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Problem Description

With the trend of large main memories capable of holding entire databases,
we aim to investigate how existing techniques for spatial search can be
tailored for memory resident databases. The task is to study existing tech-
niques for spatial search, suggest improvements to these techniques for mem-
ory resident databases and provide an experimental evaluation thereof.
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Abstract

This thesis investigates the performance of memory resident spatial
search, focusing on the R-tree. The characteristics of modern computer
architectures are first visited to understand how they have changed since
the invention of the R-tree, and what difference moving the database from
disk to memory can be expected to make. The design of four well known
R-trees are introduced, implemented and used to reproduce the results of
Beckmann and Seeger.

Next, four optimizations for the R-tree search are suggested in an at-
tempt to speed up search by improving the memory layout, through explicit
parallelization using SIMD instruction, and by applying pruning at a lower
level than classical search in R-tree does. The results show that the opti-
mizations often have the intended effects and yield speedups in excess of 1.3
for all tested data sets, and almost reach 1.8 in specific cases.

More importantly, it is found during the analysis that there exists a
tradeoff between sequential memory access, with an associated computa-
tional cost, and random memory access arising due to the tree structure.
Improving one aspect alone may offsets this balance and improve perfor-
mance, but the true challenge is to create the combined approach needed
to fully exploit modern computer architectures during search in memory
resident R-trees.





Sammendrag

Denne oppgaven utforsker ytelsen til søk i romlig data hvor søkestruk-
turen befinner seg i datamaskinens arbeidsminne. Først undersøkes kjenne-
tegnene ved dagens datamaskinarkitekturer for å forst̊a hvordan de har en-
dret seg siden R-treets oppfinnelse, og for å kunne forst̊a hvordan skiftet
fra disk til minne p̊avirker ytelsen. Deretter introduseres fire eksisterende
algoritmer for kostruksjon av R-trær, før de implementeres og brukes til å
reprodusere resultatene til Beckmann og Seeger.

Til slutt foresl̊as fire forbedringer for søk i R-trær i et forsøk p̊a å gjøre
søket raskere ved å forbedre minnestrukturen, eksplisitt parallelisere søket
med SIMD instruksjoner og ved å sortere ut hvilke data som er nyttige
å søke igjennom p̊a et lavere niv̊a enn det klassiske R-treet. Resultatene
viser at forbedringene har de tilsiktede effektene og at de gir en speedup i
overkant av 1.3 for samtlige dataset de testes p̊a. I noen tilfeller oppn̊as en
speedup p̊a nesten 1.8.

I løpet av analysen konstateres det ogs̊a at det finnes en balanse mellom
sekvensiell minneaksess, ledsaget av en kostnad for beregning, og tilfeldig
minneaksess som følge av trestrukturen. Å forbedre ytelsen til en av disse
kan forskyve balansen og forbedre ytelsen, men utfordringen ligger i å finne
en metode som forbedrer ytelsen p̊a begge omr̊adene slik at maskinvaren
utnyttes fullt ut.
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Chapter 1

Introduction

More and more data is being generated in the world, but for this data to
be useful, it must be possible to extract the relevant parts in an efficient
manner. This is often accomplished through an index, serving as a set of
shortcuts for accessing the data over which it spans.

Depending on the application, the most appropriate indexing method
may vary. For simple numeric values, a sorted list and a binary search can
suffice, or using a B*-tree [7] may solve the problem. Much of the data
does however present itself as points in 2 or 3 dimensional space. Several
indexing techniques for this kind of data exists [5, 6, 10,28], one of which is
the R-tree, introduced by Guttman in 1984 [14].

Many changes have occurred in the computer hardware industry since
then. The DRAM capacity been roughly doubled every 2–3 years [16] and
parallelism has become the default for performance sensitive application
after the breakdown of Dennard scaling [8]. This radically changes the task
of rapidly accessing large amounts of data.

First of all, the increased main memory storage means entire databases
can be stored in memory, something which has already been explored and
applied in commercial database systems for relational databases [32, 33].
This also allows better utilization of the available parallelism in modern
processors as the latency of disk access is no longer the bottleneck.

When accessing databases residing on disk, the top priority is to reduce
the number of disk accesses. As shown by Beckmann and Seeger [4], this
even holds true for the more computationally complex insert operation. As
long as a small percentage of the nodes are disk resident, the time required
for computation drowns in the latency of loading nodes from disk.

1



The assumption that only disk accesses needs to be considered leads to
the conclusion that reducing the computations required for search is useless.
This may not be the case for memory resident indexes where both memory
access and computation contribute to the total execution time.

This thesis examines search in memory resident R-trees, proposes some
possible improvements for a memory resident R-tree with the goal of im-
proving its single core performance. The improvements are then tested and
evaluated.

These improvements do indeed increase the performance of the memory
resident R-tree by exploiting more of the instruction and data level paral-
lelism available on a single processor core and reducing the number of cache
misses.

More precisely, the following research questions are examined.

• What aspects of R-tree search are not suited for modern processors?

• How can range search in R-trees be optimized such that more of the
available data and instruction level parallelism can be utilized?

• What are the main challenges in doing so?

This thesis starts off with an introduction to modern computer archi-
tectures in Chapter 2, before the concepts of spatial indexing is introduced
in Chapter 3· A description of different construction techniques follows in
Chapter 4 before possible optimizations for search in memory resident R-
trees are presented in Chapter 5. Finally, the methodology used during
evaluation is presented in Chapter 6 and the results thereof in Chapter 7.
These are then discussed in Chapter 8 before a short conclusion follows in
Chapter 9.

1.1 Related Work

Many have tried to improve the performance of R-trees, and most of these
improvements focus on the algorithm used when constructing the tree struc-
ture, such as the Greene’s R-tree, Hilbert R-tree, R*-tree and revised R*-
tree [2, 4, 13,24]. The idea is to create a tree structure that is better suited
for search.

Greene’s R-tree, often referred to as Greene’s split as the only change
from the algorithm introduced by Guttman is an improved node split al-

2



gorithm, tries to improve the performance by finding a dimension to split
along and sort the children in the found dimension.

Furthermore, the Hilbert R-tree uses a space filling curve to map the
multidimensional data to single dimension. This has the advantage that the
nodes can be sorted such that full nodes can share some of their children
with their neighbors instead of being split, similar to what is done in the
B*-tree. This provides good performance during inserts and in some cases
a better structure for the tree.

The R*-tree introduces two major improvements. First, it tries to rein-
sert some of the entries in an overfull node instead of splitting it. This allows
restructuring the tree after construction, often improving performance. Sec-
ond, the split algorithm also falls back to perimeter when nodes cannot be
distinguished based on volume. In addition, the overlap caused by a node
insert is used to determine where a new item should be inserted.

The revised R*-tree improves on the R*-tree by increasing the number
of splits considered for internal nodes and introducing a more sophisticated
algorithm for selecting where a new item should be inserted. Furthermore,
the reinsertion is replaced by a weighting function that depends on the
previously inserted elements.

Although all of the above trees improve on the performance of the R-
tree for disk, these improvements are also mostly valid for memory resident
R-trees. They do however miss a lot of cases where further improvements
could have been made because they assume a disk based index for which
lowering the number of disk accesses is the most important optimization.
For memory resident indexes, this is not as crystal clear.

The CR-tree [25], on the other hand, focus on the memory performance
of the R-tree and employs ideas from memory resident relational databases.
Using quantization and relative coordinates, the memory footprint of the
CR-tree is reduced by 60 % compared to a regular R-tree with improved
search efficiency as a consequence.

Even though the reduced size of the CR-tree increases cache utilization
and reduces the memory bandwidth requirement, this is only a good step in
the right direction. Several other techniques goes untried and untested, such
as searching using SIMD instruction and optimizing the search algorithm
itself for the memory hierarchy found in modern computers.

Scans using SIMD instructions has on the other hand been implemented
for table scans in memory resident databases [38], and other approaches
using bit parallel methods have been proposed [12, 27]. Even though such
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approaches may have potential when combined with R-trees, this has, to
the author’s knowledge, not been tried.

Speeding up one dimensional tree search using SIMD instruction has
however already been explored by Steffen et.al. [40]. Using a k-ary search
instead of the more classical binary search or node scan, they manage to
use vector instructions to parallelize the comparisons performed during the
search, and thereby speeding up the search.

The k-ary search with SIMD instructions does however only consider
the case where each key fits into a single SIMD lane. This is unfortunately
not the case for the bounding boxes used in the R-tree, and thus there
is no obvious way to implement k-ary search in an R-tree for increased
performance.

Other efforts to improve the spatial search performance in main mem-
ory include replacing the entire index with a highly optimized linear scan
through the data objects, as done for the VA-file [36]. Due to what has be-
come known as the curse of dimensionality, this is especially useful for high
dimensional data sets. For data of lower dimensions it may fail to exploit
structure in the data, such as for example pruning away most of the data
early on when querying an empty region.

Other examples of efforts to speed up search in R-trees include paralleliz-
ing the search, both using several disks [23] and using several machines [35].
The first approach may be applicable in the cases of NUMA architectures
with multiple memory banks, but since the memory bandwidth of other
nodes is more likely to be better exploited by the related processor, this is
not directly applicable to memory resident R-trees.

Parallelizing the search across machines can easily be combined with
memory resident R-trees, but since the work performed by each node is
essentially a search through an R-tree, speeding up the single core perfor-
mance of searches will also improve the parallel performance. Parallelizing
across machines and speeding up single core performance are thus orthogo-
nal improvements.
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Chapter 2

Modern Computer
Architectures

This thesis assumes a computer architecture based on the von Neumann
architecture [34]. In short, the architecture consists of a control unit, an
arithmetic unit, a memory and input/output units, of which the first three
are shown in Figure 2.1.

The control unit reads and sees to the execution of instructions from
memory. Operations performed by instructions may include

1. transferring data between the memory and the arithmetic unit,

2. performing calculations using the arithmetic unit and

3. reading data from input devices or writing data to output devices.

While these basics remain the same, a wide range of performance im-
provements have left the modern computer architectures much more com-
plicated. Section 2.1 explores the memory subsystem, Section 2.2 takes a

Control Unit

Arithmetic Unit
Memory

Figure 2.1: The central components of a von Neumann architecture, not
considering input and output.
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closer look at parallelism, before Section 2.3 introduces speculation. Finally,
Section 2.4 introduces micro operations.

2.1 Memory Access

Already in the report by von Neumann, the memory is pointed out as the
most challenging part of the machine due to the combination of speed and
size requirements. Today, building fast memory can easily be done by plac-
ing the memory on the same chip as the processor, but because of practical
limitation on die sizes, large memories are placed on separate chips with the
disadvantage of higher access times and lower memory bandwidth.

The computational power of processors have increased faster than the
bandwidth and speed of the memory system feeding them with data causing
many computations to be bounded by the memory, a phenomena known as
the memory wall [39]. Applications whose speed is limited by the memory
bandwidth will be described as memory bound.

2.1.1 Memory Hierarchies

The low bandwidth and high latency of external memory can be mitigated,
although not solved, by introducing a memory hierarchy. At the top of the
hierarchy is the small and fast memory, which is closely tied to the processor.
Since more storage is needed, a larger and slower memory is added. More
levels can be added to the hierarchy to improve performance further.

In some cases, a level only holds data present at some lower level to
speed up access and deliver more bandwidth, in which case the level is a
cache. Several caches may appear at adjacent levels in the hierarchy.

As an example, consider the memory hierarchy in Figure 2.2. When the
processor requests data from memory, the level 1 (L1) cache is first con-
sulted. If the data is not present, the request is passed down the hierarchy
to the level 2 (L2) cache. Similarly, the request is forwarded to memory if
the requested data is not present in the L2 cache.

Since caches only store data present at minimum one other level in the
memory hierarchy, they do not contribute to the total amount of memory,
but merely decrease the latency for frequently accessed data. Because the
cache is taking up space on the die that may otherwise have been used for
processor cores, this makes determining the cache size a tradeoff between
processing power, price and cache size [18].
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Processor

L1 Cache

L2 Cache

Main memory

Figure 2.2: An example memory hierarchy consisting of level 1 cache (L1),
level 2 cache (L2) and a main memory. A thicker line between the levels
signals a higher bandwidth bus with lower latency access.

It should be noted that the access latency differences between the levels
in the hierarchy may be quite significant. For example, the latency of the
L1 cache in an processor based on the Intel Haswell architecture processor
has been measured to around 1.6 ns [31]. The latency to L2 and L3 was
measured to 4.8 ns and 21.2 ns respectively, but the memory clocked in at
around 96.4 ns. At 2.5 GHz, this is equivalent to around 4, 12, 53 and 241
cycles respectively. Similar values have also been measured for the Intel
Nehalem and Intel Sandy Bridge processors [29,30].

Since the latency for data in memory is around 60 times longer than for
data in L1 cache, programmers cannot ignore data locality when program-
ming for performance. Placing and accessing data without considering the
cache behavior can incur repeated performance hits of hundreds of cycles,
which may slow down a program considerably.

Due to the large difference in access time for the cache immediately
above memory and the memory itself, this cache is often referred to as the
last level cache (LLC) regardless of how many caches exist above it.

Note that these numbers form main memory access are only valid for
dynamic random access memory (DRAM) connected via a high speed bus
to the processor. Some computer systems also have one or more disk drives
for long term storage of large amounts of data. These tend to have much
higher latencies than DRAM, which makes the latency of memory access
negligible when data is stored on disk.
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2.1.2 Data Units

Processors usually operate on a given number of bits at a time, which gives
the natural width of registers and logic in the architecture. In the report
by Von Neumann, this unit is referred to as a minor cycle and set to be 32
bits. In this report, the more modern term computer word will be used.

Although the processor is scaled to handle one computer word at a time,
it may implement operations for larger or smaller units as well. An example
of this is SIMD instructions, which will be covered in Section 2.2.2.

Furthermore, other components in the computer may be using other
sizes. For example, the transfer unit between the main memory and caches
tends to be larger than a computer word. This unit is often also the unit
used by the caches to keep track of what data is currently in the cache, thus
it will be referred to as a cache line.

In addition, disk drives are often partitioned into yet another unit, here
referred to as the disk page size.

2.1.3 Non-Uniform Memory Access

For systems consisting of several processors or cores, it is not uncommon to
include several memory banks to speed up memory access. Each memory
bank may be more closely associated with a given set of cores than other. As
a result, a given core may experience different memory access performance
for different parts of the memory. This is referred to as non-uniform memory
access (NUMA).

An example is illustrated in Figure 2.3 where two processors with a
memory bank each can both access each other’s memory. Since the latency
(and possibly bandwidth) of access to the memory available is not uniform,
this is an example of an architecture with NUMA.

A NUMA aware program is constructed to take advantage of NUMA
architectures. As for the cache utilization, the NUMA architecture must be
considered when programming for performance to avoid performance hits
on a large number of memory accesses.

2.2 Parallelism

The ever increasing computational power of processors was for a long time
partly a consequence of increasing clock rates, but this is no longer the
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C1 C2

M1 M2

Figure 2.3: Example of a NUMA architecture where memory requests from
the processor C1 to the memory bank M2 must be routed through another
processor, C2, as illustrated by the red arrow. Access to the memory bank
M1, on the other hand, goes directly and is thus quicker as illustrated by
the blue arrow.

case [9]. Shrinking components have increased the power leakage to the
point at which the heat simply cannot be transported away quickly enough,
neither can the wires be made short enough to accommodate data transfer
at higher frequencies. Instead, parallelism is harvested to squeeze more
computational power out of the increasing number of transistors delivered
by the industry as predicted by Moore’s law.

2.2.1 Instruction-Level Parallelism

In many cases, some of the instructions in a program can be run in parallel.
This is heavily exploited on modern CPUs where several instructions are
processed simultaneously through pipelining and out-of-order.

Pipelining splits the execution of an instruction into several steps and
executes one step after another until all steps have been executed. Each step
normally maps on to a set of hardware resources, and since only one step
of an instruction is executed at any time, the remaining hardware resources
may be used to execute other instructions simultaneously.

