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Abstract 

Doxorubicin is a topoisomerase-targeting anthracycline that is one of the most 

effective anticancer drugs currently known. However, its clinical use is restricted by 

cardiotoxicity and the development of drug resistance. The main goal of this thesis 

has been to increase the knowledge of doxorubicin mechanism in addition to evaluate 

if predictive biomarkers for doxorubicin response could be identified. A total of 128 

tumor samples collected from breast cancer patients before and after neoadjuvant 

treatment with doxorubicin were studied. mRNA expression level in tumor tissue was 

assessed using whole-genome mRNA microarray analysis (Agilent Human GE 4x44K 

microarray). 

More than 5000 genes were found to be up- and down regulated following 

doxorubicin treatment.  The molecular and cellular functions as well as canonical 

pathways found to be enriched in the list of genes up regulated after doxorubicin 

exposure were involved in among other cardiovascular system development and 

function, cellular movement and immune responses. p53 was found to be the 

transcription factor regulating the highest number of target molecules within the list of 

up regulated genes. RNA processing, splicing and translation were shown to be 

overrepresented in the list of down regulated genes. The association between 

doxorubicin response and changes in gene expression revealed several genes such as 

CTGF, ITGB4 and IGF1 to be up regulated in the samples collected from patients 

characterized with a partial response to doxorubicin compared to those with minimal 

change and/or stable disease following treatment. In addition, the gene expression 

profiles between samples having wild type compared to mutated TP53 were studied, 

and a lower induction of expression were found for several genes such as FGF9 and  

COL11A2 in the samples having a mutated p53.  

This study showed that the gene expression profile in breast cancer tumors is altered 

as a response to doxorubicin exposure. Identifying genes significantly altered after 

therapy and associate their change with response to treatment may help identify the 

subgroup of patients benefitting from doxorubicin treatment. Patients with little or no 

effect of treatment could receive alternative therapy and be spared unnecessary 

treatment and risk of side effects.  
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Sammendrag 

Doxorubicin er et topoisomerase-hemmende antracyklin og er et av de mest effektive 

cytostatiske legemidlene brukt i kreftbehandling. Den kliniske bruken av doxorubicin 

er begrenset som følge av den irreversible kardiotoksiske effekten og pasienters 

utvikling av resistens. Hovedmålet med denne oppgaven har vært å øke forståelsen av 

de molekulærbiologiske mekanismene bak den cytotoksiske effekten av doxorubicin i 

tillegg til å prøve å identifisere prediktive biomarkører for doxorubicin respons. Totalt 

128 tumorprøver samlet inn fra brystkreftpasienter før og etter neoadjuvant 

behandling med doxorubicin ble studert. mRNA ekspresjonsnivå i tumorvev ble målt 

ved hel-genom mRNA mikromatrise analyse (Agilent Human GE 4x44K microarray). 

 

Mer enn 5000 gener ble funnet å være opp- og nedregulert etter doxorubicin 

behandling. De molekulære og cellulære funksjonene samt kurerte reaksjonsveiene 

som ble funnet overrepresentert i listen av gener oppregulert etter doxorubicin 

behandling var involvert i blant annet utvikling og funksjon av av hjerte-og 

karsystem, cellulær bevegelse og immunrespons. p53 ble funnet å være den 

transkripsjonsfaktoren som regulerte flest gener i listen med de oppregulerte genene. 

RNA prossesering, spleising og translasjon ble vist å være overrepresentert i listen 

med nedregulerte gener. Sammenhengen mellom doxorubicin respons og endringer i 

genuttrykket avdekket flere gener som CTGF, ITGB4 og IGF1 til å være oppregulert i 

tumorprøver fra pasienter som hadde en partiell respons til doxorubicin sammenlignet 

med dem som hadde en minimal endring og/eller stabil sykdom etter behandling. I 

tillegg ble ekspresjonsprofiler mellom prøver med villype sammenlignet med mutert 

TP53 studert, og en lavere induksjon i ekspresjon ble funnet for flere gener som 

FGF9 og COL11A2 i prøvene med mutert p53.  

 

Dette studie viser at ekspresjonsprofilen i brystkreftsvulster endres etter doxorubicin 

eksponering. Identifiseringen av gener signifikant endret som følge av behandling og 

sammenhengen mellom disse endringene mot respons på behandling kan bidra til å 

identifisere grupper av pasienter som kan ha utbytte av doxorubicin kjemoterapi. 

Pasienter med liten eller ingen effekt av behandlingen bør heller få alternativ terapi og 

bli spart for unødvendig behandling og risiko for bivirkninger.  
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1. Introduction 

Cancer is one of the leading causes of death and in 2008 the cancer mortality was 

close to 7.6 million deaths worldwide (1). The 5-year cancer prevalence for the adult 

population only was 28.8 million worldwide the same year (2), while the number of 

people diagnosed with cancer in Norway was 27520 in 2009 (3). 

1.1 Cancer as a Genetic Disease 

Cancer is a genetic disease caused by either inherited mutations in genes that control 

genome integrity or by mutations that are acquired in somatic cells during the 

development of a tumor (4), often in response to aging, lifestyle or- environmental 

exposure. Several types of DNA changes can arise and facilitate the change of a 

normal cell to a tumor cell, such as mutations in single nucleotides as well as 

alterations in small stretches of DNA, whole genes, structural components of 

chromosomes or complete chromosomes (4). In addition, epigenetic changes not 

directly altering the DNA sequence are also involved in cancer development (5).  

Two major groups of genes are repeatedly altered in human tumors (6). Genes of the 

first group are called proto- oncogenes and activating mutations in these genes lead to 

an overactive or over expressed form which can result in cancer development (6). 

Genes of the second group are called tumor suppressor genes and inactivating 

mutations in these genes lead to elimination of the gene and can promote cell 

transformation (6).  

1.1.1 Cancer development and progression  

Although there are several different types of cancer, they all have in common that 

genetic and epigenetic changes allow them to escape the normal regulatory machinery 

of the cell resulting in uncontrolled growth and proliferation (6). Cancer is a 

polygenic disorder, meaning that mutations in several genes are required for cancer to 

develop (4). Two of the models explaining tumor evolution are the clonal evolution 

model and the cancer stem cell model (7). In the clonal evolution model a cell 

acquires alterations which gives it a selective advantage (6). When this cell grows and 

divides its descendants may gain a substantial number of favorable genetic and 

epigenetic alterations which can lead to clonal expansion and formation of a tumor 

(6). In this model, all clones have the capacity to undergo proliferation and Darwinian 
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selection (7). In contrast, the cancer stem cell hypothesis is based on a cancer stem 

cell precursor which can both be self-renewing and also give rise to a progeny of 

differentiated cancer cells (7). This model suggests that only the cancer stem cells 

have the potential of self-renewal and can drive tumor progression (7).  

Cancer development is divided into several stages (6). Cells that have obtained 

favorable mutations or epigenetic changes give rise to a benign tumor which is non-

invasive (6). Some benign tumor develops into malignant tumors which contains 

cancer cells that have gain the ability to break through the basement membrane and 

invade the surrounding tissue (6). These cells can enter the bloodstream or lymphatic 

vessels and form secondary tumors in a process called metastasis (6).  

1.1.2 Hallmarks of cancer  

During cancer evolvement the cell acquires several capabilities to become 

tumorigenic and ultimately malignant which are often referred to as the “Hallmarks of 

cancer”(8). Hanahan and Weinberg proposed in 2000 six physiologic changes that a 

cell has to obtain in order to become malignant (Figure 1) (9). These hallmarks 

included sustaining proliferative signaling, evading growth suppressors, resisting cell 

death, enabling replicative immortality, inducing angiogenesis and activating invasion 

and metastasis (9). The authors argued that these acquired hallmarks enhance cell 

proliferation and decrease cell death, make the cells able to receive nutrients and 

oxygen by the formation of new blood vessels and eventually give the cells metastatic 

capabilities necessary for the establishment of new colonies at a distant site in the 

body.  

Eleven years later Hanahan and Weinberg published a follow up article where two 

new emerging hallmarks were presented, deregulating cellular energetics and 

avoiding immune destruction (Figure 1) (8). They proposed that by modifying or 

reprogramming cellular metabolism the cells can use glycolytic intermediates in 

biosynthetic pathways to generate nucleosides, amino acids, macromolecules and 

organelles required for active growth and proliferation (8). In addition, the authors 

suggested that evading immune recognition and suppressing immune reactivity also 

play an important role in the development and progression of many human cancers 

(8). 
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Two enabling characteristics required for the all the eight hallmarks to evolve was 

also implicated by Hanahan and Weinberg (Figure 1) (8). These included genome 

instability and mutation and tumor-promoting inflammation (8).  The authors 

suggested that accumulation of mutations or epigenetic alterations can generate 

genotypes contributing to the acquisition of the hallmark capabilities. In addition, it 

was proposed that inflammatory cells of the tumor microenvironment can supply 

several bioactive molecules to the tumor facilitating angiogenesis, invasion and 

metastasis (8).   

 

Figure 1. Hallmarks of cancer. 

The essential characteristics that 

enable tumor growth and 

metastatic dissemination 

proposed by Hanahan and 

Weinberg are six acquired 

capabilities (1-6), two enabling 

characteristics (7-8) and two 

emerging hallmarks (9-10) (8) 

(Figure modified from (8)).      

 

 

1.1.3 The tumor microenviroment  

The tumor microenvironment has been implicated in cancer progression (8). The 

microenvironment is composed of a diversity of cell types, such as vascular 

endothelial cells, adipocytes, fibroblasts, macrophages and immune cells among 

others, which is suggested to interact with tumor cells via growth factor and cytokine 

networks and promote tumor cell invasion and metastasis (10). Several studies have 

indicated that the tumor microenvironment undergoes extensive changes during the 

evolution and progression of cancers. The interactions between the cells of the 

stromal tissue and the cancer cells are bidirectional and dynamic (11). Cancer cells 

recruit and activate stromal cell types such as tumor-associated fibroblasts, 
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macrophages, leucocytes and mast cells which in turn secrete signalling molecules 

promoting progression of the tumor (11).  

1.2 Breast Cancer  

Breast cancer is the most frequent cancer type among women, and in 2008 1.38 

million women were diagnosed with breast cancer worldwide (2). In Norway the 

number of newly diagnosed cases each year is more than 2700 (3). As a consequence 

of better diagnostics and treatment the 5-year relative survival is increasing and 

between 2005-09 more than 88 percent of women diagnosed with breast cancer 

survived 5 years (all stages combined) (3). Still, the number of breast cancer deaths in 

Norway was the second highest among cancer deaths affecting women in 2009 (3).  

1.2.1 Breast biology and development 

The mammary gland is a complex organ consisting of several different cell-and tissue 

types (Figure 2). The two main components of the human breast are the stroma and 

the parenchyma. The parenchyma is the functional system of branching ducts and 

secretory lobules, while stroma is the supporting adipose tissue, fibroblasts, blood 

vessels and lymphatic vessels that surrounds the ducts and the lobules (12). The 

lobules of the parenchyma consist of secretory epithelial cells that synthesize milk, 

and from each lobule large milk ducts transport the milk produced in the lobules to  

the nipple (13). The lobules and ducts consist of a bi-layer of luminal epithelial cells 

and myoepithelial cells. The luminal epithelial cells are covering the surface of the 

milk ducts and are thus lining the central lumen, while the underlying myoepithelial 

cells are located adjacent to the basement membrane which functions as a physical 

barrier preventing cells from invading the surrounding tissue (Figure 2, lower section) 

(14). The arteries, veins and the lymphatic system of the stroma are responsible for 

the transportation of blood and nutrients to the breast and the exportation of waste 

products. 
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Figure 2. Anatomy of the breast. Above: The major 

components of the human breast are the ducts (A), the lobules 

(B), the dilated section of duct to hold milk (C), the nipple 

(D), fat (E), pectoralis major muscle (F) and chest wall/rib 

cage (G). Below: An cross section of a normal duct showing a 

monolayer of epithelial cells (1), surrounded by the basement 

membrane at the external side (2) and the lumen which is the 

center of the duct (3) at the interior (Figure modified from 

(15)).  

 

 

Hormones play an important role in normal breast development. Between birth and 

puberty, the development of the mammary gland is relatively dormant. However, 

during puberty there is a rapid expansion of the mammary epithelium which generates 

an extensive ductal network driven among others by the steroid hormones estrogen 

and progesterone (16). Throughout life the breast is continuously undergoing changes. 

During the menstrual cycle there is a fluctuation of hormones and proliferation 

followed by apoptosis of the epithelial cells (17). And during pregnancy, a large 

number of milk protein- and lipid secreting luminal cells are developed in addition to 

further ductal branching and infiltration of the stroma (17;18).  

1.2.2 Breast cancer initiation and progression 

Breast tumors have different histopathological appearance depending on the origin of 

the tumor and if it has penetrated the basement membrane or not. Invasive breast 

carcinomas are the most common tumors of the female breast and consist of a group 

of malignant epithelial tumors. The majority of these tumors are adenocarcinomas 

derived from the parenchymal epithelium of the mammary gland (19). Invasive ductal 

carcinoma (IDC) and invasive lobular carcinoma (ILC) are the two major histological 

types of invasive breast carcinomas, constitute approximately 80% and 10-15% of all 

invasive breast cancers, respectively (20). Ductal carcinoma in situ (DCIS) which is 

considered an precursor of IDC consists of cells that have not penetrated the basement 

membrane and accounts for about 20-25% of newly diagnosed cases (21).    
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Breast cancer originates when a normal epithelial cell of the breast acquires genetic 

and epigenetic alterations, and tumor progression is driven by further accumulations 

of these abnormalities (22). Telomere shortening leading to genomic instability (23) 

and microenviromental alterations (22) are other drivers of tumorigenisis. Breast 

cancer progression of ductal carcinomas is a multistep process (Figure 3) starting with 

atypical ductal hyperplasia (ADH) which is a premalignant lesion of abnormal 

epithelial cells within the duct. Next, ductal carcinoma in situ (DCIS) evolves when 

the basement membrane is degraded and the carcinoma becomes invasive. The cells 

can then escape the primary site and infiltrate the surrounding tissue. Metastatic 

carcinomas arises when the cells of the invasive carcinoma have established a new 

tumor at a distant site (14).       

 

Figure 3. Schematic outline of ductal breast tumor progression. In normal breast ducts or lobules the 

basement membrane encapsulates the bi-layer of epithelial and myoepithelial cells. In ductal carcinoma 

in situ the epithelial cells have increased extensively in number due to increased proliferation. 

Degradation of the basement membrane result in invasive carcinoma, and the cells can escape the 

primary site. Metastatic carcinoma arises when cancer cells from the invasive carcinoma enter  the 

vasculature of the primary stroma and seed secondary tumors in a foreign microenviroment (7).  

This traditional model explains breast cancer progression in a linear, step-wise 

fashion. However, it has been indicated that this model is overly simplistic (24). Thus, 

several different models explaining breast cancer progression have been proposed and 

will be discussed later in the context of intratumor heterogeneity (see chapter 1.4.1).   
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1.2.3 Risk factors  

Both hereditary and environmental risk factors are involved in the probability of 

developing breast cancer. Familial breast cancer constitutes about 5-10% of all breast 

cancer cases, while the remaining are classified as sporadic breast cancer (Figure 4). 

Germline mutations in high-penetrance cancer susceptibility genes, including the 

double-strand DNA break repair genes BRCA1 and BRCA2, account for about 16% of 

the risk of developing familial breast cancer (Figure 4) (25). The remaining familial 

risk may be due to genetic or environmental factors. However, studies have indicated 

that inherited genetic factors predominate the excess familial risk (26). Mutations in 

several other breast cancer susceptibility genes, including TP53, PTEN and ATM, 

have been implicated to account for a smaller proportion of the familial risk (Figure 4) 

(27;28).  

Figure 4. Familial and sporadic breast cancer. Familial breast cancer constitutes only 5-10% of total 

breast cancer (right panel). BRCA1 and BRCA2 are high-penetrance breast cancer susceptibility genes, 

and mutations in these genes account for about 20% of the familial risk (left panel). Most of the genetic 

variants that contribute to the risk of developing sporadic breast cancer are unknown (4).  

The majority of all breast cancers are sporadic resulting from acquisition of numerous 

somatic mutations. However, most of the somatic mutations leading to sporadic breast 

cancer are unknown (4). Genome-wide association studies (GWAS) have identified a 

number of new genetic variants such as single nucleotide polymorphisms (SNPs) 

influencing breast cancer risk (Figure 5) (29). SNPs are inherited genomic variations 

in the DNA sequence and the most frequent type of variation in the human genome 

(30). SNPs occur when a single nucleotide at a specific locus in the genome differs 

between individuals in a population or between populations. The variation in a single 
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nucleotide has to be above 1 % in frequency in the population to be called a SNP. 

DNA variations at lower frequencies are known as rare variants or mutations (31).  

 

Figure 5. Genetic risk factors including breast cancer susceptibility loci and genes. All known breast 

cancer susceptibility genes are shown between the red and blue line. High-risk genes are highlighted in 

green, moderate-penetrance genes are highlighted in red while the low-risk genes are shown in orange 

(32).  

A number of environmental and lifestyle breast cancer risk factors have been 

identified. Age, exposure to the hormone estrogen, diet, alcohol consumption and 

exposure to ionising radiation have all been implicated to increase the risk of 

developing breast cancer (33). Early onset of menarche, late menopause, late age at 

first full-term pregnancy and obesity influence the estrogen exposure and are 

therefore contributing factors to breast cancer risk (33). In addition, exogenous 

estrogen exposure such as oral contraceptives and hormone replacement therapy also 

increase the risk of breast cancer development although only transiently (33).         

1.3 Breast Tumor Classification  

Breast cancer is a highly heterogeneous disease considering the diversity in genetic 

and genomic variations, histopathological features and patient outcomes (14). Breast 

tumors can be classified by a number of approaches into distinct groups in order to 

assess the most favourable treatment regime or likely outcome for each patient. Both 
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prognostic markers that provide information regarding patient outcome and predictive 

markers that give information about response to a given drug or treatment are 

identified by tumor classification (34). Guidelines from World Health Organization 

classify breast cancer into several clinical categories based on histological tumor type, 

histological grade, tumor stage, expression of estrogen receptor alpha (ER) and the 

progesterone receptor (PR) and over expression of the human epidermal growth factor 

receptor 2 (HER2) (19). Here, the traditional clinical features for breast tumor 

classification will be described.  

1.3.1 Histological grade 

Histological grading of breast cancer is based on the differentiation of the tumor 

tissue (35). Three morphological features, which includes nuclear pleomorphism 

(changes in size, shape and color), mitotic count (the proportion of dividing cells) and 

to what extent the tumor has formed tubules, are evaluated during the grading (36). 

Together these three features are translated into a tumor grade raging from 1-3. Grade 

1 corresponds to a well-differentiated tumor with high homology to normal breast 

tissue, showing a mild degree of cellular pleomorphism and low mitotic count. Grade 

2 corresponds to a moderately differentiated tumor, and grade 3 to a poorly 

differentiated tumor with a high degree of nuclear atypia, frequent mitosis and no 

tubule formation (35). Histological grade has been shown to have a prognostic value, 

patients with grade 1 tumors have markedly better survival than those with grade 2 

and 3 tumors (37).  

