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Abstract

In this thesis we have presented results for experiments regarding identification of elec-

troencephalograph (EEG) signatures, produced by the visual exposure of primary colors

i.e. red, green and blue (RGB) to the subject. The experiments are conducted with an

open-source Brain-Computer Interface (BCI) called OpenBCI with the help of 10 healthy

participants doing 2 types of experiments, short pulse exposure and steady-state exposure.

The reason for the study is to see if there are any clear brain-wave patterns in the EEG

data by looking at characteristics between the different colors and individuals.

Regarding data analysis, a well-known signal analysis technique called Hilbert-Huang

Transform (HHT) has been applied to the EEG data. The algorithm uses Empirical Mode

Decomposition (EMD) to break the signal into meaningful Intrinsic Mode Functions

(IMFs). By executing Hilbert Transform (HT) on the IMFs, instantaneous frequency and

amplitude is obtained. These instantaneous frequencies are examined by using Hilbert

Spectral Analysis (HSA), to get a qualitative visual representation of the data. As for the

steady-state experiment, Fourier transform has been applied to acquire spatial informa-

tion.

A significant difference was found between exposure to the different colors. Exposure

to the color blue seems elicit a considerably narrower frequency band with a larger am-

plitude than that of the color red and green. Moreover, the frequency response for color

green showed a frequency shift towards higher frequency compared to that of the red and

blue color. The individual differences were quite significant, and it seems that the brain

responses varies a lot across all of the subjects. From these results, we can conclude that

OpenBCI is well-suited for recording complex EEG data, and may be utilized for several

applications without the need of more expensive equipment for recording EEG data.
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Sammendrag

I denne masteroppgaven blir det presentert resultater fra eksperimenter som omhandler

identifikasjon av EEG-signaturer, produsert av visuell eksponering av primærfargene rød,

grønn og blå. Eksperimentene er utført med en Brain-Computer Interface (BCI) kalt

OpenBCI med hjelp av 10 friske deltakere som utførte to typer eksperiment, kort puls ek-

sponering og langvarig stasjonær eksponering. Bakgrunnen for denne studien er å se om

det finnes et klar hjernebølge mønster i EEG-data ved å se på forskjeller mellom farger

og individer.

Dataanalysen ble utført ved å bruke en velkjent metode for signalanalyse, kalt Hilbert-

Huang Transform (HHT). Algoritmen bruker Empirical Mode Decomposition (EMD) til

å splitte signalet opp og ekstrahere Instrinsic Mode Functions (IMFs). Ved å kjøre Hilbert

Transform (HT) på IMFene, får man momentan frekvens og amplitude. Momentanverdi-

ene blir deretter analysert nærmere ved å bruke Hilbert Spectral Analysis (HSA), for å få

en kvalitativ visuell representasjon av dataen. Til eksperimentet vedrørende langvarig ek-

sponering ble det brukt Fourier transform for å tilegne informasjon fra frekvensspekteret.

En signifikant forskjell ble funnet mellom eksponering til de forskjellige fargene. Ek-

sponering til blåfarge ser ut til å gi smale responser i frekvensspekteret med høyere am-

plitude enn fra rød- og grønnfarge. Videre ser vi at frekvensresponsene fra grønnfargen

har høyere frekvens enn det fra blå- og rødfargen. Individuelle forskjeller var store, og

det ser ut til at hjernebølge responsen varierer over alle deltakerene. Fra disse resultatene

kan vi konkludere med at OpenBCI er velegnet for opptak av kompleks EEG-data, og kan

bli brukt til andre applikasjoner uten å nødvendigvis ha behov for medisinsk utstyr.
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Chapter 1

Introduction

Electroencephalogram (EEG) has been used to record electrical activity of the brain for

almost a century, and it remains the most effective non-invasive method to acquire brain

signals and is superior when it comes to temporal resolution. Traditionally, measuring

EEG required equipment that was expensive, and often only expedient in medical ap-

plications, but recent technological breakthroughs has made it possible to make EEG

equipment a lot cheaper and more convenient in terms of mobility and size. Over the

past decade, there has been a dramatic increase in utilizing BCIs for tasks related to EEG

measurement. They have emerged as powerful platforms for brain-signal analysis, and is

now accessible to a broader audience, as the price has dropped remarkably the last couple

of years. Access to information from the human brain is now simple compared to prior

equipment.

The main source of information that is interpreted by humans is from visual information,

and most of this information is perceived by distinguishing between a range of colors.

Visual stimulus produces more efficient BCI systems due to a higher information transfer

rate. According to a recent study [1] from MIT, visual images can be identified after just

being seen for 13 milliseconds. The visual system is precisely adapted to extracting con-

ceptual information that is received by visual input, which is done with help of the ability

to rapidly recognize different colors. Colors is such a vital part of the visual system, and

therefore we have chosen color perception as our main area of investigation in this thesis.

In this paper, we have performed experiments and presented the results regarding identi-

fication of brain-wave patterns recorded from the scalp, produced by visual exposure of
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CHAPTER 1. INTRODUCTION

the primary colors, red, green and blue (RGB) by using the low-cost open-source EEG

platform called OpenBCI. A previous study [2], have classified EEG signals as red, green

and blue classes from experiments with random visual exposure of the distinct RGB com-

ponents, and got satisfactory results. Our experiments will be of a similar manner, only

with more diverse experiments, such as distinguishing between pulsation of light and a

steady-state light source and randomizing the interval timing. Our objective is to see if

there are any clear patterns of brain activity that arises from the primary visual cortex, or

more generally from the occipital lobe, at the back of the human scalp, when the subject

is exposed to visual stimuli.

Problem description

In this thesis we are investigating if visual exposure of primary colors i.e. red, green

and blue, will produce any distinct brain-wave patterns or unique EEG signatures. We

are also examining if there is any clear frequency difference between visual exposure of

each of the distinct RGB colors, as well as any brain pattern differences between subjects.

This study is of interest to gain more insight into how the brain reacts to different visual

stimuli, and how different subjects responds to the visual stimuli, and at what level visual

exposure to light acts as an alert for the conscious mind. The reason for this thesis is also

to see if OpenBCI is well-suited for recording complex EEG data, despite the fact that the

equipment is not of medical grade.

1.1 Research questions

The following research questions will be investigated throughout this thesis:

RQ1: Does the visual exposure to each of the distinct light components of the primary

colors of RGB produce different brain-wave patterns for each of colors?

RQ2: Does the visual exposure to each of the distinct light components of the primary

colors of RGB produce different brain-wave patterns for each of individuals?

2



CHAPTER 1. INTRODUCTION

Literature Survey

In this literature survey, a annotated bibliography will be presented along with a short

summary and conclusion of state-of-the-art research that is of high relevance to our re-

search. For each of the entries, we will provide some information about the research, and

evaluate it with respect to the relevance to this thesis.

[3] Worren, F., et al. (2016). A Unified Real-Time Feature Extraction and Classifica-

tion Process for a BCI Based on Empirical Mode Decomposition and Support Vector

Machine, NTNU.

The thesis has served as the main source of research regarding the methods that was

utilized in this thesis. The authors of this thesis have studied and implemented a data-

driven process combining EEG feature extraction based on Empirical Mode Decompo-

sition (EMD) and classification using a support vector machine (SVM). For the experi-

mental setup, they have used a medical grade 256-electrode EEG geodesic sensor net for

measuring, compared to our thesis where we have utilized a cheap open-source EEG for

the same purpose. They were able to detect and classify left and right hand movements

through the use of normalized Hilbert transformation, and acquired a impressive classifi-

cation accuracy of up to 95% from multiple subjects. In this thesis we are also utilizing

HHT, along with EMD for extraction of Intrinsic Mode Functions (IMFs) and HS for vi-

sualization purposes.

[2] S. Rasheed and D. Marini, “Classification of EEG signals produced by RGB

colour stimuli,” Journal of Biomedical Engineering and Medical Imaging, vol. 2,

no. 5, p. 56, 2015

In this paper, an investigation was presented regarding the classification of EEG signals

produced by random visual exposure of primary colors RGB. Seven healthy subjects par-

ticipated in the experiment. Each of the colors was randomly presented for three seconds.

They were successful in classifying the colors by using Support Vector Machine (SVM)

as classifier and Event-Related Spectral Perturbations (ERSP) as features. As this paper

is regarding similar studies as to what we have been conducting, it serves as a good basis

regarding the experimental setup and what results we expect to achieve with our thesis.
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[4] M. Münch, G. Plomp, E. Thunell, A. Kawasaki, J. Scartezzini, and M. Herzog,

“Different colors of light lead to different adaptation and activation as determined

by high-density EEG,” NeuroImage, vol. 101, pp. 547 – 554, 2014.

This research is regarding the investigation of how the light adaptation of different col-

ors affects brain signals and responses. Sixteen healthy people participated in the study.

The study consisted of test with exposure of four colors of light in a randomized-within-

subject design. The EEG signals were analyzed by using ERP and Global Field Power

(GFP), where GFP is the standard deviation of ERPs at a given time. The study shows

that the strongest light adaptation effects was the response to red light, followed by blue

then green. We expect to see similar results in our study when distinguishing between the

three RGB colors in the experiments we are conducting.

1.2 Limitations

One limitation regarding EEG recording is the low resolution of the spatial and temporal

information. The fact that the experiments are conducted with 8 electrodes, will provide

less accuracy, and thus risk losing important details regarding brain-wave patterns.

Another limitation lies in the fact that during the experiments, the human subject may

make voluntary or involuntary movements. These movements may elicit myoelectri-

cal signals, which will create unwanted brain artifacts and/or disturb the raw EEG data.

Movements like this may include the fact that the subject has to blink from time to time,

or that the subject is making small muscular movements, such as moving body parts. An-

other disturbance is the heart rate pulse, which will disturb the EEG signal if the electrode

is placed in specific locations on the scalp.

Moreover, a limitation concerning data transfer is that the EEG data is transferred be-

tween the OpenBCI board and the computer via Bluetooth, and may be slightly unstable

in some environments. Moreover, in terms of physical limitations, we were not able to do

our experiments in a neutral environment. The fact that the experiments were done in a

room with ambient sound and power grid noise (due to capacitance between power grid

and ground), will decrease SNR, and thus may affect the results.

