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Abstract

Non-contact detection of human respiration has many possible uses, e.g. health
monitoring for clinical institutions, homes or prisons, alarm systems, fire evacu-
ation, industrial or home automation, and triggering of medical imaging. Nov-
elda’s Ultra Wide Band radar is able to detect respiration of humans and animals
by measuring distance to the chest wall. This results in a characteristic Doppler-
spectrum. One challenge is oscillating objects e.g. fans and ceiling lamps, which
also give a similar Doppler-spectrum, but for many use-cases should not be
treated i.e. classified as human respiration. Artificial Neural Networks (ANN)
is a form of Artificial Intelligence (AI) and is an interesting and modern way of
solving such classification problems that also seems suitable for this case, where
training data is abundant.

This thesis studies the use of Artificial Neural Networks to achieve the high-
est possible sensitivity and specificity for this classification problem. Through-
out the project, a variety of artificial neural networks was tested using Matlab’s
”Neural Networks Toolbox”. The training data was recorded by the author
and Novelda employees using Novelda’s XeThru UWB radar. The results show
that by preprocessing the radar signals into time-vs-frequency images of signal
energy, and then use a convolutional neural network as classifier, human respi-
ration can be distinguished from other oscillating objects with a high sensitivity
and specificity. The sensitivity and specificity achieved on the test data used
for this study was respectively 99.1% and 99.8%, although these results will
probably vary with the use of different test data.

The filters of the convolutional layers of the CNNs and recordings that was
reverse engineered from a trained CNN was also studied. These studies revealed
that the CNN was actually looking for the variations in frequency found in nat-
ural human respiration but not in oscillating objects. Also, it only seemed to
look for very local patterns, which may be a result of the relatively shallow
architectures used here compared to the CNNs used for e.g. face recognition.
Thoughts on future work are also discussed in this report. This includes dis-
cussions of why deeper CNNs could be suited for this problem, smarter use of
some of the tested concepts like e.g. artificial expansion of training data, and
the use of ANNs for discovering patterns for use in other types of classifiers.
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Chapter 1

Introduction

This chapter will cover the background of the project and discuss why it is
an interesting field of study. A brief description of the previous work in the
field of vital sign detection (VSD) using ultra wide band (UWB) signals will
be given. The objectives of this project will be listed, and the outline of the
report will be very briefly explained. Throughout the introduction and some of
the background theory chapter, introductory and descriptive text will be reused
from the author’s project report [1] without further mentioning. In the cases
where scientific content is reused, it will of course be mentioned. It should also
be noted that this project is the author’s first encounter with artificial neural
networks.

1.1 Background and motivation

Non-contact detection of respiration through clothing and bedding is, just like
the heart rate monitoring discussed in the author’s project report [1], very useful
for intensive care monitoring, long term monitoring and also health monitoring
outside of clinical institutions such as homes. Some patients, like infants and
burn victims can take damage by contact sensors. Other possible areas of use
are security and searching in e.g. firefighting situations [2]. From [3], according
to [4], low power IR-UWB is non-ionizing (hence there will be no harm even in
continuous monitoring) and has the ability to transmit through obstacles like
clothes, bed frame, and blankets.

Novelda’s XeThru Ultra Wide Band (UWB) radar is able to detect breathing
and in some cases pulse of humans and animals on a distance of a few meters, this
is called Vital Sign Detection (VSD). Central in today’s signal processing is the
use of Pulse Doppler (PD) and Fast Fourier Transform (FFT). One problem
with this method is that the sensor may be fooled by non-human oscillating
objects, such as oscillating roof-lamps and rotating fans. The use of artificial
neural networks for breathing detection is new to Novelda, and will therefore
be an interesting field of study that may lead to a smarter detection system.
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An example the XeThru radar in use today can be found at Novelda’s blog
[5]: ”XeThru respiration sensors used in Pilot project by Norwegian Police”. In
Trondheim police district, the XeThru sensors are used to monitor vital signs of
inmates. This gives the local police force a better overview of its inmates, and
can hopefully prevent overdoses and potentially save lives. This system detects
movement and breathing rate.

1.2 Previous work

[6] gives a good overview of previous work on the use of UWB radars for vital
sign detection. Only a short summary will be given here. Already in the 1970’s,
the use of radar for monitoring of human physiologic function was considered
[4]. [7], [8] and [9] were the first demonstrating non-invasing sensing with mi-
crowave radars. For sensing heart beats [9], however, a cessation in breathing
was required. The work on microwave Doppler radar receivers incorporating
analog and digital signal processing to separate the weak heart signals and the
large breathing signals continued during the 1980’s and 1990’s with [10], [11],
[12], [13] and [14]. [14] developed a Radar Vital Signs Monitor (RVSM) used to
detect heart and respiration rate of athletes at the 1996 Olympics in Atlanta.

More recent work [4], [15], [16], [17], [18], [19], [20] and [21] makes use of the
UWB radar for detection of heart and respiration rates. According to [6], this
work focuses demonstrating the capability and feasibility of the use of UWB
radar together with FFT-based signal processing in this field, without seriously
discussing or analyzing accuracy or reliability of the methods.

Novelda does not utilize artificial neural networks, but some student work
has been done earlier that uses ANNs to e.g. to distinguish walking humans
from walking pet animals [22].

1.3 Objectives

The objective of this project was to explore the use of Artificial Neural Networks
(ANNs) for classifying respiration from other oscillations in radar signals, and
to design and implement an ANN to achieve the best possible sensitivity and
specificity for the resulting classification. The objectives in standard NTNU
format both in english and norwegian can be found right after the title page.

A study of today’s knowledge and results in the field was necessary to get
some insight into the field and to find possible architectures and training schemes
for the ANN. Novelda did not have any previous neural network based solutions.
The sub problems mentioned in the problem description are interpreted to in-
clude choosing a framework for exploring ANNs, the preprocessing of the input
data, selecting a suitable training algorithm and ANN architecture, and test,
evaluate and improve this ANN. The mentioned existing simulator was not used
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at all because it had to be modified extensively, and the importance of realistic
training data was considered big enough to schedule enough time for recording
a variety of real signals that could be used for both training and testing.

1.4 Why Neural Networks

According to [23], designing the right neural network and tuning it can be time-
consuming compared with other machine learning techniques such as support
vector machines (SVMs). It may give the best performance, but other methods
may also work satisfyingly and is often faster to develop. If optimal perfor-
mance is important, methods that require specialized knowledge, such as neural
networks, should be considered. The use of ANNs is explored in this project
because it seemed an interesting new approach for Novelda to the problem of dis-
tinguishing human respiration from oscillating objects that for many use-cases
should be considered as noise.

Other approaches that also could be interesting to explore for the problem
discussed in this project, is principal component analysis (PCA), Hilbert–Huang
transform (HHT) and other linear classifiers such as support vector machines
(SVM). The Hilbert–Huang transform uses empirical mode decomposition
(EMD) to decompose dynamic signals into components called intrinsic mode
functions (IMF), making it comparable to the Fourier Transform (FT) and the
Wavelet Transform (WT).

1.5 Outline

The second chapter covers some very useful background theory for understand-
ing the field of vital sign detection using ultra wide band signals and artificial
neural networks. In the third chapter, the methods and the equipment used
during the project are explained. The fourth chapter describes the tests exe-
cuted without giving any numeric results. Selected results of the implemented
ANNs are given in chapter five, and discussed in chapter six together with the
work method and possible future work. Chapter seven concludes the work, both
in terms of results and methods.
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Chapter 2

Background Theory

In this chapter, some useful background theory for understanding the field of
vital sign detection using ultra wide band signals and artificial neural networks
will be covered. It is assumed that the reader has knowledge of basic signal
processing and mathematics. In this project, a type of ANN called convolutional
neural networks (CNN) was mostly used, and will therefore be emphasized also
in this chapter.

2.1 Respiration physiology

This section will briefly describe lung anatomy and the chest motions that Nov-
elda’s radar is able to measure.

2.1.1 Lungs anatomy

As thoroughly explained in [24], the lungs are a pair of air-filled organs located in
the chest. When air is inhaled, it is conducted through the trachea which divides
and enters the two lungs through branches called bronchi, which divides further
into smaller and smaller branches ending in small air sacs called alveoli, as
illustrated in figure 2.1. Small bloodvessels in the alveoli absorbes oxygen from
the inhaled air, and releases carbon dioxide. The lung structure is supported by
the pleura which is a thin tissue layer covering the lungs, and the interstitium
which is thin cell layers between the alveoli.
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Figure 2.1: Alveolis with small blood vessels. Modified picture from [25]

2.1.2 Chest wall motion

The lung motion caused by inhaling and exhaling propagates through the chest
wall, and results in a displacement of the chest surface easily measurable by
Novelda’s UWB radar.

2.2 Vital Sign Detection using Doppler radar

The chest displacement caused by respiration can be measured from a distance
using Doppler radar [26]. This section is taken from the authors project report
[1], with some minor changes.