1.3.2 Tumor stage 

Breast tumor staging is based on the international standard tumor-node-metastasis 

(TNM) staging system (38). In the TNM staging system three features of the primary 

tumor, tumor size (T), regional lymph node status (N) and the presence of distant 

metastasis (M), are evaluated (39). Tumor size (T) is divided into four categories, 

where T1 includes tumors that are smaller or equal to 2 cm, T2 compromises tumors 

between 2 and 5 cm, T3 consist of tumors greater than 5 cm and T4 includes tumors 

which have extended into either the chest wall or to the skin. Regional lymph node 

status (N) is raging from N0-N3 and categorizes tumors according to the number and 

location of positive regional lymph nodes. Distant metastasis (M) reflects whether or 

not the primary tumor has metastasized to distant sites. The three TNM parameters are 
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combined in a TNM stage grouping system which classifies breast tumors into four 

stages (Table 1) (39). The distinct stages show prognostic differences, the relative 

survival is decreasing with increasing tumor stage (40). 

Table 1. TNM classification of breast tumors. Stage 0 consists of carcinoma in situ tumors with 

negative node status and no distant metastasis. Stage 1 includes small (T1) and localized tumors. Stage 

2 consists of tumors with different sizes (T0-T3), different nodal involvement (N0-N1) and no distant 

metastasis. Stage 3 includes either tumors of different size (T0-T3) with many positive lymph nodes 

(N1-N2) or tumors that have extended the chest wall or skin (T4) with various lymph node status (N0-

N2) and no distant metastasis. Stage 4 comprises tumors of any size and lymph node status that have 

metastasized to distant organs (39). 

 

1.3.3 Receptor status 

Evaluation of the two hormone receptors estrogen receptor (ER) and progesterone 

receptor (PR) in addition to the human epidermal growth factor receptor 2 (HER2) are 

routinely used as prognostic and predictive markers for management of breast tumors 

(41). ER and PR are both members of the nuclear hormone receptor family, and are 

stimulated by the estrogen and progesterone hormone, respectively (16). Estrogen is 

the main hormone that controls breast cancer proliferation by interacting through ER 



17 

 

(42). Expression of the two hormone receptors are assessed by immunohistochemistry 

(IHC) which measure the protein expression of ER and PR. ER status is critical for 

the identification of breast cancer patients that may benefit from anti-estrogen 

(endocrine) therapy such as ER antagonists (e.g. tamoxifen) or aromatase inhibitors 

(43;44). PR status is generally correlated with ER status, however the presence of this 

hormone receptor has less clinical significance (45). Considering the prognostic value 

of hormone receptor status, breast cancer patients with ER+ and/or PR+ tumors show 

the best overall outcome (46).  

The HER2 receptor tyrosine kinase is a member of a family of transmembrane growth 

factor receptors that are involved in regulating normal cell proliferation and survival. 

The receptor is over expressed in approximately 20% of all breast tumors (47). HER2 

is a marker for poor prognosis with a decreased overall survival (48;49). The level of 

HER2 protein expression is evaluated by IHC while HER2 gene amplification is 

assessed by fluorescence in situ hybridization (FISH) (41). HER2+ breast tumors can 

be treated with targeted therapy such as the monoclonal antibody trastuzumab, and 

treatment with such therapies has improved the overall outcome for patients in this 

group (50;51). Combination of the ER, PR and HER2 receptor status allow for the 

classification of breast tumors into different categories with distinct prognosis. Triple 

negative tumors (ER-/PR-/HER2-) are associated with the worst prognosis (52).  

1.4 Molecular Subtypes of Breast Cancer  

Breast cancer is no longer believed to be a single disease, but rather heterogenous 

both at the clinical and the molecular level (7). The heterogeneity of breast tumors is 

both intratumoral and intertumoral. Intratumor heterogeneity is the variation within a 

single tumor. In contrast, intertumor heterogeneity is variation between tumors from 

different patients (34). These variations can be captured by a diversity of methods in 

molecular biology and molecular genetics and used to classify the tumors into 

molecular subgroups. The subgroups may have different risk factors, clinical 

presentation, histopathological features, outcome and response to therapy (53). The 

aim behind molecular classification of breast cancer is to individualize the diagnosis 

and treatment of breast cancer and better predict the clinical outcome for patients in 

each subgroup (34;53).  
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1.4.1 Intratumor heterogeneity  

As mentioned above, two proposed models explaining tumor progression are the 

clonal evolution and the cancer stem cell model (22). However, new insights into 

breast cancer progression have led to several proposed models aiming to explain the 

progression of breast tumors and also to explain the appearance of subpopulations 

within tumors (Figure 6) (24). The clonal evolution and the cancer stem cell models 

have both been proposed as linear models giving rise to monogenomic tumors, and 

also as diversity models giving rise to polygenomic tumors where multiple clones 

reside within the tumor (34). In addition, a separate mutator phenotype model in 

which tumors evolve by gradual and random accumulations of mutations as the tumor 

grows are also proposed and give rise to highly diverse tumors (34).  

 

Figure 6. Three hypothetical models explaining intratumor heterogeneity. The clonal evolution (A), the 

cancer stem cell (B) and the mutator phenotype (C) models are different cancer progression models 

explaining how distinct types of intratumor heterogeneity arise. Different subpopulations of tumors (D) 

can be a result of the different models of tumor  progression  (34). 
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1.4.2 Intertumor heterogeneity  

Gene expression studies have identified several distinct breast cancer subtypes. Perou 

and Sørlie classified breast cancer tumors into five subtypes based on their gene 

expression profile. They performed hierarchical clustering by using breast cancer 

specimens and a subset of genes they termed the ‘intrinsic’ gene set. These genes 

were found to be more differentially expressed between tumors from different 

patients, than between tumor samples from the same individual sampled twice. Based 

on the gene expression profiles they observed after the clustering analysis, the tumors 

were divided into five subtypes which included luminal A, luminal B, ERBB2+ (later 

designated HER2-enriched), basal-like and normal-like tumors (Figure 7) (54;55).  

Figure 7. Breast cancer molecular subtypes classified by gene expression profile. Five distinct breast 

cancer subtypes were identified by Perou and Sørlie on the basis of their gene expression patterns. The 

molecular subtypes compromised luminal A (purple), luminal B (light blue), HER2-enriched (pink), 

basal-like (red) and normal-breast like (green) (Figure modified from (56)).  

Luminal A and B subtypes are mostly ER positive and express many genes 

characteristic for breast luminal epithelial cells (55). Luminal A tumors are strongly 

ER positive and are also characterized as being HER2 negative, have low expression 

of proliferation associated genes such as Ki-67 and TP53 tend to be wild-type (57).  

The Luminal B subtype is weak or moderate ER positive, HER2 positive, has higher 

proliferation signature and mutated TP53 (57). In contrast to the luminal subclasses, 

the other three subtypes are characterized by low or absent expression of ER. The 

HER2-enriched subtype has high expression of several genes in the HER2 amplicon, 

while the basal-like tumors are often ER, PR and HER2 negative which is clinically 

referred to as triple negative tumors. The normal breast-like tumors express genes 

associated with normal breast tissue, they show strong expression of basal epithelial 

cells and low expression of luminal epithelial cells (54;55). Recent studies have 
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identified a new breast cancer intrinsic subtype called claudin-low which is 

characterized by mesenchymal and stem cell features (58).     

Several models explaining the intertumoral heterogeneity of breast cancers have been 

proposed, suggesting that the intrinsic subtypes may arise from different cells of 

origin and have various progression pathways (7). Two of these models are the ‘cell 

of origin’- and ‘tumor subtype-specific transforming event’ models (Figure 8) (7). In 

the ‘cell of origin’ model each tumor subtype is initiated in a different cell type. While 

in the ‘tumor subtype-specific transforming event’ model the cell of origin can be the 

same for all the different subtypes, but specific genetic and epigenetic events give rise 

to the distinct molecular subtypes (7).  

Figure 8. Two hypothesized models explaining the development of the distinct breast cancer intrinsic 

subtypes. Different cell types give rise to the distinct tumor subtypes in the ‘cell of origin’ model (A). 

In contrast, the same cell gives rise to the subtypes in the ‘tumor subtype-specific transforming event’ 

model. In the latter model both mutations and epigenetic changes are involved in the generation of the 

different subtypes (B).  

Perou and Sørlie showed that the classification of breast cancer tumors based on gene 

expression patterns has clinical implications, and this have been validated by other 

studies. The subgroups display differences in overall and relapse-free survival (55). In 
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particular, basal-like, HER2-enriched and luminal B subtypes have the worst 

prognosis compared to the luminal A subtype which show the most favourable 

outcome (55).  

The discovery of variations in gene expression between the molecular subtypes of 

breast cancer has lead to the development of commercial diagnostic tests to determine 

prognosis and predict response to treatment (59). MammaPrint DX was the first 

prognostic signature approved by the FDA (US Food and Drug Administration) and is 

a microarray-based test that measures the gene expression of 70 genes (60). The assay 

is designed to predict the clinical outcome of breast cancer patients (development of 

distant metastasis within 5 years) and in addition to give a predictive value for 

chemotherapy response (61). Oncotype DX is another prognostic signature that 

estimates the expression level of 21 genes by qRT-PCR. The assay predicts the risk of 

distant relapse at 10 years by a recurrence score (62) in addition to predict the 

chemotherapy response for patients in each risk group (59).  

1.5 Breast Cancer Treatment  

Treatment options for breast cancer are based on characteristics of the patient as well 

as characteristics of the tumor (63). The treatment of breast cancer includes surgery, 

radiotherapy, chemotherapy, endocrine therapy and targeted therapy (63). In Norway, 

treatment for breast cancer patients is standardized nationally and follows the 

guidelines to the Norwegian Breast Cancer Group (NBCG) (63). Patient information 

such as age and genetic predisposition are evaluated to tailor the treatment. 

Information regarding tumor size, histological stage and grade, ER, PR and HER2 

receptor status and expression of the proliferation associated gene Ki-67 are used in 

the decision making regarding therapy regime.  

1.5.1 Chemotherapy  

Systemic treatment, such as chemotherapy, is traditionally administered after the 

tumor is surgically removed (adjuvant) to reduce the risk of recurrence and to increase 

the overall survival (64). In addition, it can also be administered neoadjuvant (before 

surgery) for instance to decrease the tumor volume pre-operatively (65). The principle 

behind chemotherapeutics is that they target rapidly dividing cells by interrupting cell 

division, thereby killing the fast growing cancer cells. Several cancer 
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chemotherapeutic drugs induce excessive DNA damage resulting in cell-cycle arrest 

and cell death. However, the distinct chemotherapeutic agents have different 

mechanism of action (66). Although chemotherapeutics target the rapidly diving 

cancer cells, many therapies fail to remove all cancer cells increasing the change of 

relapses. Why some cells in the tumor escape the treatment have led to several 

proposed theories, such as the cancer stem-cell hypothesis (67). It have been 

suggested that genetic variation in certain clones in the tumor may provide the 

opportunity of some cells to escape therapy. In addition, other non-genetic 

mechanisms such as epigenetic changes have been implicated to be involved in the 

selection by therapy (68).  

1.5.2 Doxorubicin 

The patients included in this thesis have received neoadjuvant treatment with 

doxorubicin (Figure 9). Doxorubicin is a member of the anthracycline family of 

antibiotic chemotherapeutic agents which are considered some of the most effective 

anti-cancer agents used for cancer therapy (69). Doxorubicin is the most widely 

administered anthracycline antibiotic and is used for the treatment of solid tumors 

(70;71).  

 

Figure 9. The chemical structure of doxorubicin. Doxorubicin is a antineoplastic antibiotic obtained 

from Streptomyces peucetius belonging to the anthracycline family of chemotherapeutics (72). 

Numerous mechanisms responsible for the cytotoxic actions of doxorubicin have been 

proposed, and the different mechanisms have been subjected to substantial debate 

(71). However, the primary mechanism of action is thought to be the inhibition of 

topoisomerase II by the stabilization of the topoisomerase II-DNA complex (Figure 

10). Topoisomerase II induces transient DNA breaks during DNA replication and 

other cellular processes to relax supercoiled DNA or to allow DNA strands to pass 
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through each other (73). When topoisomerase inhibitors are used as cancer treatment, 

processes such as DNA replication, transcription and repair which require changes in 

DNA topology are therefore interfered. The formation of double-strand DNA breaks 

promoted by this action leads to cell death (71;74). In addition to topoisomerase-

inhibition, other mechanism including DNA intercalation, free radical formation and 

helicase inhibition have also been suggested to be involved in the anti-cancer actions 

of doxorubicin (71;74).     

 

Figure 10. Doxorubicin pathway in cancer cells. Doxorubicin is transported into the cell and has 

several proposed mechanism of action, such as inhibition of the topoisomerase II-DNA intermediate 

leading to double strand breaks and generation of free radicals leading to DNA and cell membrane 

damage. Doxorubicin action leads ultimately to cell death which gives it an antitumor activity (75). 
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Cardiotoxicity and cellular resistance are the most important limitations of the clinical 

use of doxorubicin (69). Acute and chronic irreversible cardiotoxicity are the major 

adverse effect of doxorubicin therapy. Several mechanism have been implicated in the 

myocardial damage that may lead to congestive heart failure induced by doxorubicin 

(76).  The mechanisms of cellular resistance to doxorubicin are thought to be different 

from those of the mechanisms of cardiotoxicity. Mechanisms behind resistance have 

been proposed to involve among other drug efflux mediated by membrane 

transporters such as ABCB1 and ABCG2 leading to decreased intracellular 

concentrations of doxorubicin (77). Mutations in the tumor suppressor protein p53, 

which trigger cell-cycle arrest and apoptosis in response to cellular stress signals, 

have also been reported to be involved in resistance to doxorubicin (78). 

Interindividual variation between patients in doxorubicin pharmacology including 

efficacy and toxicity have been hypothesized to be a result of genetic variation (70).  

Increased information regarding the mechanisms of doxorubicin in addition to 

identification of clinical predictive biomarkers may be important to assess those 

patients that will benefit from doxorubicin therapy and those that will not. Since 

doxorubicin treatment can lead to cardiotoxicity in addition to the common side 

effects of chemotherapeutics such as nausea and hair loss, identification of the 

patients that will not benefit from the treatment regime will spear them from these 

unfortunate side effects. The same is true for the patients that develop 

chemoresistance to doxorubicin. This evaluation may lead to administration of “right 

drug to the right patient”, which is one of the overall goals in cancer research.       
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2. Aim of the Study 

In this study tumor specimens collected from breast cancer patients before and after 

neoadjuvant treatment (before surgery) with doxorubicin were analyzed. As described 

above doxorubicin is an anticancer anthracycline, which primary mechanism of action 

appears to be the inhibition of topoisomerase II in transient cleavage complex with 

DNA. However, the pathways underlying doxorubicin effect on tumor cells are not 

well understood. The overall aim in this study is to further increase our knowledge of 

the pathways underlying doxorubicin effect on tumor cells and to elucidate the 

mechanism of patients response to doxorubicin treatment, by using whole genome 

mRNA analysis to assess mRNA expression levels in tumor tissue before and after 

doxorubicin treatment. In addition, p53 has been proposed to modulate topoisomerase 

activity and it has been suggested that tumor cells with mutated p53 have an 

abnormally activated topoisomerase which may contribute to the genetic instability in 

tumors. Certain p53 mutations have also been connected to doxorubicin resistance. 

The gene expression pattern in tumor samples with mutated compared to wild type 

p53 was therefore examined. Some of the tumor samples included in this study have 

previously been classified using early cDNA microarrays containing only 8102 

human genes. By utilizing mRNA arrays with a larger amount of probes and higher 

resolution this study also aimed to compare the previous classification with 

information from new microarrays. 

More specifically, the aims in this study are to investigate: 

1. The alterations in gene expression following treatment both at the individual 

gene level as well as pathway based  

2. The association between mRNA expression profiles and response to therapy 

both at the individual gene level as well as pathway based  

3. The association between mRNA expression profiles and TP53 mutation status 

in the tumor samples 
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The main focus will be on the following topics: 

- Is the gene expression profile in tumor tissue changed as a result of 

doxorubicin therapy? If so, which genes and pathways are implicated? 

- Can changes in mRNA expression profile be connected to differences in 

response to doxorubicin treatment?  

- Is the gene expression profile different between patients that have a mutated 

p53 compared to those that have wild type p53? 
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3. Material 

The material included in this thesis was collected previously for other studies. The 

tumor samples were analyzed and included in a study of breast tumor classification 

based on mRNA expression profile using early generation cDNA expression arrays 

with a limited number of probes (54) in addition to a study examining the effect of 

TP53 mutations on resistance to doxorubicin treatment (78).   

3.1 Patient Material and Therapy Regime   

The material in this thesis consists of tumor biopsies collected from breast cancer 

patients with locally advanced breast cancer (stage 3 and 4). The patients were 

between 32 and 88 years of age, with a median age of 64 years. The majority of the 

tumors were invasive ductal carcinomas, but some were also lobular carcinomas and 

tumors classified as other histological types. The tumors were graded according to the 

three morphological features explained in chapter 1.3.1. A total of 128 tumor 

specimens collected from 72 patients were included in this study. 56 of the tumors 

were sampled twice from the same patient, before and after doxorubicin monotherapy 

(14 mg/m
2
) for an average of 16 weeks (range 12-23). The ‘before’ samples were 

collected prior to therapy by an open biopsy, while the ‘after’ samples were collected 

during surgery. In addition to the 56 before and after pairs collected from the same 

tumor, 16 ‘single’ samples were included in this study. These samples included eight 

samples collected before therapy and eight samples collected after therapy from 

different patients. In all, the 128 samples compromised 64 before and 64 after 

samples. RNA from these samples was extracted using Trizol and RNeasy minikit 

from Qiagen. 

The patients originally included in the previous studies were assessed with clinical 

response, according to the Union International Contre Cancer criteria, based on the 

alterations in tumor size after neoadjuvant doxorubicin therapy (79). Patients were 

categorized into the responses groups complete response (CR), partial response (PR), 

progressive disease (PD), stable disease and (SD) and minimal change (MC).  The 

complete responders had disappearance of all tumor lesions while the partial 

responders had reduction ≥50% in the sum of all lesions. In contrast, the patients 

assessed with progressive disease had an increase in the diameter product of any 

individual tumor lesion by ≥25%, indicating a lack of sensitivity to treatment. Patients 
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characterized with stable disease and/or minimal change had a response between PR 

and PD i.e. reduction <50 % of all tumor lesions or increase in the diameter product 

of any individual tumor lesion by <25 %. The 72 patients included in this study were 

only assessed with partial response, stable disease and minimal change. The patients 

assessed with partial response were characterized as doxorubicin responders, while 

the patients assessed with stable disease and/or minimal change were characterized as 

non-responders to doxorubicin.   

3.2 Clinical Data  

Clinical and histopathological parameters including ER status, grade and p53 status 

were available for all the 128 tumor samples included in this study. The patients, 

which these tumor samples were collected from, were grouped according to if they 

obtained partial response (PR) or stable disease and/or minimal change (SD/MC) to 

doxorubicin treatment. The distribution of patients in the two response categories in 

addition to the clinical-histopatological parameters of the tumor samples are listed in 

Table 2. Survival data, tumor size, lymph node status and data on distant metastasis 

were also available but were not included in the analyses in this thesis.  