4



CHAPTER 1. INTRODUCTION

1.3 Approach

The occipital lobe is the rearmost lobe of the brain, situated at the back of the human

scalp. One of the main objective of the occipital lobe is to translate visual information.

Our approach is therefore to focus on recording EEG data close to the primary visual

cortex, which lies in the occipital region. A more detailed explanation about the primary

visual cortex is provided in Section 2.3.

For analyzation purposes, Empirical Mode Decomposition (EMD) is utilized to extract

meaningful spatial and temporal information. This method provide good qualitative in-

formation, that is easily interpretable and are superior when it comes to analyzing EEG

data. In a recent study, [5], a comparison between different signal analysis methods has

been introduced, which included EMD. The result of this comparison show that EMD

outperforms the other methods in the study, and especially when the SNR is high. In light

of this, EMD will be our main approach in terms of signal analysis. Details regarding

these methods are presented in Section 2.9.

As for the experiments, they are conducted with neutral conditions in a completely dark

room. The experiments are replicated with 10 different subjects, to underpin its repro-

ducibility. The complexity of the EEG signal is also something that has to be taken into

consideration when choosing the approach. Because of this, averaging techniques has

been applied to enhance these important potentials and neglect baseline noise.

The approaches mentioned here will ensure that the results are more precise and accurate,

and overall provide more validity to the experiments.

1.4 Structure of the Report

This thesis is organized into 5 Chapters. First, an overview of the main background the-

ory is presented in Chapter 2, along with theory related to the various methods. Next,

in Chapter 3, details regarding the experimental paradigm is mapped out, as well as pro-

viding a detailed description regarding the data analysis methods that was utilized in the

thesis. In Chapter 4, the results of our research is presented and then finally Chapter 5,

which contains a conclusion of our results, a discussion about the implications of our
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findings and last a section with suggestions for future research. Additional appendices

are attached with qualitative plots and diagrams for each subject to support the results.
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Chapter 2

Background literature

The objective of the following chapter is to provide the reader with background theory

and relevant literature that treat similar problems as to what this thesis is studying. The

chapter starts by introducing EEG, some anatomy of the brain, and then continues on with

explaining about BCI. At last the theory related to the various approaches are presented.

2.1 Electroencephalogram

The average human brain has about 100 billion neurons. Each of these neurons can pro-

duce time-dependent electric fields that are measurable via electrodes placed on the hu-

man scalp, as illustrated in Figure 2.1. Each electrode measure a sum of potentials from

between approximately 100 million and 1 billions neurons, according to [6]. The sig-

nals that are picked up by these electrodes are called electroencephalogram, or EEG for

short. The history of EEG can be traced back to the German professor of psychiatry, Hans

Berger. His dedication to the subject was driven by one belief, that with EEG he would be

able to discern some well defined and measurable physical properties which represented

true expressions of mental processes. In 1929, he published his first paper on the human

electroencephalogram [8]. The publication had little impact on the scientific world at

the time, but is recognized as the paper that initiated the new era of neurophysiology. He

used an electroencephalograph, which is an instrument with the purpose of measuring and

recording rhythmic changes in the electric impulses of the brain, more commonly known

as brain-wave patterns. This was done by measuring electrical activity of the human brain

by placing electrodes on the surface of the scalp and then amplifying the signal. Today

7
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Figure 2.1: Illustration of EEG recording [7]

EEG is a widely used method in the field of neurophysiology, with applications such as di-

agnose of epilepsy [9]. In the field of neurophysiology, EEG is a commonly used method

to study the functions of the brain. Moreover, the number of electrodes in BCI applica-

tions range from as few as 8 for simple applications, to Geodesic Sensor Nets (GSN) with

as many as 256 electrodes for more complex and accurate applications.

2.2 Anatomy of the brain

The largest part of the human brain is the cerebrum, or the cerebral cortex, and is associ-

ated with higher brain functions such as action and thought. The cerebrum is divided into

four so called "lobes". The frontal lobe is associated with personality, emotions, concen-

tration, planning, reasoning, voluntary movement and problem solving. The parietal lobe

is associated with orientation, proprioception, recognition and perception of stimuli. The

occipital lobe takes care of the visual processing and the temporal lobe is associated with

perception and recognition of auditory stimuli, speech and memory. The visual system

will be the main focus area for this thesis, and the occipital lobe, marked in red in Figure

2.2, will therefore provide us with the best source of information.

2.3 Visual Cortex

The visual cortex of the brain is a part of the cerebral cortex that plays an important role

in processing visual information. It is located in the occipital lobe on the back of the

8
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Figure 2.2: Particular sections of the cerebral cortex [10]

skull. The objective of this thesis’ experiments are regarding perception of RGB colors,

and the main focus area is then where visual processing of colors takes place. The most

important area in the brain regarding visual processing lies close to the calcarine sulcus

(the fissure that divides the visual cortex in twain), and is a region named the primary

visual cortex (V1), also referred to as the striate cortex. In this region, the neurons are

responding to color, direction of movement, contour and depth. This is also where the

simple three-color segregation begins to break down. This region is illustrated as V1

(bright yellow area) in Figure 2.3. The primary visual cortex is a structure that is essential

to the conscious processing of visual stimuli.

2.4 Frequency bands of the brain

The term "neural oscillations" refers to the periodical electrical activity that is sponta-

neously generated as a response to stimuli in the central nervous system (CNS). EEG re-

veals these brain rhythms in specific frequency bands. The discovery of these frequency

bands is generally credited to Hans Berger, and among the first brain waves he discovered,

was the Alpha wave, which is also called the Berger’s rhythm, in memory of the founder.

According to [12], these frequency bands are well known and have been observed to its

9
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Figure 2.3: Particular sections of the visual cortex [11]

distribution over the human scalp and its biological significance. These frequency bands

are referred to as delta (δ), theta (θ), alpha (α), beta (β), and gamma (γ) from low to high

frequency, respectively. The different frequency bands are also specified with its corre-

sponding frequencies in Table 2.1.

Brain rhythm Symbol Frequency

Delta wave δ 0.5-4 Hz
Theta wave θ 4-8 Hz
Alpha wave α 8-12 Hz
Beta wave β 12-30 Hz
Gamma wave γ >30 Hz

Table 2.1: Frequency bands of the brain

State-of-the-art characteristics regarding each of the specific brain frequency bands and

their corresponding mental states are presented by [13], and is given as a brief summary

below.

Delta waves: The Delta waves refers to the mental state of being asleep. During this state,

the brain produces very slow Delta waves with high amplitude. These frequencies may

10
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be confused with artifact signals, which are caused by contraction of the large muscles of

the body.

Theta waves: The Theta waves refers to being in a drowsy state, and is one of the more

elusive and extraordinary mental states. A large amount of these frequencies can be seen

in younger and older children, and in adults that are about to fall asleep or is in a medita-

tive or sleep state. According to [14], the Theta waves are also associated with meditative

concentration.

Alpha waves: The Alpha waves predominantly originate from the occipital lobe during

relaxation, and refers to being in a pleasurable state of consciousness, which is important

in stress reduction and high levels of creativity. As stated in [15], the amplitude of the

alpha wave increases when the eyes are closed and then attenuate when the eyes are open.

These brain rhythms primarily reflect visual processing in the occipital region, and may

also have some relation to memory function of the brain, according to [16].

Beta waves: The Beta waves are mostly present in the frontal and central regions of

the brain, and is closely related to being wide-awake and on alert. This means that your

mind is being sharp and focused, and making neural connections more easily and quick.

Also, neurons fire abundantly, and in rapid succession which helps to achieve peak per-

formance. This state is ideal for work that requires full attention. These brain rhythms are

also associated with motor activities, and are desynchronized during motor imagery and

real movement, according to [17].

Gamma waves: The Gamma waves are the brainwaves that have the highest frequencies,

and is closely related to being in a excited state. These waves are associated with peak

concentration and is the optimal frequency regarding cognitive functions of the brain. The

presence of these waves of a healthy adult is related to certain perceptions, attention and

motor functions, as stated in [18]. There are also several studies [19], [20], and [21] that

have provided evidence for presence of gamma activity in perception of both auditory and

visual stimuli.

11
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Figure 2.4: Illustration of the brain rhythm frequencies

An illustration of these frequencies of brain rhythms are shown in Figure 2.4. As the

purpose of this thesis is regarding visual stimulus, the frequencies that is related to the

occipital region is of interest. The frequencies that occurs in the occipital region is mostly

high-frequency beta and gamma activities, which are the frequencies we expect to see

most activity. A study [22], found that there was increased energy between 20-40Hz

as multiple peaks that was recorded from the visual cortex of a Rhesus monkey when

responding to a visual stimulus. As the brain functions of monkeys and humans are

closely related, we expect to see results of a similar manner in our experiment.

2.5 EEG Terminology

Epoch

Epoching is a term used frequently in the field of EEG. Epoching is essentially the pro-

cedure of extracting a window of time-series data relative to a specific event time-stamp.

These time windows are called "epochs", and are usually time-locked with respect to an

event. These epochs can be of different size, depending on the type of events that are of

interest and how long the segments of event are expected to last. In this thesis, epochs are

used to store time-series data as a response of visual stimuli for further analyzation.
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Event-Related Potential

The direct measured brain response of a specific cognitive, sensory or motor event is

called an Event-Related Potential (ERP), or more generally called the electro-physiological

response to a stimulus. The epoch windows are usually larger than the width of the ERPs,

to ensure that ERPs are covered within the window.

Event-Related Spectral Perturbation

By averaging the power spectrum of short sliding time windows in multiple epochs of

similar experimental events, the resulting Event-Related Spectral Perturbation (ERSP)

will be the unique signature to the action or stimuli that the ERP was a response to.

2.6 Brain-Computer Interface

Brain-Computer Interface is an alternative to the natural communication and control of

the body by providing a artificial direct communication pathway between a wired brain

and an external device. BCI is used to bypass the neuromuscular output channels, also

known as the efferent pathways of the body. Efferent is the outward communication from

the central to the peripheral nervous system and further to an effector, or more commonly

known as a muscle. The BCI uses direct measurements of the brain activity instead of

being dependent of peripheral nerves and muscles. Put simply, a BCI is a computer-based

system, which acquires signals from the brain, analyzes them, and then finally translate

them into commands which is passed on to an output device to finally carry out a desired

action, as illustrated in Figure 2.5. Although there are many definitions of the term,

the most commonly definition according to [23], is summarized by these four distinct

components:

1. The system must record activity directly from the brain, either invasively or non-

invasively.

