
Instant Search Using Query Expansion
with Pseudo-Relevance

Jonatan Lund

Master of Science in Computer Science

Supervisor: Herindrasana Ramampiaro, IDI

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

Abstract

Todays web services generate large amounts of data. Users expect these ser-
vices to have a search which returns relevant search results instantaneously. Term
frequency-inverse document frequency (TF-IDF) is a common technique used in
search engines to deliver relevant search results fast. However, with the increas-
ing amounts of data users expect the search results to deliver even more relevant
search results. Improving the search results can be done by expanding the user’s
query. Providing relevant information for query expansion may be a challenge, but
using a technique called pseudo-relevance feedback has shown promissing results.
Relevant search results are important, but equally important is speed. Research
by Google [23] found that 0.5 seconds increased load times resulted signifiant less
traffic.

This thesis investigates how query expansion can be implemented together
with pseudo-relevance, to deliver more relevant search results. Research on how
to improve search results is not new, but the focus is rarely on speed. Thus our
study focuses on speed, with a requirement to deliver search results within 100
ms, which is the maximum acceptable amount of time before users will notice the
delay.

The final implementation showed promising results, and were able to deliver
search results within within the requirement of 100 ms.

I

II

Sammendrag

Dagens webtjenester genererer enorme datamengder. Brukerene av disse tjenestene
forventer at søkene leverer relevante søkeresultater umiddelbart. En mye brukt
teknikk i søkemotorer kalles term frequency-inverse document frequency(TF-IDF),
som er i stand til å levere relevante søk fort. I dag inneholder enkelte tjenester
så mye informasjon at det trengs mer avanserte metoder for å levere relevante
søkeresultater. En måte å forbedre søke på er ved å utvide søket til brukeren, men
en utfordring er å finne relevant informasjon som kan brukes i en søkeutvidelse.
Ved å kombinere søkeutvidelse med pseudo-relevant tilbakemelding har man funnet
ut at søket vil bli mer relevant. I tillegg til relevante søk er det viktig at søket går
fort. Forskning gjort av Google [23] viste at et halvt sekund lenger ventetid på et
søkeresultat førte til markant mindre trafikk.

Denne oppgaven undersøker hvordan søkeutvidelse kan bli implementert sam-
men med pseudo-relevanse for å levere mer relevante resultater. Dette i seg selv er
ikke ny forskning, men mye av forskningen på feltet fokuserer ikke på hastighet.
Implementasjonen beskrevet i denne oppgaven vil ha et hovedfokus på hastighet,
og vil ha et krav om at søkeresultatene skal være tilgjengelig hos brukere innen
100 millisekunder. 100 millisekunder forsinkelse er det øverste taket før en bruker
vil oppfatte forsinkelsen.

Implementasjonen av søkeutvidelsen viser lovende resultater, og er i stand til
å levere resultater godt innenfor kravet på 100 millisekunder.

III

IV

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Specification . 2
1.3 Structure . 2

2 Background 5
2.1 Underlying Technologies Used in the Implementation 5

2.1.1 Lucene . 5
2.1.2 Elasticsearch . 6

2.2 Basic Search Engine Concepts . 8
2.2.1 Term Frequency . 9
2.2.2 Inverse Document Frequency 9
2.2.3 Document Normalization 10
2.2.4 Document Score . 10
2.2.5 Vector Space Model . 10
2.2.6 Multiple Term Query . 10

2.3 Relevance Feedback . 12
2.3.1 Explicit vs Implicit Feedback 12
2.3.2 Pseudo-Relevance Feedback 12

2.4 Query Expansion . 13
2.4.1 Kullback-Leibler Divergence 13

3 State of the Art Survey 17
3.1 Previous Work . 17
3.2 Other Work . 18

3.2.1 Query Dependent Pseudo-Relevance Feedback Based onWikipedia 19
3.2.2 Fuzzy Search . 19
3.2.3 Twitter Query Suggestion Engine 19

4 Implementing Query Expansion in a Search Engine 21
4.1 Implementation . 21

4.1.1 Algorithm . 21
4.1.2 Lucene Implementation . 22
4.1.3 Elasticsearch Implementation 24

V

VI CONTENTS

5 Evaluation 29
5.1 Experimental Setup . 29

5.1.1 Data Set . 29
5.1.2 Lucene Experiment . 30
5.1.3 Elasticsearch Experiment 31

5.2 Results . 33
5.2.1 Lucene Results . 33
5.2.2 Elasticsearch Experiment Results 34

5.3 Discussion . 35
5.4 Research Question Evaluation . 37

6 Conclusion & Further Work 39
6.1 Conclusion . 39
6.2 Further Work . 40

A Appendix 41
A.1 Flickr Data Representation in Elasticsearch 41
A.2 Elasticsearch Static Mapping . 41
A.3 Single Term Query . 43
A.4 Multiple Term Query . 43
A.5 Query to Retrieve the Number of Occurences for a Given Term . . 43
A.6 Field Stats Query . 44
A.7 Pseudocode . 44
A.8 ApacheBench . 46

List of Figures

2.1 Distributed Elasticsearch query. 8

3.1 Sequence diagram from Rudihagen’s implementation of query ex-
pansion. Figure taken from [26]. 18

4.1 Sequence diagram for the Lucene implementation. 24
4.2 Sequence diagram for the Elasticsearch implementation. 25
4.3 Architecture for the implemented Elasticsearch plugin. The figure

is an example of a cluster setup with a view inside one of the nodes
in the cluster. 27

5.1 Pie chart that shows the distribution on how many tags each photo
have. 30

5.2 Overview of the Elasticsearch experiment setup. 31
5.3 Overview of the different measurements used when evaluating the

implementation. 33
5.4 Response times from the Lucene implementation with varying result

size. 34
5.5 Response times using different result sizes with cache prewarming. 35
5.6 Response times using different result sizes without cache prewarming 36

VII

VIII LIST OF FIGURES

List of Tables

2.1 Example of an inverted index inside Lucene 6
2.2 Term list with the corresponding term count. 8
2.3 Term list of the top three terms returned to the coordination node. 9
2.4 Top three terms which are returned to the client. 9
2.5 Variable descriptions for equation 2.6. 11
2.6 The returned numbers for each of the top 5 terms excluding the

term "sky". 14
2.7 KL divergence score of each term. 15

5.1 Field types of every field used in the experiment. 31

IX

1 | Introduction

The first section in this chapter describes the motivation behind the master thesis.
Next, the problem specification is derrived from the motivation. Lastly, the master
thesis layout is described.

1.1 Motivation

The amount of data generated by web applications are continuously increasing.
Making all the data avaiable for users, requires specialized search engines. Most of
today’s search engines implement a technique called term frequency-inverse doc-
ument frequency when searching for documents. This technique is effective, and
returns relevant search results most of the time, but with the ever growing data
size web applications strive to deliver even more relevant search results. Person-
alization is a common approach to deliver more relevant search results. If a user
in Trondheim search for the word resturant, resturants in Trondheim are most
likely more relevant compared to resturants in Oslo. Today an increasing number
of software companies try to personalize their services. A few examples of person-
alized services are Facebook’s News Feed [13], Netfix’s movie suggestion [19] and
Spotify’s Discover Weekly [27].

A second important factor for interactive tasks such as search, are speed. Inter-
active tasks have a requirement of 100 ms before the user recognizes the delay [4].
This means that search results have to be available within 100 ms from the user
typed the query. High latency may lead to users abandoning your site, and revenue
is easily lost. Returning results fast is more important compared to the number of
results returned. While conducting latency experiments, Google found that users
said that they wanted 30 search results instead of 10 [23]. However, their tests
also showed that users who recieved 30 search results gave less traffic compared
to users who recieved 10 search results. The difference between the search results
were load times. 10 search results took 0.4 seconds to load and 30 search results
took 0.9 seconds to load. It shows that speed is an important factor in search.

Personalized search engines already exists. Google1 and Bing2 were the two
largest search engines in 2016 according to NetMarketShare [25]. However, neither
Google nor Bing are open source.

1https://www.google.com
2https://www.bing.com/

1

https://www.google.com
https://www.bing.com/

2 CHAPTER 1. INTRODUCTION

A common approach to improve the search result is to extend the user’s query
with more terms, or adding additional information like the user’s position. Re-
search has found it diffiucult to select good terms to expand [18]. On the other
hand, tags have often been found to provide good expansion terms [5]. In this mas-
ter thesis query expansion will be implemented together with a technique called
pseudo-relevance. An important requirement for the implementation will be to
deliver search results within 100 ms and that the implementation is scalable.

This master thesis builds on and extends the work done by Rudihagen [26] and
my project report [21]. Rudihagen researched how an instant personalized search
could be achieved. The research achieved a personalized search which returned
results of higher relevance to the user compared to TF-IDF. However, the results
from the work showed that the implemented method did not meet the requirement
of interactivity [26]. An important factor for the latency was the number of round
trips between the web server and the search engine. In my project report [21], an
implementation is described which reduced the number of round trips between the
web server and the search engine from four to two. However, the implementation
may be improved even further by implementing query expansion with pseudo-
relevance directly on the search engine.

This master thesis will explore how the implementation described by Rudihagen
and in my project report can be improved even further. The next section describes
three research questions based on the motivation introduced in this section.

1.2 Problem Specification

This project report tries to answer the following research questions, with the main
focus being research question 2 and 3.

