
Long-Term Confidential Data Storage by
Distributed Secret Shares

Merete Løland Elle

Master of Telematics - Communication Networks and Networked Services

Supervisor: Stig Frode Mjølsnes, IIK
Co-supervisor: Ruxandra Florentina Olimid, IIK

Department of Information Security and Communication Technology

Submission date: June 2017

Norwegian University of Science and Technology

Title: Long-Term Confidential Data Storage
by Distributed Secret Shares

Student: Merete Løland Elle

Problem description:

Long time preservation of data confidentiality is often a requirement in real-life
applications like legal documents and health records. On one hand, data must be
readily available to qualified parties for many years. On the other hand, the data must
be kept confidential from unauthorized parties, even under incidents like hardware
or software errors and attacks. Mechanisms of secret sharing represent an alternative
to the classical solution that requires both encryption (for data confidentiality) and
backup policies (for data availability). Secret sharing based systems provide data
secrecy and reliability simultaneously, by splitting data among multiple storage
nodes located in different physical locations. Data can be recovered when a qualified
subset of nodes are up and running, while unqualified sets of nodes cannot leak any
information about the original data. This approach is a possible solution for secure
distributed cloud storage where the servers are located with distinct providers.

The student will design, implement, and experiment with secret sharing with dis-
tributed storage systems. The student will focus on the design problems of creating
a user-friendly Android application for storing and retrieving personal passwords
based on mechanisms of distributing secret shares among a set of internetworked
servers. By storing passwords in this application, the user should have easy and
user-friendly access to the passwords, while not compromising the security.

Responsible professor: Stig Frode Mjølsnes, IIK
Supervisor: Ruxandra-Florentina Olimid, IIK

Abstract

There are several mobile password managers on the marked, where the
most popular of these uses the classical solution for storage which requires
both encryption and backup policies. If quantum computers become a
reality, the security of encryption methods based on factoring primes
or doing modular exponentiation is threatened. For threshold secret
sharing schemes, an unauthorized set of shares of the secret provides no
information about the secret. By this, one can say that secret sharing is
information-theoretically secure, which means that it cannot be broken
even when an attacker has unlimited computing power.

In this thesis, the development of a password storage mobile application
for Android is presented. The mobile application implements secret
sharing for confidentiality and uses cloud storage services for storing the
shares. A password is divided into three pieces, where two or more are
needed to reconstruct the password. Together, this manifests itself as
a (2,3) threshold scheme. The cloud storage services implemented are
Dropbox, Google Drive, and Microsoft OneDrive.

User tests were conducted for testing the functionality and the User
Interface (UI) of the application. The result was a "PASSED" score
on 98,2%, which indicated that the functionality performed better than
expected and the alternative hypothesis H1 was supported. The feedback
from the test subjects stated that the application looked good and worked
well, but some of the solutions could have been optimized in regards to
the UI.

Sammendrag

Det finnes flere mobilapplikasjoner for passordadministre-
ring på markedet, hvor de mest populære av disse benyt-
ter seg av den klassiske løsningen for lagring, som krever
både kryptering og retningslinjer for reserveløsninger. Hvis
kvantedatamaskiner blir en realitet, vil sikkerheten til krypte-
ringsmetoder basert på faktorisering av primtall og modulær
eksponering være truet. For det som er kjent som "threshold
secret sharing schemes", vil et uautorisert sett med deler av
en "hemmelighet" ikke gi noe informasjon om hemmelighe-
ten. På bakgrunn av dette kan man si at denne teknikken
er "information-theoretically secure", noe som innebærer at
selv ubegrenset med databehandlingskraft ikke vil kunne gi
en angriper informasjon om den såkalte hemmeligheten.

I denne oppgaven er utviklingen av en Android mobilappli-
kasjon for lagring av passord presentert. Mobilapplikasjonen
implementerer secret sharing for konfidensialitet, og bruker
skylagringstjenester for å lagre de såkalte delene. Et passord
blir delt inn i tre deler, hvor to eller flere av disse kreves
for å få tak i passordet. Dette manifesterer seg som et "(2,3)
threshold scheme". Skylagringstjenestene som er implementert
er Dropbox, Google Drive og Microsoft OneDrive.

Brukertester ble gjennomført for å teste funksjonaliteten
og brukergrensesnittet til applikasjonen. Resultatet ga en
bestått-score på 98,2%, noe som indikerte at funksjonaliteten
fungerte bedre enn forventet og gir tilstrekkelig bevis for at
den alternative hypotesen H1 er sann. Tilbakemeldingene fra
testobjektene inneholdt kommentarer om at applikasjonen så
bra ut og fungerte slik den skulle, men at noen av løsningene
kunne ha blitt optimalisert med tanke på brukergrensesnittet.

Preface

This Master’s thesis is written as a part of the Master of
Science programme in Telematics - Communication Networks
and Networked Services at the Norwegian University of Science
and Technology (NTNU), spring 2017.

I would like to thank my supervisors Professor Stig Frode
Mjølsnes and Ruxandra-Florentina Olimid for their support
during the work with the master project, as well as for the
valuable comments and suggestions. I would also like to thank
my focus group for providing me with helpful and relevant
feedback.

The code for the application is not included in the appendices
because of the amount of pages required, but uploaded to a
repository on GitHub. It can be found by using the following
URL: https://github.com/meretele/SecretSharing.

Trondheim, June 2017

Merete Løland Elle

https://github.com/meretele/SecretSharing

Contents

List of Figures xi

List of Tables xv

List of Listings xvii

1 Introduction 1
1.1 Background and Motivation 1
1.2 Introduction to Secret Sharing 2

1.2.1 Secret Sharing Schemes 2
1.2.2 Shamir’s Secret Sharing Scheme 3

1.3 Goal and Research Question 4
1.3.1 Goal . 4
1.3.2 Research Question 5

1.4 Methodology . 5
1.5 Contributions . 5
1.6 Related Work . 6
1.7 Outline . 6

2 Background Theory 7
2.1 Introduction to Android Development 7
2.2 Core Framework Components 7

2.2.1 Services . 8
2.2.2 Broadcast receivers 8
2.2.3 Activities . 8
2.2.4 Content providers 10

2.3 The Manifest . 10
2.4 Security . 11
2.5 User Interface . 12
2.6 Cloud Storage Services APIs 14

2.6.1 Dropbox . 14
2.6.2 Google Drive . 14

vii

2.6.3 Microsoft OneDrive 14

3 The User Interface of the SecretSharing Application 15
3.1 Initial prototype . 15
3.2 Final User Interface . 18

3.2.1 Logging In . 18
3.2.2 Connection Status 20
3.2.3 Creating a New Password 24
3.2.4 Retrieving a Password 28
3.2.5 Deleting a Password 29
3.2.6 Advanced Functionality 32

4 The Functionality of the SecretSharing Application 39
4.1 Introduction . 39
4.2 The Android Manifest 39
4.3 Connecting to the APIs 41

4.3.1 Dropbox . 41
4.3.2 Google Drive . 42
4.3.3 Microsoft OneDrive 44

4.4 Activities . 46
4.4.1 Splash Screen . 48
4.4.2 Create Application Password 48
4.4.3 Logging into the Application 50
4.4.4 Connection Status 52
4.4.5 Create New Password 53
4.4.6 Retrieving Password 55

4.5 Secret Sharing . 58
4.5.1 Creating the Pieces 58
4.5.2 Reconstructing the Password 59

5 Evaluation and Results 61
5.1 Plan and Hypothesis . 61

5.1.1 Hypothesis . 62
5.2 Setup . 63
5.3 Results . 64

6 Discussion 65
6.1 Development Process . 65
6.2 Considerations . 67

7 Conclusion and Future Work 71
7.1 Future Work . 72

References 73

Appendices
A User Test Sheet 79

B User Test Results 84

List of Figures

1.1 Illustration of drawing several parabolas when only two points
are given, all parabolas is equally plausible to be the correct
one [Vls]. 4

2.1 A simplified illustration of the activity lifecycle [Goo17m]. . 9
2.2 An overview of how content providers manage access to stor-

age [Goo17f]. 10
2.3 Android security model summary [Li16]. 12

3.1 Draft of the application; left: the loading screen, middle:
connection status page, right: connection status page with a
drop-down menu. 16

3.2 Draft of the application; left: creating a new password, middle:
pop-up asking if the user wants to save the password, right:
the password is saved. 16

3.3 Draft of the application; left: clicking on a password on the
retrieve passwords page, middle: pop-up asking if the user
wants to retrieve the password, right: the password retrieved. 17

3.4 Screenshot of the application; left: splash screen, middle:
creating a new application password, right: log-in page. . . 18

3.5 Screenshot of the application; left: error message when pass-
word is not correct, right: maximum number of attempts
reached. 19

3.6 Screenshot of the application; left: verifying storage permis-
sions, right: connection status page with no clouds connected
and the device connected to the Internet via Wi-Fi. 20

3.7 Screenshot of the application; left: Google Drive connected,
middle: Google Drive and OneDrive connected, right: all
clouds connected. 21

xi

3.8 Screenshot of the application; left: drop-down menu when one
cloud is connected, middle: drop-down menu when two clouds
are connected, right: drop-down menu when all clouds are
connected. 22

3.9 Screenshot of the application; left: warning message asking if
the user wants to remove the connection to the clouds, right:
connection status page with all clouds disconnected after being
logged out. 23

3.10 Screenshot of the application; left: create new password page,
middle: filled in platform name and password, right: pop-up
asking if user wants to save the password. 24

3.11 Screenshot of the application; left: backup file downloaded
from OneDrive, right: backup file downloaded from Google
Drive. 25

3.12 Screenshot of the application; left: retrieve passwords page
with password saved, middle: backup file updated on Google
Drive, right: backup file updated on OneDrive. 26

3.13 Screenshot of cloud content after password creation (the cloud
interfaces are separated by red lines); upper: Dropbox content,
middle: Google Drive content, lower: OneDrive content. . . 26

3.14 Screenshot of the application; left: error when attempting to
create a password with a platform name already in the pass-
word list or in the backup files, right: error when attempting
to create a password with the platform name "backup" in any
form. 27

3.15 Screenshot of the application; left: retrieve passwords page,
middle: pop-up asking if the user wants to retrieve the chosen
password, left: the password retrieved. 28

3.16 Screenshot of the application; left: retrieve passwords page,
right: warning message for password deletion. 29

3.17 Screenshot of the application; left: share deleted on Dropbox,
middle: share deleted on OneDrive, left: share deleted on
Google Drive. 30

3.18 Screenshot of the application; left: backup file updated on
OneDrive, right: backup file updated on Google Drive. . . . 30

3.19 Screenshot of the application; left: deleting backup files when
all passwords are deleted, middle: backup file deleted on
OneDrive, right: backup file deleted on Google Drive. . . . 31

3.20 Screenshot of the application; left: warning message for cre-
ating new application password, middle: creating a new ap-
plication password, right: login page - password successfully
created. 32

3.21 Screenshot of the application; left: connection status page
with no Internet connection, middle: create new password
page with no Internet connection, right: retrieve password
page with no Internet connection. 33