For pipelining, branches thus pose a problem because the branch must
be evaluated before the next instruction can be determined. This renders
some of the hardware unused while the branch is being evaluated, limiting
the potential performance gains of pipelining when the program contains a
large proportion of branches.

Although less sever, instructions that uses some other instructions result
as an input may also have to wait for other instructions to complete before
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they can be started. Hardware solutions for forwarding the results of in-
struction before they are actually completed are often used. These solutions
mitigate the problem, but do not eliminate it completely.

One way to increase the utilization of the hardware is to execute instruc-
tions out-of-order. When the next instruction cannot be executed because
the results it require is not yet available, one of the following instructions
may be executed instead as long as this does not change the result of the
computations. To further boost performance, some of the hardware may be
duplicated to allow several instructions to be in progress at the same step
in the pipeline simultaneously.

In order to exploit the full potential of the processor, enough independent
instructions must be available to fill the pipeline and exploit the possibly
duplicated hardware. Since the time required to complete an instruction
determines the number of independent instruction required to maximize
the hardware utilization, this is an easier task for instructions completing
quickly. For long-running memory requests, this is not so easy because the
following instructions are likely to be dependent on the loaded value.

Additionally, since each instruction currently being executed requires
some hardware resources, there is also a limit to the number of instructions
that can be in progress at any given time.

Another technique for filling the pipeline found in modern processors is
the use of simultaneous multi-threading. Instead of expecting a single thread
of execution to provide enough instruction level parallelism, the processor
executes two threads simultaneously on the same core. Instructions from
one thread can thus be used to fill the gaps in the other thread’s execution.

2.2.2 Data-Level Parallelism

Many processors today have support for SIMD (Single-Instruction Multiple-
Data) instructions. These instructions, in combination with extra wide
registers, allow operations to be performed on several values using a single
instruction. This can reduces instruction overhead and increase performance
as the operations can be performed in parallel at the hardware level.

Since several values are combined into a single register, the register is
divided into SIMD lanes. The number of such lanes in a register may be
configurable and depend on the data type. Instructions commonly per-
form some operation with the corresponding lanes of two source registers as
operands, and stores the result in the corresponding lanes of a third register.
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An example set of such instructions is the SSE and AVX extensions for
Intel processors. The main challenge with SIMD instructions is designing
software capable of exploiting all the available computational power. Au-
tomatic vectorization is a hot topic of research, but some algorithms and
problems are inherently sequential or perform different operations on each
data item.

2.3 Speculation

As one may have guessed from the previous sections, filling the pipeline is
one of the largest challenges when working with modern processors. One
way to make the unused resources useful, is to make a guess as to what
is needed later and start he calculations ahead of time. This is termed
speculation.

2.3.1 Prefetching

One example of such speculation is prefetching. By examining the memory
access pattern, a hardware unit referred to as the prefetcher may be able to
find a pattern that makes it possible to predict, with reasonable accuracy,
which cache line will be required in the future. By issuing a speculative
load for the cache line before it has been requested, the latency can in some
cases be hidden.

As an example, modern Intel architectures can detect strided memory
access patterns [21]. When memory is accessed with regular and sufficiently
small intervals as illustrated in Figure 2.4, the processor starts fetching
the next reference from memory to cache before it has been requested. This
causes some memory access patterns to give significantly better performance
than others.

On the flip side, the extra loads issued by the prefetcher may in some
cases occupy resources needed by the running program, and thus reduce
performance.

2.3.2 Branch prediction

Another source of speculation is typically branch prediction. The idea is
to try to predict the result of a branch before it has been executed. After
making a guess as to which way the branch goes, the instructions for the
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Figure 2.4: Memory locations with a strided access pattern. Assuming
the memory locations 1007, 1009, 1011 has been accessed in order, it is
reasonable to assume the next location accessed is going to be 1013.

result may be loaded into cache. If speculative execution is used, they
may also start execution. This way, the pipeline can be kept busy while
evaluating a branch.

As with prefetching, this may also reduce performance if the wrong result
was predicted because the pipeline needs to be cleared before the correct
instructions can be loaded and executed.

Usually, the results of speculatively executed instructions are stored until
it can be determined whether the instructions should actually be executed,
in which case the instructions are retired. When retired, the stored results
become the new program state.

This also means that the retired instructions only include the instruc-
tions that would be executed without any speculation at all. The number of
retired instructions may be very different from the number of instructions
executed, as these also include the ones executed speculatively, but where
the result was not used.

Unfortunately, the exact design of commercial branch predictors are
often not published, but rather kept as a trade secret. This makes the
behavior observed related to branch predictors hard to explain in some
cases.

For example may the branch history be recorded using a small buffer
indexed by the lower bits of the branch instruction address. In such cases,
small changes in code may degrade or improve branch prediction perfor-
mance other places in the code by changing the distance between branch
instructions, which determines whether the instructions share their lower
bits.

2.4 Micro Operations

The available instructions, resources and their behavior for a processor must
be clearly defined such that programmers know what to expect of their pro-
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grams. These definitions, often referred to as an instruction set architecture
(ISA), is an abstraction useful for freeing the programmer from the burden
of having to know the inner workings of the processor. In addition, it allows
the same programs to be run on several different processors, as long as they
implement the same ISA.

Unfortunately, the ISA may be designed for a different use case or be
so old that the once reasonable assumptions are no longer valid. One such
example is the x86 family of ISAs, often used in today’s desktop and server
computers, which has been around since 1978 [22].

To implement this efficiently on modern hardware, the instructions are
decomposed into several micro operations. These can be seen as instructions
only used internally by the processor, and their execution is commonly
subject to the optimizations mentioned previously, such as pipelining and
out-of-order execution.

The ISA does however rarely say anything about the performance of
the operations it allows, thus the performance is implementation defined.
The same instruction may perform differently on two different processors,
both implementing the same ISA. When programming for performance, it
is therefore often necessary to look through the abstraction to understand
the performance of the code.

Translation from instructions to micro operations may not be straight
forward. When mixed with out-of-order execution, pipelining and other
optimizations, it may be hard to tell which instructions are blocking the
processor, let alone what causes the blockage, as there may be several rea-
sons.
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Chapter 3

Spatial Indexing

Spatial indexing is concerned with speeding up search in spatial data. This
section starts by presenting basic concepts of spatial search in Section 3.1
and spatial queries in Section 3.2. Then a closer look at the R-tree follows
in Section 3.3.

3.1 Concepts

Several spatial indexing methods have been proposed to quickly look up
data in a space [5,6,10,28,37]. All of these consider spatial objects within a
real coordinate space of d dimensions, Rd. Examples of such objects may be
points, line segments, polygons or other shapes, as displayed in Figure 3.1.
Ω is drawn with a dashed line, but it is just as much an object in the same
way as A-E.

Definition 1 (Spatial object). A point, line or other shape in space. The
object X is a potentially infinite set of points such that X ⊆ Rd.

Note that normal set operations apply to objects and have a geometric
interpretation. For example, given two objects X and Y , the intersection
X ∩ Y is another object in the same space including all the points where
both X and Y occupy the same area. In the case where X and Y do not
intersect, X ∩ Y = ∅.

Because the objects are typically defined by points stored with a limited
range for each coordinate, they often reside within a defined subset of Rd,
from here on referred to as the data space. Since the limited range of each
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Figure 3.1: Illustration of a set of objects in R2. Ω and B are also axis-
aligned boxes, while C is not axis-aligned, even though it is a box. The data
set D consists of the three data objects A, D and E.

coordinate gives an upper and a lower bound in each dimension, this space
has the shape of an axis-aligned box in Rd. The data space and axis-aligned
box is therefore defined as follows.

Definition 2 (Data space). A data space Ω is a finite subspace of Rd,
where d is the dimensionality of Ω, thus Ω ⊆ Rd. It is assumed to be an
axis-aligned box as defined by Definition 3.

Definition 3 (Axis-aligned box). An axis aligned box is an object with
the shape of a box aligned with the axes, defined by two points. Given two
points b, t ∈ Rd such that

∀i ∈ {1, . . . , d} : b[i] ≤ t[i],

the corresponding axis-aligned box B = (b, t) is a spatial object consisting
of the points in the set

B =
{
q ∈ Rd | ∀i ∈ {1, . . . , d} : b[i] ≤ q ≤ t[i]

}
where p[i] denotes the ith coordinate of the point p.

Figure 3.2 illustrates the definition of an axis-aligned box in R2, and Ω
in Figure 3.1 is defined as a data space. The latter is however a bit arbitrary,
since B also satisfies the requirements set forth by Definition 2. The objects
B, C and Ω in Figure 3.1 are all boxes, but only B and Ω are axis aligned.
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Figure 3.2: The shaded area is the set of points making up the axis-aligned
box B = (b, t).

When searching it is assumed only a specific set of the objects in the
data space are considered. These objects form the data set D for the search
and are referred to as data objects. All such objects in a data set must reside
within the same data space to be searchable.

Definition 4 (Data set). A data set is a set of object residing in the same
data space. Given a data space Ω, the data set D in Ω is a set of spatial
objects such that

∀X ∈ D : X ⊆ Ω

Definition 5 (Data object). A spatial objectX is a data object with respect
to a data set D if, and only if, X ∈ D.

As an example, consider Figure 3.1, where A, D and E may be data
objects with respect to the data space Ω. Since the definition does not
require all objects within the data space to be in the data set, the set
D = {A,D} is also a possible data set in this case. The set can however not
include B or C, since they do not reside in Ω.

3.2 Queries

The main task of the spatial index is to speed up searching, which is the
retrieval of data objects matching a given query.

A common and conceptually simple query is the range query, which re-
quests all objects within certain bounds on each coordinate. Example use
cases include finding all restaurants in the vicinity of a user with a known
position, finding all images similar to another using features extracted from
the images, or finding the visible elements for rendering in a map applica-
tion.
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Figure 3.3: Example of a range query with Q. The result set consists of
objects A, B and D as they intersect Q. C is outside Q and not included.

In practice, a range query is the same as requesting all data objects
intersecting an axis-aligned box Q, referred to as the query box. Although
the definition below includes all objects intersecting Q, the search can be
restricted to objects enclosed in Q by filtering the results.

Definition 6 (Range search). Given a data set D and an axis-aligned box
Q, a range search returns a set of objects R given by

R = {X ∈ D | X ∩Q 6= ∅}

An example of a range query can be seen in Figure 3.3. Note that the
query box Q is not a part of the data set.

3.3 R-trees

One data structure for speeding up search in spatial data is the R-tree [14],
which can be seen as the multidimensional version of the popular B-tree.

Conceptually, the R-tree partitions the space it covers into a hierarchy
of minimum bounding boxes (MBBs) as defined below. At the bottom of
the hierarchy are the data objects.

Definition 7 (Minimum bounding box). The minimum bounding box (MBB)
of a spatial object X is the smallest axis-aligned box M that contains all
points in X. In other words, given a spatial object X, the minimum bound-
ing box M = MBB(X) is such that

1. M is an axis-aligned box,

2. X ⊆M , and
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Figure 3.4: Example R-tree in 2 dimensions. In this case, M1 through M6

are the MBBs in the hierarchy and X1 through X4 are the data objects.

3. no M ′ satisfying Items 1 and 2 exists such that |M ′| < |M |.

Each MBB in the hierarchy is required to contain all child MBBs. As an
example, consider the visualized R-tree in Figure 3.4. M1 and M2 are the
MBBs at the top of the hierarchy, each containing two other MBBs. Note
that the MBBs may overlap even when one is not a parent of the other, as
is the case for M1 and M2, and M2 and M4.

From a more practical perspective, the R-tree is a tree structure where
each node is a collection of several entries, each consisting of an MBB and
a pointer, as visualized in Figure 3.5. For internal nodes, the pointers
point to child nodes in the tree; for leaf nodes, they point to data objects.
Furthermore, the MBB associated with an entry is always set to the MBB
containing whatever the pointer points to.

To keep the tree balanced and node sizes reasonable, the number of
children in each node, except from the root node, is always between m and
M , where m ≤ M

2 . Analogous to the B-tree, a node is split into two should
an insertion be in conflict with this requirement, and a split may propagate
to the top of the tree, adding another level. This keeps all leafs of the tree
at the same depth at all times.
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Figure 3.5: Example structure of an R-tree where each node has 2 children.
The data objects are illustrated at the bottom denoted X1 through X4, and
M1 through M6 are the MBBs as depicted in Figure 3.4.

More rigid definitions of entries and nodes follow, such that the following
discussions on R-tree search and construction can be simplified.

Definition 8 (R-tree entry). An entry in the R-tree is a either an R-tree
node (Definition 9) or a data object (Definition 5).

Definition 9 (R-tree node). A node N in the R-tree is a set of entries
as defined in Definition 8. Unless N is the root node, it also satisfies the
restriction

m ≤ |N | ≤M,

where m is the minimum node fill grade and M is the maximum node size.

For the MBB of an entry E, MBB(E), to be well defined in all cases, a
definition for the MBB of a node N is needed. This definition is recursive
and therefore ends up including all leafs below N .

Definition 10 (Minimum bounding box of node). In the case where N is
an R-tree node, MBB(N) is the MBB containing all children of N ,

MBB(N) = MBB(
⋃
E∈N

MBB(E))

Note that the definition of an entry omits the MBB, simply because the
MBB can be generated based on the other information stored in the tree, and
therefore works more like a cache. As this is uninteresting from a theoretical
perspective, this caching is assumed to be implicit and is therefore not
mentioned in most algorithms. Do however keep in mind that retrieving
the MBB of an entry is usually a low cost operation in practice due to the
caching.
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3.3.1 Range Search

A range search is performed by traversing the tree, pruning away nodes
where the respective MBB does not intersect the query object Q, as de-
scribed in Algorithm 3.1. This is based on the insight that any node N ′ in
the sub tree below a node N is contained within MBB(N). This is what
makes searching through an R-tree faster than a linear scan in many cases.

In contrast to range searches in B-trees, the algorithm for R-trees may
visit the entire tree, and the complexity is therefore linear in the number
of nodes in the worst case. The actual performance depends heavily on the
strategy used to group objects into nodes when constructing the tree, and
many strategies have been developed [2, 6, 14], as will be covered in more
detail in Chapter 4.

As can be seen in Algorithm 3.1, each call to RangeSearch results in
the entries of a node being iterated through while checking whether each
entry intersects the query box. For the remainder of this thesis, this will be
referred to as a node scan. A search can then be viewed as a series of such
node scans, possibly interrupted by another node scan before continuing as
indicated by the recursive call in the algorithm.

Function RangeSearch(N , Q)
forall E ∈ N do

if MBB(E) ∩Q = ∅ then
continue;

end

if E is node then
RangeSearch(E, Q);

else
report E;

end

end

end

Algorithm 3.1: Range search in R-tree. N is usually the root node
for the first call, and Q is the query box.

As a side note, one may wonder why the R-tree has not been structured
as the alternative version in Figure 3.6, where the MBBs have been pushed
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Figure 3.6: A less traditional version of the R-tree where each node only
has one MBB or a data object.

one level down the tree, resulting in only a single MBB in each node. This
would arguably simplify the concept, since each node contains an MBB
enclosing its children, obviating the need for a definition of an entry.

The first observation may be that the alternative version has an extra
level, which causes it to have more pointers than the original R-tree. The
number of MBBs does however not increase considerably.

More importantly, observe that during a node scan, an intersection test
will be performed between the query box and the MBB of each child. For
the alternative version, this means loading every child of the visited node,
including the pointers to the grandchildren. Loading the pointers to the
grandchildren could probably be avoided, but would result in random mem-
ory access, which is not as preferable as sequential access when performance
matters, as explained in Chapter 2.

3.3.2 Generic Insert Algorithm

Many of the algorithms for inserting objects into an R-tree structure are
based on the same basic idea, presented in Algorithm 3.2. First, the algo-
rithm drills down the tree to find a suitable node into which the new data
object should be inserted. Next, the changes are propagated up the tree,
possibly splitting nodes on the way.

