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Abstract
A theory for the strength contribution from precipitates is developed based on the statistical particle-size and shape distributions and the corresponding obstacle-strengths. The generic case of spherical precipitates and the special case of needle-shaped precipitates in the 6xxx aluminium alloy series are considered. It is accounted for that the largest precipitates are stronger and at the same time intersect a larger number of slip planes than the smaller ones. For a considered peak aged AA6082 the improved model gives a 59% higher strength, which fits the experiments well without the need of the previously introduced calibration parameter for the mean effective particle spacing in the slip plane.
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1. Introduction 
When dealing with distributions of precipitates of various size and strength, two additional aspects should be accounted for. Firstly, the largest particles penetrate a larger number of slip planes and contribute to more dislocation obstacles in the slip planes. The shape and preferred orientations makes the needles efficient obstacles that penetrates many slip planes, [1]. Secondly, the strength of each obstacle commonly correlates with the precipitate size, i.e. the smallest precipitates contribute not only with fewer obstacles per slip area, but also these obstacles are the weakest ones. Therefore the strongest precipitates will dominate the strength estimate in precipitate distributions of under-aged conditions.
Earlier works on strength contributions from precipitates [e.g. 1-5] accounts for discrete dislocation obstacles according to the theories by Friedel [6] or by Kocks [7, 8]. Two inputs are then required; the mean distance between dislocation obstacles in the slip plane and the mean of the obstacle strengths. When estimating the mean distance between obstacles in the slip plane, it is commonly assumed [1-5] that the particles are uniformly distributed and have the same mean particle size. A needle-shape of particles was accounted for in [1, 5]. It is realized from the more general approach made by the current author, that the existing estimates of the planar obstacle distance as a function of the mean radius and the number density of particles holds for any size distribution of uniformly distributed particles. 
The simplest estimate for the mean obstacle strength is to assume that it corresponds to that all particles have the mean particle size [5], which is reasonable for narrow distributions. A more refined estimate is to make an average of all particle strengths [2, 3]. However, strong, large particles contribute with more and stronger dislocation obstacles per particle. Hence the average will here instead be made over all obstacles and their strengths in the slip plane.

Commonly estimates of the contribution to the stress from precipitates have been based on Friedel statistics, [6], see e.g. [3]. Alternatively Kocks statistics, [7, 8], have been used as the basic assumption, as discussed in [2]. The Kocks type of statistics is based on numerical line-tension simulations of a dislocation gliding through an array of obstacles. In general the critical resolved shear stress depends on the statistical distributions of spatial positions and cutting strength of the obstacles. Recent line-tension simulations [9, 10] of randomly distributed obstacles in the slip plane, where all obstacles had equal obstacle strength 
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, were closely fitted by the empirical relation
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Here 
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 is the density of obstacles per area slip plane, 
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 is the non-dimensional obstacle strength, where 
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 is the obstacle breaking angle of the dislocation. For weak obstacles these simulations scales similar as the classical Friedel solution 
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Vaucorbeil et al. [10] investigated statistical distributions of the obstacle strengths with various mean strength 
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 and for various standard deviation of these distributions. They concluded that the commonly made approximation, e.g. [2, 3], of replacing the non-dimensional uniform obstacle strength 
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 in Equation (1) or (2) by the non-dimensional mean obstacle strength of all the planar pinning points 
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 as the argument, provides a lower-bound estimate for the stress, and that the error by this approximation increases with increasing standard deviations. Furthermore it can be concluded that the Friedel estimate [6] works reasonable well for distributions with weak obstacles. However, with stronger obstacles it over-estimates the stress. Applying 
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 as the argument, the tensile stress 
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, based on Equation (1), can be written 
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where 
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is the Taylor factor.
In particular needle-shaped or plate-shaped precipitates are thin structures that interfere with gliding dislocations on several parallel slip planes. The largest particles are not only stronger obstacles to dislocation movements, but also, they act as obstacles for a larger number of slip planes than the smaller particles. At some point of time during age hardening, the precipitates change from shearable to non-shearable. Commonly this occurs not too far away from the peak hardness.
Particle size and shape distributions, e.g. radii, lengths or thicknesses, can be measured precisely with transition electron microscopy. The breaking angle for a dislocation can in principle be measured in situ, but this is challenging. Instead simplified guesses can be justified based on how well the strength then is predicted when applied in a model framework. Alternatively the obstacle strength can be estimated based on atomistic simulations. Anyhow, a statistical theory like the one proposed here will be applicable and very useful to estimate the particle stress contributions from simulated or measured particle-size distributions. In particular it is important in the models for precipitation, e.g. [1-5], and their many industrial applications.
2. Spherical particles