3.22 Screenshot of the application; left: pop-up asking if the user
wants to upload a backup file, right: warning message inform-
ing about the possibility of losing passwords. 34

3.23 Screenshot of the application; left: pop-up asking if the user
wants to download the backup file, middle: backup file down-
loaded from OneDrive, left: backup file downloaded from
Google Drive. 35

3.24 Screenshot of the application; left: OneDrive disconnected,
middle: pop-up asking to retrieve password, right: password
retrieved. 36

3.25 Screenshot of the application; left: pop-up asking if the user
wants to upload a backup file, middle: could not update
backup file on OneDrive, right: backup file updated on Google
Drive. 36

3.26 Screenshot of the application; left: pop-up asking if the user
wants to retrieve the password, right: error while retrieving
the password - did not find enough shares. 37

3.27 Screenshot of the application; left: warning message asking if
the user wants to delete the password, right: no shares found
- deleting password from list. 38

4.1 Relationship of the activities in the application. 46
4.2 An overall representation of the activities and menu options

shown to the user. 47
4.3 Activity diagram for the SplashScreen.java file. 48
4.4 Activity diagram for the CreatePasswordActivity.java file. . 49
4.5 Activity diagram for LoginActivity.java file. 51
4.6 Activity diagram for UserActivity.java file. 52
4.7 Activity diagram for NewPswActivity.java file. 54
4.8 Sequence diagram for NewPswActivity.java file. 55
4.9 Sequence diagram for the retrieval functionality in Retrieve-

Activity.java file. 56
4.10 Activity diagram for RetrieveActivity.java file. 57

5.1 The overall score of the user tests: "PASSED" score being
98,2% and "FAILED" score being 1,8%. 64

6.1 Implementation of CloudRail [Clo17]. 66

A.1 User test: PART ONE - Basic Functionality (1). 79
A.2 User test: PART ONE - Basic Functionality (2). 80
A.3 User test: PART TWO - Advanced Functionality. 81

B.1 Results from the user tests. 84

List of Tables

5.1 Example on how the test form cloud be filled out by a user,
where a green box equals "PASSED" and a red box equals
"FAILED". 63

5.2 The subjects where recruited from NTNU, Campus Gløshaugen. 63

xv

List of Listings

2.1 Example snippet of a AndroidManifest.xml file. 11
4.1 The permissions in the AndroixManifest.xml file. 40
4.2 Logging into Dropbox, code from UserActivity.java file. 41
4.3 Dropbox authentication, code from Auth.java file provided

by Dropbox. 42
4.4 Logging into Google Drive, code from UserActivity.java file. 43
4.5 Connected to Google Drive, code from UserActivity.java

file. 43
4.6 Logging into OneDrive, code from UserActivity.java file. 44
4.7 Creating a OneDrive client, code from UserActivity.java

file. 45
4.8 Splitting password into shares, code from UploadSharesTask.java

file. 58
4.9 Retrieving password, code from RetrieveActivity.java file. 59
6.1 Requesting synchronization with Google Drive 67

xvii

Chapter1Introduction

This chapter introduces the thesis as a whole. It presents the background
and motivation for the thesis and gives an introduction to the concept of
secret sharing. The goal and research question for the topic is presented,
as well as the methodology used for the field of study. It also includes the
contributions, related work and lastly the outline of the thesis.

This thesis is not associated with or sponsored by Google, Microsoft
or Dropbox, Inc. The thesis does not consider the security of these
external services themselves, but takes into consideration the possibility
of one them being compromised, by using secret sharing for confidentiality.
Throughout the thesis, term clouds will be frequently used when referring
to the cloud storage services.

1.1 Background and Motivation

Today’s Internet services rely heavily on text-based passwords for user
authentication, and it is a common understanding that one should never
give away passwords to anyone, or at least not to anyone whom one
do not trust completely. Still, according to a recent survey of 276 IT
professionals commissioned by Sungard Availability Services, 59% cited
employee password sharing as their main security concern [Sun]. Addi-
tionally, a study done by researchers at Dartmouth College, the University
of Pennsylvania and the University of Southern California shows how
healthcare employees circumvent security rules [KSBK15]. They found
that workarounds to cyber security are the norm, rather than the excep-
tion, and in several hospitals, passwords are written down everywhere -
"no one wanted to prevent a clinician from obtaining emergency supplies
because they didn’t remember the code" [KSBK15].

1

2 1. INTRODUCTION

Once a password gets written down, it becomes available to the wrong
pair of eyes. One may argue that convenience trumps the possibility
of the password being stolen, but is this the reality when the password
can be used to access sensitive data? What if something as available
and convenient as a mobile phone could be used for securely storing
passwords?

There are several mobile password managers, the most popular of
these uses the classical solution for storage which requires both encryption
and backup policies [Fit16]. If quantum computers become a reality in the
future, the security of encryption methods based on factoring primes or
doing modular exponentiation are threatened [Nor]. For threshold secret
sharing schemes, an unauthorized set of shares of the secret provides no
information about the secret. By this, one can say that secret sharing is
information-theoretically secure, which means that it cannot be broken
even when an attacker has unlimited computing power. Does this mean, in
a post-quantum scenario, that secret sharing schemes could be a solution
for providing security?

1.2 Introduction to Secret Sharing

Secret sharing is a method for dividing a secret into pieces and distribute
these among a group of participants. The secret can only be reconstructed
when a certain number of these pieces are combined, and the individual
pieces give no information about the secret [Sha79].

1.2.1 Secret Sharing Schemes

One practical example of secret sharing is having a vault in a bank that
needs to be opened every day. The bank has three employees, but it is
not preferable to entrust one person with the vault combination. Hence,
the bank wants a system where two of the three employees can open the
vault, while an individual can not do so. This can be solved by means of
a secret sharing scheme [Sti92].

Secret sharing schemes can have the property of being verifiable.
This is called Verifiable Secret Sharing Schemes (VSS), and has the
functionality of verifying that a received share is "valid," detect incorrect
shares returned by faulty or compromised servers and also to recognize
incorrect sharing writes [SB05].

1.2. INTRODUCTION TO SECRET SHARING 3

1.2.2 Shamir’s Secret Sharing Scheme

In 1979, Shamir introduced the concept of secret sharing in a paper
titled "How to Share a Secret" [Sha79]. The motivation for this new
cryptographic primitive was to enable the construction of robust key
management schemes. Placing an encryption key in a single, well-guarded
location is unreliable, as a single misfortune could make the key unavail-
able, and by storing multiple copies of the key at different locations will
increase the danger of security branches.

He purposed a technique of dividing data D into n pieces in such a way
that D is easily reconstructable from any k or more pieces, but even the
complete knowledge of k-1 pieces reveals absolutely no information about
D, as all possible values are equally likely. This is called a (k, n) threshold
scheme. The reason for using a threshold scheme is that it might be
impractical to count on all participants to recover the secret, especially if
the number of shares is high. As stated in the paper, "threshold schemes
are ideally suited to applications in which a group of mutually suspicious
individuals with conflicting interests must cooperate" [Sha79], which
prevents individuals from making important, and supposedly malicious,
decisions by themselves.

The scheme is based on polynomial interpolation, which is the method
of finding a polynomial which goes through some given points. The
essential idea is that it takes k points to define a polynomial of degree k-1,
which means that to define e.g. a parabola (polynomial of degree two),
three points are needed. Figure 1.1 illustrates an example of having two
points, which would be sufficient to define a line, but one can draw all
the possible parabolas for the given field through these points. This
means that knowing two points when defining a parabola is useless, as
all parabolas are equally plausible. This is called perfect secrecy.

4 1. INTRODUCTION

Figure 1.1: Illustration of drawing several parabolas when only two
points are given, all parabolas is equally plausible to be the correct
one [Vls].

1.3 Goal and Research Question

The goal and research question creates the basis of this thesis by being
the focal points of the study.

1.3.1 Goal

The focus of this thesis is to study the possibility of using secret sharing for
confidentiality in a mobile application for storing passwords. As presented
in Section 1.2, the concept of secret sharing was introduced already in
1979, and one example for applying this technology has been presented as
a survivable information storage called the PASIS architecture [BWS+00].
It uses threshold schemes to spread information to servers, and PASIS
agents to communicate with the nodes to read and write - thus hiding
decentralization from the users. It claims to provide better confidentiality,
availability, durability, and integrity of information than conventional
replication.

By using the concept of such a storage system, and implementing it
in a mobile application, one could create an application that acts like
the conventional password storage managers implementing encryption
for confidentiality but provides a storage solution that is information-
theoretically secure.

1.4. METHODOLOGY 5

There is at least one mobile application for Android which already
implements secret sharing for saving passwords, but it is new and under
development, and uses other devices for storing the shares. The overall
goal for this thesis is to create a mobile application for storing password,
using secret sharing for confidentiality, and cloud storage services for
storing the shares.

1.3.2 Research Question

Based on the goal for the thesis, the overall question to answer is: would
it be possible to make an Android application for storing password, that
implements secret sharing for confidentiality, and is both user-friendly
and secure?

1.4 Methodology

The research methodology used in the work with this thesis is divided
into a design phase, a development phase and a testing phase.

For the design phase, an initial prototype was created to establish
an idea of how the UI should appear to the user. This was used as a
base when developing the application, and the UI was revised several
times. For the development phase, the official Integrated Development
Environment (IDE) for Android, Android Studio, was used for developing
the application - with Java as the programming language [Goo17b]. Three
clouds were connected to the application for storing the shares. For the
testing phase, user tests were conducted to evaluate if the application was
functioning properly, and also if it met the criteria of being user-friendly.

1.5 Contributions

This thesis shows the whole process of developing an Android application
from scratch. The application’s purpose is to store passwords, using
secret sharing for confidentiality, and cloud storage services for saving
the shares. The main contribution of the thesis is the application, as no
research has found that an application equal to the one presented has been
developed before. The UI has been custom made for this application,
and the application itself has been made by combining existing code
with self-written code to make the application perform properly. User
tests have been created and conducted, and the results are analyzed and
explained.

6 1. INTRODUCTION

1.6 Related Work

As mentioned in Section 1.1, several mobile password managers exist,
but most of these uses encryption for confidentiality [Fit16]. Available
in Google Play, there is an application called Convenient Password
Manager [Cra16]. It is currently unreleased and in alpha testing, and
was latest updated on September 26, 2016. Similar to the application
in this thesis, the application uses an implementation of Shamir’s secret
sharing to split up a password. However, instead of storing the shares
on clouds, the shares are distributed to the user’s devices that have the
application installed. By attempting to recover the password on one
device, the connected devices will get a recovery request, where the user
must accept or decline. By accepting the request on a certain amount of
devices, the password is recovered.

1.7 Outline

This thesis is divided into seven chapters, including this introductory
chapter. The outline is as follows.

Chapter 2 Presents the background theory about the topics discussed
in the thesis, including secret sharing, Android development, cloud storage
APIs and graphical user interfaces.

Chapter 3 Describes the user interface of the application. Also included
is the initial prototype designed.

