
Distant Supervision and Sentiment
Embeddings for Ternary Twitter
Sentiment Analysis

Mats Byrkjeland
Frederik Gørvell de
Lichtenberg

Master of Science in Computer Science

Supervisor: Björn Gambäck, IDI

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

Mats Byrkjeland and Frederik Gørvell de Lichtenberg

Distant Supervision and
Sentiment Embeddings for Ternary
Twitter Sentiment Analysis

Master’s Thesis in Computer Science, Spring 2017

Data and Artificial Intelligence Group
Department of Computer Science
Faculty of Information Technology and Electrical Engineering
Norwegian University of Science and Technology

Abstract
Tang et al. (2014) acknowledged the context-based word embeddings’ inability to dis-
criminate between words with opposite sentiments that appear in similar contexts. An
example is the words “good” and “bad”—two opposites that appear in the same con-
texts. Context-based word embedding methods like word2vec would likely treat these
as similar words. Tang et al. proposed a promising method for incorporating sentiment
information in word embeddings. These embeddings are called Sentiment-Specific Word
Embeddings or Sentiment Embeddings.

To train sentiment embeddings, large amounts of sentiment-annotated data are needed.
Manual annotation is too expensive for this purpose. Fast, automatical annotation is
used to set a low-quality (weak) label on large corpora of tweets. This procedure is often
referred to as distant supervision. The traditional approach is to use the occurrences of
emoticons to guess binary sentiment (positive/negative).
In this thesis, we compare various lexicon-based sentiment classifiers against each

other on manually annotated Twitter data from the International Workshop on Semantic
Evaluation (SemEval). Their performance as distant supervision methods are tested as
part of a complete Twitter Sentiment Analysis system. Instead of only looking at the
positive and negative sentiment classes, the neutral class is included. Both prediction
performance and speed of the distant supervision methods are evaluated.
We propose the Ternary Sentiment Embedding Model—a new model for creating

sentiment embeddings for the ternary sentiment classification task. It is based on the
Hybrid Ranking Model of Tang et al. (2016), but trains on ternary-labeled distant-
supervised data instead of binary-labeled. The model trains sentiment embeddings from
datasets made with different distant supervision methods. The model is used as part of
a complete Twitter Sentiment Analysis system and is compared to existing systems.
The experiments of Chapter 8 show that the Ternary Sentiment Embedding Model

performs better than the Hybrid Ranking Model of Tang et al. (2016) in most cases. Our
results show that the quality of the distant-supervised dataset has a great impact on the
quality of the produced sentiment embeddings, and hence the entire Twitter Sentiment
Analysis system.

i

Sammendrag
Tang mfl. (2014) anerkjente kontekstbaserte ordvektorers manglende evne til å diskrimi-
nere mellom ord med motsatte sentiment som forekommer i like kontekster. Et eksempel
er ordene good og bad – to motsatte ord som ofte deler kontekst. Kontekstbaserte ord-
vektormetoder som word2vec ville sannsynligvis behandlet disse som like ord. Tang mfl.
foreslo en lovende metode for å inkorporere sentimentinformasjon i ordvektorer. Disse
vektorene kalles Sentiment-Specific Word Embeddings eller sentimentvektorer (Senti-
ment Embeddings).
For å trene sentimentvektorer trengs store mengder sentimentmerkede data. Manu-

ell merking er for dyrt for dette formålet. Rask, automatisk merking blir brukt til å
sette et lavkvalitets (svakt) merke på store samlinger av tweets. Denne prosedyren blir
ofte referert til som fjernveiledning (distant supervision). Go mfl. (2009) introduserte
en av de første tilnærmingene til fjernveiledning av tweets, som brukte forekomster av
uttrykksikon for å gjette sentimentpolaritet (positiv/negativ).
I denne avhandlingen sammenligner vi flere leksikonbaserte sentimentklassifiserere mot

hverandre på manuelt annoterte Twitter-data fra International Workshop on Semantic
Evaluation (SemEval). Deres ytelse som fjernveiledningsmethoder er testet som del av
et komplett Twitter-sentimentanalysesystem. I stedet for å bare se på de positive og
negative sentimentklassene, er den nøytrale klassen inkludert. Både prediksjonsytelse og
fart til fjernveiledningsmetodene evalueres.
Vi foreslår den Tredelte sentimentvektormodellen (Ternary Sentiment Embedding Mo-

del) – en ny modell for å trene sentimentvektorer for den tredelte sentimentklassifisering-
soppgaven. Den er basert på Hybridrangeringsmodellen (Hybrid Ranking Model) til Tang
mfl. (2016), men trenes på treveismerkede, fjernveiledede data i stedet for toveismerkede.
Modellen trener sentimentvektorer fra datamengder laget med ulike fjernveiledningsme-
toder. Modellen er brukt som del av et komplett Twitter-sentimentanalysesystem og
sammenlignes med eksisterende systemer.
Eksperimentene i Kapittel 8 viser at den Tredelte sentimentvektormodellen yter bedre

enn Tang mfl. (2016) sin Hybridrangeringsmodell (Hybrid Ranking Model) i de fleste
tilfeller. Resultatene våre viser at kvaliteten på de fjernveiledede datamengdene har en
stor innvirkning på kvaliteten til de resulterende sentimentvektorene og dermed hele
sentimentanalysesystemet.

ii

Preface
This Master’s Thesis has been carried out at the Norwegian University of Science and
Technology (NTNU) in Trondheim, Norway. The thesis concludes our Master of Com-
puter Science degrees at the Department of Computer Science (IDI) at NTNU and was
supervised by Professor Björn Gambäck.

Mats Byrkjeland and Frederik Gørvell de Lichtenberg
Trondheim, June 11, 2017

iii

Contents
1. Introduction 1

1.1. Twitter . 1
1.2. Motivation . 2
1.3. Goals . 2
1.4. Contributions . 3
1.5. Thesis Structure . 3

2. Background Theory 5
2.1. Textual Preprocessing . 5

2.1.1. Part-of-Speech Tagging . 5
2.1.2. Bag-of-Words . 5
2.1.3. Stop Word Removal . 5
2.1.4. Stemming . 6
2.1.5. Reduce Elongated Words . 6

2.2. Machine Learning Algorithms . 6
2.2.1. Support Vector Machines . 6
2.2.2. Maximum Entropy . 6

2.3. Evaluation . 7
2.3.1. Techniques . 7
2.3.2. Metrics . 7

2.4. Word Embeddings . 9
2.4.1. word2vec . 11
2.4.2. GloVe . 12

2.5. Tools . 13
2.5.1. scikit-learn . 13
2.5.2. MultiVec . 13
2.5.3. glove-python . 13
2.5.4. Twokenize . 13
2.5.5. Preprocessor . 14
2.5.6. Twitter API . 14
2.5.7. twit . 15
2.5.8. AFINN . 15
2.5.9. VADER . 15
2.5.10. TextBlob . 15
2.5.11. Fredriksen–Jahren Lexicon Classifier 15
2.5.12. Theano . 16

v

Contents

2.5.13. TensorFlow . 16
2.5.14. Keras . 16

3. Related Work 17
3.1. Twitter Sentiment Analysis . 17

3.1.1. Preprocessing . 17
3.1.2. Feature Extraction . 17
3.1.3. Machine Learning Classifiers . 18

3.2. The Collobert and Weston Model . 18
3.3. Sentiment-Specific Word Embeddings . 20

3.3.1. Basic Model 1 (SSWEh) . 21
3.3.2. Basic Model 2 (SSWEr) . 21
3.3.3. Unified Model (SSWEu) . 21
3.3.4. Hybrid Ranking Model . 22

3.4. The International Workshop on Semantic Evaluation 23

4. Ternary Sentiment Embedding Model 27
4.1. Core Layers . 27
4.2. Ternary Sentiment Linear Layer . 28
4.3. Combined Loss Function . 28
4.4. Model Training . 29

5. Architecture 31
5.1. Tweet Collector . 31
5.2. CATTS . 32
5.3. Fredriksen–Jahren Lexicon Classifier Python Port 32
5.4. Twitty . 34

5.4.1. Processing Raw Files . 34
5.4.2. Filtering . 34
5.4.3. Preprocessing . 35
5.4.4. Train Word Embeddings . 35
5.4.5. Train Classifier . 35
5.4.6. Test Classifier . 35

5.5. Distant Supervision Program . 35
5.6. TSABL . 36

5.6.1. Fetching Twitter Data . 36
5.6.2. Preprocessing . 36
5.6.3. Training Word Embeddings . 36
5.6.4. Training and Testing Classifiers . 38

6. Distant Supervision of Tweets 39
6.1. Filtering . 40
6.2. Methods . 41

6.2.1. Emoticons . 41

vi

Contents

6.2.2. Emoticons Extended . 42
6.2.3. AFINN . 42
6.2.4. TextBlob . 42
6.2.5. VADER Sentiment Analysis . 43
6.2.6. Combo Average . 44
6.2.7. Fredriksen–Jahren Lexicon Classifier (FJLC) 44

6.3. Grid Parameter Searches . 45
6.3.1. VADER . 45
6.3.2. TextBlob . 45
6.3.3. Combo Average Method . 46

6.4. Comparisons . 46
6.4.1. Runtime . 48
6.4.2. Prediction Quality . 48

7. Optimizing System 49
7.1. Optimization Plan . 49
7.2. Experimental Setup . 49

7.2.1. Datasets for Training Word Embeddings 49
7.2.2. Datasets for Testing and Training Classifiers 50
7.2.3. Preprocessing . 50
7.2.4. Classifier . 51
7.2.5. Hyperparameters . 51

7.3. Hyperparameter Search Results . 52
7.3.1. Alpha . 53
7.3.2. Context Window Size . 54
7.3.3. Embedding Length . 55
7.3.4. Hidden Layer Size . 56
7.3.5. Learning Rate . 57
7.3.6. Margin . 58
7.3.7. Summary of Best Parameters . 59

7.4. Comparing Distant Supervision Methods 59
7.5. SVM Hyperparameter Search Results . 61

8. Evaluating the Final System 63
8.1. Experimental Setup . 63

8.1.1. Final System . 63
8.1.2. Datasets for Testing and Training Classifiers 64

8.2. Comparison of Distant Supervision Methods 65
8.3. Comparison with Hybrid Ranking Model 65
8.4. Comparison with Baselines . 66

8.4.1. Description of Baselines . 66
8.4.2. Results . 68

8.5. Comparison with Published Results . 68
8.5.1. Comparison with Tang et al. (2016) 68

vii

Contents

8.5.2. Comparison with SemEval . 69

9. Discussion 71
9.1. Distant Supervision . 71

9.1.1. Combination Methods . 71
9.1.2. Speed versus Quality . 72

9.2. Optimizing System . 72
9.2.1. Limitations of the Hyperparameter Search 72
9.2.2. Data for the Hyperparameter Search Classifier 73
9.2.3. Evaluation of Hyperparameter Search Results 73
9.2.4. Distant Supervision Method . 73

9.3. Comparison of Distant Supervision Methods 74
9.4. Comparison with Hybrid Ranking Model 75
9.5. Comparison with Baselines . 76
9.6. Comparison with Published Results . 77

9.6.1. Comparison with Tang et al. (2016) 77
9.6.2. Comparison with SemEval . 77

10.Conclusion and Future Work 79
10.1. Distant Supervision . 79
10.2. Ternary Sentiment Embedding Model . 79
10.3. Future Work . 80

10.3.1. Distant Supervision . 80
10.3.2. Exhaustive Optimization . 80
10.3.3. Investigate Impact of Using More Data 81
10.3.4. Word-Sense Disambiguation . 81
10.3.5. Word-Specific Sentiment . 81

Bibliography 82

A. Hyperparameter Search 89
A.1. Alpha . 90
A.2. Context Window Size . 91
A.3. Embedding Length . 92
A.4. Hidden Layer Size . 93
A.5. Learning Rate . 94
A.6. Margin . 96

B. SemEval 2017 Results 99

viii

List of Figures
2.1. The word2vec models. 11

3.1. The Collobert and Weston model. 20
3.2. The Hybrid Ranking Model. 22

4.1. The Ternary Sentiment Embedding Model. 28

5.1. Architecture of the Fredriksen–Jahren Lexicon Classifier (FJLC) system. . 33
5.2. Overview of the Twitty Pipeline. 34

7.1. α comparison. 53
7.2. Context window size comparison. 54
7.3. Embedding length comparison. 55
7.4. Hidden length comparison. 56
7.5. Learning rate comparison. 57
7.6. Margin comparison. 58
7.7. Macro F1 scores for the Ternary Sentiment Embedding Model on different

datasets. 60

A.1. Macro F1 scores for the Ternary Sentiment Embedding Model with dif-
ferent values for α. 90

A.2. Macro F1 scores for the Ternary Sentiment Embedding Model with dif-
ferent context window sizes. 91

A.3. Macro F1 scores for the Ternary Sentiment Embedding Model with dif-
ferent embedding lengths. 92

A.4. Macro F1 scores for the Ternary Sentiment Embedding Model with dif-
ferent hidden layer sizes. 93

A.5. Macro F1 scores for the Ternary Sentiment Embedding Model with dif-
ferent learning rates. 94

A.6. Macro F1 scores for the Ternary Sentiment Embedding Model with dif-
ferent margins. 96

ix

List of Tables
2.1. Preprocessor elements and tokens. 14

3.1. SemEval 2016 Task 4A Results . 24

6.1. Statistics for SemEval training and test sets. 40
6.2. Sentiment distribution for the SemEval datasets. 40
6.3. Emoticons mapped to positive and negative by the Twitter API. 41
6.4. Emoticons and emojis mapped to positive and negative by the Emoticons

Extended method. 43
6.5. Results for the VADER method. 45
6.6. Results for the TextBlob method. 45
6.7. The best results for the Combo Average method. 46
6.8. Comparison of F1 scores for distant supervision methods. 47
6.9. Comparison of precision and recall for distant supervision methods. 47
6.10. Comparison of Macro F1 scores for distant supervision methods per dataset. 47

7.1. Distribution of sentiment for distant supervised datasets. 50
7.2. Datasets for optimization of the Ternary Sentiment Embedding Model . . 50
7.3. Hyperparameter search values. 52
7.4. α comparison values. 53
7.5. Context window size comparison values. 54
7.6. Embedding length comparison values. 55
7.7. Hidden length comparison values. 56
7.8. Learning rate comparison values. 57
7.9. Margin comparison values. 58
7.10. Best and selected hyperparameters. 59
7.11. Macro F1 scores for the Ternary Sentiment Embedding Model using dif-

ferent distant supervision methods. 60
7.12. Coarse parameter search for C values between 0.001 and 1000. 61
7.13. Parameter search for C values between 0.001 and 0.009. 61
7.14. Parameter search for C values between 0.01 and 0.09. 61

8.1. Hyperparameter values of final model. 63
8.2. Datasets for training and testing classifier. 64
8.3. Combined datasets for training and testing classifier. 64
8.4. Comparison of distant supervision methods. 65

xi

List of Tables

8.5. Comparison between the Ternary Sentiment Embedding Model and the
Hybrid Ranking Model using different distant supervision methods. 66

8.6. Comparison between the Ternary Sentiment Embedding Model and base-
lines. 68

8.7. Comparison with published results from Tang et al. (2016). 69
8.8. Comparison with different SemEval years. 69

A.1. Macro F1 scores for the Ternary Sentiment Embedding Model with dif-
ferent values for α. 90

A.2. Macro F1 scores for the Ternary Sentiment Embedding Model with dif-
ferent context window sizes. 91

A.3. Macro F1 scores for the Ternary Sentiment Embedding Model with dif-
ferent embedding lengths. 92

A.4. Macro F1 scores for the Ternary Sentiment Embedding Model with dif-
ferent hidden layer sizes. 93

A.5. Macro F1 scores for the Ternary Sentiment Embedding Model with dif-
ferent learning rates. 95

A.6. Macro F1 scores for the Ternary Sentiment Embedding Model with dif-
ferent margins. 97

B.1. SemEval 2017 Task 4A Results . 99

xii

1. Introduction
The effort needed for a person to publish his or her written opinion and reach an audience
of thousands has become minuscule. Traditionally, people who wanted their meaning
or work published and distributed had to go through certain media like newspapers
and broadcast radio or TV. Today, Internet has opened the opportunity for everyone to
publish whatever they desire. For instance, video creators can easily publish their work
on YouTube, artists can publish their songs on SoundCloud. And ordinary people can
publish their thoughts and opinions in social media. The phenomenon of blogs, where
people often write about their personal lives, has long been tremendously popular.
More relevant to this thesis is the concept of microblogs. Microblogs are small doc-

uments containing the author’s opinion or thoughts. Microblogging has grown popular
due to social media like Twitter and Facebook. The abundance of microblogs being
published every second makes it possible to get an insight into the public opinion on and
reactions to events in the world in real-time.

1.1. Twitter
Twitter is a social medium where the users post microblogs. It is one of the most popular
websites in the world, having approximately 313 million monthly active users as of June
2016, according to their home page1.
Twitter is quite well known for the strict 140 character limit on tweets (Twitter posts).

This limitation of length forces users to write posts in an informal language, often to-
the-point, grammatically incorrect, with slang, typos, emoticons and abbreviations. It is
also common to use Twitter-specific elements like user mentions (@username) to target
another Twitter user and hashtags (#tag) to symbolize topics. Usually, all content in a
tweet has counted toward this limit, but now Twitter is changing which elements count2.
For instance, user mentions, URLs and media like videos and images, will no longer count
toward the limit. This will enable the users to write longer tweets. It will be interesting
to see if and how this changes the way people compose their tweets.
The fact that tweets are so to-the-point, with the challenges posed by their informal

language, make them an interesting field of study within natural language modeling and
sentiment analysis.

1https://about.twitter.com/company
2https://blog.twitter.com/express-even-more-in-140-characters

1

https://about.twitter.com/company
https://blog.twitter.com/express-even-more-in-140-characters

1. Introduction

1.2. Motivation
The popularity of word embeddings have been boosted in recent years. Since the in-
troduction of word2vec (Mikolov et al., 2013a), which is much faster to train than its
predecessors, word embeddings have become ubiquitous in the field of Natural Language
Processing. This can be seen in the International Workshop on Semantic Evaluation
(SemEval) meetings of recent years. In 2016, eight out of the top ten performing systems
used word embeddings as part of their architecture (Table 3.1, p. 24). This motivated
us to further investigate the use of word embeddings as part of a Twitter Sentiment
Analysis system.
Word embeddings learn word representations by looking at the contexts in which words

appear, where the context of a word is defined by which other words are its neighbors in
a text. This falls short for sentiment analysis, as words that appear in similar contexts
might have entirely different sentiments associated with them. An example is the words
“good” and “bad”. These words often appear in similar contexts, although they are of
opposite sentiment. Traditional word embedding methods would likely create similar
vectors for these words. Tang et al. (2014) presented a new model that employs both
context and sentiment information in word embeddings. These embeddings are called
Sentiment-Specific Word Embeddings (SSWE) or Sentiment Embeddings.
The models for training SSWE only consider positive and negative sentiment of tweets.

The data on which Tang et al. train SSWE are tweets weakly labeled as either positive
or negative using a simple distant supervision method. Tang et al. (2014) point out
that SSWE performs better when used for the binary classification task, i.e. classify-
ing tweets as “positive” or “negative”, compared to the ternary task where tweets can
also be classified as “neutral”. This motivated us to look at a ternary variation of the
model for training sentiment embeddings. In order to train a ternary model, a distant
supervision method that can weakly label tweets for all three classes is needed. Distant
supervision of neutral tweets is considered an open problem (Tang et al., 2016). The
possible performance gain for the ternary task motivated us to compare and consider
different distant supervision methods for a large corpus of tweets that can be used to
train sentiment embeddings with a ternary model.

1.3. Goals
G.1: Investigate Approaches to Distant Supervision of Tweets

The idea of distant supervision is to automatically classify large amounts of data
without the need for human intervention. Traditional methods of doing distant
supervision of sentiment of tweets have used the occurrence of simple emoticons
to guess negative or positive sentiment. We aim to improve distant supervised
datasets for Twitter Sentiment Analysis on the ternary sentiment classification
task by investigating methods of automatically annotating both positive, negative
and neutral tweets from a large corpus of Twitter data.

2

1.4. Contributions

G.2: Improve Sentiment Embeddings for Ternary Sentiment Classification
The Hybrid Ranking Model for training Sentiment-Specific Word Embeddings
(SSWE) of Tang et al. (2014) shows promising results for binary sentiment clas-
sification. We aim to improve performance on the ternary sentiment classification
task by both developing a new model architecture with a new loss function and by
training on three-way classified distant supervised data.

1.4. Contributions
C.1 Comparison of Distant Supervision Methods

C.2 The Ternary Sentiment Embedding Model

C.3 Produced Tools and Programs
CATTS (Section 5.2). A web application for manually annotating tweets.

https://catts.byrkje.land

https://github.com/draperunner/catts

Distant Supervision Program (Section 5.5). A program for saving and comparing
distant supervision methods.
https://github.com/draperunner/distant-supervised-tweets

FJLC (Section 5.3). A Python port of the Lexicon Classifier of Fredriksen and
Jahren (2016).
https://github.com/draperunner/fjlc

TSABL (Section 5.6) A full Twitter Sentiment Analysis program that can fetch
tweets, preprocess tweets, train word embeddings and classify tweets.

Tweet Collector (Section 5.1). A program for fetching and saving tweets.
https://github.com/draperunner/tweet-collector

1.5. Thesis Structure
Chapter 2 introduces important concepts that are used throughout the thesis to provide

a knowledge basis.

Chapter 3 explains what work has been done in the fields of Twitter Sentiment Analysis,
word embeddings, and sentiment embeddings.

Chapter 4 describes the proposed Ternary Sentiment Embedding Model for training
ternary sentiment embeddings.

Chapter 5 describes the programs developed as part of this thesis.

3

https://catts.byrkje.land
https://github.com/draperunner/catts
https://github.com/draperunner/distant-supervised-tweets
https://github.com/draperunner/fjlc
https://github.com/draperunner/tweet-collector

1. Introduction

Chapter 6 introduces a set of distant supervision methods and a comparison between
them.

Chapter 7 comprises hyperparameter searches and dataset comparisons for finding the
optimal setup for the Ternary Sentiment Embedding Model.

Chapter 8 is where the Ternary Sentiment Embedding Model is compared against base-
lines and other methods to establish its performance.

Chapter 9 contains discussion of the results achieved, the challenges met, and possible
improvements.

Chapter 10 provides a conclusion of the thesis, as well as description of future work.

4

2. Background Theory
In this chapter some important concepts that are used throughout the thesis are ex-
plained. First, some common stages of preprocessing of text corpora are covered, fol-
lowed by machine learning classifiers. Evaluation techniques and metrics are then in-
troduced. In Section 2.4, word embeddings and the common word embedding methods
word2vec and GloVe are explained. Lastly, tools and libraries employed in the project
implementations are described in Section 2.5.

2.1. Textual Preprocessing
Natural Language Processing (NLP) is the field concerned with analyzing and generating
natural language — the language you and I speak, read and write — to extract sentiment
and meaning automatically using machines. Words in their raw form are not always best
suited for natural language processing directly. Often some preprocessing is necessary.
In this section some common methods are explained.

2.1.1. Part-of-Speech Tagging

Part-of-speech (POS) tagging is the procedure of classifying words to their appropriate
part-of-speech. Examples of common parts-of-speech are nouns, verbs and adjectives.
Usually taggers can give more detailed tags like for instance conjugation for verbs, and
forms for nouns. There are POS taggers specialized for tweets (Owoputi et al., 2013).

2.1.2. Bag-of-Words

The bag-of-words model is a popular object categorization method (Zhang and Mayo,
2010) that takes words and counts the occurrences of each distinct word found in a set
of text documents to generate a histogram. As an example, consider the simple text
document “Paul likes movies. Anne likes music”. The set of distinct words are {Paul,
likes, movies, Anne, music}. The resulting vector from counting the occurrences of words
will be: [1, 2, 1, 1, 1].

2.1.3. Stop Word Removal

The most common words in English appear in the majority of documents, and therefore
rarely help in discriminating between them. Thus, it is common to remove these words,
called stop words. Examples of stop words may be “the”, “a”, “is”, and “to”.

5

2. Background Theory

2.1.4. Stemming

Stemming is the procedure of reducing words to their stem. This makes words that are
variations of the same base form equal, so that they can be treated as the same word.
For example, words like “walk”, “walker”, and “walked” would be reduced to the stem
“walk”.

2.1.5. Reduce Elongated Words

In informal contexts, such as Twitter, users sometimes write elongated words with re-
peating letters to emphasize their meaning. For instance, the word “sweeeeeeet” is likely
to carry a more positive sentiment than just the word “sweet”. Such words can be
reduced in order to recognize and standardize the words. The repeating letters are typ-
ically reduced to two or three occurrences. For instance, “sweeeeeeet” can be reduced
to “sweet” or “sweeet”. By reducing to three letters, the reduced word is still different
from the correctly spelled word, so that its emphasis is preserved.

2.2. Machine Learning Algorithms
Machine learning classifiers are computer programs that try to create a classification
function from some training data in order to classify different categories in the data.
There are many different kinds of machine learning algorithms, and some are more suited
to text classification tasks than others. In the following subsections, a brief overview of
some relevant machine learning algorithms is provided.