2.2.1 Mathematical model

The radar will measure reflections from stationary reflectors, breathing motion,
other irrelevant movement and heartbeats. A simple model for the periodic
chest movement caused by respiration or pulse, relative to the radar antennas
are [26]:

Rm(t) = R0 +Rh(t) = cτ0/2 + c∆τ/2 · sin(ωht), (2.1)
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where c is the speed of light, τ0 is travel time, ∆τ is maximum deviation in
travel time and ωh is the respiration angular frequency. This model assumes that
the target can be modeled as a point scatterer, the radio wave is only reflected
from the chest surface. The movement will appear as phase modulation in a
single channel receiver, so that the reflected signal can be modeled as:

vR(t) = ARcos(ωct−
2ωcRm(t)

c
), (2.2)

where ωt is angular carrier frequency. In the IQ plane, this becomes a
complex base band signal:

b(t) = Ase
iφs +Ame

iφm(t) + n(t) (2.3)

Ase
iφs =

∑
Ane

i 2ωcRn
c (2.4)

φm(t) =
2ωcRm(t)

c
= φh(t) + φ0 (2.5)

where Ase
iφs is the sum of the stationary reflectors in the scene, Ame

iφm(t)

is the response from the moving part of the target and n(t) is receiver noise. In
the last equation, φh(t) is the time varying phase proportional to Rh(t) and φ0
is a fixed phase corresponding to the fixed distance R0. Here, only one moving
target is assumed. The signal from a single point scatterer is illustrated in figure
2.2.

Figure 2.2: Signal from a single point scatterer. Modified figure from [26].
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2.2.2 Removing clutter

The chest movement part can be extracted by estimating and removing the
static part. The static part can be estimated by creating an estimator for the
center of the fractional circle that is the chest movement part, using e.g. some
least squares fitting algorithm. Figure 2.3 illustrates a clutter estimate (red)
based on the fractional circle signal (blue). Units shown are dergrees in the
Real vs. Imaginary plane. It should be noted that removing clutter was not
a part of the preprocessing for the final convolutional neural networks in this
project. Instead, the mean of each window was simply subtracted before a
following Fourier transform.

Figure 2.3: Clutter estimate. Modified figure from [26].

2.3 Ultra Wide Band Radar

Ultra wide band (UWB) are signals whose energy are spread over a wide spec-
trum. In other words, the fractional bandwidth is above some defined limit,
typically 20%. This section is also taken from the authors project report [1],
with some minor changes.
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2.3.1 Background

In 2002, the U.S. Federal Communications commission (FCC) legalized the use
of UWB signals, defined by a set of spectral masks [6]. This lead to huge interest
in UWB signaling. Pros with UWB compared to narrowband signals are better
material penetration, possibility for high data transmission rate and low cost
due to need of few analogue parts. Also, its low signal energy per frequency
enables it to appear below the noise floor of narrowband signals and hence in
many cases not disturb these. Medical UWB applications are now limited to
3.1 to 10.6 GHz [6].

2.3.2 Novelda’s Radar

The UWB radar used in this project is described on Novelda’s homepage [27]:
”Novelda’s XeThru Impulse Radar is a complete CMOS radar system inte-
grated on a single chip. This technology is used to implement a high-precision
electromagnetic sensor for human vital sign monitoring, personal security, en-
vironmental monitoring, industrial/home automation and other novel sensor
applications.”

2.3.3 In-phase Quadrature demodulation

In-phase Quadrature (IQ) demodulation is used to get access to phase infor-
mation, and to reduce sampling rate (reduce storage space) by working in the
baseband. IQ data describes continuous signals by using two sinusoidal out of
phase signals. This is the format of the data as received from Novelda’s radar,
and the method of IQ demodulation will therefore be described here. The de-
modulation consists of three steps:

• Down-mixing: The real valued RF-signal is multiplied/mixed with a com-
plex sinusoid signal xIQ(t) = xRF (t) · e−i2πfDemodt. The resulting signal
xIQ(t) is complex, the spectrum is moved down (to the left), and is no
longer symmetric about zero.

• LP filtering: To remove the negative frequency spectrum and noise outside
the desired bandwidth, the spectrum is now LP-filtered. This removes
approximately half the signal energy, so the remaining signal is multiplied
with

√
2.

• Decimation: The Nyquist theorem states that the sampling frequency now
can be reduced to twice the cutoff frequency of the filter without loss of
information. Because we have a complex signal, the bandwidth of the
signal equals the complex sampling rate (the complex signal doesn’t have
an ambiguity between positive and negative frequencies, so both sides of
f = 0 contributes to the bandwidth).
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2.4 Artificial Neural Networks (ANNs)

This section gives an introduction to Artificial Neural Networks, with the con-
cepts used for this project emphasized.

2.4.1 Introduction

Artificial Neural Networks (ANNs) are models used in machine learning to solve
classification problems or predict behaviour of systems. These models are in-
spired by the human brains in the way that they consists of a large number
of interconnected artificial neurons. Their connections are adjustable, making
the ANN able to learn similar to a biological brain. These artificial neurons
are usually organized in layers of neurons, with each layer doing processing at
a higher level of abstraction than the previous, resulting in an output at the
wanted abstraction level. This is very similar to e.g. the human visual cor-
tices processing information from our eyes. As opposed to our brains, that are
tuned by evolution over hundreds of millions of years, ANNs are tuned by using
specialized learning algorithms. [23] gives a thorough introduction to neural
networks and deep learning.

To create a working ANN, the engineer specifies an architecture for the ANN
and an algorithm used for training the ANN. This includes the number of neuron
layers, the number of neurons in each layer and how the layers are connected
to each others. The neurons contain parameters for weighting their inputs and
adding a bias, and also an activation function used to compute their output.
The parameters starts as random numbers and are learned during training, but
the shape of the activation function is given by the engineer.

2.4.2 Artificial neurons

Artificial neurons are the basic building blocks of the artificial neural network.
An artificial neuron is shown in figure 2.4 along with the authors very nice
drawing of a biological neuron for comparison. Different activation functions
give the neurons different behaviour, the most used versions will be briefly
described here.

Figure 2.4: A simple neuron model figure. Modified figure from [23].
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Perceptrons

These simple neurons have a boolean output, in other word a simple threshold
value. They make training very difficult because a tiny adjustment in one of
the parameters of one single perceptron may cause its output to flip and cause
large and complicated effects in the rest of the network. A continuous function
is therefore wanted to simplify training, but perceptrons are great for learning
the concept of neural nets. The function is shown below in figure 2.5. The axes
are unit-less.

Figure 2.5: Perceptron activation function. Modified figure from [23].

Sigmoid neurons

These are the most used neuron model today. Because a small and gradually
change in its parameters only cause a small and gradually change in its output
in a linear manner, it is simple to train. The function is shown below and
illustrated in figure 2.6. The axes are unit-less. During training, all weights of
one neuron must either increase or decrease together. This restriction seems to
be a disadvantage, suggesting the use of something like the tanh neurons.

1

1 + exp(−
∑
j wjxj − b)

(2.6)

Figure 2.6: Sigmoid activation function. Modified figure from [23].
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Tanh neurons

Based on the hyperbolic tangent (tanh) function, these neurons output values
span a different interval. The shape of the function is however very close to the
Sigmoid neurons, and they are trained using the same techniques. The function
is shown below and illustrated in figure 2.7. The axes are unit-less. This function
is symmetrical about zero, and accepts both positive and negative activations
as opposed to the Sigmoid function.

tanh(w · x+ b) (2.7)

Figure 2.7: Tanh activation function. Modified figure from [23].

Rectified linear neurons/units

Rectified linear units (ReLU) biggest difference from the previously mentioned
neurons is that their activation function does never saturate. They are usually
trained using the same algorithms, but are in many cases faster to train due
to the non-saturating activation function shown below and illustrated in figure
2.8. The axes are unit-less.

max(0, w · x+ b) (2.8)

Figure 2.8: ReLU activation function. Modified figure from [23].

The understanding of when and why to use this activation function instead of
the tanh or the Sigmoid function is very limited. The ReLU activation function
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will be used during most of this project because of the results they provided, in
terms of accuracy.

2.4.3 ANN architecture

Artificial neurons are connected together in layers. In the most basic form, each
neuron in a layer is connected to every neuron in the previous layer through its
input weights, as shown in the figure below. The neurons in the input layer is
directly connected to the pixels/values of the input image/vector. This layer is
only able to answer very simple questions at pixel-level. The later layers com-
bines these answers into more complex and abstract answers. In classification
problems, the output layer usually has the same number of neurons/outputs
as there are classes in the problem, and the network will be trained to give
the highest output value at the output corresponding to the correct class of its
input.

Figure 2.9: A simple feedforward network. Modified figure from [23].

2.4.4 Feedforward and deep networks

Networks with all neurons in a layer connected to all neurons in the previous
layer, and no feedback, as in figure 2.9 are called feedforward networks. Net-
works with two or more hidden layers, as also illustrated in figure 2.9 are called
deep networks. Deep feedforward networks in this form will be tested in this
project, but the focus will be on convolutional neural networks explained later.

As explained in [23], deep networks make it possible to compute advanced
functions with fewer neurons than shallow networks. The main problem with
deep networks is the training process, because all parameters must be adjusted
based on only the outputs of the very last layer. This gives rise to the unstable
gradient problem, among other problems, that are discussed in eg. [23].
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2.4.5 Convolutional neural networks (CNNs)

This is a type of feedforward ANN that is inspired by our visual cortex, which
is a part of the brain that processes visual information. The neurons of the first
layer(s) are not connected to all input pixels, but to a small window called the
receptive field, see figure 2.10.

Figure 2.10: Receptive field. Modified figure from [23].