Chapter 4 Describes the functionality of the application, by providing
diagrams to show the workflow of the system and code snippets to explain
the how the application is built.

Chapter 5 Presents the plan, hypothesis, setup and results of the user
test for the application.

Chapter 6 Presents the discussion of the work done during the thesis,
and explains the choices that have been made regarding the application.

Chapter 7 Presents the conclusion for the thesis and proposals for
future work.

Chapter2Background Theory

This chapter introduces the background theory regarding Android develop-
ment, as well as the integration and authentication with the cloud storage
services.

2.1 Introduction to Android Development

Android is an open-source mobile Operating System (OS) owned by
Google, primarily developed for mobile devices with touchscreens [Gooa].
It has, as for April 2017, approximately 65% of the marked share glob-
ally [Net].

The Google-owned IDE, Android Studio, is the official IDE for An-
droid, providing tools for building applications for all Android devices.
The following sections will cover the fundamental building blocks used
when creating an Android application.

2.2 Core Framework Components

The application components are the building blocks of an Android appli-
cation, and each component is an entry point through which the system
or a user can enter the application [Goo17c]. There are four types of
application components, each serving a distinct purpose:

• Services.

• Broadcast receivers.

• Activities.

• Content providers.

7

8 2. BACKGROUND THEORY

Activities, services, and broadcast receivers are activated by an asyn-
chronous message called an intent, which binds individual components
to each other at runtime [Goo17c]. For activities and services, an intent
defines the action to perform, and for broadcast receivers, the intent
defines the announcement being broadcast [Goo17c].

2.2.1 Services

A service is a separate part of the application that runs in the background,
without providing a UI [Goo17c]. For example, a service might synchro-
nize data in the background while the user is in a different application.

2.2.2 Broadcast receivers

A Broadcast receiver is a part of the application that enables the system to
deliver events to the application outside of a regular user flow, allowing the
application to respond to system-wide broadcast announcements [Goo17c].
For example, the system may send a broadcast when the device starts
charging.

2.2.3 Activities

An activity serves as the entry point for an application’s interaction with
the user, representing a single screen with a UI [Goo17c]. For example,
a note taking application might have one activity showing all the saved
notes, and another for composing a new note. An application typically
comprises multiple independent activities, where one is specified as the
main activity, being the first screen to appear when the user launches the
application [Goo17j].

The activity instances transitions though different states in their
lifecycle [Goo17m]. The activity class provides a core set of six callbacks
that allow the activity to know that a state has changed, including
onCreate(), onStart(), onResume(), onPause(), onStop(), and onDestroy().
A simplified illustration of the activity lifecycle is shown in Figure 2.1.

2.2. CORE FRAMEWORK COMPONENTS 9

Figure 2.1: A simplified illustration of the activity lifecycle [Goo17m].

10 2. BACKGROUND THEORY

2.2.4 Content providers

A content provider manages a shared set of data that can be stored in
any persistent storage location that the application can access [Goo17c].
The content provider enables the sharing of data between applications
and can be configured to allow other applications to securely access and
modify the application data as illustrated in Figure 2.2 [Goo17f].

Figure 2.2: An overview of how content providers manage access to
storage [Goo17f].

2.3 The Manifest

The manifest file, located in the root of the application project directory,
is an important part of the application, where all its components must
be declared [Goo17c]. It is, in addition to declaring the applications
component, used for identifying any user permissions, as well as for
declaring the minimum Application Programming Interface (API) level
required, hardware and software features used or required, and API
libraries that the application needs to be linked against [Goo17c]. An
example of a manifest file is shown in Listing 2.1.

2.4. SECURITY 11

Listing 2.1: Example snippet of a AndroidManifest.xml file.
<?xml version="1.0" encoding="utf-8"?>
<manifest ... >

<uses-permission android:name="android.permission.INTERNET" />
<application android:icon="@drawable/icon" ... >

<activity android:name="com.example.project.MainActivity"
android:label="@string/app_name" ... >
<intent-filter>

<action
android:name="android.intent.action.MAIN"
/>

</intent-filter>
</activity>
...

</application>
</manifest>

2.4 Security

The security models for Android includes code signing, application iso-
lation, permission model, file system encryption, and generic exploit
mitigation protection [Li16].

The purpose of code signing is to prove the identity of an application’s
author by signing the app with the developer’s public key and only allow-
ing updates to be made if the developer has the private key [Li16]. For
application isolation, each Android application lives in its own security
sandbox, the Android Application Sandbox, which isolates the applica-
tion data and code execution from other applications [Goo17c]. If the
application needs to use resources outside of the sandbox, the application
has to request the permission. The permissions are declared by listing
them in the manifest file described in Section 2.3 [Goo17g]. Android also
supports file system encryption, where the user-created data is encryped
before it is saved [Goo17i]. Also, generic exploit mitigation protection is
handled by using technologies like safe_iop and ASLR to defend against
control hijacking [Li16]. A summary of the security models is shown in
Figure 2.3.

12 2. BACKGROUND THEORY

Figure 2.3: Android security model summary [Li16].

2.5 User Interface

As one of the main goals is to make a user-friendly application, the UI
is of particular importance. The UI allows for the user to interact with
the application through an interface, which in this case is a Graphical
User Interface (GUI). When designing the visual composition of a UI,
the general goal is to allow for the user to reach their goal efficiently.

One of the pioneers in trying to evaluate the user experience on digital
platforms objectively is Jakob Nielsen. He produced ten heuristics, or
general principles, for user interface design, which are still valid today
and is listed below [Nie95]. These principles have been used as a guideline
when designing the application.

1. Visibility of system status
The user should always be kept informed about the system status
through feedback within reasonable time.

2. Match between system and the real world
Rather than using system-oriented terms, the system should speak in
words, concepts, and phrases familiar to the user. The information
should appear in a logical and natural order.

3. User control and freedom
The system should support undo and redo, as users often choose

2.5. USER INTERFACE 13

system functions by mistake. A marked exit from the unwanted
state should be available, without having to go through an extended
dialogue.

4. Consistency and standards
The system should be consistent, and the user should not be insecure
on whether different situations, words or actions mean the same
thing.

5. Error prevention
Good error messages are important, but careful design for preventing
a problem from occurring is better. One should either eliminate
error-prone conditions or check for them and have the user confirm
the action before committing.

6. Recognition rather than recall
The user should not have to remember information throughout
dialogues. Objects, actions, and options should be made visible,
and instructions for usage of the system should be visible or easily
retrievable.

7. Flexibility and efficiency of use
Accelerators - unseen by new users - may often speed up the inter-
action for the expert user, and thus the system can cater to both
inexperienced and experienced users. The system should allow users
to tailor frequent actions.

8. Aesthetic and minimalist design
Dialogues should not contain irrelevant or unnecessary information,
as this extra information competes with the relevant information
and reduces its relative visibility.

9. Help users recognize, diagnose, and recover from errors
Error messages should not be explained in codes, but in plain
language, with precise indications of the problem, and suggestions
on how to solve it.

10. Help and documentation
Providing the user with help and documentation may be necessary.
Information should be easy to search through, focused on the user’s
tasks, contain specific steps to be followed, and not be too big.

14 2. BACKGROUND THEORY

2.6 Cloud Storage Services APIs

An API serves as an interface between different software programs for
communicating with each other, and a cloud storage API connects a
locally-based application to a cloud-based storage system. By this, a user
of the application can send data to the cloud and access the data stored
in it. Three of the major cloud storage providers on the marked today
are Dropbox, Google Drive and Microsoft OneDrive [Cas]. They provide
from 2 to 15 GB of free storage, and all cloud storage services encrypts
the data in transit [Win].

All of these clouds use the standard OAuth 2.0 authentication scheme
for authentication and for generating access tokens [Mic15, Goo17d,
Dro17c]. The OAuth 2.0 is an authorization framework that enables
applications to obtain limited access to users resources, without the users
having to share their log-in credentials with the application [DH12]. The
OAuth process will generate access tokens used to uniquely identify both
the application and the user.

2.6.1 Dropbox

First, the app has to be registered on the Dropbox Platform and receive
an app key used to identify the mobile application. Then, after a user
has completed the OAuth 2.0 authorization flow, the application receives
the access token and uses this to create a Dropbox client. The client,
DbxClientV2, is used to make remote calls to the Dropbox API user
endpoints [Dro17a].

2.6.2 Google Drive

The Google Drive API is a native Android API for accessing Google
Drive content [Goo17k]. Similar to Dropbox, an OAuth 2.0 client ID must
be created for the application to generate an access token. The client,
GoogleApiClient, is used for the connection between the application and
the API [Goo17a].

2.6.3 Microsoft OneDrive

Like in the previous clouds, the application has to be represented by
an application ID in API calls. Then, after a user has completed the
OAuth 2.0 authorization flow, the application receives the access token
and the client, IOneDriveClient, is used for making calls to OneDrive
API [Mic15].

Chapter3The User Interface of the
SecretSharing Application

This chapter presents the initial prototype of the application layout made
before creating the application, as well as the final user interface. Screen-
shots and sketches are included to give an impression of how a user will
interact with the application. The term "platform name" corresponds to
the ID given to a particular password, and the term "password" is referring
to the stored password.

3.1 Initial prototype

Before developing the application, sketches were created to get a rough
idea of how the final result should look. The main reason for doing this
was to uncover all the base functionality needed and combine it together
in a system.

Figure 3.1 shows a splash screen (or a "welcome screen") containing
the application logo, the main page where the user would see the status
of the cloud connections intuitively, and a draft of how a drop-down
menu could be implemented. It shows some cloud providers, where the
connection status is visualized by "OK" and "NOT OK" symbols. Also, it
shows the overall status, which is this case is "OK" since only one of the
four clouds is up - two, or more, would need to be down for the status
to be "NOT OK," and the user not being able to retrieve the password.
As explained in Chapter 1, Section 1.2, this is called a (3,4) threshold
scheme.

Figure 3.2 shows how it was thought that the user could create the
passwords. Here, the PASSWORD-ID indicates the ID, or platform name,
of the password. By simply pressing a button, the user should be able to
generate shares from the password and save them to the clouds.

15

16 3. THE USER INTERFACE OF THE SECRETSHARING APPLICATION

Figure 3.1: Draft of the application; left: the loading screen, middle:
connection status page, right: connection status page with a drop-down
menu.

Figure 3.2: Draft of the application; left: creating a new password,
middle: pop-up asking if the user wants to save the password, right: the
password is saved.

3.1. INITIAL PROTOTYPE 17

For retrieving the password, the idea was that the user clicks on the
one to retrieve and then get the password returned in a pop-up, as shown
in Figure 3.3. Here, the user has a selection of the platform names (e.g.
"Facebook") already created, which should have their respective shares
stored in the clouds.

Figure 3.3: Draft of the application; left: clicking on a password on
the retrieve passwords page, middle: pop-up asking if the user wants to
retrieve the password, right: the password retrieved.