2.2.1. Support Vector Machines

Cortes and Vapnik (1995) introduced the support-vector network learning machine for
binary classification problems. Support Vector Machines (SVMs) work by mapping the
input vectors to a high-dimensional space, in which a linear decision surface is generated.
To efficiently find a decision surface that generalizes well in a high-dimensional space,
the idea of optimal hyperplanes is used. An optimal hyperplane in the context of SVMs
is defined as the linear decision function that maximizes the margin between the vectors
of the two classes. Only a few vectors, the support vectors, need to be considered to find
this margin.
The SVM has a parameter C, which is used to tell the classifier how to balance finding

a hyperplane with a large margin that separates classified samples and the amount
of misclassified samples. Having a smaller C value means the classifier allows more
misclassified samples in favor of a larger margin.

2.2.2. Maximum Entropy

In the context of machine learning methods, a Maximum Entropy (MaxEnt) classifier
is a Logistic Regression classifier that generalizes to multiclass problems (Nigam et al.,

6

2.3. Evaluation

1999). The classifier is also called multinomial logistic regression. The MaxEnt classifier
is a probabilistic classifier that, compared to other probabilistic classifier such as Naïve
Bayes, makes minimum assumptions. MaxEnt is based on the Principle of Maximum
Entropy, and selects the model that fits the training data with the largest entropy. The
classifier does not assume conditional independence of features, an assumption made by
Naïve Bayes, and is as such well suited for text classification tasks, since the words in a
sentence typically are not independent.

2.3. Evaluation
This section describes how a machine learning model can be evaluated and some metrics
that are often used in evaluation of classification systems.

2.3.1. Techniques

The standard evaluation procedure of machine learning models splits data into three
categories: a training set, a validation set and a test set. The training set is used for
adjusting the weights of the model, in order to improve the accuracy on the training
set. The validation set is used to avoid overfitting to the training data. The validation
is not part of the training data. By regularly evaluating against the validation data,
one can validate that the model is improving its scores on both the training data and
the independent validation data. This is useful when testing different parameters of the
model. The test set is used to evaluate the finalized model.
Unwanted bias can be introduced to the model depending on how the data has been

split into the three categories. Optimally one would want all sets to represent the general
case as closely as possible. Consider the extreme case where the training set contains
only samples of class A, the validation set only class B, and the test set class C. The
trained model would only know about the class A and be unable to classify B and C. To
avoid such bias, certain statistical methods have been developed, called cross-validation.
A common cross-validation method is k-fold cross-validation. In this method the data

is split into k mutually exclusive sets (folds). Each of these sets are used as the test set
once, while the rest are used as training sets. The test scores are then averaged over the
k runs.

2.3.2. Metrics

A set of evaluation measures is needed to compare different classification models. For
sentiment analysis systems it is interesting to score a system based on how good it is
at classifying documents correctly. The measures precision, recall and F-score are often
used for such evaluation tasks. These measures use the numbers of true positives, true
negatives, false positives and false negatives to calculate their value. True positives
(tp) is the number of correctly classified positive samples, while true negatives (tn) is
the same for negative samples. False positives (fp) is the number of falsely classified
positive samples, while false negatives (fn) is the same for negative samples.

7

2. Background Theory

Precision

Precision measures how many of the samples classified as positive (or negative for the
opposite case) that are correctly classified. If every sample that returns positive actually
is correctly classified, the precision is 1. The formula for precision is given as:

precision = tp

tp+ fp
(2.1)

Recall

Recall measures how many of the true positive (or negative) samples that are classified
correctly. If the classifier returns all the true positive samples as positive, the recall is
1. Recall is defined as:

recall = tp

tp+ fn
(2.2)

F -score

Precision and recall are combined in a weighted average to give the F -score. The general
definition of F -score is given as:

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall (2.3)

where β is the weight. The traditional balanced F -score uses β = 1, as this gives the
harmonic mean of precision and recall.

F1 = 2 · precision · recall
precision + recall (2.4)

FPN
1 -score

The FPN
1 -score is a modified version of the traditional F -score that is used by the Interna-

tional Workshop on Semantic Evaluation (SemEval) to score and rank the participating
systems on the three-way Twitter Sentiment Analysis task. The approach is to calculate
F -scores for positive samples and negative samples and then average the two. Since each
sample must be classified as belonging to one of three classes, precision and recall are
also slightly altered. Precision for the positive class is now given as:

precisionP = PP

PP + PU + PN
(2.5)

where PP is true positive samples classified as positive (the same as true positives for
normal precision), PU is true neutral samples classified as positive and PN is true
negative samples classified as positive. Recall is now given as:

recallP = PP

PP + UP +NP
(2.6)

8

2.4. Word Embeddings

where PP is as for precision above, while UP is true positive samples classified as neutral
and NP is true positive samples classified as negative. The F1-score for the positive class
is then calculated by using Equation 2.4 with the recall and precision for the positive
class. The F1-score for the negative class is defined analogously. F1-scores for positive
and negative samples are averaged to get the FPN

1 -score.

FPN
1 = FPOS

1 + FNEG
1

2 (2.7)

Macro F1-score

While the FPN1 -score is the official metric of SemEval for both the binary and ternary
classification tasks, one can argue how representative it is for the latter. Another metric
used by Tang et al. (2016) is the Macro F1-score, which extends FPN

1 to average over
both the positive, negative and neutral F1-scores.

Macro F1 = FPOS
1 + FNEG

1 + FNEU
1

3 (2.8)

Here FNEU
1 is analogous to the FPOS

1 and FNEG
1 scores above, but for the neutral class.

AvgRec

The SemEval workshop changed its primary scoring metric in 2017 to a new score called
AvgRec for average recall (Rosenthal et al., 2017).

AvgRec = recallPOS + recallNEG + recallNEU

3 (2.9)

where recallPOS, recallNEG and recallNEU are the recall scores for the positive, negative
and neutral classes, respectively.

2.4. Word Embeddings
Word embeddings are techniques for representing words as low-dimensional real-valued
vectors that capture semantic and lexical properties of the words. The vectors themselves
can be used for computing similarities between words or phrases, and as input features
for other NLP tasks such as text classification, part-of-speech tagging and sentiment
analysis. Word embeddings have been found to be good at capturing syntactic and
semantic regularities in language (Mikolov et al., 2013c). The regularities are constant
vector offsets between pairs of words sharing a particular relationship, and can be found
by applying simple algebraic operations to the word vectors. A typical example of this is
that vector(“King”)−vector(“Man”)+vector(“Woman”) results in a vector which is close
to vector(“Queen”). Closeness between word vectors is measured using cosine similarity.
The idea of representing words as vectors has a long history (Firth, 1957; Hinton,

1986), and in the 1990s methods for using automatically generated contextual features

9

2. Background Theory

were developed. One such method is Latent Semantic Analysis (LSA) (Deerwester et al.,
1990) where feature vectors for words are learned on the basis of their probability of co-
occurring in the same documents. These methods are also called Matrix Factorization
Methods.
The word embedding technique was introduced by Bengio et al. (2003). They trained

what they called learned distributed feature vectors as part of a neural language model.
The model consisted of an embedding layer, hidden layers and a softmax layer. The
embedding layer in their model was a matrix consisting of free variables that was shared
for all the input words. This matrix was multiplied with index vectors to create the word
embeddings for each word. The matrix was learned jointly with the rest of the neural
language model. The main bottleneck in this neural language model was identified to
be the use of the softmax layer, which is proportional to the number of words in the
vocabulary.
Collobert and Weston (2008) showed the utility of using pre-trained word embeddings.

They presented a single Convolutional Neural Network architecture that was trained
jointly on multiple NLP tasks. The model did away with the expensive softmax layer by
using a different objective function. The network was trained to output a higher score
for correct word sequences than incorrect ones. Correct word sequences can be found
by looking at all possible sequences (or context windows) in the corpus, while incorrect
ones are created by replacing the focus word of a sequence with another word from the
vocabulary. The objective was to maximize distance between the scores output for the
correct and incorrect sequences. The word embeddings were used and trained jointly
with the rest of the model, in the same manner as for Bengio et al. (2003). By using
a less expensive objective function, the model can be trained on a much larger dataset.
Collobert et al. (2011) proposed a unified multilayer neural network that can be applied
to various natural language processing tasks. This model architecture is described in
detail in Section 3.2 (p. 18).
Mikolov et al. (2013a) and Mikolov et al. (2013b) introduced the word2vec model.

The word2vec model is presented in greater detail in Section 2.4.1. They observed that
most of the complexity from previous models was caused by the use of a non-linear
hidden layer in the model. The new architectures presented aimed to do away with
these computationally expensive layers.
Pennington et al. (2014) argued that the models for learning word representations

using a limited context window poorly utilized the statistics of the corpus. Global matrix
factorization methods, such as LSA, are better at using statistics from the corpus, but
they do worse on word analogy tasks and are more expensive to train. Pennington et
al. proposed a low rank approximation of co-occurrence statistics in their system called
GloVe which they claimed outperformed other models on word analogy, word similarity,
and named entity recognition tasks. This claim was challenged by Levy et al. (2015)
who stated that the Skip-gram model from word2vec trained with negative-sampling
outperformed GloVe on every task.

10

2.4. Word Embeddings

(a) The CBOW model. (b) The Skip-gram model.

Figure 2.1.: The word2vec models. Figure from (Mikolov et al., 2013a).

2.4.1. word2vec

The word2vec model presented by Mikolov et al. (2013a) introduces two new log-linear
architectures for learning word embeddings: the Continuous Bag-of-Words model and
the Continuous Skip-gram model. The models can be seen as simple neural networks
with a single hidden layer. The training is unsupervised, meaning that there is no label to
use in the objective function. Instead, the target word functions as the label. This form
of unsupervised training is similar to unsupervised feature learning with auto-encoders.
The similarity is that a neural network with hidden layers is trained in an unsupervised
manner, where the goal is to extract the weights of the resulting hidden layers. Each
input word is encoded with a 1-of-N (also called “one-hot”) encoding. Each input vector
has length equal to the size of the vocabulary, with a 1 at the position that represents
the word and with 0 s for the rest of the vector. When these vectors are multiplied
by a matrix, the resulting vector is the row from the matrix at the position of the 1
in the vector. Therefore, for the word2vec models, the resulting weights in the hidden
layer are the word embeddings that are pursued. Mikolov et al. (2013b) also presented
two approximations to the softmax function for calculating the posterior distribution of
words that is more computationally efficient, called Hierarchical Softmax and Negative
Sampling.

Continuous Bag-of-Words Model

The Continuous Bag-of-Words (CBOW) model uses a context window around a focus
word in order to predict the word. The context window consists of words both before

11

2. Background Theory

and after the focus word. All the context words are projected in a shared projection
layer where the word embeddings are simply averaged. As for other bag-of-words models,
the ordering of the context words does not matter. However, unlike other bag-of-words
models, the architecture uses continuous distributed representation of the context. The
model used by Mikolov et al. (2013a) is trained by using the four words before and the
four words after the focus word. The training criterion is to correctly classify the focus
word given its context. The model architecture is shown in Figure 2.1a.

Continuous Skip-gram Model

The continuous Skip-gram model is similar to the CBOW model, but here the objective
function is opposite. While the CBOW model uses the context of a word to try to predict
the word, the Skip-gram model uses the focus word to predict the surrounding words.
The training objective is to minimize the summed predictions error across the context
words. The model architecture can be seen in Figure 2.1b. Each word is used as input to
the classifier that predicts the words within a range before and after the word. The size
of the range can be increased for better quality of the resulting word embeddings, but
it increases the computational complexity (Mikolov et al., 2013a). The context words
are weighted by their distance from the focus word in the context window. According
to Mikolov1, the Skip-gram model works well with small amounts of training data and
gives better representations even for rare words and phrases, compared to the CBOW
model. However, the Skip-gram model is not as fast to train and it gives slightly worse
accuracy for frequent words.

2.4.2. GloVe

Pennington et al. (2014) present a Global Vectors model called GloVe. The model means
to combine the benefits from global matrix factorization models like LSA and local con-
text window methods like the word2vec models. Matrix factorization methods create
large matrices that capture statistical information about a corpus, which are then de-
composed to low-rank approximations. In some models, the large matrices capture when
words appear together in a context, such as term-term co-occurrence matrices. These
methods are good at capturing global statistical properties from a corpus, while local
context window methods are better at word similarity tasks.
The GloVe model creates a word-word co-occurrence matrix X where each entry in

the matrix Xij is the number of times word j occurs in the context of word i. The
probability that a word k appears in the context of the word w is given as P (k|w)
and can be calculated by using the word-word co-occurrence matrix. Pennington et al.
show that ratios of the co-occurrence probabilities with various probe words give better
performance than by using only the probabilities. The training objective of the GloVe
model is then to learn word vectors such that their dot products equal the logarithm of
the words’ probability of co-occurrence. This constraint can be written as:

1https://groups.google.com/forum/#!searchin/word2vec-toolkit/c-bow/word2vec-toolkit/
NLvYXU99cAM/E5ld8LcDxlAJ

12

https://groups.google.com/forum/#!searchin/word2vec-toolkit/c-bow/word2vec-toolkit/NLvYXU99cAM/E5ld8LcDxlAJ
https://groups.google.com/forum/#!searchin/word2vec-toolkit/c-bow/word2vec-toolkit/NLvYXU99cAM/E5ld8LcDxlAJ

2.5. Tools

wTi wj + bi + bj = log(Xij) (2.10)
where wi is the vector for the focus word, wj is the vector for the context word, bi and bj
are scalar biases for the focus word and the context word. The constraint is weighted by
a weighting function that helps preventing learning from extremely common word pairs.

2.5. Tools
This section provides a description of the tools and libraries that are used for creating
the programs in this thesis.

2.5.1. scikit-learn

scikit-learn is a machine learning library for the Python programming language2. The
library contains a wide range of state-of-the-art machine learning classifiers for both
supervised and unsupervised learning (Pedregosa et al., 2011). Among the classifiers
are SVMs and MaxEnt (described in Section 2.2). The LinearSVC classifier is an SVM
classifier with a linear kernel that uses the LIBLINEAR3 library for large linear classifi-
cation.

2.5.2. MultiVec

MultiVec (Bérard et al., 2016) is an implementation of word2vec, bivec and paragraph
vector in C++, with a Python wrapper. It supports training both mono- and bilingual
word embedding models. MultiVec supports most of word2vec’s features, and is easy to
use in conjunction with other Python modules. Both the CBOW and Skip-gram models
are available for word2vec. MultiVec is open-source under the Apache 2.0 License and
is available on GitHub4.

2.5.3. glove-python

glove-python is a Python library for training GloVe word embedding models, which is
available on GitHub5. It uses asynchronous stochastic gradient descent (SGD), and is
implemented in Cython. It is published as a Python package on the Python Package
Index, making it easy to install and incorporate in other Python programs.

2.5.4. Twokenize

Twokenize is a tokenizer designed for Twitter text and is written in Java. It is part of the
TweetNLP6 (Owoputi et al., 2013) set of tools for natural language processing of tweets.

2http://scikit-learn.org/stable/
3https://www.csie.ntu.edu.tw/~cjlin/liblinear/
4https://github.com/eske/multivec
5https://github.com/maciejkula/glove-python
6http://www.cs.cmu.edu/~ark/TweetNLP/

13

http://scikit-learn.org/stable/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://github.com/eske/multivec
https://github.com/maciejkula/glove-python
http://www.cs.cmu.edu/~ark/TweetNLP/

2. Background Theory

The tokenizer is ported to Python 2 under the name ark-twokenize-py and is available
on GitHub7. The port has been slightly altered to work with Python 3 for this thesis.
Twokenize splits a tweet into a vector with its constituent parts as well as separating
punctuation from words. The tokenizer can also split contractions like “shouldn’t” to
“should” and “n’t”.

2.5.5. Preprocessor

Preprocessor is a simple library that can tokenize and/or clean (remove) Twitter specific
elements. It supports URLs, Hashtags, Mentions, Reserved words (“RT” and “FAV”),
Emojis, and Smileys. With tokenizing, instances of these will be turned into defined
tokens. The specific tokens along with examples of the specific elements can be seen in
Table 2.1. By cleaning, instances will simply be deleted from the text. Configuration can
be done to customize which elements to tokenize and which to clean. The Preprocessor
library is available as a package on the Python Package Index, which makes it convenient
to install. Its code is available on GitHub8.

Instance Example Token
URL http://example.com URL
Mention @username $MENTION$
Hashtag #topic $HASHTAG$
Reserved Word RT $RESERVED$
Emoji , $EMOJI$
Smiley :) $SMILEY$
Number 123 $NUMBER$

Table 2.1.: Twitter specific elements that can be removed or tokenized with Preprocessor.

2.5.6. Twitter API

Twitter provides various Application Programming Interfaces (APIs) for developers to
use. The REST APIs let the developer fetch specific data of interest by sending HTTP
requests. Representational State Transfer (REST) is an architecture for distributing
data between hosts on the World Wide Web. REST was defined by Fielding (2000),
and describes a set of stateless operations for data communication. The requirement of
statelessness means that every request from client to server must contain all information
necessary for the server to process the request. The Twitter REST APIs provide access
to write and read Twitter data, from user profiles to tweets, including searching for
certain tweets based on user defined queries.
For fetching tweets in real-time, Twitter provides the Streaming APIs. When con-

nected to a stream, Twitter provides samples of tweets, without having to poll the
REST APIs.

7https://github.com/myleott/ark-twokenize-py
8https://github.com/s/preprocessor

14

https://github.com/myleott/ark-twokenize-py
https://github.com/s/preprocessor

2.5. Tools

2.5.7. twit

twit9 is a popular package for Node.js that can handle communication with both the
Twitter REST and Streaming APIs. The most valuable part of twit is its interface to
the Streaming API. Behind the scenes, it handles reconnections if the connection to the
stream is lost, and it implements Twitter’s guidelines to avoid breaking the API’s rate
limits.

2.5.8. AFINN

AFINN (Nielsen, 2011) is a sentiment lexicon that assigns each word a value between -5
(very negative) to 5 (very positive). It includes slang, smileys and annotations that are
common in microblogs. AFINN is implemented as a Python library, which is available
on GitHub10. It rates a whole tweet by evaluating each word and summing the scores.
This means that a tweet might get a sentiment score greater than 5 or less than -5.
Out-of-vocabulary words are assigned a score of 0, which is the same as for neutral
words.

2.5.9. VADER

Valence Aware Dictionary and sEntiment Reasoner (VADER) by Hutto and Gilbert
(2014) is a rule-based model for general sentiment analysis, tuned for microblogs. VADER
returns a normalized 3D vector where each element represents a score for each of the sen-
timent classes positive, negative and neutral, respectively. VADER also gives a compound
score, which is a single sentiment score from -1 (very negative) to 1 (most positive).

2.5.10. TextBlob

TextBlob is a Python library that supports various text processing tasks, like common
NLP tasks and sentiment analysis. It is available on GitHub11. It has two sentiment
analysis models implemented. The default is the PatternAnalyzer, which is based on
the pattern Python library. Another implementation is the NaiveBayesAnalyzer which
is an NLTK classifier trained on movie reviews. The PatternAnalyzer model produces a
positive and negative sentiment score between -1 and 1 and a subjectivity score between
0 and 1.

2.5.11. Fredriksen–Jahren Lexicon Classifier

Fredriksen and Jahren (2016) wrote an automatic sentiment lexicon creator and a lex-
icon sentiment analysis system as part of their Master’s thesis. Fredriksen and Jahren
found that their best performing automatically created lexicon outperformed manually

9https://github.com/ttezel/twit
10https://github.com/fnielsen/afinn
11https://github.com/sloria/textblob

15

https://github.com/ttezel/twit
https://github.com/fnielsen/afinn
https://github.com/sloria/textblob

2. Background Theory

annotated lexica, and their sentiment analysis system produced good results compa-
rable to sophisticated machine learning based systems. The runtime performance is
significantly better than the compared systems, making it promising for real-time and
distant-supervised classification. Fredriksen and Jahren open-sourced their work, which
is available on GitHub12. To better be able to integrate the program with the programs
of this thesis, the Java implementation was ported to Python. This is explained further
in Section 5.3 (p. 32).

2.5.12. Theano

Theano (Alain et al., 2016) is a Python library for efficiently defining, optimizing and
evaluating mathematical expressions involving multidimensional arrays. Theano allows
the user to define calculations in a symbolic way, which are optimized and compiled to
C code for fast and efficient evaluation. Because of this, Theano is a popular library
used when defining and evaluating artificial neural networks. Theano is open-source and
available on GitHub13.

2.5.13. TensorFlow

TensorFlow is a software library developed by the Google Brain team at Google for
expressing and implementing machine learning algorithms (Abadi et al., 2015). Calcula-
tions expressed using TensorFlow can be executed on a wide variety of systems, making
it easier for the user to execute machine learning algorithms on for instance GPUs. Ten-
sorFlow was open-sourced under the Apache 2.0 open-source license on November 9,
2015 and is available on GitHub14.

2.5.14. Keras

Keras is a high-level neural networks library that focuses on enabling fast experimenta-
tion for the Python programming language. With Keras, one can easily define layers,
objective functions and training optimizers to easily build and test neural network ar-
chitectures. Keras supports using either Theano or TensorFlow as backend for handling
computation of multidimensional arrays. Switching between Theano and Tensorflow is
possible through simple configuration. Likewise for switching between GPU and CPU
processing. Keras is open-source under the MIT license and it available on GitHub15.

12https://github.com/freva/Masteroppgave
13https://github.com/Theano/Theano
14https://github.com/tensorflow/tensorflow
15https://github.com/fchollet/keras

16

https://github.com/freva/Masteroppgave
https://github.com/Theano/Theano
https://github.com/tensorflow/tensorflow
https://github.com/fchollet/keras

3. Related Work
Some of the recent work done in the fields of Twitter Sentiment Analysis and word
embeddings will be presented in this chapter. Emphasis will be made on some of the
historical arguments made in the development of the fields.

3.1. Twitter Sentiment Analysis
While sentiment analysis in news articles and blogs has been explored for a quite a while,
the field of sentiment analysis in microblogs is fairly young. Go et al. (2009) claimed
to be the first to analyze machine learning techniques in the specific field of microblogs,
and pointed out that this might be because of Twitter’s recent rise to popularity. Today,
Twitter has been one of the largest social media for many years, and the field of Twitter
Sentiment Analysis (TSA) has grown to become a popular topic in sentiment analysis.

3.1.1. Preprocessing

The overall procedure of doing TSA has been roughly the same since the start. First,
the tweets are preprocessed. See Section 2.1 (p. 5) for descriptions of common textual
preprocessing techniques. Go et al. (2009), for their unigram feature extractor, converted
all URLs to the symbol “URL” and created an equivalence class for all user mentions
(@username). Others remove the URL altogether (Gomez-Adorno and Sidorov, 2016;
Steinskog and Therkelsen, 2016). To cope with elongated words (“loooong”, “huuu-
ungry”, etc.), some translate these to their ordinary form (“long”, “hungry”) (Jiang
et al., 2011; Deriu et al., 2016), while others reduce the repeated characters to two
(“loong”, “huungry”) (Boag et al., 2015), so that elongated words can be separated from
non-elongated words. The count of elongated words can be used as a feature in itself
(Balikas and Amini, 2016).
Traditionally, minimal preprocessing has been done to tweets when training word

embeddings. It has been assumed that the word embeddings would learn the similarities
between words anyways, rendering the preprocessing steps redundant. But Gomez-
Adorno and Sidorov (2016) showed that preprocessing improves word embedding vectors,
making it relevant to explore various preprocessing methods in combination with word
embeddings.

3.1.2. Feature Extraction

After textual preprocessing comes the extraction and selection of features. Go et al.
(2009) compared unigram and bigram models and found that a combination performed

17

3. Related Work

better than the two individually. Agarwal et al. (2011) compared the unigram model
with two other models: a feature based model and a tree kernel based model. The tree
kernel based model outperformed the other two by a clear margin. The use of Parts-
of-Speech (POS) tags as a feature is common. Go et al. (2009) reported that the tags
increased the classification accuracy by almost six percent on the Stanford Classifier,
but decreased the accuracy in the case of their Naïve Bayes classifier.
Emoticons have played a great role in TSA. Go et al. (2009) used them to annotate

training data. Gomez-Adorno and Sidorov (2016) converted them to the words they rep-
resent – for instance, “:)” becomes “smile”. Ræder (2016) and Steinskog and Therkelsen
(2016) translated unicode emoticons to a smaller set of ASCII equivalents. Agarwal et
al. (2011) reported that emoticons and hashtags help in classifying sentiment, but only
marginally. Zhou et al. (2016), who had the top performing system of SemEval 2016
task 4A (Nakov et al. 2016; see Section 3.4, p. 23), also reported contributions from
emoticons in all classifiers.

3.1.3. Machine Learning Classifiers

Various machine learning algorithms have been tested over the years. Support Vector
Machines (SVM), Naïve Bayes and Maximum Entropy (MaxEnt) are common classifiers.
Go et al. (2009) tried all of these three, with unigram and bigram feature models.
Their unigram model with a multinomial Naïve Bayes classifier performed the best.
Steinskog and Therkelsen (2016) compared seven different classifiers: a MaxEnt classifier,
a Bernoulli and a Multinomial Naïve Bayes based classifier, SVMs with sigmoid, linear,
radial basis function kernels, and a Stochastic Gradient Descent (SGD) classifier. Of
these, the top performer on recall and F1-scores was the MaxEnt classifier, the SGD
being the only one to beat it on precision.