2. It must provide feedback to the user.

3. Feedback must be provided in real-time.

4. The system must rely on intentional control.

13
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Figure 2.5: Illustration of Brain-Computer Interface

BCI is a relatively new field of science with almost limitless range of applications. Al-

though most of BCI units have been expensive in the past, there has been numerous tech-

nological advances in the field in the last couple of years. Today, humans can utilize the

technology and use brain-signals to interact with and influence the environment. As men-

tioned in [24], the dramatic growth of brain-computer interfaces is driven by factors such

as:

• Cheaper, smaller, and faster electronics and related instrumentation.

• Increased understanding of normal and abnormal brain function.

• Improved interfaces and environments.

• Additional testing and experimentation with target users in field settings.

• Improved methods for decoding brain signals in real time.

• Improved sensors, such as active and dry electrodes and improved invasive elec-

trodes.

There are numerous different BCI devices on the market, but our focus will be exclusively

on the open-source EEG platform OpenBCI.
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2.7 OpenBCI

OpenBCI is a low-cost, programmable, open-source EEG platform, which is built around

the Texas Instrument’s ADS1299 IC. The chip is an 24-bit analog-to-digital converter

(ADC) designed specifically for measuring tiny EEG signals and consist of 8 separate

channels that measures different parts of the brain in a non-invasive manner. The commu-

nication between the board and the computer is via Bluetooth, and is thus more safe, as

hazardous situations due to power supply is avoided. The main concern about using low-

cost equipment instead of high-cost medical equipment is that it may not have the same

accuracy and performance. A study [25] has compared OpenBCI and medical equipment

and concluded that OpenBCI’s effective performance and features are quite similar to that

of the medical equipment, making OpenBCI a good alternative, as long as it is not to

be employed in sensitive context such as medical applications. The OpenBCI board is

depicted in Figure 2.6.

Figure 2.6: OpenBCI board overview [26]

Headwear

The OpenBCI is delivered along with a headwear, which is utilized as the frame for the

EEG measurement system in this thesis. The headset is an open-source, 3D-printed head-

set intended to work with the OpenBCI system. It is capable of recording EEG, as well
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as muscle activity (EMG) and heart activity (ECG). It consist of a frame where the elec-

trodes and OpenBCI system is mounted on, as seen in the concept illustration in Figure

2.7. Since this system is open-source, OpenBCI provides the sufficient .STL files to

3D print the headwear by yourself. To assemble the 3D-printed parts we followed the

complete manual1.

Figure 2.7: Ultracortex Mark IV [27]

Electrode placement standard

There are numerous ways of placing the electrodes, but there are two standards which is

widely used on an international level, namely the 10/10 system and the 10/20 system [28].

The first and the second number correspond to the relative distance between the cranial

landmarks over the head surface of the total front/back and right/left distance of the skull

respectively. Each location has identification letters to identify the lobe and a number

to a corresponding hemisphere location. The identifications letters to the corresponding

lobes is described in Table 2.2 and the locations are illustrated in Figure 2.8. The elec-

trode channels marked in red are the ones that are available in the headwear supplied by

OpenBCI.

1http://docs.openbci.com/Headware/01-Ultracortex-Mark-IV. Accessed: 3/7-17
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Lobe Letter

Frontal F

Temporal T

Parietal P

Occipital O

Center2 C

Table 2.2: Identification letters corresponding to different brain lobes

Figure 2.8: Overview of the 10/10 system with the available electrodes for the OpenBCI headset
[29]

2Center is not actually a lobe, but a category that encapsulates all the center nodes
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2.8 Hilbert Transform

Hilbert Transform (HT) of a signal x(t ) is defined as the transform in which phase angle

of all components of the signal is shifted by ±90◦. As presented in [30], the Hilbert

Transform for a signal x(t) is given by

y(t ) =H [x(t )] = 1

π
P

∫ ∞

−∞
x(τ)

t −τdτ (2.1)

in which P indicates the Cauchy principal value. The HT, y(t ) and the original signal

x(t ) are orthogonal. They have properties such as having the same amplitude spectrum,

autocorrelation function and the same energy spectral density.

Instantaneous frequency and amplitude

Instantaneous frequency is an important concept in signal processing regarding represen-

tation and analysis of time-varying functions. As proposed in [31], the instantaneous

frequency can be obtained in the following procedure. By utilizing HT, the imaginary

part y(t ) is obtained from the analytic signal z(t ), which is given by

z(t ) = x(t )+ i y(t ) = a(t )e iθ(t ) (2.2)

in which

a(t ) = {
x2(t )+ y2(t )

}1/2 and θ(t ) = t an−1 y(t )

x(t )
(2.3)

from the canonical pair,
[
a(t ),θ(t )

]
, associated with x(t ). The instantaneous amplitude is

given by a(t ), while the instantaneous frequency is then defined as the time derivative of

the phase, i.e., the rate of change of the phase of the analytic pair, given by

ω(t ) = dθ(t )

d t
(2.4)

2.9 Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) was originally introduced to study water surface

wave evolution in the late 1990s [30]. Since then, it is widely used in various signal

analysis fields. EMD is a fully data-driven algorithm which is used to decompose a signal
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into its own intrinsic oscillations called Intrinsic Mode Functions (IMF), which is done

in a process called sifting. These IMFs are amplitude/frequency (AM/FM) modulation

components of the signal. In the EMD approach, the data x(t ) is decomposed in terms of

IMFs according to

x(t ) =
n∑

i=1
ci + rn (2.5)

where ci are the IMFs and rn is the monotonic residue, after n number of IMFs are

extracted. The method that is useful for analyzing natural signals, which are most often

non-linear and non-stationary. Because EMD does not leave time domain, it is adaptive

and highly efficient. EMD based algorithms has been used in high extent for high-quality

seismic records, as seen in [32], where EMD utilized as an approach to enhance seismic

reflections and to make seismic events more coherent. A more thorough tutorial on EMD

is presented in [33], but a simple explanation of IMF and the sifting process is explained

in the following subsections.

Intrinsic Mode Functions

The IMFs arise as basic modes from the application of EMD to functions or signals. They

are characterized by being narrowband modes, having a large time-bandwidth product

and being nearly monocomponent, i.e. signals with only one local extremum per zero

crossing. These allows for well-defined Hilbert Transforms, which ensures extraction of

physically meaningful instantaneous frequencies. Meaningful instantaneous frequencies

is defined as functions that have the same number of zero crossings and extrema and that

it is symmetric with respect to the local zero mean, as defined by Professor Norden Huang

in [30]. The definition of an IMF can be summarized by the following two conditions:

1. The number of extrema and the number of zero crossings must either equal of differ

at most by one throughout the whole data set.

2. The mean value of the envelope defined by local maxima and the envelope defined

by the local minima is zero for any point.

An example for visualization purposes is illustrated in Figure 2.9, where a EEG signal x(t )

has been decomposed into 7 distinct IMFs c1(t ), · · · ,c5(t ) where the remaining residue

have been extracted as IMF 7.
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Figure 2.9: An example signal x(t ) decomposed by the the Ensemble Empirical Mode
Decomposition of an EEG signal, resulting in 7 IMFs.

Sifting

The procedure of extracting an IMF is called sifting. Sifting is a general term in signal

processing related to separating out components of a signal one at a time. It is frequently

used in context of wavelet decomposition since this process is very similar in this respect.

The sifting starts by interpolating local minima and local maxima points with a cubic

spline, to determine the upper and the lower envelope, respectively. The mean envelope is

then subtracted from the initial signal, as shown in the illustrated example in Figure 2.10.

A new iteration will start and the interpolation scheme is reiterated on the remaining

signal. The process terminates when the mean envelope is approximately zero along the

signal, and the resulting signal is then designated as an IMF. The procedure of using EMD

together with the Hilbert Transform is referred to as the Hilbert-Huang Transform (HHT)
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and is described more in depth in the Section 2.10.

Figure 2.10: An example illustrating the cubic spline interpolation between the minima (lower
envelope) and maxima (upper envelope) to define the local mean. Illustration in courtesy of [3]

Limitations

According to [34], one of the main drawbacks of EMD is a phenomenon called mode

mixing, which occurs during the EMD process. The definition of mode mixing can be

summarized by two reasons:

1. The IMF contains signals of widely disparate scales

2. Signals of a similar scale reside in different IMF components

The recently proposed Ensemble Empirical Mode Decomposition (EEMD) algorithm [35]

uses a large number of noisy signals as masking signals. It is shown that EEMD can

resolve the mode mixing problem in some real-life signals.

Ensemble Empirical Mode Decomposition

The idea of EEMD is to introduce white noise to the single data set, x(t ). The added

white noise is treated as random noise that would be encountered when measuring EEG
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data. The resulting "artificial" observation will then be

xi (t ) = x(t )+wi (t ) (2.6)

Adding white noise to the signal may result in smaller SNR, but the added white noise

will provide relatively uniform reference scale distribution to facilitate EMD, thus the low

SNR does not affect EMD, but actually enhances it to avoid the mode mixing problem.

As proposed in [35], EEMD is executed according to the following sequence:

1. Add a white noise series to the targeted data

2. Decompose the data with added white noise into IMFs

3. Repeat step 1 and 2 over a defined number of ensembles

4. Obtain the ensemble means of corresponding IMFs of the decomposition as the

final result

With a given amount of ensembles, the added white noise will cancel out and result in an

average of the ensemble IMFs. However, this procedure does have some drawbacks. The

ensemble IMFs will not always contain strict IMF properties. However, as mentioned

in [35], it will not interfere notably with the Hilbert Transform. An overview of the

functionality of EEMD is illustrated in Figure 2.11.