The observant reader will notice that O is actually an entry in Algo-
rithm 3.2, and not a data object as would probably be more expected. The
reason for this will become apparent when the R*-tree is introduced. On
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Function Insert(O, N)

if O belongs at the level of N then
add O to N ;

else
E ← ChooseSubtree(N , O);
(N,N ′)← Insert(O, E);

if N ′ 6= ∅ then
add N ′ to N ;

end

end

if N is overfull then
return SplitNode(N);

end
return (N, ∅);

end

Algorithm 3.2: Generic insert algorithm for dynamic construction of
an R-tree, where N is a node and O is an entry. ChooseSubtree and
SplitNode depends on the implementation.
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the first call, O = (M,p) will always be an entry where M is the MBB of,
and p is a pointer to the data object to insert. Similarly, N will always be
the root node.

The ChooseSubtree method selects a child from the given node, which
determines which sub tree the new object should reside in. Thus this method
is also ultimately responsible for selecting the leaf node in which the new
object should be placed.

SplitNode accepts a node and divides its entries into two groups, which
will be referred to as a split. The new node groups are returned and replace
the node that was split in its parent.

Should the algorithm return a pair where the second element is a non-
empty set, the root node is replaced by a node containing both elements
from the returned pair. This is how the tree gains height. Otherwise, the
returned node is the root of the new tree.
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Chapter 4

R-tree Variants

As mentioned in Section 3.3, the actual performance of the R-tree depends
heavily on the method used to group data objects into nodes as the worst
case performance is linear in the number of nodes.

This section considers several algorithms for constructing an R-tree.
Two classes of such algorithms exist. The first is the static approaches,
where all the data objects are known before construction begins. The sec-
ond is the dynamic class, where new items can be inserted at any time.
Only the latter will be considered here. Assuming that deletions are rare,
the scope is also limited to insertions only.

This section starts off with a few prerequisites in Section 4.1, before the
Quadratic R-tree, R*-tree, Revised R*-tree and Hilbert R-tree are intro-
duced in Sections 4.2 to 4.5.

4.1 Prerequisites

Since constructing an R-tree is largely an optimization problem, it is often
useful to compare elements based on the value of a function. Many of the
algorithms will however also require some sort of a tie breaker. To simplify
the notation of such tie breakers, a partial order over tuples is defined.

Definition 11 (Partial order over tuples). Given two tuples, A = (a1, a2, . . . , an)
and B = (b1, b2, . . . , bn), the one with the lowest value in the first element
where they differ is the lowest. More formally,

A ≤ B ⇔ ∃i ∈ [1, n] : ai ≤ bi ∧ ∀j ∈ [1, i] : aj = bj
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To see how this can be useful, consider the following example. Let f be
a function, and assume the set of values X ⊆ D minimizing a function f is
sought. This can easily be expressed using the common argmin operator as

X = argmin
x∈D

f(x)

Extending this concept to also include a second function g used as tie
breaker can conveniently be done using the partial order over tuples by
defining a third function

f ′(x) = (f(x), g(x))

which allows the direct application of argmin, giving

Y = argmin
x∈D

f ′(x)

where Y ⊆ D is the set of values minimizing f using g as tie breaker.

4.2 Quadratic R-tree

When Guttman published the first paper on R-trees [14], he also included
three different construction algorithms. They have been named based on
the computational complexity of the SplitNode method; one is linear, one
is quadratic and the last checks all possible combinations and is thus expo-
nential in the number of entries in the node.

Since the linear algorithm generally performs very poorly, and the ex-
ponential algorithm tends to be too expensive, the quadratic version is ar-
guably the most popular of the three and is therefore described here. All
three variants concentrate on the volume of the MBBs in the tree, as defined
below.

Definition 12 (Volume). For an axis-aligned box B = (b, t), volB is the
product of its extent in all dimensions. Thus

volB =

d∏
i=1

(
t[i] − b[i]

)
The volume of X, where X is not an axis aligned box and MBB(X) exists,
is given by vol(MBB(X)).
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When selecting the sub tree, the quadratic algorithm simply selects the
node whose MBB needs the least volume enlargement to include the new
object, as is visible in Algorithm 4.1. Should there be a tie, the one with
the least volume is selected.

Definition 13 (Enlargement operator). Given two MMBs G and M , and
a function f , the enlargement required to include M in G is the change
in the value of f(G), when M is added to G. This enlargement, denoted
∆M f(G), is thus given by

∆
M
f(G) = f(G ∪M)− f(G)

Function ChooseSubtree(N , O)

return N ′ ∈ argmin
E∈N

(
∆
O

volE, volE

)
;

end

Algorithm 4.1: The ChooseSubtree algorithm used by the quadratic
R-tree.

For the SplitNode method, which can be found in Algorithm 4.2, the
two entries that would waste the most space when placed in the same node
are selected and assign to different groups. This waste is loosely defined
as the volume in the MBB of both entries that is not occupied by any of
the entries. More strictly, given two MBBs M1 and M2, the wasted space
W (M1,M2) is given by

W (M1,M2) = vol(M1 ∪M2)− volM1 − volM2

which may very well be negative when M1 and M2 overlap.
Next, the algorithm repeatedly selects the entry among the remaining

where the difference between placing it in one group compared to the other
is the largest, as measured using volume enlargement. Should there be a
tie, the group with the lowest volume is selected, followed by the group with
the fewest elements.

One interesting observation is that the quadratic R-tree mainly tries to
minimize the volume of the MBBs. This makes sense because a large volume
implies a greater chance of intersection with the query box, thus increasing
the number of nodes that has to be scanned during a search.
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Function SplitNode(N)

(E1, E2)← argmax
(E1,E2)∈N×N

W (E1, E2);

S ← N \ {E1, E2};
G1 ← {E1};
G2 ← {E2};
while S 6= ∅ do

E ← E ∈ argmax
E∈S

∣∣∣∣∆E volG1 −∆
E

volG2

∣∣∣∣ ;
if (∆E volG1, volG1, |G1|) < (∆E volG2, volG2, |G2|) then

G1 ← G1 ∪ {E};
else

G2 ← G2 ∪ {E};
end
S ← S \ {E};

end
return (G1, G2);

end

Algorithm 4.2: The SplitNode algorithm used by the quadratic R-
tree.
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Unfortunately, a MBB may be very likely to intersect the query box
without having any volume at all, which may happen if the MBB covers
the entire data domain in all dimensions with the exception of one. A more
rigid justification for this can be found in Appendix B.

4.3 R*-tree

The R*-tree, introduced by Beckmann and Seeger [2], introduces the concept
of reinsertion to the R-tree, borrows some ideas from Greene’s split [13] and
also takes the perimeter and overlap of the resulting MBBs into account.

Definition 14 (Perimeter). Given an axis-aligned box B = (b, t), the
perimeter of B is the sum of its extension in all dimensions. More formally,
the perimeter perimB is given by

perimB =

d∑
i=1

(
t[i] − b[i]

)
The perimeter of X, where X is not an axis-aligned box and MBB(X) is
defined, is given by perim(MBB(X)).

Definition 15 (Overlap operator). Given a set of axis-aligned boxes X and
a function f : MBB → R, the overlap of an axis-aligned box B with X is
the sum of the intersections between B and the other axis-aligned boxes in
X as calculated by f . In other words, the overlap ΩX f(B) is given by

Ω
X
f(B) =

∑
B′∈X

f(B ∩B′)

More precisely, the ChooseSubtree method of the R*-tree, featured
in Algorithm 4.3, first checks whether the entry to insert is contained
within any of the children. If so, the one with the least volume is selected.
Otherwise, the algorithm minimizes volume enlargement as in Gutmann’s
quadratic algorithm when given an internal node, while the child having the
least volume overlap enlargement with respect to the other children in the
node is used when given a leaf node.

Since calculating the overlap enlargement is quadratic in the node size,
Beckmann and Seeger suggests selecting a group of p children with the lowest
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Function ChooseSubtree(N , O)
S ← {E ∈ N | MBB(O) ⊆ MBB(E)};
if S 6= ∅ then

return argmin
E∈S

volE;

end

if N is internal then

return argmin
E∈S

(
∆
O

volE, volE

)
;

end

return N ′ ∈ argmin
E∈N

(
∆
O

Ω
N

volE,∆
O

volE

)
;

end

Algorithm 4.3: The ChooseSubtree algorithm used by the R*-tree.

volume, and to only consider these when minimizing the overlap enlarge-
ment. They found p = 32 to be a good value, and claim this has negligible
impact on the query performance, while reducing the computations required
to insert new data objects.

During splits, for which the algorithm is show in Algorithm 4.4, the R*-
tree evaluates several split candidates, as defined below. Since the number
of split candidates is exponential in the node size, the R*-tree only considers
a well selected handful.

Definition 16 (Split candidate). A split candidate is a pair of sets (S1, S2)
that partition the set of entries S such that S1 and S2 would both make legal
nodes in the R-tree. In other words, the pair (S1, S2) is a split candidate
for set of entries S if

• S1, S2 ⊆ S,

• m ≤ |S1|, |S2| ≤M , and

• S1 = S \ S2,

where m is the minimum node fill grade and M is the maximum fill grade.
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Function SplitNode(N)

if this is not a reinsert then
while |N | > M − p+ 1 do

E ← argmax
E∈N

dc(E,N);

N ← N \ {E};
schedule Insert(E, R);

end
return (N, ∅);

end

i← argmin
j∈{1...d}

(
min

(S1,S2)∈Li(N)
(perimS1 + perimS2)

)
;

(N,N ′)← argmin
(S1,S2)∈Li(N)

vol (S1 ∩ S2);

return (N,N ′);

end

Algorithm 4.4: The SplitNode algorithm used by the R*-tree, where
R is the root node. The schedule keyword schedules its operand for
execution in a first-in first-out manner.
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For each dimension i, the entries are sorted by the lower coordinate of
their MBBs in dimension i. Then the entries are partitioned by index such
that the two halves constitute a split candidate.

More precisely, the split set considered by the R*-tree for dimension i
and a set of entries S, is the set of pairs Li(S) given by

Li(S) =

{
(S1, S2) ∈ C(S) | max

E1∈S1

b
[i]
1 ≤ min

E2∈S2

b
[i]
2

}
where C(S) is the set of all possible split candidates for S and MBB(Ei) =
(bi, ti) for i ∈ {1, 2}.

Presumably to lower the cost, the R*-tree first selects a dimension by
calculating the perimeter of each split candidate and adding them together.
The dimension associated with the candidate yielding the lowest sum is se-
lected. Next, one of the split candidates in Li(N) for the decided dimension
is selected by minimizing the intersection volume.

Moreover, the R*-tree actually avoids splitting a node at all in many
cases by reinserting a set of entries instead of splitting a node. When rein-
serts are performed, the p entries having their center farthest from the center
of the node are selected for reinsertion. The distance between the centers
of two MBBs M1 = (b1, t1) and M2 = (b2, t2) is given by

dc(M1,M2) = d

√√√√ ∑
d∈[0,1)

(
1

2
(b1 + t1)− 1

2
(b2 + t2)

)2

To avoid endless reinsertion, a reinsert is not allowed to trigger a new
reinsert at the same level.

Not only does reinsertion increase the fill grade of the tree, it also allows
the tree to adapt to a changing data distribution, which may be the case
when the first entries inserted do not reflect the distribution of the remaining
entries. This comes at the cost of a more expensive insert operation.

4.4 Revised R*-tree

In their next revision of the R*-tree [4], Beckmann and Seeger drops the
reinsert strategy and instead records the change in a nodes MBB from its
creation time to the time it is split. This allows splits to be skewed in such
a way that more space is available in the spots where many new objects
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are expected to appear in the future. Other improvements include better
handling of MBBs without volume.

The ChooseSubtree algorithm used by the revised R*-tree shown in
Algorithm 4.5 starts out in a similar manner to that of the R*-tree, by
checking whether the new object is contained within any of the children,
but where the R*-tree only uses volume to distinguish between several such
children, the revised R*-tree uses perimeter whenever at least one of the
relevant children has no volume.

Function ChooseSubtree(N , O)
S ← {E ∈ N | O ∈ MBB(E)};
if S 6= ∅ then

if ∃E ∈ S : vol(E) = 0 then
return N ∈ argmin

E∈S
perim(E);

else
return N ∈ argmin

E∈S
vol(E);

end

end

S′ ←
{
E ∈ argmin

E′∈N

(
∆
O

perim(E′)

)
: ∆
O

Ω
N

perim(E) = 0

}
;

if S′ 6= ∅ then
return N ∈ S′;

end

E0 ← E′ ∈ argmin
E∈N

(
∆
O

perimE

)
;

B ←
{
E ∈ N : ∆

O
Ω
{E0}

perimE 6= 0

}
;

P ←
{
E ∈ N : ∃E′ ∈ P0 : ∆

O
perimE ≤ ∆

O
perimE′

}
;

return N ∈ argmin
E∈P

(
∆
O

Ω
P

perim(E)

)
;

end

Algorithm 4.5: The ChooseSubtree algorithm used by the Revised
R*-tree.
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Should no child contain the data object, the child having the lowest
perimeter enlargement is select if this child also suffers no overlap enlarge-
ment, as measured using perimeter.

Finally, if no child has been selected so far, the entry with the lowest
perimeter enlargement is set as E0 and a limited set of children P is chosen
to be all children E where there exists an entry E′, with non-zero overlap
enlargement with respect to E0, whose perimeter enlargement is greater
than the overlap enlargement of E. The child in P with a minimal overlap
enlargement with respect to P is returned.

To cut the cost of this procedure in the case where a child E ∈ P with
no overlap enlargement with respect to P exists, the entries are traversed
in a depth-first manner, where an edge is present between two children if
they overlap. This search computes the overlap of all children in P simul-
taneously by accumulating the overlaps found during the traversal.

For the SplitNode algorithm, the revised R*-tree reduces the problem to
a single optimization problem of a goal function. The set of split candidates
considered does however differ depending on whether the node to be split is
internal or not. All dimensions are considered for internal nodes, but only
the dimension with the lowest sum of perimeters is used for leaf nodes.

Function SplitNode(N)

if N is a leaf then

i← argmin
i∈{1...d}

( ∑
(S1,S2)∈Pi

(perim(S1) + perim(S2))

)
;

S ← Pi;

else
S ←

⋃
i∈{1...d}

Pi;

end

return (N,N ′) ∈ argmin
(S1,S2)∈S

w(S1, S2);

end

Algorithm 4.6: The SplitNode algorithm used by the Revised R*-
tree.

Given a dimension i, the revised R*-tree uses the same set of split can-
didates as the R*-tree, but also includes all splits yielded by sorting by the
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upper coordinate, in addition to the lower. The additional set Ui can be
defined in a similar manner to Li,

Ui(S) =

{
(S1, S2) ∈ C(S) | max

E1∈S1

t
[i]
1 ≤ min

E2∈S2

t
[i]
2

}
where MBB(Ei) = (bi, ti) for i ∈ {1, 2}, such that the full set of split
candidates for dimension i is given by

Pi(S) = Li(S) ∪ Ui(S)

Finally, a split candidate minimizing a goal function is selected from
the set of split candidates considered. The goal function w(S1, S2) is a
combination of two other functions, wg(S1, S2) and wf (S1, S2), and is given
by

w(S1, S2) =

{
wg(S1, S2) · wf (S1, S2) if wg(S1, S2) < 0

wg(S1, S2)/wf (S1, S2) otherwise

The function wg(C) evaluates the split by measuring the size of the
overlap, where less is better. This is similar to the R*-tree, but with two
major changes. First, perimeter is used instead of volume whenever at least
one of the split candidates lacks volume. Second, the combined perimeter
of the two partitions is used to distinguish between split candidates when
the MBBs of the two partitions do not intersect. This gives

wg(S1, S2) =

{
perim(S1) + perim(S2)− pmax if MBB(S1) ∩MBB(S2) = ∅
f(MBB(S1) ∩MBB(S2)) otherwise

where f = perim if at least one split candidate lacks volume and f = vol
otherwise, and pmax is the maximum possible value of perim(C1)+perim(C2)
as judged by the size of MBB(N). Beckmann and Seeger shows this value
is given by

pmax = 2 perimN − min
i∈{1,...,d}

(
t[i] − b[i]

)
where MBB(N) = (b, t).