Each layer has multiple channels, and every neuron in a channel shares pa-
rameters. This means each channel searches for one specific pattern over the
entire input. This makes it possible to save complexity and size by specifically
looking only for local spatial patterns. This allows deeper and larger architec-
tures and easier training for the following layers, making these networks very
good at classifying images. Figure 2.11 illustrates a typical CNN architecture,
with a convolutional layer, a pooling layer and two feedforward layers. The
pooling layer is a downsampling of the output of the convolutional layer used to
decrease complexity for the rest of the layer. The same algorithms can be used
to train CNNs as is used for feedforward ANNs, with slightly modifications.
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Figure 2.11: A typical CNN architecture. Modified figure from [23].

2.4.6 Other architectures

Other architectures include the Recurrent Neural Networks (RNNs) which con-
tain connections between neurons formed as loops, enabling a form of memory
or dynamic behavior. These are used for e.g. speech recognition. This project
will be limited to feedforward deep convolutional networks.

2.5 Training ANNs

The most used way of training ANNs is to use a version of the gradient descent
algorithm to optimize a cost function that is a function of the parameters, i.e.
weights and biases of the ANN.

2.5.1 Cost functions

A cost function (sometimes called loss function) is used during training to com-
pute how close the ANNs estimate is to the correct answer. As opposed to
classification accuracy, these functions provide a smooth output with gradients
that can be used to adjust the parameters of the ANN. Mean squared error
(MSE) can be used as cost function when training ANNs:

C(w, b) =
1

2n

∑
x

‖y(x)− a‖2, (2.9)

where w and b are the weights and biases of the ANN, n is number of trainig
samples, y is a vector with 1 at the position corresponding to the correct class
and a is the output of the ANN.

The cross-entropy cost function is much used as a cost function because of
its ability to make the ANN learn a lot faster from the start than MSE when
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weights and biases are initialized very badly. The cross entropy cost function is
shown below.

C(w, b) = − 1

n

∑
x

[y ln a+ (1− y) ln(1− a)] (2.10)

For this project, an activation function called the Softmax function was used
for output layer of neurons. The output of neuron j then becomes

exp(zj)∑
k exp(zk)

, (2.11)

z = w · x+ b (2.12)

This function’s output values are positive and always sum to 1, and can therefore
be thought of as a probability distribution, useful for classification problems.
A cost function called the log-likelihood function combined with the Softmax
output layer gives the same behaviour as the cross entropy function combined
with Sigmoid neurons as output, but with the advantage of the probability
distribution compatible output.

2.5.2 Gradient descent

Solving the optimization problem of minimizing the cost function analytically is
impossible due to the vast number of parameters for ANNs and the complicated
ways these depend on each others. The gradient descent algorithm computes
the gradient of the cost function when changing the parameters of the ANN
slightly:

∇C =

(
δC

δp1
, ...,

δC

δpn

)
, (2.13)

where C is the output of the cost function and v are the parameters of the
ANN. The parameters are changed in the opposite direction to optimize the
cost function:

∆v = −η · ∇C, (2.14)

where v is a vector of the parameters of the ANN, η functions as a learning rate
and ∇C is the gradient of the cost function. This is done iteratively.

The gradient descent algorithm is often used on the mean values of random
batches of input samples called mini-batches to increase speed. This is called
stochastic gradient descent (SGD). In this project, an expansion of the SGD
called momentum is used. This is a term added to the function above containing
weighted previous steps. This enables the learning to go faster and avoid local
minima, but with a risk of overshooting at the global minimum. When all
training samples are used, one epoch of training is done. For the following
epochs, new random mini-batches are selected from the training samples.
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2.5.3 Back-propagation

The gradient of the cost function with respect to any weight or bias is calculated
using the back-propagation algorithm. This algorithm feeds the ANN with an
input vector/image and the output of the ANN is computed. The error values
for the output neurons are computed using the cost function. At last, the error
values are propagated backwards through the ANN, resulting in an error value
for each weight and bias. These error values indicate the contribution of its
corresponding parameter to the output.

2.5.4 Regularization

A major problem associated with ANNs are overfitting. This means that the
ANN is able to memorize much of the input data without being able to under-
stand the important patterns and generalize to new situations. This problem
increases with the complexity of the ANN and the lack of sufficient amounts of
training data. An example from this project of an overfitting ANN is shown in
figure 2.12.

Figure 2.12: An overfitting ANN’s accuracy and cost during training.

Even though the accuracy on the training and validation data continues to
increase and the output of the cost function shown below continues to decrease,

16



the accuracy on the test data reaches a top and then starts to decrease. This is
because the ANN starts to learn patterns in the samples of the training data that
is not general to the class of those samples. Regularization techniques addresses
the problem of overfitting, and can also in some cases improve accuracy and
provide more stable and replicable results.

The regularization methods used in this project was L2 regularization,
dropout layers, and artificial expansion of the training data. These will be
described here.

2.5.5 L2 Regularization

L2 regularization, also known as weight decay, is a technique where a term
is added to the cost function to prevent parameters to grow very large. As
discussed in [23], this may lead to a few very large parameter values that make
changes in other parameters almost insignificant. The L2 regularization term is
shown below, it is simply the sum of the squared parameter values.

λ

2n

∑
w

w2 (2.15)

If cross-entropy is used together with L2 regularization, the cost function be-
comes:

C(w, b) = − 1

n

∑
x

[y ln a+ (1− y) ln(1− a)] +
λ

2n

∑
w

w2 (2.16)

2.5.6 Dropout layers

Dropout layers are layers that disconnects neurons with a given probability,
normally 0.5. This forces the present neurons to learn more robust features that
works even when only a random subset of the other neurons are present, because
the neurons cant rely on the presence of all other neurons. It is important to
note that this mechanism is used only during training. This can be thought of as
training many different ANNs and averaging the effects of the different ANNs.
If they overfit in different ways, the averaged result will be less overfitting.

2.5.7 Artificial Expansion

Artificial expansion (also called algorithmic expansion) of the training data
means generating more training data by shifting, rotating, adding noise to, or in
other ways modify the existing training data. More varied training data helps
the network generalize to new situations better. An example of a smart and
successful way of implementing artificial expansion is [28], where the objective
was to recognize handwritten digits. They used a form of artificial expansion
they called elastic distortions, where they used knowledge of the natural oscil-
lations in hand muscles to generate realistic variations of their training data.
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This study will also try to use knowledge of the signals of Novelda’s UWB radar
to expand the available training data in a realistic way.

2.5.8 Hyper-parameters

These parameters are global for the ANN, and include the following factors:

• The number of epochs to train

• Mini-batch size

• Learning rate

• Regularization factors

• Momentum factor

Finding a set of hyper-parameters that generates an ANN that works any bet-
ter than a noise generator in the first place can be difficult. When a set of
parameters are found that enables the ANN to learn, they can be optimized.
The hyper-parameter space has many dimensions, the hyper-parameters have
dynamic effects on each other, and the time needed to train long enough to get
any useful results can be large. This makes optimizing hyper-parameters diffi-
cult and possibly very time consuming. Tuning parameters one by one, when
a usable set is found, can give a good feeling of how the parameters work. A
very simple form of grid-search was also used for this project, looping through
variations of two parameters at a time.

2.5.9 Matlab for training ANNs

Matlab offers a toolbox called ”Neural Network Toolbox” that implements a
framework for training ANNs. This is the framework used for this entire project.

2.6 Classification

This section will describe the statistical metrics used to evaluate the ANNs
developed during this project.

2.6.1 Confusion matrices

Confusion matrices are a type of performance measurement, an example from
this project is shown in figure 2.13, where the red and green sections constitute
a confusion matrix. It gives more information than the accuracy, which was
used during development to make design choices. It shows true positives (TP)
top left, false positives (FP) top right, false negatives (FN) bottom left and
true negatives (TN) bottom right. For this project, positives are respiration
and negatives are noise or other oscillating objects. The overall accuracy can
be found in the blue field at the bottom right in the same figure.
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Figure 2.13: Example confusion matrix.

2.6.2 Sensitivity and specificity

One of the main objectives of this project was to achieve the highest possible
sensitivity (also called probability of detection or True Positive Rate (TPR)) and
specificity (also called True Negative Rate (TNR)). These statistical measures
are calculated from the values of the confusion matrix:

sensitivity =
TP

TP + FN
(2.17)

specificity =
TN

TN + FP
(2.18)

In figure 2.13, the row at the bottom shows sensitivity at the left and specificity
at the middle, both in green text. The red text below shows respectively False
Negative Rate (FNR) and False Positive Rate (FPR), in other words miss rate
and probability of false alarms.
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2.6.3 Positive and negative predictive values

Another interesting perspective on the values of the confusion matrix is positive
and negative predictive values (PPV and NPV). These numbers indicate the
accuracy or the performance of the classification. The PPV is the probability
that a frame or time interval classified as containing respiration truly contains
respiration. Similar, the NPV is the probability that a frame classified as con-
taining only noise truly contains only noise. The PPV and NPV are defined
as:

PPV =
TP

TP + FP
(2.19)

NPV =
TN

TN + FN
(2.20)

In figure 2.13, the column at the far right shows positive predictive value at
the top and negative predictive value at the middle. The red text below shows
respectively False Discovery Rate (FDR) and False Omission Rate (FOR).