Table 2. Patient characteristics. Clinical-histopatological parameters such as ER status, grade and p53 

status in addition to data on response for the patients (n=128) included in this thesis. The numbers of 

patients in each category, in addition to the percentage are displayed.  

 

 

 

 

Characteristics  No. of patients % 

ER positive 108 84.4 

ER negative 20 15.6 

Tumor grade 1 35 27.4 

Tumor grade 2 62 48.4 

Tumor grade 3 31 24.2 

p53 wild type 99 77.3 

p53 mutated 29 22.7 

Partial response 55 43 

Stable disease/minimal change 73 57 
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4. Methods 

In this section, the different laboratory-and statistical methods used in this project are 

described. A table with all the reagents and equipment used are listed in Appendix A.  

4.1 Microarray Technology 

Microarray technology is utilized in a number of genetic experiments to analyze 

among other DNA sequence variation such as single nucleotide polymorphism (SNP), 

mRNA expression, miRNA expression, DNA methylation and protein expression. 

Genome-wide microarrays have made it possible to make the analysis globally. The 

principle behind this technology (Figure 11) is to immobilize probes that are 

complementary to the molecules of interest (e.g. DNA or RNA) on a surface. The 

sample molecules are labeled with substances that emit signals (e.g. fluorescence) 

followed by hybridization to the complementary probes on the array. After 

hybridization the array is scanned and the signals from the samples are measured. The 

data generated is then normalized to make the signals comparable to reveal biological 

differences (80). A number of different microarray platforms exist and they vary 

among other in genomic coverage, probe type, probe number, probe immobilization, 

sample hybridization and sample labeling (81).  

Figure 11. Schematized experimental process using microarray technology. The standard workflow for 

all microarray platforms measuring gene expression includes isolation of RNA or mRNA from 

biological specimens, generation and labeling of complementary DNA (cDNA) or complementary 

RNA (cRNA), hybridization to a microarray, washing of unhybridized samples and final scanning of 

the microarray under laser light (80).  
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4.2 Whole-Genome mRNA Array 

The whole-genome mRNA analysis was performed according to the One-Color 

Microarray-Based Gene Expression Analysis Protocol from Agilent Technologies 

(Version 6.5, May 2010) using the Human GE 4x44K Microarray. This is a nucleic 

acid microarray which utilizes oligonucleotides as array elements that are attached to 

solid surfaces. The one-channel array provides intensity for each probe indicating a 

relative level of hybridization. The high throughput genome-wide array measures 

gene expression in experimental and control samples by the use of cyanine 3
1
 (Cy3)-

labeled targets (82). The procedure includes sample preparation which converts 

mRNA to cDNA and further to Cy3-labeled cRNA, hybridization to 60-mer 

oligonucleotide probes, microarray wash and final scanning and feature extraction 

(Figure 12) (82).  

Figure 12. The standard workflow for sample preparation and array processing.  Total RNA and Spike-

In RNA are prepared, and the labeled cRNA generated are purified before it is hybridized to 

microarrays containing oligonucleotide probes. The arrays are then washed before scanning and feature 

extraction (82).  

The Agilent One-Color Spike-In controls are required for use with the Agilent One-

Color gene expression microarray workflow because gene expression microarray 

                                                           

1
 Cyanine 3 is a synthetic fluorescent dye which is used in microarray experiments for nucleic acid 

labeling.  
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experiments are multi-step procedures and many parameters may influence the 

microarray data (83). The positive controls consist of 10 in vitro synthesized, 

polyadenylated transcripts derived from the Adenovirus E1A gene which are labeled 

and amplified together with the experimental samples (83). The controls are 

optimized to anneal to complementary probes on the microarray, and after the 

hybridization the signal intensities for each control transcript can be used to monitor 

the microarray workflow from sample amplification and labeling to microarray 

processing performed in the experiment (83). 

4.2.1 Sample preparation 

In this step cDNA is synthesized from mRNA samples followed by the synthesis of 

fluorescent labeled cRNA (Figure 13) (82). The sample preparation process includes 

preparation of the one-color spike mix, preparation of the labeling reaction and the 

labeling reaction itself, purification of the labeled and amplified RNA and 

quantification of the cRNA (82).  

In the labeling reaction cDNA is generated that carries a T7 promoter primer at its 

5’end by using among other T7 Promoter Primer and AffinityScript Reverse 

Transcriptase (82). The double-stranded cDNA serves as a template for a process in 

which T7 RNA polymerase amplifies target material and simultaneously incorporates 

Cy3-labeled nucleotides (CTP) into the cRNA (82). 

The amplified and labeled cRNA are purified using Qiagen’s RNeasy mini spin 

columns and quantified using NanoDrop DN-1000 UV-VIS Spectrophotometer to 

ensure that the amplification is successful. 
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Figure 13. Generation of cRNA for one-color 

microarray experiment. cDNA are first generated that 

carries a T7 promoter at its 5’end, and the cDNA 

serves then as a template for a reaction in which Cy3-

nucleotides are incorporated into the cRNA (82).         

 

 

 

 

 

 

 

 

 

 

4.2.1.1 Procedure  

Preparation of the One-Color Spike Mix: 

1. Agilent One-Color Spike Mix stock solution was heated at 37 °C for 5 minutes 

and serial dilutions were created using Dilution Buffer appropriate for 40 ng of 

total RNA input amount, to make the amount of spike mix proportional to the 

amount of RNA input 

 

Preparation of the labeling reaction: 

Steps: 

1. 2 µl of total RNA was added to 1.5 ml microcentrifuge tubes before 2 µl of 

diluted Spike Mix was added to each tube containing sample  
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2. T7 Promoter Primer Mix was prepared with 4 µl T7 Promoter Primer and 2.5 

µl Nuclease-free water before 1.3 µl of the T7 Promoter Primer Mix was 

added to each tube containing total RNA and diluted Spike Mix 

3. The primer and the template were denaturated by incubating the tubes at 65 °C 

for 10 minutes before the tubes were placed on ice for 5 minutes 

4. 5X First Strand Buffer was prewarmed at 80 °C for 3 to 4 minutes before the 

cDNA Master Mix was prepared with 10 µl 5X First Strand Buffer, 5 µl DTT, 

2.5 µl dNTP mix and 6 µl AffinityScript RNase Block Mix 

5. 4.7 µl of cDNA Master Mix was added to each sample tube before the tubes 

were incubated  at 40 °C for 2 hours followed by incubation at 70 °C for 15 

minutes and then the tubes were placed on ice for 5 minutes 

6. Transcription Master Mix was prepared with 3.75 µl Nuclease-free water, 16 

µl 5X Transcription Buffer,  3 µl DTT, 5 µl NTP mix, 1.05 µl T7 RNA 

Polymerase Blend and 1.2 µl Cy3-CTP 

7. 6 µl of Transcription Master Mix was added to each sample tube before the 

tubes were incubated at 40 °C for 2 hours  

 

Purification of the labeled/amplified RNA: 

Steps: 

1. 84 m µl of nuclease-free water, 350 µl Buffer RLT and 250 µl ethanol (>96%) 

were added to the cRNA samples before 700 µl of the cRNA samples were 

added to RNeasy Mini Spin columns placed in 2 ml collection tubes  

2. The samples were centrifuged at 4 °C for 30 seconds at 13000 rpm, the flow-

through was discarded and 500 µl of buffer RPE (containing ethanol) was 

added to each column 

3. The samples were centrifuged at 4 °C for 30 seconds at 13000 rpm, the flow-

through was discarded and another 500 µl of buffer RPE (containing ethanol) 

was added to each column before the samples were centrifuged 4 °C for 60 

seconds at 13000 rpm 

4. The flow-through was discarded before the samples were centrifuged at 4 °C 

for 30 seconds at 13000 rpm to remove remaining traces of buffer RPE 
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5. The RNeasy columns were transferred to new 1.5 ml collection tubes before 

30 µl nuclease-free water was added to each column to elute the cleaned 

cRNA samples 

6. After 1 minute incubation the samples were centrifuged at 4 °C for 30 seconds 

at 13000 rpm before the collection tubes containing cRNA were placed on ice 

 

Quantification of the cRNA: 

Steps: 

1. The cRNA samples were quantified using NanoDrop ND-1000 UV-VIS 

Spectrophotometer version 3.7.1 (see method chapter 4.4) 

2. Cy3 dye concentration (pmol/µl), RNA absorbance ratio (260 nm/280 nm) and 

cRNA concentration (ng/µl) were recorded 

3. The yield (µg) and specific activity (pmol Cy3 per µg cRNA) of each reaction 

were determined  

 

4.2.2 Hybridization 

Before hybridization RNA samples are first fragmented by a fragmentation buffer to 

optimize the cRNA target size (82). A blocking agent is used to minimize non-

specific binding (82). A hybridization buffer is added to stop the fragmentation 

reaction and  the samples are dispensed onto the Human GE 4x44K v2 microarray 

gasket slide (82). The Human GE 4x44K v2 oligo microarray slide containing 60-mer 

oligonucleotide probes is then placed down onto the gasket slide (82). The 

hybridization is prepared in Agilent microarray hybridization chamber which consists 

of a chamber base, a chamber cover and a clamp assembly (Figure 14) (82). The 

hybridization chamber is incubated in a hybridization oven (G2545A) at 65 °C and 10 

rpm for 17 hours to hybridize the labeled RNA samples to the complementary probes 

on the microarray (82).  
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Figure 14. Agilent microarray hybridization chamber 

assembly. The microarray gasket slide and the oligo 

microarray slide are assembled in a hybridization 

chamber before the chamber is placed in hybridization 

oven to hybridize cRNA to the oligonucleotides on 

the oligo microarray slide (84). 

 

4.2.2.1 Procedure  

Preparation of hybridization samples: 

Steps: 

1. The 10X Blocking Agent was heated at 37 °C for 4 to 5 minutes 

2. Fragmentation mix was made by adding 1.65 µg Cy3-labeled, amplified 

cRNA, 11 µl 10X Blocking Agent, Nuclease-free water (bringing the volume 

up to 52.8 µl) and 2.2 µl 25X Fragmentation Buffer to a 1.5 ml nuclease-free 

microfuge tube 

3. The sample tubes were incubated at 60 °C for 30 minutes to fragment RNA 

before the tubes were placed on ice for 1 minute 

4. 55 µl of 2x HI-RPM Hybridization Buffer was added to each sample tube to 

stop the fragmentation reaction before the tubes were centrifuged for 1 minute 

at room temperature at 13000 rpm and then placed on ice 

 

Preparation of hybridization assembly: 

Steps: 

1. A clean microarray gasket slide was placed into the Agilent microarray 

hybridization chamber base with the barcode facing up before hybridization 

sample was slowly dispensed onto the gasket well 

2. The oligo microarray slide, Human GE 4x44K Microarray, was slowly placed 

in the right orientation down onto the gasket slide before the chamber cover 

was placed onto the sandwiched slides and the clamp assembly was hand-

tighten onto the chamber 
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3. The assembled chamber was vertically rotated to wet the gasket and assess the 

mobility of the bubbles before it was placed in a hybridization oven set to 65 

°C and 10 rpm, and hybridized for 17 hours  

4.2.3 Microarray wash 

After the hybridization step the microarray slides are washed in Gene Expression 

Wash buffer 1 and 2 to remove unhybridized and non-specifically hybridized cRNA 

(82). Triton X-102 is added to the buffers to reduce the possibility of array wash-

related background artifacts (82).  

4.2.3.1 Procedure  

Steps: 

1. 2 ml 10 % Triton X-102 were added to wash buffer 1 and 2 in the cubitainer 

before  Gene Expression Wash Buffer 1 was added to the disassembly dish 

and to the 1
st
 wash dish 

2. A slide rack was placed into the 1
st
 wash dish before a magnetic stir bar was 

added and the dish was placed on a magnetic stir plate 

3. Gene Expression Wash Buffer 2 was added to the 2
nd

 wash dish, the dish was 

placed on a heat plate and a magnetic stir bar was added before the buffer was 

heated to 37 °C 

4. The hybridization chamber was removed from the hybridization oven before 

the chamber was disassembled 

5. The array-gasket sandwich was quickly transferred to the disassembly dish 

containing Gene Expression Wash Buffer 1 before the two slides was 

separated using a forceps 

6. The microarray slide was placed into the slide rack in the 1
st
 wash dish 

containing Gene Expression Wash Buffer 1 at room temperature for 1 minute 

7. The slide rack was transferred to the 2
nd

 wash dish containing Gene 

Expression Wash Buffer 2 at 37 °C for 1 minute before the slide rack was 

slowly removed to minimize droplets on the slides 

8.  A forceps was used to remove the microarray slide from the slide rack and the 

array slide was then placed in a light protected slide holder 
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4.2.4 Scanning and feature extraction  

After the washing of the microarrays the slides are scanned using Agilent C Scanner 

(G2565CA) (82). This is a high-resolution microarray scanner that measures the 

fluorescence intensity of the labeled cRNA after hybridization of the samples to the 

microarray probes (85).  The fluorescence measurement is facilitated by the use of a 

laser to excite the Cy3-labeled samples (85). The fluorescence from the labeled 

samples are detected and recorded in high-resolution TIFF images prepared for 

feature extraction analysis (85).  

The data generated from the gene expression experiments is extracted using Agilent 

Feature Extraction Software (82).  The software allows measurement of gene 

expression by extracting the information from probe features from microarray scan 

data (82). By the use of the Spike-In controls Agilent One Color microarray 

experiments can be analyzed with the Feature Extraction software which generates a 

Quality Control (QC) Report used for quality assessment of the microarray 

experiment (83). Agilent Feature Extraction Software automatically finds and places 

microarray grids, rejects outlier pixels, determines feature intensities and ratios, flags 

outlier pixels and calculates statistical confidences (86).The QC report contain 

statistical results and can be used to evaluate microarray performance such as the 

reproducibility and reliability of single microarray data (87). A QC Metric Set can be 

assigned the Feature Extraction (FE) Project (82), and the results appear as an 

evaluation table in the QC report (87). Most of the metrics included in the metric set 

evaluates the different laboratory steps such as the labeling, hybridization, washing 

and scanning (87). Thresholds are included in the metric sets and indicates if the data 

is in the expected range (“Good”) or out of the expected range (“Evaluate”) (87). The 

metrics can therefore determine if any problems during the experiment have arisen.   

4.2.4.1 Procedure  

Steps:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

1. The scanner and the scanner PC was turned on and the Agilent Scan Control 

Software was opened before Start Slot and End Slot in addition to Profile 

AgilentHD_GX_1Color was selected 

2. The microarray slides were inserted into slide holders and the  assembled slide 

holders were placed in the scanner carousel, before it was verified that the 
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Scanner status in the main window said Scanner Ready and the scan was 

started 

3. When the scanning of the microarray slides was completed, Agilent Feature 

Extraction Software was opened at the scanner PC 

4. TIFF image was extracted by adding the image to be extracted to the FE 

Project, before setting the correct FE Project Properties and selecting the 

correct Extraction Set Configurations (the correct grid template and the correct 

protocol) before the extraction was started 

5. After the extraction was completed the QC reports for each extraction set was 

viewed and evaluated  

 

4.3 RNA Quality Assessment 

The Agilent 6000 Nano Assay evaluates RNA quality by the use of Agilent 2100 

Bioanalyzer (88). This quality characterization is important because experiments 

involving RNA such as genome-wide microarrays require high quality RNA. The 

assay contains RNA chips with an interconnected set of microchannels that is used for 

the separation of RNA fragments based on their size as they are driven through the 

channels by electrophoresis (89).  

After the analysis is performed the Agilent 2100 Expert Software provides a RNA 

Integrity Number (RIN) for each sample (88). The RIN number is a quantitative value 

for RNA integrity and is ranging from 1 to 10, representing the lowest and highest 

RNA quality, respectively. In addition to the RIN number, an electropherogram of 

each sample well window is generated (88). If the total RNA run is successful two 

distinct peaks representing the 18S and 28S ribosomal RNA in addition to one marker 

peak will be displayed in the elecropherogram (Figure 15) (88).  
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Figure 15. An electropherogram of the sample well window can be displayed after a total RNA sample 

run on the Agilent 2100 Bioanalyzer. One marker peak and two ribosomal peaks (18S and 28S) are the 

major features of a successful run (88). 

4.3.3 Procedure 

Steps: 

1. The RNA 6000 Nano gel matrix was equilibrated to room temperature for 30 

minutes before 550 µl of the matrix was dispensed to a filter spin and 

centrifuged at 1500 g +/- 20% for 10 minutes 

2. 65 µl filtered gel was dispensed into 0.5 ml RNase-free microfuge tubes. The 

tubes were stored at 4ºC and must be used within one month of preparation 

 

Preparation of the ladder: 

Steps:  

1. The ladder was dispensed to a 1.5 ml RNase-free microfuge tube before it was 

denatured at 70ºC for 2 minutes and placed directly on ice 

2. Aliquots were then prepared in 0.5 ml RNase-free microfuge tubes before 

stored at -70ºC 
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Preparation of the gel-dye mix: 

Steps:  

1. The RNA 6000 Nano dye concentrate was equilibrated to room temperature 

for 30 minutes before vortexed for 10 seconds and spinned down 

2. 1 µl of dye was added into a 65 µl aliquot of filtered gel and the solution was 

vortexed before the tube was centrifuged at 13000 g for 10 minutes, the 

prepared gel-dye mix had to be used within one day  

 

Loading the gel-dye mix: 

Steps:  

1. A new RNA 6000 Nano chip was placed on the chip priming station before 

9.0 µl of gel-dye mix equilibrated to room temperature for 30 minutes was 

dispensed to the well marked with a black G 

2. The plugger was positioned at 1 ml before the chip priming station was closed 

and the plugger was pressed until it was held by the chip 

3. The clip was released after 30 seconds, and after additional 5 seconds the 

plugger was pulled back  to 1 ml position 

4. The chip priming station was opened and 0.9 µl of gel-dye mix was dispensed 

in the two wells marked G 

 

Loading the Agilent RNA 6000 Nano Marker: 

Step:  

1. 5 µl of RNA 6000 Nano marker equilibrated to room temperature for 30 

minutes was dispensed in all 12 sample wells including the well marked with a 

ladder 
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Loading the ladder and samples: 

Steps:  

1. 1 µl of  prepared ladder kept on ice was dispensed in the well marked with a 

ladder before 1 µl of sample was dispensed in each of the 12 sample wells 

after the samples had been denatured at 70ºC for 2 minutes  

2. The chip was placed horizontally in the adapter of the IKA vortexer and 

vortexed for 1 minute at 2400 rpm  

3. 350 µl RNase Zap was dispensed into an electrode cleaner and placed in the 

Agilent 2100 bioanalyzer for 1 minute before 350 µl RNase-free water was 

dispensed into another electrode cleaner and placed in the bioanalyzer for 10 

seconds, then the lid was opened and the electrodes was dried for 10 seconds 

 

Starting the Agilent 2100 Bioanalyzer: 

Steps:  

1. The bioanalyzer was turned on, the chip was placed in the bioanalyzer within 

5 minutes after ladder and sample loading and Agilent 2100 expert software 

(Revision B.02.02 and higher) was opened before Eukaryotic Total RNA 

Nano Series II was selected at the bioanalyzer PC and the number of samples 

entered  

2. After the analysis was completed the chip was removed before the electrode 

cleaner containing  RNase-free water was placed in the bioanalyzer for 10 

seconds 
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4.4 RNA Quantification with Absorbance 

NanoDrop ND-1000 UV-VIS Spectrophotometer is used to measure among other the 

concentration of DNA and RNA and also to assess their purity (90). The 

spectrophotometer measures the absorbance of compounds absorbing at 230, 260 and 

280 nm.  