3.2. The Collobert and Weston Model
Collobert et al. (2011) proposed a task-general neural network architecture for natural
language processing. To achieve versatility, they refrained from using man-made task-
specific input features, and instead let their system learn an internal representation
from vast amounts of unlabeled data. They do as little preprocessing as possible, and
train their multilayer neural network architecture in an end-to-end fashion. The model
architecture is illustrated in Figure 3.1. Henceforth this architecture will be referred to
as the Collobert and Weston (C&W) architecture.
The architecture’s first layer extracts features for each word. The second layer extracts

features from a window of words, treating it as a sequence with local and global structure
(i.e., it is not treated like a bag of words). The following layers are standard neural
network layers. As the architecture is highly relevant for the works of Tang et al. (2014)
and us, the layers will be described in detail. The same notations as in Collobert et al.
(2011) are used.
The first layer is called the Lookup Layer. Words are fed into the architecture as their

18

3.2. The Collobert and Weston Model

respective indices in a fixed-size vocabulary D. The indices are then mapped to vectors
of a fixed size by indexing a lookup table LT ∈ Rdwrd×|D|. Here dwrd is the size of the
desired vectors, or word embeddings, and is a hyperparameter that must be specified
by the user. The parameters, or weights, of the lookup table are randomly initialized,
and are, after the network has been trained, what constitutes the word embeddings for
the words in the vocabulary D. Collobert et al. use the window approach to tag one
word at the time. The window approach is based on the assumption that a word’s tag is
mainly dependent on its surrounding words. This window is called the context window
of a focus word. When considering a word, its window of neighboring words is passed
through the lookup layer, producing a feature vector for each word. The column vectors
are concatenated to a matrix fθ1 of size dwrd × ksz, where ksz is the size of the context
window.
The next layer is the Linear Layer. The input vector fθ1 can be passed through one

or several layers that perform affine transformations over their inputs:

fθ
1 = W lfθ

l−1 + bl (3.1)

where W l ∈ IRnl
hu×n

l−1
hu and bl ∈ IRnl

hu are the parameters to be trained. The hyper-
parameter nlhu is usually called the number of hidden units of the lth layer. The simplest
C&W model uses only a single linear layer before the next, non-linear layer.
The next layer is the HardTanh Layer, which introduces some non-linearity to the

model. A “hard” version of the hyperbolic tangent is chosen as it is slightly cheaper
to compute compared to the real hyperbolic tangent, while it does not lose any gen-
eralization performance (Collobert and Weston, 2008). The HardTanh function is as
follows:

HardTanh(x) =

−1, if x < −1

1, if x > 1
x, otherwise

(3.2)

Finally, a Linear Layer is used to get an output vector with dimension equal to the
available number of tags or classes for the given task. Each element of this vector is in-
terpreted as a score for the corresponding tag. For the task of learning word embeddings
from context information, the output vector of the final layer has size 1.
During training, the objective of the C&W model is to obtain a higher model score

for a given context window than a corresponding corrupted context window. For each
context window that is used to train the model, a corrupted context window is created
by replacing the central focus word with a randomly drawn word from the vocabulary.
Both the correct and the corrupted context windows are passed through the model, and
the training objective is that the original context window is expected to obtain a higher
model score than the corrupted by a margin of 1. The objective can be formulated as a
hinge loss function written as:

losscw(t, tr) = max(0, 1− f cw(t) + f cw(tr)) (3.3)

19

3. Related Work

where t is the original context window, tr is the corrupted context window and f cw(·) is
the calculated model score.

Figure 3.1.: The Collobert and Weston model. The feature vectors of the words in the
context window are concatenated and fed to the linear layer. wi is the focus
word, and the context window size ksz = 2c+ 1.

3.3. Sentiment-Specific Word Embeddings
The word embedding methods described in Section 2.4 (p. 9) only consider the contexts,
or collocation, of words to determine similarity. This works well for tasks like determining
POS tags, as the grammatical role of words are heavily dependent on the surrounding
words. For sentiment analysis, on the other hand, context does not necessarily pinpoint
the sentiment of a word. Tang et al. (2014) described this problem and pointed out that
words with opposite sentiment, for instance “good” and “bad”, often occurred in the
same contexts, resulting in similar word embedding vectors.
To improve word embeddings for sentiment analysis, Tang et al. proposed Sentiment-

Specific Word Embeddings (SSWE). They enhanced the Collobert and Weston (C&W)
word embedding model (Section 3.2) by employing massive amounts of distant-supervised
tweets. Instead of manually annotating tweets, they assigned tweets containing positive
emoticons a positive label, and tweets containing negative emoticons a negative label.
This way they were able to collect large amounts of tweets and assign a sentiment an-
notation automatically. Tang et al. proposed three different strategies of incorporating
the sentiment information of the tweets into their embeddings, namely Basic Model 1
(SSWEh), Basic Model 2 (SSWEr) and Unified Model (SSWEu). The Basic Models only
look at sentiment polarity of sentences, leaving out the contexts of words, when training
sentiment-specific word embeddings. The Unified Model combines both the contexts of

20

3.3. Sentiment-Specific Word Embeddings

words as well as the sentiment polarity of sentences to build its embeddings. Tang et al.
(2016) later improved on the Unified Model by introducing the Hybrid Ranking Model.

3.3.1. Basic Model 1 (SSWEh)

The Basic Model 1 (SSWEh) follows the window-based C&W approach. The top layer
of C&W is modified so that its output vector’s dimension equals the number of possible
labels K. Each element in the output vector defines a probability of a word’s label. For
instance, for the positive/negative sentiment classification task, [1, 0] would represent
the positive label and [0, 1] would represent the negative. A softmax activation layer is
put on top of the C&W top linear layer. According to Tang et al., the softmax layer is
suitable for this scenario because its outputs are interpreted as conditional probabilities.
The SSWEh model is trained by predicting the positive n-gram, or context window, as
[1, 0] and the negative as [0, 1].

3.3.2. Basic Model 2 (SSWEr)

The Basic Model 2 (SSWEr) aims to improve the performance of SSWEh by relaxing
its strict constraint. While SSWEh looks only at [1, 0] and [0, 1], SSWEr handles more
fuzzy distributions. Say [0.7, 0.3] would be interpreted as a positive label, and [0.2, 0.8]
would be interpreted as a negative. If the sentiment polarity of a tweet is positive, the
predicted positive score is expected to be greater than the predicted negative score, and
vice versa.
The SSWEr model borrows the bottom four layers from the SSWEh model, but has

no need for the top softmax layer. It is removed because the SSWEr does not require
probabilistic interpretation. The model’s relaxed constraint is modeled with a ranking
objective function. The function is given as:

lossr(t) = max(0, 1− δs(t)f r0 (t) + δs(t)f r1 (t)) (3.4)

where f r0 is the predicted positive score, f r0 is the predicted negative score and δs(t) is a
function that reflects the gold sentiment polarity of the context window t:

δs(t) =
{

1, if fg(t) = [1, 0]
−1, if fg(t) = [0, 1]

(3.5)

Here fg(t) is the correct sentiment label for the context window t, and fg(t) = [1, 0]
means that the context window is labeled “positive”.

3.3.3. Unified Model (SSWEu)

The Unified Model (SSWEu) combines the context of words and the polarity of sentences.
While the Basic Models did not use the corrupted context window training strategy of
C&W, the Unified Model does. The objective function consists of two training objectives.
The first one is that the original context window should obtain a higher language model

21

3. Related Work

score than the corrupted context window. The second is that the sentiment score of the
original context window should be more consistent with the gold polarity annotation of
the sentence than the corrupted context window. The loss function of the Unified Model
is a weighted combination of two loss functions:

lossu(t, tr) = α · losscw(t, tr) + (1− α) · lossus(t, tr) (3.6)

where 0 ≤ α ≤ 1 weights the two parts and losscw is the loss function from the C&W
model given by Equation 3.3. The function lossus is given by:

lossus(t, tr) = max(0, 1− δs(t)fu1 (t) + δs(t)fu1 (tr)) (3.7)

where δs(t) is as given in Equation 3.5. The function is similar to Equation 3.4, but
now compares the predicted sentiment scores for the original and the corrupted context
window.

Figure 3.2.: The Hybrid Ranking Model.

3.3.4. Hybrid Ranking Model

Tang et al. (2016) present a model similar to the Unified Model, but with a slightly
altered objective function. The sentiment loss function is now as in Equation 3.4 (p. 21),
meaning that the model no longer looks at the predicted sentiment score for the corrupted
context window, it only compares the predicted positive and negative score for the correct
context window when calculating the loss. The new loss function is given as:

losshyRank = αrank · losssRank + (1− αrank) · losscRank (3.8)

22

3.4. The International Workshop on Semantic Evaluation

where 0 ≤ αrank ≤ 1 weights the two functions, losssRank is equivalent to lossr given
by Equation 3.4 and losscRank is equivalent to losscw given by Equation 3.3 (p. 19).
The Hybrid Ranking Model is illustrated in Figure 3.2. The figure shows the feature
vectors for each word in a context window being concatenated and fed to the linear
layer, similarly to the C&W model in Section 3.2 (p. 18). The top linear layer consists
of the context-aware layer on the left and the sentiment-aware layer on the right. The
context-aware layer calculates the context score f cw, while the sentiment-aware layer
calculates the sentiment scores f r for the input context window.

3.4. The International Workshop on Semantic Evaluation
The International Workshop on Semantic Evaluation (SemEval) is an ongoing series of
evaluations of computational semantic analysis systems. The workshop has since 2012
been hosted annually, and has a growing number of tasks and subtasks. The SemEval
workshop has provided a task for Twitter Sentiment Analysis (TSA) since 2013. The
workshop has provided training data and a platform to test and compare different TSA
systems, which has led to significant advancements to the state-of-art in the field.
The SemEval workshop was most recently held in 2017. At the time of writing this

thesis, the proceedings from the workshop are yet unreleased and a further analysis of
the submitted systems is not provided. The task paper for the TSA task (Rosenthal
et al., 2017) provides a summary of the results, and the top ten performing systems with
their score are shown in Appendix B.
The SemEval workshop held in 2016 provided a task for TSA systems called “Task 4:

Sentiment Analysis in Twitter”. The task consisted of five subtask, where Subtask A is of
most interest to us. Task 4A is “Given a tweet, predict whether it is of positive, negative,
or neutral sentiment.” (Nakov et al., 2016). The top ranking systems for Task 4A in
SemEval 2016 are presented in Table 3.1. The systems were scored using a variation of
the F1-score, called FPN1 -score, presented in Section 2.3.2 (p. 7).

Nakov et al. (2016) reported that there was a dominance of methods based on deep
learning, while kernel machines (see Section 2.2.1, p. 6) were less frequently used com-
pared to previous years. Five out of the ten top-ranked systems used deep neural net-
works of some sort. They further reported that the use of distant supervision was
common in the submitted systems, as there is an abundance of freely available tweets
with, for instance, smileys or emojis that can be used as imprecise labels. Eight out of
the ten top-ranked systems used word embeddings in some capacity.
The top-performing systems from SemEval 2016 are also top-ranked for test datasets

from previous years. A general pattern was identified: the top-ranked system of each
year outperforms the top-ranked system from the previous year on the dataset from the
previous year.
The top-scoring system for Task 4A was called SwissCheese (Deriu et al., 2016) and

used an ensemble of 2-layer convolutional neural networks (CNNs). Predictions were
combined using a random forest classifier. In addition to small amounts of labeled data,
the system was trained on large amounts of unlabeled data using distant supervision.

23

3. Related Work

Rank Name FPN1 -
score Classifier Features

1 SwissCheese 0.633 Ensemble of CNN Word embeddings
(word2vec + GloVe)

2 SENSEI-LIF 0.630
Fusion of CNN and
MLP (multilayer per-
ceptron)

Word embeddings (3
kinds) + sentiment
polarity lexicon

3 UNIMELB 0.617 Ensemble of CNN,
LSTM and NB

Word embeddings
(word2vec)

4 INESC-ID 0.610
Non-Linear Sub-space
Embedding (NLSE)
model

Word embeddings

5 aueb.twitter.sentiment 0.605 Ensemble of SVMs
Word embeddings
(GloVe) + traditional
NLP features

6 SentiSys 0.598 Logistic Regression Traditional NLP features

7 I2RNTU 0.596 Asymmetric SIMPLS
(ASIMPLS) Word embeddings

8 INSIGHT-1 0.593 CNN Word embeddings

9 TwiSE 0.586
Stacked generalization
with SVM and Logistic
Regression

Traditional NLP features

10 ECNU 0.585 Logistic Regression Word embeddings + tra-
ditional NLP features

Table 3.1.: The FPN1 scores, classification algorithms and input features used by the top
ranking systems for SemEval 2016 Task 4A.

The system used the Skip-gram model from word2vec (see Section 2.4.1, p. 11) to train
word embeddings. The word embeddings were used to initialize the first layer in their
system.
Similarly to the SwissCheese system, the SENSEI-LIF system presented by Rouvier

and Favre (2016) used CNNs and word embeddings in its classifier. However, the system
did not utilize an ensemble, but instead combined different CNNs trained with different
input embeddings in a fusion neural network. The system used three different kinds of
word embeddings as input to the CNNs called lexical embeddings, part-of-speech em-
beddings and sentiment embeddings. The lexical embeddings were the word embeddings
from training with the Skip-gram model, while the other two were variations created to
give additional semantic information.
The system aueb.twitter.sentiment (Giorgis et al., 2016) did not utilize deep neural

networks for its classifier. The system used an ensemble of two SVM classifiers, where
one used traditional features such as POS based, sentiment lexicon based and negation
based features, while the other used pre-trained word embeddings produced by GloVe

24

3.4. The International Workshop on Semantic Evaluation

(see Section 2.4.2, p. 12). Each classifier was split in two parts. The first part, called
subjectivity detection, tried to predict if a tweet is objective or subjective. These scores
were appended to the inputs as they were passed to the second part, called sentiment
polarity detection. Here the system tried to predict which sentiment a tweet has based
on the original input and the score from the objectivity detection part. The scores from
the two classifiers were then averaged to get the final prediction.

25

4. Ternary Sentiment Embedding
Model

A new neural network model for training word embeddings called the Ternary Sentiment
Embedding Model is proposed. The model extends the Hybrid Ranking Model by Tang
et al. (2016) for training Sentiment-Specific Word Embeddings (SSWE) which in turn
extends the Collobert and Weston (C&W) model by Collobert et al. (2011). The C&W
model is presented in Section 3.2 (p. 18), and the Hybrid Ranking Model is presented in
Section 3.3.4 (p. 22). The Hybrid Ranking Model utilizes tweets labeled as “positive” or
“negative” to train word embeddings. The proposed model extends this by also looking
at tweets labeled as “neutral”. The model is a multilayer neural network that uses
context and sentiment information of tweets in order to learn vector representations of
words. It consists of three bottom (core) layers and two top layers that work in parallel.
The model architecture is shown in Figure 4.1.

4.1. Core Layers
The first three layers of the Ternary Sentiment Embedding Model are identical to the
three first layers of both the C&W model and the Hybrid Ranking Model. The model
uses a lookup layer to map word indices in a fixed sized vocabulary to feature vectors.
The vectors representing the words in a context window are concatenated and fed to a
linear layer. The size of the context window, i.e. the total number of words that are
considered, is a model hyperparameter. The output from the linear layer is subsequently
passed to a HardTanh layer. This process is explained in further detail in Section 3.2
(p. 18). The C&W model has a final linear layer that outputs a vector of size 1 giving
a context score for a given focus word and context window. This layer is dubbed the
Context Linear Layer. As with the C&W model, the objective of the context part of the
model is to assign a higher context score to a correct context window than a corrupted
context window by a given margin. This objective is formulated as a hinge loss function:

lossc(t, tr) = max(0,m− f c(t) + f c(tr)) (4.1)

where m is the margin, t is the correct context window, tr is the corrupted context
window and f c(·) is the score given by the context linear layer. With m = 1, this is
identical to the hinge loss function of the C&W model seen in Equation 3.3 (p. 19).

27

4. Ternary Sentiment Embedding Model

4.2. Ternary Sentiment Linear Layer
The new model architecture introduces a new top layer for calculating sentiment scores.
The layer is a simple linear layer that outputs a vector of size 3 where the values represent
positive, negative and neutral scores for a given context window. Each context window
is labeled with a sentiment of either “positive”, “negative” or “neutral”. The objective of
the model is to give a higher score for the value corresponding to the context window’s
label than each of the other possible labels. A new margin hinge loss function is proposed
to represent this loss and used to train the model. The new hinge loss function is
formulated as:

losss(t) = max(0,m− f sc (t) + fsi1(t)) +max(0,m− fsc (t) + f si2(t)) (4.2)
where t is a context window,m is the margin, f sc (·) is the sentiment score for the currently
labeled sentiment of the input context window, and f si1(·) and f si2(·) are the sentiment
scores for the other two classes. This function increases the loss if the difference between
the score for the target label and either of the other scores is less than the margin.

Figure 4.1.: The Ternary Sentiment Embedding Model. The two top layers are the
Context Linear Layer on the left and the new Ternary Sentiment Linear
Layer on the right.

4.3. Combined Loss Function
The hinge losses for the Context Linear Layer, lossc (shown in Equation 4.1), and the
Sentiment Linear Layer, losss (shown in Equation 4.2), are combined to give the total

28

4.4. Model Training

loss for the proposed model. The combined loss function is a weighted linear combination
by a hyperparameter α.

loss(t, tr) = α · losss(t) + (1− α) · lossc(t, tr) (4.3)

4.4. Model Training
The parameters of the neural network model are trained by taking the derivative of
the loss through backpropagation. This is the approach used by Collobert et al. (2011)
for training the C&W model. Stochastic Gradient Descent (SGD) is used to update
the model parameters. This means that samples, in this case context windows created
from tweets, are randomly drawn from the training corpus, and the model parameters
are updated for each sample that is passed through the model. The update is done
according to the formula:

θt = θt−1 − lr · gt (4.4)

where θt is the value of the parameter θ at time t, gt is the gradient of the parameter at
time t and lr is the learning rate.
Initialization of the model parameters is done as in Tang et al. (2016). The pa-

rameters of the lookup layer are initialized with values from the uniform distribution
U(−0.01, 0.01), while the parameters of the hidden layers are initialized using the fan-in
technique described by Collobert et al. (2011). The fan-in is the number of inputs used
by a layer, and the technique is to draw the initial parameters from a centered distri-
bution with variance equal to the inverse of the square-root of the fan-in. This means
that the initial parameters for the hidden layers are drawn from the uniform distribution
U(−0.01

InputLength ,
0.01

InputLength). This fan-in technique is used for the learning rate as well,
meaning the learning rates from Equation 4.4 for the hidden layers are divided by the
fan-in.

29

5. Architecture
In this chapter the implementation, architecture and functionality of the applications
that were developed as part of this thesis are described.

5.1. Tweet Collector
A simple application was built to collect tweets from Twitter. The application connects
to the Twitter’s Streaming API statuses/sample endpoint1 to fetch tweets and save
them in a MongoDB2 database, in order to build a tweet corpus. The application was
built using Node.js, relying heavily on the twit library which is explained in Section 2.5.7
(p. 15) and handles the connection to the stream. The Tweet Collector collects about
50 tweets per second.
As the tweets received from Twitter’s Streaming API come in JSON format, using

MongoDB as database system is a sensible choice, because it saves its data in JSON-like
documents. This means that tweets can be directly inserted in the database as they are.
Also, MongoDB (from humongous) is built with large data collections in mind and scales
well. Though, to save disk space, tweets are pruned by removing some excessive data
fields. The pruning steps are explained in the following list. The user, retweeted_-
status and quoted_status objects mentioned are properties of a single tweet’s JSON
document.

Reducing user object A tweet contains a lot of data about its author, for instance the
profile picture, colors of profile page, etc. This is reduced to only contain the user’s
ID3.

Reducing retweeted_status object Retweets contain a lot of metadata about the orig-
inal tweet, contained in an object called retweeted_status. The content is re-
duced to only comprise the original tweet’s ID and its author’s ID.

Reducing quoted_status object A tweet might refer to or quote another tweet. Simi-
larly to retweeted_status, the metadata that is in the quoted_status object is
reduced to only contain the quoted tweet’s ID and its author’s ID.

Removing falsy fields A tweet might contain falsy4 fields. Falsy/truthy is a concept in
JavaScript, where a falsy value is a value which is either false, undefined, null,

1https://dev.twitter.com/streaming/reference/get/statuses/sample
2https://www.mongodb.com/
3The ID of a Twitter user is not the username, but a unique integer .
4https://developer.mozilla.org/en-US/docs/Glossary/Falsy

31

https://dev.twitter.com/streaming/reference/get/statuses/sample
https://www.mongodb.com/
https://developer.mozilla.org/en-US/docs/Glossary/Falsy

5. Architecture

0 or the empty string "". Truthy values are all values that are not falsy. The
fields containing falsy values are removed, as their non-existence in itself can be
interpreted as a falsy value.

5.2. CATTS
The Crowdsourced Annotation Tool for Twitter Sentiment (CATTS) is a web application
for manual annotation of tweets. It supports annotating both sentiment and sarcasm.
The annotated tweets define a dataset that is dynamically built as users annotate. This
dataset is available for download in both JSON and text formats, through the CATTS
API5. CATTS is open-source and available at GitHub6.
CATTS was implemented using Meteor7, a full-stack JavaScript framework, combined

with React8 on the frontend.
We ended up not needing to manually annotate tweets for this thesis, as we got a

sufficient amount of labeled data from SemEval. It is still included here, as it is open-
source and available for others to use.

5.3. Fredriksen–Jahren Lexicon Classifier Python Port
Fredriksen and Jahren (2016) open-sourced their lexicon classifier (see Section 2.5.11,
p. 15), which is available on GitHub9. To better be able to integrate the program with
the programs of this thesis, the Java implementation was ported to Python. The program
can take various options, as Fredriksen and Jahren’s original program does, like which
sentiment lexicon to use and sets of negation, intensifiers and stop words. The port uses
by default the optimal parameters found in Fredriksen and Jahren (2016). The port is
open source10 and published on the Python Package Index (PyPI)11. In this section the
process of the Fredriksen–Jahren Lexicon Classifier (FJLC) is explained. Note that this
is the work of Fredriksen and Jahren (2016) and that our port is merely a translation of
the program from Java to Python.
An overview of the architecture of the FJLC system is shown in Figure 5.1. A tweet

that is being processed goes through three main stages: preprocessing, analysis and
classification.
The preprocessing steps done include, but are not limited to, lowercasing, normalizing

letters to to the Latin alphabet12, removing Twitter-specific elements13, and removing
non-alphanumerical characters.

5CATTS API – https://catts.byrkje.land/download
6CATTS Code – https://github.com/draperunner/catts
7https://www.meteor.com/
8https://facebook.github.io/react/
9https://github.com/freva/Masteroppgave

10https://github.com/draperunner/fjlc
11https://pypi.python.org/pypi/fjlc
12For instance, “Déjà vu” would be translated to “Deja vu”
13URLs, user mentions, hashtags, usernames, RT-tags

32

https://catts.byrkje.land/download
https://github.com/draperunner/catts
https://www.meteor.com/
https://facebook.github.io/react/
https://github.com/freva/Masteroppgave
https://github.com/draperunner/fjlc
https://pypi.python.org/pypi/fjlc

5.3. Fredriksen–Jahren Lexicon Classifier Python Port

Figure 5.1.: Architecture of the Fredriksen–Jahren Lexicon Classifier (FJLC) system.
Figure from Fredriksen and Jahren (2016).

After preprocessing, the tweet enters the analysis stage. First, it gets split into
what Fredriksen and Jahren call optimal tokens. Optimal tokens are the longest non-
overlapping n-grams of a sentence that are also found in a given vocabulary. Out-of-
vocabulary tokens are tokenized as unigrams.
Each token is next assigned a sentiment value by looking up the token’s value in the

provided sentiment lexicon. Out-of-vocabulary words are assigned a value of 0. The
tokens are then checked for intensification or negation cues. Intensification can happen
by intensifier occurrence. Intensifiers can be words like “very”, “extremely” or “slightly”.
Each such intensifier is assigned an intensification value. The sentiment value of a token
following an intensifier is multiplied by the intensification value of that word. Note that
intensifiers with value less than 1 will work as dampeners. If a negation is observed, like
“not”, “can’t” or “ain’t”, the tokens in the rest of the sentence are negated. Negation
happens by subtracting or adding a chosen negation value to the token sentiment value
depending on whether the token sentiment value is positive or negative, respectively.
Finally, if a sentence ends with “!” or “?”, all tokens of that sentence are intensified by
the exclamation mark or the question mark intensifier value.
The final stage calculates the sentiment score for the entire tweet by summing the

sentiment values for each of its tokens. The resulting score is compared against a lower
threshold TL and a greater threshold TG. Tweets with score above the greater threshold
are classified as positive, tweets with score below the lower threshold are classified as
negative. Tweets with score between the two thresholds are classified as neutral. The
thresholds used in this thesis are those used by Fredriksen and Jahren in their optimal
setup: TL = −0.04 and TG = 0.00.

sentiment(tweet) =

negative : sentimentScore(tweet) < −0.04
positive : sentimentScore(tweet) > 0.00
neutral : otherwise

(5.1)

33

5. Architecture

5.4. Twitty
To train different word embeddings and test these with a couple of simple classifiers
as part of our specialization project (Byrkjeland and de Lichtenberg, 2016), the Twitty
program was created. In this thesis, it is used for training word2vec and GloVe word
embeddings in Section 8.4 (p. 66), and the Twitter Sentiment Analysis Byrkjeland–
de Lichtenberg (TSABL) program (Section 5.6) has parts that are based on some of
Twitty’s modules.
Twitty is programmed entirely in the Python programming language, and is split up

in multiple modules by function. Each module will push a set of data further along the
pipeline, which comprises the stages depicted in Figure 5.2. Each module is designed as
a Command Line Interface (CLI). The user can choose which stage to start at by using
the appropriate module.

