an estimated

Ensemble Kalman update. In this report, only the thermal conductivity is

estimated; the density and specific heat capacity are assumed to be known

and constant.
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CHAPTER 1. INTRODUCTION

1.1 Notation and Assumptions

The following notation is used throughout this study. The bold letter, x, is

used to denote a spatial vector, and matrices are denoted by bold capital

letter A. Random variables v with probability density function (PDF) f(v)

are denoted by v ∼ f(v). In this study, φn(v;µv,Σv), is the multivariate

normal distribution

v ∼ φn(v;µv,Σv) = [2π]−n/2|Σv|−1/2exp

{
−1

2
(v − µv)

TΣ−1
v (v − µv)

}
,

where µv and Σv are the expectation and covariance, respectively. Sev-

eral assumptions are made to facilitate calculations and due to the lack

of information in certain areas. First, the simulated model in this study

is two-dimensional. Therefore, the sensors have to be placed at an equal

distance from the boards such that they all align with respect to a cross

section. The boundary conditions are considered constant in the simula-

tions, because the sensors are placed far enough from the boards, such that

this is an reasonable assumption. However, if the sensors are at different

distances from the boards, the boundary conditions may not be constant.

The setup of the cooling pipes is shown in Figure 1.1.

Next, in the simulations for calculating the temperature at different time

steps, two assumptions are made. The first is that the gravel and dirt layer

beneath the insulation layer is not modelled. Compared to the other layers,

the depth of this layer is practically indefinite, rendering it unnecessary

to model. It is instead considered a boundary condition. The boundary

condition is modelled such that the heat flux from the heating pipes is

considered uniform and constant, giving a constant temperature at the
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1.1. NOTATION AND ASSUMPTIONS

Figure 1.1: Cooling pipes in the concrete. The pipes cover the whole rink
and alternate between inbound and outbound. Although the picture is
from Hamar Olympic Hall, the same setup is used in Schjong Ice Rink.

lower boundary of the insulation layer. The reference values for the heat

flux and temperature are derived from data given by a sensor placed below

the insulation layer and from data given by Ringerike Municipality.

The second assumption with regarding the simulation is that the cooling

pipes in the concrete are modelled simply as circles with a constant tem-

perature and can be considered heat sinks. In actuality, these pipes have

metallic or plastic outer walls and a cooling brine within. Both the walls

of the pipe and the cooling brine have different thermal properties, leading

to a more complicated expression for the heat flux from the pipes.

This report is organised as follows. In Chapter 2, the transient heat

equation is derived and a numerical scheme for approximating it is sug-

gested. Chapter 3 presents the common approaches to solving problems in

a Bayesian framework, such as the Kalman Filter and Particle Filter, and

also develops a Particle Filter with parameter estimation, which will later
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CHAPTER 1. INTRODUCTION

be used to estimate site-specific thermal parameters. Chapter 4 tests the

Particle Filter developed Chapter 3 on a test case using synthetic data. In

Chapter 5, we present some closing remarks and suggest avenues for future

research.

6



Chapter 2

Heat Flow Model

Ice rinks use cooling liquid inside pipes to regulate the temperature of

the ice pad. A typical ice pad is constructed from two layers of concrete

or gravel and a layer of insulation (Gonzalez, 2002), as shown in Figure

2.1. The cooling brine transported in the pipes is usually some form of

glycogen, but it varies from country to country and is subject to rules and

regulations.

This study examines the ice pad in Schjonghallen, in Hønefoss, and all

assumptions in the following heat model are based on the schematics of

this ice pad. A two-dimensional system is proposed with x = (xa, xb) as

the spatial variable. Let the time be T = [0, 1, 2, ..., t − 1, t, t + 1, ..., T ],

where t is the current time and t + 1 is the predicted time. The details of

the ice pad used in this study are given in Figure 2.2.

7



CHAPTER 2. HEAT FLOW MODEL

Figure 2.1: Typical ice-pad structure. Image from the International Ice
Hockey Federation’s technical handbook.

Figure 2.2: Ice pad, Sjong Ice Rink. Top layer is ice, middle layer is concrete
and bottom layer is insulation.
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2.1. TRANSIENT HEAT CONDUCTION

2.1 Transient Heat Conduction

This study develops a numerical scheme for the transient heat conduction

from cooling pipes through the layers of ice, concrete and insulation. Gen-

erally, heat flow is modelled by the heat equation, which can be derived the

heat flux of a volume element, Ω ⊂ Ω∗ (see Figure 2.3). For an extensive

derivation of the nonstationary heat equation, see, for example, (Zieniuk,

Sawicki, & Boltuc, 2014; DeWitt & Baliga, 1982; Widder, 1976) and ref-

erences therein. We consider only two dimensions, such that the volume

element, Ω, reduces to a plane segment fully described by the space vari-

able x. Let Q(x, t) be the internal heat source of the plane segment and

S(x) = ∂Ω be the border of Ω. Then, at a given time t, the internal heat

can be fully described by the heat flux leaving the plane segment across

the entirety of its border, ∂Ω, that is,

∫∫
x∈Ω

Q(x, t)dx =

∫
S

~φ(S(x), t) · ~n(S(x))dx, (2.1)

where ~φ(x, t) is the heat flux leaving the plane segment and ~n(S(x)) is the

unit normal vector perpendicular to Ω as shown in Figure 2.3. The left-

hand side of Equation (2.1) is the volume integral, and the right hand side

is the surface integral.