Quality assessment of template RNA and Cy-3 labeled cRNA is important for the 

outcome of gene expression experiments (82). The RNA should be of high quality and 

thus free of contaminants such as proteins, carbohydrates and organic solvents (82). In 

addition, the RNA should be intact and minimally degraded (82). Two ratios are used 

to assess high-quality RNA and include the A260/280 and A260/A230 ratios (82). The 

A260/280  ratio indicates the presence of contaminating proteins and should be 1.8 to 2, 

indicating no protein contaminants (82). In contrast, the A260/A230 ratio indicates the 

presence of organic compounds and cellular contaminants and should be above 2 (82).  

4.4.1 Procedure 

Steps: 

1. The sampling arm was opened and 1.5 µl RNase-free water was applied onto 

the lower measurement pedestal to clean it before the arm was closed. The 

Nanodrop software was started and Nucleic Acid Measurement (for RNA 

and DNA) or Microarray Measurement (for cRNA) was selected 

2. 1.5 µl distilled water was applied to initialize the instrument, and the sample 

type RNA-40 was selected before 1.5 µl distilled water was used to blank the 

instrument 

3. Then 1.5 µl of each sample was applied onto the lower measurement pedestal, 

and concentrations was measured (ng/µl) in addition to the A260/280 and 

A260/A230 ratios 
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4.5 Statistical Methods and Bioinformatics 

The statistical methods and bioinformatic tools used in this thesis are described in 

brief below. 

4.5.1 GeneSpring GX 

The GeneSpring GX Software (Version 11.5.1 – Build 138755) from Agilent 

Technologies is used among other to pre-process and analyze mRNA expression 

microarray data (91). The Feature Extraction files are uploaded to GeneSpring GX 

and the gene expression microarray data is automatically log2 transformed to remove 

negative numbers and 0 (91). The log2 transformation also serves as a basic 

normalization of the data. Several more advanced normalization methods are 

available to normalize the microarray data such as quantile and percentile 

normalization. Normalization of the fluorescent intensities of the microarray data is 

performed to minimize systemic non-biological variance such as RNA quantity 

differences, hybridization variability between microarrays and differences between 

manufactured microarrays. The in between sample normalization is performed to 

make microarray measurements comparable and to reveal differences due to 

biological variation and not due to technical variation. 50% percentile normalization 

calculates the 50
th

 percentile for each array and aligns the arrays by their 50
th  

percentile which corresponds to the median value (91). This method assumes that the 

50
th

 percentile intensity is similar for all samples. In contrast, quantile normalization 

assumes that the overall expression and the distribution of gene abundance is the same 

across arrays. When performing quantile normalization the data is therefore 

normalized so that the distribution of probe intensities is the same for all samples 

(91).  

Quality control on samples can be performed in GeneSpring GX to detect outlier 

samples (91). Quality control on samples is assessed by Principle Component 

Analysis (PCA) which is a covariance analysis. Principle components are vectors that 

reduce the microarray data into three dimensions. The PCA components 1, 2 and 3 

capture the most variance in the microarray data and are numbered according to their 

decreased significance (91). Detection of the major trends in the data set can be 

viewed in a 3D-scatter plot. The X, Y and Z axis correspond to principle component 

1, 2 and 3, respectively (91). When performing PCA on samples, each sample is 
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plotted according to its values for the first three Principal Components. The samples 

having similar scores for one or more components can be considered to have similar 

gene expression profile. To evaluate the similarity of samples within different 

condition groups the samples can be colored by experimental parameters. This may 

also identify influent parameters involved in the experiment.  

Quality control on probes is performed in GeneSpring GX by filtering the probe sets 

to remove low reliability probes (91). The probe sets can be filtered by expression, 

where a lower- and upper cutoff can be chosen. In addition, the probe sets can be 

filtered based on their flag values. The stringency of this filtering is adjusted by 

selecting specific types of flag calls and the number of samples in which the flag 

setting must pass (91). The default flag settings in GeneSpring GX flags the probes 

that are non-uniform, saturated and population outlayers as ‘compromised’ probes, 

while non-positive, non-significant and below background probes are flagged as ‘not 

detected’.   

4.5.2 Unsupervised hierarchical clustering in R 

Hierarchical clustering is a method that groups both samples and genes according to 

the similarity in their gene expression profiles. This can be performed unsupervised 

which organizes the samples without any predefined parameters to identify patterns 

and biological mechanisms within a data set. The results of the clustering are viewed 

in a dendrogram. In the dendrogram the samples that have a higher similarity in their 

expression profiles cluster more adjacent to each other than samples that show more 

differences in their expression profiles. In addition, the length of the branches in the 

dendrogram increases as the similarity decreases. Numerous similarity metrics can be 

used to capture related expression values between samples by calculating the distance 

or the correlation, such as euclidean distance or Pearson correlation (91). The 

calculation of the closeness is based either on trends or magnitude. Different linkage 

methods are also available to link all the samples in the cluster together, e.g. single, 

average, complete and centroide. By performing average linkage the average distance 

between all pairs are calculated and used to cluster the samples. Hierarchical 

clustering can be performed among other in the open statistical system R 

(http://windowxupdate.microsoft.com). Unsupervised clustering requires normalized 

gene expression values for all probes for the samples you want to include in the 
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cluster as input data. The R code for hierarchical clustering using pearson distance 

metric and average linkage is listed below: 

data<-read.table("allprobes_normalized.txt", 

header=T,sep="\t",na.strings="NA",row.names=NULL) 

 

data2<-data[,3:dim(data)[2]]  

 

m<-data.matrix(data2) ; rownames(m) <- data[,1];dim(m) 

 

c<-cor(m, method="pearson") 

d<-as.dist(1-c) 

hr <- hclust(d, method = "average", members=NULL) 

plot(as.dendrogram(hr), edgePar=list(col=1, lwd=2), horiz=F)  

4.5.3 4.5.8  Intrinsic subclassification  

Breast tumors can be classified into distinct subclasses by a method called intrinsic 

subclassification. This method was developed when the five subgroups were 

identified based on gene expression patterns by Sørlie and colleagues (92). The genes 

used for the classification were selected based on their similar expression level 

between tumors collected before and after neoadjuvant doxorubicin therapy from the 

same patient. A ‘intrinsic’ gene list of approximately 500 genes was created that 

consisted of genes which were most similar expressed between tumor samples from 

the same patient and which in addition showed the most variation in expression 

among tumors from different patients. For each of the five subclasses identified, a 

centroid consisting of the average expression for all of the ‘intrinsic’ genes was 

created. When performing intrinsic subclassification on tumor samples today, the 

Pearson correlation between the expression level of the ‘intrinsic’ genes in each tumor 

sample and the five centroids are calculated. Samples are then assigned to the subtype 

of the centroid with the largest correlation coefficient.   

4.5.4 Significance Analysis of Microarrays (SAM) 

Significance Analysis of Microarrays (SAM) is a software which is used to identify 

significant genes in a microarray data set (93). This multiple t-test was proposed and 

written by coworkers at Stanford University CA. SAM requires Windows, Microsoft 

Excel and the latest version of R. SAM can be used to perform numerous statistical 

analyses, such as quantitative, two class (unpaired and paired), one class, multiclass, 

survival analysis and many more. A two class SAM analysis (either unpaired or 

paired) requires normalized gene expression values in addition to a variable that 
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divides the samples into two groups as input data. The data must be in an Excel 

spreadsheet in which the first row contains information about the chosen variable and 

the remaining row consists of gene expression data.  

SAM measures the strength of the relationship between the gene expression values 

and the variable. Repeated permutations of the data are used to determine if any genes 

are differentially expressed between the two sample groups. Generally in the scientific 

literature the cut-off for significance is set to 5%. A p-value <0.05 indicates that the 

differences cannot be explained by chance. However, microarray analysis often 

involves many independent statistical tests performed on the same data set. False 

positive results are therefore expected. A parameter called delta in the SAM output 

window can be tuned to choose the cutoff for significance based on the false 

discovery rate (FDR), which corresponds to the rate of false positive results expected 

among the significant findings. The SAM output consists of a table with all the genes 

that are significant differentially expressed between the two groups chosen on the 

basis of the variable. Both positive and negative genes are viewed that correspond to 

the genes which are up- and down regulated, respectively. In addition, a fold change 

parameter that reflects how much the expression of each gene is different between the 

two groups are displayed. The gene list containing the significant genes can be used in 

further bioinformatic analyses. However, the gene lists often contains probes without 

annotations. Databases such as SOURCE (http://smd.stanford.edu/cgi-

bin/source/sourceBatchSearch) contain genetic and molecular annotations and can be 

used for this purpose.   

4.5.5 Hierarchical clustering in J-Express 

J-Express (http://jexpress.bioinfo.no/site/) is a bioinformatic and statistical software 

used for analyses of microarray data. The software is developed by a bioinformatics 

group at the Department of Informatics, University of Bergen, Norway and is owned 

by Molmine AS. Several statistical analyses can be performed in J-Express among 

other hierarchical clustering. When performing hierarchical clustering in J-Express 

microarray data containing columns with gene identifiers, rows with sample 

identifiers and expression values are uploaded to the software. Next, the similarity 

metric and the linkage method are selected, before the hierarchical clustering is 

performed.        
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4.5.6 Ingenuity Pathway Analysis (IPA) 

Ingenuity Pathway Analysis (IPA) (http://www.ingenuity.com) is a licensed software 

which enables pathway and gene analysis of biological data such as microarray data. 

The information in IPA is based on scientific literature and databases which is 

manually reviewed.  Gene lists from e.g. SAM can be used as input. IPA provides 

information about among other networks, molecular and cellular functions, chemical 

and molecular interactions and disease and disorder processes for a given gene set. 

Many of the results in IPA are provided with a p-value, a Benjamini-Hochberg p-

value which is corrected for multiple testing and a ratio which reflects the number of 

molecules from the input gene set that map to a specific pathway or list divided by the 

total numbers of molecules that are mapped by IPA to the same pathway or list.  

4.5.7 Gene Set Enrichment Analysis (GSEA) 

In Gene Set Enrichment Analysis (GSEA) prior-defined gene sets (e.g. from Gene 

Ontology or KEGG) are used to identify gene sets which are differentially expressed 

within two sample groups. GSEA can be performed in several software’s, such as 

GeneSpring GX and J-Express. In GSEA sets of genes rather than individual genes 

are analyzed for differentially expression between two experimental groups. By using 

statistics that evaluate each gene by itself it can be difficult to identify differences in 

expression if the gene only shows a moderate change. Therefore, GSEA is utilized to 

evaluate if many genes belonging to the same gene set are changed.  

4.5.8 SPSS 

IMB SPSS Statistics is a software which can be utilized to perform a number of 

statistical tests. Cross tabulation can be performed to measure the association between 

two-way tables. The statistics used for measuring the relationship is among other Chi-

square and Fisher’s exact test. Chi-square is not recommended if more than 1/5 of the 

cells have less than five expected observations. In those cases the Fisher’s exact test is 

preferred. One-Way ANOVA can also be performed in SPSS and is a parametric test 

which can be used for normal distributed data to compare if there is a significant 

difference in for instance mean expression level of a transcript between two groups. It 

is an extension of the two-sample t-test, and analysis of variance is used to test the 

hypothesis that several means are qual.  
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5. Results 

In this study the changes in mRNA expression in relation to doxorubicin therapy 

(before versus after doxorubicin exposure) were investigated as well as the 

association between mRNA expression profile and response to doxorubicin treatment. 

In addition, the gene expression profiles of samples with wild type and mutated TP53 

were studied. Analyses were performed to increase the understanding of the molecular 

mechanisms underlying doxorubicin effect on tumors and in addition to elucidate the 

mechanisms behind patients’ response to doxorubicin treatment.  

5.1 mRNA Expression Analysis 

The statistical analyses can be divided into four main parts: 1) mRNA expression in 

tumor tissue before versus after doxorubicin therapy, 2) mRNA expression and 

response to treatment, 3) mRNA expression and TP53 mutation status and 4) 

molecular subclassification based on gene expression profiles. Before statistical 

analyses can be performed the microarray data have to be normalized and filtered. 

The pre-processing and quality control of the samples and probes are described 

below.  

5.1.1 Pre-processing and quality control of microarray data 

Whole-genome mRNA analysis was performed according to standard procedure (see 

method chapter 4.2) using the Human GE 4x44K Microarray. 2 out of 131 samples 

failed the technical lab quality control, leaving 129 samples for further analyses. Pre-

processing of the microarray data was performed in GeneSpring GX Version 11.5.1. 

The microarray data were 1) log2 transformed and normalized using 50% percentile 

normalization, 2) filtered by expression (lower cut off 10%, upper cut off 100%) 

giving 26635 remaining probes and 3) filtered by flags (detected and not detected) 

resulting in 26270 remaining probes. The control- and spike-in probes (n=36) were 

deleted yielding a total of 26234 probes, that corresponded to 14046 unique genes, 

available for data analyses.  

Principle Component Analysis (PCA) was performed to assess sample uniformity and 

quality. 3D-scatter plots were created on 1) normalized and unfiltered data, 2) on data 

filtered by expression and 3) on data filtered both by expression and by flags. By 

performing quality control on the original 129 experimental samples one sample (BC 
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40-BE) was found to be an outlier in the PCA analysis. In addition, this sample had a 

different distribution of signal intensities in the QC report from Feature Extraction 

compared to the other samples (Figure 16). When performing hierarchical clustering 

BC 40-BE clustered separately and based on the combination of these findings the 

sample was removed, leaving a total of 128 samples (56 before and after pairs and 16 

‘single’ samples consisting of eight before and eight after samples) available for 

statistical-and bioinformatic analyses. 

 

Figure 16. Probe signal distribution. The signal intensities for BC 40-BE (a) compared to another, 

representative sample in the experiment (b). The histogram for BC 40-BE is not as well distributed as 

for the other sample and show overall lower signal intensity. This sample was excluded from any 

further statistical analyses.  

After the BC 40-BE sample was removed, new PCA plots were generated of the 

remaining 128 samples. One sample outlier was observed in the PCA plot created on 

only normalized array data (Figure 17). However, when a new plot was generated 

using normalized and filtered data this sample clustered together with the rest of the 

samples. No technical aberrations were observed for this sample and it was therefore 

not excluded from further statistical analyses.  
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Figure 17. Principle Component Analysis (PCA). Quality control on samples was performed by PCA 

and the creation of 3D-scatter plots where samples are displayed in respect to the first three principle 

components.  One sample outlier of the total 128 experimental samples is indicated with a red circle in 

the PCA plot created on normalized, unfiltered data (a). The PCA plots created on data filtered only by 

expression (data not shown) and on data filtered both by expression and by flags (b) are almost 

identical. The outlier sample (indicated again with a red circle) has now merged with the rest of the 

samples. This sample was therefore not omitted from further analyses.  

 

5.2 mRNA Expression Profile Before and After Doxorubicin 

Therapy 

A major part of this study was the investigation of the mRNA expression levels in 

breast cancer tumor tissue collected before and after doxorubicin therapy. For the 

samples collected before and after treatment (termed BE and AF) the analysis of the 

alterations in gene expression pattern may highlight the pathways induced and/or 

repressed by doxorubicin exposure. 

5.2.1 PCA of before and after samples 

A 3D PCA scatter-plot was generated of the 128 experimental samples by using the 

normalised and filtered probe list containing 26234 probes to evaluate the mRNA 

expression similarity between samples collected before (n=64) and after (n=64) 

doxorubicin treatment (Figure 18). The scatter plot revealed that samples collected 

before and after doxorubicin treatment were grouped in different areas in the plot. The 

before samples were mostly shifted in one area, while the after samples were mostly 

shifted in another indicating an overall difference between the two groups.  
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Figure 18. 3D-scatter plot of before and after samples. Before samples (n=64) are indicated in blue, 

while after samples (n=64) are shown in red.  The PCA graph illustrates that samples within the same 

experimental condition i.e. treatment status mainly group together.  

 

5.2.2 Unsupervised hierarchical clustering  

Unsupervised hierarchical clustering by mRNA expression of the 128 tumor samples 

was performed in R version 2.14.1 (Figure 19). The normalized and filtered 

microarray data containing 26234 probes were used as input. Pearson correlation and 

average linkage were chosen as the distance metric and the linkage method, 

respectively. In the hierarchical cluster dendrogram the tumor samples were organized 

according to the similarities in their gene expression profile without any predefined 

parameters. The cluster analysis did not separate the before and after samples into two 

clear clusters. However, the subcluster that contained the majority of the samples 

could be divided into three main clusters (see Figure 19). Cluster 1 contained 33 after 

samples and 8 before samples, cluster 2 contained 31 before samples and 15 after 

samples while cluster 3 contained 8 after samples and 6 before samples. A significant 

different distribution of before and after samples between the three main clusters 

indicated in Figure 19 was observed using Pearson Chi-Square test (p-value=2.44E-

5). The two ends on each side of the three main clusters contained both a majority of 

after samples.  

The cluster analysis separated the majority of the before and after pairs collected from 

the same patient. Of the 56 pairs in the sample set, 18 of the pairs clustered together 
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while the rest of the pairs were separated. Nine of the 18 pairs that clustered together 

were collected from patients characterized as having a stable disease and/or minimal 

change (SD/MC) to doxorubicin therapy, and nine pairs were collected from patients 

assessed with a partial response (PR) to therapy. The majority of the pairs found to 

cluster together clustered in the ‘before’ cluster/cluster 2 in Figure 19.  
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Figure 19. Unsupervised hierarchical clustering by gene expression. (A) The 128 samples were 

organized according to similarity in their gene expression patterns using Pearson distance metric, 

average linkage and 26234 probes. Samples collected before and after doxorubicin therapy are assigned 

BE and AF at the end of each sample name and colored blue and red, respectively. An asterisk (*) 

beneath the dendrogram indicates samples collected before and after doxorubicin therapy from the 

same patient clustering together. (B) Patient response to doxorubicin and primary tumor characteristics 

are indicated: response: partial response (purple), stable disease and/or minimal change (green); 

estrogen receptor status: ER negative (white), ER positive (black); histological grade: grade 1 (white), 

grade 2 (grey), grade 3 (black); TP53 mutation status: wild type (white), mutated (black).   
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5.2.3 SAM analysis of tumor samples before and after therapy 

SAM analysis was performed on the normalized and filtered mRNA expression data 

to detect genes differentially expressed between samples collected before and after 

doxorubicin treatment. The analysis was performed both on the total number of 

experimental samples (n=128, 64 before and 64 after) and on the subset of sample 

pairs collected before and after doxorubicin therapy from the same patient (n=112 

representing 56 pairs). SAM analysis on the expression data from all samples 

increases theoretically the power to detect differences because more samples are 

included in the analysis, while the removal of the 16 ‘single’ samples may give a 

“cleaner” result of the differences between the samples collected before and after 

doxorubicin therapy, through the embedded correction for intratumor differences.  

