
R-trees with Overflow Blocks

Anders Oftebro Bjørnøy

Master of Science in Computer Science

Supervisor: Svein Erik Bratsberg, IDI

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

Abstract

A wide range of R-tree variants exists that competes to give the best performance for
different uses[13]. This has gone on since the original R-tree was published in 1984[10].
A new wave of variants appeared to take advantage of new hardware such as SSDs, which
has noticeable differences to HDDs.

The B+-tree, an even older structure, has also had several different papers with goals to in-
crease its performance. One of the newer ones (2015) describes the Bloomtree[11], which
is a B+-tree that makes use of three different leaf types. One of them utilises bloomfilters
to reduce reads, hence the name. Unlike other B+-tree variants that trades writes for reads
to fit the characteristics of an SSD, this Bloomtree reports a decrease in both reads and
writes. This would indisputably increase performance, given the structure doesn’t have
any special needs such as extreme CPU usage.

Given the performance increase the Bloomtree yields, it’s interesting to see if its concepts
can be applied to an R-tree. R-trees have strong similarities to B+-trees, and is in some
ways just an n-dimensional B+-tree. Therefore, given its resemblance, it seems like a
plausible task.

During the paper, only some parts of the Bloomtree was successfully applied to an R-tree.
There was unfortunately not found a suited replacement for the most interesting leaf node,
the one which uses bloomfilters. Without that node, it essentially then became an R-tree
with overflow blocks. The B+ has one such overflow structure, which performed poorly.
Therefore no particular performance gain was expected, other than that it should perform
better than it’s overflow B+-tree equivalent. Simulations done in this paper showed that
overflow with the overflow linear R-tree did perform better than it’s B+-tree equivalent,
and could actually rival the performance of the plain linear R-tree.

i

ii

Sammendrag

Det eksisterer en rekke forskjellige R-trær som konkurrerer om å være best for forskjellige
bruksområder [13]. Evolusjonen har foregått siden det originale R-treet ble presentert
i 1984[10]. Etter at SSDer ble introdusert, så har det kommet en ny bølge med R-tree
varianter som spesifikt utnytter fordelene slike SSDer har.

Den eldre indekseringsstrukturen B+-trær har også mange artikler om forskjellige ver-
sjoner der ytelse er i fokus. En av de nyere (2015) er Bloomtree[11], som er et B+-tree
som bruker tre forskjellige løvnode typer. Ene av den bruker et bloomfilter til å redusere
antall lesinger. Bloomtree artikkelen viser at strukturen deres reduserer både lesinger og
skrivinger, i motsetning til andre varianter som endrer på lese og skrive ratio for å utnytte
egenskapene til en SSD. Å redusere både lesinger og skrivinger gir naturligvis en økelse i
ytelse, gitt den ikke har noen andre egenskaper som hemmer.

Med motivasjon i Bloomtreets økte ytelse i forhold til B+-treet, så hadde det vært spen-
nende å se om konseptene kunne brukes i R-trær også. R-trær og B+-trær har mange
likheter. R-treet er nesten et n-dimensjonalt B+-tree, så å gjenbruke konsepter fremstår
som en overkommelig utfordring.

I løpet at rapporten så ble bare deler av Bloomtreet overført til er R-tree. Den mest spen-
nende delen ved Bloomtreet, den løvnoden som bruker bloomfilter, ble ikke overført til et
R-tree. Dette fordi ingen god erstatning ble funnet for R-treet. Uten denne delen så ble
treet i rapporten i grunn et R-tree med overflytsblokker. Tilsvarende finnes det et B+-tree
med overflytsblokker som viser seg å yte dårligere enn B+-treet alene. Derfor var det ikke
ventet noe spesiell ytelse fra R-treet med overflytsblokker, annet enn at det burde prestere
bedre enn B+-tree ekvivalenten. Simuleringer gjort viser at linear R-tree med overflyts-
blokker yter bedre enn B+-tree ekvivalenten, og kan til og med utfordre ytelsen til det
vanlige linear R-tree.

iii

iv

Preface

This report was written as a part of a master project for the Department of Computer
and Information Science at the Norwegian University of Science and Technology. It was
written during the spring semester 2017 under the supervision of Svein Erik Bratsberg
whom I’d like to thank for excellent feedback and comments throughout the semester.
Much of the report is based on work done during a specialization project the preceding
semester by the same author and with the same supervisor.

Anders Oftebro Bjønøy

Trondheim, June 2017

v

vi

Table of Contents

Abstract i

Sammendrag iii

Preface v

Table of Contents x

List of Tables xi

List of Figures xv

1 Introduction 1

1.1 Goal . 2

1.2 Findings . 2

2 Theory 3

2.1 B+tree . 3

2.1.1 Algorithms . 4

2.2 R-tree . 5

vii

2.2.1 Algorithms . 6

2.2.2 R-tree types . 9

2.2.3 Challenges . 10

2.2.4 Optimising for modern hardware 11

3 Bloomtree 13

3.1 Overview . 13

3.2 Leafnodes . 14

3.2.1 Normal . 14

3.2.2 Overflow Node . 14

3.2.3 Bloomfilter Node . 15

3.3 Findings . 16

4 Related work 17

4.1 R*-tree . 17

4.2 Generalized Bulk Insertion . 20

4.3 Bulk insertion by seeded clustering . 21

5 Implementation 23

5.1 Overview . 23

5.2 Challenges . 24

5.2.1 Different type of data/storage 24

5.2.2 General optimisation . 24

5.2.3 BF-Node . 24

5.2.4 Overflow blocks . 27

5.2.5 Variants implemented . 28

5.2.6 Cache . 29

viii

5.2.7 Choice of language . 29

6 Datasets and metrics 31

6.1 Datasets . 31

6.1.1 Bit02 . 31

6.1.2 Uni02 . 32

6.2 Metrics . 33

7 Results 35

7.1 How test where done . 35

7.1.1 Default configuration . 36

7.2 Changing cache size - Bit02 . 36

7.3 Changing fanout - Bit02 . 40

7.3.1 Linear R-tree . 40

7.3.2 R*-tree . 42

7.4 Changing fanout - Uni02 . 46

7.4.1 Linear R-tree . 46

7.4.2 R*-tree . 48

7.5 Changing fanout with cache size 1000 - Uni02 52

7.5.1 Linear R-tree . 52

7.5.2 R*-tree . 53

8 Discussion 55

8.1 Unexpected results . 56

8.2 Comparison to OR-tree . 56

9 Conclusion 59

ix

10 Further work 61

Bibliography 63

A Appendix 65

x

List of Tables

7.1 Default parameters for runs. 36

A.1 Bit02 distribution, fanout 50, p grade 30%, min fill 40%. 66

A.2 Bit02 distribution, p grade 30%, min fill 40%, cachesize 0. 67

A.3 Bit02 distribution, p grade 30%, min fill 40%, cachesize 0. 68

A.4 Uni02 distribution, fanout 50, p grade 30%, min fill 40%. 69

A.5 Uni02 distribution, p grade 30%, min fill 40%, cachesize 0. 70

A.6 Uni02 distribution, p grade 30%, min fill 40%, cachesize 0. 71

A.7 Uni02 distribution, p grade 30%, min fill 40%, cachesize 1000. 72

A.8 Uni02 distribution, p grade 30%, min fill 40%, cachesize 1000. 73

xi

xii

List of Figures

2.1 A small B+-tree with fanout 4. 4

2.2 Two different MBRs for the same three points. 6

2.3 A simple R-tree with corresponding 2D visualisation at the bottom. 7

3.1 An overview of the three different leaf types. [11]. 14

3.2 Performance for B+-tree and OB+-tree. Figure from [11]. 15

4.1 Linear R-tree. Leaf level MBRs for 2000 points. 19

4.2 Linear R-tree. Leaf level MBRs for 2000 points. 19

4.3 Process when inserting points in a bulk insertion structure. Inspired by [6]. 21

5.1 A simple grid filter with n = 3. 26

6.1 The Bit02 dataset. 1.000.000 2D datapoints. 32

6.2 The Uni02 dataset. 1.000.000 2D datapoints. 32

7.1 Reads used to create different structures from Bit02 distribution. Fanout
set to 50. Rstar is the R*-tree. Rstar-o3 is R*-tree with max overflow
as 3. Linear is the linear R-tree. Linear-o3 is the linear R-tree with
max overflow as 3. 37

xiii

7.2 Writes used to create different structures from Bit02 distribution. Fanout
set to 50. Rstar is the R*-tree. Rstar-o3 is R*-tree with max overflow
as 3. Linear is the linear R-tree. Linear-o3 is the linear R-tree with
max overflow as 3. 38

7.3 Reads per query in q0 from Bit02 distribution. Fanout set to 50. Rstar
is the R*-tree. Rstar-o3 is R*-tree with max overflow as 3. Linear is the
linear R-tree. Linear-o3 is the linear R-tree with max overflow as 3. . . . 38

7.4 Reads per query in q3 from Bit02 distribution. Fanout set to 50. Rstar
is the R*-tree. Rstar-o3 is R*-tree with max overflow as 3. Linear is the
linear R-tree. Linear-o3 is R-tree with max overflow as 3. 39

7.5 Writes used to create different structures from Bit02 distribution. Linear
is the linear R-tree. Linear-oX is the linear R-tree with max overflow as X . 40

7.6 Reads used to create different structures from Bit02 distribution. Linear is
the linear R-tree. Linear-oX is the linear R-tree with max overflow as X . 41

7.7 Reads per query in q0 from Bit02 distribution. Linear is the linear R-tree.
Linear-oX is the linear R-tree with max overflow as X 41

7.8 Reads per query in q3 from Bit02 distribution. Linear is the linear R-tree.
Linear-oX is the linear R-tree with max overflow as X 42

7.9 Writes used to create different structures from Bit02 distribution. Rstar is
the R*-tree. Rstar-oX is the R*-tree with max overflow as X 43

7.10 Reads used to create different structures from Bit02 distribution. Rstar is
the R*-tree. Rstar-oX is the R*-tree with max overflow as X 44

7.11 Reads per query in q0 from Bit02 distribution. Rstar is the R*-tree. Rstar-
oX is the R*-tree with max overflow as X 44

7.12 Reads per query in q2 from Bit02 distribution. Rstar is the R*-tree. Rstar-
oX is the R*-tree with max overflow as X 45

7.13 Reads per query in q3 from Bit02 distribution. Rstar is the R*-tree. Rstar-
oX is the R*-tree with max overflow as X 45

7.14 Writes used to create different structures from Uni02 distribution. Linear
is the linear R-tree. Linear-oX is the linear R-tree with max overflow as X . 46

7.15 Reads used to create different structures from Uni02 distribution. Linear
is the linear R-tree. Linear-oX is the linear R-tree with max overflow as X . 47

7.16 Reads per query in q0 from Uni02 distribution. Linear is the linear R-tree.
Linear-oX is the linear R-tree with max overflow as X 47

xiv

7.17 Reads per query in q2 from Uni02 distribution. Linear is the linear R-tree.
Linear-oX is the linear R-tree with max overflow as X 48

7.18 Reads per query in q3 from Uni02 distribution. Linear is the linear R-tree.
Linear-oX is the linear R-tree with max overflow as X 49

7.19 Writes used to create different structures from Uni02 distribution. Rstar is
the R*-tree. Rstar-oX is the R*-tree with max overflow as X 49

7.20 Reads used to create different structures from Uni02 distribution. Rstar is
the R*-tree. Rstar-oX is the R*-tree with max overflow as X 50

7.21 Reads per query in q0 from Uni02 distribution. Rstar is the R*-tree. Rstar-
oX is the R*-tree with max overflow as X 50

7.22 Reads per query in q2 from Uni02 distribution. Rstar is the R*-tree. Rstar-
oX is the R*-tree with max overflow as X 51

7.23 Reads per query in q3 from Uni02 distribution. Rstar is the R*-tree. Rstar-
oX is the R*-tree with max overflow as X 51

7.24 Reads used to create different structures from Uni02 distribution, cache
size 1000. Linear is the linear R-tree. Linear-oX is the linear R-tree with
max overflow as X . 52

7.25 Reads used to create different structures from Uni02 distribution, cache
size 1000. Rstar is the R*-tree. Rstar-oX is the R*-tree with max overflow
as X . 53

7.26 Reads pr query in q0 from Uni02 distribution, cache size 1000. Rstar is
the R*-tree. Rstar-oX is the R*-tree with max overflow as X 54

xv

Chapter 1
Introduction

Since the R-tree was introduced, many papers have been released in search of increasing
its performance. It fast became de facto for structuring spatial data, which gives it an extra
relevant spot among data structures today. More and more data are being stored, and often
with a spatial aspect attached to it.

Naturally, given its introduction in 1984[10], the underlying data storage, to begin with,
was hard disc drives. Therefore these first papers describe structures that perform well for
hard disc drives, and the workload fits well for the discs read and write times.

Recently the solid state drive has taken its share of the marked. It gives various benefits
compared to the traditional HDD and one would naturally want to use SSDs over HDDs.
With the price of SSDs decreasing, this has now become a viable choice for some actors.
With the rise of SSD usage, there has in the last years been many papers on how to make
R-trees that are well suited for an SSD storage.

Such papers show that it’s useful to optimise for specific storage, and certainly possible to
take advantage of a storage’s strong sides to get increase performance. However, the struc-
ture should preferably be agnostic to storage type, and perform better than it’s competing
structures regardless of where it’s stored. In the case of R-trees the possible primary stor-
age types is HDDs and SSDs. With today’s hardware prices, it is also plausible for some
databases to keep it entirely in memory[14, 7], but that is outside the scope of this paper.