The divergence theorem provides a relation between the outgoing flux of

a vector field and the internal behaviour of the field. In other words, the

outgoing flux through the surface is equal to the volume integral of the

divergence of the vector field (Pfeffer, 1986). The outgoing flux is the heat

flux, ~φ(x, t), through the surface S(x), and the surface integral in Equation

(2.1) can be expressed as
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CHAPTER 2. HEAT FLOW MODEL

Figure 2.3: Heat flow from Ω.

∫
S

~φ(x, t) · ñ(S(x))dx =

∫∫
x∈Ω

∇x
~φ(x, t)dx, (2.2)

with both the internal heat, Q(x, t), and the heat flux, ~φ(x, t), expressed

as volume integral over Ω. Then, Equation (2.1) simplifies into

∫∫
x∈Ω

(
Q(x, t)−∇x

~φ(x, t)
)

dx = 0, (2.3)

∀ t. The observable variable is the temperature, U(x, t), which is both

spatially and temporally dependent. Using the differential form of Fourier’s

law, which states that the heat through a volume element is proportional

to the negative gradient of the temperature (Han, Nie, Chen, & Wang,

2015)

~φ(x, t) = −λ(x)∇xU(x, t), (2.4)

10



2.1. TRANSIENT HEAT CONDUCTION

where λ(x) is the thermal conductivity (DeWitt & Baliga, 1982), Equation

(2.3) can be written as

Q(x, t) +∇2
x(λ(x)U(x, t)) = 0, (2.5)

∀ t = 0, ..., T , which is the steady-state, that is, the time independent

heat equation. When considering temporal dependency, the transient heat

equation is found by applying the first principle of thermodynamics, which

states that the heat brought on the volume element results in an internal

energy change on the domain over time (Bergheau, 2010). This change

over time in the enthalpy can be expressed as

ρ(x)
∂H(t)

∂t
= ρ(x)cp(x)

∂U(x, t)

∂t
, (2.6)

where ρ(x) is the density of the plane segment and cp(x) is the specific heat

capacity. Then, Equation (2.5) becomes

Q(x, t) + λ(x)∇2
xU(x, t) = ρ(x)cp(x)

∂U(x, t)

∂t
. (2.7)

Now we discretise x = [x0, x1, ..., xT ] in order to numerically approximate

Equation (2.7). Let U t
m,n = U(x∗, t), as shown in Figure 2.4, where x∗ =

(m,n), and consider a first-order differencing in time and second-order

differencing in space. Then, we have
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CHAPTER 2. HEAT FLOW MODEL

∂U(x∗, t)

∂t
=
U t+1
m,n − U t

m,n

∆t
(2.8)

∂2U(x∗, t)

∂(x)2
=
U t
m+1,n − 2U t

m,n + U t
m−1,n

∆x2
a

+
U t
m,n+1 − 2U t

m,n + U t
m,n−1

∆x2
b

,

(2.9)

with ∆xa,∆xb,∆t being the increments in xa, xb and t direction, respec-

tively. With this notation, the transient heat conduction in Equation (2.7)

can be expressed as

Q(x∗, t) + λ(x∗)

[
U t
m+1,n − 2U t

m,n + U t
m−1,n

∆x2
a

+
U t
m,n+1 − 2U t

m,n + U t
m,n−1

∆x2
b

]
(2.10)

= ρ(x∗)cp(x
∗)

[
U t+1
m,n − U t

m,n

∆t

]
.

For future referencing, let Equation (2.10) be denoted by

ut+1 = ω(ut, λ(x∗), ρ(x∗), cp(x
∗)). (2.11)

Figure 2.4: Grid system for Ut.
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2.2. SIMULATIONS OF THE TRANSIENT HEAT CONDUCTION

2.2 Simulations of the Transient Heat Con-

duction

Table 2.1 gives an overview of the parameter values used in the simulation.

These values are given by the Property Administration in Ringerike mu-

nicipality, where the Schjong Ice Rink is located. The site-specific energy

related parameters λ(x),ρ(x), cp(x) are all spatially piecewise constant

dependent on the material.

Table 2.1: Properties of the materials for the reference simulation.

U(x, 0)
[◦C]

cp(x)

[kgm
2

gKs2
]

Width
[m]

ρ(x)
[ kg
m3 ]

λ(x)
[ W
mK

]

Outbound pipe -8 − 0.05 − −
Inbound pipe -6 − 0.05 − −
Ice slab -2 2.03 0.035 917.5 2.24

Concrete 0 0.75 0.14 2300.0 1.00

Insulation 5 1131 0.1 5× 10−8 0.003

The transient heat conduction expressed by Equation (2.7) can be solved

analytically by complex variable techniques and the ITPE method devel-

oped in (Somrani et al., 2008), but we apply the simulation program COM-

SOL. This program allows us create a geometry with individual domains

that can be specified to mimic the properties of different materials. It

also lets us define heat sources, and can, amongst many other capabili-

ties, monitor the temperature distribution throughout the geometry at any

given time t. Figure 2.5 shows the temperature distribution throughout

the simulated ice pad initially, that is, at t = 0.

The white circles in Figure 2.5 represent the cooling pipes, which are held

at at constant temperature during simulations. The middle pipe is the

inbound pipe and is held at Tin = −6◦C, and the left and right pipes are

13
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Figure 2.5: Simulations of the temperature using COMSOL, at t = 0. Top
layer is the ice slab, middle layer is the concrete containing the cooling pipes
(from left: outbound, inbound, outbound) and bottom layer the insulation
layer.

outbound and held at at Tout = −8◦C. The top layer is the ice slab, and

the middle layer, which contains the cooling pipes, is concrete. The bottom

layer is the insulation layer, and below that is the layer of dirt and soil which

contains heating pipes to prevent freezing. The dirt-and-soil layer is not

included in the simulations, because the dimension is practically unbounded

with in comparison to the other layers. At the end of the simulation, t = 24,

we have reached a steady-state solution, as shown in Figure 2.6.