When it comes to wf (C), it takes the trend of the MBB expansion into
account for dimension i and acts more like a scaling factor for wg . Given
that the MBB of the node has mainly expanded in one direction since the
last split, it is reasonable to assume that it will continue to expand in that
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direction. Or in other words, that the distribution of new entries will be
skewed in the very same direction.

Thus, to avoid extra splits and improve the structure of the tree, the
revised R*-tree does a skewed split so that there is more space for new
entries where they are expected to appear. This is accomplished by storing
the MBB of each new node in the node itself at creation time, and calculating
an asymmetry score for dimension i during splits,

ai =
(t

[i]
1 + b

[i]
1 )− (t

[i]
0 + b

[i]
0 )

t
[i]
1 − b

[i]
1

where MBB(N) = (b1, t1) is the current MBB of N and MBB0(N) = (b0, t0)
is the MBB of N at creation time.

Assuming only insertions, or in other words that MBB0(N) ⊆ MBB(N),
then ai ∈ [−1, 1]. Thus, ai can be transformed into an index that can be
used for splitting by linear scaling. This index, µi, can be written

µi =

(
1− 2m

M + 1

)
ai

which must be rounded to yield an actual index.

Since using the asymmetry score alone to select a split would result in
a severely reduced number of split candidates, possibly leaving out other
good splits, the function wf (C) instead yields a score where µi gets the best
score. More precisely, this function is an adjusted Gaussian function and is
given by

wf (C) = ys

(
exp

(
−
(
x(C)− µi
s(1 + |µi| )

)2
)
− y1

)

where

y1 = exp

(
− 1

s2

)
, ys =

1

1− y1
, x(C) =

2|C1|
M + 1

− 1,

and s is a parameter controlling the shape of the curve, for which Beckmann
and Seeger found s = 0.5 to be a decent value. The dimension i is the
dimension used to obtain the split (S1, S2).
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(a) (b) (c)

Figure 4.1: The first 3 orders of a Hilbert curve in 2 dimensions.

4.5 Hilbert R-tree

In contrast to the other R-tree variants, the Hilbert R-tree does not try to
devise a good split strategy in the d dimensional space directly. Instead, the
MBBs are mapped to a single dimension using Hilbert encoding as described
below. This allows the nodes of the R-tree to be sorted, which simplifies
the splitting algorithm and makes the R-tree function more like a B*-tree
on updates. Since the MBBs are still a part of the tree, searching can still
be done using the same algorithms as for the regular R-tree.

Before describing the insertion algorithm used by the Hilbert R-tree
in Section 4.5.3, Hilbert encoding is introduced in Section 4.5.1 and an
algorithm useful for performing the actual encoding is given in Section 4.5.2.

4.5.1 Hilbert Encoding

David Hilbert described a curve capable of filling a square [17], also known
as a space filling curve. He stresses the fact that this curve gives a unique
mapping between the points on a continuous curve and the points of a
square.

As can be seen in Figure 4.1, the curve is developed in steps. Starting
with a square and dividing it into 4 quadrants with a predefined curve
giving the order of the squares, gives a first order Hilbert curve, as visible
in Figure 4.1a.

The next step in generated by copying the first square four times to
fill the four quadrants of a new square and rotating the bottom two before
connecting the ends, giving the curve in Figure 4.1b. By further copying,
rotation and connection of the pattern at the step before, a Hilbert curve
of order 3 emerges, as seen in Figure 4.1c, and so forth. By using a curve of
a sufficiently high order, the mapping between the two dimensional space
and a line can be made arbitrarily accurate.
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Although Hilbert never explores the possibility of using the curve for
mapping the points in a hyper cube of an arbitrary dimension onto a line,
this has also shown to be possible [1]. Even though the mapping is unique
given a set of rules to generate the curve, several sets of rules is possible for
the generalized version of the curve [15].

More formally, the generalized Hilbert encoding maps a point in a d
dimensional space to a single value in one dimension. The Hilbert encoding
thus be expressed as a function Hd : [0, 1〉d → [0, 1〉, such that Hd(p) is the
distance along the Hilbert curve before reaching the square in which point
p resides, starting at the end of the curve residing in the lower half of the
square along the x axis.

One important property of the Hilbert curve is its locality preserving
behavior. That is, points that are close to each other in the original domain
tend to be close in the co-domain. This property can obviously not hold for
any point because the number of points within a given distance grows with
the number of dimensions, but the reverse is true; if the images of two points
are close in the co-domain, the points are also close in the domain. This
follows directly from the triangle inequality since the curve is continuous,

l(p1, p2) ≤ |Hd(p1)−Hd(p2)|

where p1, p2 ∈ Rd are points, and l(p1, p2) is the distance between them.

4.5.2 Encoding Algorithm

Given a point p ∈ Rd, finding the image Hd(p) can be done in an iterative
manner such that the accuracy of the result improves with every iteration.
A modified version of the algorithm given by Lawder [26] can be found in
Algorithm 4.7. It drills down through the hierarchy of boxes, one step each
iteration, and each iteration thus adds d bits to the result.

As shown in Figure 4.1, the Hilbert curve partitions the space into 2d

partitions by slicing the original data space in two equal parts for each
dimension. Since the value of Hd(p) depends on which of these partitions p
resides in, the first step of the algorithm is a set of comparisons to extract
a set of dimensions B where p resides in the upper half.

At the end of the algorithm, the set B is used to generate the output
for the current iteration. This generation is based on the observation that
the curve needs to go back where it came from for all axes, except the first.
This can be seen in Figures 4.1a to 4.1c where the curve first goes from low
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Function HilbertEncode(p)
B ← {i ∈ {1, . . . , d} | pi > 1

2};
/* Calculate transform */

r ←

max
i∈B

(i)− 1 if B 6= ∅

d otherwise
;

B′ ←

{
B 	 {d} if |B| is odd

B 	 {d} 	 {r} otherwise
;

/* Transform p to q */

for i ∈ {1 . . . d} do

q[i] ←

{
p[i] if i ∈ B
p[i] − 1 otherwise

;

end
for i ∈ B′ do

q[i] ← 1− q[i];
end

q = (q[(1−r) mod d+1], q[(2−r) mod d+1], . . . , q[(n+1−r) mod d+1]);

/* Convert to Hilbert encoding */

for i ∈ {1, . . . , d} do

hi =

{
1 if |{j ∈ B | j ≤ i}| is odd

0 otherwise
;

end
return h1 . . . hd HilbertEncode(q);

end

Algorithm 4.7: Recursive version of the Hilbert encoding algorithm
presented by Lawder [26]. The endless recursion is usually halted when
enough bits has been collected.
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to high coordinates along the y axis, but the order is opposite after crossing
the x axis.

Since d bits are needed to specify the box in which p resides, the output
from each iteration is d bits. The output bit for dimension i is generated
by checking whether i ∈ B and then inverting the result if the number of
earlier dimensions where p resides in the upper half is odd. This can be
simplified by including i in the count and set the bit if the count is odd.

Finally, the point p is transformed to create a new point q which is ro-
tated to the local coordinate system of the Hilbert curve inside the partition
in which p resides. This is done by first constructing a set B′ and an integer
r.

The integer r defines a rotation of the axes, both from a symbolic and
geometric perspective. From a symbolic perspective, the rotation is applied
by left shifting the axes, such that what was previously the ith axis instead
becomes the ((i − r) mod d)th axis. This does however correspond to a
rotation also from a geometric perspective. The purpose of this rotation is
to ensure the curve travels along the correct dimension.

Finding r is done by finding the highest dimension for which p resides
in the upper half. This dimension gives the last position in the output at
which the bit value is different from the corresponding bit in the output
from the previous iteration. By following the lines in Figure 4.1, one can
observe that the line travels in the direction of dimension i every time the
bit corresponding to i in the output changes from unset to set.

The set B′ is used to mirror p through a hyper plane perpendicular to
the dimensions present in B′. This ensures the output of one partition is
aligned with the input of the next, and that the values are increasing along
the line.

4.5.3 Insert Algorithm

As stated in the introduction, the Hilbert R-tree acts more like a B*-tree
when the tree is constructed, since it only takes the Hilbert value of a data
object into account when deciding where it should be placed. The Hilbert
value of a data object O is calculated as

Hd(O) = Hd(p)

where p is the center point of MBB(O).
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For internal nodes, the MBB is not used at all. The Hilbert value is
instead calculated as the maximum of the Hilbert values assigned to the
children. In other words, given a node N , the Hilbert value is given by

Hd(N) = max
E∈N

Hd(N)

For the ChooseSubtree method as shown in Algorithm 4.8, the Hilbert
R-tree simply picks the node where the Hilbert value is as low as possible
without being lower than that of the new data object, in other words the
lower upper bound. Should no such node exist, the node with the maximum
Hilbert value is selected (upper lower bound).

Function ChooseSubtree(N , O)
S ← {E ∈ N | Hd(E) ≥ Hd(O)};
if S = ∅ then

return N ′ ∈ argmax
E∈N

Hd(E);

end
return N ′ ∈ argmin

E∈S
Hd(E);

end

Algorithm 4.8: The ChooseSubtree algorithm used by the Hilbert
R-tree.

As Algorithm 4.9 shows, the algorithm for splitting a node is slightly
more complicated. Instead of actually splitting a node, the entries may
instead be shared with the neighbor of the node. The neighbor is the next
node in the sequence of sibling nodes sorted by Hilbert values. When the
current node is the last in the sequence, the previous node may be selected
instead. It should be noted that implementations may also support larger
neighborhoods, but this is not considered here.

The sharing itself is done by sorting all entries and partitioning the
sorted sequence such that each node gets an equal share as far as possible.
An algorithm for this is displayed in Algorithm 4.10.

When all nodes in the neighborhood are full, an actual split occurs.
This is simply done by creating a new node, and sharing entries between
the current node, its neighbor and the new node.

As is easy to imagine, the sorting described in these algorithms are often
simplified by keeping the nodes themselves sorted. This reduces the Choose-
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Function SplitNode(N)

P ← parent of N ;
F ← {E ∈ P | Hd(E) > Hd(N)};
B ← {E ∈ P | Hd(E) < Hd(N)};

S ←
(

argmin
E∈F

Hd(E)

)
∪
(

argmax
E∈B

Hd(E)

)
;

if S 6= ∅ then
N ′ ← argmax

E∈S
Hd(E);

if |N ′| < M then
(N2, N

′
2)← Share(N , N ′);

replace N and N ′ with N2 and N ′2 in the tree;
return (N, ∅);

else
(N2, N

′
2, N

′′
2 )← Share(N , N ′, ∅);

replace N and N ′ with N2 and N ′2 in the tree;
return (N2, N

′′
2 );

end

end
return Share(N , ∅);

end

Algorithm 4.9: The SplitNode algorithm used by the Hilbert R-tree.
Algorithm 4.10 displays the Share method.
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Function Share(N1, . . . , Nn)

E ←
⋃
i∈{1,...,d};

m(i) =

{
b|E|/nc+ 1 if |E| mod n ≤ i
b|E|/nc otherwise

;

for i ∈ {1, . . . , n} do
N ′i ← ∅;
for j ∈ {1, . . . ,m(i)} do

E ← E ∈ argmin
E′∈E

Hd(E
′);

N ′i ← Ni ∪ {E};
E ← E \ {E};

end

end
return N ′1, . . . , N

′
n;

end

Algorithm 4.10: The Share algorithm used by the Hilbert R-tree.

Subtree algorithm to a binary search and eradicates the sorting from the
SplitNode algorithm as the order is known.
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Chapter 5

Optimizations

This chapter introduces possible optimizations for search in memory resident
R-trees. All suggested improvements and whether they are expected to
improve memory or compute performance can be found in Table 5.1, even
though this distinction is not entirely clear cut.

This chapter starts off with the arrays of fields layout in Section 5.1,
moves on to SIMD node scans in Section 5.2 and full node scans in Sec-
tion 5.3, before the pruning node scan is introduced in Section 5.4.

5.1 Arrays of Fields Layout

Due to cache lines being much smaller than disk pages, the data layout of a
node in the R-tree must be considered at a more fine grained level than the
node level used for disk based trees. Mapping the concepts from the original
R-tree [14] directly into memory results in nodes consisting of entries, where

Name Memory Compute

Array of Fields x
SIMD Node Scan x x
Full Node Scan x
Pruning scan x x

Table 5.1: Summary of algorithms suggested in this chapter and whether
they improve memory performance, compute performance or both.

45



E1 E2 E3 E4

M p h

b[1] b[2] t[1] t[2]

Figure 5.1: Naive layout of a node with the entries E1, . . . ., E4, with the
layout of each entry and MBB below the node itself, where M = (b, t) is
assumed to be of 2 dimensions. The value h is only present in some trees.

each entry consists of an MBB and a pointer, as shown in Figure 5.1.

For other versions of the R-tree, extra fields may be included in each
entry, as is the case for the Hilbert R-tree, where a Hilbert value is stored
in each entry. Alternatively, an extra field may be included in the node, as
is the case for the R*-tree, where the MBB of the node during construction
must be stored.

The drawback of the naive layout from Figure 5.1 is however that several
fields are likely to share cache lines. Since the smallest unit loaded from
memory is a cache line, unused fields are likely to be loaded from cache just
because they share cache line with a field that is used.

As an example, consider a search through a Hilbert R-tree, where the
Hilbert value is included in every entry. Assume the Hilbert value resides
in the same cache line as the MBB. Now, the Hilbert value must be loaded
from memory when the MBB is required, regardless of whether it is needed
or not.

This makes no difference for a disk based R-tree as the bottleneck is
usually the disk access itself. Should the fields not share a disk page, several
disk accesses must be made to access all fields. Due to the smaller size of
cache lines, several cache lines will have to be loaded in most cases anyway.

One way to reduce the number of cache lines accessed is to rearrange the
data into arrays of fields, as can be seen in Figure 5.2. This strategy places
each field of an entry into a separate array in the node. Since adjacent fields
now are of the same type, they are more likely to be required simultaneously,
thus this may mitigate the effect of cache line sharing.

This idea is not a new idea, and has indeed been tried by Hwang et al.
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M1 M2 M3 M4 p1 p2 p3 p4 h1 h2 h3 h4

b
[1]
i b

[2]
i t

[1]
i t

[2]
i

Figure 5.2: Arrays of fields layout for node where Mi = (bi, ti), pi and hi
is the MBB, pointer and extra value for entry i respectively.

during their evaluation of memory resident R-trees [19]. The general strat-
egy is also presented in Intel’s optimization reference [21] under the name
STRUCT OF ARRAY.

5.2 SIMD Node Scans

When data is loaded sequentially from memory, it is likely the prefetcher
kicks in to hide memory latency, and thus the available computational re-
sources may become a bottleneck. Since a search through the R-tree consists
mainly of node scans with sequential memory access, optimizing this opera-
tion is a good place to start reducing the computational cost, in accordance
with Amdahl’s law.

Since a node scan consists of the same operations applied to several
entries, this is a perfect opportunity for parallelism using a SIMD approach.
Good candidates for exploitation of the available data level parallelism are
the SIMD instructions. These can be used to, for example, compare several
coordinates simultaneously.

SIMD instructions can be used with several storage layouts, but some
are better suited than others. For example would the naive layout displayed
in Figure 5.1 be a poor choice, especially if 2d is not be a multiple of
w, in which case some lanes will go unused, or more complex logic must
be implemented to correctly handle all possible offsets. Both cases end
up wasting computational resources, either through unused lanes or extra
control logic.

A better alternative is to use SIMD blocking, where a group of w objects
are combined into a single block, for which an arrays of fields layout is used.
As shown in Figure 5.3, this results in a node where the corresponding fields
can easily be loaded into a single SIMD register. In many ways, this can be
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S1 S2 p1 p2 p3 p4 h1 h2 h3 h4

b
[1]
3 b

[1]
4 b

[2]
3 b

[2]
4 t

[1]
3 t

[1]
4 t

[2]
3 t

[2]
4

Figure 5.3: Node with SIMD blocking for w = 2 lanes, where S1 and
S2 are SIMD blocks containing M1 = (b1, t1), . . . ,M4 = (b4, t4). Note that
corresponding coordinates are adjacent and can be loaded simultaneously
into a SIMD register with w lanes.