Computing cost is also a factor for R-trees. Some can have advanced and resource-
intensive algorithms, while other have simple lightweight ones. There is a clear corre-
lation between how advanced the algorithm is, and how well the structure is. Even tough
computation cost is important, the bottleneck is often with reads and writes to permanent
storage. Therefore computational cost and runtime are left outside the scope of this paper,

1

while i/o is considered.

1.1 Goal

The goal of this paper is to create an experimental R-tree structure that takes advantage of
the concepts from the Bloomtree. The Bloomtree is a B+-tree that uses three different leaf
nodes in order to reduce the overall I/O. It is especially the use of bloomfilters in one of its
leaf node that makes it special and interesting. In their paper [11] they report a significant
reduce in i/o, compared to other B+-tree structures. As an R-tree is in many ways an
N-dimensional B+-tree, it is interesting to see if its concepts can be transferred from the
Bloomtree to an R-tree. If possible, does such an R-tree benefit the same improvement in
i/o?

Research questions are therefore:

• RQ1: Is it possible to apply the concepts of the Bloomtree to an R-tree?

• RQ2: Does this new solution have the same performance achievement as the Bloomtree?

1.2 Findings

Throughout the paper, no equivalent to the Bloomtrees special leaf node was found. Al-
though the R-tree and B+-tree has many similarities, they also have many differences that
make transferring certain concepts hard, if not impossible. Without a suited way to use
the Bloomtrees special node for an R-tree, one was left with only applying the concept of
overflow to the R-tree. Such a concept is not new, Wang et al [16] has done so with their
OR-tree that they specialise for SSDs instead of being storage agnostic.

The implemented overflow structures, based on the linear R-tree [13] and on the R*-tree
[1], generally shows a decrease in writes but an increase in reads. It also shows that with a
cache, it is plausible to utilise the Linear R-tree with overflow and reduce i/o.

2

Chapter 2
Theory

This chapter explains the basic workings of the B+-tree and the R-tree. As we try to apply
concepts from a B+-tree, it’s relevant to know how it works and what concepts its basic
form is built upon. Of course, it’s also necessary to explain the R-tree, which we, after
all, is trying to optimise. After laying out this base of how the structures works, a handful
of interesting variations of the R-tree is described to get a view of the possible variants to
gain inspiration from. Much of the theory discussed here is from [8, 10, 13]

2.1 B+tree

The B+-tree has evolved from the standard B-tree. Because the B+-tree is far more popular
and similar to the R-tree, the standard B-tree is left undescribed. The B+-tree is a key-
value storage, that uses a search-tree structure. Being a key-value storage means that one
provides a key and the storage returns the value associated with that key if it exists. The
search-tree structure means that it can search efficiently down through the tree, selecting
the right path until it reaches the leaf node with the right key. This is made intuitive by
having keys that are linear of one-dimension, meaning that there is a given order at the leaf
level. This is, as we shall see, a significant difference from the R-tree.

With a base in Figure 2.1, the simple concepts of the B+-tree can be explained. The figure
shows a small tree with only two levels and five posts. Each block can contain b = 4
pointers, and b − 1 = 3 keys. This b is called fanout, and it determines how much the
tree can ”grow” each level. At the bottom level, the number represents the key for the
post, and the pointer either contains the post or gives the exact place to find it. At the leaf
level, the last pointer is reserved to point to the next block in the sequence. Because of this
last pointer, the leaf level acts like a chained list over one dimension. This enables range

3

Figure 2.1: A small B+-tree with fanout 4.

searches and scans to be done with ease.

2.1.1 Algorithms

Search

Usually, one searches the B+-tree by providing a key and wanting the corresponding
value/post back. The search is relatively straightforward and known in the B+-tree as the
structure has strong resemblances to the binary tree. The search is executed in a structured
manner. When performing a search, it starts with the root node. Then beginning with the
leftmost value in the node, one checks if the key that is being looked up is smaller than
the value. If the key is smaller, then one follows the pointer on its left. If the key is equal
or greater, one moves on to check against the next value in the block in the same manner.
If one reaches the last value in the node and the key is still equal or bigger than the value,
then one follow the rightmost pointer. The pointers take us to new nodes where we do
the same action. Eventually one reaches a leaf node. In that case, each document has a
”dedicated” pointer, as the pointer to the left for a value will point to the record/document.
If the key doesn’t match any value in that leaf node, then it doesn’t exist in the tree.

Because the tree is balanced and it chooses the right path for each step, few blocks have to
be accessed during this kind of searches. This gives it with a logarithmic search time.

One can also do a range search, say wanting all the post that has keys between ’A’ and ’B’.
Then one follows the pointer, searching for the first legal key in the range. When reaching
the leaf node, it follows the last pointer in the node in order to get to the next consecutive
leaf node. When the keys in the leafs are beyond the one searched for, it’s done.

4

Insert

Insertions use the same way to find the right leaf node to insert the record/document.
Typically, insertions only require that the right leaf node inserts a pointer to the document
and the corresponding key in the correct way.

However, there is also a possibility that the leaf node you’re trying to insert into is full. In
this case, one has to split the leaf node into two and update the parent node as well with
value and pointer of the new leaf. This update might propagate upwards if the parent node
is full. In a worst case, it propagates all the way back to the root node, which then also
have to be split into two while adding a new root node.

Deletes

Deleting is also a simple process. One just deletes the value and pointer from the leaf
node. Here it could be a problem that the nodes end up having too few elements after a
delete. If the node ends up having less than the threshold m values, then it either has to
redistribute documents from a sibling leaf node (sharing parent node) or merge with one.

2.2 R-tree

New technology, services and applications have driven the need for a search structure with
multiple dimensions. The R-tree has become the default indexing structure for a range of
such applications, especially for applications that utilise spatial data. After the R-tree was
introduced in 1984 by Guttman [10], a wide range of improvements and alternatives has
been made. This section explains how the standard R-tree works, and then mentions some
variants in the end.

While the B+-tree is great for one-dimensional data, it can’t effectively deal with keys with
more dimensions. Spatial data as coordinates is a highly relevant example of data that it
can’t index. This is where the R-tree appear, a structure that strongly resembles the B+-
tree, but can support n-dimensions. At least in theory. Too many dimensions invokes the
”curse of dimensionality”, but it’s still supported.

The structure for the R-tree shares many characteristics with the B+-tree. They are both
search trees with values and pointers in order to efficient support a range of operations,
like searches and insertions. Both are also self-balancing. One important difference is that
there it makes use of Minimum Bounding Rectangles (MBRs) instead of keys to structure
the tree. Also unlike the B+-tree that had one more pointer than keys, the R-tree has one
pointer designated for each MBR in the node.

The MBR is a way to define the smallest rectangle to enclose a set of objects. For two

5

Figure 2.2: Two different MBRs for the same three points.

dimensions, X and Y, this would mean we define an MBR by determining four values,
(max X,min X,max Y,min Y), in practice two diagonal corners. One can add more
dimensions to an MBR by adding a min/max for the new dimension. Because of this
property of the MBR, the R-tree can support n-dimensions. Note that we don’t use actual
MBR, we only use MBR with horizontal and vertical lines. Image 2.2 shows the differ-
ence. While the blue one to the right is an actual MBR and more correct, we use the one
on the left as its way more convenient and frequently used.

A simple R-tree is shown in Figure 2.3, with a corresponding 2D canvas that shows the
points. Just as the B+-tree, it consists of nodes and pointers. The nodes can hold up to a
certain amount of posts containing a Minimum Bounding Rectangle (MBR) and a pointer.
In the leaf nodes, the posts contain an MBR (in the image just a point) and possibly extra
meta-data.

The observant reader will have noticed that the MBRs have to circumvent all the MBRs
of its children. In other words, the MBRs works hierarchically. This means that the parent
MBR must surround all the points and MBRs of its children. One would also have noticed
that some posts actually fits within several MBRs. If the posts were inserted in a different
order, the tree could look different. This is due to the way insertions is handled in the
R-tree. This property makes the tree non-deterministic.

Furthermore, one will notice that some of the MBRs overlap. The fact that MBRs can
overlap comes from the fact that there is no definitive way to order the elements as they
are several dimensions, this is a big challenge that the B+-tree don’t have to deal with.
This problem directly influences search speed, as much overlap can result in many search
paths.

2.2.1 Algorithms

As mentioned above, this section only describes the basic/standard R-tree if otherwise isn’t
written.

6

Figure 2.3: A simple R-tree with corresponding 2D visualisation at the bottom.

Searches

The typical thing to do in an R-tree is to perform RangeSearches, which means you want
to retrieve all points that are within a query rectangle Q. In order to perform this search,
the structure recursively searches the tree. Beginning at the root node, one finds all the
children that have an MBR that overlaps with Q. For all those children, the same process
is done until it reaches leaf nodes. There the posts that have an MBR that overlaps with Q
is added to an answer set. We clearly see how the hierarchical structure aids the search.

Unfortunately, the MBRs can overlap, even in the same height, there can be several nodes
that can contain the point. Therefore it can be several search paths that must be looked
into for a query. Naturally, a search that has to consider many paths takes longer time, and
therefore it is preferable to minimise the overlap. Having a good tree structure is critical
in order to get good query performance. Many R-tree variants focus on improving MBRs
to, among other things, reduce overlap. These improvements are primarily done in the
insertion algorithm, and subsequently the split algorithm.

7

Another search form that occurs is K-nearest neighbour search. Such a search provide a
point and asks for the K nearest post. An example of one such query ”Give me restaurants
around me”, where the search point provided is the users’ location. Such a search also
requires some filtering to give the K nearest restaurant, instead of just the K nearest posts.

Insertions

As with the other algorithms, the R-tree is pretty similar to the B+-tree here as well. It
gets a post to insert, then starting from the root the algorithm selects one suited MBR and
follows the corresponding pointer and then does the same in that node. The suited MBR
is found by different metrics, but one simple metrics is to select the MBR that needs the
least enlargement to accommodate the new post.

Eventually, it finds a suited leaf to insert the post. If the suited leaf has space for the
element, it’s an easy process to just add it. If the new element enlarges the leaf nodes
MBR, one also has to remember to potentially update the parent nodes MBRs, possibly all
the way to the top.

In the case where the selected node is full, a split is needed. Splits in R-trees aren’t
as easy as in B+-trees because there are several dimensions and therefore a lot more to
consider when splitting. In the R-tree, different metrics are used when splitting that results
in different splits. One basic way to do a split is to divide the node’s elements into two
sets, where one want to minimise the total MBR area of the two sets. There are three ways
to go about this calculation, Linear, Quadratic or Exponential split. There is a trade-off
between the different algorithms is search-space and the result. Often Quadratic split is
chosen as a compromise.

Different types of insertions and splits are some of the main differences between R-trees
variants. For example, does some utilise more advanced and expensive algorithms that
give better search performance. The R*-tree is one well know variant which has a more
expensive insert algorithm but makes up for it in search performance. This R-tree variant
is explained in deeper detail in Section 4.1.

Deletes

When deleting an element one has to first find the leaf node that contains the element. As
this first part is a search, it also is affected by how good the MBR structure is. Then the
element is deleted from the node, and one might end up updating several MBRs again.

A tree also has a min fill degree, for example, a threshold of m = 40%. The tree isn’t
allowed to have nodes with fewer elements than m. So, if a delete results in a node having
too few elements one have to restructure the tree. Again, depending on the tree type,
different delete algorithms are used. The basic one either redistributes from a sibling,

8

merge with a sibling or reinserts all remaining elements.

2.2.2 R-tree types

As mentioned, many alternatives have appeared. They all have strong resemblances to the
R-tree, but they are different in what properties and metrics they value. There are also
two different types of R-trees to group them by. We have the dynamic R-trees and the
static ones. R-trees are generally dynamic, or at least introduced as a dynamic structure,
meaning they were suited for randomly occurring deletions, insertions and updates. On
the other hand, static trees mainly focus on building up an R-tree once, without potentially
degrading the tree structure by having insertions or deletions that can result in bad splits.

Both groups of R-trees have their use cases and applications that they are well suited for.
Section 4, related work, describes some of the more interesting R-tree variants in detail.

Dynamic

R-trees are in ”nature” dynamic as they don’t need global reorganisation to handle changes
in the tree. In this case, it means that they are suited for insertions and deletions. The tree
described above is the original R-tree which is indeed dynamic. Also, the first variants of
the R-tree to follow were of the dynamic sort, such as the R+-tree and R*-tree. The trees
within the dynamic group vary most in what metrics they value.

Static

In contrast to the dynamic trees, which handles changes in the trees, the static ones need to
know all the data beforehand of creating the tree. This is called packing or bulk loading.
There are several advantages, with the distinct advantage being that one doesn’t have to
restructure the tree because new insertions can’t occur. Having insertions one by one
(OBO) is an ineffective way to build up a large R-tree from scratch if we have all the
points in advance. One also avoids the problem where insertions ”damages” the structure
of the tree due to simplified heuristics, and the fact that it would simply be too costly to
globally restructure the tree each time.

This makes it much easier to make (closer to) optimal trees and one can also potentially
achieve close to 100 % disk utilisation. The dynamic types would have potentially globally
restructured the tree for each insert to achieve the same (in practice statically building it
for each insertion). Depending on the tree and characteristics wanted, different techniques
are used when building the tree. Among them are top-down and bottom-up approaches.

While there are suited applications for bulk loading trees, one would usually want to insert
more data at some point. This can, of course, be done with the insertion command that we

9

know from the dynamic versions. The insertion command works fine for small amounts
of data, but for large quantities of data, it requires time and resources. Taking up a lot
of time means that applications using the structure are suffering, as they can’t query it.
Several R-tree versions address this need for inserting. Common for these approaches is
that they insert larger branches, instead of points OBO. Among them are the Generalized
Bulk Insertion(GBI) which is described in section 4.2.