Figure 2.11: Overview of the EEMD functionality.
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2.10 The Hilbert-Huang Transform

The Hilbert-Huang Transform (HHT) is a relatively new data analysis method, and is first

published in 1998 by Professor Norden E. Huang et.al. in [30]. HHT is an adaptive fea-

ture extraction algorithm, which uses an empirical approach (EMD), rather than theory

based, as algorithm such as the Fourier- and Wavelet Transform. Because of the fact that

the decomposition is based on the local characteristic time scale of data, the algorithm is

capable of handling non-linear and non-stationary time series data, and is thus more con-

venient regarding the study of complex signals, such as EEG signals. HHT is widely used

in voice signal processing, like in [36], where an HHT algorithm is utilized for speech

enhancement, and in [37], where HHT is used to characterize loudspeaker nonlinearities.

An overview of the functionality of HHT and how EMD is embedded as part of HHT,

is presented in Figure 2.12. The purpose of HHT is to utilize EMD to decompose a

Figure 2.12: Overview of Hilbert-Huang Transform functionality

signal into IMFs along a trend, and then differentiating the phase with respect to time

which returns an instantaneous frequency. The instantaneous frequency is then applied to

the HT, so that the final result of the algorithm is a frequency-time distribution of signal

amplitude. The resulting distribution is then visualized with Hilbert Spectrum (HS), as

elaborated in the next subsection.

Hilbert spectrum

Hilbert spectrum (HS), named after David Hilbert, is a statistical tool that gives a qualita-

tive interpretation of a mixture of moving signals. Before utilizing HS, the dataset to be

in the correct format, and HT has to be performed on each IMF. According to [30], when
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HT has been applied to each IMF, the data can be expressed in the following form

X (t ) =
n∑

j=1
a j (t ) exp

(
i
∫
ω j (t )d t

)
(2.7)

Equation (2.7) enables visual representation of the amplitude and the instantaneous fre-

quency as functions of time in a three-dimensional plot, in which the amplitude can be

contoured on the frequency-time plane. This frequency-time distribution is denoted as

H(ω, t ). The HS can also be substituted by using amplitude squared to get energy density,

and then a Hilbert energy spectrum can be presented. There are multiple way to visual-

ize the Hilbert spectra, both with color coded maps and contour maps with and without

smoothing. An example of HS visualization is depicted in Figure 4.2.

2.11 Fourier Transform

The Fourier transform is a generalization of the complex Fourier series in the limit L →∞.

The way it works is that it decomposes a function of time into the frequencies that make

up the signal. The Fourier transform of a function f , is traditionally denoted as f̂ and is

defined as

f̂ (ξ) =
∫ ∞

−∞
f (x)e−2πi xξd x (2.8)

for any real number ξ.
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Methods

The objective of the following chapter is to map out the methods that we utilized in this

thesis, and to provide a thoroughly description of the experimental paradigm and how the

data was acquired, processed and analyzed.

3.1 Experimental paradigm

Participants

Nine healthy male participants and one healthy female participant were recruited. All of

the participants are of similar age (26 years, SD = 1 year), and normal or corrected-to-

normal vision, and none of them were colorblind. One of the participants had elliptical

seizures at a young age, but the rest of the subjects did not report any current or past

neurological or psychiatric illness.

The participants had given their informed consent and was able to withdraw from the

testing at any time without consequences. The experiment caused no physical harm to the

participants. Participants along with some description for each subject is provided and

enlisted in Table 3.1.
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# Age Sex CB1 RH2 OD3

1 27 M No Yes R

2 25 M No Yes R

3 25 M No Yes R

4 26 M No Yes R

5 27 M No Yes L

6 26 M No No L

7 25 M No Yes R

8 24 M No No R

9 26 F No Yes R

10 27 M No Yes R

Table 3.1: List of participants

Paradigm

The experiments that are conducted in this thesis are all regarding visual stimuli of three

distinct primary colors, red, green and blue (RGB) recorded in a completely dark room.

The paradigm consist of six distinct experiments, two for each of the three colors projected

at the subject. The experiments were divided into the following sub-categories regarding

how they are projected at the participant:

1. Short pulse light stimuli of each of the distinct RGB components.

2. Steady-state light stimuli of each of the distinct RGB components.

Regarding the short pulse experiments, the light pulse duration is static and was set to

1 second, and were presented in a pseudo-randomized order with the interval given as a

random uniform number between 10.0 and 18.0 seconds. The randomization was done

to ensure that brain activity due to prediction from the subject would be minimized in

the resulting EEG data. Regarding the steady-state experiments, the experiment starts

with having the light source switched off for 30 seconds, then the light source is switched

on and maintained for 60 seconds, before ending with another 30 seconds with the light

1Colorblind: displays if the subject is colorblind or not.
2Right-handed: displays if the subject is right-handed or not.
3Ocular dominance: displays which eye is the dominant eye of the subject (the tendency to prefer visual

input from one eye to the other), R for right and L for left.
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source switched off. These experiments were conducted to see if they would invoke any

distinct ERPs or brain-wave patterns, due to the light stimuli. We concentrated on signals

recorded close to the striate cortex and is expected to display localized neuronal activity

of the primary visual cortex in both experiments.

Setup

The experiment is conducted in a completely dark room, with the RGB light strips mounted

on a wooden bracket, as depicted in Figure 3.2. The connections that was made for the

Arduino is depicted in Figure 3.1. Moreover, a matte acrylic glass plate was mounted

in front of the RGB light strips to diffuse the light into a more pleasant glow. This was

done to prevent sharp stinging points of light, and to distribute the light uniformly across

the surface. During the experiment, the subject is situated on a chair approximately 50

Figure 3.1: Wooden bracket along
with the EEG headwear.

Figure 3.2: Connections for
Arduino and RGB strips.

centimeters from the plate, with the participant facing directly towards the light source.

The luminosity of each color was kept constant. Experiments for red, blue and green light

sources are depicted with a subject in Figure 3.3, 3.4 and 3.5, respectively.

Procedure

The participants were asked to meet up in a specified room separately at a given time.

They were then presented with a few explanatory sentences regarding the tasks assigned
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Figure 3.3: Red light source Figure 3.4: Green light source Figure 3.5: Blue light source

to the participant. Participants were asked to keep their eyes open during recording ses-

sion, and to blink only during the dark inter-stimulus intervals. They were also told to sit

completely still and gaze towards the two light sources, situated in front of the participant.

The headwear was then carefully mounted on the subjects head, and all the electrodes was

tightened so that it gently touched the scalp of the subject, as well as clamping the refer-

ence and bias pins onto each of the subjects ears flips. A participant with the headwear

mounted on is depicted in Figure 3.6. EEG signals from each electrode channel were

Figure 3.6: Girlfriend of one of the authors happily participating in the experiments.

then tested separately prior to the experiment. If there were any inconsistencies in a given

channel, it was checked and fixated such that the signals received were stable. After mak-

ing sure that the task assigned to the participant was fully understood, the testing session

began. The six different experiments required all participants to sit completely still and

focus on a given point between the two light sources. The test session were monitored by

watching a live plot, in case of any signal issues during a test session. The experiment

starts by choosing the experiment type and color in the Python program. Then the Python
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program establishes a connection to the OpenBCI headset and the Arduino controlling

the light source. The experiment will then last for a given duration, with light source

intervals given by the Python program. The RGB light source will light up according to

the interval and color commands sent to the Arduino. While experiment is ongoing, the

OpenBCI will collect data from EEG and send it via Bluetooth to the Python program,

which will provide a live plot. After the recording is done, the recorded data is exported

as a data array as a .csv file, which is compatible with the other Python software mod-

ules used for data analysis purposes. A more thorough description of how the software is

implemented, and how it works in detail is given in 3.3. An overview of the experiment

sequence and interface is presented in Figure 3.7.

Figure 3.7: The sequential steps and interface of the experiment

Experimental Limitations

The location that was utilized for the recording sessions did not have any protection

against electromagnetic disturbances nor any acoustic damping, and is thus not a perfect

location for acquiring sensitive EEG data. Another important aspect is that the subjects

reacted differently to the brightness of the light source, and some had small involuntary

movements due to this. Since the EEG data measured is of a very small scale (microvolt),

it may be affecting our results.

Data acquisition

The electrical activity of the brain was recorded using OpenBCI headset with 8 dry elec-

trodes. Furthermore, the EEG signals are sampled at a rate of 250 Hz. Technical details

about OpenBCI is explained more thoroughly in Section 2.7. The packets that are re-
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ceived from the board is divided into byte frames, as given in Table 3.2. To interpret the

data collected in a useful and quantitative way, a scale factor is applied to the data chan-

nels so that the signals are converted to microvolts. The formula is derived from the data

format section on the OpenBCI website4 and is

λ= 106 · Vr e f

k(223 −1)
[
count s

µV
] (3.1)

where Vr e f is the reference voltage and k is a user-configurable gain, which is set to 24

by default and λ is the scale factor to convert signal to microvolt. Due to limitations of

the RFDuino wireless link, the sample rate is limited to 250 Hz. Higher sampling rate is

possible for offline use with modifications to the device firmware and adding in a SD card

in the SD card reader on the device.

Information Bytes

Packet Number 1

Sample Number 2

Channel 1 3-5

Channel 2 6-8

Channel 3 9-11

Channel 4 12-14

Channel 5 15-17

Channel 6 18-20

Channel 7 21-23

Channel 8 24-26

Auxiliary Data 27-32

Table 3.2: Format of data packet

4http://docs.openbci.com/Hardware/03-Cyton_Data_Format. Accessed: 3/7-17.
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3.2 Hardware implementation

This section provides a detailed overview of all the different hardware components of

the system, ranging from equipment used for measuring to equipment for controlling the

sequence of light exposure.

OpenBCI electronics

The OpenBCI electronics consists of two PCBs, the OpenBCI device and the the RFduino

host dongle, depicted in Figure 3.8 and 3.9 respectively. The RFduino dongle is a single

PCB with an USB connector on the end, GPIO pins used for updating firmware on the

OpenBCI device and a RFduino IC for wireless communication. The OpenBCI device

is the core component of the system, consisting of an analog-digital converter designed

specifically for EEG-signals, an Arduino compatible microcontroller, 3-axis accelerom-

eter and an RFduino to connect to the host dongle. By default this system supports up

to 8 electrodes, but it is possible to supplement with an additional daisy-chain board that

extends the support for up to 16 electrodes.