1. How to make an improved search in terms of relevance compared to TF-IDF?

2. How to develop an improved search which scales with an increasing amount
of data?

3. How to delevop an improved search that fulfills the interactive latency re-
quirements?

1.3 Structure

This master thesis consists of 5 chapters: Background, State of the Art Survey,
Implementing Query Expansion in a Search Engine, Evaluation and a Conclusion.
The Background chapter starts with an overview of the underlying technologies
used in the implementation. Furthermore, this chapter contains sections which
describe basic search engine techniques, relevance feedback and query expansion.
The chapter State of the Art Survey describes related reasearch on how to improve
result relevance. The theoretical basis for this master thesis is also included in this
chapter. The chapter Implementing Query Expansion in a Search Engine describes
the implementation in Lucene and the implemented Elasticsearch implementation.
Important configurations are also described. Next, the chapter Evaluation outlines

1.3. STRUCTURE 3

how the experiments were conducted and the results from the experiments. The
last section discusses the results and makes a comparison with the work by Rudi-
hagen and my the project report. Lastly, the Conclusion chapter gives a brief
summary of the results and the implementation. The last section suggests further
work that, if implemented, will improve the current implementation.

4 CHAPTER 1. INTRODUCTION

2 | Background

This chapter presents basic theory and techniques behind search engines. First
the software used in the implementation are explained, and is then followed by
a detailed description on how the documents are scored inside the search engine
from a query. Finally, relevance feedback is described, as well as how it may be
used with query expansion.

2.1 Underlying Technologies Used in the Imple-
mentation

This section outlines the different technologies used in the implementations. There
were two separate implementations; one using the Lucene and one using Elastic-
search. Node.js was used as a part in the experiment with Elasticsearch.

Node.js1 version 7 was chosen as the web server, because the author has knowl-
edge of the technology, and it contains a rich package manager called NPM. By
utilizing open source libraries through NPM, more time could be spent imple-
menting the algorithms for query expansion. Node.JS utilizes the V82 JavaScript
engine.

2.1.1 Lucene

Lucene3 is an open-source full-text search engine library written in Java. According
to Lucene [17] the index size is only about 20-30% of the original text. Lucene’s
search have features such as ranked search, field search and faceting, to mention a
few.

Lucene exposes the low level API’s which give very much control over the inner
workings of Lucene. Table 2.1 shows an example of a low level data structure
inside Lucene called an inverted index. The table contains a list of all the possible
terms inside a text. The second column is the frequency each term has. Lastly,
the documents column list all the documents where the given term occurs. An
inverted index requires more resources when indexing, but the data structure is

1https://nodejs.org
2https://developers.google.com/v8/
3https://lucene.apache.org/

5

https://nodejs.org
https://developers.google.com/v8/
https://lucene.apache.org/

6 CHAPTER 2. BACKGROUND

effective when searching. The query expansion which is used in this master thesis
requires information stored in the inverted index.

To illustrate how the inverted index works, an example query may be the term
blue. Using table 2.1 the inverted index shows that the term has a frequency
of three, and that the term occurs in document 1, 2 and 3. The search result
would then contain documents 1, 2 and 3. This is a simplified example and a more
detailed description on how search engines work are found in a later section.

One important drawback with Lucene is that it is not scalable across multiple
machines. However, scalable across multiple machines are one of the advantages
of using Elasticsearch.

Term Frequency Documents
blue 3 Document 1, document 2, document 3
sky 1 Document 2
clouds 4 Document 2, document 3, document 4, document 5
rain 2 Document 2, document 5
plane 2 Document 1, document 4
sunset 4 Document 1, document 2, document 3, document 4
Sum 16

Table 2.1: Example of an inverted index inside Lucene

2.1.2 Elasticsearch

Elasticsearch4 v5 was used as the search engine in the implementation described in
this master thesis. The search engine has proven the ability to scale up to petabytes
of data [1]. Elasticsearch is open source and built on top of Lucene. Lucene is the
search engine itself, and Elasticsearch provides functionality for distribution and
a REST API interface.

The following topics describe basic termonology used in Elasticsearch. This
information is needed to understand some of the results and observations, and the
implementation described in chapter 4 and chapter 5.

Cluster

One or more servers connected together is called a cluster. Elasticsearch indices
are divided into shards which are distributed across the servers in the cluster.
Queries are also distributed to all the servers in the cluster, which again increases
the performance. Elasticsearch is responsible for distributing the shards across the
physical servers, and makes sure that replica shards are not on the same physical
server. The cluster used in this master thesis consisted of one server.

Node Types

Elasticsearch has four different node types: master node, data node, ingest node
and tribe node. The master node is responsible of handling administrative cluster

4https://www.elastic.co/products/elasticsearch

https://www.elastic.co/products/elasticsearch

2.1. UNDERLYING TECHNOLOGIES USED IN THE IMPLEMENTATION 7

tasks such as creating or deleting an index, tracking online and offline nodes and
deciding how the shards should be distributed. Data nodes are responsible for
holding the shards and executing queries. Ingest nodes are used as pre-processing
nodes. A tribe node is handling the coordination of querying and indexing. Tribe
nodes is also known as coordination nodes. All nodes in a cluster are also an
coordination nodes.

Sharding

The stored data in Elasticsearch may grow to become larger than the hardware on
a single machine can handle, both in size and in numbers of requests. To mitigate
the problem Elasticsearch splits each index into multiple segments called shards.
Each of these shards may be distributed across multiple nodes. This provides
higher performance when indexing new documents and when searching the docu-
ments. The shards may also be duplicated to support higher query volumes and
availability. Shard duplicates are also known as replica shards.

There is important distinction between an Elasticsearch index and a Lucene
index. A Lucene index is an index which contains the inverted indices and holds
all the data. An Elasticsearch, index on the other hand, consists of one or more
shards. One Elasticsearch shard is the same as a Lucene index.

When the cluster consists of multiple nodes, a query strategy is required. Figure
2.1 illustrates how an index may be distributed across three nodes. The figure
shows a simplified view on how a query is distributed across three nodes. First the
query arrives a coordination node. The coordination node parses the query and
determines which nodes hold shards for the given index. Each shard determines
locally which documents are most relevant from the query. Metada from all the
shards are then sent back to the coordination node. On the coordination node all
retrieved metadata are used to calculate the global result. After the global result
has been calculated, all the shards are queried for the documents from the global
result. After the documents are retrieved, the result is returned to the client. As
the size of the search result is increased, the response time will also increase. This
is a result of more calculations on each shard, more data transfered, and more
work to be done when merging the results.

Approximate Values

As a result of Elasticsearch’s distributed nature, some queries will return estimated
values. Aggregations in Elasticsearch is an example which may return estimated
values.

Table 2.2 has a list of words across three different shards, with the term fre-
quencies inside the parenthesis. When a client queries for the top three terms, the
query is distributed to the shards. Each shard then returns their local top three
terms. Given Table 2.2, the shards will return the terms listed in table 2.3. On the
coordination node the global top three terms are calculated. The top three terms
are listed in table 2.4, which are blue, sky and clouds. However, blue, sky
and clouds are not the actual top three terms. If the coordination node had all
the knowledge in table 2.2, the top three terms would be blue, sky and insta,

8 CHAPTER 2. BACKGROUND

Figure 2.1: Distributed Elasticsearch query.

with the term frequencies 60, 32 and 22 respectively. With global knowledge both
the frequencies and one of the top 3 terms have changed.

The example explained above is exaggerated to illustrate what might happen
in Elasticsearch’s distributed architechture. As the number of documents increase,
the error smooths out and will be less likely to happen. Even though the result is
not exact, it is good enough for most use cases. Elasticsearch can be configured
to return more exact results, at the cost of longer response times.

Shard 1 Shard 2 Shard 3
1 blue (10) blue (20) blue (30)
2 clouds (9) clouds (12) sky (25)
3 sky (5) insta (5) insta (15)
4 plane (4) plane (3) plane (10)
5 insta (2) sky (2) rain (3)

Table 2.2: Term list with the corresponding term count.

2.2 Basic Search Engine Concepts

A common approach for search engines is to use term frequency (TF) and inverse
document frequency (IDF) to calculate a documentś relevance based on a query.

2.2. BASIC SEARCH ENGINE CONCEPTS 9

Shard 1 Shard 2 Shard 3
1 blue (10) blue (20) blue (30)
2 clouds (9) clouds (12) sky (25)
3 sky (5) insta (5) insta (15)

Table 2.3: Term list of the top three terms returned to the coordination node.

Returned result
1 blue (60)
2 sky (30)
3 clouds (21)

Table 2.4: Top three terms which are returned to the client.

Documents with the highest TF from a query, are believed to be the most relevant.
On the other hand, the most common words are removed as they do not contain
information about the topic. TF and IDF alone is a simple model, and Elastic-
search uses a more sophisticated model. Elasticsearch’s document scoring model
is described in the following subsections. This section describes how Elasticsearch
scores its documents and is based on the documentation found on the website [6].

2.2.1 Term Frequency

Term frequency is the number of times a term is mentioned in a document. A
document containing a term multiple times is probably more relevant than a doc-
ument containing fewer occurences. However, in this work a term is only present
once in each document, and the reason is described in greater detail in Chapter 4.
Term frequency calculation is given by Equation 2.1.

tf =
√
frequency (2.1)

Term frequency calculation in Elasticsearch.

2.2.2 Inverse Document Frequency

Inverse document frequency describes how many times a term is present in all the
documents. Terms with high frequencies are often less relevant. E.g. the terms
"a" and "an" often appear in a sentence, but should not be given a high score even
though they appear numerous times.

idf = 1 + log [
numDocs

docFrequency + 1
] (2.2)

Inverse Document Frequency calculation in Elasticsearch.

10 CHAPTER 2. BACKGROUND

2.2.3 Document Normalization
A title field is likely to be shorter compared to a description field. As a result, the
description field possibly contains more instances of a given term. To account for
longer fields, document normalization is used. Elasticsearch’s implementation is
illustrated in equation 2.3.

normalization =
1√

numTerms
(2.3)

Normalization.