2.6.4 Reciever operating characteristic (ROC)

For classification problems in biometrics (as is the case of this study), medicine,
psychology and other fields, it is interesting to study the trade off between sensi-
tivity and specificity when varying the discrimination threshold of the classifier.
This is because the cost of the consequences of false positives and false neg-
atives can be very different. When plotting sensitivity against False Positive
Rate (FPR) (1 - specificity) for different discrimination threshold values, this
trade off becomes clearly visualized. This is called a ROC plot, an example from
this project is shown in figure 2.14. The two lines show the mentioned trade-off
for both respiration and noise. These will always be exactly opposite to each
others, and often only one of them is shown.

Figure 2.14: Example ROC.
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Chapter 3

Methods And Equipment

3.1 Work planning

For the project scheduling, a Gantt chart was constructed to be able to assign
roughly enough time for each planned major task. Exploring neural networks
demands trying and failing. It was not given from the start exactly what tests
should be done. The chart was therefore changed slightly during the project,
e.g. time was rescheduled from fully connected ANNs to convolutional ANNs
because the first results obtained from the convolutional ANNs seemed very
promising. Because this project was the authors first encounter with ANNs,
some adjustments of the schedule was expected from the start. An early version
of the Gantt chart is shown in figure 3.1.

Figure 3.1: Gantt chart.
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3.2 Hardware used

3.2.1 GPU

For the training of the ANNs, a GPU owned by the author was used to be
able to complete a variety of parameter combinations within reasonably time.
Specificcally the nVidia GeForce GTX 960.

3.2.2 Radar and setup

The radar used was Novelda’s Xethru UWB radar, shown in figure 3.2. During
recording of training and test data, the radar was mounted on a camera tripod.
See the Radar setup section in the next chapter for the setup of the radar.

Figure 3.2: Novelda’s radar.

3.3 Software used

3.3.1 Xethru Explorer

The recording was done with the radar connected via USB to a laptop, con-
trolled by the user interface provided by Xethru explorer. A screenshot of the
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application during recording is shown in figure 3.3

Figure 3.3: XtExplorer during recording.

3.3.2 Matlab

For this project, some different programming languages and packages for ANNs
were considered. Matlab was chosen because it provides all functionality needed
for this project, and because both the author and Novelda was already used to
this environment.

3.4 Design choices

3.4.1 Validation and test data

Before training, the data set was divided into three data sets: Training set,
validation and test set. Matlab uses partitions of the training data to calculate
accuracy after each epoch. The validation set was not included in the training
process, but was used during training to measure classification accuracy. The
test data introduced recording situations not used for training at all. This gave
a measurement of how well the ANN generalized to new data, and revealed over-
fitting to the training/validation data. Further, to prevent possible overfitting
of the network to the test data when adjusting the architecture or the hyper-
parameters, and to give an even better measurement of generalization, the ANN
was finally tested on a second test set. In other words, the first test set can be
thought of as a validation set for setting the hyper-parameters. This approach
is called the ”hold out” method. This is how the different architectures was
compared in this project, and is illustrated in figure 3.4.
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Figure 3.4: Training approach.

3.4.2 Preprocessing

During the project, previously acquired knowledge of Novelda’s radar and its
signals came in very useful for the preprocessing of the input data for the ANN.
An example of this is that scalogram-like images were used as input at a stage in
this project because this format had previously shown [1] to contain information
that seems relevant for this project with a high level of SNR. This preprocessing
may cause a simpler ANN to be able to make good classifications because the
ANN no longer needs to learn how to extract frequency information or similar
information because this already will be done by the preprocessing.

3.4.3 ANN architecture and training

Architecture and training scheme choices for the ANN were made based on
knowledge acquired during the literature research in this project. To be able to
make good decisions, a script were made that loops through some values for one
or more hyper-parameter at a time, and plots and saves relevant information
from each case in a structured manner. This script and its generated plots took
some different forms throughout the project as experience and knowledge of
what to look for improved.
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Chapter 4

Exploring the Artificial
Neural Networks (ANNs)

This chapter describes the concepts that were tested during the project, but
does mentions few numeric results. A few times, major changes was done lead-
ing to results in a new format, so that the following results were not directly
comparable to the earlier. Examples of this is changing the training set or the
type of information on which the comparisons were based. The next chapter
contains selected results to illustrate the main points of what was learned. The
code created during this project will not be shown in this chapter, but selected
parts of it will be added in appendix A.

4.1 Recording training data

ANNs need training data. This was acquired by recording different situations
with Novelda’s UWB radar.

4.1.1 The situations described

Signals containing respiration was recorded by the Novelda employees Jan Roar
Pleym, Magnus Bache and Ingar Hansen. They recorded themselves at sleep,
lying awake, sitting, and finally making small normal movements during the
previously mentioned situations.

Signals containing noise was recorded by the author. These recordings con-
tain rotating fans at different angles and rotating speeds, oscillating roof lamps
at different maximum angles, an oscillating wall-mounted guitar, and a LEGO
bot fitted with motors oscillating a Christmas tree balls at different sizes and
oscillating frequencies. The Christmas tree balls were used because of their
reflecting capabilities.
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4.1.2 Radar setup

During recording of training and test data, the radar was mounted on a camera
tripod. Figure 4.1 illustrates a situation where the radar measures the move-
ments of a Lego robot at the top, a sitting person at the bottom left, and a
sleeping person at the bottom right. As the figure indicates, a distance of ap-
proximately 1 meter was used for the recordings used in this project. Some
variations of this distance was a natural result of the different recording sit-
uations, different people recording, and the fact that in some situations (e.g.
sleeping) the target sometime moves. Figure 4.2 shows pictures of two example
setups. A couch to the left and chairs araund Novelda’s lunch table to the right.

Figure 4.1: Different radar setups with tripod.

Figure 4.2: Examples of radar setups.
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4.2 Preprocessing

Preprocessing was done to provide the ANN with relevant information to make
classification decisions in a compact and available format. The compact form is
important to reduce input size and thereby reducing the size and computational
complexity of the ANN. The available form may result in a simpler and shallower
ANN because the information needed is more directly available already at the
first layer.

Preprocessing may cause loss of information, in other words it may contain
non-invertible transformations. This was also considered when choosing the
methods for preprocessing in this project. A sufficiently sampled Fourier trans-
form (as will be used in this project) is an example of an invertible transforma-
tion, and therefore keeps all information (when rounding errors are considered
insignificantly small). This section will describe the preprocessing of the input
samples for the ANNs.

4.2.1 The raw data described

Figure 4.3: A frame matrix containing radar signals.

The raw data was given as .dat files containing recordings for 15 minutes each.
When loaded with a function written by Novelda, the data is loaded into two
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Matlab matrices. A frame matrix shown in figure 4.3 containes the radar sig-
nals, one column for each sample, and one row for each range bin. In-phase
and Quadrature channels are stacked vertically, the top half is the In-phase
signals. The horizontal lines that can be spotted in the figure corresponds to
the range bins that contain reflections. When zooming in as in figure 4.4, the
lines are clearly periodic in intensity, which corresponds to an oscillating target,
in this case Jan Roar Pleym’s chest when sleeping. Another matrix contains
information like sample numbers and the length in meters of each range bin.

Figure 4.4: Zoomed in on a section of the frame matrix.
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4.2.2 Forming a sample

Range gating

The first step of the preprocessing is range gating. In this project, this was
done by eyeballing the first part of a recording situation, and then manually
programming the correct distance to range gate. This was a fast and simple
approach that worked great for this project. An algorithm that outputs the
estimated range for the same type of raw data is in development at Novelda,
but was not finished at the time of this study. After range gating, the signal is a
complex 1D signal, an example is shown in figure 4.5. By zooming in, the signal
is clearly oscillating in both channels, as can be seen in figure 4.6, forming a
complex signal oscillating in phase around a point given by stationary clutter,
as in figure 4.7 and explained in the background theory chapter. At this stage,
windows of 20 seconds was extracted from the complex signal, with a distance
of 1 second between each start point i.e. overlapping.

Figure 4.5: Rangegated signal.
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Figure 4.6: Section of rangegated signal.

Figure 4.7: Section of rangegated signal, I channel against Q channel.
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Input for convolutional ANNs

Each window was Fourier transformed into vertical vectors. Each Fourier trans-
form vector was then stacked horizontally to form time-against-frequency im-
ages. These images were downsampled into 50 by 50 pixel images, an example
is shown in figure 4.8. Larger values give lighter colors. This choice of resolu-
tion was based on looking at what resolutions the assumed relevant information
was clearly visible. At this resolution, small changes in oscillating frequency
was still visible, and some variation of sleeping respiration frequency was visible
in each image. Each image overlapped its neighbour image with all but one
column/sample. This gave a large number of varied images to use for training.

Figure 4.8: Example of an input image.

4.2.3 Managing the samples

The samples were balanced so that the number of samples for each class (respira-
tion and noise/other oscillating reflectors) were the same. This gave a balanced
training of the ANN and also intuitive test results. The samples were shuffled
and divided into three batches, one for training, one for validation and one for
testing.
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4.2.4 Artificial expansion

Artificial expansion were used on the training data (not on the test data) to
increase the variety of the training data, in the form of a custom made function.
For the 2D samples, some different transformations were tested. The function
translated the input images along the frequency axis, weakened the signals,
added noise and flipped the images. The number of samples was multiplied by
approximately 20 after this step.

4.2.5 The sample set described

At this point, approximately 120 000 training samples as illustrated in figure
4.9, 5 000 validation samples and 27 000 test samples was made for the sample
set used in all comparisons described in the results chapter. These samples
contain processed recordings of all Novelda employees mentioned earlier when
sleeping, and also all noise situations mentioned earlier. See the section about
Recording earlier in this chapter for reviewing the details.