SAM analysis performed on microarray data from all the 128 experimental samples 

detected 6387 probes to be significantly differentially expressed between the before 

and after samples (FDR≈0%) (Figure 20). In all, 2889 probes were found to be up 

regulated while 3498 probes were found to be down regulated in the after samples.  

 

Figure 20. SAM analysis, all samples. Two class unpaired analysis revealed 6387 probes to be 

differentially expressed between before and after samples (FDR≈0%). The red (n=2889) and the green 

(n=3498) probes are up- and down regulated respectively in the after samples.  
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SAM analysis performed on mRNA expression data from the 56 before and after pairs 

revealed 6482 probes to be significant differentially expressed between the two 

groups (FDR≈0)  (Figure 21). A total of 3040 up regulated and 3442 down regulated 

probes were revealed in the after samples. 

 

Figure 21. SAM analysis, paired samples. SAM analysis performed on the before and after pairs (n=56 

pairs, 112 samples). Two class paired analysis explored 6482 probes to be significant differentially 

expressed between the before and after samples (FDR≈0%). The red (n=3040) and the green (n=3442) 

probes are up- and down regulated in the after samples respectively.  

Comparing the fold change of the genes from both the unpaired and paired SAM 

analysis revealed a much higher fold change for the genes up regulated after therapy 

than for the genes down regulated after therapy. The genes showing the largest fold 

change in either direction, i.e. top 25%, from both the unpaired and the paired SAM 

analysis were further analyzed using Ingenuity Pathway Analysis (IPA). Selected 

genes that were shown to be significant differentially expressed by SAM analysis, and 

that were found in the list containing genes having the 25% fold change, were further 

investigated using IMB SPSS Statistics 18. This analysis was performed to confirm to 

which extent the genes were differentially expressed between the before and after 

samples by using One-Way ANOVA. Two of the up regulated (FOS, CYR61) and two 

of the down regulated (FBXO11, NIT2) genes from the unpaired analysis were 
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visualized by ANOVA plot (Figure 22). The mean mRNA expression level for the 

four genes in the before and after samples is illustrated in Figure 22. By using One-

Way ANOVA all the genes were found to have a significant difference in means 

(p<0.05) between the two groups. 

Figure 22. The distribution of mRNA expression level of selected genes in before and after samples. 

FOS and CYR61 were found to be up regulated in the after samples, while FBXO11 and NIT2 were 

found to be down regulated in the after samples by SAM analysis. By performing One-Way ANOVA 

the four genes were shown to have a significant difference in means between the two groups (p-

value<0.05). The distribution of expression levels between the before (BE) and the after (AF) samples 

is visualized in the box plot. The box plot shows the 75
th

 (upper edge of box), 50
th

 (line in the box) and 

25
th

 (bottom edge) percentile while the whiskers gives the 1.5 interquartile range. Outliers are shown 

with small black circles.  

The probes found to be differentially expressed between samples collected before and 

after treatment from the unpaired SAM analysis (n=6387) were used to cluster the 128 

samples (Figure 23). In this cluster analysis, only four pairs were found to cluster 

together indicating a greater separation of the before and after samples collected from 

the same patient compared to using all probes in the microarray data (see chapter 

5.2.2).  
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Figure 23. Hierarchical clustering using only the probes found to be differentially expressed between 

before and after samples from SAM. Samples collected before doxorubicin treatment are shown in blue 

and samples collected after treatment are shown in red. An asterisk (*) beneath the dendrogram 

indicates before and after pairs from the same patient that clustered together.   

 

5.2.4 Ingenuity Pathway Analysis of genes differentially expressed between 

before and after samples 

The probe lists containing the genes differentially expressed between before and after 

samples from both the unpaired and the paired SAM analysis were extracted and 

further analyzed using Ingenuity Pathway Analysis (IPA). Before the analyses were 

performed, the probe lists from SAM were pre-processed. First, the gene names of the 

un-annotated probes were updated where possible using SOURCE, before the 

remaining un-annotated probes were deleted. Probes with the top 25% fold change 

were extracted and the redundant genes removed before uploading the list of genes to 

IPA. A small subset of genes was not recognized in IPA and these genes were 

therefore excluded in the analyses. The number of probes and unique genes up- and 

down regulated, after doxorubicin therapy, in both the unpaired and paired analysis 

are shown in table 3.    

Table 3. Overview of probes from the SAM analyses and genes included in IPA analyses. The probes 

up- and down regulated after doxorubicin treatment from the unpaired and paired SAM analysis are 

shown. Before IPA analyses were performed, the un-annotated probes were deleted and probes with the 

top 25% fold change extracted.  The unique genes these probes represented were uploaded to IPA. The 

last row in the table specifies the total number of genes included in the IPA analysis.  

 Unpaired  Paired  

 Up regulated  Down regulated  Up regulated  Down regulated  

Probes from SAM  2889  3498  3040  3442  

Probes after 

deletions  

2633  2414  2770  2392  

Probes with top 

25% fold change  

658  603  692  598  

Unique genes  573  559  603 557 

Genes included in 

IPA analysis   

567  548  594 536 
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A total of 534 genes were found to be identical between the up regulated genes, 

having the top 25% fold change, from the unpaired and paired comparison of before 

and after samples. For the unpaired list, 39 genes were unique compared to 69 unique 

genes for the paired gene list. Likewise, 369 genes were found to be equal between 

the genes down regulated, with the top 25% fold change, after doxorubicin treatment 

from the unpaired and paired SAM analysis. In addition, 190 genes were found 

exclusively in the unpaired list while the paired list contained additional 188 unique 

genes. Venn diagrams illustrating the gene similarity between the up- and down 

regulated genes from the unpaired and paired analysis are shown in Figure 24.  

 

Figure 24. Venn diagrams of genes, having the top 25% fold change, from the unpaired and paired 

comparison of before and after samples. The Venn diagram illustrates that 534 genes are equal between 

the unpaired and paired analysis of genes up regulated after doxorubicin therapy (a). A total of 369 

down regulated genes were found to be equal between the two gene lists containing genes down 

regulated after treatment (b).  

For both the up- and down regulated gene lists, the genes showing the largest fold 

change, i.e. top 25%, were uploaded to IPA. IPA of genes up regulated after treatment 

with doxorubicin are described first, followed by IPA of the genes down regulated 

after therapy.  

5.2.4.1 IPA on genes up regulated after doxorubicin treatment  

The genes up regulated, showing the top 25% fold change, after doxorubicin therapy 

provided from the unpaired (n=567) and paired (n=594) before and after sample 

comparison were uploaded to IPA to identify functions and pathways enriched within 

the lists. Tables containing the molecular and cellular functions, canonical networks, 

transcription factors and tox lists overrepresented within the gene lists are listed below 

(Table 4-7). 
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The IPA analysis revealed many molecular and cellular functions overrepresented in 

the list of genes with top 25% fold change up regulated after treatment for both the 

unpaired and paired gene list. To identify the most significant functions a Benjamini-

Hochberg threshold value was selected. A threshold value of 0.05 revealed 65 

enriched functions in both the unpaired and paired gene lists. To reduce this number, a 

threshold value of 1.0E-13 was selected for both analyses, and revealed a total of six 

and eight functions significantly overrepresented in the list of genes up regulated from 

the unpaired and paired analysis, respectively. The IPA analyses indicated that the 

molecular and cellular functions overrepresented in the list of genes up regulated after 

treatment were almost identical between the gene lists provided from comparison of 

all and paired before and after samples (Table 4).  

Table 4. The most significant molecular and cellular functions enriched in the list of unique genes, 

with top 25% fold change, up regulated after doxorubicin treatment. The functions displayed are 

provided from the comparison of unpaired (a) and paired (b) before and after samples. The Benjamini-

Hochberg multiple testing correction p-value (B-H p-value) and the number of molecules in the 

uploaded data set associated with each specific function are displayed. 

a) Molecular and Cellular Functions overrepresented in the list of unique genes up 

regulated after therapy, unpaired analysis (n=567)  

Name B-H P-value  # molecules  

Cancer  9.10E-31 – 3.40E-03 266 

Reproductive System Disease  9.10E-31 – 6.85E-04 183 

Cardiovascular System Development and 

Function  

4.53E-24 – 3.43E-03 155 

Organismal Development  4.52E-24 – 3.08E-03 182 

Cellular Movement  5.42E-21 – 3.40E-03 160 

Cell Morphology 2.49E-14 – 3.40E-03 180 

b) Molecular and Cellular Functions overrepresented in the list of unique genes up 

regulated after therapy, paired analysis (n=594) 

Name  B-H P-value # molecules 

Cancer 2.90E-33 – 3.09E-03 282 

Reproductive System Disease 2.90E-33 – 9.74E-04 192 

Cardiovascular System Development and 

Function 

3.23E-25 – 2.86E-03 164 

Organismal Development 3.23E-25 – 2.92E-03 204 

Cellular Movement 6.98E-23 – 2.86E-03 183 

Cellular Growth and Proliferation 3.55E-15 – 2.71E-03 229 

Tissue Development 4.52E-15 – 2.92E-03 242 

Cell Morphology 3.65E-14 – 1.90E-03 193 
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The top canonical pathways overrepresented in the list of genes having the top 25% 

fold change up regulated after therapy, extracted from the SAM analysis of both 

unpaired and paired samples are shown in Table 5. A Benjamini-Hochberg threshold 

value was selected to detect the most significantly enriched pathways within the gene 

lists. A total of ten pathways were discovered to be overrepresented in the list of up 

regulated genes from the unpaired list when a threshold value was set to 0.05. 

Additionally, the same threshold value identified nine pathways enriched in the list of 

genes up regulated from the paired analysis. The analysis revealed that the enriched 

canonical pathways were strongly overlapping within both gene lists.  

Table 5. The most significant canonical pathways overrepresented in the list of genes up regulated 

after therapy, with the top 25% fold change. The pathways are extracted from the SAM analysis of both 

the unpaired (a) and the paired (b) before and after samples. For each canonical pathway the 

Benjamini-Hochberg multiple testing correction p-value and the ratio (genes included in the imported 

data set/ the total number of genes in the canonical pathway) are provided. 

a) Top Canonical Pathways overrepresented in the list of unique genes up regulated after 

therapy, unpaired analysis (n=567)  

Name  B-H P-value  Ratio  

Hepatic Fibrosis/Hepatic Stellate Cell 

Activation  

3.66E-05  20/142  

Role of Osteoblasts, Osteoclasts and 

Chondrocytes in Rheumatoid Arthritis  

2.39E-03  22/229  

Human Embryonic Stem Cell Pluripotency  5.58E-03  15/144  

Complement System  8.73E-03  7/34  

Role of Macrophages, Fibroblasts and 

Endothelial Cells in Rheumatoid Arthritis  

8.73E-03  24/324  

Atherosclerosis Signaling 1.33E-02 13/125 

Wnt/β-catenin Signaling 1.7E-02 16/171 

Leukocyte Extravasation Signaling  4.09E-02 16/192 

Glioblastoma Multiforme Signaling 4.09E-02 14/162 

PTEN Signaling 4.69E-02 11/121 

b) Top Canonical Pathways overrepresented in the list of unique genes up regulated after 

therapy, paired analysis (n=594)  

Name  B-H P-value  Ratio  

Hepatic Fibrosis/Hepatic Stellate Cell 

Activation 

4.25E-06 22/142 

Human Embryonic Stem Cell Pluripotency 2.59E-04 18/144 

Role of Osteoblasts, Osteoclasts and 

Chondrocytes in Rheumatoid Arthritis 

4.04E-03 22/229 

Role of Macrophages, Fibroblasts and 

Endothelial Cells in Rheumatoid Arthritis 

4.17E-03 26/324 

Caveolar-mediated Endocytosis Signaling 5.2E-03 11/83 

Leukocyte Extravasation Signaling 5.2E-03 19/192 

Atherosclerosis Signaling 5.66E-03 14/125 

Complement System 7.42E-03 7/34 

Wnt/β-catenin Signaling 8.7E-03 17/171 
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IPA also identifies transcription factors overrepresented as gene expression regulators 

within the list of genes analyzed. The top five transcription factors enriched as gene 

expression regulators of the list of up regulated genes, with the top 25% fold change, 

in the unpaired and paired analysis are listed in Table 6. The transcription factor that 

regulated the highest number of target molecules in both the unpaired and paired gene 

list was found to be p53.   

Table 6. The top five transcription factors overrepresented in the list of unique genes, with the top 25% 

fold change, up regulated after therapy discovered by the comparison of unpaired (a) and paired (b) 

before and after samples. The p-value and the number of target molecules for each transcription factor 

are shown. The p-values are not corrected for multiple testing.  

 

The most significant tox lists enriched in the list of up regulated genes, having the top 

25% fold change,  identified from the comparison of all before and after sample and 

from only the paired samples are shown in Table 7. A Benjamini-Hochberg threshold 

set to 0.05 identified nine significant enriched tox lists in the list of up regulated genes 

from the unpaired analysis. A total of eleven significant tox lists overrepresented in 

the list of genes from the paired analysis were revealed with the same threshold value. 

The tox lists enriched in the up regulated genes from both the unpaired and paired 

analysis contained tox functions involved in cardiotoxicity, hepatotoxicity and 

nephrotoxicity.  

 

 

a)               Unpaired  b)                 Paired  

Top Transcription Factors overrepresented 

in the list of genes up regulated after 

therapy (n=567)  

Top Transcription Factors overrepresented 

in the list of genes up regulated after therapy 

(n=594)  

Transcription 

Regulator  

P-value of 

overlap  

# targets  Transcription 

Regulator  

P-value of 

overlap  

# targets  

TP53  9.53E-11  83  KLF2 6.13E-13  29 

SP1  1.21E-10  49  SP1 1.03E-11  53 

KLF2  2.00E-10  25  SP3 1.24E-11  32 

SP3  3.09E-10  29  TP53 7.61E-11  87 

FOXL2  3.93E-09  15  SMAD3 2.32E-10  29 
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Table 7. The most significant tox lists overrepresented within the list of  genes up regulated, having the 

top 25% fold change, in the unpaired (a) and paired (b) before and after sample analysis. For each tox 

list the Benjamini-Hochberg multiple testing correction p-value and the ratio (genes included in the 

imported data set/ the total number of genes in the tox list) are provided.  

 

5.2.4.2 IPA on genes down regulated after doxorubicin treatment  

Genes down regulated after doxorubicin therapy, having the top 25% fold change, 

extracted from the SAM analysis of all before and after samples (n=548) and of paired 

before and after samples (n=536), were further investigated in IPA. The IPA analyses 

were performed to reveal information of the given gene sets, including molecular and 

cellular functions, top canonical pathways, top transcription factors and top tox lists 

overrepresented in the genes down regulated after treatment.  

A Benjamini-Hocherg threshold value was selected to detect the most significant 

molecular and cellular functions enriched in the list of genes, with the top 25% fold 

change, down regulated after therapy. When the Benjamini-Hochberg threshold value 

a) Top Tox Lists overrepresented in the list of genes up regulated after therapy, unpaired 

analysis (n=567) 

Name  B-H P-value  Ratio  

Acute Renal Failure Panel (Rat)  1.6E-08 16/62 

Cardiac Hypertrophy  1.05E-06 33/318 

Hepatic Fibrosis  8.36E-06 15/84 

Hepatic Stellate Cell Activation  5.48E-04 8/35 

Liver Proliferation  6.13E-04 18/170 

Persistent Renal Ischemia-Reperfusion 

Injury (Mouse) 

3.47E-03 6/30 

Increases Renal Proliferation 8.5E-03 8/56 

Cardiac Fibrosis 1.09E-02 12/124 

Cardiac Necrosis/Cell Death 3.56E-02 14/179 

b) Top Tox Lists overrepresented in the list of genes up regulated after therapy, paired 

analysis (n=594) 

Name  B-H P-value  Ratio  

Acute Renal Failure Panel (Rat) 2.93E-11 19/62 

Cardiac Hypertrophy 8.66E-09 38/318 

Hepatic Fibrosis 3E-06 16/84 

Persistent Renal Ischemia-Reperfusion 

Injury (Mouse) 

6.66E-04 7/30 

Hepatic Stellate Cell Activation 6.66E-04 8/35 

Increases Renal Proliferation 2.91E-03 9/56 

Liver Proliferation 2.91E-03 17/170 

Cardiac Fibrosis 5.63E-03 13/124 

Cardiac Necrosis/Cell Death 2.39E-02 15/179 

Renal Glomerulus Panel (Human) 2.54E-02 4/17 

Oxidative Stress 3.74E-02 7/57 
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was set to 0.05, only one molecular and cellular function was identified 

overrepresented in the list of genes down regulated after doxorubicin therapy from the 

unpaired analysis. Two molecular and cellular functions were identified enriched in 

the list of down regulated genes from the paired analysis with the same threshold. The 

functions are displayed in Table 8. 

Table 8. The most significant molecular and cellular functions overrepresented in the list of genes, 

with the top 25% fold change, down regulated after doxorubicin treatment provided from the 

comparison of unpaired (a) and paired (b) before and after samples. The Benjamini-Hochberg multiple 

testing correction p-value and the number of molecules in the data set associated with each specific 

function are displayed. 

 

Only one canonical pathway was revealed by IPA analysis to be enriched in the list of 

genes, with the top 25% fold change, down regulated after doxorubicin treatment 

obtained from the comparison of unpaired before and after samples. This pathway 

was “EIF2 Signaling” with a Benjamini-Hochberg multiple testing correction p-value 

(B-H p-value) of 7.3E-05 and a ratio of 19/193 (genes included in the imported data 

set/ the total number of genes in the canonical pathway). The same canonical pathway 

was found to be enriched in the list of genes down regulated after doxorubicin 

therapy, having the top 25% fold change, from the paired analysis. In the paired 

analysis “EIF2 Signaling” had a Benjamini-Hochberg p-vale of 1.84E-04 and a ratio 

of 18/193.  

The transcription factors overrepresented as gene expression regulators within the list 

of down regulated genes, with the top 25% fold change, from the unpaired and paired 

list are shown in Table 9. Some of the transcription factors were found to overlap 

between the unpaired and paired analysis. 

a) Molecular and Cellular Function overrepresented in the list of genes down regulated 

after therapy, unpaired analysis (n=548)  

Name B-H P-value  # molecules  

RNA Post-Transcriptional Modification 4.94E-03 – 381E-01 25 

b) Molecular and Cellular Functions overrepresented in the list of genes down regulated 

after therapy, paired analysis (n=536) 

Name B-H P-value  # molecules  

RNA Post-Transcriptional Modification 8.00-06 – 3.60E-01 29 

Cancer 3.51E-02 – 3.60E-01 46 
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Table 9. Top five transcription factors overrepresented in the list of genes, having the top 25% fold 

change, down regulated after doxorubicin treatment discovered by the comparison of unpaired (a) and 

paired (b) before and after samples. For each transcription factor the p-value and number of target 

molecules are displayed. The p-values are not corrected for multiple testing. 

 

No tox lists were identified as being significantly overrepresented within the list of 

genes down regulated after doxorubicin treatment obtained from the before and after 

comparison of either the unpaired or paired samples.  

 

5.3 mRNA Expression Profile and Response to Doxorubicin 

The patients, in which the tumor samples included in this thesis were collected from, 

were evaluated with three different responses to doxorubicin. The patients who 

obtained a stable disease and/or minimal change were categorized in the same group 

as non-responders (SD/MC). The patients which obtained a partial response were 

categorized as responders (PR).   