2.2.4 Document Score
After calculating term frequency, inverse document frequency and document nor-
malization, the factors are multiplied together. A document’s score in Elasticsearch
is given by the Equation 2.4.

documentScore = tf × idf × normalization (2.4)

Final document score.

2.2.5 Vector Space Model
The theory presented earlier only describes how to score a single term, but user
queries may contain multiple terms. Search engines often apply a technique called
Vector Space Model on queries with multiple terms. The vector space model rep-
resent the query and the document as vectors. The vector is a an array which
holds term weights. Vector similarity is calculated between the query and the doc-
uments. The documents which are most similar is then returned from the search.
The most common technique to calculate similarity is called cosine similarity.

2.2.6 Multiple Term Query
Elasticsearch’s underlying technology Lucene, combines the boolean model, TF/IDF
and vector space model to score queries with multiple terms against documents
[11]. Equation 2.6 shows how each document is scored against a multiterm query.
Table 2.5 explains each variable in equation 2.6.

The variables queryNorm, coord and getBoost are described in greater details
in the following paragraphs. queryNorm or query normalization factor are used
to make results from different queries comparable. The factor is calculated using
equation 2.5. sumOfSquaredWeights is determined by adding the idf value of all
the terms in the query, and squaring the result afterwards. As a result, every
document will have the same query normalization factors.

The coord variable stands for coordination factor. With the factor, documents
which contain most terms from the query will be ranked highest. Without the
factor documents with more matching terms would still be ranked higher. However,

2.2. BASIC SEARCH ENGINE CONCEPTS 11

queryNorm =
1√

sumOfSquaredWeights
(2.5)

Equation for calculating the query normalization factor

score(q,d) =coord(q, d)× queryNorm(q)

×
∑

tf(tind)× idf(t)2 × t.getBoost()× norm(t, d)
(2.6)

Equation for scoring documents when searching with multiple terms. Each variable
is described in table 2.5.

the boost factor gives documents with more matching terms an even higher score
compared to documents with less matching terms. For instance, a query might
contain two terms, with a term weight of 3. If the score where calculated without
the boost factor, documents with one matching term would recieve a score of 3 and
documents with two matching terms would recieve a score of 6. Calculating the
score with the boost factor, documents with one matching term recieves a score
of (3 × 1)/2 = 1.5, and documents with two matching terms recieve a score of
(6× 2)/2 = 6.

Lastly, the variable named getBoost is used to make some field impact more
on the document score, compared to other fields. In Elasticsearch there are two
different methods of boosting: query time boosting and index time boosting. Index
time boosting means that all terms in a specified field, will recieve the boost factor
during indexing. Query time boosting, on the other hand, calculates and adds the
boost factor when the query is running on the Elasticsearch node.

Variable Description
t term
d document
q query
score document score from a given query
coord coordination factor
queryNorm query normalization factor
tf term frequency
idf inverse document frequency
getBoost boost factor used on the query
norm document normalization factor

Table 2.5: Variable descriptions for equation 2.6.

12 CHAPTER 2. BACKGROUND

2.3 Relevance Feedback

The idea behind relevance feedback is to use the result from the initial query to
extract relevant information from the top-k documents. Once the information is
extracted, a new query is executed with extracted information. Results from the
second query are returned to the user. The assumption is that the second query
returns documents which are more relevant to the user.

In Modern Information Retrieval the concepts and technology behind search
[3] the authors define relevance feedback as: "when the user explicitly provides
information on relevant documents to a query," and query expansion as: "when
information related to the query is used to expand it" [3, p. 177]. In other words
to use relevance feedback, input from the user is needed. For example the user
could be given the task to mark whether the documents are relevant or not. In
practice it is often difficult for a user to determine the result’s relevance. For query
expansion information like position and tags may be used to expand the query. A
more detailed explanation of query expansion is described in section 2.4.

Relevance feedback is divided into three main categories explicit feedback, im-
plicit feedback and pseude-relevance feedback, and is introduced in the next two
subsections.

2.3.1 Explicit vs Implicit Feedback

Explicit feedback data are retrieved directly from user interaction. An example
would be if the user selects the section "graphic cards" in an online store. From
the interaction the user explicitly states that the search should only contain graphic
cards. Another approach is to use data from a user search. If a user clicks on a
search result, the result may be regarded as relevant. Even though the result may
not be relevant, it is a good indication. The problem with explicit feedback, is
that it requires interaction from the user.

Implicit feedback on the other hand, does not require any involvement from the
user. Examples of implicit user data are collecting the documents from a search
result that are opened by a user, and measure time spent viewing a document.

2.3.2 Pseudo-Relevance Feedback

Retrieval of data to use relevance feedback requires either explicit or implicit user
interaction. Manually involving the user in the search is undesireable. To avoid
this, an approach called pseudo-relevance feedback can be used. Using implicit
feedback requires a system which does the data collection and post process the
information. Pseudo-relevance, on the other hand, uses information from the first
search, and thus leads to a simpler implementation.

Often the top-k documents are used to find pseudo-relevance for query expan-
sion. However, the top-k documents are in many cases not relevant, and thus not
suitable data for query expansion [18]. Section 2.4 describes a method to extract
information from the top-k documents which is regarded as relevant information.

2.4. QUERY EXPANSION 13

2.4 Query Expansion

When a user searches using the query "Super Bowl" the day after the sport event
has taken place, it is likely that the user wants information about the event from
the previous day. The query "Super Bowl" is likely to also return documents from
previous years. If the search engine could be able to notice that recent documents
also contains the term "2016," the extra term could be added to the query. The
new query "Super Bowl 2016" is likely to rank documents from this year’s Super
Bowl higher, as a result of the extra term. This technique is called query expansion.

The idea behind query expansion is to add more terms to the user’s query,
and then use the extended query on the search engine. According to literature, a
query expanded search does improve the results [3, ch. 5]. Even though research
shows promising results, query expansions require explicit information which in
practice often is difficult to acquire. E.g. in a free text search users expect to
automatically recieve search results without having to answer questions or to filter
the result to provide query expansion data. On the other hand, according to Efron
[5], hashtags provide an excellent way to acquire the explicit information needed
for query expansion.

There are different methods of query expansion, and this report describes one
technique called Kullback-Leibler divergence. The implementation is described in
chapter 4.

2.4.1 Kullback-Leibler Divergence

Kullback-Leibler divergence (KL) measures how well distribution P(t) represents
the distribution Q(t). The variables in distribution P(t) and Q(t) are explained in
the bullet points bellow.

• numberOfTimesInTopKDocuments is the number of times a term is present
in the top-k documents

• numberOfTermsInTopKDocuments is the number of terms in total in the
top-k documents

• totalNumberOfTimesInCollection is the total number of times a term is
present in the data collection

• totalNumberOfTermsInCollection is the total number of terms in the data
collection

Equation 2.7 explains how to calculate the distribution P(t), and equation 2.8
explains how to calculate distribution Q(t).

P =
numberOfT imesInTopKDocuments

numberOfTermsInTopKDocuments
(2.7)

14 CHAPTER 2. BACKGROUND

Term numberOf-
TimesIn-
TopK-
Documents

numberOf-
TermsIn-
TopK-
Documents

totalNumber-
OfTimesIn-
Collection

totalNumber-
OfTermsIn-
Collection

blue 1 42 14 298,962
2016 2 42 143 298,962
clouds 3 42 31 298,962
sea 1 42 34 298,962
water 1 42 24 298,962

Table 2.6: The returned numbers for each of the top 5 terms excluding the term
"sky".

Q =
totalNumberOfT imesInCollection

totalNumberOfTermsInCollection
(2.8)

Computing the Kullback-Leibler divergence for a term is given by equation 2.9.

KLD[P (t), Q(t)] = P (t) ∗ log [P (t)

Q(t)
] (2.9)

Kullback-Leibler Divergence.

Kullback-Leibler Divergence Example

To illustrate how KL score is calculated, an example for the search term "sky"
is displayed. The expanded query may consist of up to 5 terms. To keep this
example short, only the top 5 terms are calculated and the term "sky" is excluded
from the calculations.

Table 2.6 contains information extracted using the data set from my project
report. Using equation 2.9 and the information in table 2.6, the KL score for
each term is calculated and is shown in table 2.7. The table 2.7 lists the terms
descending according to their score. From the original query we have the term
"sky" and we may use 4 additional terms to complete the expansion. The top
4 terms are "clouds", "2016", "blue" and "water", which results in an expanded
query containg the terms: "sky", "clouds", "2016", "blue" and "water".

2.4. QUERY EXPANSION 15

Term Score
clouds 0.46678
2016 0.21908
blue 0.14836
water 0.13553
sea 0.12723

Table 2.7: KL divergence score of each term.

16 CHAPTER 2. BACKGROUND

3 | State of the Art Survey

This chapter gives an overview of some of the research related to this master thesis.
The work by Rudihagen and my project is presented in the first section, and the
last section presents other related research.

3.1 Previous Work

This master thesis is a continuation of the work done by Rudihagen [26] and my
project report [21]. Rudihagen studied how search engines could return more
relevant search results, but at the same time deliver the results fast enough to
be used in live searches. He looked at how Google Play1 ranked search results.
Google Play is the official app store for Android phones. He found that Google
Play’s search results ranked the most popular apps highest. Ranking the most
popular apps highest, will result in relevant results in many cases, but it will also
make less popular apps almost disappear. By utilizing the techniques Kullback-
Leibler divergence and Bayesian classification, he was able to return more relevant
search results. However, the latency in his implementations ranged from 80 ms to
600 ms. This means that most of the time the search implementation is too slow
to be used in a live search. The requirement for interactive applications is 100 ms.

The sequence diagram from Rudihagen’s query expansion implementation can
be seen in figure 3.1. The sequence diagram shows that the query expansion has
two round trips from the web server to the search engine, and two round trips
from web server to the database. This is a total of four round trips from the web
server to collect the data needed for the query expansion algorithm. According
to Rudihagen the measured latency was between 150 ms - 600 ms, and 238 ms in
average.