C1 C2 C3 C4 p1 p2 p3 p4 h1 h2 h3 h4

t
[1]
1 t

[1]
2 t

[1]
3 t

[1]
4

Figure 5.4: Node layout suitable for full node scans. Each C1, . . . , C4

contains the lower and upper coordinates for the first and second dimension.

viewed as grouping w objects and using an arrays of fields layout recursively.

The drawback of SIMD blocking is generally that the algorithm needs
to handle w objects simultaneously, and that arranging the fields in this
way requires slightly more logic during construction. However, since w is
usually constant, this is often quite simple.

In addition to increasing the computational performance of the search
by increasing parallelism, SIMD instructions may also improve memory per-
formance as more data is requested in one go using the specialized SIMD
load instruction.

5.3 Full Node Scans

When searching through a tree, a series of node scans is performed, as
explained in Section 3.3.1. As one node scan may be paused in order to
explore a node further down the tree, this reassembles a depth first traversal
through the tree of nodes overlapping the query box.

This approach makes sense when a scan can continue where it left off
with negligible cost, as is the case for a disk based R-tree, where the nodes
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in which a search is currently in progress are stored in memory. Pausing a
search will therefore not incur an extra disk access.

For memory resident R-trees however, the search can benefit from scan-
ning an entire node till the end before stopping. This reduces the number
of hard to predict memory accesses that may stop the hardware prefetcher
from successfully fetching the required cache lines.

The drawback of this approach is the need to store the results of each
scan at the current path down the tree. Using bit sets for each level of the
tree, this totals to a maximum of Mh bits, where h is the height of the tree
and M is the maximal node size.

Since scanning the entire node in one go means all coordinates are re-
quired at the same time, the logic can be simplified by collecting all cor-
responding coordinates in separate arrays, as is illustrated in Figure 5.4.
This is similar to SIMD blocking using w = M , and requires loading each
coordinate of the query rectangle only once.

This can be combined with SIMD instructions to speed up the scan of
each coordinate list.

5.4 Pruning Node Scans

During a search through an R-trees structure, an intersection test is used
to prune away entire sub trees where such sub trees can be determined not
to overlap the query box. This scenario is illustrated in Figure 5.5a and
referred to as a no overlap scenario.

More theoretically, assume a node N , and let Ei ∈ N be the entries
of N for i ∈ {1, . . . , |N |}. Due to the structure of the R-tree, and by the
definition of an MBB, it is already known that MBB(Ei) ⊆ MBB(N).

Assuming that Q is disjoint from M , which is the case for the no overlap
scenario, gives

MBB(N) ∩Q = ∅ ∧ MBB(Ei) ⊆ MBB(N) ⇒ MBB(Ei) ∩Q = ∅

which can be used recursively through the sub tree below N . Thus the sub
tree below N can be pruned away in a no overlap scenario where MBB(N)∩
Q = ∅.

Less utilized however, is the fact that the entire sub tree below N can
be assumed to intersect the query given that M is contained within Q, as
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M

Q

(a) No overlap. The sub tree be-
low N can be pruned.

M

Q

(b) MBB inclusion. All leafs in
the sub tree below M overlaps
with Q.

M

Q

(c) Partial overlap. The child
MBBs of N must be partially
checked.

Q

M

(d) Query inclusion. All child
MBBs of N must be checked.

Figure 5.5: Four possible scenarios for the MBB M of a node N and a
query box Q and how this affects pruning.
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is the case in Figure 5.5b. In mathematical terms, this is similar to the no
overlap scenario, and can be expressed as

MBB(N) ⊆ Q ∧ MBB(Ei) ⊆ MBB(N) ⇒ MBB(E) ⊆ Q

which will be referred to as a MBB inclusion scenario.
Another, perhaps less obvious situation is a partial overlap scenario, as

seen in Figure 5.5c, where the Q overlaps M , but neither is included in the
other. In contrast to the two previous cases where all children of N could
be determined to be within or outside Q, this scenario does not allow any
assumption as to which children are included or excluded.

What it does allow, is an assumption on some of the coordinates of the
children of N . For a more useful description, some definitions must be in
place. First, note that the overlap condition between two MBBs A = (ba, ta)
and B = (bb, tb) can be expressed as

A ∩B 6= ∅ ⇔ ∀i ∈ {1, . . . , d} : b[i]a ≤ t
[i]
b ∧ t

[i]
b ≥ b

[i]
a

Now assume b
[i]
q ≤ b

[i]
m for some dimension i, where Q = (bq, tq) and

MBB(N) = (bm, tm), as is the case in Figure 5.5c. Let MBB(Ei) = (be, te)
where Ei is a child ofN as before. Since MBB(Ei) ⊆ MBB(N), the following
conclusion can now be drawn

b[i]q ≤ b[i]m ∧ b[i]m ≤ b[i]e ⇒ b[i]q ≤ be
where the right side turns out to be one of the comparisons needed to do
the intersection test above.

In other words, simply comparing the coordinates of Q with the corre-
sponding coordinate of MBB(N) may make it unnecessary to check any of
the corresponding coordinates in the sub tree below N . This will be referred
to as partial pruning since an entire set of coordinates can be pruned for
the remaining search through the sub tree.

Note that this degenerates to the MBB inclusion scenario when all coor-
dinates of Q are outside M , in which case none of the coordinates need be
checked. In other words, implementing partial pruning also handles MBB
inclusion.

In order to make this strategy effective, a memory layout where it is
possible to skip the coordinates that need not be checked is desirable. This
is a good match for the node layout used for full node scans, as seen in
Figure 5.4. In addition, it can be easily combined with both full node scans
from Section 5.3 and SIMD instructions as used in Section 5.2.
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Chapter 6

Methodology

Evaluation and analysis of the proposed optimizations for search in the R-
tree is done by measuring the run time as the short cut of counting disk
accesses is no longer possible for memory resident R-trees. The tree itself
is constructed using the insert algorithm for the revised R*-tree.

More details are given in this chapter, starting with the data and query
sets in Section 6.1. The strategy for measuring run time is presented in
Section 6.2, before the tools used for analysis is introduced in Section 6.3.
The actual implementation is briefly described in Section 6.4 before the
details of the environment in which the run time was measured is presented
in Section 6.5. Finally, Section 6.6 describes how the parameters used were
selected.

6.1 Data and Query Sets

The data sets used were provided by Beckmann and Seeger and are the sets
they use when they evaluate the revised R*-tree [4]. They also provided
a more detailed description [3]. In summary, there are 28 data sets, of
which 21 are artificially generated and the remaining are data sets form real
applications.

Three query sets have been derived from each data set. The first gives
result sets of around 1 result, the second yields around 100 results and the
thirds give 1000 results. Because the query cost tends to increase with result
set size, there are fewer queries in the query sets yielding a large number of
results.
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Name Type Peculiarities Order

abs02 rectangles overlap Row order
bit02 points none Random
rea02 mix overlap

duplicates
Ordered sub-regions inserted in ran-
dom order

abs03 rectangles overlap Row order
uni03 points none Random

Table 6.1: The set of 2 and 3 dimensional data sets used for testing and
their key properties.

To identify the data sets, a three letter code combined with the zero
padded dimension is used, for example abs02. The query sets will mostly
be referred to in the context of a data set, and thus it is sufficient to mention
its size only. Be aware that the size refers to the number of results, not the
number of queries.

Since this thesis focuses on search in 2 and 3 dimensions, data sets
of higher dimensions are ignored. Furthermore, to avoid over fitting the
solutions to the data, the suggested improvements for memory resident R-
trees are tested on only a subset the data sets.

As can be seen in Table 6.1, the data sets have been selected to be
representative for the entire collection, both with respect to order, type and
peculiarities, while at the same time leaving a set of distributions untouched.
The remaining data sets will be used for a final comparison between the
chosen improvements and the baselines.

6.2 Run Time Measurement

The query performance of the index is measured as the run time of a given
query set. The index is first constructed from the data set, then the query
set is loaded into memory and finally the wall clock time required to generate
the results is measured and reported as the run time. An overview of the
evaluation process can be found in Algorithm 6.1.

Since data already present in cache may have an impact on the run
time, the cache is cleared using the CLFLUSH instruction available on the
x86 architecture. This instruction flushes and invalidates a cache line, and
is used repeatedly to flush all cache lines in the memory regions mapped
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Function Benchmark(I, Q)
R← ∅;
for i ∈ {1, . . . , r} do

L← ∅;
for j ∈ {1, . . . , 10} do

invalidate cache;
r ← execution time of Q using I;
L← L ∪ {r};
shuffle Q;

end
R← R ∪

{
1
10

∑
r∈L r

}
;

end
return min

r∈R
(r);

end

Algorithm 6.1: The process performed when evaluating an index I
given a query set Q using r runs. Note that I should already be filled
with data.

into the process’ virtual memory space.

Unfortunately, since all queries in the query set are executed in rapid
succession without any cache clears in between, the order of the queries may
shift the results in positive or negative direction for some query sets. To
mitigate this effect, the run time for each query set is measured 10 times,
in between which the query sets are shuffled using the standard template
library function std::shuffle. To ensure reproducible results, the random
number generator used is initialized with a constant seed.

Each execution of the query set with the associated cache invalidation
and query shuffling will be referred to as a run. The run time of a run is
the average time required to generate result sets for the entire query set.

Even though the evaluation is done on a quiet system, there may be
occasional disturbances causing the run times to vary slightly between each
run. Therefore, the runs are repeated several times and the minimum among
the averages is reported.

For the first query set, the number of repetitions is 60, but for the
following it is only 10. The number of repetitions for the first query set

55



is higher to allow the branch predictor to record the history of branches
and thus predict the branches more accurately during measurement. The
results of the first runs could have been discarded, but since the minimum
is selected, leaving them can only make the result more accurate.

6.3 Hardware Counters and Instrumentation

To provide a more in depth analysis of the performance observed, some extra
information may be gathered using the performance counters present in the
processor. These counters can be set up to register a set of predefined events
and do not affect the performance. Examples of such events include cache
misses, memory accesses, stalls and the number of instructions retired.

Unfortunately, only 4 such counters exist, and thus only 4 events can
be recorded at any one time. To provide more statistics, each set of runs
is repeated several times, each time with a different set of events. Since
no two runs are exactly equal, two event counts from different runs may
not correspond exactly. To increase the chance of comparable numbers, the
value from the run with the minimum run time within one set of runs is
reported.

In some cases, these hardware counters may also be used to provide
more detailed information about what lines of code triggers certain events
through sampling. This is done using the perf Linux tool, which sets up an
event counter for the desired event. Each time the event counter overflows,
an interrupt occurs and the operating system records the instruction pointer
and lets the program continue. Finally, the perf tool reports the frequency
of interrupts at each assembly instruction.

These numbers are unfortunately not always entirely exact. First of
all, the use of sampling means a lot of events are disregarded. Second,
the instruction pointer may be at a different instruction than the source
of the event due to pipelining. In addition, it is sometimes hard to map
the assembly code back to the source, even with source annotation, due to
optimizations performed by the compiler.

Events related to the higher level behavior of the code, such as the num-
ber of nodes accessed, can obviously not be captured using hardware events.
These are instead collected using instrumentation. Since the collection has
an impact on the run time and performance counters, this is never done
during run time measurements. In other words, the statistics are collected
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during separate runs.

6.4 Implementation

All indexes have been implemented from scratch, using the original articles
as reference for the existing variants of the R-tree. The code is written in
C++11 with heavy use of templates, which allows the compiler to do several
optimizations not otherwise possible, such as loop unrolling when looping
through all dimensions. Each index is, together with its parameters, com-
piled in to a separate library with the highest level of compiler optimizations
enabled.

A common executable is responsible for loading the dynamic library,
reading data sets and query sets from files and passing them on to the
index in a suitable format. Since some measurements may affect each other,
command line parameters are used to specify what should be measured.

For R-trees, the search algorithm itself has been separated from the ac-
tual construction of the tree, such that no R-tree variant gains the advantage
of a better search algorithm. Parts of the search algorithm are however spe-
cialized for some of the improvements suggested in Chapter 5. For a more
complete overview of the implementation, see Appendix A.

Since the Hilbert R-tree requires the bounds of the data domain to
correctly encode coordinates, this is calculated from the data set and passed
to the index at construction time. The Hilbert values themselves are limited
to 64 bits.

6.5 Environment

Run time measurements were done on a system with two Intel Xeon E5-
2683 processors with 128 GB and 64 GB of memory. The maximum memory
bandwidth is 68 GB s−1 [20] and each processor has 14 cores with 2 hardware
threads each, a split L1 cache with a total of 64KB equally distributed
between instructions and data, and a 256KB L2 cache shared with one
other core on the same chip. All cores on a chip shares a 35MB L3 cache,
and all cache lines are 64 bytes.

To increase the chance of reproducible results, only one of the available
cores is used. Since the cores share many of the same resources, running
several experiments simultaneously may render the results hard to predict
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Parameter R-tree variant Description

M All Maximal number of entries in each node
m All Minimum entries in each node
p R*-tree Number of nodes to reinsert on overflow

Table 6.2: Parameters that must be determined for different R-tree vari-
ants. Note that m is essentially determined for the Hilbert R-tree as a part
of the split strategy.

and reproduce. To stop the operating system from migrating the process
between cores, which may results in varying run times due to cache effects,
the process is also pinned to a specific core and the memory allocated on
the corresponding node using the Linux numactl command.

For compilation, the GNU Compiler Collection (GCC) version 6.2.0 is
used. The operating system running beneath was Ubuntu 14.04.5 LTS.

6.6 Parameter Optimization

The R-trees evaluated herein requires a set of parameters as listed in Ta-
ble 6.2. Since the parameters influence the performance of the indexes, and
because the optimal set of parameters may vary between the indexes, an
optimal set of parameters must be devised for each index individually. Due
to the large search space, finding the optimal parameters by enumerating
all possibilities is intractable in the scope of this project.

First, the parameter p is fixed to bM/3c, which is approximately 30 %
as suggested by Beckmann and Seeger [2]. Simulated annealing [11], a prob-
abilistic global optimization technique, is then employed to find values for
M and m that can be used during evaluation.

As can be seen in Algorithm 6.2, the optimization algorithm starts out
with an initial set of parameters P0. During iteration i, a candidate solution
C is selected randomly from the neighbors of the current solution. The
candidate solution is used as the solution Pi for the current iteration if it
is better than the previous solution Pi−1, or otherwise according to some
probability that decreases with time. This is repeated until the current
solution has not been updated for 20 subsequent iterations.

Due to the decreasing probability of selecting a solution that is worse
than the current one, the algorithm explores the solution space during the
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first iterations, but acts more like a hill climbing algorithm near the end.

Function Anneal(P0)

i← 1, j ← 0;
T = 1;

while j < 20 do
C ← SelectNeighbor(solution);

if S(C) < S(Pi−1) ∨ Random() < 1
T (i)

S(Pi−1)−S(C)
S(P0) then

Pi ← C;
j ← 0;

else
Pi ← Pi−1;
j ← j + 1;

end

T ← f(T );
i← i+ 1;

end
return argmin

k∈{0,...,i}
S(Pk)

end

Algorithm 6.2: The basic simulated annealing algorithm given an
initial set of parameters P0. S(P ) calculates the run time using the
set of parameters P , and Random returns a random number r ∈ [0, 1〉,
drawn from a uniform distribution.

In the theoretical version of simulated annealing, the current solution
would be returned. Many implementations, including this one, do however
return the best solution visited during the course of the algorithm. This
increases the chance of finding a good solution with only a negligible increase
in cost.