Figure 5.2.: Overview of the Twitty Pipeline.

5.4.1. Processing Raw Files

Raw files are files that contain a tweet ID and optionally a sentiment annotation per
line. To fetch a tweet for each ID, the process_raw module connects to the Twitter
REST API. New files will be saved where the IDs have been replaced with JSON objects
representing the respective tweet. Note that the IDs might refer to tweets that have
been deleted. In that case, no tweet will be returned, and the resulting file will contain
fewer tweets than the original ID file.

5.4.2. Filtering

Not all tweets are of further interest. All retweets and all non-English tweets are re-
moved using the filter_tweets module. Retweets are copies of other tweets, and these
are removed to avoid having duplicates in the corpora. JSON objects for tweets contain
metadata such as values for language and retweet status, which are used to filter un-
wanted tweets. If a tweet JSON object does not have a value for language, the module
tries to classify the language in the tweet using the langid14 (Lui and Baldwin, 2012)
module.
14langid is a standalone language identification tool (https://github.com/saffsd/langid.py).

34

https://github.com/saffsd/langid.py

5.5. Distant Supervision Program

5.4.3. Preprocessing

Tweets are preprocessed to make them better fit for computational processing. The
tweet_preprocessor module employs Twokenize (see Section 2.5.4, p. 13) to split tweets
into their constituent parts, and the Preprocessor (see Section 2.5.5) to do tokenization
and cleaning. The result is a corpus with a preprocessed tweet per line. The module
can also reduce elongated words (see Section 2.1.5, p. 6) and lowercase the tweets.

5.4.4. Train Word Embeddings

The train_word_embeddings module trains word embeddings on a given corpus. It
supports word2vec and GloVe models. The word2vec models are trained using MultiVec
(see Section 2.5.2, p. 13), and both the Skip-gram model and the Continuous Bag-of-
Words (CBOW) model can be trained with varying dimensions. The GloVe model is
trained using glove-python (see Section 2.5.3, p. 13), and can be trained with various
dimensions, learning rates and epochs. The trained model and resulting vectors will be
saved in separate files. The vector files are on the same format, where each line starts
with a token followed by its vector values.

5.4.5. Train Classifier

The train module for training sentiment classifiers supports a Support Vector Machine
(SVM) and a Maximum Entropy classifier. The classifiers are implemented in the scikit-
learn (Section 2.5.1, p. 13) library. After training, the models are saved. The machine
learning classifiers utilized require input vectors of fixed length. This means that the
combined embeddings of tweets need to be of the same size regardless of the length of
each tweet. In this system the input to the classifiers, the combined tweet embedding,
is created by averaging the word embeddings for each word in a tweet.

5.4.6. Test Classifier

The module test is used to test the performance of the trained classifier models. The
module takes a word embedding file, a training and test file, and the trained models,
and calculates F1-scores for both classifiers.
Since each module will save its results, there is no need to redo all steps if one only

wants to do one of the last. This makes the program flexible and easily configurable.

5.5. Distant Supervision Program
The Distant Supervision Program was created for implementing, tweaking, and compar-
ing methods for distant supervision of tweets contained in a MongoDB database. The
experiments of Chapter 6 are performed using this program. It is written in Python and

35

5. Architecture

is available on GitHub15. An object-oriented architecture is used, where each distant
supervision method inherits from an abstract base class. This makes developing new
methods fast and easy. The methods support both evaluation through testing toward
a test set, and processing through unlabeled data to save them as distant-supervised
datasets.

5.6. TSABL
To train sentiment embeddings and test them with various classifiers as part of a complete
Twitter Sentiment Analysis (TSA) system, the Twitter Sentiment Analysis Byrkjeland–
de Lichtenberg (TSABL) program was created. The program consists of independent
modules for fetching Twitter data, preprocessing data, training word embeddings, and
training and testing classifiers. Most of the program is written using the Python pro-
gramming language, while one implementation of the word embedding trainer is written
using Java.

5.6.1. Fetching Twitter Data

The modules process_raw and filter_tweets from the Twitty program described in
Section 5.4 have been reused as parts of the TSABL program. The functionality of the
modules remains as described in Sections 5.4.1 and 5.4.2, but the CLI modules have
been changed to Python modules to better fit the bigger system.

5.6.2. Preprocessing

Preprocessing is done similarly as for the tweet_preprocessor module of the Twitty
program described in Section 5.4.3. The Twokenize library described in Section 2.5.4
(p. 13) is used to split tweets to separate punctuation from words as well as split con-
tractions. The split tweets are subsequently passed to the Preprocessor library described
in Section 2.5.5 (p. 14) to remove Twitter-specific elements. In the TSABL program,
the Preprocessor library removes URLs, user mentions, reserved words and numbers.
Explanations of these terms are provided in Section 2.5.5. Hashtags, emojis and smileys
are preserved as they can convey sentiment information of a tweet and are used by some
of the distant supervision methods described in Chapter 6. All tweets are lower-cased
and elongated words are reduced (see Section 2.1.5, p. 6), before the preprocessed tweets
are saved to a text file.

5.6.3. Training Word Embeddings

The TSABL program contains two separate implementations of both the Hybrid Ranking
Model and the Ternary Sentiment Embedding Model presented in Chapter 4 written in
the programming languages Python and Java. Both implementations are structured
15Distant Supervision Program Code – https://github.com/draperunner/distant-supervised-

tweets

36

https://github.com/draperunner/distant-supervised-tweets
https://github.com/draperunner/distant-supervised-tweets

5.6. TSABL

in the same manner. Initially, the program reads Twitter data from files separated by
sentiment. For binary training, the program reads two text files with a tweet on each
line, one file with positive tweets and one with negative tweets. In the ternary case,
the program also reads a file containing neutral tweets. All the tweets are assigned a
label according to the data file the tweet came from before the tweets were shuffled. The
program subsequently creates a vocabulary over all the words in the data files, and each
unique word is given a unique index. During this procedure, words that occur less than
five times are not given an index and are consequently not used for training.
Each tweet is then split up into context windows of specified size. The program

creates context windows consisting of word indices for all the words in a tweet that are
surrounded by enough context words. Tweets that are shorter than the context window
are ignored completely. For each context window, a corrupted context window is also
created where the focus word is swapped for another randomly drawn word from the
vocabulary.
The program then creates the neural network model according to hyperparameters

the user can specify. The final model is created by having two identical models, one for
the correct and one for the corrupted context window. One of the two identical models
is initialized with random values according to the initialization described in Section 4.4
(p. 29) before the second is created by copying the first model and its initial parameters.
The two models are needed in order to compare the scores given by passing correct and
corrupt context windows to the model.
When training the model, each pair of context windows is passed as input. The model

parameters are updated in a feed-forward pass before the loss is calculated for each top
layer. The loss is combined as explained in Section 4.3 (p. 28). The program then
calculates the gradient for each parameter, before updating the model parameters. This
procedure is repeated for all context window pairs, before starting the next epoch. After
the model is trained for the specified number of epochs, the weights of the lookup layer,
the trained word embeddings, are stored along with the word they represent in a text
file.

Python implementation

A module for training word embeddings models was created using the Python program-
ming language. The module is implemented using the Keras library (Section 2.5.14,
p. 16) and can utilize Theano (Section 2.5.12) or TensorFlow (Section 2.5.13) as back-
end. The user can specify the model type and hyperparameters, meaning that the
module can be used to build and train the Collobert and Weston model (Section 3.2,
p. 18), the Hybrid Ranking Model (Section 3.3.4, p. 22), and the proposed Ternary Sen-
timent Embedding Model (Chapter 4) with various hyperparameter configurations. The
module can run on CPU or GPU, and a script is provided for running the module on
Nvidia GPUs using the parallel computing platform CUDA.

37

5. Architecture

Java implementation

During testing of the Python module for training word embeddings it was discovered that
the program would require approximately eleven days running on an NVIDIA GeForce
GTX Titan X GPU to train the model on three million tweets using Stochastic Gradient
Descent (SGD) for 20 epochs. As it was desired to train and test the model using
different configurations, it was decided that another, faster implementation was needed.
As a result, another module for training the word embedding models was implemented
using Java.
The module extends the source code used by Tang et al. (2016) for training the Hybrid

Ranking Model by adding the new model architecture and loss function. Duyu Tang’s
original source code is available on his website16. Similarly to the Python implementa-
tion, this module allows the user to specify the hyperparameters, but the different model
architectures are split into separate files. The module is written using only the standard
Java libraries. The runtime performance of training the model was significantly im-
proved compared to the Python implementation, using approximately 24 hours to train
the model using SGD for 20 epochs on a single AMD Opteron 6128 CPU core. This
made it possible to train multiple model configurations in parallel, reducing the time
needed for training and testing significantly. The Java implementation writes the word
embeddings produced after each epoch to file.

5.6.4. Training and Testing Classifiers

The TSABL program contains a module for training and testing a Support Vector Ma-
chine (SVM) classifier using different word embeddings as input features. The SVM
classifier is implemented in Python using LinearSVC from the scikit-learn library (see
Section 2.5.1, p. 13).
During training, the SVM classifier takes as input an array of features and an array

of labels, and creates a decision function that can be used to classify new, previously
unseen features to one of the relevant labels. For the task of classifying tweets, each
feature represents a tweet while each corresponding label is the tweet’s sentiment. The
feature vector of a tweet is created by averaging the word embeddings for all the words
in the tweet. Any word that does not have a word embedding created for it will not
contribute to the tweet’s feature vector. Before being averaged, each word embedding is
scaled to have zero mean and unit variance.
After the classifier has been trained on the training dataset, it can be used to predict

a class for new samples. Feature vectors for test tweets are created by scaling and
averaging the word embeddings of the tweet’s constituent word in the same manner
as when training the classifier. The classifier will produce a predicted label for each
tweet, and the results are compared to the actual labels and scored using the different
evaluation metrics described in Section 2.3.2 (p. 7).

16http://ir.hit.edu.cn/~dytang/

38

http://ir.hit.edu.cn/~dytang/

6. Distant Supervision of Tweets
The idea of distant supervision is to automatically label data in order to be able to
leverage large amounts of it. These data are called distant supervised or weakly annotated
data, as the quality is not great, but the quantity is. To train sentiment embeddings,
large amounts of weakly annotated tweets are needed. In this section the approach of
extracting weak labels from the corpus of collected tweets is described. As of May 2,
2017, this was about 547 million.
In order to evaluate the different methods, all the manually annotated International

Workshop on Semantic Evaluation (SemEval) datasets from 2013 to 20161 were down-
loaded. In this chapter the dataset names are abbreviated by removing “20” and “-A” (for
instance, “2013-dev-A” becomes “13-dev”). The datasets are organized for the SemEval
2017 Task 4, and made available on the task’s data “Data and Tools web” page2. The
datasets contain IDs for 50,333 tweets, but 10,251 of those tweets have been deleted and
cannot be downloaded. Thus, 40,082 tweets remain. 532 of these are duplicates, and are
removed, giving 39,550 tweets. After the filtering steps explained in Section 6.1 there
are 28,120 tweets left3. Each method is run on these tweets and evaluated using various
quality evaluation metrics. Additionally, the processing time and the fraction of tweets
included are noted, as these are important properties of distant supervised sentiment
analysis methods.
The filtering steps are described in Section 6.1 before the implementation of the dis-

tant supervision methods are described in Section 6.2. In Section 6.3 the grid parameter
searches done are explained, for the methods where this was relevant. Lastly, in Sec-
tion 6.4, the methods are compared using the SemEval sets.

12013-dev-A, 2013-test-A, 2013-train-A, 2014-test-A, 2015-test-A, 2014-sarcasm-A, 2015-train-A, 2016-
dev-A, 2016-devtest-A, 2016-test-A, 2016-train-A

2http://alt.qcri.org/semeval2017/task4/index.php?id=data-and-tools
3One tweet was removed due to an error in the process of inserting tweets into the database.

39

http://alt.qcri.org/semeval2017/task4/index.php?id=data-and-tools

6. Distant Supervision of Tweets

Dataset Original Downloaded Duplicates After filtering
13-dev 1654 1231 2 961
13-test 3547 2708 1 1839
13-train 9684 7323 26 5425
14-sarcasm 85 60 0 52
14-test 1853 1461 0 997
15-test 2390 1881 18 1376
15-train 489 364 0 281
16-dev 1999 1662 2 1662
16-devtest 2000 1652 2 1173
16-test 20632 16815 4 12075
16-train 6000 4925 22 3273
Total 50333 40082 532 29114

Table 6.1.: Statistics for SemEval training and test sets. Fetched March 21, 2017. Fil-
tering is described in Section 6.1. The total of duplicates is not the sum of
above rows, but the number of duplicates over all the sets.

Dataset Tweet count Positive Negative Neutral
13-dev 961 353 36.73% 198 20.6% 408 42.46%
13-test 1839 827 44.97% 318 17.29% 694 37.74%
13-train 5425 2171 40.02% 878 16.18% 2362 43.54%
14-sarcasm 52 20 38.46% 26 50.0% 6 11.54%
14-test 997 556 55.77% 134 13.44% 307 30.79%
15-test 1376 610 44.33% 249 18.1% 504 36.63%
15-train 281 103 36.65% 39 13.88% 139 49.47%
16-dev 1662 453 27.26% 207 12.45% 391 23.53%
16-devtest 1173 574 48.93% 193 16.45% 404 34.44%
16-test 12075 4328 35.84% 1899 15.73% 5845 48.41%
16-train 3273 1714 52.37% 515 15.73% 1027 31.38%
Total 29114 11709 40.22% 4656 15.99% 12087 41.52%

Table 6.2.: Distribution of sentiment for the SemEval datasets.

6.1. Filtering
Similarly to Fredriksen and Jahren (2016), tweets with certain properties are ignored:

Retweets Retweets are copies of original tweets. Including retweets might therefore lead
to over-representation of certain phrases.

Contains URL Usually, to analyze tweets with URLs, it is also necessary to analyze the
contents of the link destination. Often the tweets only contain the title of a news

40

6.2. Methods

article, or another reference to the link destination’s content. These tweets are
ignored as they often on their own do not provide enough information needed to
predict sentiment.

Contained ° symbol Most tweets containing the degree symbol are weather reports.

Ends with number Spammers might append a number to a tweet, to avoid Twitter’s
spam detection.

6.2. Methods
The following sections explain each of the sentiment analysis systems that are compared
for use as distant supervision. The methods use sentiment lexica, and most are easily
available as Python libraries.

6.2.1. Emoticons

Go et al. (2009) introduced a novel approach to automatically classifying tweet senti-
ment using distant supervised tweets. Go et al. use the Twitter Search API’s attitude
operator to fetch tweets with positive and negative attitude by querying for “:)” and
“:(”, respectively. According to Go et al., this will return tweets with certain positive
and negative emoticons, given by Table 6.34.

Emoticons mapped to :) Emoticons mapped to :(
:) :(
:-) :-(
:) : (
:D
=)

Table 6.3.: Emoticons mapped to positive “:)” and negative “:(” attitude by the Twitter
API.

An implementation of the emoticon method of Go et al. (2009) is created using the
Python programming language. Tweets are not fetched using the Twitter Search API
as described above, but instead the pre-collected corpus of tweets is used. Tweets that
contains any of the positive emoticons in Table 6.3 are assigned a positive sentiment,
and equivalently for negative tweets. Tweets that contain both a positive and negative
emoticon are removed, as is also done by Go et al. To adapt the method for the ternary
classification task, tweets containing none of the emoticons are classified as neutral. The
Emoticons method is abbreviated to “Em.” in some of the following tables and figures.

4The Twitter API documentation does not state how its attitude operator works. This might have
changed since Go et al. (2009).

41

6. Distant Supervision of Tweets

6.2.2. Emoticons Extended

The sets of positive and negative emoticons used by Go et al. (2009) are arguably quite
sparse compared to the vast amount of emojis and emoticons used today. Thus, the sets
are extended with more emoticons and emojis. The western emoticons that are found
to have clear sentiment from the “List of emoticons”5 Wikipedia page are manually
annotated.
For emojis, the emoji-emotion valence lexicon6 was used, assigning emojis with neg-

ative score as negative and emojis with positive score as positive. Emojis with score 0
are not included.
The resulting sets of emoticons are shown in Table 6.4. The Emoticons Extended

method will be abbreviated to “Em. Ext.” in some of the following tables and figures.

6.2.3. AFINN

This method uses the AFINN library (see Section 2.5.8, p. 15). As AFINN was found
to give a large number of tweets a score of 0, only these are classified as neutral. Tweets
with a score greater than 0 are classified as positive, and tweets with scores lower than
0 as negative. The sentiment of a tweet is given by:

sentiment(tweet) =

negative : sentimentScore(tweet) < 0
neutral : sentimentScore(tweet) = 0
positive : sentimentScore(tweet) > 0

(6.1)

where

sentimentScore(tweet) =
N∑
n=1

sentimentScore(wordn) (6.2)

where N is the number of words in the tweet.

6.2.4. TextBlob

The TextBlob library (see Section 2.5.10, p. 15) is used to compute polarity and sub-
jectivity scores. Tweets with subjectivity score less than a threshold st are defined as
neutral. The polarity threshold pt is set so that tweets with polarity score less than −pt
are classified as negative and tweets with score greater than pt as positive.

sentiment(tweet) =

neutral : subj(tweet) ≤ st
positive : subj(tweet) > st ∧ pol(tweet) ≥ pt
negative : subj(tweet) > st ∧ pol(tweet) ≤ −pt

(6.3)

where subj(tweet) is the subjectivity score of a tweet, and pol(tweet) is the polarity
score of a tweet.

5https://en.wikipedia.org/wiki/List_of_emoticons
6https://github.com/wooorm/emoji-emotion

42

https://en.wikipedia.org/wiki/List_of_emoticons
https://github.com/wooorm/emoji-emotion

6.2. Methods

Emoticons :) Emojis :) Emoticons :(Emojis :(
:) :-) :(DX
:) :D :-(:-/
=D :-] : (:/
:] :-3 :’(:-.
:3 :-> :-(>:\
:> 8-) :(>:/
8) :-} :-c :\
:} :o) :c =/
:c) :ˆ) :-< =\
=] =) :< :L
:-D 8-D :-[=L
8D x-D :[:S
xD X-D :-|| </3
XD =D >:[<\3
=3 B-ˆD :{ >.<
:-)) :’-) :@ v.v
:’) :-* >:(
:* :× D-’:
;-) ;) D:<
*-) *) D:
;-] ;] D8
;ˆ) :-, D;
;D <3 D=

Table 6.4.: Emoticons and emojis mapped to positive “:)” and negative “:(” attitude by
the Emoticons Extended method.

6.2.5. VADER Sentiment Analysis

Using the sentiment scores computed by the VADER library (see Section 2.5.9, p. 15),
the confidence threshold t is set so that:

sentiment(tweet) =

positive : positiveScore(tweet) ≥ t
negative : negativeScore(tweet) ≥ t
neutral : neutralScore(tweet) ≥ t

(6.4)

The vector is normalized, which means that the sum of positiveScore, negativeScore
and neutralScore equals 1. By setting the threshold t > 0.5 it is certain that the other
sentiment scores must be below 0.5. The higher the threshold is set, the more confident
the classification is. However, with a high threshold, more tweets are ignored. If none

43

6. Distant Supervision of Tweets

of the scores are above the threshold for a tweet, the tweet is skipped and the resulting
set of annotated tweets is smaller than if a lower threshold is set.

6.2.6. Combo Average

A combination of the classifiers AFINN, TextBlob, and VADER is created. Initially, the
scores for the three classifiers are normalized to be in the same range, a single polarity
score between -1 (very negative) and 1 (very positive). For AFINN, the score is divided
by five times the number of words in the tweet. Five, because that is the absolute
value of the highest score a single word can get. For VADER, the compound score (see
Section 2.5.9, p. 15) is used. For TextBlob, the score is already normalized as desired.
The scores are combined using a weighted average, given by the equation:

sentimentScore = a · afinnScore + b · vaderScore + c · textblobScore
a+ b+ c

(6.5)

where the parameter weights a, b and c are tuned using a grid parameter search, which
is explained in Section 6.3.
To classify the tweets, a threshold t is chosen so that every tweet with sentimentScore >

t is classified as positive, every tweet with sentimentScore < −t is classified as negative,
and all other tweets are classified as neutral.

sentiment(tweet) =

negative : sentimentScore(tweet) < −t
positive : sentimentScore(tweet) > t

neutral : otherwise
(6.6)

6.2.7. Fredriksen–Jahren Lexicon Classifier (FJLC)

The port of the Lexicon Classifier of Fredriksen and Jahren (2016) is used to classify
tweets, using their best performing lexicon and parameters. The classifier and the port
are described in Section 5.3 (p. 32).

44

6.3. Grid Parameter Searches

6.3. Grid Parameter Searches
Some of the methods explained above take hyperparameters. These methods are tuned
by performing grid searches. The results for each method are described in the following
subsections. The abbreviation “Incl.” is used for inclusion rate, which is the rate of
tweets that are classified by the method in question.

6.3.1. VADER

t Macro F1 FPN1 FPOS
1 FNEG

1 FNEU
1 Incl.

0.1 0.5306 0.5323 0.6312 0.4334 0.5272 1
0.2 0.5086 0.4486 0.5379 0.3593 0.6286 1
0.3 0.3659 0.2381 0.3161 0.1601 0.6216 1
0.4 0.2585 0.0848 0.1282 0.0414 0.6060 0.9996
0.5 0.2130 0.0197 0.0346 0.0048 0.5995 0.9933
0.6 0.2073 0.0040 0.0080 0 0.6139 0.9364
0.7 0.2159 0.0007 0.0014 0 0.6462 0.8072
0.8 0.2325 0 0 0 0.6974 0.5838

Table 6.5.: Results for the VADER method using different confidence thresholds t.

The table shows that VADER struggles to classify positive and negative tweets as the
threshold increases. It is only the neutral tweets that VADER is strongly confident
about. t = 0.1 is the best performing threshold.

6.3.2. TextBlob

st pt Macro F1 FPN1 FPOS
1 FNEG

1 FNEU
1 Incl.

0.1 0.1 0.5001 0.5094 0.6314 0.3874 0.4816 0.8626
0.1 0.2 0.5292 0.5221 0.6474 0.3967 0.5436 0.7224
0.1 0.3 0.5478 0.5205 0.6545 0.3866 0.6022 0.5904
0.2 0.1 0.5015 0.5051 0.6274 0.3828 0.4944 0.8837
0.2 0.2 0.5273 0.5116 0.6382 0.3850 0.5587 0.7585
0.2 0.3 0.5383 0.5013 0.6367 0.3660 0.6122 0.6379
0.3 0.1 0.5030 0.5008 0.6227 0.3789 0.5074 0.9064
0.3 0.2 0.5238 0.4988 0.6244 0.3732 0.5739 0.8061
0.3 0.3 0.5259 0.4778 0.6108 0.3449 0.6221 0.7039

Table 6.6.: Results for the TextBlob method using different subjectivity thresholds st
and polarity thresholds pt.

The table shows that TextBlob performs best with a low subjectivity threshold. st = 0.1
and pt = 0.3 are chosen for the final TextBlob classifier, as these parameters achieve the
best Macro F1 score, although the inclusion rate is rather low.

45

6. Distant Supervision of Tweets

6.3.3. Combo Average Method

a b c t Macro F1 FPN1 FPOS
1 FNEG

1 FNEU
1 Incl.

0.0 0.4 0.4 0.2 0.5573 0.5463 0.638 0.4545 0.5794 1
0.2 0.3 0.1 0.2 0.5574 0.5411 0.6315 0.4506 0.5901 1
0.0 0.3 0.1 0.3 0.5575 0.5402 0.6309 0.4494 0.5923 1
0.0 0.4 0.1 0.3 0.5575 0.5427 0.6322 0.4533 0.5871 1
0.3 0.4 0.1 0.2 0.5577 0.5408 0.6312 0.4504 0.5915 1
0.1 0.4 0.3 0.2 0.5579 0.5445 0.6365 0.4525 0.5848 1
0.1 0.2 0.1 0.2 0.5581 0.5432 0.6346 0.4518 0.5880 1
0.2 0.4 0.2 0.2 0.5581 0.5432 0.6346 0.4518 0.5880 1
0.1 0.3 0.2 0.2 0.5583 0.5446 0.6357 0.4535 0.5857 1
0.3 0.1 0.1 0.1 0.5587 0.5387 0.6345 0.4429 0.5986 1

Table 6.7.: The 10 best results for the Combo Average method using different weights a,
b, and c and threshold t.