To improve Rudihagen’s implementation, the assumption was to decrease the
number of round trips. This assumption is based on the results of Rudihagen’s
other implementations. His other two implementations had one and two round
trips, with average latencies of 92 and 108 respectively. This suggests that the
number of round trips has a significant impact on the measured latency.

Based on the experience from Rudihagen’s master thesis, the project report [21]
implemented query expansion with less round trips. The project report describes
an implementation which was able to achieve a total of two round trips between

1https://play.google.com

17

https://play.google.com

18 CHAPTER 3. STATE OF THE ART SURVEY

Figure 3.1: Sequence diagram from Rudihagen’s implementation of query expan-
sion. Figure taken from [26].

the web server and the search engine. The measured response times were within
the limit of 100 ms. An important remark is that all the tests described were done
locally. If the tests were conducted with the server placed at a hosting provider,
the response times would most likely have been higher.

The project report had two different implementations, one without query ex-
pansion and one with query expansion. The implementation without query ex-
pansion is used as a baseline. The query expansion implementation had a latency
increase of about twice the time compared to the baseline implementation. In a
real world environment the increased latency may exceed the 100 ms interactive
requirement.

3.2 Other Work

The following section outlines other related research which have been done to
deliver more relevant search results.

3.2. OTHER WORK 19

3.2.1 Query Dependent Pseudo-Relevance Feedback Based
on Wikipedia

Pseudo-relevance feedback uses information from the top-k documents to compute
query expansion terms. However, the top-k documents are not always relevant and
may introduce noise to the data set. Query Dependent Pseudo-Relevance Feedback
based on Wikipedia explores query dependent expansion on data from Wikipedia
[29]. In the paper they found that different field weights had a significant impact on
the precision performance. From the results they found high weights on the fields
"Links" and "Content" to yield very good results. Increasing the weights on the
"Overview" field decreased precision results. The research explored three differ-
ent methods for query expansion: relevance model, strategy for entity/ambiguous
queries and field evidence for query expansion.

3.2.2 Fuzzy Search
With a standard term search, the user has to spell the term correctly as a misspelled
term will most likely yield no or few results. E.g the term "sceinci" should also
retrieve results on the term "science." There are two character edits required to
retrieve the correct term "science." First, switch the two characters "c" and "e"
to achieve "scienci." Secondly, change the character "i" to "e" to acquire the term
"science."

A study found that 50% of users reformulate their queries, and close to a third
of these users reformulated their query three times or more [2]. To handle this
problem a technique called fuzzy search may be used [22].

A commonly used method with fuzzy search is Levenshtein distance. Leven-
shtein distance calculates the number of characters edits which are required to
transform one string into another. Editing a string includes substitution, insertion
and deletion. Levenshtein distance can be expanded with the method Damerau to
allow character transposition.

Elasticsearch uses Damerau-Levenshtein distance to calculate edit distance [8].
The Damerau-Levenshtein distance corresponds to the number of character edits.
A distance of 1, means one character has to be changed.

3.2.3 Twitter Query Suggestion Engine
Fast Data in the Era of Big Data: Twitterś Real-Time Related Query Suggestion
Architecture is a paper that describes the architecture behind Twitter’s suggestion
engine [24]. One of the most important requirements for Twitter was to provide
relevant search results within minutes of an event taking place. More precicly they
wanted to register trending hashtags within 10 minutes of an event happening,
and deliver the results in real-time.

The search assistance engine has multiple features to aid the users while search-
ing. Temporal information is searched to deliver information which has been pop-
ular the last day, and popular information aggregated over time. Secondly, they
have a spelling correction system, which suggests corrections for common mis-
spelled queries.

20 CHAPTER 3. STATE OF THE ART SURVEY

4 | Implementing Query Expan-
sion in a Search Engine

After implementing query expansion in the project report, the challenge was to
implement query expansion directly into the search engine. As the Elasticsearch
source code is poorly documented, the choice was to implement query expansion
with Lucene and then finally port it into Elasticsearch. After implementing query
expansion using Lucene, Elasticsearch’s documentation was inspected to learn how
to make the implementation scalable. It was discovered that Elasticsearch has a
plugin API which can be used to extend Elasticsearch’s functionality.

This chapter gives an overview of the query expansion algorithm before the
implementation with Lucene and Elasticsearch is explained.

4.1 Implementation

Two different platforms were used during the implementation. The initial imple-
mentation used Lucene as the search engine.

4.1.1 Algorithm

The algorithm used for query expansion is equal on both platforms, but they
have some platform specific differences which are explained in their respective
subsections. The algorithm is available as pseudocode in appendix A.7.

The algorithm starts by sending a term search to the search engine. The result
from the initial search is often referred to as top-k documents, where k stands
from the number of documents in the results. The photos from the result are then
looped through to extract all the terms. Each term is stored in a hash map for
fast retrieval. On every iteration the term is checked against the hash map. If the
term does not exists, the term is added to the hash map. The key is the hash map
itself, and the value is an object which stores information about the total number
of times the term occurs in the whole collection, the total number of terms in
total in the collection and the number of times the term is present in the top-k
documents. In the opposite case where the term already exists, the term counter
for the current term is incremented. The counter for the number of times the term
appears in the top-k documents are incremented by one.

21

22CHAPTER 4. IMPLEMENTING QUERY EXPANSION IN A SEARCH ENGINE

After looping through the photos the information about how many terms there
are in the whole collection is retrieved from the search engine. Now all the infor-
mation required to calculate the KL-score is available. All the keys in the hash
map are now iterated through to retrieve every single term. In every iteration the
equation 2.8 is used to calculate the KL-score. An array is used to store objects
which holds information about which term it is and the corresponding KL-score.
Subsequently, the array is sorted from high to low according to their KL-score.

Next the expanded search terms need to be generated. A new string array is
created to hold the new search terms. First the old search terms are added to the
array, then the new expanded terms are added to the array. In this implementation
a maximum of ten terms may be added to the term search.

Lastly, the expanded terms are used in a new term search. The search engine
is queried for the terms, and the result from the search is returned directly to the
client without any modifications.

Algorithm Complexity

An important aspect of every algorithm is to analyze its complexity. The algorithm
explained in 4.1.1 has two different inputs we have to consider. Firstly, the number
of terms in top-k documents, and secondly, the number of unique terms. This
analysis only examine the algorithm itself, and does not account for the time it
takes to retrieve data from the search engine.

The algorithm contains a total of three loops and one sorting algorithm. Ini-
tially, all the tags are iterated through, which means the size is equal to the number
of tags in the top-k documents. The second loop is of the same size as the number
of unique terms. This number has a best case of only one unique tag and a worst
case of T unique terms. Lastly, all the unique tags are sorted using a function
inside the Java util library called Arrays.sort(). Arrays.sort() uses an
algorithm called merge sort, which has a worst case of O(n log n).

Combining all the loops described above, the algorithm complexity given in
equation 4.1. T is the number of tags, and U is the number of unique terms.

f(T,U) = O(T + U + U logU) (4.1)

Algorithm complexity for the algorithm explained in subsection 4.1.1.

4.1.2 Lucene Implementation

This subsection describes how query expansion was implemented using the Apache
Lucene java library. The Lucene implementation was done using version 6.4.0 of
Lucene [14].

Indexing

Lucene has multiple data types which may be stored, but the types used in
this implementation were StringField, LongPoint and TextField. All the
photo tags were indexed using the TextField. The two fields TextField and

4.1. IMPLEMENTATION 23

StringField are quite similar, but have some important differences. Listing 4.1
displays the StringField configuration code from Lucene’s Github repository
[15]. The first function setIndexOptions(IndexOptions.DOCS), configures
the inverted index to only store the documents containing the term. Term frequen-
cies and vector are not stored with this option. setStored(true) tells the
Lucene index to store the original value. Lastly, the function setTokenized(false)
informs Lucene to store the string value as a single token.

Listing 4.1: Lucene’s StringField index configuration.

1 setStored(true);
2 setTokenized(false);
3 setIndexOptions(IndexOptions.DOCS);

Listing 4.2 shows the TextField configuration code from Lucene’s Github
repository [16]. The difference between the StringField and the TextField
code are line two and three. setTokenized(true) tells the Lucene analyzer
emit a token for each word in the given string. Most important is line three which
tells Lucene to store data about what documents contain a given term, a given
terms frequency in each document and the term’s position in the original text.
Calculating the KL-score of a term requires the term’s total frequency across all
documents.

Listing 4.2: Lucene’s TextField index configuration.

1 setStored(true);
2 setTokenized(true);
3 setIndexOptions(IndexOptions.

DOCS_AND_FREQS_AND_POSITIONS);

Query Expanded Search

Figure 4.1 shows a sequence diagram for the Lucene implementation. As the se-
quence diagram shows, the java program first recieves the query. The query is
then sent to the Lucene index as a multi term query. Lucene then returns the
top-k documents from the index. Calculating the KL-scores requires information
about how many times each term appears in the collection, and the total number
of terms in the collection. As Lucene exposes a low level interface, this information
may be retrieved directly from the inverted index. The function totalTermFreq
from the class IndexReader returns the number of times a term is present across
all documents. The inverted index also holds information about the total num-
ber of terms in the collection. This number is retrieved by using the function
getSumTotalTermFreq from the same IndexReader class. After all the nec-
essary information has been gathered the KL-score is calculated, and the new
expanded search terms are generated. Finally, the multi term search is sent to the
index. The final result is then returned back to the client.

24CHAPTER 4. IMPLEMENTING QUERY EXPANSION IN A SEARCH ENGINE

Figure 4.1: Sequence diagram for the Lucene implementation.