5.3.1 The association between clinical factors and response 

To investigate the relationship between treatment response and different clinical 

parameters such as ER status, grade and TP53 mutation status cross tabulation was 

performed in IMB SPSS Statistics 18. The analysis revealed a significant association 

between ER status of the samples collected after doxorubicin therapy and response 

(Fisher’s Exact 2-sided p-value=0.017). No significant association was found between 

grade or TP53 mutation status and response.   

 

 

a)               Unpaired  b)                 Paired  

Top Transcription Factors overrepresented 

in the list of genes up regulated after 

therapy (n=567)  

Top Transcription Factors overrepresented 

in the list of genes up regulated after therapy 

(n=594)  

Transcription 

Regulator  

P-value of 

overlap  

# targets  Transcription 

Regulator  

P-value of 

overlap  

# targets  

TP53  9.53E-11  83  KLF2 6.13E-13  29 

SP1  1.21E-10  49  SP1 1.03E-11  53 

KLF2  2.00E-10  25  SP3 1.24E-11  32 

SP3  3.09E-10  29  TP53 7.61E-11  87 

FOXL2  3.93E-09  15  SMAD3 2.32E-10  29 
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5.3.2 PCA of two different response groups 

PCA analysis was performed to investigate if it were possible to separate the two 

different response groups based on their overall gene expression profiles (Figure 25). 

The normalized and filtered probe list containing 26234 probes was used in the 

analysis. The PCA scatter plot illustrated that samples collected from doxorubicin 

responders (n=55) and non-responders (n=73) clustered together. This may indicate 

that the expression profiles of the samples in the two response groups are similar.  

Figure 25. 3D-scatter plot of the samples collected both before and after treatment from patients with 

different response to doxorubicin. Samples collected from patients assessed with stable disease and/or 

minimal change (SD/MC) (n=73) are shown in blue, while samples taken from patients assessed with 

partial response (PR) (n=55) are indicated in red. The PCA plot does not show an apparent separation 

of the two groups.     

5.3.3 SAM analysis of tumor samples from responders and non-responders 

To identify genes differentially expressed between doxorubicin responders and non-

responders SAM analysis was performed. The normalized and filtered mRNA 

expression data were used as input. SAM was performed on the before and after 

samples separately, in addition to the delta values for each of the before and after 

pairs (the differences in expression between the before and the after sample for a 

given patient, calculated by extracting the expression value of the after sample from 

the expression value of the before sample for each pair). The analyses of before and 

after samples were performed to evaluate if the expression profiles were predictive for 

response. The analysis of delta values was performed to assess if the two response 

groups had different capability to induce or repress the expression of genes. The 
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results from the three SAM analyses of responders and non-responders revealed that 

no genes were significantly differentially expressed between the patients who 

obtained a stable disease and/or minimal change and the patients who achieved a 

partial response to doxorubicin treatment. Another approach was then performed by 

using only the probes which were shown to be differentially expressed between the 

before and after samples revealed by SAM analysis (described in chapter 5.2.3). SAM 

analyses were performed on before samples, after samples and delta expression values 

utilizing the 6482 probes found to be differentially expressed between the paired 

before and after sample analysis. However, no significant genes were revealed to be 

differentially expressed between the two response groups.  

5.3.4 Gene Set Enrichment Analysis (GSEA) 

Since no individual genes were found to be differentially expressed by the comparison 

of doxorubicin responders and non-responders, Gene Set Enrichment Analysis 

(GSEA) was performed. This method analyses sets of genes rather than looking at 

each gene by itself. GSEA was performed in GeneSpring GX Version 12 by using the 

normalized and filtered microarray data. The GSEA did not reveal any significant 

gene sets to be differentially expressed between the doxorubicin responders and non-

responders.     

5.3.5 Statistical testing of p53 target genes 

 The IPA analysis of genes differentially expressed between samples collected before 

and after doxorubicin treatment revealed p53 as the transcription factor regulating the 

highest number of target genes with the top 25% fold change up regulated after 

treatment (see chapter 5.2.4.1). Given that p53 status has previously been associated 

to doxorubicin action and resistance, SAM analysis was performed using the p53 

target genes (n=87) from the paired before and after sample analysis to evaluate if 

these genes could be connected to doxorubicin response. Analyses of before (n=64) 

and after (n=64) samples in addition to delta expression values from the before and 

after pairs (n=56) uncovered several significantly differentially expressed genes in 

samples collected from patients assessed with partial response to doxorubicin 

compared to those with stable disease and/or minimal change. A total of six 

(FDR≈0%) and 30 (FDR=3-4%) significant up regulated genes were found in the 

samples collected from the responders using before and after samples, respectively. 
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By using delta values seven genes (FDR≈0%) were revealed to have a higher delta in 

the doxorubicin responders representing a bigger change in expression following 

treatment. The genes from the SAM analyses of before samples and delta values had a 

FDR≈0%, while the genes from the analysis of after samples had a higher FDR. 

Hence only the genes revealed to be up regulated in samples collected from patients 

assessed as doxorubicin responders from the SAM analysis of before samples, and the 

genes that were shown to have a higher delta in samples from patients with partial 

response by using delta values are shown in Table 10.  

Table 10. p53 target genes differentially expressed between samples collected from patients 

characterized as doxorubicin responders (PR) and non-responders (SD/MC). Six genes (FDR≈0%) 

were found to be significant up regulated in before samples from patients with a partial response 

compared to those with stable disease and/or minimal change (a). When applying the delta expression 

values seven genes (FDR≈0%) were revealed to have a higher delta in samples collected from patients 

assessed as doxorubicin responders (b). The average expression values and delta values in addition to 

the absolute difference in expression and delta values of the samples within the two response groups 

are shown. The list is sorted according to gene name. 

 

 

 

  

a) Before samples 

   Gene name Average expression, PR Average expression, 

SD/MC 

Absolute difference in 

expression 

CDC42EP3 1.59 1.23 0.36 

CTGF 2.75 2.11 0.64 

DKK3 4.73 4.3 0.43 

ITGB4 3.04 2.63 0.41 

JUNB 5.54 5.26 0.28 

PHILDA1 -0.79 -1.16 0.37 

b) Delta expression values 

   Gene name Average delta, PR Average delta, 

SD/MC 

Absolute difference in 

delta 

AKAP12 0.58 -0.52 1.1 

COL14A1 2.18 0.94 1.24 

DUSP1 2.57 1.74 0.83 

EGR1 3.3 2.53 0.77 

HIC1 1.46 0.85 0.61 

IGF1 2.32 1 1.32 

MMPP23B 2.18 0.94 1.24 
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A graphical illustration of the relationship between the p53 target molecules were 

generated in IPA and are shown in Figure 26. All direct relationships between the 

uploaded genes observed in humans and cancer specifically were selected in IPA. IPA 

analysis also revealed three canonical pathways enriched, “PTEN Signaling”, “IGF-1 

Signaling” and “HER-2 Signaling in Breast Cancer”, within the list of p53 target 

molecules when a Benjamini-Hocherg threshold value was set to 0.001.     

 

Figure 26. The relationship between p53 target molecules. The p53 target genes that were found to be 

up regulated in doxorubicin responders from the analysis of before samples are illustrated in blue, 

while the p53 target genes found to have a higher delta in doxorubicin responders are shown in pink. 

The location of the molecules in addition to the connection between them is illustrated in the figure. 

The canonical pathways (CP)  included are enriched signaling pathways within the uploaded genes.  
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5.4 mRNA Expression Profile and TP53 Mutation Status 

Certain TP53 mutations have been shown to predict for resistance to doxorubicin in 

breast cancer patients. Additionally, p53 has also been shown to modulate 

topoisomerase activity. The comparison between the mRNA expression profiles of 

samples containing wild type and mutated p53 are described below.  

5.4.1 PCA of samples with different TP53 mutation status 

PCA was performed on both before and after samples with wild type (n=99) and 

mutated (n=29) p53 to evaluate the differences in gene expression between the two 

groups (Figure 27), by using the normalized and filtered probe list containing 26234 

probes. The scatter plot indicated that samples with different TP53 mutation status do 

not separate completely. However, it appears that there is a certain distribution of the 

samples within the two groups. Samples with mutated p53 group mainly in one side 

of the PCA plot, while samples with wild type p53 group for the most part in another 

side of the plot. 

Figure 27. 3D scatter-plot of samples with different TP53 mutation status. Samples with wild type p53 

(n=99) are shown in red, while samples containing mutated p53 (n=29) are shown in blue. The PCA 

plot reveals that the samples do not separate perfectly. However, the graph may give the impression 

that samples with mutated p53 group mainly to the left, while samples with wild type p53 group mainly 

to the right. It is important to notice that the PCA plot includes both before and after samples. When 

focusing on the before and after samples separately the same trend was seen (data not shown).    
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5.4.2 SAM analysis of tumor samples with wild type and mutated p53 

To investigate if genes were differentially expressed between the samples having a 

wild type p53 compared to those that had mutated p53 SAM analysis was performed. 

Delta expression values were used in the analysis, which correspond to the differences 

in expression between the samples collected before and after doxorubicin therapy 

from the same patient. The 112 samples representing 56 pairs were therefore used in 

this analysis. The comparison of the samples which had wild type 53 to those that had 

mutated p53 revealed 48 probes with a smaller delta in samples with TP53 mutation, 

i.e. smaller differences in expression between the before and after samples for those 

genes (Figure 28). No genes were found to have a significantly higher delta in 

samples with mutated p53.      

Figure 28. SAM analysis, paired samples. SAM analysis was performed on tumor sample pairs 

collected before and after doxorubicin treatment from the same patient (n=56), which either had wild 

type (n=45 pairs) or mutated (n=11 pairs) p53. The delta values were used as input (the differences in 

expression between the before and after sample for a given patient). Two class paired analysis revealed 

48 probes having a significant difference in delta value between the wild type and the mutated p53 

samples. These probes (FDR≈0-4.2%) had a lower delta value in the samples with a mutation in TP53 

representing a smaller change in expression following doxorubicin treatment. 

For each of the 48 probes found to have a smaller delta in samples with TP53 

mutation, the average delta was calculated for the group of samples with different 

TP53 status. The genes and the average delta in addition to the absolute difference in 

delta values are shown in Table 11.  
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Table 11. The 48 probes found to have a lower delta in tumor samples collected from patients with 

TP53 mutation. For each probe, gene name, average delta value for both the TP53 wild type and 

mutated samples and the absolute difference in delta values are displayed. A positive delta value 

corresponds to an induction in expression, while a negative delta value corresponds to repression. The 

list is sorted according to gene name.  

Probe ID Gene name Average delta 

TP53 wt (n=45) 

Average delta TP53 

mutated (n=11) 

Absolute 

difference in 

delta 

A_24_P398790 C14orf102 0.58 -0.31 0.90 

A_23_P70359 C6orf59 0.66 -0.52 1.18 

A_24_P215653 CLEC14A 2.15 0.72 1.43 

A_23_P42322 COL11A2 0.41 -0.95 1.37 

A_23_P105803 FGF9 0.95 -0.92 1.87 

A_24_P59471 FLJ36840 -0.26 -1.31 1.05 

A_23_P55897 KANK2 0.37 -0.48 0.85 

A_23_P127406 KDM4D 1.31 0.35 0.97 

A_32_P100830 KIF19 1.79 -0.49 2.28 

A_24_P184937 KLHL36 0.74 0.00 0.74 

A_23_P32175 LHX6 1.45 -0.61 2.06 

A_32_P199263 LOC389831 -0.45 -1.36 0.91 

A_23_P397293 LY6K 1.01 -1.28 2.28 

A_32_P138348 LY6K 0.97 -1.18 2.15 

A_24_P392280 MCTS1 -0.19 -1.03 0.85 

A_24_P142885 PANK2 0.12 -0.75 0.87 

A_23_P71928 SH2D3C 1.75 0.68 1.07 

A_24_P101314 SHF 0.52 -0.46 0.98 

A_24_P356916 SLC13A3 0.57 -0.63 1.19 

A_24_P102151 SNRK 0.16 -0.97 1.14 

A_23_P254816 TCF15 1.24 -0.24 1.49 

A_23_P40611 TCN2 1.58 0.44 1.14 

A_23_P154566 TOX2 1.38 0.01 1.37 

A_23_P144746 ZNF454 0.86 -0.63 1.49 

A_23_P144704   -0.47 -1.44 0.97 

A_23_P385084   0.75 -0.71 1.46 

A_23_P57482   0.58 -0.61 1.18 

A_24_P128361   1.13 -0.76 1.90 

A_24_P204976   -0.01 -1.01 0.99 

A_24_P221092   -0.13 -1.12 0.99 

A_24_P247774   1.02 -0.88 1.90 

A_24_P248255   0.65 -0.64 1.30 

A_24_P367804   0.05 -1.09 1.14 

A_24_P640212   -0.43 -1.43 0.99 

A_24_P735073   -0.61 -1.58 0.97 

A_24_P753849   -0.33 -1.18 0.85 

A_24_P940615   0.20 -0.85 1.05 

A_32_P111235   -0.08 -0.89 0.81 

A_32_P113404   0.11 -1.02 1.13 

A_32_P116088   0.19 -1.17 1.36 

A_32_P139311   -0.27 -1.34 1.07 

A_32_P196287   -0.14 -1.22 1.08 

A_32_P198791   0.45 -0.91 1.36 

A_32_P5432   0.09 -1.19 1.28 

A_32_P6442   0.39 -0.41 0.80 

A_32_P73039   -0.24 -1.58 1.34 

A_32_P73580   -0.17 -1.04 0.87 

A_32_P930953   -0.14 -1.24 1.10 

 



72 

 

5.4.3 Ingenuity Pathway Analysis of genes differentially expressed between 

samples with wild type and mutated p53 

The genes identified by SAM analysis to have a different delta value between samples 

with wild type and mutated p53 were further investigated in IPA. First, the probe list 

with the 48 probes was processed. Un-annotated probes were updated using SOURCE 

where possible, while the probes that remained un-annotated were deleted. This 

resulted in 28 unique genes which were uploaded to IPA. The IPA analysis revealed 

information about the gene set, including molecular and cellular functions and 

transcription factors responsible for the gene expression changes (Table 12). Selecting 

a Benjamini-Hochberg threshold value of 0.05 identified 40 molecular and cellular 

functions enriched in the genes which had a lower delta value in samples with 

mutated p53. However, the majority of the functions did only have one molecule 

associated with the specific function. Therefore, another threshold was set to only 

including the functions which had 4 or more molecules involved, and they are listed 

in Table 12. No canonical pathways or tox lists were found to be significantly 

overrepresented in the genes having a smaller delta in the mutated p53 samples after 

correction.  
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Table 12. The molecular and cellular functions (a) and the five top transcription factors (b) 

overrepresented in the list of genes with a smaller delta in samples collected from patients with 

mutation in TP53. For each function, the Benjamini-Hochberg multiple testing correction p-value and 

the genes associated with the function are provided. The p-value, not corrected for multiple testing, and 

the number of target molecules are displayed for each transcription factor.   

 

5.5 Intrinsic Subclassification 

Intrinsic subclassification was performed both on the samples collected before and 

after doxorubicin therapy. Some of the samples included in this study were previously 

classified with subtype using cDNA microarrays. The classification of before samples 

was performed to evaluate if the gene expression experiment using new mRNA arrays 

would give the same or a different subtype of the samples that were previously 

classified. The classification of the after samples was performed to assess if the 

subtype of the after sample changed compared to the before sample from the same 

tumor as a result of doxorubicin therapy. 

The ‘intrinsic’ gene list described by Sørlie and colleagues containing CloneIDs were 

updated with Unigene IDs using the Stanford SOURCE Search website. A total of 

491 genes of the original 552 intrinsic genes had valid Unigene IDs. These were 

a)  Molecular and Cellular Functions overrepresented in the list of genes with a smaller delta 

in p53 mutated samples (n=28) 

Name  B-H P-value  Genes (≥4) 

Organ Morphology  1.58E-02 – 1.03E-01 FGF9, KDM4D, SH2D3C, 

COL11A2 

Tissue Development 1.58E-02 – 1.00E-01 COL11A2, FGF9, TCF15, 

LHX6, SH2D3C   

Cellular Development 1.58E-02 – 6.24E-02 COL11A2, FGF9, TCF15, 

LHX6  

Tissue Morphology 1.58E-02 – 9.85E-01 FGF9, TCF15, SH2D3C, 

MCTS1   

Small Molecule Biochemistry 2.54E-02 – 1.00E-01 SLC13A3, TCN2, PANK2, 

FGF9 

b) Top Transcription Factors overrepresented in the list of genes with a smaller delta in p53 

mutated samples (n=28) 

Transcription Regulator  P-value of overlap  Target molecules  

PAX3 6.05E-04 SNRK, FGF9, TCN2 

TOB1 6.66E-04 SNRK, TCN2 

FUBP3 9.73E-04 FGF9 

ZNF219 2.92E-03 COL11A2 

HEXIM1 6.79E-03 FGF9 
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matched with the normalized and filtered mRNA expression data for the 128 samples 

collected before and after doxorubicin treatment. In all, there were 590 genes that 

matched the intrinsic gene set because several genes had more than one probe that 

represented the same gene. The genes having more than one probe were excluded 

from the analysis, yielding a total of 239 genes with unique Unigene IDs that matched 

the intrinsic gene list. The before and after samples were classified with tumor 

subtype by calculating the Pearson correlation between each sample and the five 

centroids. The subtype of each sample was determined by using the centroid with the 

largest correlation coefficient.  

5.5.1 Subclassification of before samples using cDNA- and Agilent 44K 

microarrays 

A total of 30 before samples had previously been classified with cDNA microarrays. 

Comparing the new subtype classification of the before samples to the original 

subtype of these samples revealed that 11 of the samples were scored with a different 

subtype than the original (Figure 29). Six of the samples which were original 

classified in the HER2-enriched subgroup were scored as either luminal A or luminal 

B with the new classification. The rest of the samples with original luminal A or 

luminal B subtype were classified with the opposite luminal subtype.  

 

Figure 29. Intrinsic subclassification of samples collected before doxorubicin therapy. A total of 30 

samples collected before treatment included in this study were previously classified using cDNA 

arrays. The new subclassification performed in this study was carried out using Agilent 44K/mRNA 

arrays (n=128). Of the 30 samples previously classified, 11 samples were scored with a different 

subtype using the new arrays. The black boxes indicate the change in subclassification between the two 

arrays for the overlapping samples.  
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5.5.2 Comparison of subclassification of before and after samples 

Comparing the subclass of the before and after pairs classified with the new mRNA 

arrays, revealed that nine after samples were scored with a different subtype than the 

before sample from the same tumor (Table 13). Of the nine pairs, one sample was 

collected from a patient characterized as doxorubicin responder (PR) while the rest of 

the samples were collected from non-responders (SD/MC). In addition, when looking 

at the unsupervised cluster of all the samples included in this study, only the BC 80 

before and after sample clustered together (see Figure 19).  

Table 13. The nine before and after pairs in which the after samples were scored with another subtype 

following doxorubicin treatment compared to the before sample from the same patient. The correlation 

coefficients of the five centroids of the before (a) and after (b) sample of each pair are provided. The 

centroid with the largest correlation coefficient for each sample is indicated in red.  