Figure 3.8: OpenBCI Device [38] Figure 3.9: RFduino Host [39]

Electrode placement

For the purpose of recording brain responses from visual stimuli, the occipital lobe is

where visual signals from the thalamus is received and processed. More specifically the
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electrodes were chosen to be placed as a close cluster around the primary visual cortex/the

striate cortex (V1), which is the most important area in terms of visual processing, as

described more thoroughly in Section 2.3. Hence, the electrode placement specified using

the 10/10 system, are as following

Left hemisphere: P3 − PO3 − O1

Right hemisphere: P4 − PO4 − O2

Midline: POz − Oz

The OpenBCI headset can support up to 16 electrodes utilizing a daisy board, but as the

8 electrodes already occupies the headwear’s closest nodes of interest, any further nodes

would have been placed well outside the area of the occipital lobe. The electrodes em-

ployed are illustrated with the color red in Figure 3.10, while the possible placements

of electrode nodes are illustrated in Figure 2.8. There are also some additional connec-

tions that needs to be made, such as reference and bias. A reference pin (SRB-pin on the

OpenBCI board), or ground pin if you like, is the reference signal in which all electrodes

are compared to, so that changing potentials across the brain can be measured. Another

necessary pin is the BIAS-pin. This pin detects and negates common-mode voltage in-

terference from power-line or other sources. This is an built in function on the ADS1299

ADC on the OpenBCI device. Hence, both of these pins are required to be connected to

each of the earlobes, denoted as A1 and A2 in Figure 3.10.

Arduino

Arduino consists of both a microcontroller and a piece of software, or IDE (Integrated

Development Environment) that runs on your computer, used to write and upload com-

puter code to the physical board. Since it has a built-in microcontroller, it is suitable for

controlling the RGB light source for our experiment. Arduino UNO does also have a se-

rial connection, that we will utilize for the interface to the Python script running on a PC.

Another important reason for using Arduino to control the RGB light sequence is for more

exact timing of events, as the light event times can be synchronized with commanding the

Arduino.
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Figure 3.10: Overview of the 10/10 system with the utilized electrodes marked in red [29]

Figure 3.11: Arduino UNO [40]

RGB LED strip

The light source that is used for the experiments are two 12V RGB light strips that are

mounted on a wooden bracket, which is situated in front of the subject. It was placed a

matte acrylic glass plate in front to diffuse the passing light, as the light is generated as

small very bright points along the LED strip.

Figure 3.12: RGB LED strip [41]
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3.3 Software implementation

This section provides a detailed overview of all the Python software that was tailor-made

for this thesis, both for recording purposes and data analysis. Dependencies required for

the Python program is presented, as well as a description of the program procedures and

information about the different modules.

Dependencies

The software implemented in this thesis is programmed in Python, due to its extensive

libraries regarding signal analysis. The project implementation dependencies consist of

the following Python packages:

PySerial: PySerial encapsulates the access for the serial ports needed for communication

between both the Arduino and the OpenBCI board.

SciPy: SciPy (pronounced “Sigh Pie”) is a Python-based ecosystem of open-source soft-

ware for mathematics, science and engineering. Provides necessary core packages.

Numpy: Numpy is a core package in SciPy and is fundamental for scientific computing

with Python. We utilize it because it provides us with N-dimensional array that is more

powerful, and has more opportunities than the default Python arrays.

Matplotlib: Matplotlib is a python 2D and 3D plotting library which produces publica-

tion quality figures, and with the Pyplot interface, plots can be provided with a Matlab-like

interface.

PyQtGraph: PyQtGraph is a plotting library that is better for live plotting. For this thesis

it is utilized for live plotting of EEG data during experiment.

Hierarchy

The software that was made for this thesis is extensive. Because of this, the software is

divided into separate modules, so that the software is structured in a good manner. The

hierarchy of Python scripts with corresponding descriptions are presented in the following

tables. Table 3.3 shows an overview of the main scripts that is accessed by a user. As for

all the scripts that are related to recording, are listed in Table 3.4.
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Script name Description

Analyze.py Main analyze script

Record.py Main script for EEG data recording

Plot.py Main script for plotting raw EEG data

EEMD_decomp.py Script that runs EEMD on raw EEG data in a given folder

Table 3.3: List of the main Python scripts

Script name Description

arduino.py Arduino related logic

dmc.py Supportive functions

livefiltering.py Livefilter of EEG signal

liveplot.py Liveplot of EEG data while recording

logic.py General logic for EEG recording

obci.py OpenBCI interface logic

ringbuffer.py Basic ringbuffer for liveplot cache

timer.py Timing and threading logic for EEG data recording

Table 3.4: List of Python scripts related to recording

And all of the scripts that are related to data analysis are listed in Table 3.5. Because of

Script name Description

analyze.py Logic for EEG data structure

analyze_funcs.py EEG signal analysis functions

emd.py EMD algorithm5

plot_funcs.py Script containing function regarding plotting

supportive_functions.py Script containing a range suuportive functions

Table 3.5: List of Python scripts related to data analysis

the fact that this thesis has multiple authors, version control was utilized through the use

of GitHub, to ensure that changes in code are managed in a favorable manner.

5Courtesy of Geir Kulia, Signal Analysis Lab AS, 2017
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Data acquisition procedure

A data acquisition script has been made to save recorded data and present live data dur-

ing recording sessions of the different experiments that have been conducted. The script

presents the user with three experiment choices, pulse, steady-state and random. Depend-

ing on which experiment is chosen, a choice between each of the three RGB colors is

presented. When experiment and color is chosen, the experiment sequence start. Serial

connection is then initialized and established between both the Arduino and the Open-

BCI. A serial command is sent to the OpenBCI to reset buffer and start streaming data.

Experiment starts running, and data is streamed from OpenBCI to the PC running the

script via Bluetooth. The live plot is continually updated for each iteration sample re-

trieval. All commands are sent to the Arduino with intervals produced by interval values

given in the config.py script. Color commands are sent over serial as ’R’, ’G’ and ’B’

literals, for red, green and blue respectively. The commands are received by Arduino and

instantly emitting the color corresponding to the command. The timing error between the

recorded data and enabled lights was measured using a 240 fps high speed camera, and

the resulting timing error was always less than one frame, this results in a timing error for

the recorded data generally within one sample of each other at a 250 Hz sampling rate. As

this thesis only focuses on frequencies below 50 Hz this will have a negligible effect on

the recorded data. The event timestamps are saved in an array for data analysis purposes

post-experiment. An overview of the program sequence is illustrated with a flow chart in

Figure 3.13.

Data analysis procedure

The amount of data from the experiments are substantial. In fact, there are 160 minutes

worth of data per electrode, divided over a total of 60 experiments. Because of this, the

data analysis had to be split up in separate stages. Firstly, a script decomposing the raw

EEG data into its IMF components with EEMD was run overnight, due to the amount of

ensembles that had to be computed. When the script has completed, it saves the IMFs

into a compressed Numpy array on locally the disk for further analysis.
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Figure 3.13: Flowchart illustrating the data acquisition program

Short pulse experiment

Regarding short light pulse experiment, to analyze the EEG data, it needed to be in a

proper state. This means that the line-noise needs to be filtered out, and any EEG ar-

tifacts that occurred while recording needs to be excluded from the data set, as well as

focusing on a given time window epoch surrounding the event. This exclusion is done by

bandpass-filter the raw EEG data between 1-40 Hz, followed by visual inspection of the
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resulting time-plot to ensure that it went well. Recording-artifacts from bad skin-electrode

connection will manifest as excessive spikes or oscillations in the data with often greater

than 100µV . The areas in the time-plot which contain these artifacts are then manually

added to a list of errors. Combining the event and error data, an event list is generated

with only the healthy time-series. By using this event list, the time series for each channel

is epoched according to the time-windows illustrated by Figure 3.16 and Figure 3.17 for

pulse and steady-state experiments, respectively. For each set of epochs for every IMF, in

every channel, the instantaneous amplitude and frequency is calculated using the Hilbert

Transform. For each of these sets of instantaneous frequency/amplitude, the epochs are

stacked on top of each other and medianed sample-wise to end up with a single median

instantaneous frequency/amplitude for each separate IMF. Median was chosen over aver-

aging, so that outliers did not effect the results too much. By doing this, the baseline of

brain-activity is reduced resulting in a more clear and accurate ERP. Moreover, a flowchart

illustrating the data analysis regarding pulse light experiment is shown in Figure 3.14.

Steady-state experiment

As for the steady-state experiment, the requirement for the data structure is less compli-

cated. Using the same method for visually inspecting the raw EEG data, two epochs that

does not contain any recording-artifacts were selected, in which one of the epochs contain

information from active period during stimuli, and the other epoch containing inactive pe-

riod (non-stimuli period). The IMFs of interest in the given epochs were then recombined,

and Fourier Transform were executed on the resulting data. Moreover, a flowchart illus-

trating the data analysis regarding steady-state light experiment is shown in Figure 3.15

3.4 Data analysis

This section will provide a description of the procedural approach from the obtaining of

the raw EEG recording to the data analysis methods that are utilized on the recorded

data, as well as some diagrams to present the algorithms in a qualitative manner.
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Figure 3.14: Flowchart illustrating the data analysis program for short pulse

Data analysis format

To be able to access the time-series data from all subjects over each of the two experi-

ments, the data was saved into a single Numpy array of 5 dimensions. The dimensions

are implemented in the Python script as "number of subjects, number of colors, number

of channels, number of IMFs, number of samples".

Short pulse experiment

Regarding the short pulse experiments, the EEG data needs to be epoched in a suitable

time-window. This is done to ensure that information regarding the stimuli is consistent,

and from the same time-window for each of the events. We have chosen the parameters

such that each epoch has a length of 2500ms, in which it is divided into 500ms pre-stimuli,

1000ms event-length and 1000ms post-stimuli, as illustrated in Figure 3.16. The specific
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Figure 3.15: Flowchart illustrating the data analysis program for steady-state

epoch parameters are chosen to neglect irrelevant areas way outside of events, and to

retain information about possible after effects that may occur post-stimuli. To accentuate

the changes related to the light stimulus while diminishing the nominal brain-activity, the

epochs are stacked on top of each other and medianed sample-wise.