A grid search is conducted for the four parameters a, b, c, t. The top ten performing
combinations of parameters are shown in Table 6.7. The table shows that the combi-
nation that achieves the top Macro F1 score is not the same as the one achieving the
top FPN1 score. Both scores are included in the further comparisons in the next section.
The FPN1 winner is called Combo A (a = 0.0, b = 0.4, c = 0.4, t = 0.2) and the Macro
F1 winner Combo B (a = 0.3, b = 0.1, c = 0.1, t = 0.1). These methods are shortened
to “Cb. A” and “Cb. B” in some of the tables to come.

6.4. Comparisons
This section comprises comparisons of the methods with tuned parameters against all the
SemEval datasets as one (Table 6.8), then against each of the SemEval sets (Table 6.10).

46

6.4. Comparisons

Method Macro F1 FPN1 FPOS
1 FNEG

1 FNEU
1 Incl. Runtime

FJLC 0.5703 0.5323 0.5931 0.4715 0.6463 1 0.93
Combo B 0.5610 0.5317 0.6261 0.4374 0.6195 1 2.27
Combo A 0.5574 0.5371 0.6283 0.4458 0.5981 1 2.26
TextBlob 0.5409 0.5018 0.6428 0.3608 0.6190 0.5991 0.48
AFINN 0.5368 0.5425 0.6201 0.4649 0.5255 1 1.21
VADER 0.5316 0.5245 0.6209 0.4281 0.5458 1 0.63
Em. Ext. 0.2592 0.1300 0.1011 0.1590 0.5174 0.9911 0.11
Em. 0.2506 0.0611 0.0860 0.0363 0.6295 0.9999 0.09

Table 6.8.: Comparison of F1 scores for the different distant supervision methods, sorted
by descending Macro F1 score. Evaluated against all SemEval sets from
2013–2016. Runtime is given in milliseconds per tweet (including skipped
tweets).

Method PPOS PNEG PNEU RPOS RNEG RNEU

FJLC 0.6951 0.4549 0.5928 0.5172 0.4894 0.7104
Combo A 0.6199 0.4739 0.5943 0.6369 0.4208 0.6020
Combo B 0.6442 0.4930 0.5876 0.6089 0.3930 0.6550
TextBlob 0.6636 0.4204 0.5815 0.6232 0.3160 0.6617
AFINN 0.5799 0.3984 0.6190 0.6664 0.5581 0.4565
VADER 0.5535 0.4234 0.6365 0.7071 0.4330 0.4777
Em. 0.8136 0.6215 0.4616 0.0454 0.0187 0.9896
Em. Ext. 0.7359 0.1195 0.4336 0.0543 0.2375 0.6412

Table 6.9.: Comparison of precision and recall for the different distant supervision meth-
ods. Evaluated against all SemEval sets from 2013–2016.

Dataset FJLC Cb. A Cb. B TextBlob AFINN VADER Em. Em. Ext.
13-dev 0.6000 0.5642 0.5674 0.5502 0.5832 0.5496 0.2973 0.3156
13-test 0.6342 0.6095 0.6084 0.5956 0.6075 0.6035 0.2661 0.2525
13-train 0.6275 0.5980 0.6071 0.5970 0.5912 0.5792 0.3024 0.2863
14-sarcasm 0.3365 0.3290 0.3438 0.3953 0.3919 0.4380 0.0765 0.0917
14-test 0.6203 0.5941 0.6003 0.5866 0.5713 0.5730 0.2624 0.2125
15-test 0.5847 0.5769 0.5811 0.5629 0.5490 0.5703 0.2394 0.2246
15-train 0.5765 0.5648 0.5754 0.5948 0.5648 0.5436 0.3116 0.2962
16-dev 0.4725 0.4944 0.4891 0.4451 0.4716 0.4708 0.2026 0.2640
16-devtest 0.4687 0.4869 0.4856 0.4654 0.4799 0.4564 0.2022 0.2378
16-test 0.5775 0.5596 0.5641 0.5341 0.5216 0.5183 0.2484 0.2633
16-train 0.4649 0.4797 0.4789 0.4748 0.4760 0.4735 0.1887 0.2064

Table 6.10.: Comparison of Macro F1 scores for the different distant supervision methods.
Evaluated against the different SemEval sets from 2013–2016.

47

6. Distant Supervision of Tweets

6.4.1. Runtime

The Emoticons methods are extremely fast (0.09 and 0.11 ms/tweet), but their scores
are substantially worse than the others. The Combo Average Methods are slow (2.26 and
2.27 ms/tweet), because they have to calculate the scores for each component method.
Note that the runtimes mentioned in Table 6.8 are not including saving to file. The
comparisons were run on a computer with four AMD Opteron 6128 CPUs and 125 GB
of RAM running Ubuntu 16.04.
The distant supervision experiments of this thesis have been carried out on a database

of already acquired tweets. The tweets for this database have been collected using the
Tweet Collector Program (see Section 5.1, p. 31), which simply stores tweets from the
Twitter Streaming API. The program is able to collect about 54 tweets a second, which
is 18.5 ms per tweet.

6.4.2. Prediction Quality

We see from Table 6.8 that the top performing Macro F1 score is 0.5703, a score that
does not seem very impressive. Fredriksen and Jahren (2016) found that the score of
their classifiers dropped significantly from tests on the 2013 dataset to the 2016 dataset.
Therefore they investigated the quality of the SemEval datasets, checking the number
of duplicate tweets and whether or not the duplicate tweets had different annotations.
They found that the 2015 and 2016 datasets had significantly more duplicates and more
inter-annotator disagreement than those of 2013 and 2014, leading to lower scores.
To our knowledge, no previous sentiment analysis research has been evaluated against

the complete set of SemEval datasets, like we have done. This makes the results hard to
compare to other work. Combined with the skepticism of the SemEval sets of Fredriksen
and Jahren, we wanted to compare the methods against each of the datasets, to see
whether some methods perform much better or worse on certain datasets. The results
are shown in Table 6.10. From these results we can see that there is a trend that the
scores decrease for the later datasets.
The 2014-sarcasm-A dataset is the worst performing dataset by a good margin. All

tweets in this dataset contain the hashtag #sarcasm. The results for this dataset might
be an indication of the methods’ inability to detect sarcasm. For instance, the tweet
“On the bright side we have school today... Tomorrow and the day after ! #killmenow
#sarcasm” is annotated as negative. The hashtags indicate sarcasm, and the otherwise
positive-seeming tweet is negated. None of the methods classify this particular tweet as
negative. The entire dataset comprises only 60 tweets, so the scores might not represent
the general performance on sarcastic tweets. Also, note from Table 6.2 (p. 40) that the
sarcasm set is the only one to have a majority of negative tweets (50 percent), while
the average ratio of negative tweets for the SemEval datasets is 15.99 percent. The
distribution of sentiment, the sarcastic content of the tweets, and its small size make
this dataset different from the rest, and low scores are to be anticipated.

48

7. Optimizing System
The goal of the Ternary Sentiment Embedding Model is to create sentiment embeddings
that can be used for the ternary Twitter sentiment classification task, i.e. classifying
tweets as positive, negative or neutral. This chapter presents tests to find the best
performing hyperparameters of the model for this task. The sentiment embeddings are
tested by using a Support Vector Machine (SVM) classifier specified in Section 7.2.4.
In addition, the different methods for distant supervision presented in Chapter 6 are
compared, before the SVM classifier is optimized.

7.1. Optimization Plan
Initially, a search of the hyperparameters of the Ternary Sentiment Embedding Model is
performed to find the model that performs best on the ternary classification task. The
hyperparameters are tested by performing a search of manually selected values. For each
hyperparameter tested, all others are kept fixed to test how varying each hyperparameter
affects the model performance. However, the overall goal of the hyperparameter search is
not to provide a study of how the model is affected by its hyperparameter, but rather to
find optimal values to be used in further testing. The hyperparameter search is explained
in Section 7.3.
The model is retrained using the optimal1 hyperparameters found using datasets pro-

duced by different distant supervision methods. This is done to find the distant super-
vision method that is most effective in combination with the new sentiment embedding
model, and that will be used for further testing.
Finally, a search is performed on the C parameter of the Support Vector Machine

(SVM) classifier. When testing the classifier parameters, the sentiment embeddings
produced when training the Ternary Sentiment Embedding Model with the optimal
hyperparameters and best performing distant supervision method are used.

7.2. Experimental Setup
This section provides an overview of the data used in the experiments following.

7.2.1. Datasets for Training Word Embeddings

Using the Tweet Collector program (Section 5.1, p. 31), more than 500 million tweets had
been collected at the time of the start of the experiments. Using the methods described

1Some revisions were made in order to save computation time.

49

7. Optimizing System

in Section 6.2 (p. 41), the collection is iterated through, and datasets are saved for each
distant supervision method. The filtering of Section 6.1 (p. 40) is applied. The datasets
were not created at the same time, and tweets were collected simultaneously as datasets
were created. Three datasets of one million tweets from each sentiment class is extracted
from the total datasets for each of the distant supervision methods. This is done to
create datasets with an even number of tweets from each method and sentiment label.
The exception is for the Emoticon method, which only has 151,538 tweets annotated as
negative. Therefore, the Emoticon datasets are limited to 150,000 tweets for each label.
Table 7.1 shows the counts of tweets for each dataset before extracting the one million
of each.

Dataset Count Positive Negative Neutral
AFINN 43,014,617 15,751,203 36.62% 9,917,128 23.06% 17,346,286 40.33%
Combo A 47,154,022 15,397,901 32.65% 7,188,117 15.24% 24,568,004 52.1%
Combo B 47,154,022 14,769,815 31.32% 7,098,267 15.05% 25,285,940 53.62%
Emoticon 42,826,459 363,696 0.85% 151,538 0.35% 42,311,225 98.8%
Em. Ext. 42,236,058 2,843,462 6.73% 5,686,644 13.46% 33,705,952 79.8%
FJLC 44,715,931 10,415,622 23.29% 8,619,184 19.28% 25,681,125 57.43%
TextBlob 34,533,751 10,144,522 29.38% 3,792,504 10.98% 20,596,725 59.64%
VADER 43,130,805 19,160,339 44.42% 7,606,142 17.64% 16,364,324 37.94%

Table 7.1.: Distribution of sentiment for distant supervised datasets before limiting to
1 million of each sentiment (150,000 for Emoticon).

7.2.2. Datasets for Testing and Training Classifiers

In order to compare results to those of Tang et al. (2016), the datasets of SemEval 2013
are chosen for the optimization experiments. Training is done on the 2013-train-A set.
Testing is done on the 2013-dev-A set as this was the validation set of the 2013 workshop.
The 2013-test-A dataset is used for evaluation of the optimized model when comparing
to the SemEval 2013 results in Section 8.5.2 (p. 69).

Dataset Tweet count Positive Negative Neutral
2013-train-A 7129 2656 37.26% 1019 14.29% 3454 48.45%
2013-dev-A 1231 428 34.77% 250 20.31% 553 44.92%
Total 8360 3084 36.89% 1269 15.18% 4007 47.93%

Table 7.2.: Datasets for training and testing classifiers for optimizing the Ternary Sen-
timent Embedding Model.

7.2.3. Preprocessing

The collected tweets are preprocessed before they are used for training word embeddings.
URLs, mentions, reserved words and numbers are removed. For an explanation of these

50

7.2. Experimental Setup

terms see Section 2.5.5 (p. 14). The tweets are lower-cased and elongated words are
reduced to contain a maximum of three repeating letters (see Section 2.1.5, p. 6).

7.2.4. Classifier

The classifier used in the experiments is the SVM classifier with a linear kernel as de-
scribed in Section 5.6.4 (p. 38). For the experiments in Section 7.3 and 7.4 the classifier’s
C parameter is set to 1. This value is the recommended starting point for working with
the SVM classifier according to the scikit-learn documentation2. In Section 7.5 a search
on the SVM C hyperparameter is performed to further optimize the classifier.

7.2.5. Hyperparameters

A manual search is performed for finding the near-optimal hyperparameters to use when
training the Ternary Sentiment Embedding Model. The hyperparameters and the values
to test are explained in this section. Initially, the same hyperparameters are used as
the ones used by Tang et al. (2016) for training Sentiment-Specific Word Embeddings
(SSWE). These values are shown in bold in Table 7.3. When performing the search for
one of the hyperparameters, the rest are kept at their initial values.

Alpha The α value decides the balance between context and sentiment influence on the
word embeddings. Tang et al. (2014) used α = 0.5, an even combination. An
α of 0 would be a solely context-aware embedding, while an α of 1.0 would be a
solely sentiment-aware embedding. See Section 4.3 (p. 28) for more about the α
hyperparameter.

Context Window Size The size of the context windows. That is, the number of token
embedding vectors to concatenate and feed to the linear layer at once, as described
in Section 4.1 (p. 27).

Embedding Length The embedding length, or dimension, is the length of the word
embedding vectors.

Hidden Layer Size The number of nodes in the hidden linear layer and the hardTanh
layer.

Learning Rate The learning rate of the neural network. This is a rate that decides the
impact of new observations on the network’s weights.

Margin The objective of the Ternary Sentiment Embedding Model is to separate the
context score of a correct context window and a corrupted context window as well
as the sentiment scores of the correct context window by a given margin. See
Section 4.1 (p. 27) for more details about the margin hyperparameter.

2http://scikit-learn.org/stable/modules/svm.html

51

http://scikit-learn.org/stable/modules/svm.html

7. Optimizing System

Hyperparameter Hyperparameter search values
Alpha 0.0 0.1 0.2 0.4 0.5 0.6 0.8 1.0
Context Window Size 1 2 3 5 7 9
Embedding Length 50 75 100 125 150
Hidden Layer Size 10 20 30 50 100
Learning Rate 0.001 0.01 0.03 0.05 0.07 0.09 0.1 0.2 0.3 0.5

0.7 0.9 1.1
Margin 0.5 0.7 0.9 1.0 1.1 1.3 1.5 1.7 1.9 2.0

3.0 4.0 5.0 10.0

Table 7.3.: Values for the hyperparameter search. Initial values are in bold type.

7.3. Hyperparameter Search Results
The hyperparameter searches as explained in Section 7.2.5 are performed using the
dataset created by the Fredriksen–Jahren Lexicon Classifier (FJLC) distant supervision
method. This supervision method is chosen as it is the top Macro F1 performer of the
experiments in Section 6.4 (p. 46).
The following subsections show the results and graphs for each of the hyperparameters.

As can be observed in the detailed results in Appendix A, the scores vary for each epoch.
In order to get a more robust comparison for each hyperparameter, the Macro F1 scores
are averaged over epochs 10 to 20.

52

7.3. Hyperparameter Search Results

7.3.1. Alpha

Figure 7.1.: α comparison.

Alpha 0.0 0.1 0.2 0.4 0.5 0.6 0.8 1.0
Macro F1 0.5400 0.6297 0.6310 0.6111 0.6193 0.6084 0.6091 0.6069

Table 7.4.: α comparison values.

The hyperparameter α is the weighting between the sentiment loss and the context loss
in the combined loss function (Equation 4.3, p. 29) used when training the Ternary Sen-
timent Embedding Model. Figure 7.1 and Table 7.4 show the results when training the
Ternary Sentiment Embedding Model using different values for the α hyperparameter.
For α = 0.0 the model obtains its worst score, while the best score is achieved for
α = 0.2. This indicates that the contexts of the words are more important than the
sentiment of the tweets. However, leaving out sentiment information altogether (α = 0)
is far worse than as for any other value for α, as can be seen in Table 7.4 and Table A.1.
Interestingly, leaving out context information (α = 1) does not perform as badly.

53

7. Optimizing System

7.3.2. Context Window Size

Figure 7.2.: Context window size comparison.

Size of context window 1 2 3 5 7 9
Macro F1 0.6143 0.6162 0.6325 0.6182 0.6135 0.6153

Table 7.5.: Context window size comparison values.

The context window size specifies the number of words around a focus word to consider
as context when learning word embeddings. Figure 7.2 and Table 7.5 show that the best
performing window size is 3. This means that the model only considers the two words
surrounding a focus word when learning word embeddings. Tweets are typically short
texts with informal language due to the limit of their size. It is possible that having
larger context windows will lead to the model considering excerpts that are too long for
the language of the tweets, and that would fit better for more formal texts. However,
the differences in the results are too small to draw such conclusions.
By having a smaller context window, the model is able to consider shorter tweets that

would otherwise be ignored. This leads to the model using a smaller context window
size being trained on more tweets that can provide additional context information when
training. The effect of having more data to train on is also likely to increase the quality
of the produced word embeddings, but a thorough comparison of dataset size is not
provided in this thesis.
However, using a context window size of 1 or 2 (i.e. unigrams or bigrams) does

not seem to improve the performance of the model. This indicates that some context
information is indeed useful for training the model.

54

7.3. Hyperparameter Search Results

7.3.3. Embedding Length

Figure 7.3.: Embedding length comparison.

Word embedding length 50 75 100 125 150
Macro F1 0.6159 0.6216 0.6205 0.6227 0.6249

Table 7.6.: Embedding length comparison values.

The embedding length is the length, or dimension, of each word embedding vector. The
larger the dimension, the more fine-grained information the vectors can hold. The best
performing embedding length is 150. Though, if one inspects Table A.3, one can see
that the top values are achieved for embedding length 125 for epochs 7 and 9.
The results indicate that larger embedding lengths result in better scores for the model.

This is not so surprising, as other word embeddings like GloVe or word2vec are commonly
trained with a dimension of 200 or 300. Training with such large embedding lengths
would severely impact the processing time for the worse. Better results are to be expected
with larger embedding lengths, but only slightly. Looking at Table 7.6, we see that the
increase in Macro F1 from embedding length 100 to 150 is 0.6249 − 0.6205 ≈ 0.0044, a
minor improvement.

55

7. Optimizing System

7.3.4. Hidden Layer Size

Figure 7.4.: Hidden length comparison.

Size of hidden layers 10 20 30 50 100
Macro F1 0.6190 0.6155 0.6165 0.6198 0.6201

Table 7.7.: Hidden length comparison values.

The hidden layer size is the number of nodes, also called neurons, in the hidden layers
of a neural network model. For the Ternary Sentiment Embedding Model, the hidden
layers are the Linear Layer and the HardTanh Layer. The results in Figure 7.4 and
Table 7.7 show that there is minimal impact on the score of the total system when
varying the hidden layer size, having a range on the score values of only 0.0046. The
best performance is achieved with the size 100. These results correspond well to the
work of Collobert et al. (2011) who report that the size of the hidden layer, given it is
of sufficient size, has limited impact on the generalization performance.
The size of the hidden layers has a significant impact on the runtime of training word

embeddings using the model. Since the difference in score values were small compared
to other hyperparameters, and because of the notes made by Collobert et al., it was
decided to use a hidden layer size of 50 in the final model.

56

7.3. Hyperparameter Search Results

7.3.5. Learning Rate

Figure 7.5.: Learning rate comparison.

Learning rate 0.001 0.01 0.03 0.05 0.07 0.09 0.1
Macro F1 0.6051 0.6231 0.6225 0.6218 0.6200 0.6153 0.6188
Learning rate 0.2 0.3 0.5 0.7 0.9 1.1
Macro F1 0.6074 0.5990 0.6055 0.6051 0.5922 0.5819

Table 7.8.: Learning rate comparison values.

The learning rate is the rate at which the parameters of the neural network are updated
during backpropagation. When training a neural network, a small learning rate means
that the network slowly converges towards a possible optimal score, while a large learning
rate can make the network overshoot the optimum.
Figure 7.5 and Table 7.8 show that the best performing learning rate is 0.01. The

total range of the scores is 0.0412. Note that the learning rates tested are not as evenly
spread as Figure 7.5 seems to indicate.

57

7. Optimizing System

7.3.6. Margin

Figure 7.6.: Margin comparison.

Margin 0.5 0.7 0.9 1.0 1.1 1.3 1.5
Macro F1 0.6119 0.6137 0.6082 0.6157 0.6157 0.6128 0.6147
Margin 1.7 1.9 2.0 3.0 4.0 5.0 10.0
Macro F1 0.6131 0.6158 0.6188 0.6183 0.6175 0.6171 0.6102

Table 7.9.: Margin comparison values.

The margin hyperparameter is the value at which the scores produced by the Ternary
Sentiment Embedding Model should be separated in the loss functions specified in Equa-
tion 4.1 (p. 27) and Equation 4.2 (p. 28). Having a larger margin leads to similar scores
for each sentiment class giving a larger total loss, which leads to the model parameters
being updated by a larger value during backpropagation. It is hard to predict the impact
of having a higher margin, but since the loss is greater when sentiment scores are close,
this leads us to believe that it gives a better separation of words from tweets belonging
to each of the sentiment classes.

58

7.4. Comparing Distant Supervision Methods

7.3.7. Summary of Best Parameters

The best parameter values from the hyperparameter search of this section are summa-
rized in the middle column of Table 7.10. For the further experiments, the embedding
length was reduced from 150 to 100 and hidden layer size reduced from 100 to 50. This
was done to save computation time, compromising a minor loss in performance. The
chosen hyperparameters are shown in the rightmost column of Table 7.10.

Hyperparameter Best Selected
Alpha 0.2 0.2
Embedding Length 150 100
Hidden Layer Size 100 50
Learning Rate 0.01 0.01
Margin 2 2
Window Size 3 3

Table 7.10.: Best and selected hyperparameter values found.

7.4. Comparing Distant Supervision Methods
The Ternary Sentiment Embedding Model with the hyperparameter values shown in
the rightmost column of Table 7.10 is trained on datasets created by using each of the
distant supervision methods from Chapter 6. The datasets comprise one million tweets
from each sentiment class, with the exception of the dataset created by the Emoticon
method that comprises 150,000 tweets for each class.

59

7. Optimizing System

Figure 7.7.: Macro F1 scores for the Ternary Sentiment Embedding Model on different
datasets.

Distant supervision method
Epoch AFINN Cb. A Cb. B Em. Em. Ext. FJLC TextBlob VADER

1 0.5863 0.5940 0.5717 0.4889 0.4877 0.6056 0.5517 0.6066
2 0.5997 0.6110 0.6076 0.4882 0.5090 0.6252 0.5518 0.6101
3 0.6059 0.6114 0.6166 0.5269 0.5236 0.6203 0.5618 0.6112
4 0.6024 0.6018 0.6101 0.5112 0.5025 0.6188 0.5843 0.6202
5 0.6089 0.6205 0.6204 0.5168 0.5228 0.6202 0.5761 0.6346
6 0.6053 0.6205 0.6073 0.5258 0.5242 0.6205 0.5788 0.6317
7 0.6095 0.6256 0.6184 0.5249 0.5331 0.6317 0.5868 0.6314
8 0.6135 0.6142 0.6249 0.5132 0.5289 0.6268 0.5886 0.6284
9 0.6214 0.6246 0.6202 0.5126 0.5425 0.6324 0.5931 0.6388
10 0.6194 0.6339 0.6277 0.5108 0.5420 0.6440 0.5959 0.6272
11 0.6272 0.6405 0.6408 0.5358 0.5505 0.6362 0.5943 0.6341
12 0.6245 0.6380 0.6345 0.5184 0.5422 0.6394 0.6092 0.6313
13 0.6142 0.6355 0.6412 0.5284 0.5426 0.6421 0.6093 0.6290
14 0.6239 0.6375 0.6387 0.5288 0.5569 0.6419 0.5898 0.6278
15 0.6381 0.6368 0.6370 0.5374 0.5625 0.6352 0.6089 0.6356
16 0.6404 0.6297 0.6291 0.5337 0.5631 0.6415 0.5937 0.6392
17 0.6314 0.6339 0.6424 0.5420 0.5654 0.6403 0.5984 0.6359
18 0.6337 0.6314 0.6371 0.5370 0.5669 0.6269 0.5961 0.6414
19 0.6313 0.6309 0.6327 0.5344 0.5583 0.6434 0.5965 0.6395
20 0.6418 0.6394 0.6364 0.5424 0.5667 0.6307 0.6037 0.6320

Avg10,20 0.6296 0.6352 0.6361 0.5317 0.5561 0.6383 0.5996 0.6339

Table 7.11.: Macro F1 scores for word embeddings trained with the Ternary Sentiment
Embedding Model using different distant supervision methods. Avg10,20
depicts the average score over epochs 10 to 20, inclusive.60

7.5. SVM Hyperparameter Search Results

7.5. SVM Hyperparameter Search Results
A coarse parameter search on the C parameter of the SVM classifier is performed with
values ranging from 0.001 to 1000. The word embeddings used are the ones produced
by the Ternary Sentiment Embedding Model using the dataset created with the FJLC
distant supervision method. The embeddings are trained for 20 epochs. The results are
shown in Table 7.12.

C Macro F1
0.001 0.6355
0.01 0.6404
0.1 0.6326
1 0.6319

10 0.6300
100 0.6319

1000 0.6321

Table 7.12.: Coarse parameter search for C values between 0.001 and 1000.