Figure 4.9: Input samples.

4.3 Feedforward neural networks

Fully connected feedforward ANNs were to a small extend explored because it is
the simplest way of connecting artificial networks. Very little knowledge of the
problem can be utilized, and the ANN serves mainly as a black box. However, it
was a natural start before moving on to convolutional neural networks, described
in the next section.
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4.4 Convolutional neural networks (CNNs)

Creating images that contain both time and frequency information seemed logi-
cal because this information is assumed to be useful in distinguishing respiration
from other oscillating objects. It then seemed very logical to explore the use of
convolutional ANNs on this input, because samples close to each others in time,
and frequency content close in frequency are related in patterns, and should
therefore be treated differently than samples/frequency content far apart. This
way, previously acquired knowledge could possibly be used to increase perfor-
mance of the classification solution.

4.4.1 Initial architecture

First, some architectures with different number of layers and number of neurons
for these layers were tested. One architecture that worked after some trial
and error with hyper-parameters, was the one illustrated in figure 4.10. The
reason for testing this simple architecture in the first place was mostly based
on hunches. It seemed logical to use a convolutional layer because the local
patterns in the input image was assumed to contain valuable information. It
also seemed logical to start with only one standard feedforward layer because it
was assumed that there was no need to look for very complicated compositions
of these patterns. Simple networks also generally overfits less than complicated
networks. A pooling layer was added because it simplifies the ANN, and because
the exact respiration frequency should not matter for the classification problem
in this project.

Figure 4.10: A convolutional architecture. Modified illustration from [23].

This is an ANN with one convolutional layer, one pooling layer and one
softmax layer. Figure 4.10 shows the shape and size of the input and the outputs
of each layer. The number of channels in the convolutional layer (30) was chosen
this large as a start to prevent the ANN to be held back by not being able to
look for enough different shapes. The filter sizes (5 x 5) was chosen to be able
to contain a meaningful section of the input image, e.g. a small section of a
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line or a bend. The size of the pooling was chosen to be the same as one of the
examples in [23] as a first try. The last layer is the output layer and has the same
number of neurons as classes in the classification problem. It was chosen to be
a Softmax layer to give output values that can be interpreted as probabilities,
which is appropriate for this project.

This architecture was chosen as basis for further study. It was trained for
1000 epochs, which with the training set and training batch size used, corre-
sponds to 1 000 000 iterations of the training algorithm. Figure 4.11 shows
the accuracy after each iteration. Its accuracy seemed to almost saturate after
much fewer epochs, although it is not easily visually verifyed by this plot, which
looks very noisy due to the number of iterations. 40 epochs was therefor chosen
for further comparisons of rough adjusting of this architecture to save time. It
achieved an accuracy of 91.44% on the test data after 40 epochs.

Figure 4.11: Accuracy after each iteration.

4.4.2 Improving the architecture

In order to improve the accuracy, parameters were adjusted one by one, as
described in chapter 3.4.3. The following paragraphs describes what parameters
were adjusted and the results of these tests.
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Number of filters

As shown if figure 4.12, a few of the filters seemed to take the shape of ap-
proximately horizontal lines, very much like those visible in the input images.
Many filters still looked random. It was assumed that these filters only served
as random number generators for the rest of the network, and the number of
filters was therefor decreased to 15 for further tests.

Figure 4.12: Several seemingly random filters.

Filter sizes

A number of different filter sizes were tested, 15x15 pixels gave the best results
in terms of accuracy on the test data. An accuracy of 93.02 % was achieved at
this stage. A montage of selected filters created during different tests are shown
in figure 4.13. It should be noted that only about 5 to 10 filters with such clear
structure was trained for each CNN, the rest of the filters were very noisy or
contained seemingly only random values. This montage still gives an impression
of what sort of patterns the CNNs tends to look for.
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Figure 4.13: Selected 15 x 15 pixels filters.

Pooling sizes

Pooling sizes of 2x2 that were non-overlapping was very close in accuracy to no
pooling at all. Larger quadratic pooling sizes reduced accuracy considerably.
Because of the simplification a pooling layer introduces, a pooling layer with
2x2 pixel windows was kept for further tests.

A specialized pooling layer

As previously mentioned, it was assumed that the patterns containing the rel-
evant information for the classification problem of this project should be the
same for different respiration frequencies. Large rectangular pooling windows
which compressed information from the convolutional layer in the frequency di-
mension was also tested. The best results from these test was achieved with a
pooling window of 6x1 neurons. Figure 4.14 tries to illustrate a similar com-
pression, but with smaller layers for simplicity. An accuracy of 93.48% on the
test data was achieved using this pooling layer, actually better that what was
achieved with less compression. It is, however, a small change, and could just
be coincidental.
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Figure 4.14: Specialized pooling layer. Modified illustration from [23].

4.4.3 Hyper-parameters

Accuracy may also be improved by using a better training schedule or by making
modifications to the training algorithm. The following paragraphs describes
what parameters were adjusted and the results of these tests.

Initial learn rate

An initial learn rate of 0.02 was found to give the best results in terms of
accuracy on the test data, and was used for all tests for this architecture. This
factor have no physical unit, and does not make much sense on its own, or if
using a different training setup. It is simply mentioned here for completeness,
and to point out that it was actually tuned during this project.

Learn rate drop period and factor

By using a training schedule that periodically decreases the learning rate, more
precise learning or in other words a fine tuning at the end of the training period
can be achieved. This did not improve the accuracy for this architecture.

L2 regularization and momentum

By default, Matlab uses an L2 regularization parameter close to 0 and a mo-
mentum factor of 0.9. Changing these did not improve the accuracy for this
CNN.

4.4.4 A deeper CNN

Even better accuracies were achieved by using a deeper CNN. By adding another
hidden layer of ReLU neurons before the output layer, the CNN should be able
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to discover more abstract patterns in the input images. After a lot of trying
and failing, a deeper CNN was successfully trained using the dropout technique
explained in the background theory chapter.

4.4.5 Architecture

An illustration of this deeper architecture is given in figure 4.15.

Figure 4.15: A larger convolutional architecture. Modified illustration from [23].

4.4.6 Studying the CNN filters

The filters of the first convolutional layer shows what patterns of pixels the CNN
actually looks for. Studying these filters gave valuable insight in what image
features is used for the classification in the later layers.

An example is shown in figure 4.16. The numbers above each filter is the
mean squared values of the filter pixels. These numbers indicate to what extent
the filters have taken the shape of some feature. Low values mean that the filter
pixels does not affect the classification result much, and therefore have stayed
close to stationary during training. All filters with a relatively high mean square
value seemed to have taken the shape of straight horizontal lines, very similar
to what can typically be found in recordings of dead objects oscillating with a
stationary, even frequency. As a result of this observation, it was discovered
that many of the noise recordings were done in a way creating radar signals
of very good SNR relative to typical recordings of unknowing humans. The
preprocessing algorithm was therefore extended to normalize the signals before
the Fourier transforming. This greatly improved the CNNs ability to classify
new recordings done with different setups.

38



Figure 4.16: Horizontal line-like filters with mean square pixel values.

Another example is shown in figure 4.17. Many of these filters seems to have
taken the form of the edges of horizontal lines. Based on this observation, it was
discovered that a large part of the training images containing noise contained
sudden starts and stops of the noisy oscillation, hence the clear ending and
starting lines. This was due to the way the training data was recorded. More
samples containing continuous noise was added, and this considerably improved
the ability of the later CNNs to generalize to a lot of new noisy situations.
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Figure 4.17: Horizontal line edge-like filters.

4.5 Respiration as seen by a CNN

Getting trained CNNs to tell what images looks the most like respiration and
noise recordings was attempted because this kind of reverse engineering was
assumed to give valuable information on what the CNN actually was using as
basis for its classification, but in a different way than studying the filters of its
first layer. The way the CNN was given the ability to tell what a respiration-like
image should look like, was simply by iteratively adding Gaussian white noise to
a random initialized image, and compute the gradient of the CNNs output when
fed with this image. This gradient could be used for adding noise to the image
in a way that made the image more and more respiration-like each iteration.
One of the first results is shown in figure 4.18. The color mapping is different
from the rest of the figures simply because the figure was made in an early stage
of the project.
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Figure 4.18: One of the first reverse engeneered images.

It clearly shows a broad horizontal ridge in the earea of about 10 to 17
RPM, which is typical respiration frequencies. Based on this observation, it
was discovered that most of the oscillation noise contained in the training data
was oscillating in higher frequencies than most of the respiration recorded. It
looked like the CNN was simply emphasizing absolute frequency more than the
dynamic behavior of the frequency which was assumed to contain information
about the target. The artificial expansion of the training data was changed so
that each frequency contained similar amounts of both respiration and noise
signals when summed over all training samples. This greatly improved the later
CNNs accuracies in situations with noise oscillating close to typical respiration
frequency.