Figure 3.16: Illustration of the epochs that are chosen for the pulse experiment.

Steady-state experiment

For the steady-state experiment, a sufficiently long time-window for the lights where both

active and inactive, while also include as little recording-artifacts as possible. As we

wanted to have a same sized epoch for all extracted datasets that fit with the constraints in
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mind, an epoch length of 16 seconds were chosen, as shown in Figure 3.17

Figure 3.17: Illustration of the epochs that are chosen for steady-state experiment.

Linear filtering

Filtration plays a vital role in EEG data acquisition, as brain-wave signals recorded with

EEG operates in the 1-100 µV range and is thus very sensitive to nearby changing electro-

magnetic fields, such as power-line noise. Extracting useful data can therefore be prob-

lematic, as the induced power-line interference can exceed 1mV , the Signal-To-Noise

ratio (SNR) can end up being too low. The EEMD algorithm employed in this thesis is

severely affected by this, and the performance of the decomposition will yield unusable

IMFs. An illustration of how a signal with and without linear filters applied are shown

in Figure 3.18, where a band-pass and a band-stop filter has been applied. This will re-

move the power-line noise and any common-mode voltages between the electrodes and

the reference.
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Figure 3.18: Sample data to compare filtered to non-filtered data

Empirical Mode Decomposition

The EMD algorithm that is being utilized for extracting IMFs, is a modified version of the

EMD algorithm proposed by Signal Analysis Lab in [42]. The algorithm is illustrated in
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Figure 3.19. The algorithm uses the input signal v(t ) and returns the fewest IMFs possible

to describe it as v1(t ), · · · , vNI MF (t ) and a monotonic function vr (t ). The upper and lower

envelopes are calculated using cubic spline interpolation.

Ensemble Empirical Mode Decomposition

EMD is not effective in all situations, and in situations where mode-mixing is an issue,

EEMD may be applied. EEMD takes advantage of the statistical attributes of white noise

and with enough ensembles will return separate scales for amplitude and frequency while

cancelling itself out. In our thesis it performed well with clearly extracting IMFs consis-

tently without mode-mixing and closely relating to the brain-wave ranges shown in Table

2.1. A limitation to EEMD is that if there is an uneven distribution of noise across dif-

ferent electrode channels, it may weaken its ability to return consistent results, and as the

SNR over the 8 channels in the same recording could vary greatly, this was corrected with

applying linear filters to mitigate the power-line noise and its high-frequency harmonics.

Finally the parameters for white noise and number of ensembles for the EEMD algorithm

must be carefully chosen to yield good mode-mixing rejection while not corrupting the

underlying signals with the white noise. The choice of standard deviation of the noise and

the number of ensemble members that is applied to EEMD is chosen according to [35],

where the following equation is purposed.

εn = εp
N

, (3.2)

where N is the number of ensemble members, ε is the amplitude of the added noise, and

εn is the final standard deviation of error, which is defined as the difference between the

input signal and the corresponding IMFs. With N = 800 and ε = 20, the resulting IMFs

had no mode-mixing issues. The white noise with a standard deviation of εn = 1p
2

was

applied, and had a negligible affect on our results.

Hilbert-Huang Transform

HHT is utilized as the main method for data analysis in this thesis due to its capabilities

in time-frequency-energy representations, and offers a potentially viable method for non-

linear and non-stationary data analysis. According to a thorough review on HHT [43], in
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Figure 3.19: UML diagram of the the EMD algorithm, courtesy of Geir Kulia [42]
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all the cases studied, HHT gives results much sharper than most of the traditional analysis

methods, and in most cases, it reveals true physical meanings. To obtain the instanta-

neous frequency, the HT needs to be computed. The SciPy library includes a function for

computing HT, in which is executed for an analytic signal z(t )

z(t ) = F−1[F (x)2U
]= x(t )+ i y(t ), (3.3)

where F is the Fourier Transform, U is the unit step function, and y(t ) is the HT. The

resulting HT can then be differentiated with respect to time to obtain the instantaneous

frequency

ω(t ) = dφ(t )

d t
, (3.4)

where ω is the instantaneous frequency and φ is the instantaneous phase angle. The

phase angle is also unwrapped in the algorithm to prevent discontinuities in the phase

angle which will result in dirac delta impulses. The instantaneous amplitude a(t ) can be

obtained as

a(t ) =
√

(x(t ))2 + (i y(t ))2 (3.5)
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Results

The objective of the following chapter is to present the results from the experiments that

was conducted. The chapter starts by presenting general results of the experiments, fol-

lowed by an overview of the subjects. Results are then presented with respect to differ-

ent experiment types, followed by a presentation with respect to individual differences

and differences between each of the colors. A selected few of the different plots and

diagrams are presented along with the results, with the rest listed in the appendices.
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Figure 4.1: Mean
frequency per IMF

visualized with 2σ SD

4.1 Preliminary analysis

The results are presented with EEG data, recorded from 10 dif-

ferent participants. Each participant performed 2 types of exper-

iments, namely short pulse experiment and steady-state experi-

ment, in which both are performed for each of the primary col-

ors RGB. Data from all of the participants were used, however,

some epochs are excluded from the dataset due to recording ar-

tifacts. The EEMD algorithm was applied on the recorded EEG

data, in which the 7 most relevant IMFs were extracted. The ac-

quired IMFs with its corresponding mean frequencies and its 2σ

variations are presented in Table 4.1. The same IMF values are

also presented and compared along in Figure 4.1. Moreover, the

extracted IMFs frequency ranges is comparable to the different
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brain-wave classifications, in particular IMF 1-5, to that of the 5 state-of-the-art brain

rhythms enlisted in Table 2.1. The specific brain patterns from different subjects var-

IMF Frequency SD1

0 47.2 Hz 4.260
1 32.9 Hz 0.726
2 18.2 Hz 2.170
3 10.1 Hz 0.935
4 4.81 Hz 0.624
5 2.37 Hz 0.363
6 1.06 Hz 0.242

Table 4.1: List of IMFs found with corresponding mean frequencies

ied a lot. Some subjects had a flat response across all or some of the electrodes, and

some subjects had a more intensified response from a few electrodes. There were also

some differences in terms of which colors that elicited the more intense response. A list

of the subjects along with information regarding corresponding individual response are

therefore presented in Table 4.2.

# Area2 Color3 P4 SS5

1 O2/Oz R A.1 B.1
2 O1/Oz B A.2 B.2
3 O2 R A.3 B.3
4 Flat R A.4 B.4
5 O1 B A.5 B.5
6 Flat B A.6 B.6
7 Oz R A.7 B.7
8 Oz B A.8 B.8
9 Flat B A.9 B.9
10 Oz B A.10 B.10

Table 4.2: Results for different participants

1Displays the standard deviation with 2σ
2Describes the electrode locations of the occipital lobe that displays the highest level of response. If the

response is very spread out, typically >3 electrodes, "Flat" is displayed.
3Displays the color that gave the most significant energy response
4Figure reference to the Hilbert spectrum plots regarding short pulse experiments
5Figure reference to the frequency response plots regarding steady-state experiments
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4.2 Hilbert spectral analysis

With the instantaneous frequency and amplitude that is obtained by applying the Hilbert

transform on the IMFs, the average results from each experiment and color are computed.

That is, the average time-frequency solutions, averaged over all the accepted epochs sep-

arately for each of the participants. Using the recorded EEG data from each subject and

each color, the average power for IMF 1-6 was computed from approximately 14 separate

stimuli events, recorded over all electrodes for the short pulse experiment and visualized

as an Hilbert spectrum. Results from green light exposure on electrode O1 for Subject 2

is presented in the Hilbert spectrum in Figure 4.2.
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Figure 4.2: Hilbert spectrum visualization of IMF 1-5 from Subject 2 with exposure to green
color and from electrode O1.

In most of the subjects, a significant rise in energy was found for both IMF 1, IMF 2 and

IMF 3, which has a mean frequency of approximately 30Hz, 16Hz and 10Hz, respectively.

This rise in energy occurs from different parts of the occipital lobe, depending on which

subject it is. The electrode that recorded the clearest response differed greatly between

subjects, ranging from left to the right hemisphere of the occipital lobe. Moreover, a

few of the subjects had a more significant rise in energy compared to what was found

in others, while some had a insignificant change. The energy difference between active

(data during event) and inactive (data in between events) for Subject 1 is presented as

histogram plots for both IMF 1 and IMF 2 in Figure 4.3 and Figure 4.4, respectively. The

plots are presented with a distribution of all the different electrode channels and with a
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Figure 4.4: Event-related power in IMF 2
for Subject 1

separate plot for each of the RGB colors. The desired level of the confidence interval is

set to 95%, also represented as approximately 2σ (two times standard deviation), which is

shown as a black line on top of each histogram. With the chosen confidence interval, it is

clearly that the difference between power in active and inactive is significant in channels

O2 and Oz for this subject. A complete presentation with the distribution of all of the

subjects are listed in Appendix C.

4.3 Color characteristics

Regarding differences between exposure to the different RGB colors, we did not find any

clear statistical significant differences when examining the temporal information from the

short pulse experiments. There is a slight tendency that the average normalized power

between active and inactive state for blue and green light is higher than red light as a total

over all subjects, as seen in Figure 4.5. It can also be seen that the response from red light

has a slight phase offset compared to the response from blue and green light, this can be

observed per individual in Appendix D. All of the colors elicits a similar response over

IMF 1 and IMF 2, and a clear increase in power can be seen in the event area between

the grey dotted lines. However, by analyzing spectral information from the steady-state

experiments, we obtained surprisingly good results from the frequency response by utiliz-
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Figure 4.5: Normalized power from components IMF 1 and 2, averaged from the electrode with
the best response for each subject per experiment color.

ing the Fourier Transform. Spectral information from one of the subjects are presented in

Figure 4.7. Here it can be seen that blue light has a tendency to elicit a more narrow fre-

quency response with larger amplitude than that of red and green. Moreover, it can also be

observed that green color elicit a slightly higher frequency than that of red and blue color.
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Figure 4.6: Color
comparison for each IMF

with each bar in the
corresponding RGB color

To visualize the average difference between the different fre-

quencies for each color, for each of the IMFs, a histogram

distribution plot has been made and illustrated in Figure 4.6.