Figure 2.6 shows that both the concrete and ice layers reach a steady state

solution around −3◦C, whereas the insulation layer varies in temperature

depending on the distance from the cooling pipes. A cross section of the

temperature distribution at t = 0 is plotted in Figure 2.7.

The cross section is set up such that the x-axis starts at the bottom of

the vertical line and follows it to the end, which represents the ice surface.

Figure 2.8 shows the temperature distribution at t = 24.
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Figure 2.6: Surface temperature distribution at t = 24.

Figure 2.7: Cross section of the temperature distribution at t = 0.
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Figure 2.8: Cross section of the temperature distribution at t = 24.

Here, the temperature drops off linearly as we go through the insulation

and reach the cooling pipes. The temperature then stabilises at around

−2◦C as it reaches the ice and the heat flux from the air in the ice rink

becomes significant.
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Chapter 3

Statistical Model

For state space estimation problems such as the one in this study, Bayesian

methods are commonly used. The idea is to create a PDF of the state,

given all previously available information (Gordon et al., 1993).

If the problem in question is Gaussian-linear, the problem will remain Gaus-

sian at every iteration over x and an analytical solution can be found.

However, when considering nonlinear non-Gaussian systems, a general an-

alytical solution is not readily available, because the normalising constant

is usually hard to asses.

3.1 Model Assumptions and Framework

The basis of our consideration is the spatial-temporal random variable of

the temperature in the ice pad, u(x, t), which is the temperature at location

x and at time t = [0, ..., T ]. For convenience, let u(x, t) be expressed

as

17



CHAPTER 3. STATISTICAL MODEL

u(x) = [u(x, 0), ..., u(x, T )]

= [u0, ...,uT ]; x ∈ Rnx .

Then, the temperature, u(x), is a pu-dimensional random variable. More-

over, the heat source q(x, t) is considered constant throughout the study.

The heat source consists of two cooling pipes that transports cooling brine

to and from the ice rink. Their temperature is held constant throughout

the study, and the temperature in the outbound pipe is lower than that in

the inbound pipe. The initial state of u(x), u(x, 0), is given as initial con-

ditions as presented in Figure 2.7. These initial conditions are considered

the prior model with regards to Bayesian inference.

3.2 Prior Model

Let the model parameters λ(x), ρ(x) and cp(x) be temporally constant

and spatially piecewise constant and be assigned independent Gaussian

PDFs

[λ|κ] ∼ f(λ|κ) = φ1(λ;µλ|κ, σ
2
λ|κ)

[ρ|κ]− known

[cp|κ]− known

where κ ∈ {ice, concrete, insulation}. This study focuses on λ|κ, and

in order to simplify the model, ρ|κ and cp|κ are considered known. The

random variable of interest is then

18



3.2. PRIOR MODEL

vt =

ut

λ

 .
with initial state

v0 =

u0

λ

 ∼ f(v0)

defined by the prior model discussed above. The following recursion is

defined by the heat relations in Equation (2.11):

[vt|vt−1] =

ut

λ

 =

ω(ut−1;λ)

λ

 ,
which is a deterministic relation represented by f(vt|vt−1), being a Dirac

PDF. The joint probability is then

[v0, ...,vT ] ∼ f(v0, ...,vT ) (3.1)

= f(v0)
T∏
t=0

f(vt|v0, ...,vt−1) (3.2)

= f(v0)
T∏
t=0

f(vt|vt−1), (3.3)

where on the last line of the equation comes from the Markov properties,

f(vt|v0, ...,vt−1) = f(vt|vt−1), assumed for the heat flow model in Sec-
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CHAPTER 3. STATISTICAL MODEL

tion 5. This study focuses on the time-constant site-specific energy-related

parameter λ|κ, where κ ∈ {ice, concrete, insulation}. The parameters ρ|κ

and cp|κ, are, as previously noted, assumed to be known and constant

throughout the study and will not be subject to estimation.

3.3 Likelihood Model

Let Lo → xo = (xo1, ..., x
o
4) be the four grid points closest to the correspond-

ing locations of the sensor. The observations are connected to the different

states through likelihood functions, f(ot|vt), t = 0, ..., T . These likelihoods

are given by assuming conditional independence and single-site dependence,

meaning the observations are conditionally independent of each other and

dependent only on their corresponding state, that is,

[o0, ...,oT |v0, ...,vT ] ∼ f(o0, ...,oT |v0, ...,vT )

=
T∏
t=0

f(ot|v0, ...,vT )

=
T∏
t=0

f(ot|vt), (3.4)

with

[ot|vt] = Hvt + εt ∼ f(ot|vt) = φ4(ot; u
o
t , σ

2
ε I4),

where εt ∼ φ4(ε; 0, σ2
ε I4), H is a selection matrix and uot is the temperature

distribution in the four observable grid points. The corresponding hidden

20
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Markov model is shown in Figure 3.1. The transition from one state to

another, denoted by the horizontal arrow, is governed by the transient

heat conduction, that is, Equation (2.11). The likelihood in Equation (3.4)

indicates that the observation at time t is dependent only on the state vt

and independent of previous observation. For this study, the likelihood

model is Gaussian-linear.