The theory for spherical particles will be revisited. A spherical particle of radius 
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 will act as a dislocation obstacle for a slip plane located within a distance 
[image: image15.wmf]r

±

 from the particle centre. The obstacle strength, i.e. the critical breaking angle 
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 of the interacting dislocation, may depend on the cross-sectional area of the sheared part of the precipitate, or when it is sufficiently large it is non-shearable. A precise estimate is required for the area density 
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 of particle-based obstacles interacting with the slip plane. Let 
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 denote the number of particles of radius 
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 per slip plane area that are interacting with the slip plane, i.e. that are closer than a distance 
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 from the glide plane. The statistical distribution of the number of particles per volume as a function of the particle radius is 
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. Considering a part of the slip plane with area 
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, the number of particles 
[image: image25.wmf]A

dN

 of radius 
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 that intersect the slip plane can be expressed, either as the number of particles of radius 
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 per slip area, i.e.
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, times the considered slip plane area 
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, or alternatively as the number of particles of radius 
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 per  volume, i.e. 
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, times the volume 
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 that contain these particles that would interact with the considered part of the slip plane
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The area density 
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 of particle-based obstacles intersecting the slip plane follows as
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Here 
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 is the mean radius of the particles and 
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 is the total number of particles per volume. Note from the differential derivation by Equation (4) that the relation 
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 holds for any particle distribution 
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 of spherical particles, i.e. the average obstacle spacing in the slip plane, 
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, can be expressed by the number density 
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 and average radius 
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 of the precipitates.

Next, the average obstacle strength from all particle-based obstacles is required. The bypassing strength 
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 increases from zero to 
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 as the particles gets thicker and becomes non-shearable. For a particle containing a coherent slip plane for the dislocation to glide on, it is reasonable that the strength 
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 increases proportionally to the cross-sectional area of the particle, i.e. the outer parts of the particle is easier to cut, and at a certain cross-sectional area of radius 
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 it becomes non-shearable. However, the coherency tends to vanish as the particle grows larger, and at a certain size the entire particle can become non-coherent and thereby non-shearable through any cross section. The model has to be adapted to the properties of the considered type of particles. However, the spherical particle shape is not so commonly observed, but is applied as an approximation for non-spherical particles. In such cases a detailed treatment of the obstacle strength as a function of which section of the particle that is cut, becomes meaningless, and the simple estimate that all sections of the particle have the same cutting strength is simpler and even more reasonable in cases where volume equivalent particles are considered. In particular this holds for non-coherent particles of any kind. A commonly applied estimate of the non-dimensional obstacle strength, [2, 3, 4], is
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Here 
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 is the maximal radius of particles that the dislocation can cut and, 
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 is an empirical model parameter.
The mean of the obstacle strengths of the particles can be made, consistently with Equation (4), as follows
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This integral can be solved numerically for a given particle-size distribution. The strength contribution from the particles can be derived from combining Equations (3), (5) and (7). Note that this result is obtained as an average over all obstacles in the glide plane, as compared to the average over all particles suggested by Myhr et al. [3]. 
3. Needle-shaped particles

AA6xxx aluminium alloys own their strength to needle-shaped precipitates formed during ageing. Their length can be up to 50 times their thickness. The commonly applied approximation of equivalent spherical particles is questionable when it comes to modelling their contribution to the strength. A typical needle-shaped precipitate of cross-sectional area 
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 and length 
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 will in the 6xxx alloy be oriented in one of the <001> directions. It will act as a dislocation obstacle in any 
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 slip plane located within a distance 
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 from the precipitate centre, where 
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 is the angle between the glide-plane normal and the needle direction. The obstacle strength, i.e. the breaking angle 
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 of an interacting dislocation, depends on the cross-section 
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 of the sheared needle-shaped precipitate.