The respiration-like image generated of the best CNN developed during this
project clearly reflects the typical dynamic changes of respiration frequency
normal to humans. This image along with a noise-like image is shown in the
Selected Results chapter.
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Chapter 5

Selected Results

In order to get some insight into the performance and robustness of the devel-
oped systems, this chapter will show a selection of the test results and give a
brief analysis of these at the end. To make the results comparable, the data
used for training, validation and testing is the same for the results shown here.
The training, validation and test data is described in the first section. The
accuracies achieved on the test data served as the basis for the calculation of
sensitivity, specificity and ROC curves. This is because it tests the ANNs on
new situations and is therefore much more interesting and realistic than accu-
racies achieved on the training data and the validation data which contains the
same recording situations as the training data.

5.1 Training, validation and test data

5.1.1 Description

The training and validation data consisted of the following situations:

• Two Novelda employees sleeping. Recordings of some different times of
night were used.

• The same employees lying on a coach and sitting in a chair, just as illus-
trated in figure 4.2.

• The author standing against a wall.

• Noise generated by a Lego robot oscillating at different frequencies close to
respiration frequency, an oscillating roof mounted lamp and an oscillating
wall mounted guitar.

• The situations above modified by artificial expansion to generate new situ-
ations with the oscillations happening at different frequencies and different
rate of frequency changes.
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The test data consisted of the following situations:

• Some of the situations mentioned above but from other recordings.

• Two persons sleeping next to each others.

• A third Novelda employee lying on a coach and sitting in a chair.

• Noise generated by another slightly different Lego robot also oscillating at
different frequencies close to respiration frequency.

• The noise recordings were modified to cover approximately all possible
respiration frequencies and to balance out the large number of respiration
recordings used for testing.

5.1.2 The optimal amount

One interesting question is how much training data is needed for the best train-
ing of the developed CNN? Optimized amounts of training data means gaining
good results without spending too much resources and time collecting training
data. This was analyzed by running tests using only a partition of varying size
of the training data, and then looking at the increased accuracy achieved due to
the use of more training data. The number of training epochs was increased as
the number of training samples was decreased, so that the results were compa-
rable in the way that they had been trained for equal amounts of time. It was
assumed that the accuracies had saturated within the time of each test, which
by eyeballing seems to be the case. The CNN used for these tests were slightly
less accurate the best achieved described later.

Figure 5.1 and 5.2 shows accuracy on training, validation and test data
against training epochs. The number of samples used in test 10 is 1000 times as
large as for test 1, and increases logarithmic through the 10 tests. In some cases,
the test accuracy is higher than the validation accuracy, which may be a result
of the heavy modified and difficult samples used for training and validation.
Figure 5.3 shows the corresponding confusion matrices from the highest accuracy
achieved on the test data for each of the 10 tests. The test data is used for
accuracy measuring because it shows how good the CNN works in situations
different from the training phase and is therefore a more realistic measure for
normal use. The last epoch does not necessarily give the best result due to
overfitting. Figure 5.4 shows the accuracies against the ratio of samples used to
all samples. It is not clear from this plot that the accuracy saturates when all
samples are used. More training data might therefore give even better results.
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Figure 5.1: Accuracy against epochs for test 1 (1/1000 of the available training
data used) to 5.
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Figure 5.2: Accuracy against epochs for test 6 to 10 (All available training data
used).
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Figure 5.3: Confusion matrices for test 1 (1/1000 of the available training data
used) to 10 (All available training data used).
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Figure 5.4: Best accuracy achieved on test data during training against fraction
of the available training data used.

5.2 The convolutional networks

5.2.1 Different architectures and concepts

As described in the previous chapter, many ANN concepts were tested and its
accompanying parameters tuned. Here, a selected set of results to illustrate the
significance of the use of these concepts.

Convolution filter sizes

The size of the filters in the convolutional layer heavily affected the results.
The first tested sizes was 5x5 pixels, but a size of 9x9 pixels gave much better
results. The figures below illustrates the difference in a small CNN. For the first
case, figure 5.5 illustrates the architecture used, 5.6 shows accuracy on training,
validation and test data during training and figure 5.7 shows confusion matrix
and ROC curve for the best epoch. For the second case, figure 5.8, 5.9 and figure
5.10 shows the same information. Using filter sizes of 15x15 pixels gave slightly
better results. This pattern repeated itself also for deeper CNN architectures,
see the Highest accuracy achieved section for comparing with a deeper CNN
with filters of 15x15 pixels.
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Figure 5.5: The architecture used for the 6 x 6 pixels filters tests.

Figure 5.6: Accuracy on training, validation and test data against epochs in the
6 x 6 pixels filters test.

Figure 5.7: Confusion matrix and ROC plot from the epoch with the highest
accuracy in the 6 x 6 pixels filters test.
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Figure 5.8: The architecture used for the 9 x 9 pixels filters tests.

Figure 5.9: Accuracy on training, validation and test data against epochs in the
9 x 9 pixels filters test.

Figure 5.10: Confusion matrix and ROC plot from the epoch with the highest
accuracy in the 9 x 9 pixels filters test.
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Pooling layers

The CNN generating the above results included a max-pooling layer right after
the convolutional layer, with pooling filters of 2x2 pixels and the same stride
length meaning no overlap. Removing the pooling layer generally gave more
unstable results for most of the tests, although sometimes slightly better results.
The advantage of the pooling layers down-sampling resulting in much smaller
following layers, combined with the very little improvements gained by removing
it, resulted in a decision of using this concept for most of the further tests. Figure
5.11 and figure 5.12 shows typical results in the same format as described and
used above from training the CNN without a pooling layer.

Figure 5.11: Accuracy on training, validation and test data against epochs in
the no pooling test.

Figure 5.12: Confusion matrix and ROC plot from the epoch with the highest
accuracy in the no pooling test.
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Momentum

Removing momentum as an extension to the stochastic gradient descent al-
gorithm gave as expected slower learning, illustrated in the same format as
described and used above in figure 5.13 and 5.14. The sensitivity and specificity
achieved would likely and seemingly increase further if training for a longer time,
maybe to reach results close to results from using momentum, but from these
results, clearly much slower. Again, this result is a selected typical one, after
running several tests with different random initialized CNNs.

Figure 5.13: Accuracy on training, validation and test data against epochs in
the no momentum test.

Figure 5.14: Confusion matrix and ROC plot from the epoch with the highest
accuracy in the no momentum test.
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5.2.2 Highest accuracy achieved

The highest accuracy achieved on the test data was with a CNN of the ar-
chitecture shown in figure 5.15. This CNN was trained for 500 epochs, which
took approximately 24 hours using the hardware described in the Methods and
Equipment chapter.

The filters of the first convolutional layer are shown in figure 5.16 to give
some insight into what shapes or features this CNN looked for, at least in its
lowest level of abstraction, to achieve its results. The accuracies on the training,
validation and test data are shown in figure 5.17. It is not clear from this figure
that the test accuracy has saturated. Even better results might therefor be
obtainable after longer time of training, but such a test would have occupied
the authors computer for days and was therefore not prioritized for this project.

Figure 5.15: Architecture of the CNN with the highest accuracy achieved.

Figure 5.16: Filters of the first layer of the CNN with the highest accuracy
achieved.
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Figure 5.17: Training, validation and test accuracy during training of the CNN
with the highest accuracy achieved.

Figure 5.18: Confusion matrix of the CNN with the highest accuracy achieved.
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The confusion matrix of the best classification during the testis shown in
figure 5.18. The sensitivity is shown at the bottom left, 99.1%. The specificity
is shown at the middle bottom tile, 99.8%. The receiver operating characteristics
(ROC) are plotted on the left in figure 5.19, a section of the top left is shown
on the right.

Figure 5.19: ROC plot of the CNN with the highest accuracy achieved.

5.2.3 Analysis

Most of these plots show a gradually consistent increase in accuracy for training
and validation, but a more unstable and sometimes even decreasing test accu-
racy. This illustrates that after many epochs, the ANN overfits on the training
and validation data, and gets worse at generalizing to the new data introduced
in the test set. This type of plot gives a good basis for choosing the number of
training epochs.

Some of these plots show situations where the accuracy on the validation set
is higher than the accuracy on the training set. This may seem counter intuitive,
since it is the training set that actually affects the neural connections. For the
tests where a dropout layer was used, this may partially be explained by the fact
that the use of such a layer decreases training accuracy since only about half of
the connections to the following layer is used during training. Other reasons for
this can be that the validation set is very small and therefore has a lower inner
variance, or that it simply contains relatively easy samples.
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5.3 Reverse engineered respiration

5.3.1 Images

This section shows the results from generating respiration-like and noise-like
images using a trained CNN. In figure 5.20, generated respiration and noise
samples are shown along with examples of typical samples from each case. The
images are 50 x 50 pixels, the horizontal axis corresponds to time, and the
vertical axis corresponds to Fourier frequency.

Figure 5.20: Reverse engineering: Respiration and noise signals generated from
a trained CNN.

5.3.2 Analysis

These images indicate that the CNN actually looks for oscillating targets that
have a time varying frequency, just like normal respiration. In the example sam-
ples, the repeated lines at double (and barely visible at triple) of the frequency
of the clearest line, represent harmonic frequencies.
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Chapter 6

Discussion

The objective of this project was to explore the use of artificial neural networks
(ANNs) for classifying respiration from other oscillating reflectors in radar sig-
nals. This chapter gives a discussion on both the results and the work method
and ends with thoughts for possible future work.

A variety of ANNs was designed, implemented and tested in Matlab. The
training algorithm and the recordings used for training, validation and testing
was changed several times throughout the project when new knowledge was
acquired. This was a natural result of the fact that the author had no previous
knowledge of ANNs. A selection of tests was therefore repeated using the latest
setup and test data in order to provide comparable results for e.g. different
architectures.