4.1.3 Elasticsearch Implementation

To achieve scalability across multiple machines, the second implementation of
query expansion was done using Elasticsearch. The initial thought was to im-
plement query expansion directly into Elasticsearch’s core. However, during the
research phase it was discovered that Elasticsearch has a plugin API.

The query expansion plugin for Elasticsearch is almost identical to the im-
plementation described in subsection 4.1.1 and in subsection 4.1.2. Thus, this
subsection will only describe the differences. The differences are mostly how the
documents are indexed and how the queries are structured.

Figure 4.2 displays the sequence diagram for the implemented Elasticsearch
plugin. First, the query arrives the coordination node in the Elasticsearch cluster.
The query is parsed and distributed to all the relevant shards. Each uses the plugin
to calculate their local top-k documents. Metadata of each shard is returned to
the coordination node, which again merges the results and calculates the global
top-k documents. Lastly, the actual documents are retrieved from all the shards,
and the final result are returned.

Elasticsearch Plugin API

Elasticsearch has its own plugin API [7]. The plugin API can be used to extend
Elasticsearch’s index and query capabilities. The implementation described in this
master thesis creates a plugin which extends the REST API with query expansion.
The plugin API has two main categories: core plugins and community contributed
plugins. Core plugins are plugins which are a part of the Elasticsearch project.
These plugins are developed by the Elastic team. Community contributed plugins,
are plugins outside the Elasticsearch project. These plugins are developed by the
community. When a plugin is installed, the installation is distributed to all the

4.1. IMPLEMENTATION 25

Figure 4.2: Sequence diagram for the Elasticsearch implementation.

nodes. As the installation is distributed, all the nodes are able to act as a coordina-
tion node, which also makes the plugin API scalable. The plugin implementation
described in this thesis belongs to the community contributed plugins.

Accessing the extended REST API is done sending a POST request to the URL
http://localhost:9200/_expansion. This URL assumes that the server is
running locally and that Elasticsearch’s default port 9200 is used. /_expansion
is the new REST API extension. To send a query, the POST request need to have
a body as shown in listing 4.3. The body consists of a json object with one key
value pair. The key is search_query, and the value is the desired query string.
Query strings with containing multiple terms are divided into separate terms. The
terms are extracted by splitting the query string on the character "space".

Listing 4.3: The POST request body for the implemented query expansion.

1 {
2 "search_query": "search terms"
3 }

Indexing

Many storage solutions require the stored data types to be defined before inserting
data. Elasticsearch has support to both predefined data types and data types de-
termined at index time. Data types determined while indexing are called dynamic
mapping, and predefined data types are called static mapping. Dynamic mapping

http://localhost:9200/_expansion

26CHAPTER 4. IMPLEMENTING QUERY EXPANSION IN A SEARCH ENGINE

are useful when prototyping and developing. However, dynamic mapping may
assign wrong types to a field. For instance one might have a geo location point.
A geo location point will most likely be sent to Elasticsearch as two floats: lati-
tude and longitude. It is fine to store the values as floats, but Elasticsearch has a
separate data type for latitude and longitude called Geo-point.

With static mapping, on the other hand, every mapping type is defined before
indexing. Static mapping ensures that each field is assigned the correct mapping.
The mapping used in this master thesis is available in appendix A.2.

Searching

All the searches in the Elasticsearch implementation is similar to the searches
described in the Lucene implementation, but there are a few important differences.
The query expansion algorithm requires three different types of search: single term
query, multiple term query and field stats query.

The first step of the algorithm is to retrieve the top-k documents. In Elastic-
search this is done as a multiple term query, and the implemented Java code is
available in appendix A.4.

Retrieving the number of times a term appears in the collection may be done
through Elasticsearch’s count API. However, this API is not available through the
Java client library. Instead this information may be fetched using a normal single
term query, and the Java code used can by found in appendix A.3. Metadata from
the search result contains the needed information. Listing 4.4 displays an example
on how the returned result may look. The array hits is intentionally left out to
keep the example short, as the array contains the search result itself. The search
result consists of information about how long the search took, how many shards
searched, the total number of hits, the maximum returned document score and
the search result itself. In listing 4.4 there is a field called total, which indicates
the total number of hits the term query produced.

Lastly, the query expansion also requires to know the total number of terms in
the collection. This information can be retrieved using Elasticsearch’s field stats
API. The API exposes native Lucene index function, for retrieving metadata from
the inverted index.

Listing 4.4: Example of the metadata returned by Elasticsearch.

1 {
2 "took": 3,
3 "timed_out": false,
4 "_shards": {
5 "total": 5,
6 "successful": 5,
7 "failed": 0
8 },
9 "hits": {

10 "total": 2912,
11 "max_score": 9.73782,
12 "hits": [

4.1. IMPLEMENTATION 27

13 ...
14]
15 }
16 }

Architecture

The architecture of the implementation can be seen in figure 4.3. As described
earlier, the query first arrives a coordination node before it is parsed and sent to
the data nodes in the cluster. Node 2 is enlarged to display what this master
thesis has implemented. In figure 4.3 the node contains a plugin called "Query
Expansion," together with data called shard 1 and replica 1. When a request of
a certain format arrives, the plugin handles the request. The format is explained
in section 4.1.3. After the plugin has calculated the top-k documents, the result is
returned to the coordination node, and later returned to the client.

Figure 4.3: Architecture for the implemented Elasticsearch plugin. The figure is
an example of a cluster setup with a view inside one of the nodes in the cluster.

28CHAPTER 4. IMPLEMENTING QUERY EXPANSION IN A SEARCH ENGINE

5 | Evaluation

This chapter explains how the implementations were tested together with the re-
sults. The first section explains how the Lucene and the Elasticsearch experiments
were conducted. Section 5.2 shows the results and how the results were obtained,
and section 5.3 discusses the results. Lastly, section 5.4 evaluates the research
questions against the results.

5.1 Experimental Setup

Query expansion using pseudo relevance turns out to yield better results in terms
of relevance compared to a TF/IDF search, which is the common approach in to-
day’s search engines. Even though query expansion delivers more relevant search
results, the results have to be available fast enough to be used in interactive en-
vironments. In other words, the results have to be available within 100 ms. Both
implementations will be evaluated against a baseline search. The baseline search
will in both cases be a multi term search.

Query expansion requires the search engine to process an initial query, and is
then sending a new query to retrieve the final result. As the search requires two
searches, the query expansion implementation will naturally yield higher response
times. The most interesting results are how much slower the query expansion is
compared to the baseline search.

5.1.1 Data Set

Both experiments use the data set described in this section. The data set consits
of photo data gathered from the Flickr API1. Flickr was chosen as the data source
as tags have been found to provide strong data for query expansion [5]. All the
photos were retrieved using Flickr’s endpoint for fetching the last published pho-
tos. However, the API limits the number of requests per hour. The photos were
gathered over a period of about three months, March 2017 to the end of May 2017.
The data set used in the experiment consists of 4,561,816 photos and 9,993,411
tags. Of all the photos, a total of 1,708,324 photos have 1 or more tags, which
means that 37 % of the photos have tags. Counting all the photos with at least one
tag, each photo has 5.8 tags in average. Every tag is user created by the person

1https://www.flickr.com/services/api/

29

https://www.flickr.com/services/api/

30 CHAPTER 5. EVALUATION

who posted the photo. Flickr also has an analyzer which ads additional tags, but
these tags are not available through the API.

The pie chart in figure 5.1 shows the number of tags on each photo, and the
chart shows that photos with 5 tags are the largest group. Most of the photos
have multiple tags, which improves the tag generation. If the top-k documents
only have one of the same tag, the algorithm will not generate additional tags. As
a result, more tags results in better data for the query expansion algorithm.

Figure 5.1: Pie chart that shows the distribution on how many tags each photo
have.

5.1.2 Lucene Experiment

All the data types indexed in the Lucene experiment can be seen in table 5.1.
Even though only the tag fields are used in the algorithm, more fields are indexed
to make the experiment closer to a real world application. StringField will be
indexed as a single token, which is useful for aggregating or filtering on the field.
TextField is indexed for full-text search. With the full-text search indexing the
field also stores the term frequencies, which is required for the query expansion
algorithm. The reason for using LongPoint on a date is to make it efficient to
range searches.

A different performance metric is used for the Lucene experiment, as Lucene
is a Java library and is not a complete framework with a REST API compared
to Elasticsearch. The Lucene implementation is evaluated by measuring the time
from the query is sent to index until the result is retrieved. This is not a real
world experiment setup, but this evaluation is used to reveal how much slower
the query expansion algorithm is compared to the baseline query. To retrieve

5.1. EXPERIMENTAL SETUP 31

Field Type
id StringField
title TextField
description TextField
dateuploaded LongPoint
urls Array of StringField
tags Array of TextField

Table 5.1: Field types of every field used in the experiment.

an accurate measurement a Java method called System.nanoTime() is used.
System.nanoTime() is the most precise method available in Java to measure
elapsed time.

5.1.3 Elasticsearch Experiment

Most web applications today with a search field will have a web server and a search
engine on the backend. Figure 5.2 displays a common setup for web application
with search capabilities. The client sends a search to the web server which process
the request and sends it to the search engine. After finding the most relevant
documents, the result is sent back from the search engine to the web server, which
again sends the result to the user. As mentioned earlier, the requirement for
interactive applications are that no operation takes longer than 100 ms. Response
time is measured from the request is sent from the client to the response arrives
at the client. To verify that the query expansion plugin for Elasticsearch is fast
enough to meet the interactive requirements, the experiment was setup as shown
in figure 5.2. The client on the figure was the author’s laptop, and the backend
was setup to mimic a real world environment. The backend consists of two main
components, a web server and a search engine.