18 3. THE USER INTERFACE OF THE SECRETSHARING APPLICATION

3.2 Final User Interface

The UI has been redesigned several times during the development of the
application, as new features were added or removed. The overall color
scheme used for the application is black, white and various shades of
gray, with a red font used for critical messages. Also, based on the user
tests in Chapter 5, minor changes were made to optimize the UI. In the
screenshots of the application, red boxes around the small notifications,
also known as "toasts," are included to make it easier for the reader to
understand which messages to focus on.

3.2.1 Logging In

The first thing the user will see after clicking the icon and launching
the application, is a splash screen, as seen in Figure 3.4. A splash
screen is commonly known as a "welcome screen," and is shown while
the application is loading. The splash screen shows the applications logo,
which consists of a cloud, a lock, and the application name.

Figure 3.4: Screenshot of the application; left: splash screen, middle:
creating a new application password, right: log-in page.

If the user has not set an application password before, a screen
for creating a password will be presented. A progress bar, shown in
Figure 3.4, will give the user an indication of whether the typed password
is weak, reasonable or strong. This evaluation is based on the length of

3.2. FINAL USER INTERFACE 19

the password, as well as the number of symbols, digits, uppercase and
lowercase letters. The text in the password fields is hidden by default,
but the user can display it by pressing the eye icon.

After having typed the same password twice and pressed the confirm
button, the user is directed to the log-in page to fill in the password. This
log-in page is prompted every time the application is opened, to create
an extra barrier for a potential attacker. The text in the password field
is hidden by default here as well. As seen in Figure 3.5, the user only has
five attempts to submit the right password, without having to re-open
the application. When the wrong password is provided, a message will
notify the user that the password is not correct. This feature is also
implemented to create an extra obstacle for an attacker trying to gain
access. By making it harder to run an automated brute-force script and
making the attacker re-open the application after five attempts, it may
provide the time needed for the user to realize that the phone is lost or
stolen and delete the shares manually.

Figure 3.5: Screenshot of the application; left: error message when
password is not correct, right: maximum number of attempts reached.

20 3. THE USER INTERFACE OF THE SECRETSHARING APPLICATION

As seen in Figure 3.5, an email address is provided on the bottom of
the page for the user to contact if there are any problems while logging
in. As the functionality for having lost the application password is not
implemented, this is the temporary solution. The solution can also be
related to the 10th heuristic mentioned in Chapter 2, Section 2.5.

3.2.2 Connection Status

The connection status page is the main page, or the entry point, of the
application. When the user is successfully logged in, this page is loaded.
The log-in buttons contain the icons for the clouds, as well as their
company name. This usage is done in accordance with the guidelines for
branding, presented by the cloud storage services [Dro, Mic, Goob].

Figure 3.6: Screenshot of the application; left: verifying storage per-
missions, right: connection status page with no clouds connected and
the device connected to the Internet via Wi-Fi.

3.2. FINAL USER INTERFACE 21

The first time the application is opened, a pop-up will be presented to
the user, asking for permission to access photos, media, and files on the
device, as shown in Figure 3.6. This permission verification is needed to
create the shares for the password, as the Dropbox shares are temporarily
stored locally before being uploaded and deleted from the phone.

On the connection status page shown in Figure 3.6, the user will have
an overview of whether the clouds are connected or disconnected, and
also if the phone is connected to the Internet. If the user is not logged
into to any of the clouds, all of the log-in buttons will be visible and all
the clouds under "Connection Status" will be marked with a red cross,
representing that it is not connected. A message below the clouds will
indicate whether the phone is connected to Wi-Fi, a mobile network or
disconnected from the Internet.

The user can log into the presented clouds with their personal user
accounts. The red cross will then change to a green "OK" symbol,
indicating that the application is connected to the particular cloud. Also,
the log-in button will become invisible. The process of logging into the
clouds is shown in Figure 3.7. When all clouds are connected, the message
asking the user to log into all clouds to create a new password, shown in
the first two screenshots of Figure 3.7, will become invisible.

Figure 3.7: Screenshot of the application; left: Google Drive con-
nected, middle: Google Drive and OneDrive connected, right: all clouds
connected.

22 3. THE USER INTERFACE OF THE SECRETSHARING APPLICATION

The Drop-down Menu
The access to the elements in the drop-down menu will change based on
how many clouds that are connected, as shown in Figure 3.8. When all
clouds are disconnected, as Figure 3.6 shows, the user will only have access
to changing the password for the application. If one cloud is connected,
the user will get access to changing the password for the application, as
well as logging out from the cloud. If two clouds are connected, the user
will have access to retrieving a password as well. The application uses a
(2,3) threshold scheme, meaning that two clouds must be connected to
retrieve a password. So by only having two clouds connected, the user
should still have access to retrieving the passwords. The user will also
have access to returning to the main page. If all clouds are connected,
the user will have full access to the application and will be able to create
a new password.

Figure 3.8: Screenshot of the application; left: drop-down menu when
one cloud is connected, middle: drop-down menu when two clouds are
connected, right: drop-down menu when all clouds are connected.

3.2. FINAL USER INTERFACE 23

Disconnecting from the Cloud Services
The user can disconnect from the clouds by pressing the "Log out from
clouds" button in the drop-down menu. The user will receive a pop-up
with a warning message, asking if the user wants to remove the connection
to the clouds, and by pressing "OK," the application will log out from all
clouds connected as shown in Figure 3.9.

Figure 3.9: Screenshot of the application; left: warning message asking
if the user wants to remove the connection to the clouds, right: connection
status page with all clouds disconnected after being logged out.

24 3. THE USER INTERFACE OF THE SECRETSHARING APPLICATION

3.2.3 Creating a New Password

When creating a new password, the user will have to press the "Create
new password" button in the drop-down menu and by that be directed
to the page shown in Figure 3.10. Here the UI, containing fields for the
platform name and the password, as well as a save button, is displayed.
The platform name is equal to PASSWORD-ID shown in Figure 3.2
in Section 3.1, and was renamed during development. The text in the
password field is hidden by default. When the save button is pressed, the
application will check whether both fields have content. If so, a pop-up
is prompted, asking if the user wants to save the provided password for
the provided platform name.

Figure 3.10: Screenshot of the application; left: create new password
page, middle: filled in platform name and password, right: pop-up asking
if user wants to save the password.

After the user has decided to save the password, the application will
download the backup files. The backup files contain all existing platform
names and are meant to act as a backup if the phone is lost or stolen,
and is stored in two of the clouds to create redundancy. When creating
a password, the files are used to prevent duplicates of a password, and
the application will search through the files and compare the content
with the platform name provided by the user. As shown in Figure 3.11,
the user will get a message notifying that the backup file has been
downloaded. However, if both of the downloads fails, or if one of the
clouds is disconnected, the user will receive an error message asking the

3.2. FINAL USER INTERFACE 25

user to try again. Only one of the backup files is needed, as the content
should be identical, but since both clouds are required for uploading the
shares, the connection must be up. If no backup files are found, the
password is created, as long as it does not match any of the passwords
saved in the local password list, shown in Figure 3.12.

Figure 3.11: Screenshot of the application; left: backup file downloaded
from OneDrive, right: backup file downloaded from Google Drive.

Each cloud will receive a share titled with the platform name, which
will be used to recompute the password. Figure 3.12 shows the message
the user will receive after the upload, notifying that the password is saved
for the provided platform name. Also, to make sure that the backup files
remain updated, the backup files will be updated on both of the drives.

Figure 3.13 shows the cloud contents after the upload is complete. The
shares are stored on each of the clouds, and Google Drive and OneDrive
contains the updated backup file titled "BACKUP." In this case, the
content will be "Facebook" and "YouTube," in accordance with the shares.

26 3. THE USER INTERFACE OF THE SECRETSHARING APPLICATION

Figure 3.12: Screenshot of the application; left: retrieve passwords
page with password saved, middle: backup file updated on Google Drive,
right: backup file updated on OneDrive.

Figure 3.13: Screenshot of cloud content after password creation (the
cloud interfaces are separated by red lines); upper: Dropbox content,
middle: Google Drive content, lower: OneDrive content.

3.2. FINAL USER INTERFACE 27

Measures for Preventing Overwriting
To prevent the shares and backup files from being overwritten, two main
restrictions are set for the users.

1. The users can not create a password with a platform name that
already exists (case insensitive).

2. The users can not create a password with the platform name "backup"
in any form (case insensitive).

Figure 3.14 shows the error messages the user will receive when attempting
to break these restrictions.

Figure 3.14: Screenshot of the application; left: error when attempting
to create a password with a platform name already in the password list
or in the backup files, right: error when attempting to create a password
with the platform name "backup" in any form.

28 3. THE USER INTERFACE OF THE SECRETSHARING APPLICATION

3.2.4 Retrieving a Password

Retrieving a password is relatively straight forward. By choosing "Retrieve
passwords" in the drop-down menu, the application will display a page
containing a list of the created passwords. The list also includes the
platform names from the backup file, as long as these has been downloaded.
The page is shown in Figure 3.15. The user clicks on the platform name
that corresponds to the desired password, and by pressing "OK" on
the pop-up, the shares will be downloaded and used to reconstruct the
password, before displaying it to the user.

Figure 3.15: Screenshot of the application; left: retrieve passwords
page, middle: pop-up asking if the user wants to retrieve the chosen
password, left: the password retrieved.

3.2. FINAL USER INTERFACE 29

3.2.5 Deleting a Password

When deleting a password, the user will have to click on the chosen
platform name and hold for a short while, before a pop-up with a warning
message is displayed, as shown in Figure 3.16.

After the user presses "OK," the application will delete all the shares
corresponding to that password in the clouds and remove the platform
name from the list. As shown in Figure 3.17, the user will be notified
with individual messages for each of the clouds, indicating whether or
not the share has been removed. Also, a pop-up informs the user that
the password is deleted and that the user should remember to empty the
trash cans in the clouds as well, in case the shares has not been removed
correctly. After the password is deleted, the backup files will be updated,
as shown in Figure 3.18.

Figure 3.16: Screenshot of the application; left: retrieve passwords
page, right: warning message for password deletion.

30 3. THE USER INTERFACE OF THE SECRETSHARING APPLICATION

Figure 3.17: Screenshot of the application; left: share deleted on
Dropbox, middle: share deleted on OneDrive, left: share deleted on
Google Drive.

Figure 3.18: Screenshot of the application; left: backup file updated
on OneDrive, right: backup file updated on Google Drive.

3.2. FINAL USER INTERFACE 31

If the user goes on to delete the last password in the list, the application
will remove the backup files as well. A message will be displayed, as
shown in Figure 3.19, informing the user that there are no passwords in
the list, and since there is no need for the backup files anymore, these
are going to get deleted. When the files have been removed, the user will
receive messages indicating if the files were deleted correctly.

Figure 3.19: Screenshot of the application; left: deleting backup files
when all passwords are deleted, middle: backup file deleted on OneDrive,
right: backup file deleted on Google Drive.

32 3. THE USER INTERFACE OF THE SECRETSHARING APPLICATION

3.2.6 Advanced Functionality

Advanced functionality is here defined as the features which are not
part of the basic process of creating, retrieving and deleting passwords.
This section includes the creation of a new application password, how
the application reacts when losing access to the Internet, uploading and
downloading the backup files manually, retrieving a password when one
cloud is disconnected, and the notifications the user will receive when
shares are deleted outside the application.