From the coarse parameter search the observed best performing C value is 0.01. A
finer search is conducted for C values between 0.001 and 0.009, and between 0.01 and
0.09. The results of these searches are found in Table 7.13 and Table 7.14.

C Macro F1
0.001 0.6355
0.002 0.6397
0.003 0.6404
0.004 0.6423
0.005 0.6428
0.006 0.6429
0.007 0.6416
0.008 0.6400
0.009 0.6414

Table 7.13.: Parameter search for C
values between 0.001 and
0.009.

C Macro F1
0.01 0.6404
0.02 0.6408
0.03 0.6376
0.04 0.6356
0.05 0.6333
0.06 0.6328
0.07 0.6325
0.08 0.6314
0.09 0.6312

Table 7.14.: Parameter search for C val-
ues between 0.01 and 0.09.

The parameter search shows that the C-value of 0.006 yields the best performing
classifier for the model on the 2013-dev-A set, which achieved a Macro F1 score 0.6429.
The most commonly used C value for SVM is 1, which achieved a score of 0.6319. This
leads to an increase of 0.6429− 0.6319 = 0.011.
The C parameter specifies the balance between separating samples by a large margin

and the amount of misclassified samples. A small C value means the classifier favors
more misclassified samples over a large margin.

61

7. Optimizing System

The results show that the small C value of 0.006 performs best for our system, indi-
cating that it is hard to avoid misclassifying some samples. However, the differences in
scores are very low even for large variations of the parameter, meaning the samples to
classify are not easily linearly separable either way.

62

8. Evaluating the Final System
This chapter presents tests performed to evaluate the performance of the Ternary Senti-
ment Embedding Model for creating sentiment embeddings for the ternary classification
task. A test is performed to examine how the different classifiers of Chapter 6 compare
when used as distant supervision for the proposed model. The model is compared to the
Hybrid Ranking Model by Tang et al. (2016) using different distant supervision methods.
The model is compared to a range of baseline systems, among them other popular word
embeddings models. Finally, the performance of the total system is evaluated against
published results of state-of-the-art systems.

8.1. Experimental Setup
This section explains the setup of the final Twitter Sentiment Analysis (TSA) system
and the datasets used during testing.

8.1.1. Final System

The TSA system comprises the Ternary Sentiment Embedding Model and the Support
Vector Machine (SVM) classifier with the hyperparameters found in Chapter 7. The
final system has the following properties:

Hyperparameter Value
Alpha 0.2
Context Window Size 3
Embedding Length 100
Hidden Layer Size 50
Learning Rate 0.01
Margin 2.0
Number of Epochs 20

Table 8.1.: Hyperparameter values of final model.

For all tests with word embeddings, the same SVM classifier is used. The classifier
is found by the hyperparameter search in Section 7.5. The SVM classifier has a linear
kernel and parameter C = 0.006.

When not explicitly stated otherwise, the Ternary Sentiment Embedding Model is
trained on a dataset created by using the Fredriksen–Jahren Lexicon Classifier (FJLC)

63

8. Evaluating the Final System

as distant supervision method. The dataset is created by collecting one million tweets
for each sentiment class.

8.1.2. Datasets for Testing and Training Classifiers

The International Workshop on Semantic Evaluation (SemEval) provides labeled datasets
to be used when training, validating and testing TSA systems.
In order to compare the proposed TSA system against results from the SemEval work-

shop, two additional datasets shown in Table 8.3 are created by combining datasets from
Table 8.2. The 2013-2016-train-dev-A dataset is created by combining the 2013-dev-A,
2013-train-A, 2014-sarcasm-A, 2015-train-A and 2016-train-A datasets. The 2013-2016-
all-A is created by combining all the datasets from 2013 to 2016 in Table 8.2. The
reasoning for these combinations are further explained in Section 8.5.2 (p. 69).
The tweets were downloaded on March 21, 2017. The tweet counts shown in Table 8.2

and Table 8.3 are after downloading1, removing duplicates2, and removing retweets and
non-English tweets as described in Section 5.4.2 (p. 34).

Dataset Tweet count Positive Negative Neutral
2013-dev-A 1228 430 35.02% 245 19.95% 553 45.03%
2013-test-A 2695 1090 40.45% 400 14.84% 1205 44.71%
2013-train-A 7109 2660 37.42% 1010 14.21% 3439 48.38%
2014-sarcasm-A 56 22 39.29% 27 48.21% 7 12.5%
2014-test-A 1460 762 52.19% 149 10.21% 549 37.6%
2015-test-A 1865 793 42.52% 285 15.28% 787 42.2%
2015-train-A 352 118 33.52% 43 12.22% 191 54.26%
2016-dev-A 1657 702 42.37% 324 19.55% 631 38.08%
2016-devtest-A 1645 811 49.3% 254 15.44% 580 35.26%
2016-test-A 16771 5790 34.52% 2512 14.98% 8469 50.5%
2016-train-A 4893 2535 51.81% 696 14.22% 1662 33.97%
2017-test-A 12284 2375 19.33% 3972 32.33% 5937 48.33%

Table 8.2.: Datasets for training and testing classifier.

Dataset Tweet count Positive Negative Neutral
2013-2016-train-dev-A 13638 5765 42.27% 2021 14.82% 5852 42.91%
2013-2016-all-A 39731 15713 39.55% 5945 14.96% 18073 45.49%

Table 8.3.: Combined datasets for training and testing classifier.

1The number of downloaded tweets is likely lower than the number of tweet IDs to fetch, because tweets
that have been deleted will not be downloaded.

2If duplicate tweets with the same sentiment label are found, only one is kept. If duplicate tweets are
found with different labels, both are deleted.

64

8.2. Comparison of Distant Supervision Methods

8.2. Comparison of Distant Supervision Methods
The Ternary Sentiment Embedding Model is trained for 20 epochs using the different
distant supervision methods of Chapter 6. The produced sentiment embeddings are
tested using the SVM classifier specified in Section 8.1.1 using 10-fold cross validation
on the 2013-2016-all-A dataset from Table 8.3. Table 8.4 shows different metrics for the
tests. The metrics used are described in Section 2.3.2 (p. 7).

Method Macro F1 FPN1 FPOS
1 FNEG

1 FNEU
1

Combo B 0.6091 0.5952 0.6681 0.5222 0.6369
Combo A 0.6082 0.5958 0.6673 0.5244 0.6330
FJLC 0.6036 0.5871 0.6651 0.5091 0.6366
AFINN 0.6022 0.5892 0.6602 0.5181 0.6283
VADER 0.5965 0.5831 0.6555 0.5108 0.6231
TextBlob 0.5837 0.5714 0.6566 0.4862 0.6083
Em. Ext. 0.5479 0.5247 0.6303 0.4192 0.5943
Em. 0.5043 0.4814 0.5953 0.3676 0.5501

Table 8.4.: Comparison of distant supervision methods, sorted by descending Macro F1
score. The tests are performed using 10-fold cross validation on the 2013-
2016-all-A dataset.

8.3. Comparison with Hybrid Ranking Model
To get a robust comparison of the performance of the sentiment embeddings produced
by the Ternary Sentiment Embedding Model and the Hybrid Ranking Model, a 10-fold
cross-validation is performed. This cross-validation allows for using all manually anno-
tated SemEval datasets, while producing robust scores with low bias. Both architectures
are trained on three million tweets weakly annotated using the different classifiers pre-
sented in Chapter 6 as distant supervision methods. The Ternary Sentiment Embedding
Model is trained on tweets labeled as “positive”, “negative” or “neutral”, with one mil-
lion of each. The Hybrid Ranking Model only utilizes tweets labeled as “positive” or
“neutral”, and is as a result trained on 1.5 million tweets of each sentiment class. The
models were trained for 20 epochs.
The Ternary Sentiment Embedding Model is trained with the hyperparameters stated

in Section 8.1.1, while the Hybrid Ranking Model is trained using the hyperparameters
used by Tang et al. (2016), the bold values found in Table 7.3 (p. 52). The produced
sentiment embeddings are fed to the SVM classifier stated in Section 8.1.1. The dataset
used in the 10-fold cross-validation is the 2013-2016-all-A dataset. The Macro F1 metric
is used, and the results are shown in Table 8.5.

65

8. Evaluating the Final System

Dataset Ternary Sentiment Embedding Model Hybrid Ranking Model
AFINN 0.6022 0.5775
Combo A 0.6082 0.5873
Combo B 0.6091 0.5920
Em. 0.5043 0.5284
Em. Ext. 0.5479 0.5357
FJLC 0.6036 0.5919
TextBlob 0.5837 0.5746
VADER 0.5964 0.5965

Table 8.5.: Comparison between the Ternary Sentiment Embedding Model and the Hy-
brid Ranking Model of Tang et al. (2016) using different distant supervision
methods.

8.4. Comparison with Baselines
In order to see how well the final TSA system performs, a comparison between existing
sentiment analysis systems is done. The systems are tested using 10-fold cross-validation
on the 2013-2016-all-A dataset from Table 8.3. Most of these baseline methods were
implemented as part of the experiments of Chapter 6. As explained in Section 7.2.1
(p. 49), the Ternary Sentiment Embedding Model is trained on three million tweets,
with one million from each of the sentiment classes. The tweets are classified using the
FJLC distant supervision method. The same dataset of tweets is used to train GloVe and
word2vec word embeddings. The Hybrid Ranking Model, which only utilizes positive
and negative tweets, is trained using 1.5 million positive and 1.5 million negative tweets
in order to keep the size of the dataset the same as for the other word embedding models.

8.4.1. Description of Baselines

AFINN The AFINN library as explained in Section 2.5.8 (p. 15).

Combo A The Combo Average model of Section 6.2.6 (p. 44) with parameters a = 0.0,
b = 0.4, c = 0.4, t = 0.2, as found from the grid search of Section 6.3.3 (p. 46).

Combo B The Combo Average model of Section 6.2.6 with parameters a = 0.3, b = 0.1,
c = 0.1, t = 0.1, as found from the grid search of Section 6.3.3.

Emoticons The Emoticons method of Go et al. (2009), as explained in Section 6.2.1
(p. 41), with the variation that tweets containing both negative and positive emoti-
cons are regarded as neutral.

Emoticons Extended The extended Emoticons method as explained in Section 6.2.2
(p. 42), with the variation that tweets containing both negative and positive emoti-
cons are regarded as neutral.

66

8.4. Comparison with Baselines

GloVe The GloVe model from Section 2.4.2 (p. 12) is used to train word embeddings of
dimension 100 on a set of three million tweets, the same tweets as the proposed
system. The model is trained using the Twitty program described in Section 5.4
(p. 34). The word embeddings are fed to the SVM classifier specified in Sec-
tion 8.1.1.

Hybrid Ranking Model (w/FJLC) Word embeddings are produced using the Hybrid
Ranking Model of Tang et al. (2016) trained on a set of three million tweets created
by using the FJLC distant supervision method. The Hybrid Ranking Model only
uses tweets labeled as “positive” or “negative” when training word embeddings,
and 1.5 million tweets of each class are used for training. The word embeddings
are fed to the SVM classifier specified in Section 8.1.1.

FJLC Using the Python port of the Lexicon Classifier of Fredriksen and Jahren (2016)
explained in Section 6.2.7 (p. 44).

Random Uniform Picks a random label from a uniform probability distribution, that
is, each label has equal chance of getting picked.

Random Weighted Picks a random label from the same distribution as in the training
set. If 50 percent of the training data are neutral tweets, “neutral” has a probability
of 50 percent of getting picked.

TextBlob The TextBlob method as described in Section 6.2.4 (p. 42) with sentiment
threshold 0.1 and polarity threshold 0.3. Tweets achieving scores that do not
satisfy the thresholds are assigned the label “neutral”.

VADER The method described in Section 6.2.5 (p. 43) with threshold t = 0.1. Tweets
achieving scores not satisfying the threshold for any of the sentiments were labeled
as neutral.

word2vec (CBOW) Word embeddings are trained using the Continuous Bag-of-Words
(CBOW) word2vec model described in Section 2.4.1 (p. 11). The model is trained
using the Twitty program described in Section 5.4 (p. 34). The embeddings are
trained on the dataset created by using the FJLC distant supervision method, and
the dimension of the embeddings is 100. The word embeddings are fed to the SVM
classifier specified in Section 8.1.1.

word2vec (Skip-gram) Word embeddings are trained using the Continous Skip-gram
word2vec model described in Section 2.4.1. The model is trained using the Twitty
program described in Section 5.4. The embeddings are trained on the dataset
created by using the FJLC distant supervision method, and the dimension of the
embeddings is 100. The word embeddings are fed to the SVM classifier specified
in Section 8.1.1.

67

8. Evaluating the Final System

8.4.2. Results

Table 8.6 shows the results for each TSA system using the Macro F1 metric.

Model Macro F1
Final Ternary Sentiment Embedding Model 0.6036
word2vec (CBOW) 0.6015
Hybrid Ranking Model (w/FJLC) 0.5919
word2vec (Skip-gram) 0.5886
FJLC 0.5706
GloVe 0.5662
Combo B 0.5621
Combo A 0.5579
AFINN 0.5381
VADER 0.5286
TextBlob 0.3826
Random Weighted 0.3315
Random Uniform 0.3174
Emoticon Extended 0.2542
Emoticon 0.2462

Table 8.6.: Comparison between the Ternary Sentiment Embedding Model and base-
lines using 10-fold cross validation on the 2013-2016-all-A dataset, ordered
by decreasing Macro F1 score.

8.5. Comparison with Published Results
The final TSA system is trained and tested using similar training and testing sets as
other published TSA systems to provide a fair comparison with published results.

8.5.1. Comparison with Tang et al. (2016)

Tang et al. (2016) present the Hybrid Ranking Model by which the proposed Ternary
Sentiment Embedding Model is heavily influenced. Tang et al. train sentiment embed-
dings on five million positive and five million negative distant-supervised tweets. The
sentiment embeddings produced by their model are tested with a SVM classifier on the
SemEval 2013 test dataset. The score from Tang et al. (2016) is presented in Table 8.73.
Tang et al. achieved improved results using additional lexical features. These are not
provided, as we only compare to the most similar system to ours.

3Three decimals are used as in Tang et al. (2016).

68

8.5. Comparison with Published Results

Model Macro F1
Final Ternary Sentiment Embedding Model 0.655
Hybrid Ranking Model 0.634

Table 8.7.: Comparison between the scores of the final proposed TSA system and pub-
lished results from Tang et al. (2016).

8.5.2. Comparison with SemEval

To see how the final TSA system compares to state-of-the-art systems from SemEval,
tests are done against the appropriate test sets and compared with the published results.
The workshops and tasks that are compared with are SemEval 2013 Task 2B (Nakov
et al., 2013), SemEval 2016 Task 4A (Nakov et al., 2016), and SemEval 2017 Task 4A
(Rosenthal et al., 2017).
The proposed TSA system is trained using the training sets provided by the respective

conference. For 2013, the model is trained on 2013-train-A and tested on 2013-test-A.
For 2016, the model is trained on 2013-2016-train-dev-A given in Table 8.3 (p. 64), and
tested on 2016-test-A. The SemEval 2016 workshop allowed training on the training
and development datasets of previous years, as well as the training dataset from 2016.
For 2017, the model is trained on 2013-2016-all-A from Table 8.3 as the SemEval 2017
workshop allowed systems to be trained on all datasets from previous years. The system
is tested on the 2017-test-A dataset.
Note that the number of tweets that could be downloaded is smaller than at the time

of the respective workshops, as tweets have been deleted in the meantime. The metric
used is FPN1 -score, which is the official SemEval metric.4 The results are presented in
Table 8.8 with the same number of decimals as in the published papers.

Year Top SemEval Result Ternary Sentiment Embedding Model
2013 0.6902 0.61789
2016 0.633 0.580512
2017 0.685 0.62919

Table 8.8.: Comparison of the Ternary Sentiment Embedding Model with top results
from different SemEval years. The scores are FPN1 scores. The subscripts
denote the ranking the systems would have achieved for each year.

4The official metric of SemEval 2017 is AvgRec, but F P N
1 scores are also included.

69

9. Discussion
In this chapter, the results from Chapters 6, 7, and 8 are evaluated and discussed.

9.1. Distant Supervision
From the comparison results in Table 6.8 (p. 47), we see that the Lexicon Classifier
(FJLC) of Fredriksen and Jahren (2016) achieved the top Macro F1 score. AFINN
achieved the top FPN1 score, which is the official International Workshop on Semantic
Evaluation (SemEval) metric for both the binary and ternary tasks.

The SemEval tweets are pretty clean and similar, with very little spam. The collected
tweets on the other hand, are noisy and probably contain a lot more spam. Consequently,
we expect the inclusion rates to be lower when the distant supervision methods are run
on the collected data compared to when run on SemEval data.
The slowest of the distant supervision methods (Combo B) uses 2.27 ms to classify

a tweet, which is minuscule compared to the 18.5 ms it takes to download a tweet.
Therefore, all distant supervision methods discussed here could be used for real-time
annotation of tweets from the Twitter Streaming API. When processing a collection of
saved tweets, the runtime has a larger impact: processing 500 million tweets would take
about 13 days with the Combo B method (2.27 ms/tweet), but only about twelve hours
with the Emoticon method (0.09 ms/tweet).
It is interesting that it is not consistent which method performs best for all datasets.

While FJLC comes out on top for most of the sets, also the Combo A, TextBlob and
VADER methods have at least one top performing result each.

9.1.1. Combination Methods

Both Combo methods perform better than all of their component methods. This in-
dicates that the averaging scheme is able to overcome weaknesses of the component
methods. Other component method combinations could be investigated.
The number of component methods could also be experimented with. Bonab and Can

(2016) found that theoretically, having the same number of classifiers in an ensemble as
the number of classes, achieves the best scores. Therefore, combining three methods is
not an unreasonable choice. One should also keep in mind that more components lead
to higher processing times, which is not favorable for distant supervision.
Other approaches to combining the method scores could prove to be better than

averaging. The most confident approach would let the component method that is most
confident in its classification determine the label for the tweet. The majority voting

71

9. Discussion

scheme would select the label that the majority of component methods labeled the
tweet as. An advantage of the averaging scheme over the most confident and majority
approaches is that the average works on the continuous sentiment values that each
component method generates, generating a new score which is then mapped to a label.
In other words, the averaging approach works on a more accurate level than the other
approaches where each component method maps its value to a class before combining
them.

9.1.2. Speed versus Quality

Although the combination methods perform well in terms of prediction quality, they are
by far the slowest methods, as they have to compute scores for each of their component
methods. As mentioned in the introduction of Chapter 6 (p. 39), speed might be a more
important trait than quality for distant supervision methods. Therefore, the VADER
method, for instance, might be preferred over any of the Combo methods, even if it gets
a 6.37 percent worse Macro F1 score, since it is nearly 3.5 times faster. A clearer choice
perhaps is the FJLC, which is the top Macro F1 performer and runs approximately 2.3
times faster than the Combo methods.
While the Emoticon method is doing poorly in terms of prediction, it classifies positive

and negative tweets with high precision (Table 6.9, p. 47). Its weakness is that it predicts
all tweets with none of its emoticons as neutral, which leads to a very low precision on
neutral. This shows that the emoticons of Table 6.3 (p. 41) represent their sentiment
classes well, and the proper way to extend this method for the ternary task would be
to find a set of symbols that represent the neutral class equally well. Such a method
would combine both high speed and high precision. When building a distant-supervised
dataset from a large corpus of tweets, recall is not as important, as tweets can be ignored,
at the cost of a smaller resulting set.

9.2. Optimizing System
In this section, the procedure of finding the optimal system performed in Chapter 7 is
discussed.

9.2.1. Limitations of the Hyperparameter Search

Chapter 7 presents a manual search of the hyperparameters of the Ternary Senti-
ment Embedding Model. The model is trained with various, manually selected, hyper-
parameter values. During the search, only one parameter was changed at a time, while
the other values were set to the initial values chosen. An exhaustive grid search, where
all combinations of parameter values are tested against each other, is needed for finding
the optimal hyperparameters. This, however, would have been too time consuming, as
training the Ternary Sentiment Embedding Model once takes between 24 and 36 hours
depending on the hyperparameters and the size of the dataset.

72

9.2. Optimizing System

One classifier, the FJLC, was chosen as distant supervision method for the search. It
is not clear that the best hyperparameters found using this method will generalize to the
system when trained on data created when using another distant supervision method.
Optimally, a new hyperparameter search should have been performed using each of the
distant supervision methods.

9.2.2. Data for the Hyperparameter Search Classifier

The word embeddings produced by using the different hyperparameters were used to
train and classify tweets using a Support Vector Machine (SVM) classifier. As specified
in Section 7.2.2 (p. 50), the classifier was trained on the 2013-train-A dataset from the
SemEval workshop. The 2013-dev-A dataset was used as validation set. These datasets
were chosen to get training and validation as close as possible to the procedure in Tang
et al. (2016) in order to get a better comparison of the two systems. These datasets are
fairly small in size. The model is also randomly initialized as reported in Section 4.4
(p. 29), which could lead to varying results, especially when the differences between the
scores are as low as they are. The purpose of the hyperparameter search, however, is not
to establish the effect of varying each hyperparameter, but rather to create a model that
could be reasonably compared to previous models, and be functionally used to create
word embeddings for ternary sentiment classification.

9.2.3. Evaluation of Hyperparameter Search Results

Because of the implementation of the Ternary Sentiment Embedding Model, which out-
puts embeddings for each epoch trained, it was easy to include embeddings at all epochs
up to a given limit. For the hyperparameter search, the model was trained for a total of
20 epochs. During the search, we observed that results varied from epoch to epoch and
we chose to average the scores over a certain interval of epochs. This way, the scores
were more robust for picking optimal hyperparameters. The tendency observed was that
after 10 epochs, the results seemed to converge. Therefore, scores were averaged over
epochs 10 to 20, inclusive, and the number of epochs is not considered an experimental
hyperparameter like the rest.
The scoring metric for the hyperparameter search was the Macro F1-score. This metric

was chosen as we found it to better represent all three classes in the ternary classification
task compared to the FPN1 score, the previous official metric of the SemEval workshop,
which only looks at F -scores for the positive and negative class. The Macro F1 score is
also the one used in Tang et al. (2016), and to get a better comparison to their model
we chose the same score as metric.

9.2.4. Distant Supervision Method

After selecting the hyperparameters that performed best in each hyperparameter search,
the Ternary Sentiment Embedding Model was trained on datasets created by using each
of the distant supervision methods from Chapter 6. The tests are done in order to find

73

9. Discussion

a distant supervision method that should be used for the final experiments. By using
the 2013-dev-A dataset as validation set, the selection of distant supervision method is
not dependent of results from the test set, which is in accordance to the procedure used
by the systems in the SemEval workshop.
The results in Section 7.4 (p. 59) show that the performance is very similar for five of

the distant supervision methods, with the FJLC achieving the best results. As discussed
in Section 9.1, the FJLC method is the best performing classifier from Chapter 6 using
the Macro F1 score as metric. It is also the distant supervision method used in the
hyperparameter search. This is a likely explanation for why this distant supervision
method is the best performing in this comparison as well.

9.3. Comparison of Distant Supervision Methods
As seen in Table 8.4 (p. 65), Combo B is the best performing distant supervision method.
Interestingly, this is not the same as the top performer of Chapter 6 nor Section 7.4
(p. 59), which was the FJLC.

The results show the performance is similar for all the distant supervision methods,
with the clear exceptions of the Emoticons methods and arguably the TextBlob method.
The weakness of the Emoticon methods is clear — the low number of emoticons in tweets
lead to the Emoticon methods classifying the vast majority of tweets as neutral, as can be
seen in Table 7.1 (p. 50). The extended method performs slightly better, because of its
larger sets of emoticons and inclusion of emojis. Also, the Emoticon Extended dataset
with its three million tweets is much larger than the Emoticons set, which comprises
450,000 tweets.
The TextBlob does not perform very well in this comparison. When looking at the re-

sults from comparing the distant supervision methods in Table 6.8 (p. 47), the TextBlob
method does not perform notably worse than the other methods when looking at the
Macro F1 score. The method achieves high F1 scores for the positive and neutral class,
but the F1 score for the negative class is significantly lower compared to the other meth-
ods (excluding the Emoticon methods). The scores in Table 6.9 (p. 47) show that the
recall for the negative class is low, meaning that the classifier is not good at classifying
true negative tweets as negative. This weakness of the TextBlob classifier seems to per-
sist when used as distant supervision method as the F1 score for the negative class in
Table 8.4 (p. 65) is the lowest, when excluding the Emoticon methods.
The Combo methods perform best in this comparison. Since they average over three

methods, as mentioned in Section 9.1.1, they can overcome weaknesses of their compo-
nent methods. While the combo methods were not the top performers in the comparison
of the distant supervision methods in Section 6.4 (p. 46), the ability to balance other
weak classifiers seems to be important when used as distant supervision methods for the
proposed model.
The results show that the Ternary Sentiment Embedding Model performs best when

trained on data from a distant supervision method that is good at classifying all tweets
into all three sentiment classes. Methods such as the Emoticon classifiers and the

74

9.4. Comparison with Hybrid Ranking Model

TextBlob classifier have weaknesses when classifying tweets into one or more of the
classes, and as a results these distant supervision methods yield the worst results for
the total system. The Combo methods seem to overcome the weaknesses of individ-
ual methods, resulting in the best performance of the model on the ternary sentiment
classification task.