Figure 3.1: The Markov properties of the system.

3.4 Posterior Model

With the prior, f(v0, ...,vT ), and the likelihood function, f(o0, ...,oT |v0, ...,vT ),

known, inferences about the posterior, [v0, ...,vT |o0, ...,oT ], can be made

through Bayesian inversion:

[v0, ...,vT |o0, ...,oT ] ∼ f(v0, ...,vT |o0, ...,oT ) (3.5)

= const× f(o0, ...,oT |v0, ...,vT )× f(v0, ...,vT )

(3.6)

= const× f(o0|v0)f(v0)
T∏
t=1

f(ot|vt)f(vt), (3.7)
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where the constant is usually difficult to assess analytically. The forecast

[vT |o0, ...,oT ] seeks prediction regarding a single state at time T and can

be assessed by integrating out v0, ...,vT−1 from the posterior in Equation

(3.5):

[vT |o0, ...,oT ] ∼ f(vT |o0, ...,oT ) =

∫
· · ·
∫
f(v0, ...,vT |o0, ...,oT )dv0...dvt−1.

A common approach to solving nonlinear Bayesian prediction/estimation

problems is the use of recursive numerical approximations, more commonly

known as Monte Carlo methods.

3.5 Traditional Kalman Filter

In a celebrated paper, Kalman (1960), consider communication problems,

especially prediction of random signals, separation of random signals from

random noise and detection of random signals from random noise. He solves

the Wiener-Hopf integral equation using conditional distributions and ex-

pectations. His central idea is that the observed signal is a composition

of the desired signal and random noise, the desired signal can be found

by considering it a conditional distribution on the previous observations.

The main topic of Kalman’s paper is the solution of the Wiener problem,

and the theorem he gives for solving it is adapted as the Kalman Filter

(Kalman, 1960). The theorem gives the optimal estimate of the desired

signal and states the recursive formulae for the covariance and transitions

matrices. This filter computes the posterior by recursively updating finite

dimensional statistics when the system is linearised and the noise is Gaus-

sian (Gustafsson, 2010). This extension to the Kalman Filter is known as
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the Extended Kalman Filter (EKF). There may be inconsistencies when

the system is mildly nonlinear and multimodal.

Several other methods stem from the Kalman Filter and EKF (Gustafsson,

2010). The unscented Kalman Filter takes a number of points in the state

space and propagates them, from which a Gaussian distribution is fitted.

This filter is generally more accurate than the EKF (Julier et al., 1995).

Another filter is the Gaussian sum filter, which can handle multimodality

by representing the posterior as Gaussian mixture distributions (Alspach

& Sorenson, 1972). When the dimensionality is low, the Point Mass Filter

can be applied to any nonlinear non-Gaussian model. This filter grids the

entire state space and recursively computes the posterior. Because the

filter is quadratic in complexity, the computing cost and time increases

significantly as the dimensions increases (Kramer & Sorenson, 1988).

A key assumption of the Traditional Kalman Filter, is that the forward

model is Gauss-linear and that the likelihood is linear with Gaussian noise

term. Assuming that that the nonlinear ω(ut;λ) can be linearised such

that

[vt+1|vt] = Wvt + εvt , (3.8)

where εvt ∼ φpu(ε; 0, σ2
vIpu), then the associated Gauss-linear model is

v0 ∼ f(v0) = φpu(v;µv
0,Σ

v
0)

[vt+1|vt = vt] = Wvt + εvt ∼ f(vt+1|vt) = φpu(v; Wvvt ,Σ
v
t )

[ot|vt = vt] = Htvt + εot ∼ f(ot|vt) = φpo(v; Htvt,Σ
o
t ),
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and can be solved recursively with the Kalman Filter algorithm described

below.

Given the above Gauss-linear model assumptions, the recursive algorithm

for computing the forecast is the Kalman Filter (Myrseth & Omre, 2001).

Let vut = [vt|o0, ...,ot−1] and vct = [vt|o0, ...,ot], then the traditional

Kalman Filter is given in Algorithm 1.

Algorithm 1 Traditional Kalman Filter

1: Initiate:
2: vu0 ∼ f(vu0) = φpu(v;µu

0 ,Σ
u
0)

3: µu
0 = µv

0

4: Σu
0 = Σv

0

5: end initate
6: Iterate t = 0, ..., T
7: Conditioning:
8: vct ∼ f(vct) = φpu(v;µc

t ,Σ
c
t)

9: µc
t = µu

t + Σu
t H

′

t[H
′

tΣ
u
t H

′

t + Σo
t ]
−1(ot −Htµ

u
t )

10: Σc
t = Σu

t −Σu
t H

′

t[H
′

tΣ
u
t H

′

t + Σo
t ]
−1HtΣ

u
t

11: Forwarding:
12: vut+1 ∼ f(vut+1) = φpu(v;µu

t+1,Σ
u
t+1)

13: µu
t+1 = Wµc

t

14: Σu
t+1 = WΣc

tW
T + Σv

t

15: end iterate
16: Forcast:
17: f(vuT+1|o0, ...,oT ) = φpu(v;µu

T+1,Σ
u
T+1)

18: end forecast

The Traditional Kalman Filter requires the system to be Gauss-linear. This

leads to very fast computations and the ability to find an analytical solu-

tion. The requirement of Gauss-linearity does, however, limit the number

of systems that can make use of the Kalman Filter.
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3.6 Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) is an extension of the traditional

Kalman Filter and will provide an approximate solution both under Gaus-

sian linearity assumptions and for the nonlinear cases. The difference be-

tween the traditional Kalman Filter and the EnKF is the construction of

a set of realisations from the initial model. This set of realisations, called

an ensemble, is then run through the Kalman Filter and is conditioned

upon and adjusted as the realisations are taken through the forward model.