The functionality for retrieving a password when one cloud is dis-
connected is part of the core concept of the application, but it is not
something that the user will experience during normal use. Therefore, it
is placed under the advanced functionality section.

New Application Password
To create a new application password, which is the password created in
Figure 3.4, the user has to press the "Change password for app" button
in the drop-down menu. As shown in Figure 3.20, the user will receive a
pop-up with a warning message about creating a new password for the
application. By pressing the "OK" button, the user is directed to the page
for creating a new password. The process of creating a new password
and logging in is described in Section 3.2.1.

Figure 3.20: Screenshot of the application; left: warning message for
creating new application password, middle: creating a new application
password, right: login page - password successfully created.

3.2. FINAL USER INTERFACE 33

No Access to the Internet
If the phone loses connection to the Internet, the user will not be able to
use the application. Figure 3.21 shows the error messages displayed to
the user when trying to e.g. create a new password or retrieve a password.
Also, if the user opens the application without being connected to the
Internet, all clouds will have a "NOT OK" status, and the user will not
have access to the drop-down menu. The message below the clouds will
inform the user that the phone is disconnected from the Internet and
that it has to be connected to use the application. If the user tries to
log out of the clouds while being disconnected from the Internet, this is
the page that will get loaded. Then, when the phone reconnects to the
Internet, all clouds will be logged out as shown in Figure 3.6.

The reason for implementing this is to reduce the probability of errors
and ensure that all shares and backup files are delivered correctly, without
potentially creating queues for when the phone is reconnected to the
Internet.

Figure 3.21: Screenshot of the application; left: connection status page
with no Internet connection, middle: create new password page with
no Internet connection, right: retrieve password page with no Internet
connection.

34 3. THE USER INTERFACE OF THE SECRETSHARING APPLICATION

Uploading and Downloading the Backup Files Manually
The user also has the possibility to upload and download the backup files
manually. This feature is implemented so that the user do not have to
create a new password to download the backup files, in case, for example,
one of the clouds is disconnected. The pop-ups the user will receive are
referring to a single backup file, as the content will, in most cases, be
identical, and from the users perspective, it is seen as a single entity.

By clicking on the "Upload backup file" button on the retrieve pass-
words page, the user will receive the pop-up shown in Figure 3.22. If a
backup file has already been created, the user will also receive a pop-up
with a warning message, informing the user about the possibility of losing
passwords. After pressing the "OK" button, the user will receive the same
messages as in Figure 3.18, indicating that the backup files have been
updated on OneDrive and Google Drive.

Figure 3.22: Screenshot of the application; left: pop-up asking if the
user wants to upload a backup file, right: warning message informing
about the possibility of losing passwords.

3.2. FINAL USER INTERFACE 35

To download a backup file manually, the user will have to click the
"Download backup file" button on the retrieve passwords page. Similar
to uploading the backup file, the user will receive a pop-up, asking to
download the backup file. By pressing the "OK" button, the backup files
will be downloaded from OneDrive and Google Drive, as long as the files
exist. Figure 3.23 shows the messages the user will receive, which includes
instructions to reload the page to update the list of platform names.

Figure 3.23: Screenshot of the application; left: pop-up asking if the
user wants to download the backup file, middle: backup file downloaded
from OneDrive, left: backup file downloaded from Google Drive.

One Cloud Disconnected
Since the application uses a (2,3) threshold scheme, described further in
Chapter 4, Section 4.5, the user should still be able to retrieve passwords
even though one of the three clouds is disconnected. To delete or create
new passwords, the user has to be logged into all clouds, as this affects
all clouds.

Figure 3.24 shows the procedure of retrieving a password when one
cloud is disconnected, and it is identical to the process described in
Section 3.2.4.

Furthermore, as an example, Figure 3.25 shows the message the user
will receive when uploading the backup files with one cloud disconnected.
Here, the warning message about overwriting the previously saved backup
file, shown in Figure 3.22, is not included. When downloading the backup

36 3. THE USER INTERFACE OF THE SECRETSHARING APPLICATION

files, the application will display a similar message informing the user
that OneDrive is not connected.

Figure 3.24: Screenshot of the application; left: OneDrive disconnected,
middle: pop-up asking to retrieve password, right: password retrieved.

Figure 3.25: Screenshot of the application; left: pop-up asking if the
user wants to upload a backup file, middle: could not update backup
file on OneDrive, right: backup file updated on Google Drive.

3.2. FINAL USER INTERFACE 37

Shares Deleted on the Clouds
Since clouds are used for storing the shares, there is a certain chance
that the shares can be deleted outside the application. If the shares are
removed from the clouds, an error message will be displayed, as shown in
Figure 3.26. This message informs the user that there are not enough
shares available to reconstruct the password.

Figure 3.26: Screenshot of the application; left: pop-up asking if the
user wants to retrieve the password, right: error while retrieving the
password - did not find enough shares.

If the user tries to delete a password that has no shares, a message will
notify the user that no shares were found and that the password has been
deleted, as shown in 3.27. As described in Figure 3.18, the application
will give the user feedback on whether or not the share was deleted. If
no share were found, the user would receive a notification informing that
an error occurred while deleting the share, and ask the user to remove
the share manually if it exists.

38 3. THE USER INTERFACE OF THE SECRETSHARING APPLICATION

For this case, the deleted password is the last password in the list, so
the backup files will also be deleted as shown in Figure 3.19.

Figure 3.27: Screenshot of the application; left: warning message
asking if the user wants to delete the password, right: no shares found -
deleting password from list.

Chapter4The Functionality of the
SecretSharing Application

This chapter describes the functionality of the application. First, a short
introduction is given, before the Android manifest for the application is
presented. Then, the functionality for connecting to the cloud APIs is
described, before the activities for the application is explained. Lastly,
the implementation of secret sharing is presented. The activities are
primarily described through activity diagrams, while the rest is described
using mainly code.

4.1 Introduction

The password storage application is named "Secret Sharing" and uses
Shamir’s secret sharing algorithm to divide the password into three shares,
before storing these on cloud storage services.

As presented in the introduction, the official IDE for Android, An-
droid Studio, is used for developing the application, with Java as the
programming language [Goo17b]. The code is not included in the ap-
pendices because of the number of pages required but uploaded to a
repository on GitHub. It can be found by using the following URL:
https://github.com/meretele/SecretSharing. However, pieces of the code
are included in the following sections for illustrating purposes.

4.2 The Android Manifest

As described in Chapter 2, Section 2.3, the Android Manifest includes
important information about the application, including the minimum
API level required, identified user permissions, and declaration of all
components.

39

https://github.com/meretele/SecretSharing

40 4. THE FUNCTIONALITY OF THE SECRETSHARING APPLICATION

Listing 4.1: The permissions in the AndroixManifest.xml file.
<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission

android:name="android.permission.ACCESS_NETWORK_STATE"/>
<uses-permission

android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-permission

android:name="android.permission.READ_EXTERNAL_STORAGE"/>
<uses-permission

android:name="android.permission.MANAGE_DOCUMENTS"/>
////
<meta-data

android:name="com.google.android.geo.API_KEY"
android:value="[YOUR API KEY]" />

////
<activity

android:name="com.android.merete.secretsharing.SplashScreen"
android:label="@string/app_name"
android:screenOrientation="portrait"
android:theme="@android:style/Theme.Black.NoTitleBar" >
<intent-filter>

<action android:name="android.intent.action.MAIN"/>
<category

android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>
////
<activity

android:name="com.dropbox.core.android.AuthActivity"
android:configChanges="orientation|keyboard"
android:launchMode="singleTask" >
<intent-filter>

<data android:scheme="db-[YOUR APP KEY]" />
<action android:name="android.intent.action.VIEW" />
<category

android:name="android.intent.category.BROWSABLE" />
<category

android:name="android.intent.category.DEFAULT" />
</intent-filter>

</activity>

Listing 4.1 shows some parts of the manifest file for the application.
First, the permissions are listed. These includes access to the Internet, the
network state, reading and writing to the external storage, and managing

4.3. CONNECTING TO THE APIS 41

access to documents. A list of all permissions available can be found on the
Android Developers reference pages [Goo17l]. Then, additional metadata
added are listed, which here includes the API key for the Google API.
Next, an activity is listed and this is the entry point for the application,
as indicated by <action android:name="android.intent.action.MAIN"/>,
and the last activity listed is the authentication activity for Dropbox,
containing the application key.

4.3 Connecting to the APIs

As described in Chapter 2, Section 2.6, a cloud storage API connects a
locally-based application to a cloud-based storage system. For the thesis,
Dropbox, Google Drive, and Microsoft OneDrive are the cloud storages
used. The following subsections will explain the code for connecting to
the clouds.

4.3.1 Dropbox

The code used for connecting to the Dropbox API is provided by the
Dropbox Core Software Development Kit (SDK) for Java 6+ [Dro17b].

Listing 4.2 displays the code for what happens when a user presses
the "Login with Dropbox" button on the connection status page described
in Chapter 3, Section 3.2.2. The startOAuth2Authentication method
will start the OAuth 2.0 authentication activity for Dropbox, using the
application key specific for this application. Listing 4.3 shows the code
for this method, which is provided by Dropbox. This will prompt the user
to log into Dropbox. OAuth 2.0 is described in Chapter 2, Section 2.6.

Listing 4.2: Logging into Dropbox, code from UserActivity.java file.
// Dropbox login.

DBlogin.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {

Auth.startOAuth2Authentication(UserActivity.this,
getString(R.string.app_key));

}
});

42 4. THE FUNCTIONALITY OF THE SECRETSHARING APPLICATION

Listing 4.3: Dropbox authentication, code from Auth.java file provided
by Dropbox.

public static void startOAuth2Authentication(Context context,
String appKey) {

if (!AuthActivity.checkAppBeforeAuth(context, appKey, true
/*alertUser*/)) {

return;
}

// Start Dropbox auth activity.
String apiType = "1";
String webHost = "www.dropbox.com";
Intent intent = AuthActivity.makeIntent(context, appKey,

webHost, apiType);
if (!(context instanceof Activity)) {

// If starting the intent outside of an Activity, must
include

// this. See startActivity(). Otherwise, we prefer to
stay in

// the same task.
intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

}
context.startActivity(intent);

}

4.3.2 Google Drive

The code used for connecting to the Google Drive API for Android is
provided by the sample code from Google [Goo17e].

Listing 4.4 displays the code for what happens when a user presses the
"Login with Google Drive" button on the connection status page described
in Chapter 3, Section 3.2.2. A Google API client, GoogleApiClient, is
created, which is the main entry point for interacting with the API. Then,
by mGoogleApiClient.connect();, the authorization begins. If a user has
not previously authorized the application, the user will be prompted to
allow it to access the user’s files in Google Drive [Goo17e].

4.3. CONNECTING TO THE APIS 43

Listing 4.4: Logging into Google Drive, code from UserActivity.java
file.
// Google Drive login.