9.4. Comparison with Hybrid Ranking Model
The proposed Ternary Sentiment Embedding Model is closely related to the Hybrid
Ranking Model by Tang et al. (2016). The main goal of the new model is to improve
the performance when used as part of a ternary classification system. Since both models
are trained using distant supervised datasets, it is interesting to test how such distant
supervision methods affect both models, and test if the new model achieves improved
results on the task.
Table 8.5 (p. 66) shows the results when testing word embeddings produced by both

models, using the different distant supervision methods from Chapter 6. The results
show that the Ternary Sentiment Embedding Model outperforms the Hybrid Ranking
Model using all but two distant supervision methods.
As explained in Section 7.2.1 (p. 49), the dataset created using the Emoticon distant

supervision method only consists of 150,000 tweets for each sentiment class. The word
embeddings for the other distant supervision methods are trained using three million
tweets, one million per class. As discussed in Section 9.3, the smaller size of the Emoticon
dataset likely explains the poor performance when using this distant supervision method.
The method is the worst performing for both models.
The Emoticon method classifies a very large percentage of tweets as neutral (98.8

percent of our manually collected tweets seen in Table 7.1, p. 50). Only tweets that
contain one or more emoticons from a small set of emoticons are classified as positive
or negative, while all others are seen as neutral. This conservative classification likely
means that the tweets that are actually classified as positive or negative have a high
likelihood of being classified correctly. This assumption is reflected by the results found
in Table 6.9 (p. 47). The precision for the negative and positive class for the Emoticon
method is the highest of all the methods.
The Emoticon dataset is the only dataset where the Hybrid Ranking Model performs

significantly better than the proposed model. The Hybrid Ranking Model is trained
using only tweets labeled as positive or negative, while the Ternary Sentiment Embedding
Model also utilizes neutral tweets in its training. As seen above, the Emoticon distant
supervision method performs well for classifying tweets as positive or negative, but not
for neutral, meaning the quality of the positive and negative tweets are likely higher
than for neutral tweets. This possibly explains why the Hybrid Ranking Model performs
better when using this distant supervision method.
Tang et al. (2016) use a distant supervision method similar to the Emoticon method,

looking only at emoticons for creating positive and negative tweets to use during training
of the Hybrid Ranking Model. This seems like a good choice for their model considering

75

9. Discussion

the high precision for such datasets. For our model, however, it is not sufficient to only
find some tweets that are likely positive or negative, and a more sophisticated distant
supervision method seems essential. This also means that when training the proposed
model, we are able to utilize a much larger corpus of distant supervised tweets since no
tweets are discarded. This means that our model is able to train on much more varied
tweets, learning sentiment information from tweets that are not limited by their use of
emoticons.
When using the more sophisticated distant supervision methods, the Ternary Senti-

ment Embedding Model outperforms the Hybrid Ranking Model, with the exception of
VADER where the scores are almost identical. This indicates that the proposed model
is able to better take advantage of sentiment information from a larger set of tweets,
increasing performance when used for the ternary sentiment classification task.

9.5. Comparison with Baselines
In Section 8.4 (p. 66) the final TSA system is compared to a range of baseline systems
to assert its performance on the ternary classification task. We create baselines using
the popular word2vec and GloVe word embedding models to test how the sentiment
embeddings produced by the Ternary Sentiment Embedding Model compares to the
widely used models. The word embeddings produced are used as input features for the
SVM classifier described in Section 8.1.1 (p. 63). The classifiers described in Chapter 6
are also tested on the same data, as well as two classifiers that randomly classify the
data.
From the results in Table 8.6 (p. 68), we observe that the best scores are achieved by the

word embedding systems, with our system outperforming the baselines. The word em-
beddings produced by the Ternary Sentiment Embedding Model achieve slightly better
results than the word embeddings produced by the Continuous Bag-of-Words (CBOW)
word2vec model, however, the difference is small. One of the strengths of the word2vec
models is that they require much less time for training compared to the larger neural net-
work models like the Collobert and Weston model and the proposed Ternary Sentiment
Embedding Model. The word2vec models use approximately three minutes, while the
Ternary Sentiment Embedding Model uses 24 hours to train on three million tweets for
the tests. This advantage of the word2vec models means that they could be trained us-
ing a much larger dataset, which would likely yield an even better performance for these
word embedding models. The word2vec models do not utilize sentiment information of
the tweets, which is necessary to create sentiment embeddings with the Ternary Senti-
ment Embedding Model. This is another advantage of the word2vec models, as they do
not have the need for a separate distant supervision method. The word2vec models are,
however, slightly outperformed by the Ternary Sentiment Embedding Model in terms of
the final score, and with further optimization the difference could increase.
The Hybrid Ranking Model is created for training using binary distant-supervised

data, and performs best when used on the binary classification task, i.e. classifying
tweets as positive or negative. By incorporating the neutral class, the Ternary Sentiment

76

9.6. Comparison with Published Results

Embedding Model is able to improve the performance on the ternary classification task.
The final Ternary Sentiment Embedding Model is trained on tweets that are labeled

using the FJLC. From the results we observe that by training word embeddings and using
these as features for an SVM classifier, the performance is improved. This indicates that
the proposed system is able to learn additional information, such as context information,
from the tweets in addition to the sentiment information provided by the FJLC classifier.

9.6. Comparison with Published Results
The focus of the work in this thesis has been to create a new model for training senti-
ment embeddings that can be used for the ternary Twitter sentiment classification task.
However, to get a sense of the performance of the proposed system, it is compared to
other TSA systems.

9.6.1. Comparison with Tang et al. (2016)

The results shown in Table 8.7 (p. 69) indicate that the Ternary Sentiment Embedding
Model performs better on the ternary classification task than the Hybrid Ranking Model
of Tang et al. (2016), even though their embeddings were trained on a much larger set
of data than the embeddings used in the present work.

9.6.2. Comparison with SemEval

The results from Table 8.8 (p. 69) show that the Ternary Sentiment Embedding Model
does not match the state-of-the-art systems of the different conferences. There are
multiple possible reasons to this. Our model is optimized for achieving the best Macro
F1 score possible in Chapter 7. The SemEval uses FPN1 as official metric. Had our
system been optimized for FPN1 , better scores for this metric would probably have been
achieved. Also, the SemEval contenders might have trained their systems on other or
more data than we have. As tweets have been deleted over time, we could not download
as many tweets as were available at the time the respective conferences were held.

77

10. Conclusion and Future Work
This chapter comprises a conclusion of the thesis and description of future work to
further improve the proposed model or the overall Twitter Sentiment Analysis system.

There are three main contributions of this thesis. A comparison of various distant
supervision methods was performed. The Ternary Sentiment Embedding Model was de-
veloped to improve sentiment embeddings for the ternary classification task. To perform
the above, several tools and programs were developed, many of these open-source.

10.1. Distant Supervision
We performed a comparison of the speed and prediction quality of various simple and
sophisticated lexicon-based classifiers. The method that achieved the best Macro F1
score was the Fredriksen–Jahren Lexicon Classifier (FJLC) by Fredriksen and Jahren
(2016). The classifier obtained the best F1 scores for both the negative and neutral
classes. The Emoticon classifier was the fastest of the classifiers. It performed well for
creating small datasets of positive and negative tweets with high precision. However,
the classifier came short when used to classify tweets for all three classes. An attempt
at improving the Emoticon classifiers was made by creating the Emoticon Extended
classifier. The classifier achieved slightly better Macro F1 score, but was significantly
worse than the Emoticon classifier for retrieving negative tweets, meaning it is less
suitable for creating binary distant-supervised datasets. TextBlob obtained the best
F1 score for the positive class, but performed substantially worse for negative tweets
compared to the other classifiers. The Combo methods performed better than each of
the constituent classifiers. Since the method calculates scores for three methods, it is
the slowest of all the tested classifiers.

10.2. Ternary Sentiment Embedding Model
In this thesis we have proposed the Ternary Sentiment Embedding Model, a model
for training sentiment embeddings, specialized for ternary sentiment classification. The
model is based on the Hybrid Ranking Model of Tang et al. (2016), but considers the
three classes positive, negative and neutral instead of just positive and negative. The
experiments of Chapter 8 show that the Ternary Sentiment Embedding Model generally
performs better than the Hybrid Ranking Model, except when the embeddings have
been trained using the Emoticon or the VADER distant supervision methods. Our
results show that the quality of the distant-supervised dataset has a great impact on

79

10. Conclusion and Future Work

the quality of the produced sentiment embeddings, and transitively the entire Twitter
Sentiment Analysis system.

10.3. Future Work
Various work has been done to extend or improve the sentiment embeddings of Tang
et al. (2014) in recent years. This work show promising areas to investigate for further
improving upon the Ternary Sentiment Embedding Model, but were out of scope for
this thesis. In this section this work is mentioned, as well as areas of improvement that
were discovered during our experiments.

10.3.1. Distant Supervision

While more sophisticated classifiers provide better prediction quality than the simple
Emoticon classifier, the Emoticon approach is unquestionably the fastest. The precision
of the Emoticon method is very good for positive and negative, but fails for neutral.
A thorough analysis of neutral tweets should be done in order to find features that are
close to unique for them, which could act as the neutral counterpart to the emoticons. If
such high-precision features are found, one could create a distant supervision model that
could create high-quality data from a set of pre-collected tweets at a very high speed.
The method would neglect tweets with none of the features, which creates a need for a
large set of tweets in order to exploit the speed of the method to the fullest.
Various ensembles of classifiers could be investigated for distant supervision. The

Combination methods (Combo A and Combo B) average the scores of their component
methods (AFINN, VADER and TextBlob). Other methods could be used, as well as
combination schemes, as discussed in Section 9.1.1 (p. 71).

10.3.2. Exhaustive Optimization

In the hyperparameter search of Section 7.3 (p. 52), the dataset annotated by the FJLC
method was used. Preferably, an individual hyperparameter search should be done with
each of the distant-supervised datasets, as it is not clear that the best values found with
the FJLC set will generalize to the other sets.
The manual hyperparameter search done might have found local maxima. A more

thorough grid search should be done in order to find the globally best hyperparameter
values. The coarse search does not consider how hyperparameters affect each other. For
instance, the best value for one hyperparameter might not be the best performing when
changing to another hyperparameter. This would not be a problem for a full grid search.
Hyperparameters such as the embedding length and hidden layer size seem to improve

the scores as they get larger. A more thorough search should investigate even larger
values of these to find if there is any increase in performance to gain from it.

80

10.3. Future Work

10.3.3. Investigate Impact of Using More Data

Due to strict filtering (Section 6.1, p. 40), a low percentage of the collected tweets were
included in the distant-supervised datasets. The datasets used in this thesis comprised
three million tweets, one million of each sentiment. Due to time constraints we did not
get the chance to train with larger datasets and compare how the data size impacts the
quality of the embeddings. We expect larger datasets to further improve the quality of
the embeddings.

10.3.4. Word-Sense Disambiguation

Many words have different meanings based on the context they are in. The different
meanings might have different sentiments associated with them. An example from Ren
et al. (2016) illustrates the issue:

• Monday before I leave Singapore, I am going to post something that might be
offensive. (NEGATIVE)

• #Patriots Tom Brady wins AFC offensive player of the week for 22nd time....
http://t.co/WIFHyQ0I - #NFL (POSITIVE)

In the above example, the word “offensive” has two different meanings, and different
sentiments. Ren et al. proposed a model for training topic-enriched multi-prototype
word embeddings (TMWE) that addresses the issue of polysemy. The new model of Ren
et al. significantly improved upon the results of SemEval 2013 on the binary classification
task. Extending the Ternary Sentiment Embedding Model with the ability to discrimate
sentiment of polysemous words in three classes, would be expected to further improve
its performance.

10.3.5. Word-Specific Sentiment

Both the Hybrid Ranking Model and the Ternary Sentiment Embedding Model base the
training on the assumption that all words in a tweet have the same sentiment. This
ignores the prior sentiment polarity of the word on its own. Xiong (2016) addressed
this problem by exploiting both lexicon resource and distant supervised information in
his proposed multi-level sentiment-enriched word embedding learning method, which
outperformed state-of-the-art methods.
Xiong used the sentiment lexicon of Hu and Liu (2004), which is based on customer

reviews. Further work could look at using state-of-the-art sentiment lexica for Twitter
Sentiment Analysis. Word-sense aware lexica could be used in order to combine the
works of Ren et al. (2016) and Xiong (2016).

81

Bibliography
Abadi, Martín; Agarwal, Ashish; Barham, Paul; Brevdo, Eugene; Chen, Zhifeng; Citro,
Craig; Corrado, Greg S.; Davis, Andy; Dean, Jeffrey; Devin, Matthieu; Ghemawat,
Sanjay; Goodfellow, Ian; Harp, Andrew; Irving, Geoffrey; Isard, Michael; Jia, Yangqing;
Jozefowicz, Rafal; Kaiser, Lukasz; Kudlur, Manjunath; Levenberg, Josh; Mané, Dan;
Monga, Rajat; Moore, Sherry; Murray, Derek; Olah, Chris; Schuster, Mike; Shlens,
Jonathon; Steiner, Benoit; Sutskever, Ilya; Talwar, Kunal; Tucker, Paul; Vanhoucke,
Vincent; Vasudevan, Vijay; Viégas, Fernanda; Vinyals, Oriol; Warden, Pete; Watten-
berg, Martin; Wicke, Martin; Yu, Yuan, and Zheng, Xiaoqiang (2015). TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. Software available from ten-
sorflow.org.

Agarwal, Apoorv; Xie, Boyi; Vovsha, Ilia; Rambow, Owen, and Passonneau, Rebecca
(2011). “Sentiment Analysis of Twitter Data.” In: Proceedings of the Workshop on
Language in Social Media (LSM 2011). Portland, OR, USA: Association for Compu-
tational Linguistics, pp. 30–38.

Alain, Guillaume; Almahairi, Amjad; Angermueller, Christof; Bahdanau, Dzmitry; Bal-
las, Nicolas; Bastien, Frédéric; Bayer, Justin; Belikov, Anatoly; Belopolsky, Alexander;
Bengio, Yoshua; Bergeron, Arnaud; Bergstra, James; Bisson, Valentin; Bleecher Sny-
der, Josh; Bouchard, Nicolas; Boulanger-Lewandowski, Nicolas; Bouthillier, Xavier;
Brébisson, Alexandre de; Breuleux, Olivier; Carrier, Pierre-Luc; Cho, Kyunghyun;
Chorowski, Jan; Christiano, Paul; Cooijmans, Tim; Côté, Marc-Alexandre; Côté, Myr-
iam; Courville, Aaron; Dauphin, Yann N.; Delalleau, Olivier; Demouth, Julien; Des-
jardins, Guillaume; Dieleman, Sander; Dinh, Laurent; Ducoffe, Mélanie; Dumoulin,
Vincent; Ebrahimi Kahou, Samira; Erhan, Dumitru; Fan, Ziye; Firat, Orhan; Ger-
main, Mathieu; Glorot, Xavier; Goodfellow, Ian; Graham, Matt; Gulcehre, Caglar;
Hamel, Philippe; Harlouchet, Iban; Heng, Jean-Philippe; Hidasi, Balázs; Honari, Sina;
Jain, Arjun; Jean, Sébastien; Jia, Kai; Korobov, Mikhail; Kulkarni, Vivek; Lamb, Alex;
Lamblin, Pascal; Larsen, Eric; Laurent, César; Lee, Sean; Lefrancois, Simon; Lemieux,
Simon; Léonard, Nicholas; Lin, Zhouhan; Livezey, Jesse A.; Lorenz, Cory; Lowin,
Jeremiah; Ma, Qianli; Manzagol, Pierre-Antoine; Mastropietro, Olivier; McGibbon,
Robert T.; Memisevic, Roland; Merriënboer, Bart van; Michalski, Vincent; Mirza,
Mehdi; Orlandi, Alberto; Pal, Christopher; Pascanu, Razvan; Pezeshki, Mohammad;
Raffel, Colin; Renshaw, Daniel; Al-Rfou, Rami; Rocklin, Matthew; Romero, Adri-
ana; Roth, Markus; Sadowski, Peter; Salvatier, John; Savard, François; Schlüter, Jan;
Schulman, John; Schwartz, Gabriel; Serban, Iulian Vlad; Serdyuk, Dmitriy; Shaba-
nian, Samira; Simon, Étienne; Spieckermann, Sigurd; Subramanyam, S. Ramana; Syg-

83

Bibliography

nowski, Jakub; Tanguay, Jérémie; Tulder, Gijs van; Turian, Joseph; Urban, Sebastian;
Vincent, Pascal; Visin, Francesco; Vries, Harm de; Warde-Farley, David; Webb, Dustin
J.; Willson, Matthew; Xu, Kelvin; Xue, Lijun; Yao, Li; Zhang, Saizheng, and Zhang,
Ying (2016). “Theano: A Python framework for fast computation of mathematical
expressions.” In: arXiv e-prints abs/1605.02688.

Balikas, Georgios and Amini, Massih-Reza (2016). “TwiSE at SemEval-2016 Task 4:
Twitter Sentiment Classification.” In: Proceedings of the 10th International Workshop
on Semantic Evaluation (SemEval-2016). San Diego, CA, USA: Association for Com-
putational Linguistics, pp. 85–91.

Bengio, Yoshua; Ducharme, Réjean; Vincent, Pascal, and Jauvin, Christian (2003). “A
Neural Probabilistic Language Model.” In: Journal of Machine Learning Research
3.Feb, pp. 1137–1155.

Bérard, Alexandre; Servan, Christophe; Pietquin, Olivier, and Besacier, Laurent (2016).
“MultiVec: a Multilingual and Multilevel Representation Learning Toolkit for NLP.”
In: Proceedings of the Tenth International Conference on Language Resources and
Evaluation (LREC 2016). Portorož, Slovenia: European Language Resources Associ-
ation, pp. 4188–4192.

Boag, William; Potash, Peter, and Rumshisky, Anna (2015). “TwitterHawk: A Feature
Bucket Based Approach to Sentiment Analysis.” In: Proceedings of the 9th Interna-
tional Workshop on Semantic Evaluation (SemEval-2015). Denver, CO, USA: Associ-
ation for Computational Linguistics, pp. 640–646.

Bonab, Hamed R. and Can, Fazli (2016). “A Theoretical Framework on the Ideal Num-
ber of Classifiers for Online Ensembles in Data Streams.” In: Proceedings of the 25th
ACM International on Conference on Information and Knowledge Management. Indi-
anapolis, IN, USA: ACM, pp. 2053–2056.

Byrkjeland, Mats and de Lichtenberg, Frederik Gørvell (2016). “Exploring Word Embed-
dings in Twitter Sentiment Analysis.” Unpublished Specialization Project, Department
of Computer and Information Science, Norwegian University of Science and Technol-
ogy (NTNU).

Collobert, Ronan and Weston, Jason (2008). “A Unified Architecture for Natural Lan-
guage Processing: Deep Neural Networks with Multitask Learning.” In: Proceedings
of the 25th International Conference on Machine Learning. Helsinki, Finland: ACM,
pp. 160–167.

Collobert, Ronan; Weston, Jason; Bottou, Léon; Karlen, Michael; Kavukcuoglu, Koray,
and Kuksa, Pavel (2011). “Natural Language Processing (Almost) from Scratch.” In:
Journal of Machine Learning Research 12.Aug, pp. 2493–2537.

84

Bibliography

Cortes, Corinna and Vapnik, Vladimir (1995). “Support-Vector Networks.” In: Machine
Learning 20.3, pp. 273–297.

Deerwester, Scott; Dumais, Susan T.; Furnas, George W.; Landauer, and Harshman,
Richard (1990). “Indexing by Latent Semantic Analysis.” In: Journal of the American
Society for Information Science 41.6, pp. 391–407.

Deriu, Jan; Gonzenbach, Maurice; Uzdilli, Fatih; Lucchi, Aurelien; De Luca, Valeria, and
Jaggi, Martin (2016). “SwissCheese at SemEval-2016 Task 4: Sentiment Classification
Using an Ensemble of Convolutional Neural Networks with Distant Supervision.” In:
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-
2016). San Diego, CA, USA: Association for Computational Linguistics, pp. 1124–
1128.

Fielding, Roy Thomas (2000). “Architectural Styles and the Design of Network-based
Software Architectures.” PhD thesis. University of California, Irvine.

Firth, J. R. (1957). “A Synopsis of Linguistic Theory 1930-55.” In: Studies in Linguistic
Analysis Special Volume of the Philological Society.

Fredriksen, Valerij and Jahren, Brage Ekroll (2016). “Twitter Sentiment Analysis: Ex-
ploring Automatic Creation of Sentiment Lexica.” Master’s thesis. Norwegian Univer-
sity of Science and Technology (NTNU).

Giorgis, Stavros; Rousas, Apostolos; Pavlopoulos, John; Malakasiotis, Prodromos, and
Androutsopoulos, Ion (2016). “aueb.twitter.sentiment at SemEval-2016 Task 4: A
Weighted Ensemble of SVMs for Twitter Sentiment Analysis.” In: Proceedings of the
10th International Workshop on Semantic Evaluation (SemEval-2016). San Diego,
CA, USA: Association for Computational Linguistics, pp. 96–99.

Go, Alec; Bhayani, Richa, and Huang, Lei (2009). “Twitter Sentiment Classification
using Distant Supervision.” In: CS224N Project Report, Stanford, pp. 1–12.

Gomez-Adorno, Helena and Sidorov, Grigori (2016). “CICBUAPnlp at SemEval-2016
Task 4-A: Discovering Twitter Polarity using Enhanced Embeddings.” In: Proceed-
ings of the 10th International Workshop on Semantic Evaluation (SemEval-2016).
San Diego, CA, USA: Association for Computational Linguistics, pp. 145–148.

Hinton, Geoffrey E. (1986). “Learning Distributed Representations of Concepts.” In:
Proceedings of the Eighth Annual Conference of the Cognitive Science Society. Vol. 1.
Amherst, MA, USA: Lawrence Erlbaum Associates, pp. 1–12.

Hu, Minqing and Liu, Bing (2004). “Mining and Summarizing Customer Reviews.” In:
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. Seattle, WA, USA: ACM, pp. 168–177.

85

Bibliography

Hutto, C.J. and Gilbert, Eric (2014). “VADER: A Parsimonious Rule-based Model for
Sentiment Analysis of Social Media Text.” In: Proceedings of the Eighth International
Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, USA: The
AAAI Press, pp. 216–225.

Jiang, Long; Yu, Mo; Zhou, Ming; Liu, Xiaohua, and Zhao, Tiejun (2011). “Target-
dependent Twitter Sentiment Classification.” In: Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics. Portland, OR, USA: Association
for Computational Linguistics, pp. 151–160.

Levy, Omer; Goldberg, Yoav, and Dagan, Ido (2015). “Improving Distributional Similar-
ity with Lessons Learned from Word Embeddings.” In: Transactions of the Association
for Computational Linguistics 3, pp. 211–225.

Lui, Marco and Baldwin, Timothy (2012). “langid.py: An Off-the-shelf Language Iden-
tification Tool.” In: Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics. Jeju, Republic of Korea: Association for Computational
Linguistics, pp. 25–30.

Mikolov, Tomas; Chen, Kai; Corrado, Greg, and Dean, Jeffrey (2013a). “Efficient Esti-
mation of Word Representations in Vector Space.” In: arXiv preprint arXiv:1301.3781.

Mikolov, Tomas; Sutskever, Ilya; Chen, Kai; Corrado, Greg S., and Dean, Jeff (2013b).
“Distributed Representations of Words and Phrases and their Compositionality.” In:
Advances in Neural Information Processing Systems. Vol. 26. Lake Tahoe, NV, USA,
pp. 3111–3119.

Mikolov, Tomas; Yih, Wen-tau, and Zweig, Geoffrey (2013c). “Linguistic Regularities in
Continuous Space Word Representations.” In: Proceedings of the 2013 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. Vol. 13. Atlanta, GA, USA, pp. 746–751.

Nakov, Preslav; Ritter, Alan; Rosenthal, Sara; Sebastiani, Fabrizio, and Stoyanov, Veselin
(2016). “SemEval-2016 Task 4: Sentiment Analysis in Twitter.” In: Proceedings of the
10th International Workshop on Semantic Evaluation (SemEval-2016). San Diego,
CA, USA: Association for Computational Linguistics, pp. 1–18.

Nakov, Preslav; Rosenthal, Sara; Kozareva, Zornitsa; Stoyanov, Veselin; Ritter, Alan,
and Wilson, Theresa (2013). “SemEval-2013 Task 2: Sentiment Analysis in Twitter.”
In: Proceedings of the 7th International Workshop on Semantic Evaluation (SemEval
2013). Atlanta, GA, USA: Association for Computational Linguistics, pp. 312–320.

Nielsen, Finn Årup (2011). “A New ANEW: Evaluation of a Word List for Sentiment
Analysis in Microblogs.” In: Proceedings of the ESWC2011 Workshop on ’Making Sense
of Microposts’: Big things come in small packages. Vol. 718. Heraklion, Crete, pp. 93–
98.