2.2.3 Challenges

Insertion cost

With the dynamic versions, a problem is that the insertion cost scales with the size of the
tree. A higher tree means that more nodes have to be accessed for queries and insertions.
Changes also it might propagate longer. The approaches with bulk insertion solve this
problem to some degree. Such approaches have shown to scale way better than the R-
trees, and keep up with query performance.

Another similar problem is that the query cost scales with the size of the tree. In the same
way, here a higher tree means a longer path to the desired elements. The height depends
on the order of the tree, filling degree and number of elements. A tree typically reaches a
broad span of elements in few step. Besides reads are generally much faster than writes.
However, if a search need to traverse many paths and each path are long, it can take a long
time. The answer is to have a good structure.

Partitioning

Partitioning data of one dimension can be intuitively and effectively done, as we see for
the B+-tree. Still, there are choices to make when partitioning one-dimensional data, for
example between hash function or value range. Partitioning data that are in two dimensions
isn’t as intuitive, and for higher levels of dimensionality, it gets worse. In this paper, only
two dimensions are considered but this is still a hard task. Also, because only points are
considered in this article, which is easier than trying to partition large geographical objects.
With geometric objects, an object can potentially overlap several partitions. With points,
they can only belong to one partition. Note that several partitions can overlap one point.

This partition problem to some degree represented in R-trees as MBRs. There countless
ways MBRs are built and the metrics they use, show that this partitioning isn’t easy and
there isn’t one obvious way. Then the challenge reappears when you shall partition the tree
over several servers in a good way. Who gets which part of the tree. A natural way is to
give them each some of the top level MBRs, and the elements within it. Another problem
that occurs is how to effectively restructure the tree.

10

2.2.4 Optimising for modern hardware

Solid state drive SSD

With today’s prices on solid state drives (SSD), it’s increasingly feasible and popular to
use SSDs as primary storage. Some databases also go as far as to use RAM as primary
storage [14, 7] as it is today also within reasonable cost and have certain benefits. When
moving away from traditional hard disk drive HDDs, one should know the strengths and
weaknesses of the new hardware in order to take full advantage of it. However, it is
preferable with a structure that is storage agnostic and performs well regardless of storage
type.

Besides the fact that there are no moving parts, the biggest difference is the read/write
speed, as pointed out in [11]. When SSDs were new, it was a significant gap between read
and write speed, meaning a read would be many times faster than a write. Earlier structures
have focused on this characteristic and therefore traded writes in favour of reads. These
structures typically had more reads and fewer writes than their original structure. Some
such structures, as the OB+-tree, is described in [11]. These structures would work poorly
on an HDD. Today new SSDs have erased much of the gap between read and write speeds,
though reads are still faster. The characteristics of the ”new” SSDs are more similar to the
HDDs. This means that the write/read load ratio is closer to one and new structures are
better suited for to run on both storage types.

Parallelised tree

Another common approach today is to parallelise applications, making it run on several
cores or machines. This is becoming more usual as the numbers of cores in a machine
increase. It’s also usual to distribute a database over several machines in order to scale up,
know as shared nothing approach. Having a distributed database has benefits as being able
to handle more requests and potentially better availability. Although this is an important
field, it will not be the focus of this report. The focus is rather to optimise a structure
within one machine, instead of creating a distributed R-tree. If one were to concentrate on
distributing the tree, a good partitioning scheme would be necessary.

11

12

Chapter 3
Bloomtree

In this chapter, the Bloomtree is described, although a full description one should read
their paper[11].

The Bloomtree was made in an attempt to optimise the B+-tree for use with modern SSDs.
Other papers have often had an approach where they trade of writes for reads, as SSDs of-
ten have had significantly faster reads than writes. With new SSDs, the difference between
reads and writes are decreasing, thus such trade-offs aren’t as beneficial as they once were.
The Bloomtree they present is reducing both reads and writes. Although they focus on
SSDs, it’s intuitively good to reduce both reads and writes, regardless of storage medium.

3.1 Overview

In short, the Bloomtree is a B+-tree that has modified the leaf nodes to morph between
three different types. An illustrative example of the structure is shown in Figure 3.1. The
two first, the normal leaf and the overflow-leaf, are both common and known. The third
one is more unique, as it utilises a bloomfilter to reduce the number of reads. Besides these
changes at the leaf level, the main concepts are left unchanged. The basic algorithms for
the Bloomtree do need some changes to incorporate the different nodes.

Only the leaf node types will be described, as it’s the only thing that has changed. Psu-
docode for their implementation of the different nodes can be found in their paper [11].

13

Figure 3.1: An overview of the three different leaf types. [11].

3.2 Leafnodes

The different types of leaf nodes work in a circular manner, where a leaf node can cycle
between the three different types if it gets enough elements inserted. A leaf node starts
as a normal leaf. When it’s full, and a new element is inserted, it transforms to an over-
flow node. Similarly, when the overflow node is full, it transforms to a bloomfilter node.
To complete the circle, the bloomfilter node transforms to several normal nodes and the
transformation can start over.

3.2.1 Normal

This is just a normal node with nothing special about it. In practice, it’s an overflow node
that hasn’t been overflowed yet.

3.2.2 Overflow Node

The concept of overflowing a node (or container) is a common concept. In this node, the
overflow means one just extends the node instead of splitting it. The split would cause
extra reads and writes, and could also propagate upwards and begin a larger operation.
Therefore, by overflowing the node, one increases insertion performance.

On the downside, the search performance suffers. With overflow nodes, one would regu-
larly have to access several of the overflow blocks to find the right key. As a mean, one
would have to access half of the overflow blocks to find the key searched for. A worse case
is when the key doesn’t exist in the database, and one would have to chain through all of
the nodes overflow blocks to confirm it.

14

When utilising only overflow blocks, one normally have a parameter that sets the max
blocks it can overflow. Otherwise, one risk having to bad performance. Then eventually,
the node become full and a larger operation has to be invoked to split it up and re-balance
the tree. This operation can often be optimised, for example with bulk insertion, but one
still trades short term insertion rate for larger operations later. The Bloomtree handles a
full overflow leaf more elegant and changes the node into a BF-node.

They create a B+-tree that only utilises the normal leaf and overflow block, called an OB+-
tree. Figure 3.2 shows the i/o difference between regular B+-tree and the OB+-tree. The
OB+-tree trades 290% more reads for 17% less writes. This is clearly not ideal, and we
see that one would have an unrealistically skewed read to write ratio for it to be beneficial.
Thus just adding overflow blocks aren’t good enough for B+-trees.

Figure 3.2: Performance for B+-tree and OB+-tree. Figure from [11].

3.2.3 Bloomfilter Node

The unique part of this tree is this Bloom Filter node (BF-Node), and it’s where the bloom-
filter is utilised. As figure 3.1 shows, it contains two type of leafs. It has exactly one
head-leaf which then points to nodes that contain the posts.

The head-leaf is pointed by an internal node and is an intermediate node before reaching
the posts. It is within this head-leaf that the bloomfilter is used. The head-leaf contains
pairs of/with bloomfilters and pointers to nodes. The head-leaf has one of these pairs
marked as active, the node that corresponds to this pair receives new elements that are
assigned to the BF-node. When the active node becomes full, it becomes solid, and a new
node takes the role as active. Also, the pair that points to the newly solid node gets its
bloomfilter made from the keys contained in the node.

When an OF-node transforms into a BF-node, it is initially filled with overflow blocks

15

from the OF-node. Each block becomes a solid node and gets a pair of bloomfilter and
pointer in the head-leaf. This is an elegant transition from the OF-leaf.

By having this bloomfilter for each solid node, a search that arrives in the BF-node checks
the bloomfilters to see if there is a match. In that chase, it follows the corresponding
pointer and reads the value. If no bloomfilter matches, the active node is looked up, as it
might contain the wanted post. Also, a bloomfilter is prone to false positives, meaning that
sometimes nodes is searched only to find that the key isn’t there. However, one can tweak
the false-positive rate by changing length and number of hash functions, so the number of
false positives is low. It appears to be a smart way to reduce the number of reads without
balancing the tree, and therefore one of the main factors that motivated this paper. It also
seems to be a good idea to introduce the bloomfilter at leaf-level, instead of one for the
whole tree. If one have a varied workload with a good portion deletes, a bloomfilter for the
whole tree would have suffered because one can’t delete from a bloomfilter, so one would
have to accept a higher rate of false positives.

When a BF-node is all filled up with solid nodes, it can buy some extra time by reactivating
solid nodes if elements has have deleted. However, eventually, it gets full and can’t receive
more elements. Then the contents of the BF-node is converted into several normal leafs.
This happens by gathering all elements the BF-Node has, sorting them, and then splitting
them in chunks that fit a normal leaf. All of these normal nodes gets inserted to the internal
node that held the BF-node that got split, and of course, the new key-value pair/post gets
inserted. If the internal node can’t fit all of them, then it splits in normal B+-tree fashion.

3.3 Findings

When the tree is compared to different other trees, across different workloads, it performs
very well. They conclude that their Bloomtree can reduce overall runtime for both SSDs
and HDDs. Several of the other structures use overflow pages as well, and they have
significantly fewer splits than those that don’t use it. However, just having overflow pages
isn’t enough. Their results show that some of those perform worse than the standard B+-
tree, which actually performs quite well compared with the different variants.

From this one concludes that the BF-node makes a huge difference, and therefore one
should attempt to make a BF-node equivalent for R-trees in search for similar improve-
ments. This is the focus of this paper, which tries to use this BF-node in R-trees.

16

Chapter 4
Related work

R-trees have become a well-studied structure. Just the amount of R-tree variations alone
confirms this. The book ”R-trees: Theory and Applications” [13] from 2006 finds 70 R-
trees worth mentioning in the period 1984 to 2004. Many have made improvements on
the structure, using different metrics and valuing different properties. To my knowledge,
no papers have directly focused on insertion speed. They often include a correlated mea-
surement, I/O needed for operations, but not insertion speed directly. The closest paper is
probably the bulk insertions papers such as [6, 12], where it can be strongly argued that
they are somewhat onto this problem though their focus doesn’t lie directly on insertion
speed.

4.1 R*-tree

This variant came in 1990 [1] and is among the first variants of the R-tree. It is a dynamic
tree which differs in what metrics it values. By using other metrics, it creates a better
structure than the original tree and outperforms it in query performance. The metrics that
the R*-tree values are:

1. Minimise MBR size.

2. Minimise overlap among MBRs.

3. Minimise circumference of MBR.

4. Optimise storage utilisation.

17

These metrics comes in play when splitting nodes and insertion elements. For example,
when determining how to distribute elements among the two new nodes, the split is op-
timised according to these metrics. The metrics are also used to find the best place for
an element to be inserted. Compared to the basic R-tree, the R*-tree uses slightly more
computational resources to handle these more advanced metrics. This extra computation
results in a better tree structure. In addition to these values, the R*-tree uses something
called forced reinsert, which further improves the structure. The idea is that re-insertions
can restructure the tree and make up for bad structures that have occurred due to the order
the elements were inserted.

The reinsertion is issued when a node is becoming overfull. When this happens, the el-
ements in the node get sorted by their distance from the nodes’ MBR. Then the p (30%
works well) elements that are furthest away are getting reinserted. If the same level be-
comes overfull again, then a split is done on the node.

By having this reinsertion, the query performance is drastically improved. But it comes at
the price of a little higher computational usage. The R*-tree outperforms the standard R-
tree (with quadratic split) in all queries the article presents and declares it-selves as better
than the standard R-tree.

Figure 4.1 and 4.2 show the leaf level MBRs for the same 2000 randomly distributed
points. The MBRs are shown as red rectangles, and areas where they overlap has a darker
red. We see that the R*-tree has a superior structure, that just barely overlaps a couple of
places. In contrast, we have the linear R-tree with a lot of overlap, which results in more
search paths for a query Q. In Chapter 7 we see just how much this affects nodes accessed
during searches.

Later, a Revised R*-tree[3] has been introduced by the same authors. This revised version
re-engineers some of the core algorithms, making it better. Improving search performance
and reducing i/o usage, CPU and creation time. One of the key changes is to remove
re-insertion, which also makes the R-tree more suited for DBMS.

18

Figure 4.1: Linear R-tree. Leaf level MBRs for 2000 points.

Figure 4.2: Linear R-tree. Leaf level MBRs for 2000 points.

19

4.2 Generalized Bulk Insertion

The article on Generalized Bulk Insertion (GBI) [6] is about effectively inserting larger
amount of data without having a significant ”downtime” or significantly degrade the struc-
ture. The motivation behind GIB is quite similar to the motivation behind this paper. Pre-
viously the same authors have released a paper about Small Tree Large Tree (STLT) bulk
insertion [5]. This method worked well for highly skewed data, but significantly degraded
the tree for other distributions. Their paper on GBI improves the former STLT technique
and makes the method work for all distributions.

The central principle behind GBI is to group up insertions and making new small R-trees
that in the end are inserted into the existing large R-tree. This way insertions are handled
is what differs from the original tree, as insertions consist of a ”clustering phase” and an
”insertion phase”. The process of inserting a point to it becoming part of the large R-tree
is illustrated in Figure 4.3.

Insertions are processed before eventually getting inserted in the large R-tree. This way the
R-tree won’t have to do a bunch of disk IO for each element inserted. The insertions are
instead grouped by clustering methods and from each cluster an R-tree is created, called
small R-tree, which then is inserted to the existing R-tree. This clustering is essential to
maintaining a good structure in the large R-tree as it makes sure that the elements in the
small R-tree don’t are too sparse. For the previous STLT method the input wasn’t clus-
tered, and the small R-tree could contain highly sparse data points. In the GBI approach,
some elements might not be included in any clusters, and these are called outliers. If they
were to include these outliers in the clustered R-trees, the structure of the tree would be
significantly damaged, as the MBRs would have been enlarged and the content would be
more sparse. Therefore outliers are inserted one by one into (OBO) the large R-tree in
traditional fashion. Figure 4.3 shows both insertions of small R-trees and OBO.