GDlogin.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {

mGoogleApiClient = new
GoogleApiClient.Builder(UserActivity.this)

.addApi(Drive.API)

.addScope(Drive.SCOPE_FILE)

.addConnectionCallbacks(UserActivity.this)

.addOnConnectionFailedListener(UserActivity.this)

.build();
mGoogleApiClient.connect();
}

});

Listing 4.5 shows the onConnected method called asynchronously
when the connect request has successfully completed. SharedPreferences
saves data in a persistent key-value pair, and is used in the application
to keep track of which clouds that have been connected. The application
checks whether the application has been logged in before and if not, the
string "Logged_in" is added to the shared preferences and the onResume;
callback is called.

Listing 4.5: Connected to Google Drive, code from UserActivity.java
file.
// If Google Drive is connected.

@Override
public void onConnected(Bundle connectionHint) {

sharedpreferences = getSharedPreferences(mypreference,
Context.MODE_PRIVATE);

if (!sharedpreferences.contains(LoggedIn)) {
String n = "Logged_in";
SharedPreferences.Editor editor =

sharedpreferences.edit();
editor.putString(LoggedIn, n);
editor.apply();
onResume();

}
}

44 4. THE FUNCTIONALITY OF THE SECRETSHARING APPLICATION

4.3.3 Microsoft OneDrive

The code used for connecting to the OneDrive API for Android is provided
by the sample code from the OneDrive SDK [Mic17].

Listing 4.6 displays the code for what happens when a user presses the
"Login with OneDrive" button on the connection status page described
in Chapter 3, Section 3.2.2. The createOneDriveClient method is called
to create the client, and uses a callback for the result, on whether it is a
failure or success.

Listing 4.6: Logging into OneDrive, code from UserActivity.java file.
// OneDrive login.

ODlogin.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {

final ICallback<Void> serviceCreated = new
DefaultCallback<>(UserActivity.this);

createOneDriveClient(UserActivity.this,
serviceCreated);

}
});

Listing 4.7 shows the creation of the client, and, as explained in
Section 4.3.2 about connecting to the Google Drive API, a string is added
to a key-value pair in the shared preferences if the creation is successful.
The configuration for the client is not listed, but it includes the client ID
specific for the application, as well as the scopes for the application.

4.3. CONNECTING TO THE APIS 45

Listing 4.7: Creating a OneDrive client, code from UserActivity.java
file.
// Create One Drive client.

synchronized void createOneDriveClient(final Activity
activity, final ICallback<Void> serviceCreated) {

final DefaultCallback<IOneDriveClient> callback = new
DefaultCallback<IOneDriveClient>(activity) {

@Override
public void success(final IOneDriveClient result) {

mClient.set(result);
sharedpreferences =

getSharedPreferences(mypreference,
Context.MODE_PRIVATE);

SharedPreferences.Editor editor =
sharedpreferences.edit();

editor.putString(LoginOD, "OK");
editor.apply();

serviceCreated.success(null);
onResume();

}

@Override
public void failure(final

com.onedrive.sdk.core.ClientException error) {
serviceCreated.failure(error);

sharedpreferences =
getSharedPreferences(mypreference,
Context.MODE_PRIVATE);

sharedpreferences.edit().remove(LoginOD).apply();
}

};
new OneDriveClient

.Builder()

.fromConfig(createConfig())

.loginAndBuildClient(activity, callback);
}

46 4. THE FUNCTIONALITY OF THE SECRETSHARING APPLICATION

4.4 Activities

An activity serves as the entry point for an applications interaction with
the user, representing a single screen with a UI as described in Chapter 2,
Section 2.2 [Goo17c]. The application contains six activities visible to
the user, as well as one abstract class that is used as a base for activities
that requires authentication tokens for Dropbox. All activities, excluding
the splash screen, the login activity and the activity for creating an
application password, use this base functionality.

The subsections of this section will present the activity diagrams for
the activities developed for the application. Activity diagrams are behav-
ior diagrams and give a graphical representation of the processes within
the application, and is part of the Unified Modeling Language (UML).
The DropboxActivity activity is not included, as this was provided by
Dropbox [Dro17b]. For the creating and retrieving of passwords, sequence
diagrams are given to provide an understanding of the communication
between the entities. Sequence diagrams are also a part of UML. Fig-
ure 4.1 shows the relationship between the activities, and also includes
DropboxActivity.

Figure 4.1: Relationship of the activities in the application.

4.4. ACTIVITIES 47

Figure 4.2 presents the activities and menu options shown to the user,
based on the number of clouds the user is logged into. All activities
may terminate the application. This figure does not include all details,
including e.g. the number of login attempts, which is described further
in their respective subsections.

Figure 4.2: An overall representation of the activities and menu options
shown to the user.

48 4. THE FUNCTIONALITY OF THE SECRETSHARING APPLICATION

4.4.1 Splash Screen

The splash screen, as shown in Chapter 3, Section 3.2.1, is commonly
known as a "welcome screen". Figure 4.3 shows the workflow of the
activity named SplashScreen, where a timer will start once the application
is opened. If an application password already exists, an intent will be
sent to LoginActivity to start the login. Otherwise, the intent will be sent
to CreatePasswordActivity to create an application password.

Figure 4.3: Activity diagram for the SplashScreen.java file.

4.4.2 Create Application Password

The CreatePasswordActivity is the activity for creating an application
password, shown in Chapter 3, Section 3.2.1, and is shown the first time
the user opens the application or if the item "Change password for app"
in the drop-down menu is chosen.

Figure 4.4 shows the activity diagram for the activity, starting with an
intent received from either SplashScreen or UserActivity. The variables

4.4. ACTIVITIES 49

password1 and password2 are the password fields shown to the user,
where the first one is the upper field and the latter is the lower field.
If the text in password1 changes, the application will check whether
the field contains characters. If so, the password strength is calculated
and shown to the user. If the text changes in password2 and the field
contains characters, the confirm button is enabled. When this is clicked,
the application will check whether both fields contain characters, and if
they do, it will check if the text in the two fields is equal. If the fields are
equal, the password will get saved as long as the hashing of the password
does not fail, and an intent is sent to LoginActivity to start the login.

Figure 4.4: Activity diagram for the CreatePasswordActivity.java file.

50 4. THE FUNCTIONALITY OF THE SECRETSHARING APPLICATION

4.4.3 Logging into the Application

The LoginActivity is the activity for logging into the application, and
is shown in Chapter 3, Section 3.2.1. This page is shown if an applica-
tion password exists when the application is opened, or right after an
application password has been created.

Figure 4.5 shows the workflow of the activity, starting with an intent
from either the SplashScreen or CreatePasswordActivity. When the text in
the password field, password, changes, the login button will be enabled
as long as the field contains characters.

If login button is pressed, a counter will add one to its value and check
if the value is over or equal to five. If so, the maximum number of login
attempts is reached, and the user will have to re-open the application
to try again. If not, password is hashed and if this is successful, the
password created in CreatePasswordActivity is compared to password.
If these are equal, an intent will be sent to UserActivity.

4.4. ACTIVITIES 51

Figure 4.5: Activity diagram for LoginActivity.java file.

52 4. THE FUNCTIONALITY OF THE SECRETSHARING APPLICATION

4.4.4 Connection Status

The UserActivity is the activity displaying the connection status of the
application, and is shown in Chapter 3, Section 3.2.2. This page is shown
when a user logs in, or if the item "Connection status" in the drop-down
menu is chosen.

Figure 4.6: Activity diagram for UserActivity.java file.

Figure 4.6 shows the behavior diagram of the activity. The activity is
started by an intent from one of the other activities, and the first time
a user sees this site, all login buttons will be visible. By pressing one
of the buttons, the user is prompted to log into the specific cloud. If
the login is successful, the button becomes invisible, and the status for
that cloud is "OK". The four, white boxes in the diagram symbolize the
different scenarios in regards to how many clouds that are logged in. This
is relevant since the number of connected clouds is the factor deciding
how many menu items the user can see. The menu items for each of the
scenarios is shown, where the scenario with all clouds being logged in is

4.4. ACTIVITIES 53

the only one having full access. To avoid having a less detailed and larger
diagram, the checking of network connectivity and the specific variables
is not included.

4.4.5 Create New Password

The NewPswActivity is the activity for creating a new password to be
saved to the application, and is shown in Chapter 3, Section 3.2.3. This
page is shown if the item "Create new password" in the drop-down menu
is chosen.

Figure 4.7 shows the workflow of the activity. As in Section 4.4.4 the
checking of network connectivity and specific variables is not included to
avoid having a less detailed and larger diagram. The activity is started
by an intent and displays the page for creating a new password. When
the button for saving the password is clicked, the application will check
if both fields contain characters. If so, it will check whether the platform
name is "backup" in any form. If it is not, the backup files, if they exist,
will be downloaded from the clouds. Otherwise, if both fields do not
contain characters or the platform name is "backup," error messages is
shown to the user.

When the backup files are downloaded, the application will check
if the platform name is equal to a platform name that already exists
- including the ones in the backup files. If it already exists, an error
message is shown to the user. If not, the application will create the shares
and upload them to the clouds. Then, if the upload is successful, an
intent is sent to RetrieveActivity containing the platform name.

Figure 4.8 shows the simplified sequence diagram for the activity. It
does not include all error messages and details but is provided to give an
understanding of the communication between the entities.

54 4. THE FUNCTIONALITY OF THE SECRETSHARING APPLICATION

Figure 4.7: Activity diagram for NewPswActivity.java file.

4.4. ACTIVITIES 55

Figure 4.8: Sequence diagram for NewPswActivity.java file.

4.4.6 Retrieving Password

The RetrieveActivity is the activity for retrieving a created password,
and is shown in Chapter 3, Section 3.2.4. This page is shown if the
item "Retrieve passwords" in the drop-down menu is chosen, or if a new
password is created. Figure 4.9 shows the sequence diagram for the
retrieval function in the activity. This does not include all details, e.g.
searching for shares, but is included to give an understanding of the
interaction between the entities.

56 4. THE FUNCTIONALITY OF THE SECRETSHARING APPLICATION

Figure 4.9: Sequence diagram for the retrieval functionality in Retrie-
veActivity.java file.

Figure 4.10 shows the workflow for this activity. Because of the
amount of code in this activity, the diagram is severely simplified. Details
like messages for the user and checking of network connectivity is left out,
as the main purpose of the diagram is to show how the components are
linked together. The functionality for retrieving passwords is the most
detailed part, as this is the most important part of this activity.

The activity is started by an intent, and if the intent contains data
from NewPswActivity - this occurs when a new password is created - the
data are saved to the ListView, lv, containing all passwords creating.
The backup files are also updated. If there are no data in the intent,
the activity will display the page for retrieving and deleting passwords,
as well as for manually downloading and uploading backup files. If the
user clicks on backup or download for downloading and uploading the
backup files, the action is performed, and the user will get a feedback
indicating if it was successful or not. Also, the user may click and hold on
a password in the password list to delete the specific password. When a
user wants to retrieve a password, the application will attempt to retrieve
the shares from the clouds, and if two or more shares is received, the
password is recomputed and shown to the user.