Let 
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 denote the number of precipitates of length 
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 and per area slip plane, which are intersecting the slip plane, i.e. that are closer than a distance 
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 from the glide plane. The statistical distribution of the number of precipitates per volume as a function of the precipitate length is 
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. Considering a part of the slip plane with area 
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, the number of precipitates 
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 of length 
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 that intersect the slip plane can be expressed in two ways
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The area density 
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 of precipitate-based obstacles penetrating the slip plane follows as



[image: image68.wmf]0

2323

33

lV

nldlNl

f

¥

==

ò


(9)
Here 
[image: image69.wmf]l

 is the mean particle length. For a beta-family precipitate with a coherent slip plane that the dislocation can glide through, it is reasonable that their dimension-less strength 
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 increases proportionally to the cross-sectional area of the precipitate, and that at a certain cross-sectional area 
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 the needle-shaped precipitate becomes non-shearable, i.e. when the dislocation has to sweep a cross-sectional area 
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. A reasonable assumption is  
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As before 
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 is a model parameter.  The total stress contribution from the precipitates will be taken as an average over all pinning points they contribute to. For the needles, the cross-sectional area is constant along their entire length, and their obstacle strength is independent of how far away from the glide plane the centre of the precipitate is located, as long as it penetrate the glide plane. However, two precipitates of equal length 
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 might in general have different cross-sectional areas, i.e. the statistical size distribution is genuinely two-dimensionally varying as a function of both the cross-sectional area and the length. For the sake of simplicity, and based on that the needles become longer with increased ageing time, it will here be assumed that the aspect ratio 
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 changes as some function 
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of the needle length, i.e. a direct correlation between the statistical distributions of needle lengths and cross sectional areas. The mean of the obstacle strengths of the particles can then be calculated as
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Here 
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 is the mean precipitate length, and 
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is the aspect ratio of a precipitate with critical cross-sectional area, 
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. The strength contribution from the needle-shaped precipitates can be derived from combining Equations (3), (9) and (11). The integral in Equation (11) can be solved numerically for a given particle length distribution 
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 and correlation function for the particle aspect ratio 
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4. Application of the model to AA6082
As an example, a precipitate distribution for an AA6082 as-cast alloy in the T6 temper, with data taken from the work reported in [11], will be considered. The precipitate length distribution can be well fitted by a log-normal distribution
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Here 
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 is the variance of the lognormal distribution. A good fit of the measured needle-length distribution in [11] can be obtained with 
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. The precipitate cross-sectional area and the needle aspect ratio are increasing with increased aging time from a nearly cubic shape to 
[image: image88.wmf]1015

W»-

 in the T6 temper. In lack of precise data, and for the sake of simplicity, the following linear relationship is a reasonable realistic assumption


[image: image89.wmf]5

l

W=


(13)

The critical needle area for the transition to non-shearable precipitates is close to the average area of the needles in the T6 temper, i.e. 
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. By combining Equations (3), (9) and (11) the particle strength can be written



[image: image91.wmf](

)

3

2

5

1

6

0.331

pV

MblNff

sm

=-


(14)

where 
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 will be used in this example. The average strength 
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 was calculated by numerical integration of (11). The particle strength contribution is calculated to be 
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. The measured initial yield stress was 322 MPa. Note that the estimate of the Taylor factor 
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 for the random texture is based on the full-constraint Taylor model, whereas more advanced models or a crystal plasticity simulation with a fine spatial resolution would give about 10-15% lower values for
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, see [12]. Hence this stress estimate is very realistic.
This result will be compared to the approach in [2, 3, 4], in which a distribution of volume equivalent particles is considered. The distribution of volume equivalent spherical particles, for which 
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The stress estimate for spherical particles is:
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The particle shearing strength and critical size is assumed to be the same as for a needle shaped particle of identical volume. The particle mean size from (15) is then 
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. The estimate of the average shearing strength by [4] was
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For the considered example this gives 
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 by the improved approach in equation (7). Note that in [3, 4] a calibration parameter for the mean effective particle spacing in the slip plane is introduced, which gives a 66% increase of the particle stress contribution (based on Friedel statistics), whereas the estimate by the new model accounts for 59% increase without this extra parameter.
The major influence of the improved strength estimate comes from accounting properly for that elongated particles pierce more slip planes than rounded ones, i.e. from (9). This alters the slip plane distribution of the pinning point strengths, from which the improved calculation of 
[image: image109.wmf]f

 contributes slightly by a few percent for under-aged tempers, increasingly with increased width of the size distribution.
4. Conclusions

A theory is proposed for calculating the stress contribution from the statistical distribution of the particle radius or length of spherical or needle-shaped precipitates, respectively.  For the needles it is additionally assumed that the cross-sectional area can be expressed as a function of the needle length. The average strength is taken as an average of all obstacles caused by precipitates penetrating the glide plane, and the obstacle strength increases as function of precipitate size. Hence amongst the shearable precipitates, the largest and strongest ones will contribute most, i.e. a relatively higher strength is expected for under-aged conditions than by the existing theories. For the considered peak aged AA6082 the new model gives 59% higher stress, which fits the experiments well without a calibration parameter for the mean effective particle spacing in the slip plane.
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