Figure 5.2: Overview of the Elasticsearch experiment setup.

As web applications often use cloud providers, the tests also needed to be con-
ducted using cloud providers. The requirement set for the cloud provider was:
need to be widely used, have servers in Europe and provide VPS services. Possi-

32 CHAPTER 5. EVALUATION

ble providers were: Amozon Web Services2, Google Cloud Platform3 and Digital
Ocean4. Google Cloud Platform was chosen as the service provider, as you have
more flexibility to choose between number of cores and the memory size and the
author had knowledge of the platform. Tests were conducted using two Google
Compute Engine instances. Web services always strive to place the servers as close
to the users as possible. To make the experiment simulate a real world scenario
both the instances were placed in the reagion called europe-west1-c.

Elasticsearch Instance

The instance running Elasticsearch had the following specifications: 2 vCPUs,
10 GB memory and 20 GB SSD. Elasticsearch’s documentation [9] suggests that
memory will be the most important resource in most use cases. As a result more
memory was chosen over the number of CPUs. An important setting in Elastic-
search is the heap size. By default the heap memory size is set to 1 GB, but was
changed to 5 GB in the test environment. A logical assumption would be to set
the Elasticsearch to use all the available memory, except the memory needed for
the operating system. However, Elasticsearch’s underlying structure Lucene also
needs memory. Lucene stores the data in separate files. The data structure inside
the files is immutable, which makes them optimized for caching. With this strat-
egy Lucene optimizes the underlying operating system’s eager to hold small and
often used files in memory. According to the Elasticsearch documentation [10], the
heap size should be set to 50% or less, of the available memory.

Most operating systems today also comes with swapping turned on by default.
If the operating system decides to swap, it would significantly reduce the per-
formance. To avoid the problem, swapping was turned off on the Elasticsearch
instance.

NodeJS Instance

The instance running NodeJS had the following specifications: 4 vCPUs, 4 GB
memory and 10 GB SSD. On the web server we want to be able to handle as
many requests as possible. The number of requests the server is able to handle are
closely linked to the number of cores. That is why the Node.js instance has more
cores at the cost of less memory.

Node.js is by design single threaded, which would make 3 of the cores on the
Node.js server being idle. However, this problem can be solved by using tool called
pm25. pm2 has a feature called cluster mode, which may spawn multiple Node.js
instances. To allow maximum CPU utilization, pm2 can be configured to spawn
as many Node.js instances as the number of cores.

To test the implementation the Node.js web server implemented two different
endpoints. One endpoint is used to test the query expansion plugin, and the other
is used to test a multi term query.

2https://aws.amazon.com/
3https://cloud.google.com/
4https://www.digitalocean.com/
5http://pm2.keymetrics.io/

https://aws.amazon.com/
https://cloud.google.com/
https://www.digitalocean.com/
http://pm2.keymetrics.io/

5.2. RESULTS 33

Performance Metrics

Evaluating the Elasticsearch plugin is done by measuring the response time from a
client sends the request to the response arrives. The response time can be broken
down into two separate parts: latency and execution, as shown in figure 5.3. In
this thesis latency, is defined as the time it takes for a signal to go from the client
to the web server and back. Execution time is defined from the web server recieves
a request from the client, until the web server sends a response back to the client.
This means that the execution time also includes the processing time on the search
engine.

Figure 5.3: Overview of the different measurements used when evaluating the
implementation.

5.2 Results

The results from the experiments in the project report [21], showed that the query
expansion implementation had about 2 times longer latency compared to the base-
line implementation. The latency was measured from the request left the user to
the response from the server arrived.

All the results show that the first request is often the slowest. After the initial
request, the response is cached by Lucene and makes all the subsequent requests
a lot faster.

5.2.1 Lucene Results

The query expansion implementation was evaluated by measuring the time from
the Java program sends the request to Lucene index, until a result is returned
from the index. Before starting the tests, the index cache was prewarmed using
the terms square and insta. The prewarming was done sending 10,000 requests
to the Lucene index. 5,000 of the requests were multi term queries and the other
5,000 requests were query expansion queries. With half of the results each, both
term types will be present in Lucene’s cache. Figure 5.4 displays the measured
response times from the Lucene experiments. The red line is response times from
the query expansion search, and the blue line displays the baseline query response

34 CHAPTER 5. EVALUATION

times. Even though the measured response times is within the requirement for
interactive applications, the experiment is not a good indicator for how it would
have performed in a real world environment. More interesting is how many times
slower query expansion is compared to the baseline query. When the result size
contains 10 results, query expansion is more than 3 times slower compared to the
baseline query, and it increases to more than 5 times slower when the result size is
200. This means that the response times are increasing faster with query expansion
compared to the baseline query.

Figure 5.4: Response times from the Lucene implementation with varying result
size.

5.2.2 Elasticsearch Experiment Results

As mentioned earlier, the Elasticsearch plugin is evaluated by measuring the re-
sponse time from the client sends the request until the response arrives at the client.
The response times were measured using a command line tool called ApacheBench
(ab) [28], and the actual command used can be found in appendix A.8. ab col-
lects min, average, median and the max response time for all the responses. The
results also includes information about the different parts of the response time:
connection time, processing time and waiting time.

To achieve reliable test results, each request with ab was executed 10,000 times.
Two different tests were conducted: one with cache prewarming and one without.
The prewarming query terms are square and insta. square is the most used
tag, and insta is one of the least used terms. sky and blue are the actual terms
used in the test query. Between each test, the cache was first flushed, and then
warmed again. Each of the tests also tested the response time when the result size

5.3. DISCUSSION 35

increased. By default, Elasticsearch returns the top 10 results, and the tests varied
the result size from 10 to 200 with a step size increase of 10. Figure 5.5 illustrates
the response when the cache is prewarmed, and figure 5.6 illustrates the response
times without prewarming the cache. The difference between the two graphs are
so small that they barely are visible. Lucene requires a fair amount of requests
before the caches are optimized. At a result size of 10, query expansion is 20 %
slower compared to the base line query, and increases to about 250 % slower with
a search result size of 120. After that point, the query expansion implementation
decreases to 205 % with a search result size of 200.

Figure 5.5: Response times using different result sizes with cache prewarming.

5.3 Discussion

This thesis’ goal is to explore how advanced techniques can be used to give more
relevant search results using an open source search engine, and at the same time
deliver the results fast enough to be used with interactive applications. The re-
sults in the previous section show that both the Elasticsearch and the Lucene
implementation have a linear increase in response time, compared to the baseline
test. The difference between the baseline test and the query expansion in both
implementations peaked when the search result had 120-130 documents. When the
search result size increased even further, the difference decreased in both experi-
ments. This shows that the implementation scales on both implementations. Even
though the query expansion implementation is slower compared to the baseline,
the results are well within the interactive requirement of 100 ms.

Elasticsearch was chosen as the platform has proven to scale to petabytes of

36 CHAPTER 5. EVALUATION

Figure 5.6: Response times using different result sizes without cache prewarming

data [1]. However, implementing techniques like query expansion and be fast
enough at the same time, requires the implementation to be done within Elas-
ticsearch source code or as standalone plugins. Elasticsearch’s official documen-
tation [12] for developing plugins is limited. The documentation only describes
the required setup and links to other open source plugins to learn how plugins
are developed. On Elastic’s offical website there is a discussion about developing
plugins for Elasticsearch. The quote below is an answer from the Elastic’s Q&A
site by Elastic developer Adrien Grand on wheter there is an offical guide on how
to develop Elasticsearch plugins [20].

No, there is no guide about writing plugins and the API is actually quite
unstable. The plugin API is mainly a way for us to provide additional
functionality through plugins so that we do not have to fold everything
into a single release artifact that would be quite huge. Some community
membors have writter plugins by taking inspiration of existing plugins
but we do not want to commit on a stable API for plugins as this might
prevent us from improving other areas of elasticsearch.

The answer from Grand indicates that Elastic will not develop an official sup-
port for Elasticsearch plugins in the near future. Recently, Elastic released a beta
version of their machine learning plugin, but this plugin contains closed source
code and requires a license to use. Without more support from Elastic, it would
become hard to continue to develop more advanced techniques to increase the
relevancy of search results.

My project report [21] implementation used aggregation to retrieve informa-
tion. Aggregation has two important downsides, aggregations may consume a

5.4. RESEARCH QUESTION EVALUATION 37

great deal of memory, and aggregations are approximations and may not necessar-
ily return the correct value. An additional remark decribed in the project report is
that the aggregation might not retrieve all the terms mentioned in the top-k doc-
uments. With the implementation described in this thesis all terms in the top-k
documents are guaranteed to be retrieved and considered in the query expansion.
The aggregation query was needed to retrieve the number of times a term appeares
in the complete collection. In the Elasticsearch plugin, this query is replaced by a
single term query, which returns the exact number of hits. The downside of this
approach being that the query has to be executed for each unique term in the
top-k documents.

Both implementations have potential of increased speed, by optiziming the Java
code. An example of an optimization would be looking at the loops. Some of the
loops create new objects on each iteration instead of reusing one object. This may
in many cases be inefficient as Java has a garbage collecter which has to clean up
the old objects after each iteration. If the code was optimized with the garbage
collector in mind, the code would most likely be significantly faster, especially
when the search result size increases and thus the loop size in the algorithm. Java
optimizations is outside the scope of this master thesis and thus never a focus
during the implementation.

In Rudihagen’s implementation of query expansion had a total of 4 round trips
between the web server, the database and the search engine. In my project report,
I was able to reduce the round trips to two times. Implementing an Elasticsearch
plugin enabled me to reduce th number of round trips to one. Even though the
same amount of work is done, all the work is done on the search engine itself.
As a result, the response times are greatly improved by removing round trips and
essentially removing unnecessary latency. Rudihagen measured response times
between 150 - 600 ms which is well above the requirement for interactive tasks.
The average measured response times in this thesis ranged from 12 ms to 54 ms
depending on the result size. These results are within the requirement of 100 ms.