In the article, they don’t implement any clustering method on their own but uses Mac-
Queens k-means method as it takes parameters to control favourable behaviour. Such
parameters are how close elements in a cluster has to be and max and min size of the clus-
ters. Tweaking these parameters results in variations in the clusters compactness and size.
Demanding to compact clusters results in few R-trees and most elements will be inserted
one by one (OBO). In this case, the GBI won’t give much performance improvement. On
the other hand, too loose clusters will give a highly increased input performance. This is
because most elements will be inserted as part of as small R-tree. The downside with too
loose clusters is that the R-tree gets a bad structure and queries suffers.

During an insertion, the small R-tree is treated as one element with MBR equal to the MBR
of its root node. Then one searches the large R-tree for a suitable place to insert it. This
search uses the principles of the standard insertion algorithm with some small adjustments.
It searches for a suited internal node at the correct height (hlargetree − hsmalltree) so the
tree remains balanced after the insertion. If this node is full, different techniques can be
used to make space for the small tree. Etc merging, splitting and reinsertion.

20

Figure 4.3: Process when inserting points in a bulk insertion structure. Inspired by [6].

Even with the improvements from STLT to GBI, there are issues with this approach. One
is that the small R-trees are made without considering the structure of the large R-tree.
Therefore the MBRs of the large R-tree might be expanded quite a bit. In some cases, this
could be prevented if the elements would fit better in other nodes in the large R-tree. This
can, for example, happen if the small R-tree is inserted near the edges of an MBR and the
MBR has to be expanded. This issue results in a degraded structure in the R-tree.

Another issue is that the large R-tree might become invalid after inserting a small R-
tree. This happens when the root node in the small R-tree doesn’t have enough elements,
meaning it has less than the threshold m elements. When building the small R-tree it is
legal to have less than m elements in the root node, but it isn’t allowed in an internal node.
This isn’t a critical issue, but can to some degree damage query performance and disk
utilisation.

Results show that the insertion cost with GBI is significantly lower than OBO insertions.
The GBI also scales better with the tree size in regards to insertion cost. The downside
is that query performance from an R-tree using GBI is slightly worse than the one using
OBO. The trade-off between insertion cost and query performance is dependent on the
parameters for the clusters. The paper means that it’s within an acceptable performance,
trading slightly worse query performance against significantly lower insertion cost.

4.3 Bulk insertion by seeded clustering

The bulk insertion by seeded clustering method [12] strongly resembles the GBI from the
previous section and can be viewed as an improvement. It has the same idea of gathering
insertions in clusters and building R-trees before bulk inserting them. Still, there are some

21

significant differences.

The key difference is that this methods take into account the structure of the existing R-tree
when the clusters are made. This structure awareness comes from copying the top k-levels
of the existing R-trees, where k is a chosen parameter. This copied tree holds the MBRs
of the top nodes and guides where the new elements should be inserted, and call this tree
the seed tree. When a new element arrives, it gets ”placed” in a suited leaf node in the
seed tree. This selection of a suited node is done in the same manner as regular insertions.
Thus the elements are getting inserted closer to where they would have been inserted if in
OBO, although elements are only ensured to follow ”right” path for k levels. If an element
doesn’t fit in any of the leaf nodes, it gets inserted into the existing R-tree in a regular
OBO fashion. By considering the structure of the existing tree, the MBRs in the tree are
expanded less than with GBI. This results in a better tree structure.

All the elements that end up in the same leaf node in the seed tree are assumed to form a
cluster. Each of the clusters is then made into a small R-tree, and then the small R-trees
are inserted one by one in the existing R-tree. Just as in GBI, it’s important to insert the
small R-trees at the right height. Because the clusters were made using the seed tree, it
already knows which node is the designated insertion point in the large R-tree for each
small R-tree. Still, with the designated insertion point, there are three different scenarios
that need to be dealt with. One is that the root node in the small can create an illegal R-tree
if inserted into the large tree. This is because it not necessarily meets the min fill degree
an internal node requires. While the GBI approach ignores this, the seeded clustering
approach deals with it. The two others are if the small R-tree is too high or too low for the
selected node. These cases are dealt with. Therefore, one never get an illegal R-tree as in
the GBI approach.

Another important thing to take into consideration from this approach is that it locally
reduces overlap. As one can expect when using the seed tree there can still be much
overlap between the small R-tree and existing entries in the designated insertion point. To
decrease the overlapped area, this approach uses repacking which locally minimises the
overlap. In order to achieve this, elements from the designated node that overlaps with the
incoming R-tree are recursively repacked bottom-up. This improves query performance
drastically, actually to the point that it provides better performance that an R-tree created
in OBO fashion. It is really impressive that it beats the performance one gets from R-
tree made in OBO fashion, in both insertion and query performance. Although it beats
the regular R-tree, it would be interesting if they had experiments to show how it held up
against an R*-tree with OBO insertion, which in short is a better structured R-tree. The
R*-tree is explained in section 4.1.

They don’t discuss the durability aspect of having elements grouped in memory before
insertion. Nor do they say if the elements in memory are retrievable, or only elements in
the large tree can be retrieved. I assume that both of these remarks are handled as they are
quite common. One could, for example, do as in Googles LevelDB [9]. Meaning having a
log file for durability and make queries look up the part in memory for consistency.

22

Chapter 5
Implementation

This chapter describes the implementation done in relation to this paper. The goal was to
make an R-tree, with properties from the Bloomtree described in Chapter 3. Specifically,
it was the use of three different leaf nodes that was found appealing. Unfortunately, no
solution on how to apply the BF-Node to an R-tree was found, and the challenges that the
BF-Node imposed is described as well. Without the BF-Node the paper ended up with
a structure that only utilises the normal and the overflow node. Therefore, this structure
strongly resembles other research conducted[16] although the angle is different.

5.1 Overview

The purpose of this paper is not to create a full featured R-tree. The idea is to check out
if the concepts from the Bloomtree can be applied to an R-tree, and if they give the same
performance increase. Therefore there is no attempt here to optimise the tree, and for the
same reason, no advanced variant of the R-tree is used. Simply the basic R-tree and the
R*-tree is used to give a wide range of performance within the dynamic structures. To test
with more advanced structures would be a task for further work.

As mentioned above, only normal and overflow leafs were possible to be transferred to the
R-tree. Therefore cutting the leaf transformation from Normal → OF → BF → Normal
down to Normal→ OF→ Normal.

23

5.2 Challenges

Creating an R-tree with the Bloomtree characteristics turned out to be harder than ex-
pected. Because the R-tree has so much resemblance to the B+-tree, one would think that
it should be well manageable. However, there are many differences when digging into
it. This section cast light on those differences that makes the implementation challenging.
Note that it’s, in particular, the BF-node that is challenging to implement, if not impossible.

5.2.1 Different type of data/storage

The B+-tree is a key-value storage, where one typically asks for a value that corresponds
to a key. The R-tree on the other hand is often used as a spatial access structure where
the search is defined in several dimensions. The R-tree search can return an arbitrary
number of elements. This difference causes the challenges in the following subsections.
One shouldn’t expect less when trying to adapt some features tailored for one structure,
into another type of structure.

5.2.2 General optimisation

This problem is in general covered when making an n-dimensional structure from the B+-
tree, where the solution is to make use of MBRs in a hierarchy. Along with the MBRs,
different techniques/ideas on how to manage them best. We don’t look into this challenge
in this paper, as it’s not part of the scope. Section 2.2 describes how the R-tree works, it
doesn’t focus on how the challenge was solved.

5.2.3 BF-Node

This node poses the biggest challenge in this paper. As the part that really differentiates the
Bloomtree from other B+-trees, one would think much of the optimisation can be credited
this node. It’s therefore truly unfortunately that no suited equivalent for it was found for
the R-tree.

The problem is that a bloomfilter for the type of data in an R-tree is completely useless.
This is due to the way it’s searched and the data it contains. In the B+-tree, the keys are
excellent things to search for. They are discrete and unique within the tree. When used
in the BF-node in the Bloomtree, at most one data-node can contain the post. Such use
is ideal for a bloomfilter, that excels at use-cases where it quickly can state with certainty
that a node doesn’t contain a key. The number of false positives it gives can be tweaked to
be non-significant.

24

In the R-tree one doesn’t search for specific values, instead one queries an area that re-
turns a set of posts. Searching one and one value simply doesn’t fit the R-trees use-case.
When searching for posts within an area Q, it’s not feasible to check every possible value
in Q against the bloomfilter. For an R-tree with coordinates it would be too many possi-
ble values to test, depending on Q and the granularity of the coordinates. This makes a
bloomfilter completely useless for an R-tree.

Obviously the bloomfilter has to be replaced with a suited structure, but still, the different
type of search is a problem. Even with a head-leaf that uses suited filters, one can expect
access several data nodes for a regular search. This is because the R-tree returns an answer
set instead of at most one answer. One can’t stop after the first match but instead continue
the search through all of the filters, and their data-nodes if the filter matches. Because of
this, the BF-node might not yield a significant performance boost for the R-tree, if any at
all. There also exists a spatial bloomfilter [15], but it doesn’t quite fit the needs.

Another part that one would need to be sorted out, is the transformation from BF-node to
a normal leaf. Where one can find inspiration in various R-tree variants, especially those
using bulk insertion to insert branches into an existing R-tree. For example is the Large-
tree/Small-tree a place to take inspiration, there a small tree is constructed in memory and
inserted into the large tree as a branch at the right height. This variant is described in
Section 4.2.

Naive filter

Ideally, a new filter should be able to handle n dimensions, even tough this paper looks
at 2D points. Figure 5.1 shows a simple approach. It uses a grid that divides the points
into sections that are represented as a bitstring. If a point is in a section, the corresponding
bit is set. Given the parameter n = 3 and the length and width of the MBR as l and w,
respectively, all of the n2 sections are of equal size with width w/n and height h/n. The n
parameter is up for exploration. This filter will also be created when a node becomes solid,
just like with the Bloomtree. Creating the sections relative to data-nodes MBR means that
the MBR can’t be allowed to change afterwards. To deal with this restriction, it’s best to
use the MBR of the node that became solid. This also makes the sections for the bitstring
as tight a possible. The filter-pointer pair will then have to store this MBR as well. If one
were to use the MBR of the head-leaf, the BF-leaf would not be able to accept new points
that expand the MBR.

Depending om the overlap between the query Q and the MBR of the node, some sub-
rectangle of the filter has to be checked for occupied sections. This is done by checking
the bitstring and requires some extra CPU computation as it must calculate which bits to
check. If there’s a match on the filter, then one has to explore the pointer that corresponds
to the filter. There is no need to check the bitstring if the overlap is so large that all the
sections would have to be checked. In this case, it’s guaranteed that there’s a match in the
filter, and the pointer is explored.

25

Figure 5.1: A simple grid filter with n = 3.

This filter is also prone to false positives, in the scenario where a post is deleted without
updating the filter. There are some problems with this filter. The first is that several filters
in the head-leaf can have a match, meaning we have to access a set of extra nodes in
addition to the head-leaf. Without quantifying it, this set can be the majority of the nodes.
With more points in a node, the chance that the filters are full of 1’s increase. This could
kill performance as it basically just forces and extra read with the head-leaf and in it selves
gives a strong case for not using BF-leafs.

It’s clear that having matches in many filters and accessing many nodes defeats the pur-
pose of having the BF-leaf. The algorithm described up until now uses an active node
designated for writes. Then a uniform distribution of points would have the least use of
the filter. This is simply because uniformly distributed points in each node would give
more or less similar filters (depending on the filters granularity given by n). To deal with
this, one could try to remove the idea of active nodes. Then introduce a metric to select
which node to insert a new point in. Such metric would use ideas from the R-tree, such
as potentially expand the filter the least. In practice, this will try to fill each node with
points that cover a few sections in the filters grid. By using filters in this way the overlap
between the filters will decrease, and as the usefulness will increase. A few problems with
this is that when many of the nodes are full, then the new points have to be inserted where
there is space, regardless of how it affects the filter. Another issue could be low storage
utilisation in the event that one have many nodes that only contains a few points. It’s not
given that this will be a huge issue as they get filled up over time, and have the benefit
of accepting insertions without reconstruction. A third issue is that the overflow blocks
can’t be transformed into data-nodes as they are, this could cause bad filters. This third is-
sue would be solvable by sorting the posts, for example by clustering or tree-construction,
but this would give many extra writes in the transformation. The advantage is that these
sorted data-leafs might be good enough to transform directly to normal leafs. Effectively
changing the ”restructure step” from BF→ Normal to OF→ BF, and the total number of
operations might not differ too much.

It would seem like this naive filter would perform badly, and one would not want to im-
plement it. Also, the approach looks fairly similar to an R-tree, almost like having a fixed

26

grid instead of nicely fitted MBRs. As they look pretty much the same, it seems saner to
just drop the BF-leaf and continue to use the regular approach of R-trees with MBRs. That
beeing said, if a suited filter is found, it would be highly interesting to explore.

5.2.4 Overflow blocks

This isn’t really a new concept for an R-tree. One can almost just use the one from the
Bloomtree directly, with minor adjustments to make it work with an R-tree. Using an
overflow blocks sort of violates the R-tree principles of min fanout, as the overflow blocks
get created with one post in them.

Search performance

Compared to the Bloomtree more blocks has to be searched on average, indicating worse
search performance. For an R-tree one has to search through all of the overflow blocks,
while the Bloomtree has to search through half of the blocks on average. This isn’t that
bad as one average would have to access some extra nodes anyway, in comparison to the
Bloomtree. That some extra nodes have to be searched is ”normal” for the R-tree, and isn’t
necessarily that bad.