The goal of this was to see if there was a universal repose that

accounted for all of the subjects in this thesis. The visualiza-

tion shows the average over all subjects’ frequency response

listed as IMF correspondents along with the 2σ standard de-

viation, which then clearly highlights the frequency shift that

can be seen in green light, compared to that of red and blue

light.

4.4 Subject characteristics

The individual brain responses for each of the subjects are

visualized by Hilbert spectrum and listed in Appendix A. A

clear trend can be recognized by taking a closer look at each
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Figure 4.7: Spectral information on channel Oz for Subject 7.
Subplots are for color red, green and blue, respectively.

individual. A rise in energy is clearly seen in some individuals in IMF 1, which lies in the

gamma wave range with a frequency of about 30Hz. The electrode channel that received

the most significant response varied greatly between the different subjects, and for some

subjects shows a very localized response where only a single channel is of statistical

significance.
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Conclusion

The objective of the following chapter is to give a summary of what has been done and

present conclusions drawn from the experiments with regards to the research questions

presented in the introduction, as well as discussing the strengths and limitations of the

findings and presenting some recommendations for further work.

5.1 Summary

The entire implementation in this thesis contains separate modules for recording and an-

alyzation of EEG data. The steps include filtering of power-line noise, signal mode ex-

traction with EEMD, time-frequency analysis with Hilbert Spectrum Analysis (HSA) and

frequency response analysis with the Fourier Transform (FT).

Some vital advantages of EEMD has been outlined, in which the most important one is

the fact that it suppresses mode-mixing, compared to EMD, which may introduce mode-

mixing between the different IMFs. No prior knowledge of the spectral nor temporal

information are required, meaning that almost any signal can be decomposed by EEMD,

which will ensure that the resulting IMFs contain the most valuable information.

Furthermore, the frequency spectra of the IMFs that were obtained through EEMD seem

to correlate closely with the state-of-the-art recognized brain rhythms, which underpins

that our results are in line with that of other researchers.

Moreover, the short pulse experiments, as well as the steady-state experiments, proved

to yield satisfactory results. Regarding differences in brain response to the different col-
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ors, the steady-state experiment provided good spectral information from the frequency

response through the use of Fourier transform, in which was manifested as distinct tran-

sients in energy at a range of different frequencies. The short pulse experiments, on the

other hand, gave us good qualitative temporal information. Distinguishing between dif-

ferent subjects through the use of Hilbert spectrum and statistical analysis granted us with

information regarding how individually brain responds to visual stimuli.

Regarding RQ1, looking at the steady-state results, there was a significant difference be-

tween exposure to the different colors. Exposure to the blue color seemed to generate

considerable narrower frequency band with a larger amplitude than that of the red and

green color. While the frequency responses for green light was always shifted towards

higher frequency compared to that of the red and blue light. Moreover, when it comes

to RQ2, the individual differences were quite significant, and it seems that the brain re-

sponses varied across subjects, as argued further in 4.4.

The results from our thesis proves that OpenBCI, even though it is not of medical grade,

provides surprisingly satisfying results with good spatial and temporal resolution. From

this, we can conclude that OpenBCI is well-suited for recording complex EEG data, and

can be utilized for other EEG related applications without the need of more expensive

equipment for recording of the EEG data.

5.2 Discussion

Recording implications

Linear filters will deform the original signal due to phase shifting, which is something that

we tried to avoid. However, due to excessive environmental noise during recording, the

SNR of the resulting EEG data was very low. This severely hindered EEMDs ability to

properly extract the underlying IMFs. The exact reason for the disturbance is not known,

but future EEG experiments with the OpenBCI headset should be held in a more neutral

noise-free environment to mitigate this issue. This will increase the SNR, which in terms

will remove the need for linear filtering.

Another limitation lies in the fact that the electrodes used with the OpenBCI board are

52



CHAPTER 5. CONCLUSION

dry-electrodes. This may create differences in impedance between subjects, but also be-

tween electrodes on the same subject, which in terms will complicate the data analysis.

This may be solved by utilizing a EEG headset with wet-electrodes instead. This will

probably increase the cost and decrease practicality of the headset, but a more stable and

accurate measurement will be acquired.

Regarding the recording procedure, there were a couple of implications and considera-

tions that could have been taken more into account. One of the most important one being

the fact that the number of events for each experiment could have been set to a higher

number. Even though the length of the experiment is decent, a longer interval between the

events was prioritized to make sure lasting effects would not be included in the subsequent

event. As nominal brain activity seem to generally be reestablished after approximately

2 seconds, this interval was clearly chosen too large. Decreasing this interval would have

enhanced our results by providing significantly more data, and when averaged, the base-

line brain activity would have been further neglected, as well as highlighting the response

from short light pulse stimuli. Another important experimental parameter that would

strengthen the results is the number of subjects, as the variation between the responses of

the 10 subjects in this thesis varied greatly. Having more participants in the experiments

would increase accuracy of the results, and highlight the average trend across participants

in a more accurate way.

Moreover, in terms of EEG recording, some of the EEG data will be contaminated by

artifacts. All EEG signals that does not originate from the brain activity are considered an

artifact, which can be divided into external and internal artifacts. External artifacts origi-

nate from external sources, such as power-line noise, electromagnetic fields and bad skin

contact between electrode and scalp, which were eliminated by visual inspection. On the

other hand there are internal artifacts, such as moving muscles, eye blinks, eyeball move-

ment, jaw clenching e.g. which could be related to involuntary actions linked up with the

visual stimuli. These could affect the results without being directly obvious while doing

the visual inspection, but only appearing under closer analysis, contaminating the results.

An example of this can be observed in Figure A.10, where an increase in the 10 Hz IMF

lasting approximately 0.2 seconds can be seen. Other than a visual response, this could

possibly be an involuntary twitching motion due to the sudden change in brightness. This

53



CHAPTER 5. CONCLUSION

could be tested by decreasing the intensity of the light gradually and if the response shape

changes from uncomfortably bright to dim.

Analysis of results

According to the state-of-the-art research on the different frequency bands of the brain

we did in Section 2.4, we expected to see higher energy in beta and gamma bands dur-

ing light stimuli. The IMFs that was obtained from EEMD proved to be similar to these

bands, whereas the mean frequencies of IMF 1 and IMF 2 were close to the frequencies

of gamma and beta bands, respectively. As can be seen in the average event-related power

in Appendix C, there is an indication that for most of the subjects there is a significant rise

in energy in both IMF 1 and 2, in some of the electrodes during stimuli. This seems to be

in line with other research [22], where they found increased energy in beta and gamma

bands recorded from the visual cortex of a Rhesus monkey in response to visual stimulus.

However, in a few subjects, the energy in the beta and gamma range was quite low, and

thus seems like the frequency responses from the brain is individual, or is limited by some

unknown factor which has not been corrected for.

When examining the results, we noticed, to our surprise, that there were big differences

between individuals in terms of recorded EEG activity. Some individuals, such as e.g.

Subject 3, had a very flat response across all electrodes, as seen in Figure A.3. As a

contrast to this, some subjects, such as Subject 5 and Subject 7, seemed to have a more

intensified response locally on a single electrode, O1 and Oz, in Figure A.5 and A.7, re-

spectively.

Looking more closely at the different response for each of the distinct colors, it also seems

that the response is quite individual there as well, even though there is a trend across most

participants, as stated in Section 4.3. A few of the subjects, such as Subject 10, appear

to have a limited frequency response, as seen in Figure B.10. We cannot be confident

in what causes this, but an hypothesis is the fact that the subject was the one taking the

experiments, and was being exposed to the colors in for the 10 hours it took to record, and

thus being used to the experience.

The power figures in Appendix D shows the change in energy from the sum from IMF
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1 and 2, and then normalized. There seem to be a slight phase delay of the increase in

power from red light stimuli, as compared to green and blue. However given the number

of events per color this data is based on, we do not have a too high confidence in these

results, as explained why in Section 5.2.

It can also be observed a distinct pattern that seems to be repeating for a subset of the

subject pool, which can be seen in the Hilbert spectrum plots that is listed in in Appendix

B. There is a trend that when the center of energy for each response in red and blue light

lines up with each other, the bandwidth of the responses from red light seem to be higher,

as can be seen in Figure B.1, B.2, B.5, and B.7. In contrast to this, the other subset have

a smaller frequency bandwidth for the red light, and for them it can be seen that all three

color responses have unique frequencies, as can be seen in Figure B.8 and B.9. This is

only a pattern that we recognized, and we cannot conclude anything from this, other than

that the responses seems to be categorized across individuals.

There are other factors we have not taken into account, such as state of mind, tiredness

and alertness. All subjects was asked to focus on the lights, but the statistical significance

of how much this affects the results is not tested. This however would require a different

experimental paradigm and a much larger subject pool to give conclusive results. Another

interesting observation that was made was that the subjects that had a dominating 10 Hz

alpha wave during the inactive periods seemed to respond less to the light stimuli, as if

in a less alerted state. This correspond well to the fact that alpha wave is related to being

in a relaxed state of mind, as more thoroughly described in Section 2.4. However, we

cannot draw any conclusive statement regarding this topic from our data, as more spe-

cific regarding this has to be conducted. Furthermore, initially Wavelet transform was the

preferred technique for analyzing EEG data, due to its capabilities regarding good qual-

itative energy plots. However, due to the fact that the frequencies of interest are in the

higher region in this research, Wavelet transform is not adequate. This is because Wavelet

plot seemed to be biased towards the energy from the lower frequencies, and neglect the

energy from the higher frequencies. This made us consider utilizing other methods for

analyzing. As stated in 1.3, the EMD outperforms other techniques, and was therefore the

obvious choice as the analyzation technique.

In the preliminary data, we had some appearance of mode mixing between different IMFs.
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This was solved by utilizing EEMD to extract IMFs, instead of the standard EMD. We

were successful in eliminating mode-mixing from the IMFs by choosing the correct pa-

rameter choices for the standard deviation of the applied white noise, as well as the num-

ber of ensembles.