5.4 Research Question Evaluation

The following list contains a discussion of the research questions from chapter 1.

1. How to make an improved search in terms of relevance compared
to TF-IDF? As mentioned in section 1.2 the main focus areas were scaling
and latency. Therefore, the relevance was never measured. Based on the
work by Rudihagen, this thesis assumes that query expansion returns more
relevant results compared to the baseline search.

2. How to develop an improved search which scales with an increasing
amount of data? The Elasticsearch plugin was tested with a index size of
2.3 GB, which is not an extreme data size in today’s measurements. The
query expansion plugin was about 20 % slower compared to the baseline
search. As Elasticsearch has proven to scale to petabytes of data [1] together
with good results described earlier in this chapter, we can assume that the
plugin would be able to scale on a larger Elasticsearch cluster.

38 CHAPTER 5. EVALUATION

3. How to delevop an improved search that fulfills the interactive la-
tency requirements? The results shows that the implementation is well
within the limit for interactive tasks. Even when the search result size in-
creases to 200 documents, the search is delivered within 54 ms on average.
All the tests were conducted on a setup close to a real world web application,
which indicates that the implementation also would work on an actual web
application.

6 | Conclusion & Further Work

This chapter discusses the query expansion plugin and compares the impleme-
nation to the work by Rudihagen. Lastly, possible improvements are described
to further improve the performance in terms of response time and in terms of
relevance.

6.1 Conclusion

This thesis investigates how to implement algorithms to improve the relevance of
search results compared to a search using TF-IDF. The final implementation is a
proof of concept of whether techniques like query expansion can be implement on
an open source search engine, and at the same time deliver search result instanta-
neously. The experiment setup is close to a real world web application, with both
the web server and the search engine is hosted by a cloud provider. During the
experiment a laptop were used to measure the response times. The experiment
is close to what a user would expect using a website, but there are two things
the experiment does not take into account. Firstly, web browser introduces some
overhead to render the results. Secondly, an actual website would most likely have
more than one user.

This thesis used the work from Rudihagen’s master thesis [26] and my project
report [21] as a starting point. Rudihagen focused on how instant searches may
be more personal and relevant for the user. Rudihagen’s implementation had a
significant drawback in that the response time were above 100 ms. My project
report looked at how the number of round trips in Rudihagen’s implementation
may be decreased to achieve a lower response time. By reducing the number of
round trips to two rounds the latency were significantly descreased. In this thesis
the query expansion algorithm were moved from the web server to the search
engine, and ultimatly the round trips were changed to one. There is one important
difference between the implementation described in this thesis compared to the
work by Rudihagen. Rudighagen implemented a personalized search, which means
that different users with the same search may recieve different searh results. In
this thesis the same query by different users will result in the same search results.

The results shows that the increased response time increases linearly. From
the results we can conclude that the query expansion plugin would most likely
scale with increasing amounts of data. Before using the plugin in production it is
recommended that the plugin implements Java specific optimizations. The com-

39

40 CHAPTER 6. CONCLUSION & FURTHER WORK

pany behind Elasticsearch have no plans to create official guide to develop plugins
for Elasticsearch. This makes further developments of plugins demanding without
proper documentation. Even though the code for Elasticsearch is open source,
there are no official documentation on how the code is structured. This makes
further development challenging. As a result the author of this thesis is uncertain
whether Elasticsearch is a suggested platform to implement more advanced search
techniques.

6.2 Further Work

The query expansion plugin for Elasticsearch described in this thesis is not generic
and will only work on the photo data from Flickr. Further development of the
plugin would require the plugin to be generic and to work with any type of data.

63 % of the photos did not have any tags. Using the query expansion imple-
mentation described in this thesis none of the photos were present in any of the
search results. To achieve a better search result the query expansion should also
include other fields like the title and the header. Two additional features to explore
would be geolocation and when the photo is taken. In other words, images taken
closer to the user would be ranked higher and photos taken closer to the current
time would aslo be ranked higher. However, there is no guarantee that geolocation
and the photo’s capture time would increase the relevance of the search results

The query expansion plugin have room for improvements when it comes to
Java optimizations. Java is a language were the Java Virtual Machine takes care
of memory management for the programmer using a garbagde collector. Even
though the programmer does not have to manually to memory management, the
program can minimize the need for garbage collection.

The main focus in this thesis is speed. As a result, the search relevance per-
formance was never measured. In further development the query expansion imple-
mentation should measure search relevance and compare it to the baseline search.

A | Appendix

A.1 Flickr Data Representation in Elasticsearch

Listing A.1: Internal photo data representation in elasticsearch

1 {
2 id: id,
3 title: "title",
4 description: "description",
5 tags: [
6 "blue",
7 "sky"
8],
9 dateuploaded: "1489805142",

10 urls: [
11 "url1",
12 "url2"
13]
14 }

A.2 Elasticsearch Static Mapping

Listing A.2: The static Elasticsearch mapping used on the photo index in the
experiment setup.

1 {
2 "mappings": {
3 "photo": {
4 "properties": {
5 "dateuploaded": {
6 "type": "text",
7 "fields": {
8 "keyword": {
9 "type": "keyword",

41

42 APPENDIX A. APPENDIX

10 "ignore_above": 256
11 }
12 }
13 },
14 "description": {
15 "type": "text",
16 "fields": {
17 "keyword": {
18 "type": "keyword",
19 "ignore_above": 256
20 }
21 }
22 },
23 "id": {
24 "type": "text",
25 "fields": {
26 "keyword": {
27 "type": "keyword",
28 "ignore_above": 256
29 }
30 }
31 },
32 "tags": {
33 "type": "text",
34 "fields": {
35 "keyword": {
36 "type": "keyword",
37 "ignore_above": 256
38 }
39 }
40 },
41 "title": {
42 "type": "text",
43 "fields": {
44 "keyword": {
45 "type": "keyword",
46 "ignore_above": 256
47 }
48 }
49 },
50 "urls": {
51 "type": "text",
52 "fields": {
53 "keyword": {
54 "type": "keyword",
55 "ignore_above": 256
56 }

A.3. SINGLE TERM QUERY 43

57 }
58 }
59 }
60 }
61 }
62 }

A.3 Single Term Query

Listing A.3: Java code used to search for a single term.

1 SearchResponse searchResponse = client.prepareSearch(
INDEX_NAME)

2 .setQuery(QueryBuilders.termQuery("tags", term))
3 .setSize(0)
4 .get();

A.4 Multiple Term Query

Listing A.4: Java code used to search for multiple terms.

1 SearchResponse searchResponse = client
2 .prepareSearch(INDEX_NAME)
3 .setQuery(QueryBuilders.termsQuery("tags",

termsQuery))
4 .setSize(searchResultSize)
5 .get();
6

7 return searcchResponse;

A.5 Query to Retrieve the Number of Occurences
for a Given Term

Listing A.5: Java code used retrieve the number of occurences for a given term
in the collection.

1 SearchResponse searchResponse = client.prepareSearch(
INDEX_NAME)

2 .setQuery(QueryBuilders.termQuery("tags", term))
3 .setSize(0)
4 .get();
5

6 long numberOfTimesInCollection = searchResponse

44 APPENDIX A. APPENDIX

7 .getHits()
8 .getTotalHits();
9

10 return numberOfTimesInCollection;

A.6 Field Stats Query

Listing A.6: Java code used retrieve the total number of terms in a field in the
collection.

1 FieldStatsResponse fieldStatsResponse = client
2 .prepareFieldStats()
3 .setFields(FieldNames.TAGS_FIELD_NAME)
4 .get();
5

6 long numberOfTermsInCollection = fieldStatsResponse
7 .getAllFieldStats()
8 .get(FieldNames.TAGS_FIELD_NAME)
9 .getSumTotalTermFreq();

10

11 return numberOfTermsInCollection;

A.7 Pseudocode

A.7. PSEUDOCODE 45

Algorithm 1 Psudocode for the query expansion with pseudo-relevance algorithm.
Require: Search terms from the user is defined as searchTerms
return Query expanded search terms

initialSearchResult← termsSearch(searchTerms)
// TermData is an object which hold term statistics such as the number of times
in top-k documents
// Dictionary with the term as key and TermData as object
termsData← []

// Array of sorted TermData object
sortedTerms← []

numberOfTermsInTopKDocuments
for photo in initialSearchResult do

for term in photo do
if term then exists in termsData

currentTermData← getTermFromDictionary(term)
incrementNumberOfTimesInTopKDocu-

ments(currentTermData)
else

numberOfT imesInCollection← getNumberOfTimesInCol(term)
insertTermsData(termsData, numberOfT imesInCollection)

end if
numberOfTermsInTopKDocuments+ = 1

end for
end for

numberOfTermsInCollection← getNumberOfTermsInCollection()
for termData in termsData do

// Kl score of each term is stored within the termData object
calulateKlScore(termData, numberOfTermsInCollection, num-

berOfTermsInTopKDocuments)
insertTerm(sortedTerms, termData)

end for
sort(sortedTerms)
// Retrieve the top n search terms
queryExpandedSearchTerms← getTopTerms(sortedTerms)

46 APPENDIX A. APPENDIX

A.8 ApacheBench

ApacheBench [28] were used to measure response times. The bullet list below
contains a description of the command at the end of this section.

• -n defines the number of times to send a request.

• -c defines the number of concurrent request.

• -l is used to allow responses of different sizes

• localhost have to be changed to the IP or domain name of the web server.