When searching for parameters, the neighbor selection function Select-

Neighbor simply draws each parameter of the new solution from a Gaussian
distribution centered on the previous value for the same parameter, rounded
to the closest integer. The standard deviation of the distribution is set to
half the value of the parameter from the initial solution. Should the selected
solution be invalid (e.g. M < 2), a new set of parameters is chosen until a
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valid solution is found.
Assuming the parameters are bounded and given enough iterations, the

algorithm can be shown to converge to the globally optimal solution [11].
The number of iterations required depends on the function to be optimized.
If deep local minima exist, more iterations are required. Thus, assuming
the run time varies smoothly with the parameters, this should not pose a
problem.
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Chapter 7

Experimental Results

This chapter presents the results of the experiments and starts off with the
reproduction of earlier results in Section 7.1, before investigating the run
time distribution to establish the error in run time measurements in Sec-
tion 7.2. The impact of the parameters used is explored in Section 7.3.
Finally, the behavior of a naive R-tree implementation is examined in Sec-
tion 7.4 before the results from applying the optimizations suggested in this
thesis are presented in Section 7.5.

7.1 Reproduction of Results

To validate the indexes, and provide a humble review of the work by Beck-
mann and Seeger [4], their results have been attempted reproduced using
the original data sets, query sets and parameters.

First of all, it should be pointed out that since the data and query sets
are the exact same used by Beckmann and Seeger, and because the results
should be independent of the machine on which the tests are run, the results
should be possible to reproduce exactly.

With that said, since most of the algorithms relay on floating point
arithmetic, the order of calculation may have an impact on the result. This
is however too specific to be included in the original papers. If the algorithm
is sound, however, this should not make a large difference.

The average number of leaf accesses performed by the different indexes
relative to Beckmann and Seeger’s numbers can be found in Table 7.1. Judg-
ing from the averages, the results for the revised R*-tree have been repro-
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Index 2–3D 2–9D 2–16D 2–26D

R*-tree 0.93 0.72 0.64 0.45
Quadratic R-tree 0.75 0.75 0.75 0.40
Revised R*-tree 1.00 0.98 0.99 0.98
Hilbert R-tree 0.91 0.97 0.96 0.59

Table 7.1: The average number of leaf accesses performed by the indexes
over all data and query sets, the number of leafs and the number of splits
using perimeter. All numbers are relative to the implementations by Beck-
mann and Seeger [4].

duced almost exactly. This is not so for the other indexes, which performed
better than found by Beckmann and Seeger.

For the R*-tree, the description given in their later article [4] seems to
be slightly different from the original [2] when it comes to tie resolution.
The original version was followed in this case.

In addition, the cost limitation for the ChooseSubtree method has not
been implemented, thus the better numbers may be due to more resources
being spent during insertion. According to the original article, this should
not make a large difference.

For the Hilbert R-tree, the original papers [4, 24] are not very precise
when it comes to the algorithm. For example does none of them describe
the Hilbert encoding used. Neither is there any explicit mention on whether
sharing is actually implemented, and in that case how the neighborhood is
chosen. It is thus expected that the numbers are slightly different.

The algorithm for the quadratic R-tree is however quite concise, and
it is therefore slightly surprising that the numbers are off by such a large
factor.

One interesting observation is how much better all indexes with the ex-
ception of the revised R*-tree do on average for dimensions 2 to 26, meaning
that they do significantly better than expected in dimensions 16 to 26. Even
so, the revised R*-tree is still way ahead of the others. The quadratic R-
tree, Hilbert R-tree and R*-tree do approximately 3.4, 2.8 and 1.7 times as
many leaf accesses on average across all dimensions.

A more detailed table with leaf accesses for the revised R*-tree each
data and query set combination can be found in Table 7.2, also this time
relative to the original numbers. This reveals that most of the data and
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Figure 7.1: Run time histogram for 5000 runs. Around 1 % of the samples
are located above the selected range and included in the last bar.

query sets yield very similar results, with the exception of a few data sets.
The discrepancies may be due to floating point arithmetic, as discussed

earlier, or perhaps because the algorithm has not been implemented exactly
as specified. As Table 7.1 show, the average is still lower than the original
numbers.

7.2 Run Time Probability Distribution

The run time is expected to vary slightly between each run due to external
events, such as context switches or translation look aside buffer flushes per-
formed by the operating system, or cache interaction with other processes
running on the system. This section therefore examines the probability
distribution of the run times, which makes it possible to later determine
whether differences in run times should be deemed significant or not.

To get a picture of the probability distribution, the benchmark used to
determine the run time for the abs02 data set has been run 5000 times in
a row using the query set with a medium size result set. This gives the
distribution in Figure 7.1. Note that the index structure was constructed
only once, after which the 5000 runs followed.

The histogram acquired from the run times can be found in Figure 7.1.
A small number of runs required significantly longer time than the other to
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benchmark Q0 Q2 Q3 Leafs Perim. splits

abs02 1.00 1.00 0.99 0.99 1.00
abs03 1.00 1.01 1.01 1.01 1.00
abs09 1.00 0.99 0.99 1.00 1.00

bit02 0.96 0.99 0.99 1.00 1.00
bit03 1.00 1.01 1.00 1.00 1.00
bit09 1.00 0.97 0.99 1.00 1.00

dia02 1.00 1.00 1.01 1.00 1.00
dia03 1.00 1.00 1.00 1.00 1.00
dia09 1.00 1.00 1.00 1.00 1.00

par02 1.03 1.02 1.00 1.00 1.00
par03 1.01 1.00 1.00 1.00 1.00
par09 0.93 0.95 0.98 1.01 1.00

ped02 0.98 1.00 1.00 1.00 1.00
ped03 0.98 0.99 1.00 1.00 1.00
ped09 0.61 0.63 0.67 0.99 1.00

pha02 1.00 1.00 1.00 1.00 1.00
pha03 1.00 1.00 1.00 1.00 1.00
pha09 1.13 1.00 1.00 1.00 1.00

uni02 1.00 1.00 1.00 1.00 1.00
uni03 1.02 1.00 1.01 1.00 1.00
uni09 0.98 1.01 1.00 1.00 1.00

rea02 1.01 1.00 0.99 0.98 1.00
rea03 1.05 1.02 1.01 1.00 —
rea05 1.08 1.04 1.03 1.00 0.90
rea09 1.28 1.06 1.04 0.99 1.00
rea16 1.05 0.99 0.99 1.00 1.12
rea22 1.01 0.96 0.98 1.01 1.00
rea26 0.83 0.94 0.98 1.01 0.99

Table 7.2: The average number of leaf accesses performed by the indexes
for all data and query sets, relative to the numbers given by Beckmann and
Seeger [4]. The two last columns show the relative number of leafs in the
tree and relative number of perimeter splits done during construction.
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complete and have been collected in the last group of the histogram. As
is visible, the run time distribution seems to be multi modal. A possible
explanation for this may be that certain events occur in some percentage
of the runs, always adding an approximately constant amount to the run
time.

One takeaway from the histogram is that the 99 percentile lies within
a distance of 2 % of the minimum value, which is very acceptable for later
evaluation of the indexes. This is of course under the assumption that the
remaining results follow the same distribution.

A plot of the run times over time was also made, and the resulting plot
for the first 500 runs can be seen in Figure 7.2a. One would perhaps expect
each run to be independent of the others, but that seems not to be the case.
In fact, the run times seems rather unstable for the first 50 runs. To explain
this phenomenon, hardware counters were enabled and the data collected is
shown in the remaining sub figures of Figure 7.2.

First of all, it may be tempting to explain the dropping run time from
Figure 7.2a as a cache effect, especially when comparing he run times with
the number of number of last level cache misses as visible in Figure 7.2b. In
other words, it may seem like the cache clearing code is not doing its job,
and thus the code performs better after some iterations as the most used
memory references are served from cache.

This does however seem unlikely when taking the number of memory
references arriving at the last level cache, which can be seen in Figure 7.2c,
in to account. The plot seems to fit very well with the number of misses,
meaning the increased number of cache misses is likely due to the increased
number of references.

And indeed, the number of cache misses relative to the number of cache
references is almost constant and always within 38 % to 40 %.

The large number of cache references during the first runs is accompa-
nied by a large number of micro instruction issues, as seen in Figure 7.2d.
Certainly, assuming that some of these micro instructions are memory ref-
erences, this can explain both the increased number of last level cache ref-
erences and misses.

One could suspect that the varying number of micro instructions is due
to varying amounts of work performed by the algorithm benchmarked, but
measuring instruction retirement reveals a constant number of instructions
being retired every run, which suggests the code is performing the same
amount of work.
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Figure 7.2: Plot of different statistics in the order they were collected.
Note that only the first 500 runs are shown as the remaining ones are rela-
tively uninteresting.
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Figure 7.3: The total run time of all query sets on abs02 as a function of
M and m, sampled with a grid size of 4.

What may possibly explain the high run times during the first runs is
perhaps speculation going wrong. As shown in Figure 7.2e, the number of
times times the processor executes a branch speculatively the wrong way
correlates well with the other measurements. This suggests that the branch
predictor needs some time before it finds the best approach to predict the
outcome of branches. When it does so, it does however seem to stick with
the choice and thus the performance levels out after an initial warm up time.

7.3 Impact of Parameters

This section investigates the impact of the parameters on the performance
of the memory resident revised R*-tree, and checks the assumptions made
in Section 6.6.

The parameters m and M were chosen and the run time for the revised
R*-tree sampled for the abs02 data set, the total run time for all query sets
can be found in Figure 7.3.

As seen, there is a cliff when the node size is increased beyond around
120–150 entries. A lower resolution plot of a larger domain shown in Fig-
ure 7.4 reveals that a similar cliff appears around node sizes of 1200–1400
entries.

These cliffs are most likely due to changes in the tree structure. Assume
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Figure 7.4: The total run time of all query sets on abs02 as a function of
M and m, sampled using a grid size of 64.

f is the average fill grade of a node in the tree. Let Li be the number of
nodes in the tree at depth i. Since the tree increases in height when the
root node is split, the root must be full prior to a split and thus contain M
entries. This gives

L1 = M

Generally, each node at depth i > 1 in the tree contains fM entries,
thus the number of nodes at the level below is given by

Li = fMLi−1,

for i > 1, and solving the recurrence relation for M yields

M = i
√
f1−iLi

Assuming a tree height of h, Lh is the number of data objects in the
tree, M is given by

Mh = h
√
f1−hLh

which gives the values in Table 7.3, assuming f = 0.6 and Lm = 1000000,
as is approximately the case for abs02. As can be seen, this matches very
well for both cliffs identified in Figures 7.3 and 7.4. In addition, the lowest
value recorded appears at M = 48, with m = 4, which is just around where
the tree gains a level under the above assumptions.
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h Mh

2 1291
3 140
4 46
5 23
6 15

Table 7.3: The node sizes around which the height of the tree changes
assuming a fill grade of f = 0.6 and Lm = 1000000 data objects.
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Figure 7.5: Total run time and average fill grade at depths 0 and 1 as a
function of the node capacity M for the abs02 data and query sets. The
minimum node fill grade m is set to max

(⌊
M
5

⌋
, 1
)
.

Plotting the actual run time and node fill grade at depths 0 and 1 yields
the plot in Figure 7.5. Note that the fill grade for depth 0 is simply the fill
grade of the root node, and thus jumps from almost 0 to 1 when the tree
height decreases. This seems to correspond well with the jumps in run time
for the two cases examined above.

As for the optimization algorithm, the run time function seems to have
few deep local minima that are far from the true global minimum, which is
consistent with the assumptions made at the end of Section 6.6. It should
however be noted that this is only a case study for the revised R*-tree on
the abs02 data set.

During optimization, the initial values used as input for the simulated
annealing algorithm were set to M = 50 and m = 40 % based on the land-
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Optimization D M m Iterations

None
2 35 20 % 104
3 33 33 % 99

Arrays of fields
2 69 36 % 123
3 37 23 % 138

SIMD
2 63 7 % 113
3 63 24 % 152

Full Scan
2 68 7 % 150
3 68 21 % 160

Pruning
2 76 21 % 100
3 51 13 % 120

Table 7.4: Configuration parameter for the R*-tree for various optimiza-
tions found during search. The values for m are relative to M .

scapes presented in Section 7.3. The parameters found during parameter
optimization and used throughout this chapter can be found in Table 7.4.

7.4 Behavior of the Naive Implementation

A quick look at the behavior of the naive implementation of the revised R*-
tree running in memory is required to be able to interpret the optimization
results. Figure 7.6 shows the values of some key metrics; the ratio of mispre-
dicted branches that were executed to the number of retired branches, the
number of last level cache misses relative to last level cache references, and
the number of micro operations that never retired relative to the number of
micro operations issued.

The number of mispredicted branches seems to decrease with the query
set size. This is perhaps a bit surprising since the small query sets nearly
only visits a single node at each level, meaning the outcome of the intersec-
tion test is highly predictable. For the larger query sets, more matches are
expected, which results in a more even mix of taken and untaken branches,
making them harder to predict.

A quick inspection of the performance profile using perf reveals that the
large number of branch mispredictions seems to be related to the intersection
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Figure 7.6: Some statistics for the naive memory resident revised R*-tree
by query set size.

tests used to prune away sub trees.

For the number of unused micro operations, a similar trend can be found.
These operations were executed speculatively, but the result was never used.
As expected, these are tightly coupled with the number of mispredicted
branches executed.

For the last level cache misses, the opposite trend can be observed. This
can be explained by the more sequential memory access performed by the
search for small query sets. Since this gives the prefetcher a chance to
predict which cache lines are required next, the number of misses is lower.

When it comes to the throughput of instructions, a histogram of the
number of retired instructions each cycle can be found in Figure 7.7. As can
be seen, the larger query sets are better at retiring more instructions every
cycle. This is also likely to be a consequence of better branch prediction as
this allows the speculative operations to actually retire, thereby also retiring
more instructions.

7.5 Results of Optimizations

In this section, the improvement in run time provided by each optimization
suggested in Chapter 5 for memory resident R-trees will be presented. The
arrays of fields layout is examined in Section 7.5.1, before the SIMD, full
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Figure 7.7: Histogram with the number of instructions retiring each cycle
for different query set sizes. The cycle count is relative to the total number
of cycles.

and pruning node scans are examined in Sections 7.5.2 to 7.5.4

7.5.1 Arrays of Fields

As can be seen from Figure 7.8, the array of fields approach actually made
the results worse, especially for the small query set and for the 3 dimensional
data sets.

One possible explanation for the poor performance may be that accessing
a pointer when a match is found incurs a non-sequential memory access,
which is likely to triggers a cache miss. The resulting stalls may be a
possible explanation for the performance regression.

This is however not consistent with Figure 7.8 as the small query sets
should be accessing fewer pointers due to the reduced result set, which
means the penalty of non-sequential memory access should be larges for the
largest query set. The figure shows that this is clearly not the result found.

In addition, the number of cache misses for the last level cache has
actually been reduced by approximately 9 % for all query set sizes. This
can easily be explained by the extra data not accessed, and shows that the
arrays of fields optimizations achieves the goal of reducing memory access.

With fewer cache misses and less data loaded from memory, the reason
for the poor performance of the arrays of fields layout is likely compute re-
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Figure 7.8: Speedup of the revised R*-tree with arrays of fields node layout
by query set size.

lated. Indeed, the number of mispredicted branches executed speculatively
is around 7 % higher for the small query sets. For the medium query sets,
the number is about the same, and for the large query set, the number is
about 4 % lower.

The increased number of branch mispredictions is not due to branches
that are harder to predict, but rather because the total number of branches
executed by the code is larger, especially for the small query sets. This may
be due to different compiler optimizations being applied to the two versions
of the code, causing more branch instructions to be executed, even though
no branches have been introduced in the source code.

Together with the improved memory access pattern, the increased num-
ber of branches explains the results found in Figure 7.8, at least for the 2
dimensional data sets. For the small query sets, the increased number of
branches with associated mispredictions outweighs the improved memory
access. For the medium query sets, the increased number of mispredictions
and improved memory access almost cancel each other out. Lastly, the im-
proved performance for the large query sets is likely due to an improvement
in both memory access and branch prediction.

For the 3 dimensional data sets, the portion of a node that consists of
pointers is smaller since the extra dimension increases the size of an MBR
by the size equivalent to 2 pointers. In other words, larger parts of the
node has to be loaded anyway, reducing the effectiveness of separating out
the pointers. This is confirmed by the numbers; where the 2 dimensional
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Figure 7.9: Speedup of the revised R*-tree with SIMD scans by query set
size.

data sets experience a 17 % reduction of cache misses, the 3 dimensional
sets experience a 3 % increase.