86

Bibliography

Nigam, Kamal; Lafferty, John, and McCallum, Andrew (1999). “Using Maximum En-
tropy for Text Classification.” In: The International Joint Conference on Artificial
Intelligence-99 Workshop on Machine Learning for Information Filtering. Vol. 1. Stock-
holm, Sweden, pp. 61–67.

Owoputi, Olutobi; O’Connor, Brendan; Dyer, Chris; Gimpel, Kevin; Schneider, Nathan,
and Smith, Noah A. (2013). “Improved Part-of-Speech Tagging for Online Conversa-
tional Text with Word Clusters.” In: Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies. Vol. 13. Atlanta, GA, USA, pp. 138–147.

Pedregosa, Fabian; Varoquaux, Gaël; Gramfort, Alexandre; Michel, Vincent; Thirion,
Bertrand; Grisel, Olivier; Blondel, Mathieu; Prettenhofer, Peter; Weiss, Ron; Dubourg,
Vincent, et al. (2011). “Scikit-learn: Machine learning in Python.” In: Journal of Ma-
chine Learning Research 12.Oct, pp. 2825–2830.

Pennington, Jeffrey; Socher, Richard, and Manning, Christopher D. (2014). “GloVe:
Global Vectors for Word Representation.” In: Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing. Doha, Qatar: Association for Com-
putational Linguistics, pp. 1532–1543.

Ren, Yafeng; Wang, Ruimin, and Ji, Donghong (2016). “A Topic-enhanced Word Em-
bedding for Twitter Sentiment Classification.” In: Information Sciences 369, pp. 188–
198.

Rosenthal, Sara; Farra, Noura, and Nakov, Preslav (2017). “SemEval-2017 Task 4: Sen-
timent Analysis in Twitter.” In: Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017). Vancouver, Canada: Association for Computa-
tional Linguistics, pp. 493–509.

Rouvier, Mickael and Favre, Benoit (2016). “SENSEI-LIF at SemEval-2016 Task 4: Po-
larity embedding fusion for robust sentiment analysis.” In: Proceedings of the 10th In-
ternational Workshop on Semantic Evaluation (SemEval-2016). San Diego, CA, USA:
Association for Computational Linguistics, pp. 202–208.

Ræder, Johan Georg Cyrus Mazaher (2016). “Automatic Sarcasm Detection in Twitter
Messages.” Master’s thesis. Norwegian University of Science and Technology (NTNU).

Steinskog, Asbjørn Ottesen and Therkelsen, Jonas Foyn (2016). “Characterizing Twit-
ter Data using Sentiment Analysis and Topic Modeling.” Master’s thesis. Norwegian
University of Science and Technology (NTNU).

Tang, Duyu; Wei, Furu; Qin, Bing; Yang, Nan; Liu, Ting, and Zhou, Ming (2016). “Sen-
timent Embeddings with Applications to Sentiment Analysis.” In: IEEE Transactions
on Knowledge and Data Engineering 28.2, pp. 496–509.

87

Bibliography

Tang, Duyu; Wei, Furu; Yang, Nan; Zhou, Ming; Liu, Ting, and Qin, Bing (2014).
“Learning Sentiment-Specific Word Embedding for Twitter Sentiment Classification.”
In: Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Baltimore, MD, USA: Association for Compu-
tational Linguistics, pp. 1555–1565.

Xiong, Shufeng (2016). “Improving Twitter Sentiment Classification via Multi-Level
Sentiment-Enriched Word Embeddings.” In: CoRR abs/1611.00126.

Zhang, Edmond and Mayo, Michael (2010). “Improving Bag-of-Words Model with Spa-
tial Information.” In: Proceedings of the 25th Conference of Image and Vision Com-
puting. Queenstown, New Zealand: ACM, pp. 1–8.

Zhou, Yunxiao; Zhang, Zhihua, and Lan, Man (2016). “ECNU at SemEval-2016 Task
4: An Empirical Investigation of Traditional NLP Features and Word Embedding
Features for Sentence-level and Topic-level Sentiment Analysis in Twitter.” In: Pro-
ceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016).
San Diego, CA, USA: Association for Computational Linguistics, pp. 256–261.

88

A. Hyperparameter Search
This appendix contains detailed results from the hyperparameter search presented in
Section 7.3 (p. 52).

The following plots and tables show test results from all the 20 epochs that the system
was trained for. The figures show that the scores vary over epochs. The overall best
results are marked in bold type.

89

A. Hyperparameter Search

A.1. Alpha

Figure A.1.: Macro F1 scores for the Ternary Sentiment Embedding Model with different
values for α.

α
0.0 0.1 0.2 0.4 0.5 0.6 0.8 1.0

Ep
oc
h

1 0.3775 0.6177 0.6195 0.5919 0.6113 0.5961 0.6132 0.5904
2 0.4278 0.6201 0.6206 0.6088 0.6231 0.6223 0.5945 0.6001
3 0.4538 0.6219 0.6193 0.6169 0.6193 0.6073 0.5976 0.5911
4 0.4978 0.616 0.6403 0.6157 0.6101 0.6141 0.6082 0.6205
5 0.5009 0.6219 0.6277 0.6143 0.6076 0.5988 0.6070 0.5860
6 0.5099 0.6232 0.6286 0.6085 0.6014 0.6014 0.6246 0.5978
7 0.5209 0.6345 0.6299 0.6267 0.6117 0.6189 0.6031 0.6184
8 0.5183 0.6222 0.6339 0.6254 0.6169 0.6113 0.6194 0.5919
9 0.5278 0.6223 0.6451 0.6070 0.6183 0.6152 0.6248 0.6103
10 0.5321 0.6271 0.6353 0.621 0.6185 0.6050 0.6143 0.6044
11 0.5458 0.6300 0.6265 0.6063 0.6146 0.608 0.6012 0.6056
12 0.5236 0.6356 0.6399 0.5973 0.6267 0.6131 0.5945 0.6076
13 0.5445 0.6213 0.6345 0.6102 0.6137 0.602 0.6148 0.6085
14 0.5433 0.6173 0.6175 0.6183 0.6260 0.6142 0.6077 0.6086
15 0.5406 0.6391 0.6356 0.6072 0.6261 0.6072 0.6196 0.5991
16 0.5369 0.6283 0.6146 0.6113 0.6181 0.6062 0.6170 0.5969
17 0.5356 0.6365 0.6303 0.6239 0.6168 0.6078 0.6102 0.6099
18 0.5497 0.6332 0.6398 0.6111 0.6267 0.6124 0.5972 0.6094
19 0.5373 0.6277 0.6305 0.6002 0.6072 0.6100 0.6164 0.6114
20 0.5503 0.6304 0.6363 0.6153 0.6182 0.6070 0.6076 0.6150

Table A.1.: Macro F1 scores for the Ternary Sentiment Embedding Model with different
values for α.

90

A.2. Context Window Size

A.2. Context Window Size

Figure A.2.: Macro F1 scores for the Ternary Sentiment Embedding Model with different
context window sizes.

Context Window Size
1 2 3 5 7 9

Ep
oc
h

1 0.6009 0.6260 0.6167 0.6041 0.6137 0.6028
2 0.6141 0.6084 0.6354 0.6180 0.6076 0.5953
3 0.5922 0.6214 0.6237 0.6147 0.5987 0.6035
4 0.5983 0.6114 0.6262 0.6177 0.6098 0.6092
5 0.5928 0.6123 0.6285 0.622 0.6135 0.6056
6 0.6095 0.6209 0.6347 0.6211 0.6096 0.6064
7 0.5988 0.6145 0.6250 0.6209 0.6051 0.6156
8 0.6126 0.6218 0.6463 0.6156 0.6195 0.6084
9 0.6019 0.6114 0.6353 0.6299 0.6006 0.6143
10 0.6045 0.6097 0.6366 0.6306 0.6152 0.6273
11 0.6216 0.6310 0.6217 0.6246 0.6036 0.6002
12 0.6297 0.6121 0.6320 0.5982 0.6063 0.6197
13 0.6123 0.6065 0.6306 0.6083 0.6044 0.6053
14 0.6277 0.6178 0.6277 0.6188 0.6159 0.6171
15 0.6189 0.6155 0.6224 0.6279 0.6126 0.6141
16 0.6198 0.6145 0.6400 0.6198 0.6305 0.6158
17 0.6025 0.6231 0.6427 0.6092 0.6050 0.6144
18 0.6065 0.6125 0.6294 0.6216 0.6318 0.6155
19 0.6082 0.6245 0.6328 0.6304 0.6162 0.6229
20 0.6054 0.6109 0.6418 0.6106 0.6073 0.6164

Table A.2.: Macro F1 scores for the Ternary Sentiment Embedding Model with different
context window sizes.

91

A. Hyperparameter Search

A.3. Embedding Length

Figure A.3.: Macro F1 scores for the Ternary Sentiment Embedding Model with different
embedding lengths.

Embedding Length
50 75 100 125 150

Ep
oc
h

1 0.6129 0.6041 0.6193 0.6175 0.6175
2 0.6005 0.6190 0.6270 0.6150 0.6252
3 0.6146 0.6178 0.6151 0.6154 0.6111
4 0.6031 0.6050 0.6221 0.6363 0.6268
5 0.6119 0.6237 0.6359 0.6274 0.5975
6 0.6169 0.6243 0.6263 0.6322 0.6294
7 0.6158 0.6026 0.6210 0.6404 0.6049
8 0.6292 0.6144 0.6131 0.6243 0.6006
9 0.6133 0.6048 0.6382 0.6404 0.6127
10 0.6150 0.6154 0.6225 0.6295 0.6400
11 0.6214 0.6260 0.6105 0.6261 0.6203
12 0.6285 0.6203 0.6204 0.6301 0.6143
13 0.6203 0.6350 0.6275 0.6099 0.6214
14 0.6272 0.6129 0.6247 0.6133 0.6305
15 0.6152 0.6221 0.6253 0.6238 0.6169
16 0.6117 0.6222 0.6289 0.6265 0.6151
17 0.6149 0.6170 0.6255 0.6181 0.6151
18 0.6040 0.6237 0.6183 0.6166 0.6351
19 0.6049 0.6208 0.6095 0.6284 0.6273
20 0.6117 0.6223 0.6124 0.6277 0.6377

Table A.3.: Macro F1 scores for the Ternary Sentiment Embedding Model with different
embedding lengths.

92

A.4. Hidden Layer Size

A.4. Hidden Layer Size

Figure A.4.: Macro F1 scores for the Ternary Sentiment Embedding Model with different
hidden layer sizes.

Hidden Layer Size
10 20 30 50 100

Ep
oc
h

1 0.6013 0.5919 0.6124 0.6043 0.6033
2 0.6191 0.6153 0.6163 0.6007 0.6213
3 0.6138 0.6199 0.6231 0.6138 0.6145
4 0.6178 0.6167 0.6086 0.6094 0.6158
5 0.6023 0.6212 0.6069 0.6051 0.6240
6 0.6124 0.6217 0.6088 0.6175 0.6150
7 0.5946 0.6144 0.6280 0.6288 0.6187
8 0.6010 0.6050 0.6089 0.6250 0.6124
9 0.6120 0.6261 0.6068 0.6310 0.6110
10 0.6299 0.6101 0.6219 0.6257 0.6270
11 0.6150 0.6240 0.6104 0.6248 0.6241
12 0.6201 0.6171 0.6095 0.6166 0.6106
13 0.6095 0.6052 0.6243 0.6183 0.6340
14 0.6247 0.6172 0.6228 0.6212 0.6158
15 0.6237 0.6154 0.6213 0.6173 0.6075
16 0.6116 0.6232 0.6172 0.6220 0.6132
17 0.6084 0.6053 0.6084 0.6065 0.6133
18 0.6197 0.6223 0.6217 0.6315 0.6300
19 0.6258 0.6128 0.6152 0.6216 0.6197
20 0.6202 0.6181 0.6090 0.6126 0.6262

Table A.4.: Macro F1 scores for the Ternary Sentiment Embedding Model with different
hidden layer sizes.

93

A. Hyperparameter Search

A.5. Learning Rate

Figure A.5.: Macro F1 scores for the Ternary Sentiment Embedding Model with different
learning rates.

94

A.5. Learning Rate

Le
ar
ni
ng

R
at
e

0.
00

1
0.
01

0.
05

0.
2

0.
3

0.
5

0.
7

0.
9

1.
1

Epoch

1
0.
42

85
0.
59

58
0.
60

16
0.
62

02
0.
59

79
0.
60

26
0.
60

17
0.
59

48
0.
59

33
2

0.
43

14
0.
60

42
0.
60

86
0.
59

48
0.
61

29
0.
60

63
0.
60

09
0.
60

60
0.
57

88
3

0.
42

83
0.
62

00
0.
62

11
0.
60

03
0.
62

32
0.
61

82
0.
60

35
0.
60

28
0.
58

28
4

0.
42

98
0.
61

79
0.
61

78
0.
60

15
0.
60

19
0.
60

55
0.
59

46
0.
58

65
0.
58

78
5

0.
43

52
0.
62

25
0.
62

16
0.
59

93
0.
59

97
0.
59

45
0.
61

27
0.
59

99
0.
58

05
6

0.
40

79
0.
61

68
0.
62

55
0.
59

29
0.
59

56
0.
59

95
0.
60

35
0.
60

11
0.
58

51
7

0.
51

38
0.
61

67
0.
62

18
0.
59

56
0.
61

35
0.
59

89
0.
60

48
0.
58

77
0.
56

31
8

0.
57

24
0.
62

05
0.
60

83
0.
59

49
0.
61

65
0.
60

91
0.
59

61
0.
59

34
0.
58

72
9

0.
60

95
0.
60

91
0.
62

55
0.
58

61
0.
61

81
0.
60

12
0.
59

54
0.
58

82
0.
57

29
10

0.
60

99
0.
61

63
0.
62

54
0.
59

38
0.
58

64
0.
60

15
0.
58

45
0.
60

65
0.
57

01
11

0.
60

74
0.
62

03
0.
62

52
0.
59

94
0.
60

27
0.
60

35
0.
60

95
0.
59

30
0.
57

97
12

0.
58

96
0.
62

26
0.
62

68
0.
59

71
0.
59

35
0.
59

68
0.
60

57
0.
59

35
0.
57

94
13

0.
59

84
0.
63

38
0.
62

76
0.
62

54
0.
60

22
0.
59

67
0.
60

20
0.
59

15
0.
58

58
14

0.
60

64
0.
62

52
0.
63

25
0.
61

14
0.
59

84
0.
60

10
0.
60

00
0.
58

93
0.
57

83
15

0.
60

13
0.
62

88
0.
61

92
0.
60

78
0.
61

12
0.
60

44
0.
59

50
0.
58

76
0.
58

44
16

0.
60

62
0.
61

80
0.
61

22
0.
60

86
0.
59

44
0.
60

94
0.
61

96
0.
59

28
0.
59

10
17

0.
60

85
0.
62

55
0.
61

23
0.
61

45
0.
58

61
0.
60

78
0.
61

84
0.
59

08
0.
58

51
18

0.
60

62
0.
61

96
0.
60

81
0.
60

11
0.
60

62
0.
61

50
0.
60

04
0.
58

36
0.
58

20
19

0.
60

88
0.
62

36
0.
62

64
0.
60

72
0.
60

47
0.
61

72
0.
61

11
0.
59

62
0.
58

48
20

0.
61

34
0.
62

05
0.
62

40
0.
61

47
0.
60

29
0.
60

73
0.
61

02
0.
59

02
0.
58

02

Table A.5.: Macro F1 scores for the Ternary Sentiment Embedding Model with different
learning rates.

95

A. Hyperparameter Search

A.6. Margin

Figure A.6.: Macro F1 scores for the Ternary Sentiment Embedding Model with different
margins.

96

A.6. Margin

M
ar
gi
n

0.
5

0.
7

0.
9

1.
0

1.
1

1.
3

1.
5

1.
7

1.
9

2.
0

3.
0

4.
0

5.
0

10
.0

Epoch

1
0.
59

78
0.
61

49
0.
59

95
0.
59

19
0.
59

89
0.
59

46
0.
60

92
0.
62

81
0.
61

70
0.
60

83
0.
60

53
0.
61

00
0.
59

91
0.
59

57
2

0.
59

66
0.
61

10
0.
59

54
0.
61

78
0.
61

20
0.
63

00
0.
60

94
0.
63

38
0.
63

33
0.
62

70
0.
62

37
0.
61

73
0.
60

41
0.
60

98
3

0.
60

15
0.
60

84
0.
60

71
0.
62

07
0.
62

52
0.
62

52
0.
61

50
0.
60

64
0.
61

38
0.
60

77
0.
61

80
0.
62

28
0.
60

89
0.
60

49
4

0.
60

88
0.
62

33
0.
61

60
0.
61

67
0.
60

39
0.
61

92
0.
63

19
0.
60

80
0.
61

71
0.
63

59
0.
61

79
0.
61

88
0.
60

49
0.
61

52
5

0.
60

75
0.
60

86
0.
60

92
0.
62

06
0.
62

05
0.
61

94
0.
62

12
0.
60

82
0.
62

50
0.
61

68
0.
60

22
0.
61

91
0.
60

91
0.
61

78
6

0.
61

83
0.
61

90
0.
61

76
0.
62

24
0.
61

62
0.
61

61
0.
62

16
0.
61

29
0.
62

54
0.
61

67
0.
60

85
0.
60

90
0.
61

90
0.
60

03
7

0.
62

37
0.
60

58
0.
61

58
0.
61

36
0.
62

23
0.
60

82
0.
62

31
0.
61

26
0.
60

31
0.
62

55
0.
60

41
0.
61

59
0.
59

43
0.
60

43
8

0.
61

88
0.
59

67
0.
61

22
0.
60

50
0.
62

02
0.
61

80
0.
60

79
0.
61

41
0.
60

55
0.
62

88
0.
60

02
0.
62

3
0.
61

27
0.
58

69
9

0.
61

32
0.
61

64
0.
61

05
0.
62

53
0.
61

83
0.
61

62
0.
61

81
0.
61

04
0.
62

07
0.
62

53
0.
61

72
0.
59

47
0.
62

04
0.
61

93
10

0.
60

25
0.
61

77
0.
60

41
0.
61

05
0.
62

70
0.
61

28
0.
61

71
0.
61

60
0.
61

58
0.
61

75
0.
62

79
0.
60

87
0.
60

56
0.
62

08
11

0.
59

90
0.
60

35
0.
60

40
0.
62

29
0.
60

57
0.
60

18
0.
61

21
0.
59

73
0.
61

71
0.
63

57
0.
61

59
0.
60

73
0.
61

04
0.
61

03
12

0.
60

19
0.
62

39
0.
59

41
0.
61

63
0.
61

54
0.
62

37
0.
62

51
0.
62

73
0.
61

75
0.
61

46
0.
61

37
0.
61

88
0.
61

53
0.
61

28
13

0.
60

88
0.
60

45
0.
59

03
0.
60

59
0.
61

09
0.
61

69
0.
62

03
0.
61

14
0.
61

32
0.
61

96
0.
61

58
0.
61

73
0.
61

14
0.
60

45
14

0.
61

98
0.
60

88
0.
61

52
0.
61

72
0.
60

99
0.
61

91
0.
60

89
0.
62

38
0.
62

57
0.
61

34
0.
61

98
0.
61

05
0.
61

13
0.
61

26
15

0.
61

6
0.
62

20
0.
61

06
0.
61

65
0.
62

98
0.
61

88
0.
60

48
0.
59

91
0.
62

11
0.
61

94
0.
61

93
0.
62

82
0.
61

56
0.
61

60
16

0.
61

91
0.
61

76
0.
61

34
0.
62

32
0.
62

23
0.
61

14
0.
60

10
0.
60

52
0.
61

92
0.
61

85
0.
62

22
0.
61

51
0.
62

92
0.
61

34
17

0.
61

55
0.
61

14
0.
60

91
0.
60

53
0.
62

36
0.
60

06
0.
60

46
0.
61

49
0.
60

58
0.
62

41
0.
60

43
0.
60

70
0.
62

84
0.
61

44
18

0.
61

27
0.
61

37
0.
61

17
0.
62

10
0.
61

30
0.
61

12
0.
62

42
0.
61

40
0.
61

23
0.
61

33
0.
62

49
0.
63

23
0.
61

93
0.
61

10
19

0.
61

41
0.
61

65
0.
61

93
0.
61

53
0.
60

00
0.
60

69
0.
63

25
0.
60

94
0.
62

03
0.
61

90
0.
62

06
0.
61

77
0.
63

29
0.
59

88
20

0.
62

11
0.
61

08
0.
61

84
0.
61

81
0.
61

54
0.
61

75
0.
61

15
0.
62

58
0.
60

62
0.
61

17
0.
61

68
0.
62

92
0.
60

81
0.
59

80

Table A.6.: Macro F1 scores for the Ternary Sentiment Embedding Model with different
margins.

97

B. SemEval 2017 Results

Rank System AvgRec FPN1 Acc
1 DataStories 0.6811 0.6772 0.6515

BB twtr 0.6811 0.6851 0.6583
3 LIA 0.6763 0.6743 0.6612
4 Senti17 0.6744 0.6654 0.6524
5 NNEMBs 0.6695 0.6585 0.6641
6 Tweester 0.6596 0.6486 0.6486
7 INGEOTEC 0.6497 0.6457 0.63311
8 SiTAKA 0.6458 0.6289 0.6439
9 TSA-INF 0.6439 0.62011 0.61617
10 UCSC-NLP 0.64210 0.62410 0.56530

Table B.1.: The AvgRec, FPN1 and Accuracy scores for the top ten systems of SemEval
2017 Task 4A

99

	Introduction
	Twitter
	Motivation
	Goals
	Contributions
	Thesis Structure

	Background Theory
	Textual Preprocessing
	Part-of-Speech Tagging
	Bag-of-Words
	Stop Word Removal
	Stemming
	Reduce Elongated Words

	Machine Learning Algorithms
	Support Vector Machines
	Maximum Entropy

	Evaluation
	Techniques
	Metrics

	Word Embeddings
	word2vec
	GloVe

	Tools
	scikit-learn
	MultiVec
	glove-python
	Twokenize
	Preprocessor
	Twitter API
	twit
	AFINN
	VADER
	TextBlob
	Fredriksen–Jahren Lexicon Classifier
	Theano
	TensorFlow
	Keras

	Related Work
	Twitter Sentiment Analysis
	Preprocessing
	Feature Extraction
	Machine Learning Classifiers

	The Collobert and Weston Model
	Sentiment-Specific Word Embeddings
	Basic Model 1 (SSWEh)
	Basic Model 2 (SSWEr)
	Unified Model (SSWEu)
	Hybrid Ranking Model

	The International Workshop on Semantic Evaluation

	Ternary Sentiment Embedding Model
	Core Layers
	Ternary Sentiment Linear Layer
	Combined Loss Function
	Model Training

	Architecture
	Tweet Collector
	CATTS
	Fredriksen–Jahren Lexicon Classifier Python Port
	Twitty
	Processing Raw Files
	Filtering
	Preprocessing
	Train Word Embeddings
	Train Classifier
	Test Classifier

	Distant Supervision Program
	TSABL
	Fetching Twitter Data
	Preprocessing
	Training Word Embeddings
	Training and Testing Classifiers

	Distant Supervision of Tweets
	Filtering
	Methods
	Emoticons
	Emoticons Extended
	AFINN
	TextBlob
	VADER Sentiment Analysis
	Combo Average
	Fredriksen–Jahren Lexicon Classifier (FJLC)

	Grid Parameter Searches
	VADER
	TextBlob
	Combo Average Method

	Comparisons
	Runtime
	Prediction Quality

	Optimizing System
	Optimization Plan
	Experimental Setup
	Datasets for Training Word Embeddings
	Datasets for Testing and Training Classifiers
	Preprocessing
	Classifier
	Hyperparameters

	Hyperparameter Search Results
	Alpha
	Context Window Size
	Embedding Length
	Hidden Layer Size
	Learning Rate
	Margin
	Summary of Best Parameters

	Comparing Distant Supervision Methods
	SVM Hyperparameter Search Results

	Evaluating the Final System
	Experimental Setup
	Final System
	Datasets for Testing and Training Classifiers

	Comparison of Distant Supervision Methods
	Comparison with Hybrid Ranking Model
	Comparison with Baselines
	Description of Baselines
	Results

	Comparison with Published Results
	Comparison with Tang et al. (2016)
	Comparison with SemEval

	Discussion
	Distant Supervision
	Combination Methods
	Speed versus Quality

	Optimizing System
	Limitations of the Hyperparameter Search
	Data for the Hyperparameter Search Classifier
	Evaluation of Hyperparameter Search Results
	Distant Supervision Method

	Comparison of Distant Supervision Methods
	Comparison with Hybrid Ranking Model
	Comparison with Baselines
	Comparison with Published Results
	Comparison with Tang et al. (2016)
	Comparison with SemEval

	Conclusion and Future Work
	Distant Supervision
	Ternary Sentiment Embedding Model
	Future Work
	Distant Supervision
	Exhaustive Optimization
	Investigate Impact of Using More Data
	Word-Sense Disambiguation
	Word-Specific Sentiment

	Bibliography
	Hyperparameter Search
	Alpha
	Context Window Size
	Embedding Length
	Hidden Layer Size
	Learning Rate
	Margin

	SemEval 2017 Results