• The url contains two parameters, q and size. q is the acutal search query
and size defines the size of the search result.

ab -n 10000 -c 10 -l http://localhost/expansion?
q=sky+blue&size=10

References

[1] Alquiza J. Field notes - ElasticSearch at petabyte
scale on AWS. https://grey-boundary.io/
field-notes-elasticsearch-at-petabyte-scale-on-aws/,
2016. Accessed: 07.12.2016.

[2] J. Pedersen B. Jansen, A. Spink. A temporal comparison of altavista web
searching. pages 559–570, 2005.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval the
concepts and technology behind search. CRC Press, 2011.

[4] Jake D. Brutlag, Hilary Hutchinson, and Maria Stone. User preference
and search engine latency. In JSM Proceedings, Qualtiy and Productivity
Research Section., Alexandria, VA, 2008.

[5] Miles Efron. Hashtag retrieval in a microblogging environment. 2010.

[6] Elastic. Elasticsearch controlling relevance. https://www.
elastic.co/guide/en/elasticsearch/guide/current/
controlling-relevance.html. Accessed: 16.11.2016.

[7] Elastic. Elasticsearch plugins and integrations. https://www.elastic.
co/guide/en/elasticsearch/plugins/5.2/index.html. Accessed:
08.06.2017.

[8] Elastic. Fuzziness. https://www.elastic.co/guide/en/
elasticsearch/guide/current/fuzziness.html. Accessed:
08.06.2017.

[9] Elastic. Hardware. https://www.elastic.co/guide/en/
elasticsearch/guide/current/hardware.html. Accessed:
08.06.2017.

[10] Elastic. Heap: Sizing and swapping. https://www.elastic.co/guide/
en/elasticsearch/guide/current/heap-sizing.html. Accessed:
08.06.2017.

[11] Elastic. Lucene’s practical scoring function. https://www.
elastic.co/guide/en/elasticsearch/guide/current/
practical-scoring-function.html. Accessed: 08.06.2017.

47

https://grey-boundary.io/field-notes-elasticsearch-at-petabyte-scale-on-aws/
https://grey-boundary.io/field-notes-elasticsearch-at-petabyte-scale-on-aws/
https://www.elastic.co/guide/en/elasticsearch/guide/current/controlling-relevance.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/controlling-relevance.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/controlling-relevance.html
https://www.elastic.co/guide/en/elasticsearch/plugins/5.2/index.html
https://www.elastic.co/guide/en/elasticsearch/plugins/5.2/index.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/fuzziness.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/fuzziness.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/heap-sizing.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/heap-sizing.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html

48 REFERENCES

[12] Elastic. Elasticsearch plugins and integrations. https://www.elastic.
co/guide/en/elasticsearch/plugins/5.2/index.html, 2017. Ac-
cessed: 30.05.2017.

[13] Facebook. News feed fyi. https://newsroom.fb.com/news/
category/news-feed-fyi/. Accessed: 08.06.2017.

[14] The Apache Software Foundation. Apache lucene 6.4.0 documentation.
https://lucene.apache.org/core/6_4_0/index.html. Accessed:
18.05.2017.

[15] The Apache Software Foundation. Lucene stringfield documen-
tation. https://github.com/apache/lucene-solr/blob/
master/lucene/core/src/java/org/apache/lucene/document/
StringField.java. Accessed: 08.06.2017.

[16] The Apache Software Foundation. Lucene textfield documentation. https:
//github.com/apache/lucene-solr/blob/master/lucene/
core/src/java/org/apache/lucene/document/TextField.java.
Accessed: 08.06.2017.

[17] The Apache Software Foundation. Apache lucene core. http://lucene.
apache.org/core/, 2016. Accessed: 08.06.2017.

[18] J. Gao G. Cao, J.-Y. Nie and S. Robertson. Selecting good expansion terms
for pseudo-relevance. pages 243–250, 2008.

[19] Carlos A. Gomez-Uribe and Neil Hunt. The netflix recommender system:
Algorithms, business value, and innovation. ACM Trans. Manage. Inf. Syst.,
6(4):13:1–13:19, December 2015.

[20] Adrien Grand. Discussion thread on elastic’s offical website about
developing elasticsearch plugins. https://discuss.elastic.co/
t/how-to-write-elasticsearch-plugin-for-2-2-version/
55419/4. Accessed: 22.05.2017.

[21] Lund J. Instant search using query expansion with pseudo-relevance, 2016.

[22] Shengyue Ji, Guoliang Li, Chen Li, and Jianhua Feng. Efficient interactive
fuzzy keyword search. In Proceedings of the 18th international conference on
World wide web, pages 371–380. ACM, 2009.

[23] Mayer M. In Search of... A better, faster stronger Web. http://assets.
en.oreilly.com/1/event/29/Keynote%20Presentation%202.
pdf, 2006. Accessed: 02.06.2017.

[24] Gilad Mishne, Jeff Dalton, Zhenghua Li, Aneesh Sharma, and Jimmy Lin.
Fast data in the era of big data: Twitter’s real-time related query sugges-
tion architecture. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’13, pages 1147–1158, New
York, NY, USA, 2013. ACM.

https://www.elastic.co/guide/en/elasticsearch/plugins/5.2/index.html
https://www.elastic.co/guide/en/elasticsearch/plugins/5.2/index.html
https://newsroom.fb.com/news/category/news-feed-fyi/
https://newsroom.fb.com/news/category/news-feed-fyi/
https://lucene.apache.org/core/6_4_0/index.html
https://github.com/apache/lucene-solr/blob/master/lucene/core/src/java/org/apache/lucene/document/StringField.java
https://github.com/apache/lucene-solr/blob/master/lucene/core/src/java/org/apache/lucene/document/StringField.java
https://github.com/apache/lucene-solr/blob/master/lucene/core/src/java/org/apache/lucene/document/StringField.java
https://github.com/apache/lucene-solr/blob/master/lucene/core/src/java/org/apache/lucene/document/TextField.java
https://github.com/apache/lucene-solr/blob/master/lucene/core/src/java/org/apache/lucene/document/TextField.java
https://github.com/apache/lucene-solr/blob/master/lucene/core/src/java/org/apache/lucene/document/TextField.java
http://lucene.apache.org/core/
http://lucene.apache.org/core/
https://discuss.elastic.co/t/how-to-write-elasticsearch-plugin-for-2-2-version/55419/4
https://discuss.elastic.co/t/how-to-write-elasticsearch-plugin-for-2-2-version/55419/4
https://discuss.elastic.co/t/how-to-write-elasticsearch-plugin-for-2-2-version/55419/4
http://assets.en.oreilly.com/1/event/29/Keynote%20Presentation%202.pdf
http://assets.en.oreilly.com/1/event/29/Keynote%20Presentation%202.pdf
http://assets.en.oreilly.com/1/event/29/Keynote%20Presentation%202.pdf

REFERENCES 49

[25] NetMarketShare. Desktop search engine market share. https:
//www.netmarketshare.com/search-engine-market-share.
aspx?qprid=4&qpcustomd=0&qpstick=0&qpsp=2016&qpnp=1&
qptimeframe=Y, 2016. Accessed: 08.06.2017.

[26] Rudihagen J. A. R. Instant, personalized search recommandation, 2015.

[27] Spotify. On track: Discover weekly. https://community.spotify.com/
t5/Community-Blog/On-Track-Discover-Weekly/ba-p/1456790,
2016. Accessed: 08.06.2017.

[28] The Apache Software Foundation. ab - Apache HTTP server benchmarking
tool, 2016.

[29] Bin Wang Yang Xu, Gareth J. F. Jones. Query dependent pseudo-relevance
feedback based on wikipedia. 2009.

https://www.netmarketshare.com/search-engine-market-share.aspx?qprid=4&qpcustomd=0&qpstick=0&qpsp=2016&qpnp=1&qptimeframe=Y
https://www.netmarketshare.com/search-engine-market-share.aspx?qprid=4&qpcustomd=0&qpstick=0&qpsp=2016&qpnp=1&qptimeframe=Y
https://www.netmarketshare.com/search-engine-market-share.aspx?qprid=4&qpcustomd=0&qpstick=0&qpsp=2016&qpnp=1&qptimeframe=Y
https://www.netmarketshare.com/search-engine-market-share.aspx?qprid=4&qpcustomd=0&qpstick=0&qpsp=2016&qpnp=1&qptimeframe=Y
https://community.spotify.com/t5/Community-Blog/On-Track-Discover-Weekly/ba-p/1456790
https://community.spotify.com/t5/Community-Blog/On-Track-Discover-Weekly/ba-p/1456790

	Introduction
	Motivation
	Problem Specification
	Structure

	Background
	Underlying Technologies Used in the Implementation
	Lucene
	Elasticsearch

	Basic Search Engine Concepts
	Term Frequency
	Inverse Document Frequency
	Document Normalization
	Document Score
	Vector Space Model
	Multiple Term Query

	Relevance Feedback
	Explicit vs Implicit Feedback
	Pseudo-Relevance Feedback

	Query Expansion
	Kullback-Leibler Divergence

	State of the Art Survey
	Previous Work
	Other Work
	Query Dependent Pseudo-Relevance Feedback Based on Wikipedia
	Fuzzy Search
	Twitter Query Suggestion Engine

	Implementing Query Expansion in a Search Engine
	Implementation
	Algorithm
	Lucene Implementation
	Elasticsearch Implementation

	Evaluation
	Experimental Setup
	Data Set
	Lucene Experiment
	Elasticsearch Experiment

	Results
	Lucene Results
	Elasticsearch Experiment Results

	Discussion
	Research Question Evaluation

	Conclusion & Further Work
	Conclusion
	Further Work

	Appendix
	Flickr Data Representation in Elasticsearch
	Elasticsearch Static Mapping
	Single Term Query
	Multiple Term Query
	Query to Retrieve the Number of Occurences for a Given Term
	Field Stats Query
	Pseudocode
	ApacheBench