 

 

 

 

 

a) Before 

Sample 

Lum A Lum B HER2-

enriched 

Basal-like Normal-like 

BC 10 0.086 0.130 -0.210 -0.172 -0.381 

BC 103 0.168 0.262 -0.270 -0.156 -0.369 

BC 106 0.184 0.289 -0.273 -0.172 -0.414 

BC 85 0.175 0.186 -0.235 -0.173 -0.374 

BC 50 0.221 0.008 -0.303 -0.254 -0.145 

BC 71 0.003 -0.004 -0.102 -0.045 -0.067 

BC 80 -0.131 0.074 -0.029 0.060 -0.285 

BC 5 -0.091 0.412 -0.184 0.083 -0.460 

BC 81 0.050 -0.139 -0.257 -0.037 0.124 

b) After 

Sample 

Lum A Lum B HER2-

enriched 

Basal-like Normal-like 

BC 10 0.159 -0.071 -0.252 -0.195 -0.069 

BC 103 0.252 0.156 -0.328 -0.212 -0.341 

BC 106 0.079 -0.071 -0.220 -0.080 0.028 

BC 85 0.174 0.157 -0.185 -0.162 -0.291 

BC 50 0.036 0.053 -0.165 -0.129 -0.232 

BC 71 -0.026 0.213 -0.036 -0.045 -0.319 

BC 80 -0.139 0.221 -0.104 0.271 -0.222 

BC 5 0.006 -0.085 -0.179 -0.048 0.010 

BC 81 -0.306 0.137 0.034 0.336 -0.183 
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6 Discussion 

This section is divided into two parts. Biological considerations regarding the results 

are discussed first, followed by a discussion concerning the methodological 

considerations.  

6.1 Gene Expression Analysis and Biological Considerations   

A discussion of the results obtained in this study is described below in the same order 

as they are presented under the result section.  

6.1.1 Gene expression pattern in tumor samples before and after doxorubicin 

treatment  

Comparing the gene expression profile in tumor samples collected pre- and post 

neoadjuvant doxorubicin treatment may give information regarding doxorubicin 

action both at the individual gene level as well as pathway based. This may further 

explore the underlying molecular mechanisms of doxorubicin cytotoxicity.  

The separation of the samples collected before and after doxorubicin treatment in the 

PCA analysis indicated an overall difference in gene expression between samples 

collected pre- and post therapy. We wanted to include both all samples and only the 

paired samples collected from the same tumor in different analyses. Including only 

the paired samples would make it possible to correct for intratumor differences to 

some degree, while including all samples would increase the power of the statistical 

analyses.  

6.1.1.1 Unsupervised clustering   

Unsupervised clustering of all the 128 experimental samples was performed to 

investigate the overall sample relations based on gene expression patterns. The cluster 

analysis by all probes did not separate the samples collected before and after 

doxorubicin therapy into two clear clusters. In other words, doxorubicin treatment 

does not overall lead to a distinct change in expression profile which can completely 

separate the samples collected from patients before and after doxorubicin treatment. 

When examining the subcluster that contained the majority of the samples, the cluster 

could be divided into three main clusters. A significant different distribution of the 

before and after samples in these clusters was revealed. The two external clusters on 

each end of the dendrogram were compromised of a majority of after samples.  
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Of the total 56 matched pairs consisting of tumor samples collected pre- and post 

therapy from the same patient, as many as 38 (67.9%) of the pairs clustered 

separately. This may indicate that doxorubicin therapy in some cases have a stronger 

impact in the gene expression profile than the molecular program of the primary 

tumor itself. But it may also point to intratumor transcriptional heterogeneity and be a 

result of sampling of different parts of the tumor. Interestingly, the majority of the 

pairs that clustered together were found in the ‘before cluster’ i.e. the cluster that 

contained the majority of the before samples. This may indicate a lower induction of 

genes after doxorubicin treatment for those pairs. 

Previous studies comparing gene expression patterns in tumor samples drawn from 

the same patient before and after therapy have shown more similarity between 

samples collected from the same patient than between samples from different patients 

collected at the same time-point (54). Perou et.al. examined the gene expression 

pattern in 20 tumor pairs collected before and after doxorubicin treatment from the 

same patient using cDNA microarrays. In all, 15 pairs (75%) were revealed to cluster 

together. A total of 15 of these tumor pairs were also included in this study. The 

clustering analysis revealed that 10 of these 15 pairs were separated using new mRNA 

arrays, while 5 pairs still clustered together. The differences in frequency of pairs 

clustering together may be that the previous study utilized fewer genes i.e.1753 to 

organize the samples based on their gene expression profile. The clustering in this 

thesis was performed using 26234 probes corresponding to 14046 unique genes. The 

higher amount of probes may detect more differences in expression, therefore 

separating more of the tumor samples drawn from the same patient. Our results from 

the clustering analysis indicates that for a subset of the samples the alterations in gene 

expression profile following treatment is high enough to separate the before and after 

samples collected from the same tumor.   

6.1.1.2 Genes differentially expressed between before and after samples  

When SAM analysis was performed to identify differentially expressed genes 

between before and after samples, a high number of probes were revealed to be up- 

and down regulated after treatment for both the unpaired and paired analysis. We used 

the probes that were differentially expressed from the unpaired comparison of before 

and after samples to cluster the 128 experimental samples. When using this subset of 
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probes, only four before and after pairs still clustered together. This indicates a greater 

separation of the samples compared to when all probes from the microarray analysis 

were used.  

We selected the genes from the SAM analysis showing the top 25% fold change to be 

further studied in pathway analyses. The genes, with the top 25% fold change, showed 

high concordance between the unpaired and paired gene lists. This may imply that 

intratumor heterogeneity is not affecting the results to a high degree when focusing on 

the genes with the highest fold change. The analysis of the list of unique genes which 

were shown to be up regulated after doxorubicin treatment are discussed first, 

followed by a discussion of the list of genes down regulated after treatment.  

6.1.1.3 Analysis of genes up regulated after therapy  

Analysis of selected up regulated genes in IPA revealed several identical functions, 

canonical pathways, transcription regulators and tox lists between the unpaired and 

paired analysis. Since the concordance between the genes having the top 25% fold 

change in the unpaired and paired gene list was high, this is a result we expected. The 

similarity implicated that either including or excluding the samples collected only 

before or after therapy from a given patient do not seem to affect the results when 

focusing on the genes with the highest fold change. Including more of the genes 

identified in the SAM analysis may have increased the difference between the 

unpaired and paired analysis, but this have to be explored in future analysis and are 

not included in this thesis.    

The three functions “cardiovascular system development and function”, “organismal 

development” and “cellular movement” found to be enriched in the list of up 

regulated genes from both analysis involved among other development of blood 

vessels, vasculogenesis, angiogenesis, migration of endothelial cells and migration of 

tumor cells. This may indicate that doxorubicin therapy influences these processes. If 

doxorubicin treatment causes cell cycle arrest due to inhibition of topoisomerase II 

and the creation of DNA breaks, the tumor may use other mechanism such as 

angiogenesis to continue to grow and proliferate. A study using a transgenic breast 

cancer model implicated that the anti-tumor activity of doxorubicin was enhanced by 

inhibiting the angiogentic signaling receptor VEGF2 (94). Doxorubicin was not 
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reported to influence tumor angiogenesis in a study focusing on chemotherapy and 

angiogenesis (95), but this should be further examined. Another study from metastatic 

breast cancer in mouse models reported that doxorubicin stimulated both motility and 

invasion of breast cancer cells by activating TGFβ, transforming growth factor β, 

signaling (96). The researchers reported that this has the potential to generate drug 

resistant cancer cells. Likewise, a study using a transgenic model for breast cancer 

metastasis showed that doxorubicin increased the level of TGFβ as well as circulating 

tumor cells (97). Among the genes with top 25% fold change up regulated after 

therapy in our study, MMP2, matrix metallopeptidase 2, was involved in several of 

the functions and pathways enriched within the gene lists. Matrix metallopeptidases 

are responsible for the degradation of the extracellular matrix and have been reported 

to be involved in breast cancer invasion, metastasis and tumor angiogenesis (98;99). 

Together, it can be speculated that these findings indicate that doxorubicin not only 

induce a cytotoxic effect on cancer cells, but may in addition also induce cell 

migration, invasion and angiogenesis. This is only a hypothesis so far, and further 

investigation will be needed to explore these possible functions of doxorubicin.  

Several of the canonical pathways overrepresented in the list of genes with the top 

25% fold change up regulated after therapy included immune responses such as 

pathways involved in Rheumatoid Arthritis, “complement system” and “leukocyte 

extravasation signaling”, indicating an activation of immune responses following 

treatment. Chemotherapeutic drugs have been shown to both induce immune 

responses which can promote tumor growth and responses which can lead to 

undesirable side effects (100). The biological effect of the complement system 

includes among other clearance of immune complexes and apoptotic cells. The 

cytotoxic effect of doxorubicin leading to cell death may generate cell debris that 

needs to be cleared. Likewise, the leukocyte extravasation which is the migration of 

leukocytes from blood to tissue during inflammation may be a result of the 

inflammatory response which arises in the tumor after doxorubicin treatment (101). 

The pathways “Wnt/β-catenin signaling” and “human embryonic stem cell 

pluripotency” were also found to be enriched in the list of genes up regulated after 

treatment in both the unpaired and paired analysis. Wnt/β-catenin signaling 

compromises extracellular growth factors involved in various aspects of development 
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such as cell differentiation, cell polarity and cell proliferation. Interestingly, Wnt is 

involved in controlling stem cell self-renewal and differentiation (102). The Wnt/β-

catenin pathway has been reported to be deregulated in cancer or cancer stem cells 

(102). It has also been implicated to play a role in doxorubicin chemoresistance in 

osteosarcoma and nevroblastoma tumor cells (103;104). A study of early lung 

metastasis provided a link between the Wnt signaling pathway and epithelial-

mesenchymal transition in basal-like breast cancer, involved in the metastatic cascade 

to increase cells motility (105). When inhibiting the Wnt signaling, the cancer cells 

decreased the capacity to self renew and drive tumorigenesis. The canonical pathway 

“PTEN signaling” was only found to be enriched in the gene list containing up 

regulated genes from the unpaired analysis. PTEN is a tumor suppressor phosphatase 

which regulates signalling pathways involved in cell growth, migration and apoptosis 

(106). Since PTEN signaling is overrepresented in the list of genes up regulated after 

doxorubicin treatment, this may imply that genes in the PTEN signalling pathway are 

involved in the doxorubicin induced apoptosis. A study using PTEN-null cells 

reported that apoptosis following doxorubicin treatment was decreased in the cells 

with truncated PTEN protein compared to cells expressing a functional PTEN (107). 

Interestingly, when looking more into the up regulated genes with top 25% fold 

change involved in the different functions and canonical pathways, we found several 

genes reported to have a transcriptional response to doxorubicin treatment in tumors 

such as ABCB1, ABCG2 and FGF2. ABCB1 and ABCG2 are ATP-dependent 

membrane transporters which promote drug efflux leading to decreased drug 

accumulation. Both genes have been reported to mediate drug resistance (108). 

Likewise, FGF2, fibroblast growth factor 2, have been implicated in the development 

of doxorubicin resistance (109).   

When comparing the transcription factors revealed by IPA to be overrepresented as 

gene expression regulators within the unpaired and paired gene lists, TP53 was found 

to regulate the highest number of genes within both lists. p53 plays a major role in 

DNA damage response and apoptosis (110). Mutations in p53 have previously been 

associated with resistance to doxorubicin therapy in breast cancer patients (111). A 

study of  p53 knockout cells showed that these cells are more resistant to doxorubicin 

than cells having a wild type p53 (112). Likewise, a study of doxorubicin action in 
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mice models revealed that mice lacking p53 had a growth delay when treated with 

doxorubicin, indicating that doxorubicin efficacy is modulated by p53 (113).   

Other transcription factors such as SP1, SP3 and KLF2 were also found to regulate a 

high number of target genes found in both the unpaired and paired lists containing up 

regulated genes. SP1 and SP3 are members of the Specificity Protein/Kruppel-like 

factor transcriptions regulators that have roles in various cellular processes. SP1 and 

SP3 have been associated with tumorigenesis, and the expression of both genes  have 

been found to be increased in cancer cells (114). KLF2 is a member of Kruppel-like 

factor proteins that have tumor suppressor functions and are reported to inhibit 

proliferation, migration and angiogenesis while inducing apoptosis and adhesion 

(115). KLF2 expression has been shown to be reduced in many malignancies such as 

ovarian cancer (116). Additionally, it has been reported to be up regulated in a 

doxorubicin resistant osteosarcoma cell line and therefore indicated to be involved in 

a drug resistant phenotype (117).  

During the IPA analysis we also investigated the tox lists which were found to be 

enriched in the genes with top 25% fold change up regulated after doxorubicin 

therapy for both the unpaired and paired analysis. The tox lists were compromised of 

functions involved in cardiotoxicity, hepatotoxicity and nephrotoxicity. The main 

adverse effect of doxorubicin is known to be irreversible cardiotoxicity often leading 

to degenerative cardiomyopathy/heart failure (118). Many mechanisms of the 

cardiotoxicity induced by doxorubicin have been proposed and studied. Several 

studies have implicated that oxidative stress involving production of reactive oxygen 

species (ROS) during doxorubicin metabolism causes the doxorubicin-induced 

cardiotoxicity (119). Interestingly, “oxidative stress” was one of the tox list found to 

be enriched in the paired gene list from the comparison of pre- and post doxorubicin 

samples. The other tox functions involving liver and kidney toxicity may be a result 

of the pharmacokinetics of doxorubicin. The biotransformation of doxorubicin occurs 

primarily in the liver, and doxorubicin clearance is mediated by bile excretion and 

renal clearance (120). An important consideration regarding the analysis of the tox list 

enriched after doxorubicin treatment is that we have only measured the gene 

expression in tumor tissue and not in heart, liver or kidney tissue. However, since 

doxorubicin is administered systemic we assume that the treatment effects on gene 
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expression are similar in other tissues such as the heart but this would have to be 

confirmed e.g. in animal models.  

6.1.1.4 Analysis of genes down regulated after therapy  

The genes with the top 25% fold change found to be down regulated following 

therapy for the unpaired and paired analysis were uploaded to IPA. The cellular and 

molecular function “RNA post-transcriptional modification” was revealed by IPA to 

be enriched in the list of genes down regulated after treatment for both the unpaired 

and paired analysis. This pathway involves among other RNA- and mRNA processing 

and RNA- and mRNA splicing. In concordance with our results, a study where 

doxorubicin-induced gene expression changes in human breast cancers were 

examined reported that the down regulated genes were involved in among other RNA 

splicing, RNA processing, mRNA processing and mRNA metabolism (121). When 

looking at the canonical pathways found to be enriched in the list of genes down 

regulated after doxorubicin therapy only “EIF2 signaling” was found to be 

overrepresented within the unpaired and paired gene lists. EIFs are eukaryotic 

translation initiations factors involved in mRNA translation (122). These findings 

suggest that tumors alter processes involved in RNA/mRNA processing and 

metabolism in addition to protein synthesis in general after doxorubicin exposure, 

maybe to focus on other mechanisms more important for cell survival. 

The HNF4A transcription factor regulated the highest number of targets genes within 

the unpaired as well as the paired gene lists. This transcription factor is involved in 

hepatocyte differentiation, and its loss has been associated with hepatocellular 

carcinoma development (123). The transcription factor MYCN regulated also a high 

number of the genes down regulated after doxorubicin therapy. MYCN controls 

numerous cellular processes such as cell growth and proliferation, cell-cycle 

progression, transcription, differentiation, apoptosis and cell motility (124). It is 

frequently amplified in neuroblastomas and MYCN over expression have been found 

in breast carcinomas (125;126). However, neither of these transcription factors have 

previously been connected to doxorubicin treatment.  

All together, our results implicates that the gene expression in tumor is altered as a 

result of doxorubicin treatment. Several genes were found to be up- and down 
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regulated following treatment. However, we cannot exclude the possibility that some 

of the differences in mRNA expression between the before and after samples in the 

paired analysis is a result of different clones collected before and after therapy from 

the same tumor. It is known that breast cancer is a highly heterogeneous disease, and 

the collection of distinct clones may have an effect on the gene expression analysis.  

6.1.2 Gene expression pattern and response to therapy 

The gene expression pattern in samples collected from patients characterized as 

responders (PR) and non-responders (SD/MC) to doxorubicin were examined with the 

aim to identify a predictive profile which could be used to tailor the treatment for each 

patient. Before the gene expression profile of the samples in the two response 

categories was examined, we investigated the association between clinical parameters 

such as ER status, grade and TP53 mutations status and doxorubicin response. ER 

status of the samples collected after therapy was found to be associated with response. 

This is in agreement with a study of breast cancer response to neoadjuvant 

anthracycline-based chemotherapy that reported that ER negativity was correlated 

with better response (127). However, this connection was functionally unexplained by 

the authors.  

PCA analysis performed on samples collected from the responder and non-responder 

patients did not discriminate the samples in the two response groups, indicating an 

overall gene expression similarity. When SAM analysis was performed on the before 

samples, the after samples and on the delta expression values no significant genes 

were found to be differentially expressed between the two response groups. In 

addition, when only the probes revealed to be differentially expressed by SAM 

analysis of before and after samples were used no genes were found to be 

differentially expressed between doxorubicin responders and non-responders. We 

then tried a different approach by using gene set enrichment analysis to detect 

differences in gene expression of whole gene sets, but no differences were observed 

between the two response groups for any gene set.  

Since p53 has been connected to doxorubicin resistance, we selected p53 target genes 

found in the IPA analysis of paired before and after samples and evaluated the 

connection between these genes and response to doxorubicin. Performing SAM 
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analysis of these genes only, revealed several genes up regulated in before and after 

samples collected from patients characterized as having a partial response to 

doxorubicin. By using delta expression values several genes were found to have a 

higher delta in samples from doxorubicin responders, indicating an induction in 

expression of those genes. The up regulated genes from the analysis of after samples 

had a higher false discovery rate, we therefore chose to focus on the genes revealed to 

be connected to response from the analysis of before samples and delta values. Some 

of the genes are discussed below.  

CTGF, connective tissue growth factor, encodes an extracellular matrix-associated 

signaling molecule and has been shown to promote endothelial cell growth, migration, 

adhesion and survival (128). There is also strong evidence for that that this protein is 

involved in angiogenesis, a study of breast cancer cells showed that connective tissue 

growth factors including CTGF were involved in breast cancer angiogenesis (129). A 

study of neoadjuvant doxorubicin and cyclophosphamide treatment of breast cancer 

patients revealed that CTGF was more expressed in samples collected after than 

before treatment, and it was implicated that this gene could be connected to drug 

resistance (130). ITGB4 encodes integrin, beta 4, a member of the integrin family 

transmembrane receptors which mediates cell-matrix or cell-cell adhesion in addition 

to transducing signals that regulates gene expression and cell growth. ITG4B has been 

proposed to be involved in carcinoma progression by regulating the migration, 

invasion and survival of carcinoma cells (131). This gene has also been found to 

promote tumor angiogenesis in a mouse model (132). IGF1 was found to have a 

higher delta in the samples collected from patients assessed with partial response to 

doxorubicin. It is known to have an important function in cancer biology and has been 

reported to mediate resistance to chemotherapy (133). A study of atypical teratoid 

rhabdoid tumor cells revealed that inhibition of the IGF1 receptor sensitized the tumor 

cells to doxorubicin and cisplatin treatment (134). Another study showed that IGF1 

attenuated the response of breast cancer cells to doxorubicin by inducing proliferation 

and inhibiting apoptosis (135). The results from this study may also imply that IGF1 

is involved in response to doxorubicin treatment.  