When it comes to the distribution of instructions completing each cycle,
this is mostly the same as for the naive implementation, for which the
histogram is displayed in Figure 7.7.

7.5.2 SIMD Scans

Applying the SIMD scan optimization from Section 5.2 yields the speedups
in Figure 7.9. As can be seen, there is a speedup in all cases, but the speedup
varies between data and query sets.

One interesting observation is the poor speedup of the medium sized
query sets compared to both the small and large ones. The immediate cause
of this behavior can be found in Figure 7.10, in which a histogram of the
number of instructions retired in one cycle is shown. For 2 to 3 instructions
per cycle, the small query sets seems to do slightly better than the larger
ones, but for 4 to 6, the pattern from Figure 7.9 can be recognized.

Digging deeper, it turns out the number of last level cache references
for the medium sized query sets does not see the same reduction as the for
the other query sets. The small and large query results in a reduction of
17 % and 11 % respectively, while the corresponding number for the medium
query set is 7 %.

It also seems that the extra cache references done for the medium query
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Figure 7.10: Histogram of instructions retired each cycle by query set size
for the revised R*-tree with SIMD scans.

set are mostly handled by the last level cache as the reductions in cache
misses are approximately the same for all query sets. As illustrated in
Section 2.1.1, the delay for accessing last level cache is not insignificant, but
far from the delay associated with main memory.

Looking at the number of mispredicted branches executed, the reduction
is quite considerable for the small query sets at 83 %. This is accompanied
by an increase of 42 % in the number of branches. In other words, the
branch prediction is working flawlessly for the small query sets.

For the medium and large query sets, the number of branches is reduced
by 10 % and 27 %, and even higher reductions is the number of branch mis-
predictions. These changes can probably be blamed on the SIMD blocking,
which changes the code quite significantly, apparently favoring the large
query sets.

As can be seen in Figure 7.10, the instruction level parallelism seems
to have increased, especially for the small query sets. This contributes to
a significant speedup despite a spectacular increase of 80 % increase in the
number of micro operations retired.

7.5.3 Full Node Scans

The speedup using the full node scan optimization can be found in Fig-
ure 7.11. Unlike the speedup for SIMD scans, there seems to be a more
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Figure 7.11: Speedup of the revised R*-tree with full node scans by query
set size.

clear trend where large query sets are worse off. For the rea02, the speedup
is even below 1. For small query sets, the results are even better than for
the SIMD scan. This may be slightly unexpected since the full node scan
was meant to solve the problem of interrupted node scans, a problem which
should be more prominent for the large query sets than the smaller ones.

The original thought behind the full scan optimization was to reduce
cache misses by optimizing the code for automatic prefetching through
more sequential memory reads. This seems to have had the expected con-
sequences; the cache misses have been reduced by 4 % and 12 % for the
medium and large query sets, and stays about the same for the small query
set, where the number of interrupts is low even for the naive implementation.

This is accompanied by an increase in the number of last level cache
references by 25 % to 37 %. This may be because of the lacking temporal
locality when iterating through the result set after a node scan. Since a new
node scan may have evicted the result set from memory, the result set must
be fetched from the large last level cache.

One less expected consequence is a large reduction in the number of
mispredicted branches executed. This is especially so for the small query
set, which experiences a reduction of 93 %, compared to 86 % and 78 % for
the medium and large query sets. This can partly be explained by a lower
number of branches being executed, but this is only half the story. The rest
may be due to branches that are easier to predict, or that the branches that
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Figure 7.12: Histogram of instruction retired each cycle by query set size
for the revised R*-tree with full node scans.

were once hard to predict have been removed.

A possible explanation for the large differences in branches may be the
blocking used for the result set. The result set is essentially a long vector
of bits where a bit is set when the corresponding MBB overlaps the query
box. As for SIMD blocking, this allows skipping an entire block when no
overlaps have been found, which is more often the case for the small query
sets than the large. As the block size is larger, this effect should also be
more prominent.

This difference in how the result sets are handled may also be the cause
for the poor performance of the large query sets.

Together, the reductions in cache misses and branch mispredictions al-
lows the processor to march forward at a higher speed than before, as can
be seen in Figure 7.12. Comparing the numbers with the ones for the naive
implementation shows a considerable increase in the number of cycles in
which 4 to 5 instructions are retired at the cost of cycles in which fewer are
retired.

7.5.4 Pruning Node Scans

The pruning node scans optimization provides the speedups found in Fig-
ure 7.13. As can be seen, by comparing with the speedups for full node scans
seen in Figure 7.11, the small query sets have about the same speedup, while
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Figure 7.13: Speedup of the revised R*-tree with pruning scans by query
set size.

the medium and large query sets improves all over.
This is also the expected behavior because the no overlap and full inclu-

sion scenarios discussed in Section 5.4 are more likely when the query box
is small. Thus this optimization mostly adds overhead for the small query
set, but can prune away large amounts for the large query set.

Numbers acquired using instrumentation shows that this is indeed the
case. Only 0.21 % of the comparisons are pruned away for the small query
set, but for the large query sets, the corresponding number is 68 %. Judging
by the speedup, this leaves the result extraction and general control logic
as the most expensive part of the search.

The hardware counters reveals that cache misses are more frequent for
the small query set with an increase of 11 %, while a reduction of 9 % and
39 % is seen for the medium and large query sets. This can also be found in
the number of micro operations retired, where a 42 % increase is found for
the small query sets, while only the large set experiences a small reduction
of 4 %.

One may wonder why the reduction in the number of micro operations
is not larger for the medium and large query sets, and the most probable
answer is simply that the full scan adds some micro operations, such that
the improvements from the pruning is almost neutralized when compared
to the naive approach.

Not surprisingly, the distribution of instructions retired each cycle for
the pruning scan is very similar to the one found for the full node scan
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presented in Figure 7.12.
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Chapter 8

Discussion

This chapter discusses the results found in Chapter 7, first from a memory
perspective in Section 8.1, before Section 8.2 looks at parallelism. Finally,
the research questions from the introduction are revisited in Section 8.3.

8.1 Memory Behavior

As explained in Chapter 2, programs for modern computer architecture
must access memory in a pattern that allows the memory system to feed
the processor with enough data.

The R-tree, and any tree structure in general, presents a challenge seen
from a memory perspective because navigating through the tree consists of
following a set of pointers. Since the destination of a pointer cannot be read
before the pointer itself has been loaded from memory, the memory access
pattern is essentially random.

That is not to say such structures cannot be optimized. Using nodes
with several entries, such as the ones in the R-tree, gives a mix of sequential
memory access during node scans and random memory access when access-
ing new nodes. This trades off random memory access for sequential access
during node scans, since larger nodes give a lower tree which results in fewer
random memory accesses.

Accessing disk pages sequentially also often displays less overhead than
accessing pages randomly, so this effect should also exist for disk resident
R-trees. In contrast to memory resident R-trees, the large size of disk pages
makes the set of reasonable sizes quite small.
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The suggested tradeoff between random and sequential memory access
is also consistent with what was found in Section 7.3, where the tree height
is found to be a major factor for determining the performance. Moreover,
an optimal tree height, yielding the best performance, seems to exist.

The existence of an optimal tree height can in that case be seen as the
optimal balance between random and sequential memory access. If the tree
is too high, each node contains so few entries that the node scan cost drowns
in the cost of fetching the nodes before the scan can start. A too low tree
means scanning a lot of entries that would otherwise be unnecessary to scan,
thus the cost of fetching nodes drowns in the scan cost.

It is also evident from the result that the optimal node size increases
when optimizations improving the node scan performance are applied. As
the optimizations lower the cost of scanning nodes, the balance is offset to
favor a higher ratio of scans, which explains the increasing node size.

The finding of such a tradeoff may seem obvious, but this is not always
the case. Some tree structures for spatial search, such as the kd-tree [5] is
essentially a binary search tree.

Since the cost of memory access and scans is dependent on the hardware
on which the search is running, the optimal parameters can be expected from
system to system. This means the optimal node size no longer depends on
a rather static disk page size, but must be optimized for each individual
system.

Another, perhaps more interesting aspect, is that the most effective
optimization will vary from system to system, depending on the system
performance. Even though the balance between random memory access and
compute intensive sequential scans can be adjusted using the parameters,
some of the optimizations may reduce the performance in certain cases, such
as when a system exhibits bad branch prediction.

This dependency on system specific properties may make optimizations
rather unpredictable. As an example, the full node scan optimization sets
out to reduce the number of random memory accesses performed, which
seems to reduce the number of cache misses. Unfortunately, the bookkeeping
information is evicted from the top level cache pretty quickly, causing an
increase in the number of last level cache references. Depending on the
pressure on the last level cache, this may be either a good or bad tradeoff.

From the results, it seems the speedup gained from an optimization
varies significantly depending on the query set size. This is especially in-
teresting for the pruning node scan, where the optimization is essentially
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useless for the smallest query size, and at the same time is able to prune
away large parts of the scans for the large query sets.

This bias towards a higher speedup for larger queries may make it seem
like the pruning node scans has a minor effect on the average query per-
formance, but since the larger queries usually requires much more work to
complete than the smaller ones, the average speedup should be quite signif-
icant when an even mix of query sizes is expected.

However, in the case of the large queries, the effect of this with real
data and query sets should be examined closer. The query sets used are, as
explained in Section 6.1, generated based on the data set. This may have
introduced scenarios where the pruning scan is especially efficient.

Obviously, a lot of memory related optimizations go untried in this the-
sis. For example could the latency of memory access during node scans
possibly be hidden. One could imagine that each match found during a
node scan may instantly trigger the issue of a prefetch instruction for the
nodes. Hopefully, the matching node will reside in memory when the scan
is done and the node accessed.

It should also be noted that the optimizations applied in this thesis are
orthogonal to those applied in the CR-tree [25], meaning that they can all
be applied to the CR-tree to further improve performance. For example
can the pruning node scans be used to prune the compressed data, in which
case the amount of data loaded from memory should be even less.

As presented in Section 7.5, one may be left with a feeling that the op-
timizations concerning computation are the most important ones. This is
however slightly misguided because the experiments are done on a single core
where the entire memory bus is as good as dedicated to that core. In a pro-
duction setting, several cores are likely to share a memory bus exposing the
growing gap between memory bandwidth and processor performance [39].

8.2 Parallelism

Filling the memory bus does however still require efficient code to be running
on each core. As is evident from the results of the experimentation in
Section 7.5, parallelism is the key to performance on modern processors.

The results show that SIMD scans speed up the search, especially for
the small query sets. What is less certain is whether this speedup should
be attributed to the use of SIMD instructions or to the changes made to

83



the algorithm. The SIMD instructions explicitly makes parts of the code
parallel, but it may be that the processor could handle a set of independent
instructions just as well by appropriately pipelining them and running them
in parallel over several execution units.

An example of a situation where the implicitly available instruction par-
allelism seems to increase due to a change in the algorithm can be seen
for the full scan node, where a change in the distribution of the number of
instructions completing every cycle can be observed after a change in the
algorithm similar to the one performed for the SIMD scan.

As expected, one of the real deal breakers for implicit instruction level
parallelism, seems to be mispredicted branch instructions. In the case of
the arrays of fields optimization, branch mispredictions drowns the benefit
of fewer cache misses, but unfortunately, the reason for the large number
of branch mispredictions, despite the small change of literally two lines of
code, appears hard to track down.

This can possibly be blamed on the compiler applying different opti-
mizations as a result of the small code change. Unfortunately, the compiler
is not in the best position to judge what code results in a good or bad branch
behavior as the design of modern branch predictors are often kept secret.

Even though a certain number of branches are needed to efficiently com-
plete the task at hand, this does not mean the branches cannot be optimized.
All optimizations presented herein, with the exception of the arrays of fields
node layout, reduce the number of branch mispredictions, some by as much
as 90 %.

In almost all cases are the reductions in the number of branch mispre-
dictions accompanied by a less spectacular reduction of branches retired.
Thus the reduction in mispredictions can to some degree be explained by
the lower number of branches actually processed, but is also an effect of
better branch prediction.

Note that, as for the memory behavior, the branch behavior can also
be seen as a tradeoff between a predictable pattern that typically appears
during node scans, and the less predictable pattern exhibited when accessing
new nodes. The full node scan illustrates this as the number of instructions
completing every cycle increases.

As for memory access, the number of mispredicted branches and which
approach gives the best results vary based on the query sets used. It does
however appear that improving the branch prediction performance of the
small query sets is easier than for the others, but this may just as well be
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because these query sets trigger a bad behavior for the naive implementa-
tion.

When it comes to multi core performance of the R-tree, it should be men-
tioned that the performance improvements found in this thesis are mostly
applicable in a multi core environment as they mainly operate within the
core itself. The only exception is that some of the instruction level paral-
lelism may also be delivered using simultaneous multi-threading, in which
case improvements to the instruction throughput may not be as useful.

8.3 Research Questions

Using the insight from the previous chapters, the research questions posed
in the introduction can be answered more concretely.

What aspects of R-tree search are not suited for modern
processors?

The random memory access that mainly occurs when accessing new
nodes are not suited for the modern memory hierarchy and forces
the processor to wait for data from memory.

Also, a naive implementation of the R-tree does not take full
advantage of the available parallelism in modern processors, neither
prediction friendly branching or by exposing instruction level paral-
lelism.

How can range search in R-trees be optimized such that
more of the available data and instruction level parallelism
can be utilized?

The memory access pattern can be optimized to ensure the processor
can continue without having to wait for data. This largely consists
of choosing the right parameters and applying the correct optimiza-
tions, in order to achieve the correct balance between random and
sequential memory access.

Otherwise, the branch behavior must be optimized for the data
distribution such that the number of mispredictions is reduced. This
goes hand in hand with making the available parallelism explicitly
available to the processor through the use of SIMD instructions,
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and perhaps other optimizations used to speed up scans in memory
resident relational databases.

What are the main challenges in doing so?

As is evident from the result section, optimizations triggers varying
behavior dependent on the query distribution and most likely the
system on which the search is running. This complicates the opti-
mization process because there may be no simple solution that fits
all problems.
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Chapter 9

Conclusion

With the ever exponentially increasing memory size of modern computers,
and keeping indexes in memory becomes the default, optimizing search for
memory resident databases is increasingly important. This has already been
considered for memory resident relational databases, but not so much for
spatial search.

A small set of traditional R-tree construction algorithms is first imple-
mented using C/C++ and verified by reproducing the results of Beckmann
and Seeger [4], using the data sets, query sets and parameters provided.

Four optimizations are then implemented. The first simply changes the
node layout to an arrays of fields layout. The SIMD node scans builds on
this, but uses SIMD blocking and SIMD instructions to make the available
parallelism more explicit. Full node scans tries increase the amount of se-
quential memory access by scanning entire nodes and storing the results.
Finally, the pruning node scans prune away coordinates from node scans. A
suitable node layout means these coordinates are never loaded from memory.

For small query sets, the full node scans commonly yields speedups of
1.6 for the test data. Using hardware event counters, the source of the
speedup is traced to an increase in the exploitation of available parallelism
inherent in the search algorithm, and to a better memory access pattern.

For larger data sets, pruning node scans allows 68 % of the coordinates to
be skipped by using knowledge acquired using the MBB of the node in which
they reside. In combination with optimizations increasing the performance
for small query sets, this gives a speedup of above 1.3 on all query sets.

The main problem of naive implementations of the R-tree seems to be
rather terrible at exploiting the available instruction level parallelism, re-
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ducing cache misses and pruning at a lower level than nodes, which is not
surprising considering their disk based origin.

To exploit the increasingly parallel hardware, the search must be de-
signed such that branches and cache misses do not hinder the full exploita-
tion of instruction and data level parallelism.

Unfortunately, the results suggest different optimizations are applicable
for different query distributions. This is also likely to be the case for varying
hardware, and thus complicates the implementations of such optimizations
in a production environment. Combining several optimizations yields a
speedup, but possibly not as much as applying only a selected few.