Insertion performance

The main reason to use overflow blocks is to avoid or at least postpone restructuring of
the tree. This saves a lot of writes as one can just add a new block and start filling it. The
alternative is to split the node into two half-full nodes, meanwhile also possibly causing
some restructuring. A downside is that overflow blocks do increase reads. It increases the
number of reads during a search and also the number of reads during an insert. This is
explained as having to read through full overflow blocks before inserting into the available
one.

One could try to make a system to avoid reading through full overflow blocks during
inserts, for example by having active nodes such as in the BF-node. However, this means
more bookkeeping and it needs an equivalent to the BF-nodes head-leaf.

Transforming to a BF-node

This wasn’t an actual problem as the BF-node wasn’t realised. However, if it was, chal-
lenges would occur. It’s not given that it would be as be as easy as just make each block
from the overflow node into a data leaf and create a leaf-node for them. Say we make a

27

filter like the naive described above, one would want to distribute the posts differently be-
tween the data-nodes. It would be good to be inspired by clusters, so that the posts within
a node is clustered. To make the filters less sparse, and in turn making the BF-node more
effective. Although the clustering can be done in memory, the overflow blocks has to be
updated and that cost a write each.

Transforming to normal node

This challenge is a result of the BF-node not being implemented. It is similar to what a
transition from a BF-node to normal leaf would have been. There are minor considerations
on what to do.

One could use the Small Tree, Large Tree method mentioned above. The method chosen
in this paper is almost the same. First, it makes a tree in memory and then inserts the leaf
nodes from it, one by one. This lets the existing structure decide where to put them, instead
than forcing in a branch that might cause much overlap. For the sake of the structure, it
would, of course, be better to insert one by one, but it comes at a high i/o cost.

5.2.5 Variants implemented

In this paper, four R-trees are implemented. Two regular ones, each with their overflow
counterpart. These two regular ones represent two different tiers of R-trees.

The first one is the basic R-tree, with the linear algorithm used. It’s not known to be a
highly performing R-tree search wise, but being fast at insertions. Fast in the sense of
runtime, not i/o. The second one was the well know R*-tree, described in Section 4.1.
These mainly differ in the way insertions and splits are handled.

Both of these trees have an overflow version as well. The only difference is that an in-
memory tree is made during the transaction from overflow node to normal node. They
use their respective tree, meaning the linear overflow tree builds a linear tree, and the R*

overflow tree uses a R*-tree. This gives an additional edge to the R*-tree.

The overflow R*-tree also have one significant difference from the regular R*-tree. The
overflow version doesn’t have forced re-insertions at the leaf level, as it simply overflows
when it gets full. And when the overflow node is full, it gets transformed to normal leafs.
In the transformation, a normal R*-tree that uses re-insertions are used, but that doesn’t
affect the read or write count. The re-insertions are something the paper [1] emphasises on
as making sure the tree doesn’t suffer from early inserted posts. It’s therefore interesting to
see how the overflow R*-tree performs when it loses this key behaviour. It still uses more
advanced metrics, so it should outperform the linear version.

28

5.2.6 Cache

Today, practically all systems have some form of caching that saves the system from un-
necessary reads. Due to the forced re-insertions in the R*-tree, it is more prone to a high
read count. Most of these re-insertions pretty much follows the same path, so a cache
would reduce the reads significantly.

In order to get a more real simulation, a virtual cache is implemented. Simply as a structure
that holds an LRU queue, in addition to counters for reads and writes. The structure has
a read method, that checks if the node asked for is in the LRU queue. If it’s not, the read
count is incremented. Either way, the node is placed at the beginning of the queue.

During a write on a node, a read is first done in the fashion above, and then the write count
is incremented. This way, written nodes ends up first in the LRU queue.

For the overflow nodes, each overflow block is treated as a node in the cache. This means
that when an overflow block with size 6 is searched, one will potentially get 6 new reads.
The overflow blocks are in the same way stored in the cache.

During this paper, the root node is assumed to always be cached. The root node is accessed
all the time during insertions and searches, regardless of tree type. Therefore this doesn’t
give skewed results but helps normalise them. Furthermore, it would be natural in a real
application to force the root node, and perhaps a few more levels, to always stay in cache.
In some papers, they have gone further and assumed that all intermediate nodes are stored
in the cache.

5.2.7 Choice of language

Implementation is done in Python. Measuring run-time in the python environment isn’t
that constructive. If it was to be used in a real application, one would probably implement
it in a more efficient language as C/C++. Python works fine for measuring simulated discs
accessed, though it is a bit slow. Much of the insertion is ”number crunching” which it
isn’t really suited for, and one notices a significant difference in runtime for the different
trees.

29

30

Chapter 6
Datasets and metrics

6.1 Datasets

There are many ways to create datasets. It is possible to make synthetic ones, or use a
subset of real data. With the synthetic ones, it’s possible to make specialised sets with cer-
tain distributions. Some of these distributions can be crafted to evaluate how the structure
performs for some unusual distributions. It’s easiest to use already made datasets, such as
[4].

The data sets that are used is in this paper is from ’A Benchmark for Multidimensional
Index Structures’ [2]. The same data sets are used when evaluating the Revised R*-tree
[3]. In the paper, all the distributions and their corresponding query sets are explained.
With 28 datasets containing a variety of real and synthetic data, points and rectangles and
up to 26 dimensions, it’s able to suit many needs. Even with its vast selection of datasets,
only some of them fit because the experimental structure only handles points in 2D. Bit02
and Uni02 distributions are used.

The datasets include insertions and searches, which cover the majority of R-tree usage. It
left as further work to see how well the structures hold up when the dataset is a mix of
insertions, deletions, searches and updates.

6.1.1 Bit02

Bit02 is a point distribution in two dimensions. It also comes at bit03 and bit09 which are
3 and 9 distributions, respectively. Three query sets follows for each dataset, where they

31

Figure 6.1: The Bit02 dataset. 1.000.000 2D datapoints.

are different in that they return about 1, 100 and 1000 answers per query. The number
of queries for the querysets decrease as the number of expected answers increase. This is
done to limit the query cost. Also, the points are listed in the query set randomly. This
means that the insertion of points is random instead of starting from one corner.

6.1.2 Uni02

Same as with Bit02, only that the distribution of the points are uniform.

Figure 6.2: The Uni02 dataset. 1.000.000 2D datapoints.

32

6.2 Metrics

In this paper, only reads and writes are measured. This is done entirely simulated in the
program, and everything is contained in RAM. Therefore one count reads and writes as
if they would have interacted with permanent storage. This is done in the manner where
accessing a node produces a read, while updating or creating a node causes a write in
addition to a read.

In some ways, just monitoring reads and writes can be viewed as unfair to some of the
structures. Especially since one often has some kind of cache layer that reduces the amount
of disk reads required. For example, the reinsert function in the R*-tree will cause it to
have extra reads. In reality, one would have a cache that would be able to eliminate many
of those reads. For example, the Revised R*-tree paper [3] assume that all non-leaf nodes
fit in memory. This eliminates a big amount of the reads. Therefore a cache is implemented
to simulate such behaviour.

Due to the language which the structures are implemented in, runtime isn’t a viable mea-
sure. Python isn’t known for its speedy performance. It’s a general purpose high-level
language that has been widely adopted the last years, also in scientific areas. Python
does provide excellent performance for certain intensive tasks trough bindings to C/C++
libraries, meaning the heavy lifting is done natively in C/C++. In this paper no such li-
braries were suited, so the runtime isn’t much to look at. If implemented for production,
the structure would probably be implemented in a more bare-metal language, where a
natural choice is C/C++.

Other measures besides runtime and i/o do exist. Some are mentioned in previous sections
as metrics different R-tree variants value. Many of these are easy enough to simulate
with software, one could, for example, measure storage utilisation. Other more structure
oriented metrics is also possible, for example, total overlap and circumference. These
metrics all correlates with each other in varying degree. The read and write count provide
a good and easy measure for the structure’s performance. Also, the bottleneck often is at
the i/o stage, therefore the only measurement in this paper is read and write count.

33

34

Chapter 7
Results

7.1 How test where done

The different structures were run several times with different datasets and parameters.
Although the R-tree generally isn’t deterministic for a dataset, the posts in the datasets
were inserted in the same order. Therefore only one run per configuration was needed. It
also makes the results reproducible and more correct, not risking that any of the runs are
lucky or unlucky. Tables with exact values for runs, which the figures in this chapter are
based on, can be found in the Appendix A. In the figures, the labels ”type− oX” reefer to
an overflow version of type with max allowed overflow blocks X . Linear and Rstar is the
linear R-tree and R*-tree, respectively.

The computer used was running Ubuntu 16.04 with i7-4770 CPU @ 3.40GHz and 16GB
RAM. Without measuring runtime, no special percussion was needed while running. The
different configuration could run in parallel without affecting each other results. Although
runtime isn’t measured, for reasons described in 6.2, the R*-tree and its overflow variants
took significantly longer time to run.

In Section 6.1 the distributions used here are described. Each distribution have three query
sets, q0, q2 and q3. Reads for queries are measures as average per query executed, and not
for the whole set. This makes it easier to compare since the sets have a different number
of queries. The buffer is reset for each query set that are executed so that none of them has
any advantages from a pre-filled cache.

35

7.1.1 Default configuration

Different parameters are changed for the runs. When nothing else is specified, the default
parameters apply. These default parameters are shown in Table 7.1. Not all parameters
affect every variant. The P grade is set as the recommended value in [1].

Note that even with cache size as 0, the root node is still cached. This mainly affects the
R*-tree which would have an even higher write count, in addition to the 1.000.000 extra
read count all of them would have.

Table 7.1: Default parameters for runs.

Configuration Value Note
Fanout 50
Min node fill 40 %
Max overflow 3 Applies to overflow variants
P grade 30 % Applies to R*-tree
Cache maxlen 0 Affects read count

7.2 Changing cache size - Bit02

Here we see how much the cache size impacts the read and write count. The overflow
structures are set to accept overflow up to three blocks, meaning that the overflow node
in practice can contain 3*fanout elements. Except from the cachesize, the parameters are
set to the default ones in Table 7.1. We use the bit02 distribution for this. Using the other
distribution, uni02, while changing cache size shows the same trends, where the biggest
difference is that the query sets start with fewer writes for cache size 0.

Figure 7.1 shows how many reads are needed to build the different trees when varying
the cache size. The figure shows results as expected, the number of reads decrease as the
cache size increases and evens out the read count. It’s also very noticeable to see that
even a small cache size helps dramatically in reducing the reads. For example, the R*-tree
reduce needed reads by around 80 % when getting a small cache. This is probably due to
re-insertions, which without a cache gives a loot more reads.

Further, we can see that with moderate cache sizes, the two with overflow have higher
read counts than those without. Also, we see that the linear R-tree type beats the R*-tree
respectively in normal and overflow variations.

When cache size is the only changed parameter, the write count stays constant for the
runs. In Figure 7.2 we see that the overflow types cuts the write count by more than half.
Another interesting thing to notice is that the write count for R*-tree and Linear isn’t that
much. One could expect it to be clearly different from the linear, due to the re-insertions,
but the difference isn’t that big.

36

Figure 7.1: Reads used to create different structures from Bit02 distribution. Fanout set to 50. Rstar
is the R*-tree. Rstar-o3 is R*-tree with max overflow as 3. Linear is the linear R-tree. Linear-o3 is
the linear R-tree with max overflow as 3.

The trends for the three query sets are just like for q0 in Figure 7.3, with the same ordering.
In fact, the lines don’t cross at any point. The only difference is that the q0 benefits
slightly more from the cache. We see this when comparing it to q3 in Figure 7.4 by q0
having a larger drop in the beginning. Another thing to notice is that both the R*-tree and
the overflow R*-tree outperforms the linear versions, although the R*-tree is unrivalled at
searches. The R*-tree doesn’t in the beginning suffer from not having a cache, in contrast
to the reads needed to construct the tree. This is because there is no re-inserts when
searching.

From Figure 7.3 and 7.4 it’s clear that the number of reads increases when the query size
increases. This is of course expected, but we see how much a large Q can request in terms
of reads.

37

Figure 7.2: Writes used to create different structures from Bit02 distribution. Fanout set to 50. Rstar
is the R*-tree. Rstar-o3 is R*-tree with max overflow as 3. Linear is the linear R-tree. Linear-o3 is
the linear R-tree with max overflow as 3.

Figure 7.3: Reads per query in q0 from Bit02 distribution. Fanout set to 50. Rstar is the R*-tree.
Rstar-o3 is R*-tree with max overflow as 3. Linear is the linear R-tree. Linear-o3 is the linear R-tree
with max overflow as 3.

38

Figure 7.4: Reads per query in q3 from Bit02 distribution. Fanout set to 50. Rstar is the R*-tree.
Rstar-o3 is R*-tree with max overflow as 3. Linear is the linear R-tree. Linear-o3 is R-tree with
max overflow as 3.

39

7.3 Changing fanout - Bit02

7.3.1 Linear R-tree

In this section, we change the fanout for different R-tree variants. The different lines rep-
resents the tree variants, the normal one and overflow variants with different max overflow
parameter. This shows how the combination of max overflow and fanout affects read and
write count.

Figure 7.5: Writes used to create different structures from Bit02 distribution. Linear is the linear
R-tree. Linear-oX is the linear R-tree with max overflow as X .

Figure 7.5 shows that all the overflow versions of the Linear R-tree have significantly less
writes than the original one. This is what we also saw in Figure 7.2, only that we here see
that it applies for all the versions and for all fanouts. We also note that the most significant
change in writes is from fanout 10 to 30.