The result is a set of approximately independent realisations drawn from

f(vuT |o0, ...,oT ). Let

Σvo =

Σv Γvo

Γov Σo



at any time step t. Let vut = [vt|o0, ...,ot−1] and vct = [vt|o0, ...,ot]; then

the EnKF algorithm is described in Algorithm 2.

The EnKF is a Monte Carlo-based method that can handle nonlinear sys-

tems. The method is relatively fast, but will not yield an analytical solu-

tion. It needs to be able to restart the forward model at every time step,

which is a very complicated operation in our study.
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Algorithm 2 Ensemble Kalman Filter

1: Initiate:
2: ne = number of ensemble members
3: v

u(i)
0 ; i = 1, ..., ne iid f(v0)

4: ε
o(i)
0 ∼ φpo(ε; 0, Ipo); i = 1, ..., ne

5: o
(i)
0 = Htv

u(i)
0 + ε

o(i)
t ; i = 1, ..., ne

6: e0 : {(vu0 ,o0)(i); i = 1, ..., ne}
7: end initate
8: Iterate t = 0, ..., T
9: Conditioning:
10: Estimate Σvo from et → Σ̂vo

11: v
c(i)
t = v

u(i)
t + Γ̂voΣ̂

−1

o (ot − o
(i)
t ); i = 1, ..., ne

12: Forwarding:
13: ε

v(i)
t ∼ φpv(ε; 0, Ipv); i = 1, ..., ne

14: v
u(i)
t+1 = ω(v

c(i)
t ) + ε

v(i)
t ; i = 1, ..., ne

15: ε
o(i)
t+1 ∼ φpv(ε; 0, Ipv); i = 1, ..., ne

16: o
(i)
t+1 = Htω(v

u(i)
t+1) + ε

o(i)
t+1; i = 1, ..., ne

17: et+1 : {(vut+1,ot+1)(i); i = 1, ..., ne}
18: end iterate
19: Assess:
20: f(vT+1|o0, ...,oT ) from eT+1

21: end assess
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3.7 Particle Filter

When considering nonlinear state estimation problems and non-Gaussian

noise, the Particle Filter (PF) is a commonly used method for approximat-

ing the posterior. The general idea is to represent the state space PDF as

a random set of samples, called particles, instead of as a function over the

state space (Gordon et al., 1993). As the number of samples increase, they

near the exact state space PDF. This allows for the estimation of moments

directly from the samples and the creation of a representation of the PDF

(Silverman, 1986).

The earliest mention of the PF is by Gordon et al. (1993), who introduced

the idea of representing the state space PDF as samples instead of as a

function. Assume we have N random samples from the initial distribu-

tion

[v
(1)
0 , ...,v

(N)
0 ] iid f(v0), (3.9)

as described in Section 1.1. The algorithm presented by Gordon et al.

(1993) is called the bootstrap filter and is described in Algorithm 3.

Like the EnKF, the PF is a Monte Carlo method. It is an easily imple-

mented and very efficient method for state space estimation. After every

resampling step, it needs to restart the forward model. It is not very suit-

able for parameter estimation, because the resampling does not include the

model parameters which remain constant. Moreover, the PF is subject to

the curse of dimensionality.
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Algorithm 3 Particle Filter

1: Initiate:
2: N− number of particles
3: Obtain N random samples, v

(i)
0 ∼ f(v0); i = 1, ..., N

4: w
(i)
0 = 1/N ; i = 1, ..., N

5: end initate
6: Iterate t = 1, ..., T
7: Forecast v

(i)
t ∼ f(v

(i)
t |v

(i)
t−1) = ω(v

(i)
t−1) + εt; i = 1, ..., N .

8: Update weights:
9: w

(i)
t = f(ot|v(i)

t )w
(i)
t−1/

∑N
j=1 f(ot|v(j)

t )w
(j)
t−1

10: end update
11: Assess:
12: f(vt|o0, ...,ot) from {(v(i)

t , w
(i)
t ); i = 1, ..., N}

13: end assess
14: if {w(i)

t ; i = 1, ..., N} too dispersed then resample:

15: v
(b)
t ∼ Multinomial[v

(1)
t , ...,v

(N)
t ;w

(1)
t , ..., w

(N)
t ]; b = 1, ..., N

16: w
(b)
t = 1/N ; b = 1, ..., N

17: end if
18: end iterate

3.8 Parameter Particle Filter

Because the system in question is nonlinear, the Traditional Kalman Filter

is not very suitable. And because it is quite difficult to restart the forward

model, the EnKF becomes difficult to use. This study focuses on the model

parameter, λ, which makes the regular PF unsuitable. Instead, we define

a version of the PF such that the assessment of the model parameters can

be made.

First, N particles are drawn from the initial distribution, u
(i)
0 = u0; i =

1, ..., N , with respective initial parameters, λ
(i)
0 ∼ f(λ); i = 1, ..., N . For

each time step, the normalised weights are found. The effective sample

size is a measure of how dispersed the particles are, and if it is below a

threshold value, we perform the perturbation. First, we find the empirical

covariance matrix of vt and identify which particles have weights above a

given threshold. Then, the particles with weights below the given thresh-
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old are discarded and new particles are centred around the kept particles.