9.1 Future Work

This thesis only considers a small set of optimizations, but these could be
combined with several other methods such as the quantized and relative
MBBs used by the CR-tree [25]. More novel approaches should also be
explored, such as using explicit prefetching to mitigate the performance
penalties of random memory access when visiting new nodes.

Since the effectiveness of the optimizations relay on the data sets, query
sets and system on which the search is running, a solution where the op-
timizations to applied are determined dynamically at run time may help
increase the performance in practice. This can be accomplished by moni-
toring the search performance while applying different optimizations.

Furthermore, the run time may also be possible to improve by consider-
ing different tree construction algorithms. Most popular algorithms today
are based on the assumption that most of the cost associated with R-trees
is related to disk access, and that an entire node must always be loaded in
one go, which is no longer the case for memory resident indexes.
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Appendix A

Implementation

This appendix describes the implementation used during benchmarking for
constructing R-trees and performing searches in detail.

The code base consists of three parts:

• a framework for measuring index performance,

• spatial search indexes,

• a set of objects used as interface between the indexes and framework.

The framework is first described in Appendix A.1, before Appendix A.2
describes the indexes.

A.1 Framework

The framework for measuring spatial index performance compiles into an
executable which loads the index from a dynamically linked library and
inserts all data objects from the selected data set. The reporters specified
on the command line are then run in sequence.

Each reporter performs some operation on the index and stores the re-
sult. Examples of such operations include searching, collecting statistics or
doing instrumented search, but no operation may modify the index structure
itself. When all reporters have completed, the results from each reporter
is printed. This architecture allows constructing the index only once and
collecting multiple statistics from the resulting structure.

A list of the implemented reporters can be found in Table A.1.
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Name Description

PAPI Collects statistics captured during search from
hardware counters

Search statistics Collects statistics using an instrumented version of
the search algorithm

Structure statistics Only inspects the structure of the tree and reports
the height, number of leafs, etc.

Table A.1: A list of the implemented reporters with a quick description

A.2 Indexes

Each index has been implemented from scratch using the relevant research
papers where applicable [2, 4, 14, 24]. Note that, for the R*-tree, some of
the improvements suggested by the authors themselves in a later paper are
included [4].

The programming language used is C++11, where the configuration
parameters (e.g. node size) have been extracted into template parameters.
This allows heavier optimization to be performed during compilation since
the parameters are available to the compiler.

Each index is compiled together with its configuration parameters into
a separate dynamic library, which allows quick recompilation for different
configurations.

The R-trees have also contains a routine for validating the structure of
the tree after construction. During these self diagnostics, it is verified that
for each node in the three

• the node’s MBB is contained within its parent’s MBR,

• the node’s MBB is minimal,

• the number of children does not exceed the maximum, and

• the number of children is not below the minimum.

Violation of some of these conditions would result in a crash or incorrect
results being returned from the index, but others would only slow down the
search without triggering any error conditions elsewhere. Reporting these
errors earlier eases development.
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A.2.1 R-tree Composition

For the R-tree, the many variations of construction algorithms and storage
layouts makes it necessary to be able to mix and match data layouts with
search and construction algorithm. This is accomplished through extensive
use of C++ templates, which abstract away the actual storage layouts used
in nodes through proxy objects that allow access to the entries in a node.

In addition, the search algorithm relies on the node class to perform the
actual node scan. An iterator yielded from the scan operation is then free
to scan the node in any way suitable, for example by scanning the entire
node at once or by scanning incrementally as more results are requested.

Although this may seem inefficient, the use of static inheritance through
curiously recurring template parameters avoids expensive virtual function
calls, and makes the code eligible for extensive optimizations by the com-
piler, such as inline expansion.

91





Appendix B

Probability Based R-trees

The disk based R-trees all tries to minimize the number of expected disk
accesses. Peculiarly enough, no one seems to have gone through the trouble
of defining a more formal model for calculating this expectancy.

The general intersection probability between an MBB and a query box
is explored in Appendix B.1, before some more concrete results are pre-
sented in Appendix B.2. Then the actual expectancies are calculated in
Appendix B.3, before a sketch of how this can be utilized when construct-
ing R-trees is given in Appendix B.4.

B.1 Query Intersection Probability

First, we look at the one dimensional case. Let M = (r1, r2) be a MBB and
Q = (Q1, Q2) be the query box, where Q1 and Q2 are stochastic variables.
Define an indicator variable I0 such that

I0 =

{
1 if Q ∩M 6= ∅
0 otherwise

Finally, let W = Q2 −Q1 be the width of the query box for convenience.

First, observe that

Q ∩M 6= ∅ ⇔ Q1 ≤ r2 ∧Q2 ≥ r1
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which gives

P (I0 = 1) = P (Q1 ≤ r2 ∧Q2 ≥ r1)

= P (Q1 ≤ r2 ∧Q1 +W ≥ r1)

=

∫ ∞
−∞

P (Q1 ≤ r2 ∧Q1 +W ≥ r1 |W = w)P (W = w) dw

Assuming fW and fQ1 are the probability distribution functions of W
and Q1 respectively, this can be written as

P (I0 = 1) =

∫ ∞
0

[∫ r2

r1−w
fQ1(r)dr

]
fW (w) dw

For a d dimensional data space, define the stochastic indicator variable
Xd which is 1 if Q intersects M . Let Ii be the probability of overlap in the ith

dimension. Further assume the distribution of I1, . . . , Id are independent.

Since the query region overlaps with M if, and only if it does so in all
dimensions, we have

P (Xd = 1) =

d∏
i=1

P (Ii = 1)

B.2 Example Distributions

The probability of intersection calculated in Appendix B.1 is however useless
without the probability distributions for W and Q1. In a real world setting,
the distributions of Q1 and W are likely to vary depending on the appli-
cation. As will be shown below, existing approaches also implicitly relies
on assumptions on the data distribution, but by defining this dependency
more explicitly, one can also tailor the evaluation to the application.

For the sake of example and to balance query cost and simplify calcula-
tions, assume Q1 is uniformly distributed in the range [D1 −W,D2] where
D1 and D2 are the upper and lower bounds of the data domain. This is
equivalent to requiring that Q always intersects the data domain.
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B.2.1 Constant W

The simplest example arise when W is constant. This can be accomplished
by defining

fQ1(r) =

{
1/(D2 −D1 +W ) if r ∈ [D1 −W,D2]

0 otherwise

which gives

P (I0 = 1) =

∫ ∞
0

[∫ r2

r1−w
fQ(r)dr

]
fW (w) dw

=

∫ ∞
0

[
r

D2 −D1 + w

]r2
r=r1−w

fW (w) dw

=

∫ ∞
0

[
r2 − r1 + w

D2 −D1 + w

]
fW (w) dw

Now, assume a constant W = w. The probability distribution function
fW is then Dirac’s delta function and the integral reduces to

P (I0 = 1) =
r2 − r1 + w

D2 −D1 + w

For w = 0, this reduces to a stabbing query case. The observant reader
will notice that the probability then equals the volume of M normalized
by the volume of the data space. This is consistent with what Guttman
implicitly assumes by using the volume. As pointed out by Beckmann and
Seeger, this also means the P (I0 = 1) = 0 when M lacks volume, in which
case Beckmann and Seeger falls back to using the perimeter for evaluation.

As a side note and sanity check, observe that

lim
w→∞

P (I0 = 1) = 1

which is expected as an infinitely large query is bound to intersect the MBB
no matter where it is placed.

B.2.2 Uniform Q1 and W

A more complex example can be found by assuming a uniform W in the
domain [0, wmax]. This gives

fW (w) =

{ 1
wmax

if r ∈ [0, wmax]

0 otherwise
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which slips right into the formula and gives

P (I0 = 1) =

∫ wmax

0

[
r2 − r1 + w

D2 −D1 + w

]
1

wmax
dw

=
1

wmax

∫ wmax

0

r2 − r1 + w

D2 −D1 + w
dw

Define ∆D = D2 −D1, ∆r = r2 − r1, substitute with s = ∆D + w ⇒ w =
s−∆D and complete the integration

P (I0 = 1) =
1

wmax

∫ wmax +∆D

∆D

∆r + s−∆D

∆D + s−∆D
dw

=
1

wmax

∫ wmax +∆D

∆D

[
∆r −∆D

s
+ 1

]
dw

=
1

wmax

[
(∆r −∆D)

∫
1

s
dw +

∫
dw

]wmax +∆D

∆D

=
1

wmax
[(∆r −∆D) ln s+ s]

wmax +∆D

∆D

=
1

wmax
[(∆r −∆D) (ln(wmax + ∆D)− ln ∆D) + wmax]

=
1

wmax

[
(∆r −∆D) ln

(
wmax + ∆D

∆D

)
+ wmax

]
=

∆r −∆D

wmax
ln
(wmax

∆D
+ 1
)

+ 1

Since both wmax and ∆D are constants, the probability is proportional
to ∆r:

P (I0 = 1) = (∆r −∆D)σ + 1

= σ∆r + (1− σ∆D)

where

σ =
1

wmax
ln
(wmax

∆D
+ 1
)

Also, because M is expected to reside within the data domain, it is given
that ∆r −∆D ≤ 0, and thus the probability of intersection decreases with
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increasing σ. Since dσ
dw < 0, the maximum is found when approaching 0.

lim
wmax→0

σ = lim
wmax→0

1

wmax
ln
(wmax

∆D
+ 1
)

= lim
wmax→0

1
wmax
∆D + 1

1

∆D

=
1

∆D

This gives the maximum possible probability of intersection, assuming wmax →
0,

Pmax (I0 = 1) = (∆r −∆D)
1

∆D
+ 1

=
∆r

∆D

which is 0 only when ∆r = 0, or in other words when the box lacks vol-
ume. This makes sense as an infinitely thin query box has absolutely no
probability of intersecting an infinitely thin MBB.

Note however that P (I0 = 1) > 0 assuming either ∆r > 0 or wmax > 0,
which is a very reasonable assumption as stabbing queries in point data
makes no sense. This renders falling back to perimeter, as done by Beck-
mann and Seeger for the revised R*-tree, unnecessary.

B.3 Expectancies

As a slight simplification, assume each node accessed incurs a disk access,
and let the number of node visits when searching through the sub tree
defined by a node N be given by the stochastic variable VN .

Using a recursive approach, it is obvious that visiting a node incurs 1
visit in addition to the number of visits required in each of the sub trees
intersecting with the query rectangle. Since expectancies are linear, this
gives

E(VN ) = 1 +
∑
N ′∈N

E(VN ′)P (MBB(N ′) ∩Q 6= ∅)

For a memory resident R-tree, it may however make more sense to min-
imize the expected run time. Assuming the time required for scanning a
node is linear in the number of entries, and that accessing a node incurs
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a time penalty of a main memory access, the expected time for searching
through a node N is given by

E(TN ) = ta + |N | ts +
∑
N ′∈N

E(VN ′)P (MBB(N ′) ∩Q 6= ∅)

where ta is the memory access latency and ts is the time required for scan-
ning a single entry.

Note that these assumptions are consistent with what was found in Sec-
tion 7.3.

More complex expressions can be developed to include other optimiza-
tions, such as coordinate pruning as described in Section 5.4.

B.4 Implementation

Calculating the expectancies is not useful in itself and must be combined
with a strategy for constructing the tree. As mentioned earlier, inserting
nodes is already treated as an optimization problem, but few of the existing
solutions takes all the possible solutions into account.

Taking all possible solutions into account would not be reasonable to
assume either, since the problem is NP-hard in the general case, as will be
shown in Appendix B.4.1, after which Appendix B.4.2 then gives a sketch
of how a branch-and-bound approach may help solve the problem.

B.4.1 NP-hardness

The problem of finding an optimal split can be formulated as follows. Given

• a set of entries S,

• a weighting function w(N) giving the expected cost of visiting the
node associated with the entries in N , and

• a probability function f(N) giving the probability of visiting a node
consisting of the entries in the set N ,

find a set N of disjoint sets covering S such that

Z = 1 +
∑
N∈N

w(N)f(N)
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is minimized and |N | > 1 (otherwise no split has occurred).

Next, a reduction from the vertex cover problem can be as follows. Given
a graph from the set cover problem G = (V,E), let w(N) = 1 for all N and

S =

{
V if |V | is odd

V ∪ {v} otherwise

where v is a dummy vertex without any incident edges. Note that the result
is that |S| is always odd. Finally, let

f(N) =

{ |N\{v}|
|S| if N \ {v} is a vertex cover of G and |N | is odd

1 otherwise

Clearly, since f(N) ≤ 1, a solution with |N | > 2 will never be optimal.
Consequently, assuming no vertex cover exits in a solution N , it is known
that Z = 3.

Next observe that only one of the sets N ∈ N is such that f(N) < 1,
as only one of the sets will be odd. Furthermore, f(N) will be smaller for
smaller |N |, thus the minimal value of f(N) will be achieved only for the
minimal set cover, in which case

Z = 2 +
|N \ {v}|
|S|

< 3

since |N | < |S|.
The minimal set cover can thus be found by finding by solving the prob-

lem for the set N that minimizes Z, and selecting the set N ∈ N that is a
set cover for G. The minimal set cover is then N \ v.

Note that this proof handles f(N) as an unknown, thus there may be
special cases where finding the optimal solution is not as hard, depending
on f(N). The most trivial example is perhaps that where f(N) = 0, in
which case any solution is optimal.

B.4.2 Using Branch-and-bound

The most straight forward application of the above may be during splits, in
which case two major choices are to be made:

1. the number of new nodes must be decided, and
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# of nodes

dest. of e2

dest. of e1

Figure B.1: Decision tree for distributing 2 entries over 2 to 4 nodes.

2. a distribution of entries over the new nodes.

Note that Item 1 may already be decided, and commonly is so for the
existing algorithms. For example, the R*-tree always creates only one new
node.

When it comes to distributing the entries between the nodes, this can
be seen as a series of choices. For each entry, a destination node must be
selected. Based on this, a decision tree can be constructed as illustrated in
Figure B.1.

Furthermore, the best path through this tree can be found using branch
and bound given a goal function. For this to be efficient, the goal function
must have good bounds even when only a few choices have actually been
made.

Goal Function The expected search time or node accesses should be
minimized for memory or disk resident R-trees respectively. The previously
calculated expectancy for a node can be used directly to find the expectancy
E(VS) for a split candidate S.

Since the expression is recursive, saving the expected number of scanned
entries in each entry is probably necessary to avoid duplicated calculations
when the expression is evaluated repeatedly, which would be the case using
branch and bound.

Lower Bound A lower bound can be found by simply calculating E(Vs)
assuming the entries not yet distributed do not exist. This is computation-
ally cheap, but may not yield a tight bound.

Another option is to assume the remaining entries all fit within the node
with the lowest probability of intersection, P (e.M ∩ Q 6= ∅), and calculate
E(Vs) accordingly.
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Upper Bound For the upper bound, one solution is to assume the re-
maining entries are all scanned, or in other words that they will end up
in a node intersecting the query rectangle in all cases. This is cheap, but
unlikely to be tight.

Alternatively, all the remaining entries can be assumed to be added to
the node giving the lowest bound.

Optimizations The search space for a branch and bound algorithm is
extremely large, (n − 1)

∑n
i=2 i

|E| where m is the maximum number of re-
sulting nodes to consider and |E| is the number of entries in total, thus it
is likely that the algorithm needs some optimizations to have a reasonable
performance.

A possible way to speed up the algorithm is to sort the entries in a
suitable order to maximize the cases where the upper and lower bounds
are able to prune the search space. For example, sorting the entries by the
distance from the center of all entries may increase the chance of the split
candidate’s MBBs growing during the first choices.

A given order for the entries also allows precalculating the sum of the
expected entries scanned and MBB of the MBBs, thus speeding up the
bound calculations.

Another way may be to restrict the search space as done by existing
R-tree variants.

B.4.3 Leaf Selection (ChooseSubtree)

Selecting a leaf can be done using the same approach by, at each level, using
the same bound with only a single entry left. In this case the search space
is considerably smaller as it is limited to the size of the tree.
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