The genes found to be up regulated in doxorubicin responders should be further 

studied in the continuation of this thesis by performing e.g. experiments in cell lines. 
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mRNA expression data from untreated and doxorubicin treated  xenograft models 

have been generated in the lab previously, and the results from this study should also 

be compared to the data from the animal models.   

It could be speculated that no prominent predictive gene expression profile was 

observed when performing SAM on the total microarray data because the tumors 

included in this study had a less effective response to doxorubicin therapy. No 

samples were characterized with a complete response. The small difference in partial 

response compared to stable disease and/or minimal change may also explain why 

predictive expression profiles were difficult to explore. Although our results indicate 

that some genes can be connected to responses to doxorubicin, this does not exclude 

that other predictive profiles exists. Several genes differentially expressed between 

patients obtaining partial response and stable disease and/or minimal change may 

become apparent when a larger number of patients can be evaluated. Additionally, 

response classifiers may be revealed when patients with more distinct responses to 

doxorubicin are included in the analysis.  

Doxorubicin pharmacology has been shown to have large inter-individual variation, 

and this may also contribute to the response (70). Both doxorubicin efficacy and 

toxicity have been implicated to be influenced by genetic variants effecting the 

expression of genes responsible for transport, metabolism and drug action. In the 

continuation of this study it would be interesting to evaluate these aspects. Whole 

genome genotyping of the germline DNA as well as tumor DNA collected from the 

patients included in this study have already been performed. The analysis from the 

genotyping experiment may elucidate the influence of genetic variation on both 

mRNA expression level and on response to doxorubicin.       

6.1.3 Gene expression pattern and TP53 mutation status 

Since p53 have been shown to modulate the activity of topoisomerase II which is the 

proposed target of doxorubicin and mutations in TP53 have been associated with 

doxorubicin resistance, we examined the differences in expression profiles between 

samples with wild type and mutated p53. The PCA analysis did not discriminate the 

samples completely, but a skewed distribution of the samples was still observed. From 

the SAM analysis 48 probes representing 28 unique, annotated genes with a lower 



86 

 

delta were revealed in the samples with p53 mutations. The lower delta indicates a 

lower induction of these genes. The IPA analysis uncovered several general molecular 

and cellular functions such as organ- and tissue morphology and cellular- and tissue 

development to be enriched within the list of 28 unique genes. Doxorubicin has 

previously been found to induce morphological changes in H9c2 myoblasts (136), but 

information connected to the finding form IPA are limited.  

The transcription factor PAX3 was found to regulate three of the genes which had a 

smaller delta in the samples with p53 mutation. PAX3 is a transcription factor 

involved in normal embryonic development, and has been implicated to be involved 

in tumorigenisis (137;138). Interestingly, PAX3 has been reported to suppress p53 

accumulation and p53-dependent apoptosis (139). The TOB1 transcription factor 

regulated two of the genes found to have a lower delta in the samples with mutation in 

p53. This transcription factor has been proposed to function as a tumor suppressor by 

inhibiting cell cycle progression in breast cancer specimens as well as breast cancer 

cell lines, therefore suppressing tumorigenisis (140). However, the link between 

PAX3 and TOB1 to p53 mutations and the effect of doxorubicin will require further 

analyses. It should be clarified that the results from the gene expression analysis 

should be interpreted with cautions because only a few samples had a mutated p53 

and few genes were uploaded to IPA, decreasing the power of the analysis. A better 

insight into the role of p53 mutations and effect of doxorubicin may become apparent 

if more patients with a mutation in TP53 were included in the analysis.     

6.1.4 Subclassification 

The subclassification of the tumor samples included in this study was performed by 

using 239 unique genes from the ‘intrinsic’ gene list provided by Sørlie and 

colleagues (92). The intrinsic gene list divided the breast cancer samples into five 

subgroups: luminal A, luminal B, HER2-enriched, basal-like and normal-like. In all, 

30 of the before samples included in this study had previously been classified using 

cDNA microarrays. When comparing the subclass of the same samples, 11 samples 

changed subtype classification. Of the six samples assessed as HER2-enriched 

subtype in the previously characterization, all obtained another subtype with the new 

classification. It would be difficult to conclude if this is a result of the new mRNA 

arrays which have higher resolutions than the old cDNA arrays, if the isolation of new 
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mRNA give another representation of the phenotype of a heterogeneous tumor or if 

this is due to the fact that only a proportion of the intrinsic genes were used in the re-

classification.  

Clonal selection during cancer evolution and also during cancer therapy have recently 

been implicated to exist (68). One of the main challenges in cancer treatment is that 

some cells escape therapy. In order to evaluate if doxorubicin has a positive selection 

of certain clones, we compared the subclass of the before and after samples from the 

same patient. This revealed that nine of the after samples were scored with a different 

subclass than the before sample. Four pairs (BC 10, BC 103, BC 85 and BC 81) had a 

high correlation coefficient indicating a strong change in the subclass. Of these pairs, 

three changed subtype from luminal B to luminal A and one changed from normal-

like to basal-like following doxorubicin treatment. The change from luminal B to 

luminal A subtype may indicate an reduction of proliferation after treatment, which 

may be connected to a more favorable outcome (141). In contrast, the change from 

normal-like to basal-like is possible indicating a more aggressive phenotype following 

therapy (142). Of the nine pairs that changed subtype after doxorubicin therapy, all 

except from one pair was collected from non-responders (SD/MC). These 

observations may also, as discussed above, be a result of using a subset of the original 

intrinsic gene list. Additionally, the correlation coefficient of either the before or the 

after sample of five pairs was below 0.1, which is very low and the results should 

therefore be interpreted with caution for these.  

To increase the confidence in the subclassification it would be important to increase 

the number of probes used for the correlation analysis. To address the problem of 

replicate probes, we could have used the average of the expression of the replicate 

probes. This would only be possible if the different probes showed the same trends 

with regards to expression. Another option is to blast the sequences of the original 

CloneIDs for the intrinsic genes to find the exact location of the probes and include 

the probes from our data set that are closest to this position. Both alternatives would 

have increased the number of intrinsic genes included in the classification, giving the 

classification a stronger power. The problem with both alternatives is that the 

included probes will still be an approximation for the original clones. Because of time 
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limitations neither alternatives were prioritized in this study but should be performed 

in the continuation of the project.    

6.2 Gene Expression Analysis and Methodological Considerations  

The methodological considerations regarding the gene expression analysis are 

described below.  

6.2.1 Patient samples and RNA quality control 

The tumor samples used in this thesis were collected previously for other studies. The 

RNA from the samples was isolated using Trizol and RNeasy minikit from Qiagen 

and stored at -80 ºC. Information regarding the RNA quantity existed from previous 

measurements. For those samples that were listed with very high concentrations, the 

quantity was measured again by NanoDrop ND-1000 UV-VIS Spectrophotometer 

(Thermo Scientific, Wilmington, Delaware, USA) because we speculated that these 

values were not reliable. RNA to be used in the gene expression microarray analysis 

was subtracted from the stock solutions and a dilution of 40 ng RNA was made for 

each sample. For the RNA samples included in this study, only a minority were 

reported with a RIN value. The quality of the samples was assessed by Agilent 2100 

Bioanalyzer (Agilent Technologies, Santa Clara, California, USA) to ensure high 

quality RNA. However, the amount of RNA in the stock solution was low for many 

samples and RNA assessment was therefore only performed on a selection of the 

samples. Because RNA from only a subset of the samples had been quality assessed, 

we cannot exclude the possibility that some effects may be related to sample quality. 

However, since the generated cRNA in the gene expression procedure are quantified 

using NanoDrop ND-1000 UV-VIS Spectrophotometer before the samples are 

hybridized to the arrays, this step will reveal samples of low quality. Of the total 131 

samples included in this study, two samples had very low Cy3 specific activity after 

the amplification and labelling phase. These samples were therefore excluded from 

the hybridization step. Additionally, some of the samples had a lower cRNA 

concentration or Cy3 specific activity than recommended in the protocol from the 

gene expression experiment after the amplification step. However, these samples were 

accepted with good quality in additional quality controls performed as a part of the 

array scoring and post-wet lab analysis.   
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6.2.2 Technical variability and data quality control 

Gene expression microarray experiment is a sensitive method, and technical 

variability during the lab procedure can influence the outcome. It is therefore 

important to minimize the sources of the technical variability. The variability can be a 

result of e.g. differences in hybridization or dissimilarities between microarrays (batch 

effects). During the microarray experiment performed in this study, the same batch of 

chemicals was used for the all the samples on each array. In addition, the experiment 

was performed in a time interval of two months by only two persons. The before and 

after samples and the samples in the different response categories were distributed on 

all the microarrays to minimize the probability of batch effects. The Agilent 

Technologies 4x44K Whole Human Genome microarrays used in this study contains 

a number of control probes which are utilized to monitor the experiment workflow.  

For each microarray a quality report summarizing the experiment was generated and 

evaluated. A few samples did not pass the quality control the first time for several 

technical reasons (such as low hybridization of the positive controls), and the 

experiment was repeated for these samples. All samples included in this thesis passed 

the quality control. Taken together, we concluded that the microarray data was of 

good quality. 

After the mRNA expression analysis data were extracted from the scanned images 

using the Feature Extraction software. The data were then uploaded to GeneSpring 

GX, in this process the data were automatically log2 transformed. The data were 

further normalized using 50% percentile shift. 50% percentile normalization was 

chosen because it aligns the sub-arrays by their median expression value, and do not 

scale all the expression intensities such as e.g. quantile normalization does. We 

therefore speculated that smaller differences in expression levels will be remained to a 

higher extent with percentile normalization compared to quantile normalization. 

Quantile normalization is a more strict normalization method, and the differences in 

expression revealed by further analysis may therefore be even more reliable. On the 

other hand, genes with smaller differences in expression may still have important 

biological functions and with this in mind we decided to normalize the data by 50% 

percentile normalization.     
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Principle Component Analysis (PCA) was performed to assess sample uniformity and 

quality in GeneSpring GX. Of the original 129 included samples, one was revealed to 

be an outlier. Going back to the quality control report for this sample, it was detected 

that the histogram of the signal intensities for this sample was different than for the 

other samples. In addition, when an unsupervised cluster of all the experimental 

samples was generated, the sample clustered entirely by itself. Based on these 

findings, the sample was discarded from further statistical analyses. The quality 

control on probes was also performed in GeneSpring GX. The probes were first 

filtered by expression, where a lower cut-off was set to 10% and a higher cut-off was 

set to 100%. Probes which were expressed less than 10% were therefore discarded 

because we concluded that probes with such low intensities could be noise or 

background. The probes were then filtered by flags, where probes flagged as 

‘compromised’ (non-uniform, saturated and population outliers) were omitted from 

further analysis. We chose to include the flag call named ‘not detected’ (non-positive, 

non-significant and below background) because by removing the probes less than 

10% expressed we expected the non-positive, non-significant and below background 

probes to also be removed from the probe list. It could be speculated that this may 

have resulted in that some probes with low expression were included in the further 

statistical analyses. In spite of this, the thresholds that we chose later in the analyses 

(e.g. only selected the genes with highest fold change etc.) will likely exclude these 

probes.  

6.2.3 Statistical analysis and bioinformatics 

mRNA expression experiments using microarrays generates a large amount of data 

and requires statistical- and bioinformatic analytic tools that can tolerate this 

extensive amount. Another challenge is the multiple testing problem which arises 

when many independent statistical tests are performed on the same data set.  

Unsupervised clustering was performed in R because of the number of probes 

extended 26000 and clustering of this high amount of probes was difficult to perform 

in e.g. GeneSpring GX or J-Express. The unsupervised clustering was performed with 

all probes and without dividing the dataset into subgroups. Given that gene expression 

data following the log2 transformation are normally distributed and that we wanted 

the closeness of the samples in the cluster to be calculated based on trends and not on 
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magnitude, we chose Pearson correlation as the distance metric. The average linkage 

method was chosen because we evaluated that the most appropriate way to calculate 

the distance in the cluster was to use the average distance between all pairs (not the 

e.g. smallest or the biggest distance as for single and complete linkage method, 

respectively).         

To investigate if genes were differentially expressed between tumor samples divided 

into groups based on experimental condition (e.g. before and after samples, 

doxorubicin responders- and non-responders) Significance Analysis of Microarrays 

(SAM) was performed. SAM was selected because of its capacity to handle large data 

sets. In addition, SAM provides a delta parameter which can be used to choose the 

threshold for significance based on the false discovery rate (FDR). This makes the 

results from SAM more reliable because they are corrected for multiple testing. To 

confirm the results from the SAM analysis we selected a few probes which were 

shown to be differentially expressed between two groups for further investigation in 

IMB SPSS Statistics 18. One-Way ANOVA revealed a significant difference in mean 

expression between the before and after samples for the selected genes. This led us to 

the conclusion that the results from SAM were trustworthy.    

A large number of probes were shown to be differentially expressed when comparing 

samples collected before and after doxorubicin treatment by SAM analysis (>6000). 

We decided therefore to only include the probes which had the largest fold change, 

i.e. top 25%, for pathway based investigation. Additionally, we evaluated that the 

probes having the highest fold change (i.e. the probes showing the largest difference 

in expression between the before and after samples) were most interesting to examine 

first. However, for further analysis on this material it would be interesting to include 

all the differentially expressed probes to evaluate what effect this would have on the 

results.  

Ingenuity Pathway Analysis (IPA) was chosen for the pathway analyses. All genes are 

weighted equal in the analysis, and a Fisher’s Exact p-value are displayed as a default 

p-value. In order to correct for the multiple testing issue, we selected a Benjamini-

Hochberg p-value which is corrected for multiple testing for the molecular and 

cellular functions, canonical pathways and tox list provided from the IPA analyses.  
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We selected the statistical and bioinformatic methods based on the ones we evaluated 

to be most correct for this experiment. It should however be noted that the different 

pre-processing methods and statistical analyses available may have an influence on 

the final outcome of microarray analysis in general. Interesting results from large 

scale microarray experiments should be validated by e.g. quantitative RT-PCR. 

Additionally, gene expression experiments measures only the abundance of the 

different mRNA molecules in the cells and will not necessarily correlate to the protein 

level. To increase the power of the results obtained in this study, investigation of other 

biological levels such as protein abundance should be performed in e.g. cell lines.   
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7 Conclusions and Future Perspectives  

Here the mRNA expression changes following doxorubicin exposure have been 

investigated in a panel of samples collected from breast cancer patients before and 

after treatment with doxorubicin. The goal has been to shed light on the molecular 

biology underlying the tumor response to doxorubicin by identifying genes and 

pathways affected by the therapy. Doxorubicin was found to be involved in numerous 

cellular processes when examining the genes up- and down regulated after treatment. 

Some pathways were thought to serve for its anticancer effect, such as PTEN 

signalling and the involvement of p53 in DNA damage responses. In contrast, other 

mechanisms such as cell movement and angiogenesis may have the opposite effect on 

tumor cells causing the cells to continue to grow and invade. Mechanisms enriched  

within the down regulated gene list such as RNA processing and splicing in addition 

to protein translation may imply that doxorubicin induced damage causes the cells to 

focus on more important processes for survival, such as DNA repair following 

treatment. TP53 was shown to regulate the highest number of molecules within the 

list of up regulated genes, and several genes were found to have a smaller change in 

expression in samples with TP53 mutations. These findings support the involvement 

of TP53 in doxorubicin response.  

The genes found to be significantly differentially expressed between samples 

collected from doxorubicin responders compared to non-responders may serve as 

biomarkers for doxorubicin response. These genes may be important to identify the 

patients that will benefit from doxorubicin therapy and those that will not.  

The alterations in gene expression profile between samples collected before and after 

therapy revealed in this study may contribute to obtaining a better insight into the 

underlying molecular mechanisms of doxorubicin antitumor activity.  Additionally, 

the genes found to be differentially expressed between doxorubicin responders and 

non-responders may be a step forward in the direction to individualize doxorubicin 

treatment.  

Further evaluations of the genes and pathways found to be altered following 

doxorubicin treatment should be performed to support the finding in this study. In the 

continuation of this thesis the entire gene list containing genes found to be 
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significantly differentially expressed should be studied, and not only the genes 

showing the highest fold change. Microarray data from cell lines and mouse models 

untreated and treated with doxorubicin exists, and this should be compared to our 

results. To evaluate the importance for the genes found to be involved in doxorubicin 

response, experiments in cell lines using miRNA/siRNA could be performed to 

evaluate the viability of the cells after these genes are inhibited.   
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Appendix A: Reagents and equipment 
 

Table 14. Reagents and equipment used in this thesis. 

 

 

Name Supplier Catalog nr./Part nr. 

Spike-Mix Agilent Technologies 5188-5282 

Dilution Buffer Agilent Technologies 5188-5282 

T7 Promotor Primer Agilent Technologies 5190-2305 

5X First Stand Buffer Agilent Technologies 5190-2305 

0.1 M DTT Agilent Technologies 5190-2305 

10 mM dNTP Mix Agilent Technologies 5190-2305 

AffinityScript RNase Block Mix Agilent Technologies 5190-2305 

5X Transcription Buffer Agilent Technologies 5190-2305 

NTP Mix Agilent Technologies 5190-2305 

T7 RNA Polymerase Blend Agilent Technologies 5190-2305 

Nuclease-free Water Agilent Technologies 5190-2305 

Cyanine 3-CTP Agilent Technologies 5190-2305 

RNeasy Mini Spin Columns Qiagen 74106 

Collection Tubes Qiagen 74106 

RNase-free Buffers (RLT, RPE) Qiagen 74106 

2X Hi-RPM Hybridization Buffer Agilent Technologies 5188-5242 

25X Fragmentation Buffer Agilent Technologies 5188-5242 

10X Gene Blocking Agent Agilent Technologies 5188-5242 

Microarray hybridization chamber 

assemblies 

Agilent Technologies G2534-60001 

Microarray Gasket slide Agilent Technologies G2534-60011 

Human GE 4x44 Microarray Agilent Technologies G4112F 

Gene Expression Wash Buffer 1 Agilent Technologies 5188-5327 

Gene Expression Wash Buffer 2 Agilent Technologies 5188-5327 

Triton X-102 (10%) Agilent Technologies 5188-5327 

RNaseZAP Applied Biosystems AM9780 

RNase-free water Invitrogen 10977-035 

Agilent RNA 6000 Nano Chip Agilent Technologies 5067-1511 

Agilent RNA 6000 Ladder Agilent Technologies 5067-1511 

RNA Nano Dye Concentrate Agilent Technologies 5067-1511 

Agilent RNA 6000 Nano Marker Agilent Technologies 5067-1511 

Agilent RNA 6000 Nano Gel Matrix Agilent Technologies 5067-1511 

Filters for Gel Matrix Agilent Technologies 5185-5990  

Chip Priming Station  Agilent Technologies 5065-4401 

Agilent Syringe Kit Agilent Technologies G2938-68706 

Ethanol (>96%) Antibac AS 6000068 
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