6.1 Results

This section will discuss these selected results and their significance.

6.1.1 Achieved sensitivity and specificity

The numbers shown in the Selected Result chapter are seemingly very good.
Different testing data would however have led to different results, and even
more different recording situations would presumably lead to worse looking,
but even more realistic results. The sensitivity and specificity numbers given in
this report is therefore not necessarily comparable to any other work.

The results will also vary each test run because of the random initializing if
the ANNs. The results given are based on only a small number of repeated test
runs, due to the limited time and hardware available for this project.

For the aim and scope of this project, however, the variety of recording
situations was considered good enough to give a sensible comparison of the ANN
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architectures studied within this project. The results also show that CNNs are
clearly able to distinguish human respiration from many different objects based
on the natural variety of the frequency found in human respiration, and with a
high sensitivity and specificity.

6.1.2 Fully connected versus convolutional ANNs

It was early decided to allocate most of the time to the study of Convolutional
Neural Networks (CNNs). The potential of fully connected ANNs was therefore
explored only to a very little degree. This was a necessary prioritizing due to
the time available. The decision was based on the assumption that CNNs could
provide a compact and well suited architecture for the classification problem of
this project, and because of the good results obtained from early tests of CNNs.
Another advantage of the CNNs was that the preprocessing used was much more
stable than the preprocessing for fully connected ANNs, mainly because there
was no need for estimating the stationary clutter of the signals fed to the CNNs.
Signals with low SNR or signals simply not containing any oscillating targets
at the range analyzed gave very unstable clutter estimates, and improving the
clutter estimation algorithm was considered too time consuming to be worth
trying for this project.

6.1.3 Studying CNN filters

In order to acquire a deeper understanding of how the CNN actually worked, a
large portion of the time available was scheduled for studying the filters in the
convolutional layers. The filters clearly reflected features and shapes in the input
images visible to the eye, and could therefore provide a deeper understanding
of what the CNNs based the their output on.

There might still be ways that these filters are used by later hidden layers
that is very hard to discover or understand, e.g. similar filters might be used
to look for harmonic frequencies accompanying the most distinct frequencies.
Maybe some targets generate harmonics with a higher proportion of energy than
other targets, and maybe such knowledge and understanding could be used for
improving the CNN further, or even give ideas to new architectures that better
utilizes this information.

Studying the filters provided great help for improving the recording process
and preprocessing of training samples, because it enabled recording situations
that is not realistic for normal use to be discovered.

6.1.4 Reverse engineering

Reverse engineering by generating respiration-like images using a trained CNN
also gave better insight into how the CNN worked. The visual patterns in the
generated images was much more intuitive than the vast number of numeric
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values that could be extracted from the CNN itself. As mentioned in the results
chapter, the reverse engineered images indicate that the CNN actually looks for
oscillating targets that have a time varying frequency, just like normal respira-
tion. Oscillating targets with too stable frequency over time looks unnatural,
and gets classified as noise. The CNN does not seem to emphasize continuous
patterns as much as the fact that the frequency is simply varying. This may be
a result of the relatively shallow architecture compared to many CNNs used for
e.g. face recognition. The shallow architecture may not give any possibility for
understanding more complicated patterns than this.

Reverse engineering also provided great help for improving the recording pro-
cess and preprocessing of training samples, by the same reasons as for studying
the CNN filters. Addressing the problems discovered using these methods gave
huge improvements in terms of the CNNs accuracies and ability to generalize
to new situations.

6.2 Methods

This section will discuss the work methods.

6.2.1 Recording data

The importance of acquiring a large and varied set of training data for testing
during development was learned from the work with the project thesis [1], which
also required varied recordings for use during development. For this project,
Novelda employees therefore helped recording much of the data.

The recording of human respiration was mostly done by Novelda employees,
but the recording of noise was only done by the author. This resulted in a much
higher availability of respiration recordings than noise recordings. Because the
training and test samples was balanced before use in order to give intuitive and
comparable results, a very limited selection of the respiration recordings was
actually used at a given time. The amount of recordings for all situations was,
however, seemingly more than large enough for all tests scheduled throughout
this project.

6.2.2 Effective testing

To be able to test large number of different architectures and parameters, it
is beneficial to quickly obtain a minimal set of test results to be able to make
decisions and move on. This happened ineffectively early in the project due
to the lack of previous experience in the field, but the process was improved
a lot throughout the project as experience and knowledge was gained. Early
talks to the supervisors about what information is important to look for, was
very helpful. The continuous improvements of the Matlab scripts used to gain
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and illustrate this information, obviously also helped improving the process
throughout the project.

6.2.3 Evaluation of methods

In the project thesis [1], no evaluation of methods was done before the practical
and technical work was finished. The thoughts made on methods gave ideas for
improvements, but only after it was too late to take advantage of them. For
this project, these ideas was revisited early on, and a small amounts of time was
also scheduled throughout for the evaluation of work methods, like small, very
limited sprint retrospectives. This time was helpful for periodically reevaluating
prioritizations and abandoning attempts that had taken too much time without
leading to anything.

6.2.4 Meetings with supervisors

Because of the lack of previous experience with neural networks, knowing what
to ask for was in the beginning difficult, and the supervisors were therefore not
utilized as much as they could have been. This became much easier near the
end of the project, when some specific results had been made and could be
discussed. Possibly further work would therefore presumably be characterized
by much better utilizing of supervisors from the start.

Just as with the work with [1], meetings with the Novelda supervisor through
Skype and TeamViewer saved time and worked very well to review work progress
and ask questions during the project.

6.3 Future work

There is a lot that could be done to follow up on the work of this project, be-
cause ANNs are a large field continuously developing, and a field not previously
explored by Novelda at all. This section lists some thoughts of possible and
interesting future work.

6.3.1 Artificial expansion

The artificial expansion of the training data heavily affected the results from
the ANNs. This algorithm can also be designed more cleverly by using more
knowledge of the signals from Novelda’s radar to generate new signals that
reflects the natural variations of radar signals. This makes it possible to create
ANNs that can generalize better to situations not present in the training data.

For this project, the use of artificial expansion was a necessity because the
frequency of most of the noise was generally higher than normal respiration fre-
quency, resulting in problems with noise within normal respiration frequency.
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The modifications done to the samples to generate respiration and noise sig-
nals with a larger variety of frequencies did not preserve the original relative
distances between the harmonic components in the signal. A more realistic ar-
tificial expansion might be a good idea to explore for other use-cases, e.g. for
distinguishing different kinds of respiration, possibly humans versus animals.
The potential of artificial expansion for radar signals could be interesting to
explore further.

6.3.2 Several convolutional layers

It would be very interesting to test CNNs with several convolutional layers
connected in series because it seems logical that such CNNs might be naturally
suitable for the repeating patterns in the time-frequency images. A thought of
how is illustrated in figure 6.1.

Figure 6.1: Illustration of thoughts on several convolutional layers.

A convolutional layer searches for bending lines corresponding to natural
variations of human respiration. After a down-sampling by a max-pooling layer,
a second convolutional layer searches for repeating patterns generated by the
first convolutional layer. Now, the horizontal lines generated by an oscillating
object should at the same time be suppressed, and fully connected neurons
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should easily be able to distinguish the variations in frequency natural to human
respiration from the even oscillations of dead object. Slightly different filters
would perhaps enable the CNN to also distinguish respiration from dead objects
that by some reasons also have a somewhat varying frequency. Flipping the filter
of the first convolution upside down would give similar results, adding such a
filter would likely be a good idea to increase performance and robustness.

Finally, it should be kept in mind that larger and more complicated architec-
tures generally increases the problem of overfitting because the larger number
of parameters contained in the system makes it easier to learn more details in
samples not necessarily general to other similar samples. This is an advantage
with the simple CNNs tested during this project.

6.3.3 Smarter compressing

It would be interesting to explore compressing by using pooling layers in smarter
ways, e.g. the use of rectangular narrow windows to compress information that
is of small or none importance for the specific classification problem, such as the
mean frequency of respiration or oscillating objects. If this can be done without
throwing away the important information contained in the signals, it would
reduce computational complexity. Another possible way of reducing complexity
can be testing modified convolutional layers that scales its filters in order to
look for the same respiration patterns in different situations e.g. of high or low
SNR resulting in distinct or flat ridges in the scalogram-like images used as
input here. A reduction of complexity of one layer can make it possible to use
inputs of a higher resolution or use more complex later layers, both of which
might improve sensitivity and specificity of the classification. It can also reduce
requirements for hardware or improve battery time of possible wireless devices.

6.3.4 Smarter initializing

For this project, the only approach for initializing filters was using a random
Gaussian distribution, which also is the normal approach. Manually initializing
at least some of the filters to reflect patterns might lead to faster training or
better results because the CNN can utilize the developer’s knowledge of the
data in addition to learning by itself. It is a way to include our own mathemat-
ical models into the highly data-driven system in a more direct way than only
deciding the CNN’s architecture.

6.3.5 Achieving more stable results

To achieve stable output during normal use, some sort of tracking algorithm
following the ANN to accept a small number of scattered wrongly classified
samples would presumably be of interest. The development of such an algorithm
was outside the scope of this project. N-version static redundancy can also
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simply be achieved by letting N different or similar but random initialized ANNs
vote on the result. This might also lead to better and more stable classifying.