When it comes to reads needed to create the tree, they all follow the same trend. And it’s
also clear that the more overflow blocks give an increased read count. Figure 7.6 shows
this.

From Figure 7.7 we see that one sometimes can be lucky and unlucky with the structure.
An example is that linear is expected to consume the least amount of reads for all of the
fanouts, but it has a spike at 70. Such spikes make it more difficult to read into the results.
The graph nicely layered as in Figure 7.6, which fits the theory well. It’s expected that
reads would increase as one has to search through long overflow block chains.

40

Figure 7.6: Reads used to create different structures from Bit02 distribution. Linear is the linear
R-tree. Linear-oX is the linear R-tree with max overflow as X .

Figure 7.7: Reads per query in q0 from Bit02 distribution. Linear is the linear R-tree. Linear-oX is
the linear R-tree with max overflow as X .

The same trend is also found in q2 and q3. The number of reads increases, but the relative
variance among the lines decrease. Figure 7.8 shows the reads for q3, there we see that the

41

Figure 7.8: Reads per query in q3 from Bit02 distribution. Linear is the linear R-tree. Linear-oX is
the linear R-tree with max overflow as X .

lines are more compressed together. Naturally, we still see the same spike for linear as we
saw in Figure 7.7, as it’s the same structure with just a different query set.

7.3.2 R*-tree

With the R*-tree versions, we again start by looking at the reads and writes required to
create the tree.

Figure 7.9 shows the number of writes needed. We notice at once that there is one outlier,
the standard R*-tree without overflow blocks. This one has significantly more reads than
the rest which is grouped together lower down. We also see that the pattern follows our
expectations that more overflow blocks mean less writes. When the fanout increases the
difference between the overflow versions practically vanish. Thus the big difference lies
in the fact that the standard R*-tree has re-insertions that cause a lot of more writes. It
also helps a long way that the overflow version creates the new nodes in memory after an
overflow leaf is to be transformed to a normal leaf.

Furthermore, in Figure 7.10 we also see that a pretty similar trend for the reads required
to create the R*-tree. Again the standard R*-tree requires a significantly more i/o than the
ones with overflow. We also see that the overflow lines are reversed compared to Figure
7.9, meaning that more overflow blocks result in more reads. This is expected, and the
reasons are explained in Chapter 5.

42

Figure 7.9: Writes used to create different structures from Bit02 distribution. Rstar is the R*-tree.
Rstar-oX is the R*-tree with max overflow as X .

Keep in mind that we saw a big decrease in Figure 7.1 for reads by the R*-tree when it was
aided by a cache. In Figure 7.10 the cache size is 0, so a similar improvement is likely to
apply here given a cache.

The graphs in Figure 7.11 are unexpected. The standard R*-tree acts as normal and shows
that an increase in fanout greatly increases the performance of the searches. This is at least
the case when going from 10 and up to 50, after 50 there isn’t any further improvement.
The performance is great after 50. In fact, for q0, the Linear R-tree uses same roughly
reads when fanout is 100, as the R*-tree uses when fanout is 10. This is a huge difference.

The overflow versions don’t have any performance gain when increasing the fanout. In
fact, it the performance is generally worse when fanout is increasing. We also find the
trend that the overflow versions are stacked/sorted in the order of their overflow blocks,
meaning Rstar-o2 at the bottom and Rstar-o6 at the top, this is expected. However it’s
surprising to see that the performance is worse for increased fanout, the overflow versions
of the linear do benefit from increased fanout. This could come from the chaining of
overflow block resulting in higher reads as one has to read through them all when an
overflow leaf is accessed. Note that the performance is better for all fanouts than the linear
versions have at fanout 100.

For q2, shown in Figure 7.12, the overall reads naturally goes up. Here the standard R*-
tree still massively outperform the overflow versions. However, in contrast to q0 in Figure
7.11, the overflow versions actually reports an increase in performance with higher fanout.
Not by far the same performance gain as the standard tree sees. It’s interesting to see

43

Figure 7.10: Reads used to create different structures from Bit02 distribution. Rstar is the R*-tree.
Rstar-oX is the R*-tree with max overflow as X .

Figure 7.11: Reads per query in q0 from Bit02 distribution. Rstar is the R*-tree. Rstar-oX is the
R*-tree with max overflow as X .

that for high fanout, the overflow versions has pretty similar performance. Reads between
40− 50 for q2 and 30− 40 for q0.

44

Figure 7.12: Reads per query in q2 from Bit02 distribution. Rstar is the R*-tree. Rstar-oX is the
R*-tree with max overflow as X .

Figure 7.13: Reads per query in q3 from Bit02 distribution. Rstar is the R*-tree. Rstar-oX is the
R*-tree with max overflow as X .

For the last query set, q3 shown in Figure 7.13, we see that the gap between standard R*-
tree and the overflow versions are closing even more. This gap is still about 50 reads for

45

fanouts above 40, a little more than for q2. But the gap is relatively smaller compared to
the improvement all the structures see from 10 to 30 fanout.

7.4 Changing fanout - Uni02

7.4.1 Linear R-tree

In this section we do the same as the last, but for the Uni02 distribution. This gives a clue
about problems that might only occur in some distributions.

Figure 7.14: Writes used to create different structures from Uni02 distribution. Linear is the linear
R-tree. Linear-oX is the linear R-tree with max overflow as X .

Figure 7.14 shows writes needed to build the structure. It is almost identical to the one for
bit02, and there’s hardly any difference. This also goes for the read count in Figure 7.15.
This is probably because the same number of posts are added, which roughly produces
the same number of splits. Also, a split causes less extra reads and writes in the linear
tree than the R*-tree. This could explain why the figures are almost the same for the two
distributions. Again it would highly benefit from a cache.

For the performance of q0, shown in Figure 7.16, one sees hints of linear being the best
and linear-06 the worst. It also generally performs better than for the Bit02 distribution,
but it also shows unexpected behaviour. The performance for q0 is again unexpected in
that the performance improves until fan-out 50, and then gets worse. As we remember
from Bit02, the performance had a spike for the linear version at fanout 70, but the all over

46

Figure 7.15: Reads used to create different structures from Uni02 distribution. Linear is the linear
R-tree. Linear-oX is the linear R-tree with max overflow as X .

Figure 7.16: Reads per query in q0 from Uni02 distribution. Linear is the linear R-tree. Linear-oX
is the linear R-tree with max overflow as X .

performance was increasing. It could have something to do with the nodes getting bigger
and resulting in much overlap, and therefore also several paths one has to read.

47

Figure 7.17: Reads per query in q2 from Uni02 distribution. Linear is the linear R-tree. Linear-oX
is the linear R-tree with max overflow as X .

With q2 the trend from q0 continues. Only linear-o6 stands out as it has a performance
increase throughout the graph. For q3 it seems more like it spikes at fanout 70, and then
have a slight performance increase to 100 again.

7.4.2 R*-tree

Again, shown in Figure 7.19 and 7.20, one can hardly see any difference in construction
cost between the Bit02 and the Uni02.

The query performance for the overflow R*-tree variants is interesting. The standard R*-
tree does a great job for all the sets, and is clearly better than the overflow versions. This
applies for q0, q2 and q3. For the overflow versions, they seem to have the same waypoint
at fanout 50 as the linear versions also had for Uni02. For q0, in Figure 7.21, it seems like
the overflow versions are varying around the same performance until fanout 50. Beyond
that, they all have decreased performance.

For q2, in Figure 7.22, we see a clear improvement until fanout 50. But again the perfor-
mance decrease afterwards. In q3, the structure has a performance gain from 10 to 50 but
flattens out with only a slight performance gain until 100. Figure 7.23 shows this.

48

Figure 7.18: Reads per query in q3 from Uni02 distribution. Linear is the linear R-tree. Linear-oX
is the linear R-tree with max overflow as X .

Figure 7.19: Writes used to create different structures from Uni02 distribution. Rstar is the R*-tree.
Rstar-oX is the R*-tree with max overflow as X .

49

Figure 7.20: Reads used to create different structures from Uni02 distribution. Rstar is the R*-tree.
Rstar-oX is the R*-tree with max overflow as X .

Figure 7.21: Reads per query in q0 from Uni02 distribution. Rstar is the R*-tree. Rstar-oX is the
R*-tree with max overflow as X .

50

Figure 7.22: Reads per query in q2 from Uni02 distribution. Rstar is the R*-tree. Rstar-oX is the
R*-tree with max overflow as X .

Figure 7.23: Reads per query in q3 from Uni02 distribution. Rstar is the R*-tree. Rstar-oX is the
R*-tree with max overflow as X .

51

7.5 Changing fanout with cache size 1000 - Uni02

As suggested in Figure 7.2, having a cache will dramatically reduce the reads needed. By
the figure, 1000 seems to be a good choice as it’s a reasonable size, and the improvement
seems to decrease afterwards. Uni02 is used as there were the most unexpected results
with that dataset.

7.5.1 Linear R-tree

The writes are of course the same as in Figure 7.14. The reads in Figure 7.24 has decreased
a lot, to the point that they are all better than one without cache had at fanout 100. The
trend is similar, but now the linear R-tree is noticeable better than the overflow versions.
This makes sense because one has to read through the full overflow blocks before finding
an available one to insert the post into.

Figure 7.24: Reads used to create different structures from Uni02 distribution, cache size 1000.
Linear is the linear R-tree. Linear-oX is the linear R-tree with max overflow as X .

For the query sets, the read count is reduced by about 30-40 reads on average and the
increase from fanout 50 to fanout 70 is less apparent.

52

7.5.2 R*-tree

Like the previous section, the number of writes is unchanged. The read count is another
story. The noticeable thing here where cache size is 1000, in contrast to when it’s 0, is that
the R*-tree uses fewer reads than the overflow ones. Also, the read count is significantly
reduced, for the R*-tree by up to 17.000.000 or down to 15 %. This is shown in Figure
7.25.

Figure 7.25: Reads used to create different structures from Uni02 distribution, cache size 1000.
Rstar is the R*-tree. Rstar-oX is the R*-tree with max overflow as X .

Figure 7.26 shows that the query performance for q0 has improved quite a bit with the use
of a cache. Besides the lower read count, the performance doesn’t decrease after fanout
50. It rather just keeps the same performance level, with a slight improvement as fanout
increases. The same applies for q2. The last query set, q3, isn’t that affected by the
larger query size. The only difference is that the overflow versions perform better for high
fanouts.

53

Figure 7.26: Reads pr query in q0 from Uni02 distribution, cache size 1000. Rstar is the R*-tree.
Rstar-oX is the R*-tree with max overflow as X .

54

Chapter 8
Discussion

From the results, it can be seen that the R*-tree and the linear R-tree presents quite different
results. All overflow versions outperform the original ones in regard of writes to create
the trees, for both distributions and regardless of cache size. The overflow versions also
require far fewer reads to create the structure when the cache size is 0, but this flips when
a cache i utilised. This flip is perhaps because that with overall less reads, the reads when
inserting in an overflow node becomes noticeable. The cache also greatly reduces the
overall reads for creating the tree.

When it comes to the queries, the non-overflow versions performs better. Especially is
the R*-tree great and clearly better. The linear often has quite similar performance as its
overflow versions, but tend to be in the lower level of plotted lines. Using a cache reduces
their reads, especially for q0 and q2 where small query rectangles are requested. The
largest queries, those in q3, don’t benefit as much from the cache. All over we see that we
greatly benefit from having a cache, even a moderate one for 1000 nodes.

Depending on the workload, the results would vary. Here the tree is first constructed
and then queried. Other types of workload included deletions and updates, as well as
queries and insertions. Arguably, the q0 performance from our results is most important
for workload work deletions and insertions. Simply because updates and deletes require
that one search and finds the post first, and then potentially trigger a restructure. Another
argument to prioritise good query performance is that a tree usually handles more queries
than insertions.

The types of trees tested represent two different tiers of R-tree, one good and one less god.
The well-developed R*-tree would not benefit from implementing an overflow node. It
would be an expensive trade between reads and writes.

55

For the linear R-tree, it is plausible. The non-overflow version tends to have better read
count, but they are more grouped together compared the R*-tree versions. With a max overflow
of 2 and fanout of 50, the reads for queries are about the same, but one saves some writes.
Unfortunately the non-overflow requires fewer reads when constructing the tree. Never
the less, this is better than the OB+-tree that had 270 % more reads to save 17 % writes.
This proves that overflow blocks alone work better for R-trees than for B+-tree, at least for
some R-tree variants. In the end, one would have to look at the workload for the tree to
see if it’s beneficial.

8.1 Unexpected results

In this simulation, we don’t take into account that all nodes might not fit into a block in
storage. For example is typically one block in storage 4KB, and if the fanout is large,
one might need several such blocks to store a node. Therefore it is not realistic to increase
fanout indefinitely, without increasing number of nodes accessed. In a real system, one
would make sure to select a fanout that fits the filsystem’s blocksize.

Because this simulation doesn’t take storage blocks into account, it can be presumed that it
would be beneficial to increase fanout as much as possible. A large fanout will increase the
number of post or new nodes accessed from a node, and therefore decreasing the number
of reads needed. The results on the other hand, shows that this isn’t the case. Several of
the figures show that the number of reads is reduced until fanout 50, and then increased
after 50 until fanout reaches 70. This is not expected.

It is uncertain why this happens. One reason could be that with the nodes gets a larger
MBR and overlap, which gives more paths to search. In the Revised R*-tree[3], they
experiment and find that a fanout of about 100 is best for that tree. Although it’s not the
same structure as those in this paper, it’s unexpected that the difference is that high.