Similar to Section 4.4.4, the diagram contains the menu options for
the different scenarios in regards to how many clouds that are connected.

4.4. ACTIVITIES 57

Figure 4.10: Activity diagram for RetrieveActivity.java file.

58 4. THE FUNCTIONALITY OF THE SECRETSHARING APPLICATION

4.5 Secret Sharing

As described in Section 1.2 in Chapter 1, the concept of perfect threshold
secret sharing is dividing data D into n pieces in such a way that D is
easily reconstructable from any k or more pieces, but even the complete
knowledge of k-1 pieces reveals absolutely no information about D, as all
possible values are equally likely. This is called a (k,n) threshold scheme.

For the application, each created password is divided into three pieces,
where two or more is needed to reconstruct the password. This is known
as a (2,3) threshold scheme. For implementing the algorithm, a repository
available on GitHub is used as a base [Tie14].

4.5.1 Creating the Pieces

Listing 4.8 shows how the password, n, and k are the parameters of a
method called splitSecretIntoPieces, where the return value is a string
array containing the pieces, or shares, that will later be distributed to
the clouds.

Listing 4.8: Splitting password into shares, code from Upload-
SharesTask.java file.
// Split password into shares.

final String secret;
secret = [THE PASSWORD];
final int n = 3, k = 2;
String[] pieces = splitSecretIntoPieces(secret, n, k);

The method will convert the password, or secret, into an integer, before
creating a modulus by receiving the prime used for a 384-bit payload,
meaning that a user can save a password that is up to 48 characters
long. The application will then split the password into shares by creating
coefficients, randomizing these and setting the polynomial, where the
first coefficient is the secret. The polynomial is then used to produce
the shares, which is then returned and all the components are placed
together to a piece in the form of n:k:x:modulus:share. Here, x is the x in
f(x) and is unique for each of the pieces made from the specific password.
An example of a piece is shown in the box below.

3:2:1:83085671664126938805092614721037843707763661599988974204336
74117190444262260240009907206384693584652377753448639527:32839894
2540

4.5. SECRET SHARING 59

4.5.2 Reconstructing the Password

When reconstructing the password, all the collected pieces is added to
an ArrayList, shuffled and added to a string array. The string array is
used as a parameter for the method mergePiecesIntoSecret. Here, the
shares are combined, and the password is reconstructed by solving the
polynomial equation and finding the secret.

Listing 4.9 shows a scenario where the password is reconstructed when
all pieces are collected. If only two pieces are available, the password will
still be reconstructed by sending these to the method as well. By only
having one piece, the user will receive an error message.

Listing 4.9: Retrieving password, code from RetrieveActivity.java file.
String[] pieces = new String[3];
pieces[0] = [Piece from OneDrive];
pieces[1] = [Piece from Dropbox];
pieces[2] = [Piece from Google Drive];

// Create arraylist out of the formatted strings,
// shuffle and reconstruct secret.

List<String> list = new
ArrayList<String>(Arrays.asList(pieces));

Collections.shuffle(list);
String[] kPieces = list.toArray(new String[0]);
final String reconstructed = mergePiecesIntoSecret(kPieces);

Chapter5Evaluation and Results

This chapter presents the evaluation of the application, based on user tests
performed by test subjects. Included are the plan and hypothesis for the
evaluation, setup, and also the results drawn from the assessment.

5.1 Plan and Hypothesis

The evaluation goal was to measure how well the application performed
while being used by regular users. The users were able, and encouraged,
to comment on the application’s UI and behavior. The aim was to have
a focus group of 5 subjects, preferably with various degrees of technical
skills. As the main focus was to test whether the application functions
under normal usage, as well as receiving inputs from users regarding the
UI, a group of this size served the purpose.

The subjects were given a test sheet containing 70 steps that covered all
aspects of the functionality, including e.g. logging in, creating passwords,
and verifying error messages. The users gave each functionality a score of
"PASSED" or "FAILED," where "PASSED" was provided if the application
responded as described in the test sheet, and "FAILED" was provided
if there were any deviations. Table 5.1 shows an example of how a
user may have filled out the test sheet, and the full sheets are found in
Appendix A. By evaluating these tests, a quantitative score, the "overall
score," was used to describe how well the application performs regarding
functionality. The comments provided by the users served as inputs for
further development and improvement of the application.

61

62 5. EVALUATION AND RESULTS

5.1.1 Hypothesis

By having 5 test subjects following the 70 steps, which are weighed equally,
there will be 350 chances of a "PASSED" or "FAILED" functionality. This
means that one failed functionality will decrease the overall score by

100 − 349
350 ≈ 0, 3%. (5.1)

Assuming that each subject will get at least four deviations, 20 out of
the 350 chances will be marked as "FAILED." This would give an overall
score of

330
350 ≈ 94%. (5.2)

As the errors found in the application will be adjusted throughout
the testing period, it is reasonable to believe that the number of fails
will slightly decrease over the course of the period. One can not predict
how significantly the errors found will adjust the outcome of the user
tests, as it would require time to fix the errors and the frequency of test
completion is unknown. By assuming that three out of the five subjects,
60%, will only have two deviations, the overall score is given by

336
350 = 96%. (5.3)

Since there are unknown factors to how well the found errors will
improve the outcome, it is more likely that less than 60% of the subjects
will experience a decrease of two errors, than more. By this, the null
hypothesis claims that the application will have a "PASSED" percentage
of 96 percent or less, and the alternative hypothesis claims that the
PASSED percentage is higher than 96 percent.

H0: The application will have a "PASSED" percentage of 96 percent or
less.
H1: The application will have a "PASSED" percentage of higher than 96
percent.

5.2. SETUP 63

Functionality Result Comment
Internet Connectivity

Turn of the Internet on your device
Create a new password, verify error message
Upload backup file, verify error message No error message.
Download backup file, verify error message
Verify no access to menu on Connect Status page

Table 5.1: Example on how the test form cloud be filled out by a user, where a
green box equals "PASSED" and a red box equals "FAILED".

5.2 Setup

The evaluation process will include the following setup:

• Test sheets created in Microsoft Excel.
• Focus group containing 5 subjects
• A LG Nexus 5X phone
• The "SecretSharing" application

The subjects were recruited from NTNU, Campus Gløshaugen, as the
setup needed to perform the test were located here. This narrow area
limited the distribution regarding technical skills, but as the application
is new, the gender and age are distributed, and most of the test subjects
are most familiar with Apple Inc.’s iOS (see Table 5.2), one can argue
that the subjects represent normal users.

Subject Technical Background Perferred Mobile OS
1 Telematics iOS
2 Communication Technology iOS
3 Telematics iOS
4 Communication Technology Android OS
5 Energy and Environmental Engineering iOS

Table 5.2: The subjects where recruited from NTNU, Campus Gløshaugen.

64 5. EVALUATION AND RESULTS

5.3 Results

Appendix B shows the complete overview of the results of the user tests,
including the feedback given in the form of comments. Most of the errors
found have been solved, but it has not been possible to recreate the
situations where the random errors occurred. Thorough error probing
was performed, and bugs that might have caused the errors were fixed.
Some of the feedback are also added as future work and are discussed in
Chapter 7.

The overall feedback on the application included comments stating
that the application looks good and works well, but also comments stating
that it is not as intuitive as it could have been.

Figure 5.1 shows the overall score of the user test, with a "PASSED"
score of 98,2%. Based on these results, the null hypothesis from Sec-
tion 5.1 is discarded and concludes with the alternative hypothesis H1
being supported.

Figure 5.1: The overall score of the user tests: "PASSED" score being
98,2% and "FAILED" score being 1,8%.

Chapter6Discussion

This chapter discusses the process of developing the application and ex-
plains the choices that have been made.

6.1 Development Process

The reason for developing the application for Android, instead of iOS,
was mainly because of Android being Java-based and Android devices
were available for testing the application, as well as it being preferred
that developers use a Mac when developing for iOS. Also, as mentioned
in Chapter 2, Section 2.1, Android has - as for April 2017 - approximately
65% of the marked share globally [Net].

Before choosing Android Studio as the IDE for developing the ap-
plication, Eclipse for Android Developers and Xamarin were also con-
sidered [Fou17, Xam17]. Based on personal preference for developing
in Java, Xamarin - which uses C# - was ruled out after testing. The
Eclipse IDE was prone to errors and the code did not run as expected.
This may, of course, be due to limited experience with mobile application
development, but Android Studio was found to be more intuitive and
easier to work with, and it is the official IDE for Android.

In the early stages of making connection to the APIs, an integration
solution named CloudRail was used [Clo17]. CloudRail bundles the APIs
into a single unified API, so instead of connecting and communicating
with the individual APIs, the action was sent to CloudRail who managed
the connections. The integration worked well, but the free version does
not provide direct authentication - the users would receive a "Powered
by CloudRail" page when authenticating. As this was not preferable, it
was decided to connect to the APIs individually. Figure 6.1 shows an
illustration of how CloudRail is implemented.

65

66 6. DISCUSSION

Figure 6.1: Implementation of CloudRail [Clo17].

One important part of the development was to study external libraries.
SCAPI, an open-source Java library for implementing secure two-party
and multiparty computation protocols, was thought to be a possibility
when implementing secret sharing [SCA14]. Unfortunately, secret sharing
has yet to be implemented in this library [EFLL13].

The GitHub repository used for implementing secret sharing included
several methods for calculating prime numbers used to generate the
shares [Tie14]. For the application, the number used, 8308567166412693
88050926147210378437007763661599988974204336741171904442622602
40009907206384693584652377753448639527 is tested to be a prime num-
ber [Num17]. The method is called getPrimeUsedFor384bitSecretPayload(),
and 384 bits equals 48 characters. By this, the password can be up to
48 characters long, which should be sufficient. During testing, all special
characters added to a password has been successfully returned when
reconstructing the password, including e.g. <, ®, },], and spaces.

The Google Drive API caches metadata locally, meaning that if a
file gets deleted on the cloud, it will take some time for the application
to register this. This does not mean that the deleted share can be
retrieved and used for reconstructing the password. Listing 6.1 shows
how to request a synchronization with Google using the requestSync
method [Goo17h]. The method was implemented, but it appeared to be
time-consuming, and the requests are rate limited, meaning that they
cannot be performed as often as one might want. The solution was then
to wait until the is automatically re-synced by Google, which has not
created any problems for the functionality. It has also been noticed that

6.2. CONSIDERATIONS 67

OneDrive has a tendency to use more time to connect than the other
clouds. This does not affect the functionality to a great extent, as the
user is asked to try again, but it is something that could be optimized.