6.3.6 Faster response time

The response time of the system if used in a real time manner was not measured
or calculated because it was considered outside the scope of this project. For
the preprocessing used here, it will be approximately 30 seconds because of the
window length used for the Fourier transform and the number of such windows
included in one input sample for the CNNs. It is possible that much lower
response times can be achieved without severely compromising sensitivity and
specificity of the classification. Optimizing performance in terms of response
time is another interesting possible future project.

6.3.7 Learning from neural networks

Another interesting way to use artificial neural network is to train them, but
instead of actually using them, rather build simple and fast classifiers based on
the knowledge gained from studying and reverse engineering the neural network.
This is interesting even if neural networks seems unnecessary complicated or
insecure for a given task, because neural networks might be able to discover
patterns and informations in data that engineers otherwise would not notice.
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Chapter 7

Conclusion

This chapter concludes the discussions of results and methods made in the
previous chapter. Also consult the previous chapter for thoughts on future
work.

7.1 Results

The objective of this project was to explore the use of artificial neural networks
for classifying respiration from other oscillating objects in radar signals. This
section concludes the discussions of the results of this study.

7.1.1 Summary

Throughout the project, a variety of artificial neural networks was tested using
Matlab’s ”Neural Networks Toolbox”. The training data was recorded by the
author and Novelda employees using Novelda’s XeThru UWB radar. The results
show that by preprocessing the radar signals to create time-vs-frequency images,
and then use a convolutional neural network as classifier, human respiration
can be distinguished from other oscillating objects with a high sensitivity and
specificity.

7.1.2 Achieved sensitivity and specificity

The artificial neural network tested during this project that achieved the highest
sensitivity and specificity, was a convolutional neural network, with a convolu-
tional layer, a pooling layer, a hidden ReLU layer and a Softmax output layer.
The architecture is illustrated in figure 5.15 in the Selected Results chapter.
The sensitivity and specificity achieved on the test data was respectively 99.1%
and 99.8%. The test data used is precisely described in section 5.1.1.

63



7.1.3 Studying CNN filters

The filters contained in the convolutional layer of the CNNs were studied to
try to gain a deeper understanding of what information the neural networks
actually based their classification on. The filters clearly reflected patterns also
visible to the eye in the input images. The study of the filters was of great help
during the project because unrealistic situations and artifacts from the recording
process was often reflected in the filters. This made it possible to discover and
address these problems and thereby increase the CNNs accuracy and ability to
generalize to new situations.

7.1.4 Reverse engineering

A trained CNN was used to generate an input image that according to the
CNN looked as much as possible like a respiration recording. This revealed that
the CNN was actually looking for the variations in frequency found in normal
human respiration but not in oscillating objects. Also, it only seemed to look for
very local patterns, which may be a result of the relatively shallow architecture
compared to the CNNs used for e.g. face recognition.

7.2 Methods

This section concludes the discussions of the work methods of this study.

7.2.1 Effectiveness and improvements

Novelda employees helped recording much of the data used in this study, re-
sulting in a large collection of available training and testing data for the neural
networks. Due to the authors lack of previous experience on the field, the testing
process and the utilization of the supervisors started out inefficient but improved
greatly throughout the study as experience was gained.

7.2.2 Evaluation of methods

Ideas on improvements from the authors project thesis [1] was revisited early on,
and time was also scheduled throughout the study for evaluating the work and
methods. This scheduled time was very helpful for periodically reevaluating
prioritizations, abandoning attempts that had taken too much time without
leading to anything, and evaluating the progress of the study.
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Appendices

A Selected MATLAB code

This appendix shows selected parts of the Matlab code written during the
project. It is estimated that 2 000 lines of code was written.
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A.1 Generating reverse engineered respiration sample

1 % Script to generate the most possible respiration -

like image.

2 clc

3
4 % Parameters

5 image_resolution_x = 50;

6 image_resolution_y = 50;

7 step_size_factor = 1e-4;

8
9 % Inputs

10 data = load('CNN_3 ');
11 trainedNet = data.net.net;

12
13 % Run loop

14 imageres = zeros(image_resolution_x ,

image_resolution_y ,1);

15 imagenoise = zeros(image_resolution_x ,

image_resolution_y ,1);

16 fres = -Inf;

17 fnoise = -Inf;

18 while 1

19 % Generate gaussian white noise

20 image_addOn = step_size_factor*randn(size(

image1res));

21
22 % Update respiration image

23 features = activations(trainedNet ,imageres+

image_addOn ,8);

24 if features (1)-features (2)>fres

25 imageres = imageres+image_addOn;

26 imageres = imageres -mean(imageres);

27 fres = features (1)-features (2);

28 end

29
30 % Update noise image

31 features = activations(trainedNet ,imagenoise+

image_addOn ,8);

32 if features (2)-features (1)>fnoise

33 imagenoise = imagenoise+image_addOn;

34 imagenoise = imagenoise -mean(imagenoise);

35 fnoise = features (2)-features (1);

36 end

37 end
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A.2 Create time-vs-frequency images

Create time-vs-frequency images of energy content of signals in the IQ domain.

1 counter = 1;

2 for k=1+ floor(WindowLength_s*Fs/2):floor(

JumpDistance_s*Fs):input_signal_length -floor(

WindowLength_s*Fs/2)

3 x = input_signal(k-floor(WindowLength_s*Fs/2):k+

floor(WindowLength_s*Fs/2) -1);

4 x = x-mean(x);

5 x = x/std(x);

6 L = length(x);

7 fft_win = hann(L)';
8 fft_RPM = Fs *(0:( fft_oversampling_rate*L/2))...

9 / L*60/ fft_oversampling_rate;

10
11 % FFT

12 input_signal_dft_2sided = ...

13 abs(fft(fft_win .*x,fft_oversampling_rate*L)/L)

;

14 input_signal_dft_1sided = ...

15 input_signal_dft_2sided (1:

fft_oversampling_rate*L/2+1);

16 input_signal_dft_1sided = abs(

input_signal_dft_1sided (1:150));

17 fft_RPM = fft_RPM (1:150);

18
19 % Create time -vs-frequency images of energy

content

20 figure (200);plot(fft_RPM ,input_signal_dft_1sided);

21 Image(:,counter) = imresize(

input_signal_dft_1sided ,[1 image_resolution_y ])

';
22 if counter >= image_resolution_x

23 x_temp (1+ counter -image_resolution_x ,:,:) = ...

24 Image (:,1+counter -image_resolution_x:

counter);

25 end

26 counter = counter + 1;

27 end

28 I=find(~ squeeze(x_temp (:,1,1)));

29 x_temp(I,:,:) = [];
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A.3 Artificial expansion example

This code shows an example of artificial expansion for shifting the images ver-
tically (along the frequency axis).

1 function [X_train_exp ,T_train_exp] =

dataProc_artificialExpansion2D_3(X_train ,T_train)

2 % Artificial expansion of scalogram -like 2D images of

radar signals.

3 expFactor = 21;

4 X_train_exp = zeros(size(X_train ,1),size(X_train ,2),...

5 size(X_train ,3),size(X_train ,4)*

expFactor);

6 T_train_exp = zeros(size(T_train)*expFactor);

7
8 fprintf('Art Exp sample:')
9 for k=1: size(X_train ,4)

10 x_train = X_train (:,:,:,k);

11 t_train = T_train(k);

12
13 % Periodically print progress

14 if mod(k,100) ==0

15 fprintf('%d ',k)
16 end

17
18 % Original

19 X_train_exp (:,:,:, expFactor *(k-1) +1) = x_train;

20 T_train_exp( expFactor *(k-1) +1) = t_train;

21
22 % Shifted

23 for m=1:20

24 X_train_exp (:,:,:, expFactor *(k-1)+m+1) = [

x_train (2*m:end ,:);x_train (1:2*m-1,:)];

25 T_train_exp( expFactor *(k-1)+m+1) =

t_train;

26 end

27 end

28 fprintf('\n')
29 end
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A.4 Using the trainNetwork function

This code illustrates an example uf using the built in trainNetwork Matlab
function from the ”Neural Network Toolbox”.

1 layers = [...

2 imageInputLayer ([50 50 1],'Name','Input ');
3 convolution2dLayer (9,15,'Name','Conv1 ');
4 reluLayer('Name','ReLU1 ');
5 maxPooling2dLayer ([2 2],'Name','Pool1 ');
6 fullyConnectedLayer (180,'Name','Forw1 ');
7 reluLayer('Name','ReLU2 ');
8 dropoutLayer('Name','Drop1 ');
9 fullyConnectedLayer (2,'Name','Forw2 ');

10 softmaxLayer('Name','Softmax ');
11 classificationLayer('Name','Output ')];
12 layers (2,1).WeightL2Factor = 0;

13
14 options = trainingOptions('sgdm',...
15 'MaxEpochs ' ,200,...
16 'InitialLearnRate ' ,0.02,...
17 'LearnRateSchedule ','none',...
18 'LearnRateDropFactor ' ,0.1,...
19 'LearnRateDropPeriod ',30,...
20 'Momentum ' ,0.9,...
21 'L2Regularization ' ,0.0001,...
22 'MiniBatchSize ' ,128,...
23 'CheckpointPath ','C:\Users\Harald\',...
24 'OutputFcn ',@customOutputFcn);
25
26 [trainedNet ,traininfo] = ...

27 trainNetwork(X_train ,T_train ,layers ,options);
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