8.2 Comparison to OR-tree

Because only the overflow leaf was made, the versions in this tree is pretty similar as the
OR-tree[16]. Although they have a different focus, it’s interesting to see if the findings
are about the same. It is not possible to directly compare as they have a buffer to delay
writes to a permanent storage, while this paper caches the latest lockups and writes to the
permanent storage. Furthermore, the workloads and R-tree versions are different.

They don’t explicitly say which R-tree they use as a base, but based on their ChooseLeaf
algorithms it looks like like the one from Gutmann[10]. With their setup, they find that the
OR-tree outperforms their standard R-tree by far when creating the tree. On the contrary,
our results say that with a cache of 1000, the Linear R-tree uses fewer reads when con-

56

structing the tree, but that it’s all over plausible for a linear R-tree. The R*-tree doesn’t all
over benefit from the overflow nodes in our paper, and it would be interesting to see them
compare their OR-tree with such a structure.

Our tree and simulation don’t show the same performance increasement. But they make
it specialised against flash storage such as SSDs, and uses a buffer in their simulation.
Perhaps our structures would have shown the same performance given a buffer instead.

57

58

Chapter 9
Conclusion

It is clear that the B+-tree and the R-tree is similar in many ways, but different enough to
make some concepts work on one and not the other. No equivalent for the Bloomtrees BF-
node was found, as there was no suited filter to replace the bloomfilter and the bloomfilter
wouldn’t work on an R-tree. This is due to the differences in data stored and how they
are searched, which effectively makes the boomfilter useless for an R-tree even tough it’s
highly effective for a B+-tree.

Unfortunately, it’s the BF-node that was the most interesting part about the Bloomtree.
Without that part figured out for the R-tree, the concepts left from the Bloomtree to use
was the overflow node. This is a known strategy, that has also been successfully applied
to an R-tree before.

By implementing the overflow strategy for a couple of R-tree variants, and varying the
amount of overflow blocks allowed, we confirmed that the utilising overflow blocks de-
creases number of writes needed. Not unexpected, it also increases the number of reads.
This means one trades reads for writes, as it’s often more suited for SSD characteristics.
For the less advanced Linear R-tree, it seems like a plausible ting to do. And that just util-
ising overflow blocks works better than on the OB+-tree. Although we preferably would
like to be storage agnostic, it shows that overflow strategy could work.

• RQ1: Is it possible to apply the concepts of the Bloomtree to an R-tree?

• RQ2: Does this new solution have the same performance achievement as the Bloomtree?

To summarise in terms of the research questions. RQ1 was partly successful, parts of the
Bloomtree was applied to an R-tree, although it only was the overflow part. RQ2 isn’t pos-
sible to answer, without the BF-node the structures aren’t quite comparable. However, the

59

linear version seemed to in some cases save both reads and writes by just using overflow.
The decrease in reads was not was not at all indicated for R*-trees with overflow.

60

Chapter 10
Further work

There is no doubt that good R-tree variants exist for various applications and storage medi-
ums. But as technology moves along there are possibilities to make it even better. As there
wasn’t found an replacement for the Bloomtrees BF-node in this paper, it would be inter-
esting to find a replacement and check if there’s a significant performance improvement.
There are many challenges here as highlighted in Chapter 5.

Based on this paper one could try to incorporate the overflow node in other R-tree variants,
as well as test it further on more distributions and vary the workload. It’s possible to
experiment with the overflow node. For example with inspiration from the head-leaf in the
Bloomtree, and try and freeze some blocks in order to save reads on insertions. Another
part is to improve the transformation from overflow node to normal node, given of course
that no replacement for the BF-node is found. For this part, inspiration could be taken
from different R-trees that uses bulk insertion [5, 12, 6].

Another path that can be explored is to a larger degree defy the R-tree structure, in regards
to min-fanout and height. One could, for example, add levels further than what the tree has
elements for. This is sort of like starting a new R-tree at leaf level. Further one could try to
allow splits to be divided into more than two partitions. This can be done trough k-means
clustering or an arbitrary number through hierarchical clustering. The last thing is to let
new elements get their own leafs if they otherwise would require too much enlargement
on existing MBRs.

Additionally, one could try and utilise parallelism in new hardware. This is more like
adding resources rather than improving the structure, but it should give improved results.
This could enable even more advanced algorithms for insertions and splits, which again
improves the structure. This would probably mainly improve runtime, which isnt the focus
of this paper.

61

62

Bibliography

[1] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The
r*-tree: An efficient and robust access method for points and rectangles. SIGMOD
Rec., 19(2):322–331, May 1990.

[2] Norbert Beckmann and Bernhard Seeger. A benchmark for multidimensional in-
dex structures. http://www.mathematik.uni-marburg.de/˜seeger/
rrstar/index.html. [Online; accessed June-2017].

[3] Norbert Beckmann and Bernhard Seeger. A revised r*-tree in comparison with re-
lated index structures. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’09, pages 799–812, New York, NY,
USA, 2009. ACM.

[4] Juan Castaeda. Sequoia 2000. http://meteora.ucsd.edu/s2k/s2k_
home.html. [Online; accessed 14-December-2016].

[5] Li Chen, Rupesh Choubey, and Elke A. Rundensteiner. Bulk-insertions into r-trees
using the small-tree-large-tree approach. In Proceedings of the 6th ACM Interna-
tional Symposium on Advances in Geographic Information Systems, GIS ’98, pages
161–162, New York, NY, USA, 1998. ACM.

[6] Rupesh Choubey, Li Chen, and Elke A. Rundensteiner. Gbi: A generalized r-tree
bulk-insertion strategy. In In Proceedings of International Symposium on Spatial
Databases, pages 91–108, 1999.

[7] Justin DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stonebraker, and Stan
Zdonik. Anti-caching: A new approach to database management system architec-
ture. Proceedings of the VLDB Endowment, 6(14):1942–1953, 2013.

[8] R Elmasri and S Navathe. Fundamentals of Database Systems, ed 7. Pearson Edu-
cation, 2015.

63

http://www.mathematik.uni-marburg.de/~seeger/rrstar/index.html
http://www.mathematik.uni-marburg.de/~seeger/rrstar/index.html
http://meteora.ucsd.edu/s2k/s2k_home.html
http://meteora.ucsd.edu/s2k/s2k_home.html

[9] Sanjay Ghemawat and Jeff Dean. Leveldb, a fast and lightweight key/value database
library by google. https://github.com/google/leveldb. [Online; ac-
cessed 13-December-2016].

[10] Antonin Guttman. R-trees: a dynamic index structure for spatial searching, vol-
ume 14. ACM, 1984.

[11] Peiquan Jin, Chengcheng Yang, Christian S Jensen, Puyuan Yang, and Lihua Yue.
Read/write-optimized tree indexing for solid-state drives. The VLDB Journal, pages
1–23, 2015.

[12] Taewon Lee, Bongki Moon, and Sukho Lee. Bulk Insertion for R-Tree by Seeded
Clustering, pages 129–138. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[13] Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N Papadopoulos, and
Yannis Theodoridis. R-trees: Theory and Applications. Springer Science & Business
Media, 2010.

[14] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob Lev-
erich, David Mazières, Subhasish Mitra, Aravind Narayanan, Guru Parulkar, Mendel
Rosenblum, et al. The case for ramclouds: scalable high-performance storage en-
tirely in dram. ACM SIGOPS Operating Systems Review, 43(4):92–105, 2010.

[15] Paolo Palmieri, Luca Calderoni, and Dario Maio. Spatial bloom filters: enabling
privacy in location-aware applications. In International Conference on Information
Security and Cryptology, pages 16–36. Springer, 2014.

[16] Na Wang, Peiquan Jin, Shouhong Wan, Yinghui Zhang, and Lihua Yue. OR-Tree:
An Optimized Spatial Tree Index for Flash-Memory Storage Systems, pages 1–14.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

64

https://github.com/google/leveldb

Appendix A
Appendix

65

Table A.1: Bit02 distribution, fanout 50, p grade 30%, min fill 40%.

cache size type reads writes q0 q2 q3
0 linear 5569859 2625244 56.26826 79.1493 146.841024
100 linear 1675831 2625244 46.37226 71.6431 146.156448
500 linear 1020208 2625244 33.19202 57.4635 128.362200
1000 linear 755872 2625244 27.26763 50.9939 119.802781
5000 linear 203981 2625244 13.02740 31.0321 87.276233
10000 linear 77311 2625244 7.32850 20.3362 62.943110
0 linear-o3 5909057 1125393 81.64936 115.5343 205.062895
100 linear-o3 3316349 1125393 71.24374 112.0136 204.931732
500 linear-o3 2374747 1125393 52.42113 87.8072 180.516751
1000 linear-o3 1825636 1125393 44.79918 78.9271 168.087547
5000 linear-o3 367031 1125393 23.64641 48.9442 117.213970
10000 linear-o3 89638 1125393 13.28587 30.2860 79.486726
0 Rstar 10116073 2750565 4.47062 11.0540 45.121997
100 Rstar 1855035 2750565 2.51984 9.5213 43.859039
500 Rstar 1365074 2750565 1.99600 8.6195 42.664981
1000 Rstar 1092867 2750565 1.68114 8.2110 41.516435
5000 Rstar 558736 2750565 0.96158 6.3816 34.804994
10000 Rstar 321507 2750565 0.75701 4.9919 27.716498
0 Rstar-o3 5827054 1078056 36.57871 54.3434 109.686157
100 Rstar-o3 3578425 1078056 29.60913 49.0000 107.729140
500 Rstar-o3 2917999 1078056 21.62898 40.3325 97.098925
1000 Rstar-o3 2501355 1078056 17.89286 35.8912 90.900126
5000 Rstar-o3 1254042 1078056 8.66609 21.9703 66.490202
10000 Rstar-o3 618212 1078056 4.76164 14.1448 46.441846

66

Table A.2: Bit02 distribution, p grade 30%, min fill 40%, cachesize 0.

fanout type reads writes q0 q2 q3
10 Linear 9058221 3254008 119.71418 196.4575 470.588180
30 Linear 6460917 2710951 74.48847 109.8951 218.920986
50 Linear 5569859 2625244 56.26826 79.1493 146.841024
70 Linear 5447202 2594201 75.16231 102.3342 173.204804
100 Linear 5169252 2574937 42.71482 57.8384 100.736410
10 Linear-o2 9764845 1860806 161.03629 254.3142 547.089128
30 Linear-o2 6406846 1267011 86.68284 124.0763 234.090708
50 Linear-o2 5477820 1153759 76.09833 103.8144 179.859671
70 Linear-o2 5247548 1106590 61.39588 84.5964 147.655815
100 Linear-o2 4733694 1071580 51.98674 68.7182 113.207016
10 Linear-o3 9881357 1708670 79.87055 145.4671 381.722819
30 Linear-o3 6743517 1218341 112.51546 155.1897 275.286979
50 Linear-o3 5909057 1125393 81.64936 115.5343 205.062895
70 Linear-o3 5641343 1087554 61.73784 85.4172 146.210809
100 Linear-o3 5083905 1060363 55.38132 70.0531 110.717446
10 Linear-o4 9984747 1628232 129.93709 212.8188 478.647282
30 Linear-o4 6984242 1191536 123.82194 177.5075 316.802781
50 Linear-o4 6238002 1107626 66.30311 91.3740 163.447219
70 Linear-o4 5984030 1077287 63.64435 85.1466 142.713654
100 Linear-o4 5322936 1051306 56.95458 73.4091 117.412137
10 Linear-o5 10215342 1581930 143.55743 242.3223 541.724083
30 Linear-o5 7236764 1171662 82.29556 122.6947 234.703540
50 Linear-o5 6545941 1099269 73.56321 97.8469 168.211125
70 Linear-o5 6272716 1069153 74.82256 97.6633 157.931416
100 Linear-o5 5614720 1046993 56.71347 72.2457 113.870417
10 Linear-o6 10464908 1537358 138.24662 237.7460 534.501264
30 Linear-o6 7455782 1157045 105.27937 144.7285 257.209861
50 Linear-o6 6831889 1094601 89.37022 120.2977 205.510746
70 Linear-o6 6579708 1062519 77.24877 98.9290 159.611568
100 Linear-o6 5856562 1041762 64.53639 85.4897 139.336283

67

Table A.3: Bit02 distribution, p grade 30%, min fill 40%, cachesize 0.

fanout type reads writes q0 q2 q3
10 Rstar 19807416 4186447 42.21144 82.5903 277.697851
30 Rstar 12599282 3017522 11.11538 22.9060 81.785082
50 Rstar 10116073 2750565 4.47062 11.0540 45.121997
70 Rstar 9718206 2664771 4.57287 9.7390 34.902655
100 Rstar 8834829 2592094 4.53152 8.5046 26.862832
10 Rstar-o2 9559546 1657153 23.08091 61.5187 245.060683
30 Rstar-o2 6237711 1178833 32.36142 54.6197 134.161820
50 Rstar-o2 5399330 1098588 33.56215 50.1702 104.801201
70 Rstar-o2 5177115 1068201 30.59455 44.3923 86.811315
100 Rstar-o2 4665981 1044586 32.39007 43.5375 76.814159
10 Rstar-o3 9617100 1540841 32.42972 76.7028 268.352718
30 Rstar-o3 6583101 1144755 34.22906 57.2301 136.405499
50 Rstar-o3 5827054 1078056 36.57871 54.3434 109.686157
70 Rstar-o3 5571218 1052870 35.16848 48.8205 90.896650
100 Rstar-o3 4974699 1034913 32.72449 43.8847 76.155815
10 Rstar-o4 9854350 1479295 36.26631 82.7097 278.311315
30 Rstar-o4 6867610 1126454 36.94776 60.1964 139.584387
50 Rstar-o4 6170000 1066725 37.55931 55.2580 110.964918
70 Rstar-o4 5924434 1045910 39.76116 54.7054 98.242099
100 Rstar-o4 5225833 1030290 35.71028 47.5940 81.712073
10 Rstar-o5 10041506 1437156 33.64381 79.4025 269.488622
30 Rstar-o5 7153616 1115247 41.52387 66.8034 148.763590
50 Rstar-o5 6469111 1061043 38.50851 55.5593 109.402023
70 Rstar-o5 6212572 1041938 39.54909 54.0668 96.940265
100 Rstar-o5 5523205 1027442 33.47554 45.6820 79.411188
10 Rstar-o6 10321594 1406416 39.48453 89.1686 286.137800
30 Rstar-o6 7370285 1107203 46.47203 71.5068 153.992099
50 Rstar-o6 6764149 1057801 42.86227 60.7798 116.438053
70 Rstar-o6 6473314 1039054 45.56908 60.7618 106.004741
100 Rstar-o6 5822793 1025430 36.43809 48.3650 81.966182