The distance between the new and the retained particles is determined by

the empirical covariance matrix, which is scaled such that the new distri-

bution of particles is close to the particles that were retained. Then, a

parameter update of λ is performed using an ensemble Kalman update for

the perturbed particles. The weights are all set equal to 1/N , because we

have no information about the new distribution. Below is the algorithmic

representation of the Parameter Particle Filter.

Algorithm 4 Parameter Particle Filter

1: Initiate:
2: N− number of particles
3: u

(i)
0 = u0; i = 1, ..., N

4: λ
(i)
0 ∼ f(λ); i = 1, ..., N

5: v
(i)
0 =

[
u

(i)
0

λ
(i)
0

]
; i = 1, ..., N

6: w
(i)
0 = 1/N ; i = 1, ..., N

7: e0 = {(v(i)
0 , w

(i))
0 ; i = 1, ..., N}

8: end initate
9: Run forward model:

10: v
(i)
t =

[
u

(i)
t

λ
(i)
t

]
=

[
ω(u

(i)
t−1,λ

(i)
t−1)

λ
(i)
t−1

]
; i = 1, ..., N

11: end forward model
12: Iterate
13: cpt = 0
14: Iterate s = 1, ...
15: tt = cpt+ s
16: if tt > T then STOP;
17: end if . Algorithm 4 to be continued
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Algorithm 4 Parameter Particle Filter (continued)

18: w
(i),∗
tt = f(ott|vtt)× w(i)

tt−1, i = 1, ..., N

19: w
(i)
tt − normalised weights

20: Define ett : {(v(i)
tt , w

(i)
tt ); i = 1, ..., N}

21: Neff = [
∑

i(w
(i)
tt )2]−1

22: if weights too dispersed then perturb
23: end if
24: Perturb: [u,λ]

25: Estimate Σtt
uλ from ett → Σ̂

tt

uλ

26: Identify index i in ett with w
(i)
tt > wR → Ip

27: for j ∈ Ip do

28: Identify n
(j)
p ∝ w

(j)
tt s.t N =

∑
j n

(j)
tt

29: end for
30: for j ∈ Ip do

31: u
(j),1
tt+l = u

(j)
tt+l; l = 0, ..., T − tt

32: λ
(j),1
tt+l = λ

(j)
tt+l; l = 0, ..., T − tt

33: end for
34: Perturbate u

(j)
tt npj times:

35: for k = 2, ..., npj do

36: εu ∼ f(ε) = φ(ε; 0, τΣ̂
tt

u )

37: u
(j),k
tt+l = u

(j)
tt+l + εu; l = 0, ..., T − tt

38: λ
(j),k
tt+l = λ

(j)
tt+l + Γ̂

tt

λ,u[Σ̂
tt

u ]−1εu; l = 0, ..., T − tt
39: end for
40: end perturb

41: Copy

[
u

(j),k
tt

λ
(j),k
tt

]
; j ∈ Ip, k = 1, ..., npj into v

(i)
tt+l; l = 0, ..., T − tt

42: w
(i)
tt = 1/N ; i = 1, ..., N

43: cpt = tt
44: end iterate
45: end iterate
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Like the traditional version of the PF, this version is based on a Monte

Carlo approach. Normally, the PF would predict the next state space at

each time step, but here the forward model is run only once. The state

space is instead updated through random shifts in the temperature profiles

when we perturb. When the weights become too dispersed, the particles

with low weights are discarded and perturbed around the particles with

high weights. This is done by shifting the new particles from the retained

particles by εu with a zero-mean PDF with scaled empirical covariance

matrix, εu ∼ φ(ε; 0, τΣ̂u). The scaling factor, τ , is used to ensure the new

particles are generated close to the retained particles. To update the state

space, the new temperature profiles are shifted around the kept temperature

profiles by εu and letting them run parallel to each other.

The Parameter Particle Filter also implements a parameter estimation of

λ using empirical regression into the λ-space. This is done by an Ensemble

Kalman update using εu at every perturbation. It is a very efficient algo-

rithm, and in the case study, we will evaluate it on the ice-pad example

and estimate the heat transfer coefficient, λ, of the ice pad.
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Chapter 4

Case Study

We apply our PF to an ice rink floor, in order to estimate the thermal

conductivity, λ, using synthetic data. The floor of the ice rink is composed

of three layers: ice, concrete and insulation. Each component has a different

heat transfer coefficient, which we will find using parameter estimation.

The initial conditions for the temperature, u(x, 0), are displayed in Figure

2.7 and we generate λ(i); i = 1, ..., N from the prior φ3(λ; λ̂, σ̂λ), which

is right-shifted relative to λ(ref), as the initial distribution of λ, where

λ̂ = (2.5, 1.2, 0.004), σ̂λ = (1.2, 1.2, 0.001) and N = 50. We run the

forward model once to compute v
(i)
t =

u
(i)
t

λ(i)

 ; i = 1, ..., N ; t = 1, ..., T ,

because we cannot restart the forward model when running the Parameter

Particle Filter. The scaling parameter, τ , is set to τ = 0.1.

We start by displaying the synthetic data along with the temperature dis-

tribution of four randomly drawn particles. Then, we display the weights

and the empirical parameter distributions, and lastly, we discuss the results

of the case study.
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4.1 Synthetic Data

Due to difficulties and time constrains, real observations of the temperature

are not available for this study, and synthetic data will be used instead.

The synthetic data are created by running the temperature simulations

in COMSOL using the reference value λ(ref) = (2.25, 1.00, 0.0030) and

then adding a Gaussian error term, εt ∼ φ4(ε; 0, Σ̂). The synthetic data

are given in Figures 4.1, 4.2, 4.3 and 4.4, for each of the four observed

positions.