As observed in Figure 4.6, there is a trend towards different frequency responses for

each of the primary colors, in which the data generated for this plot was extracted by

visually inspecting each of the plots in Appendix B. Retrieving the mean frequency
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Figure 5.1: Color
comparison for each IMF

with each bar in the
corresponding RGB color

of the actual IMFs from an active light period, is shown in

Figure 5.1, shows that the results have a similar trend as in

Figure 4.6, but with a high variance, which signifies that it

is not statistically significant. Looking at Table 4.1, we see

that the mean frequency of IMF 0 and 1 both lies in a higher

range than shown in the spectrum plots. This means that

the components shown in the spectrum plots that lies above

30 Hz are possibly blended with IMF 0 and 1, or that these

synchronization events above 30 Hz are spikes that happen

as short events in time. The problem with these presumably

short changes in synchronization frequency and the current

implemented EEMD algorithm is as explained in Section 2.9,

which is that the result are not strictly IMFs and causes arti-

facts when the Hilbert Transform is executed on them. These

artifacts are then removed by a short kernel median filter,

which will also remove these events.

In terms of visualization, steps were made to ensure that the most vital changing patterns

in the brain during stimuli, were highlighted. An approach to tackle this was to neglect the

slowly varying low frequencies that had high energy, as this low frequency range was not

where a response was anticipated. This proved to be a great way to remove the baseline

EEG activity, to focus more on the higher frequency brain patterns that changed according

to the events.
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5.3 Recommendations for Further Work

The experiments that was conducted with hobby grade hardware with a non-invasive mea-

surement system and 8 electrodes. To achieve better resolution and more accurate results,

medical grade equipment may be used for the same experiments if more specific precision

is needed. Moreover, as mentioned in Section 1.2, the experiments were not conducted in

neutral environments. We highly recommend finding a more suitable location for doing

EEG experiments, as it could greatly improve the the recorded data and get rid of a lot of

the power-line noise that needed to be tackled. If doing further work on a light pulse type

experiment, shortening the pulse duration from 1.0 second to less than 0.5 seconds might

be beneficial. This is due to the fact that the response during the light pulse had the same

characteristics as the steady-state response.

Looking at the phase shift of the synchronization evoked by red, blue, and green light

might be a possible vector for a signature for each of the colors. As seen in the figures

in Appendix D, there seem to be slight differences for each of the colors in response to

the corresponding light, where it could be underlying responses that could be individually

classified.

Increasing the number of events per experiment is also recommended, with the observa-

tion of nominal brain activity is reestablished after approximately 2 seconds, granting the

possibility of having events of visual stimuli much closer than what is achieved in this

thesis. Moreover, as stated in Section 4.3, we obtained good results from the frequency

responses, as seen in Appendix B. In light of this, we highly recommend utilizing the

difference in frequency response between the colors as a classification signature.

As argued in Section 5.2, because of the way HHT is implemented in this thesis, a me-

dian filter is required to remove the artifacts that are generated. This will also remove

important changes in the data. As the basic EMD functionality was implemented as a

NDA, it cannot be shared. Future work should then be focused on developing a EEMD

algorithm that is open to use, and which can be iteratively improved on. As proposed in

[35], post-processing the resulting signals obtained by EEMD can be run through EMD

to extract the strict IMFs. This would benefit the Hilbert Transform and result in less to

none artifacts in the instantaneous amplitude and frequency data. It can also be mentioned
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that EEMD takes a lot of time to compute. This issue can be mitigated by using other ap-

proaches to handle mode-mixing, such as using EMD along with a masking signal, as

proposed in [44].
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Appendix A

Hilbert Spectrum

The following appendix contains Hilbert spectrum visualization for each of the subjects.

Energy is visualized as a colorbar ranging from bright yellow (weak), to dark purple

(strong). Interval for x-axis is set to 500ms before stimulus to 1 second post-stimuli.

Dashed grey lines represents the stimulus onset (first line) and the stimulus offset (second

line). The 7 first IMFs are plotted across each of the electrode channels and for each of

the RGB colors. The scales are individually chosen to highlight the main response to the

stimulus for each subject.
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Figure A.1: Hilbert spectrum visualization for Subject 1.
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Figure A.2: Hilbert spectrum visualization for Subject 2.
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Figure A.3: Hilbert spectrum visualization for Subject 3.
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Figure A.4: Hilbert spectrum visualization for Subject 4.
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Figure A.5: Hilbert spectrum visualization for Subject 5.
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Figure A.6: Hilbert spectrum visualization for Subject 6.
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Figure A.7: Hilbert spectrum visualization for Subject 7.
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Figure A.8: Hilbert spectrum visualization for Subject 8.
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Figure A.9: Hilbert spectrum visualization for Subject 9.
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Figure A.10: Hilbert spectrum visualization for Subject 10.
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Appendix B

Spectral response for steady-state

experiment

The following appendix contains frequency response plots, visualized by Fast Fourier

Transform (FFT). The spectral information is gathered from 16 seconds of event data

(marked in the corresponding colors) and 16 seconds of non-event data (marked in black).

The first subplot is for the color red, the second for color green and the last for color blue.
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Figure B.1: Spectral information on channel O2 for Subject 1.
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Figure B.2: Spectral information on channel O1 for Subject 2.

72



APPENDIX B. SPECTRAL RESPONSE FOR STEADY-STATE EXPERIMENT

0

10

0

10

0 5 10 15 20 25 30 35 40 45
0

10

A
m

p
lit

u
d

e
[µ
V

]

Frequency [Hz]

Figure B.3: Spectral information on channel O2 for Subject 3.
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Figure B.4: Spectral information on channel O2 for Subject 4.
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Figure B.5: Spectral information on channel Oz for Subject 5.
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Figure B.6: Spectral information on channel Oz for Subject 6.
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Figure B.7: Spectral information on channel Oz for Subject 7.
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Figure B.8: Spectral information on channel Oz for Subject 8.
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Figure B.9: Spectral information on channel POz for Subject 9.
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Figure B.10: Spectral information on channel Oz for Subject 10.
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Appendix C

Event-related power in IMF 1 and 2,

per channel

The following appendix contains histogram plots, which shows difference between power

during stimulus (marked in orange) and power in periods with no stimulus (marked in

yellow). It includes the energy from~30Hz component and ~16Hz component, which is

IMF 1 and IMF 2 respectively. The plots are presented with a distribution of all the

different electrode channels and with a separate plot for each of the RGB colors. The

desired level of the confidence interval is set to 95%, also represented as approximately 2σ

(two times standard deviation), which is shown as a black line on top of each histogram.
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Figure C.1: Event-related power in IMF 1 for
Subject 1
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Subject 2
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Figure C.4: Event-related power in IMF 2 for
Subject 2
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Figure C.5: Event-related power in IMF 1 for
Subject 3
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Figure C.6: Event-related power in IMF 2 for
Subject 3
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Figure C.7: Event-related power in IMF 1 for
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Figure C.8: Event-related power in IMF 2 for
Subject 4
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0

50

100

150

Active

Inactive

0

50

100

150

P4 PO4 O2 Oz POz O1 PO3 P3

Channel

0

50

100

150

Subject 5 - IMF 2

A
vg

p
ow

er
[µ
V

2
]

Red

Green

Blue

Figure C.10: Event-related power in IMF 2 for
Subject 5

10

20

Active

Inactive

10

20

P4 PO4 O2 Oz POz O1 PO3 P3

Channel

10

20

Subject 6 - IMF 1

A
vg

p
ow

er
[µ
V

2
]

Red

Green

Blue

Figure C.11: Event-related power in IMF 1 for
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Figure C.12: Event-related power in IMF 2 for
Subject 6

80



APPENDIX C. EVENT-RELATED POWER IN IMF 1 AND 2, PER CHANNEL

10

20

30

Active

Inactive

10

20

30

P4 PO4 O2 Oz POz O1 PO3 P3

Channel

10

20

30

Subject 7 - IMF 1
A

vg
p

ow
er

[µ
V

2
]

Red

Green

Blue

Figure C.13: Event-related power in IMF 1 for
Subject 7
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Figure C.15: Event-related power in IMF 1 for
Subject 8
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Figure C.16: Event-related power in IMF 2 for
Subject 8
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Figure C.17: Event-related power in IMF 1 for
Subject 9
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Figure C.18: Event-related power in IMF 2 for
Subject 9
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Figure C.19: Event-related power in IMF 1 for
Subject 10
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Figure C.20: Event-related power in IMF 2 for
Subject 10
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Appendix D

Event-related power in IMF 1 and 2,

time-series

The following appendix contains time-series plots, which shows the difference of power,

before, during and after stimulus. The light stimuli event of 1 second starts at t = 0.0 and

ends at t = 1.0 and the color of the light stimuli event is given by the plot color. The plot

is given as the sum of energy from ~30Hz component and ~16Hz component, which is

IMF 1 and IMF 2 respectively, and then normalized. Subject 4, 6, 8 and 9 are without a

statistical significant difference between active and inactive period, as seen in Appendix

C, and is therefore omitted.
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Figure D.1: Normalized power from IMF 1 and 2 on channel O2 for Subject 1.
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Figure D.2: Normalized power from IMF 1 and 2 on channel O1 for Subject 2.
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Figure D.3: Normalized power from IMF 1 and 2 on channel O2 for Subject 3.
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Figure D.4: Normalized power from IMF 1 and 2 on channel O1 for Subject 5.
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Figure D.5: Normalized power from IMF 1 and 2 on channel Oz for Subject 7.
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Figure D.6: Normalized power from IMF 1 and 2 on channel Oz for Subject 10.
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Appendix E

Acronyms

BCI Brain-Computer Interface

CNS Central Nervous System

EEG Electroencephalogram

EEMD Ensemble Empirical Mode Decomposition

EMD Empirical Mode Decomposition

ERSP Event-Related Spectral Perturbation

ERP Event-Related Potential

FFT Fast Fourier Transform

FT Fourier Transform

HHT Hilbert-Huang Transform

HSA Hilbert Spectral Analysis

HT Hilbert Transform

IDE Integrated Development Environment

IMF Intrinsic Mode Function

NDA Non-Disclosure Agreement

NTNU Norwegian University of Science and Technology
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RGB Red-Green-Blue

SD Standard Deviation

SNR Signal-to-Noise Ratio
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