68

Table A.4: Uni02 distribution, fanout 50, p grade 30%, min fill 40%.

cache size type reads writes q0 q2 q3
0 linear 5567629 2625124 33.32062 51.6585 112.801201
100 linear 1713579 2625124 28.47964 47.9682 111.702276
500 linear 1092693 2625124 21.40804 40.7989 103.449115
1000 linear 822435 2625124 17.66346 36.5491 97.696587
5000 linear 249297 2625124 8.75367 23.6015 73.836915
10000 linear 94364 2625124 5.19335 16.2683 55.564791
0 linear-o3 5905723 1128400 46.42080 68.4458 134.314791
100 linear-o3 3401815 1128400 41.41405 64.5387 133.767067
500 linear-o3 2548261 1128400 33.09963 55.9720 123.385588
1000 linear-o3 2041788 1128400 28.59644 50.8372 116.520228
5000 linear-o3 524394 1128400 15.51414 33.0710 86.136852
10000 linear-o3 110970 1128400 9.03077 21.7644 61.634640
0 Rstar 10597720 2869685 4.80199 11.8211 46.864728
100 Rstar 1849782 2869685 2.78740 10.2455 45.519595
500 Rstar 1357947 2869685 2.19529 9.2594 44.214918
1000 Rstar 1081686 2869685 1.84892 8.8267 43.055626
5000 Rstar 541874 2869685 1.05472 6.7903 36.044248
10000 Rstar 302529 2869685 0.81263 5.2359 28.302781
0 Rstar-o3 5833230 1077685 21.21346 36.5103 87.991466
100 Rstar-o3 3607128 1077685 18.67578 34.4471 86.609987
500 Rstar-o3 2993719 1077685 15.05041 30.9178 82.927939
1000 Rstar-o3 2594242 1077685 12.82499 28.3221 79.172882
5000 Rstar-o3 1358494 1077685 6.65358 18.9719 60.726296
10000 Rstar-o3 695057 1077685 3.82365 12.8729 44.563527

69

Table A.5: Uni02 distribution, p grade 30%, min fill 40%, cachesize 0.

fanout type reads writes q0 q2 q3
10 linear 9069467 3277016 94.80629 162.0423 421.250948
30 linear 6448826 2721875 64.21984 96.8134 201.900442
50 linear 5567629 2625124 33.32062 51.6585 112.801201
70 linear 5439213 2597714 60.67503 80.2289 136.981037
100 linear 5176336 2574645 56.26316 71.6406 114.986726
10 linear-o2 9741011 1876363 81.73628 146.9883 391.851138
30 linear-o2 6410609 1273691 83.46712 119.9680 231.536030
50 linear-o2 5488075 1155967 38.83874 59.4032 122.242099
70 linear-o2 5263778 1110310 57.66208 76.9900 132.873894
100 linear-o2 4787005 1076378 55.46535 71.1288 114.888748
10 linear-o3 9900381 1733343 107.61058 187.3924 457.333123
30 linear-o3 6732237 1221917 67.45773 102.5159 209.404867
50 linear-o3 5905723 1128400 46.42080 68.4458 134.314791
70 linear-o3 5657149 1089139 64.90886 85.4205 142.480405
100 linear-o3 5112249 1058338 57.55166 72.0528 112.420354
10 linear-o4 10010962 1651104 128.13627 212.0036 489.326485
30 linear-o4 6967829 1197044 53.98089 84.2970 179.453224
50 linear-o4 6233362 1111199 50.53421 73.7319 141.563527
70 linear-o4 5993841 1079243 62.77230 82.1085 136.479772
100 linear-o4 5359247 1050211 69.67185 86.0559 130.615676
10 linear-o5 10252164 1595636 92.52488 165.4559 416.383059
30 linear-o5 7263952 1178967 81.00162 117.6659 226.529393
50 linear-o5 6562375 1103347 57.03313 80.3948 148.979140
70 linear-o5 6256803 1072085 59.21163 78.0904 131.667509
100 linear-o5 5609956 1047995 75.84640 92.3425 136.517383
10 linear-o6 10444100 1557824 127.07788 215.8604 502.136220
30 linear-o6 7471471 1167466 101.40986 140.1994 254.298040
50 linear-o6 6840199 1094162 76.40820 101.0748 170.578382
70 linear-o6 6542297 1067647 73.31299 94.1469 153.195006
100 linear-o6 5842202 1043884 60.45503 75.6635 117.478192

70

Table A.6: Uni02 distribution, p grade 30%, min fill 40%, cachesize 0.

fanout type reads writes q0 q2 q3
10 Rstar 20149782 4182491 14.16658 45.8342 221.705120
30 Rstar 12893930 3051549 5.73245 15.9959 71.880215
50 Rstar 10597720 2869685 4.80199 11.8211 46.864728
70 Rstar 10174206 2778737 4.46807 9.7527 35.479772
100 Rstar 9208529 2728672 4.34282 8.4530 27.424463
10 Rstar-o2 9485711 1667828 24.22458 66.1803 261.706068
30 Rstar-o2 6236219 1177205 21.99437 42.4173 120.006637
50 Rstar-o2 5400807 1098599 22.34350 37.5805 90.202276
70 Rstar-o2 5160115 1067465 28.96481 42.3382 84.530025
100 Rstar-o2 4622502 1044871 36.99519 48.4766 82.834703
10 Rstar-o3 9623188 1546149 20.23576 60.0678 246.613780
30 Rstar-o3 6586706 1144011 25.66453 47.5054 127.472819
50 Rstar-o3 5833230 1077685 21.21346 36.5103 87.991466
70 Rstar-o3 5599838 1051825 30.02909 43.5289 85.740834
100 Rstar-o3 5023820 1035338 34.61061 45.7189 79.153919
10 Rstar-o4 9794191 1483744 23.72543 65.5773 253.547408
30 Rstar-o4 6811118 1126260 26.47182 48.4907 126.693742
50 Rstar-o4 6171867 1067860 25.74115 42.2845 95.816372
70 Rstar-o4 5903839 1046519 34.06239 48.7367 92.603034
100 Rstar-o4 5274501 1031352 38.16421 50.5683 86.174779
10 Rstar-o5 10061301 1439602 24.67238 67.5022 255.804046
30 Rstar-o5 7076391 1115682 27.44996 49.8969 127.986410
50 Rstar-o5 6477036 1061124 26.41920 43.0549 97.300885
70 Rstar-o5 6232179 1041055 34.66613 48.6770 91.165297
100 Rstar-o5 5505374 1027321 37.73480 49.1837 82.841972
10 Rstar-o6 10275960 1407892 30.34049 75.6355 267.775601
30 Rstar-o6 7394619 1107797 33.07367 56.9320 138.225348
50 Rstar-o6 6794787 1058198 27.66279 43.8124 96.646650
70 Rstar-o6 6475515 1038313 34.73121 48.7595 91.424779
100 Rstar-o6 5815017 1025874 39.66822 51.8009 87.002212

71

Table A.7: Uni02 distribution, p grade 30%, min fill 40%, cachesize 1000.

fanout type reads writes q0 q2 q3
10 linear 2352626 3277016 61.80118 134.1018 401.297408
30 linear 983235 2721875 35.33720 69.7154 178.301833
50 linear 822435 2625124 17.66346 36.5491 97.696587
70 linear 483514 2597714 27.34881 47.0475 103.661188
100 linear 406998 2574645 19.61997 34.6277 76.565424
10 linear-o2 3714898 1876363 53.58556 123.4500 374.884640
30 linear-o2 1978326 1273691 47.90072 86.0013 200.717762
50 linear-o2 1856598 1155967 22.28456 43.0949 105.858407
70 linear-o2 1400976 1110310 27.49231 46.9261 102.094185
100 linear-o2 1320014 1076378 20.24887 35.4606 76.872946
10 linear-o3 3867434 1733343 74.07750 158.8701 436.232301
30 linear-o3 2404041 1221917 40.97399 77.3137 186.065740
50 linear-o3 2041788 1128400 28.59644 50.8372 116.520228
70 linear-o3 1616805 1089139 32.53368 53.0234 109.211441
100 linear-o3 1556880 1058338 22.58639 36.4424 75.490202
10 linear-o4 3906613 1651104 95.06424 183.7231 468.229140
30 linear-o4 2862677 1197044 33.98237 65.0779 161.554678
50 linear-o4 2262031 1111199 31.25243 54.5518 122.132743
70 linear-o4 1914163 1079243 31.18691 50.4684 104.134640
100 linear-o4 1713137 1050211 25.27841 40.8677 82.921934
10 linear-o5 4524282 1595636 70.19999 147.0206 402.436157
30 linear-o5 2822455 1178967 52.87477 90.5635 201.116625
50 linear-o5 2430417 1103347 35.45598 58.9407 127.594817
70 linear-o5 2140275 1072085 29.76042 48.5811 101.056574
100 linear-o5 1783920 1047995 28.47678 43.9321 85.628635
10 linear-o6 4389376 1557824 97.53142 190.9307 482.925411
30 linear-o6 2812068 1167466 66.64524 106.7407 223.467446
50 linear-o6 2620836 1094162 42.29066 67.2091 137.548989
70 linear-o6 2083465 1067647 38.83697 59.9610 118.359987
100 linear-o6 1946987 1043884 25.88781 40.3385 79.693110

72

Table A.8: Uni02 distribution, p grade 30%, min fill 40%, cachesize 1000.

fanout blocks reads writes q0 q2 q3
10 Rstar 2943592 4182491 8.89929 41.6935 217.877686
30 Rstar 1479612 3051549 2.25572 12.6663 67.961441
50 Rstar 1081686 2869685 1.84892 8.8267 43.055626
70 Rstar 885719 2778737 1.34795 6.6459 31.287611
100 Rstar 764251 2728672 1.09844 5.0449 22.902971
10 Rstar-o2 4156785 1667828 15.81597 59.5731 256.143805
30 Rstar-o2 2620078 1177205 13.58819 34.6105 112.001580
50 Rstar-o2 2175828 1098599 12.79928 28.2758 80.326802
70 Rstar-o2 1908715 1067465 12.73541 25.9931 67.409292
100 Rstar-o2 1664865 1044871 11.87691 22.6489 55.188685
10 Rstar-o3 4612693 1546149 13.90535 55.0545 241.976296
30 Rstar-o3 2980154 1144011 15.78626 38.4503 118.327750
50 Rstar-o3 2594242 1077685 12.82499 28.3221 79.172882
70 Rstar-o3 2235614 1051825 14.61380 27.9332 69.310051
100 Rstar-o3 2003128 1035338 12.54585 22.9132 54.759166
10 Rstar-o4 4916454 1483744 16.41732 59.8344 248.421618
30 Rstar-o4 3280079 1126260 16.87487 39.5525 117.703856
50 Rstar-o4 2802611 1067860 16.23155 32.8525 85.909608
70 Rstar-o4 2453962 1046519 15.87195 30.2775 73.105247
100 Rstar-o4 2200734 1031352 13.96745 25.8016 59.526865
10 Rstar-o5 5185281 1439602 17.97141 62.0853 250.713338
30 Rstar-o5 3532095 1115682 17.60663 40.6034 118.684260
50 Rstar-o5 3022948 1061124 16.91273 33.5543 86.934260
70 Rstar-o5 2679897 1041055 16.68984 30.4561 71.783502
100 Rstar-o5 2409379 1027321 13.85018 24.7118 56.565107
10 Rstar-o6 5416855 1407892 22.02417 68.8334 261.889381
30 Rstar-o6 3716035 1107797 21.29285 45.8050 127.209861
50 Rstar-o6 3300552 1058198 16.87536 33.0274 85.361568
70 Rstar-o6 2900158 1038313 17.05607 30.9403 72.691846
100 Rstar-o6 2546402 1025874 14.69152 26.1860 59.171302

73

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Goal
	Findings

	Theory
	B+tree
	Algorithms

	R-tree
	Algorithms
	R-tree types
	Challenges
	Optimising for modern hardware

	Bloomtree
	Overview
	Leafnodes
	Normal
	Overflow Node
	Bloomfilter Node

	Findings

	Related work
	R*-tree
	Generalized Bulk Insertion
	Bulk insertion by seeded clustering

	Implementation
	Overview
	Challenges
	Different type of data/storage
	General optimisation
	BF-Node
	Overflow blocks
	Variants implemented
	Cache
	Choice of language

	Datasets and metrics
	Datasets
	Bit02
	Uni02

	Metrics

	Results
	How test where done
	Default configuration

	Changing cache size - Bit02
	Changing fanout - Bit02
	Linear R-tree
	R*-tree

	Changing fanout - Uni02
	Linear R-tree
	R*-tree

	Changing fanout with cache size 1000 - Uni02
	Linear R-tree
	R*-tree

	Discussion
	Unexpected results
	Comparison to OR-tree

	Conclusion
	Further work
	Bibliography
	Appendix