All particles are fairly close to the synthetic data, with particle 9 being the

closest. Particle 9’s heat transfer coefficient, λ(9) = (2.37, 1.00, 0.0030), is

very close to the reference value, λ(ref), whereas the other particles exhibit

a greater difference from the reference value. Because the sides and bot-

tom have constant boundary conditions at 0◦C and the cooling pipes have

constant temperature at −6◦C and −8◦C for the inbound and outbound

pipes, respectively, the temperature simulated between the pipes (at posi-

tion T5) is lower than near the boundary (positions T6,T7). The ice pad is

the warmest layer, because it is not insulated from the heat flux from the

indoor air, which has a temperature of +4◦C. This shows that there is a

noticeable difference in the temperature distributions due to the difference

in the value of the heat transfer coefficients.
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Figure 4.1: Temperature distribution in the middle of the cooling pipes of
four particles and the synthetic data.

Figure 4.2: Temperature distribution in the ice pad of four particles and
the synthetic data.
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Figure 4.3: Temperature distribution to the right of the cooling pipes of
four particles and the synthetic data.

Figure 4.4: Temperature distribution to the left of the cooling pipes of four
particles and the synthetic data.
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4.2 Weight Distribution

We use N = 50 in our study with no restart of the forward model. The

corresponding weights will vary with time due to conditioning. Figure 4.5

shows the distribution of the weights for t = 0, 1. Initially, all weights are

equal, wi = 1/N ; i = 1, ..., N , because there are no observations available

with which to determine which particles have the best fit. When t = 1, only

eight particles have weights around or higher than 1/N = 0.02. The weights

are now too dispersed and the particles with low weights are discarded,

and perturbations are made around the particles with higher weights. The

effective sample size (ESS) at t = 1 was ESS1 = 6.8, which is well below

the threshold of N∗ = 37 chosen for this case study. After perturbing, all

particles are given equal weight, since they are all distributed around the

previous high-weighted particles, as illustrated in Figure 4.6.

Figure 4.5: Distribution of the weights at t = 0, 1.

At t = 3, 4, the weights are slowly spreading out from 1/N until t = 5,

where ESS5 = 32, indicating the weights are too dispersed, as illustrated

in Figures 4.6 and 4.7. After perturbing at t = 5, all particles have equal

weight, as shown in Figure 4.7.
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Figure 4.6: Distribution of the weights at t = 2, 3.

Figure 4.7: Distribution of the weights at t = 4, 5.
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Figures 4.8 and 4.9 show the distribution of the weights for t = 6, 7 and

t = 8, 9, respectively. The weights are again slowly spreading out from 1/N ,

but not as quickly as before. This indicates that the fit of the particles is

improving.

Figure 4.8: Distribution of the weights at t = 6, 7.

Figure 4.9: Distribution of the weights at t = 8, 9.
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At t = 9, the weights have become too dispersed again, and we perturb, as

shown in Figure 4.9. For t = 10, ..., 15, the weights are very slowly spreading

out from 1/N , as illustrated in Figures 4.10, 4.11 and 4.12. This time, there

are fewer particles with higher weights. Most particles are spread closely

around 1/N , indicating that the fit of the particles is continuing to improve.

The last perturbation happens at t = 16, as shown in Figure 4.13 and for

t = 17, ..., 24, almost all weights are equal to 1/N , with ESS25 = 48.8,

shown in Figures 4.14, 4.15 and 4.17.

Figure 4.10: Distribution of the weights at t = 10, 11.

Figure 4.11: Distribution of the weights at t = 12, 13.
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Figure 4.12: Distribution of the weights at t = 14, 15.

Figure 4.13: Distribution of the weights at t = 16, 17.
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Figure 4.14: Distribution of the weights at t = 18, 19.

Figure 4.15: Distribution of the weights at t = 20, 21.
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Figure 4.16: Distribution of the weights at t = 22, 23.

Figure 4.17: Distribution of the weights at t = 24.
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4.3 Empirical Model Parameter Distribution

The initial distribution of λ is shown in Figure 4.18. Here, the distributions

are intentionally right-shifted Gaussian, with the red vertical line indicating

the reference values for λ. The reason for this is to simulate a bad initial

guess of the parameter.

Figure 4.18: Initial distribution of λ.

After the first perturbation at t = 1, the width of the distributions for the

concrete and insulation parameter has narrowed. They have also become

centred more around the reference values. For ice, the distribution is the

same width, although it has lost its Gaussian shape, as shown in Figure

4.19.

Figure 4.19: Distribution of λ after the first perturbation at t = 1.
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Figure 4.20 shows the distributions after the second perturbation. The

concrete parameter has improved significantly. Its distribution has become

more narrow and centred around the reference value. The distribution for

the insulation parameter has narrowed somewhat, but is still right-shifted.

There is no significant change in the ice parameter.

Figure 4.20: Distribution of λ after the second perturbation at t = 4.

The distributions after the third perturbation are shown in Figure 4.21. For

the ice parameter, the centring is closer to the reference values, although

still slightly right-shifted. The concrete parameter is mostly unchanged,

and the insulation parameter is correctly centred but is still distributed

widely.

Figure 4.22 shows the distributions after the fourth and final perturba-

tion. The distributions for both the concrete and insulation parameters

have narrowed significantly and centred around the reference values. For

the ice parameter, the distribution has narrowed somewhat, with most of

the particles being slightly right-shifted in relation to the reference value.

Figure 4.23 shows the final weighted distributions at t = 24, which are very

similar to the distributions after the last perturbation, as shown in Figure

4.22.
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Figure 4.21: Distribution of λ after the third perturbation at t = 8.

Figure 4.22: Distribution of λ after the fourth and last perturbation at
t = 15.

Figure 4.23: Distribution of λ at t = 24.
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4.4 Discussion of the Test Case

The histograms of the weights and λ show promising results. In the be-

ginning, only a few particles are high-weighted, which indicates that a few

particles have good fit, whilst the majority is far off. After perturbing, the

weight distribution is mostly even around 1/N and the parameter distri-

butions for both concrete and insulation have narrowed and centred more

around the reference value. This trend continues; after each perturbation,

the weight distribution remains centred around 1/N longer before spread-

ing out, and in the final time steps, almost all particles have weight 1/N ,

as illustrated in Figure 4.17.

There is also an improvement to the empirical distribution of λ. Initially,

the empirical distribution is wide and right-shifted. After each perturba-

tion, the distributions get more narrow and centred around the reference

value. The empirical distribution for the ice parameter is still somewhat

right-shifted and has a few particles to the left of the reference value. How-

ever, the general trend is that the empirical distribution narrows and the

centring moves towards the reference value.

Table 4.1 presents the mean and the mean square error of λ, here denoted

µλ|κ and s|κ, respectively. They are displayed at t = 0, after each pertur-

bation and at the end of the simulations. The table shows that the MSE is

fairly low and decreases with each perturbation. The mean nears the ref-

erence values at each perturbation and ultimately settles almost perfectly

at the reference values. For t = 24, we have the weighted mean and mean

square error.
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Table 4.1: The mean and MSE of λ at each perturbation, with λ(ref) =
(2.25, 1, 0.003).

t = 0 t = 1 t = 4 t = 8 t = 15 t = 24

µλ|κ = ice 2.39 2.17 2.18 2.16 2.25 2.24

µλ|κ = conc 1.21 1.03 1.04 1.03 0.99 0.99

µλ|κ = insu 0.00412 0.0041 0.0043 0.0038 0.0028 0.0028

s|κ = ice 1.92×10−26.23×10−34.55×10−37.31×10−34.92×10−71.58 ×
10−4

s|κ = conc 4.42×10−21.12×10−31.71×10−39.28×10−49.79×10−51.98 ×
10−4

s|κ = insu 1.25×10−61.20×10−61.65×10−66.55×10−74.46×10−85.02 ×
10−8

Figures 4.24, 4.25 and 4.26 display the empirical confidence intervals for λ.

The red line in the figures represents the reference values of the respective

heat transfer coefficients. These intervals are created by removing the two

smallest and two largest particles in each time step and centring the inter-

vals around the average values, represented by the black dots. Figures 4.24,

4.25 and 4.26, show an immediate narrowing of the interval for both the

concrete and insulation parameters. The concrete parameter also shifts its

average towards the reference value, as does the ice parameter. After the

last perturbation, the intervals of the concrete and insulation parameters

are very narrow and the average values are quite near the reference values.

As for the ice parameter, the interval is slightly narrowed, but the average

value is very near the reference value.
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Figure 4.24: Empirical confidence interval for the heat transfer coefficient
of ice.

Figure 4.25: Empirical confidence interval for the heat transfer coefficient
of concrete.
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Figure 4.26: Empirical confidence interval for the heat transfer coefficient
of insulation.

The results shown in the development of the empirical distributions of λ,

the weight distributions and the empirical confidence intervals, indicate

that the PF is able to successfully estimate the thermal conductivity of the

three layers of the ice rink floor.
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Closing Remarks

In this study, the Parameter Particle Filter, a Particle Filter with parameter

updating for estimation of site-specific thermal parameters, is presented.

A numerical scheme is developed for the transient heat conduction and

simulated using the computer software COMSOL. The traditional Kalman

Filter is considered, but it is not applicable, because the system in question

is nonlinear. Because the forward model can not be restarted, both the

Ensemble Kalman Filter and the traditional Particle Filter are difficult

to use. The temperature profiles are resampled and perturbed and the

parameter updating is done using an estimated Kalman update. Using

synthetic data, the Particle Filter developed in this study is tested on the

thermal conductivity parameter of an ice rink floor.

The Parameter Particle Filter quite precisely estimates reference value of

the thermal conductivity for both the concrete and insulation layer of

the ice rink floor. Starting with a right-shifted and wide distribution,

the Parameter Particle Filter centres the estimated parameter distribu-

tions around the reference values and narrows the widths of the estimated

distributions. The narrowing of the empirical distributions is due to the
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empirical covariance matrix being scaled by the scaling parameter during

perturbation. This ensures that the new particles are distributed close to

the particles with a good fit. For the thermal conductivity of the ice pad,

the width of the estimated distribution is still somewhat wide and slightly

right-shifted, but the mean is very close to the reference value.

Judging by the results, the Parameter Particle Filter developed in this

study successfully estimates the thermal conductivity of an ice rink floor.

The method is computationally efficient and very fast. It has the added

benefit of only needing to run the forward model once. The Particle Filter

can easily be expanded to handled multiple parameters, but it is subject

to the curse of dimensionality.

Future work could incorporate this method as an analytical tool in con-

struction when considering what materials to use. The Parameter Particle

Filter can provide valuable information regarding which material compo-

sition will provide the desired temperature distribution. In ice rinks, this

aspect of temperature control is vital in order to maximise energy sav-

ing.
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