Listing 6.1: Requesting synchronization with Google Drive
Drive.DriveApi.requestSync(mGoogleApiClient).setResultCallback(new

ResultCallback<Status>() {
@Override
public void onResult(@NonNull Status status) {

Log.e("sync_status", status.toString());
if (status.getStatus().isSuccess()) {

//Do something
}

}
});

The reason for not implementing a (3,4) threshold scheme, as pre-
sented in the initial prototype in Chapter 3, is mainly because of time
restrictions and priorities. It was found to be more important to have
three working connections that demonstrates the concept of having one
cloud disconnected and still being able to retrieve the password, rather
than having four connections that might be prone to errors. Only two of
the clouds, OneDrive and Google Drive, contains the backup files. This
decision was made, similar to the implementation of clouds, because of
time restrictions and priorities. It was found more important to focus on
demonstrating the concept of a backup file, while also having an extra
backup file in case one of them is unavailable. The implementation of
more clouds and backup files are presented as future work in Chapter 7.

6.2 Considerations

To use the application, the user must have, or be willing to create,
accounts on the given clouds. This might be a limitation, as users may
have preferences on which clouds they want to use. Also, when a password
is saved in the application, the user is responsible for the strength of
the password. However, as most of the passwords are created externally
before being stored in the application, it is likely to believe that the
platforms have password restrictions set for the password. Also, if the
user changes the password of one of the clouds externally, this will not
affect the functionality of the application.

68 6. DISCUSSION

As the shares are saved on clouds that are intended for storing data
available for modification, the owners of the clouds have full read/write
access to the files on the clouds. This is a vulnerability of the application,
as it means that an inattentive user might accidentally delete or modify
the shares. VSS, described in Chapter 1, Section 1.2 could provide a
solution for verifying the validity of a share.

If the phone is rebooted, the application password will remain and
the clouds will stay logged in. However, if the application data is cleared,
or the application is re-installed, the application password and the saved
passwords will get removed, and the clouds will get logged out. This
means that an attacker can re-install the application or delete all the data
from it, and then create a new password for the application. However,
since the clouds also will get logged out in such a scenario, the attacker
will not get access to the passwords. If the phone is logged into the user’s
Google account, then the attacker might be able to log into Google Drive,
but the other clouds would require the user to log in after logout. There
is a possibility of an attacker getting hands on the user’s login credentials
externally, but this is out of scope for this thesis.

When a user creates the application password, this password is hashed
using SHA-256, and stored in a key-value pair. When the user tries to
log into the phone afterward, the input is then hashed and compared
with the saved hash. Since there is no salt added to the hash function, an
attacker could perform a brute force attack or use rainbow tables to get
access to the application. However, this feature is mainly implemented
prevent the password from being exposed if an attacker gets access to the
key-value pair. It is likely to believe that a user will notice if the phone is
stolen or lost, and would then delete all the shares from the clouds - and
revoke the access to the application from the cloud providers manually.

If a new user is to use the application on a phone where the application
is already in use, it is recommended to upload the backup file to the
clouds and clear all the data from the application. Then, when the old
user is to use the application again, a new application password must be
set, and the backup files must be downloaded.

When a new password is created, only one backup file is needed to
download the password, as the content is assumed to be identical and
it contributes to being more user-friendly. However, this can lead to
creating passwords that already exist. For this scenario to occur, the
upload of a backup file must fail. This will return an error message to

6.2. CONSIDERATIONS 69

the user, and while ignoring this, the user creates a new password. If
the download of the backup file that did not get updated earlier is the
only one that succeeds, and the other cloud is still connected - as the
upload process will stop if one of the clouds is disconnected - then there
is a chance of creating a password that already exists. This also requires
that the user has not successfully manually uploaded the backup files
or deleted a password in between, as the backup files will get updated
in such cases. Also, for there to be a problem, the user must create a
password with the same platform name as the one that did not get saved
to the backup file on one of the clouds.

Another thing to consider is file carving. File carving is the method
of reconstructing data from a storage, without assistance from metadata
indicators or the file system that created the file [Ins13]. After the
shares are deleted in the cloud, an attacker with access to the cloud
might successfully reassemble the file. Also, as the Dropbox shares get
saved locally before being uploaded, and is deleted afterward, there is a
possibility of an attacker carving for the file [EPI13].

Chapter7Conclusion and Future Work

This chapter contains the conclusion of this thesis, as well as proposals
for future work.

In this thesis, the development of a password storage mobile applica-
tion for Android has been presented. The mobile application implements
secret sharing for confidentiality and uses cloud storage services for storing
the shares. A thorough technical background on Android development
and integration with the cloud storage APIs was presented in Chapter 2.

In Chapter 3, the application UI was presented. This included the
initial prototype explaining the basic idea of the interface, as well as the
final result. Screenshots of the final UI were provided to give the reader
an understanding of the application, before introducing the functionality
in Chapter 4. Chapter 4 showed the elements of the application, with
a focus on the activities. UML diagrams were presented to describe the
system, with activity diagrams to explain the behavior, and two sequence
diagrams to show the interaction between the application and the cloud
APIs. The secret sharing implementation for creating the shares and
recomputing the passwords was also presented.

For testing the application, user tests were conducted. In Chapter 5,
the plan and hypothesizes for the testing were presented, and the setup
for the testing environment was given. The result was a "PASSED" score
of 98,2%, which indicated that the functionality performed better than
expected and the alternative hypothesis H1 was supported. The feedback
from the test subjects stated that the application looked good and worked
well, but some of the solutions could have been optimized in regards to
the UI. The testing scheme used for these tests is found in Appendix
A, and the results from these were shown by a pie chart using the test
results presented in Appendix B.

71

72 7. CONCLUSION AND FUTURE WORK

7.1 Future Work

The application presented in this thesis could be improved by several
means. If the application were to be published, one important improve-
ment would be to implement more cloud storage services, so that a user
can choose to use the clouds in which they feel most comfortable with.
The user could then chose only to use e.g. three of the clouds and have the
same functionality as shown in this thesis, or connect to more of them and
thus improve the security by having more shares needed to be recovered.
Furthermore, backup files could be saved to all clouds. As discussed in
Chapter 6, the backup files are only saved to two of the clouds due to
time restrictions and priorities, as the focus was on demonstrating the
concept. Also, the only cloud having a dedicated folder for the shares is
Dropbox. This could be implemented on the other clouds as well.

The feedback from the user tests included ideas about future work, e.g.
the possibility of adding a link to the main page in the "SecretSharing"
header text. Also, the idea of moving the login buttons to the connection
status indicators - as a subject commented that it was found to be more
intuitive to look at the middle of the screen first, than at the top. Some
subjects did not find it intuitive to locate the button for uploading the
backup files manually. The functionality for manually handling the backup
files could be added as a separate activity, or page, in the drop-down
menu. Also, the application is not compatible with OneDrive Business.
This is something that should be implemented before publishing the
application and would require adding an extra authentication method for
OneDrive.

It could also be beneficial to add the possibility of deleting several
passwords at once and to implement the functionality of restoring in
case a user accidentally deletes a password. Also, when creating a new
password, a second field could be implemented to verify the password
before saving it.

Regarding improvement of the security, one improvement would be to
give the shares random names, instead of the platform names. Also, the
backup files could be shared across the clouds, similar to splitting the
password. Then one would need a given number of shares to retrieve the
file. However, as the platform names are already shown in the titles of
the files, the content of the backup files is not considered to be sensitive.
Also, when a user creates a new application password, the old password
should be provided by the user.

References

[BWS+00] M.W. Bigrigg, J.J. Wylie, J.D. Strunk, G.R. Ganger, H. Kiliççöte,
and P.K. Khosla. Survivable information storage systems. Computer,
33(8):61–68, August 2000.

[Cas] M. Casserly. The best cloud storage services.
http://www.pcadvisor.co.uk/test-centre/internet/best-cloud-
storage-services-2017-uk-3614269/.
Accessed: 2017-05-06.

[Clo17] CloudRail. CloudRail.
https://cloudrail.com/, 2017.
Accessed: 2017-06-15.

[Cra16] CrazyAppDev. Convenient password manager (unreleased).
https://play.google.com/store/apps/details?id=
disco.ethz.ch.convenientpasswordmanager&hl=no, 2016.
Accessed: 2017-06-17.

[DH12] Ed. D. Hardt. [RFC6749] The OAuth 2.0 Authorization Framework.
https://tools.ietf.org/html/rfc6749, 2012.
Accessed: 2017-06-06.

[Dro] Dropbox, Inc. Developer branding guide.
https://www.dropbox.com/developers/reference/branding-guide.
Accessed: 2017-05-08.

[Dro17a] Dropbox. Class DbxClientV2.
https://dropbox.github.io/dropbox-sdk-java/api-docs/v2.1.x/com/
dropbox/core/v2/DbxClientV2.html, 2017.
Accessed: 2017-06-06.

[Dro17b] Dropbox. Dropbox Core SDK for Java 6+.
https://github.com/dropbox/dropbox-sdk-java, 2017.
Accessed: 2017-06-08.

[Dro17c] Dropbox. OAuth guide.
https://www.dropbox.com/developers/reference/oauth-guide, 2017.
Accessed: 2017-06-06.

73

http://www.pcadvisor.co.uk/test-centre/internet/best-cloud-storage-services-2017-uk-3614269/
http://www.pcadvisor.co.uk/test-centre/internet/best-cloud-storage-services-2017-uk-3614269/
https://cloudrail.com/
https://play.google.com/store/apps/details?id=disco.ethz.ch.convenientpasswordmanager&hl=no
https://play.google.com/store/apps/details?id=disco.ethz.ch.convenientpasswordmanager&hl=no
https://tools.ietf.org/html/rfc6749
https://www.dropbox.com/developers/reference/branding-guide
https://dropbox.github.io/dropbox-sdk-java/api-docs/v2.1.x/com/dropbox/core/v2/DbxClientV2.html
https://dropbox.github.io/dropbox-sdk-java/api-docs/v2.1.x/com/dropbox/core/v2/DbxClientV2.html
https://github.com/dropbox/dropbox-sdk-java
https://www.dropbox.com/developers/reference/oauth-guide

74 REFERENCES

[EFLL13] Y. Ejgenberg, M. Farbstein, M. Levy, and Y. Lindell. SCAPI: The
Secure Computation Application Programming Interface. Bar-Ilan
University, November 2013.

[EPI13] M. EPIFANI. Cloud storage forensics.
https://www.sans.org/summit-archives/file/summit-archive-
1493920922.pdf, 2013.
Accessed: 2017-06-16.

[Fit16] Jason Fitzpatrick. Password Managers Compared: LastPass vs
KeePass vs Dashlane vs 1Password.
https://www.howtogeek.com/240255/password-managers-compared-
lastpass-vs-keepass-vs-dashlane-vs-1password/, 2016.
Accessed: 2017-06-07.

[Fou17] The Eclipse Foundation. Eclipse for Android Developers.
http://www.eclipse.org/downloads/packages/eclipse-android-
developers/neonm6, 2017.
Accessed: 2017-06-15.

[Gooa] Google. Understanding Android. https://www.android.com/everyone/
facts/.
Accessed: 2017-05-04.

[Goob] Google. Use the Drive Badge and Brand.
https://developers.google.com/drive/v3/web/branding.
Accessed: 2017-05-08.

[Goo17a] Google. Accessing Google APIs.
https://developers.google.com/android/guides/api-client, 2017.
Accessed: 2017-06-14.

[Goo17b] Google. Android Studio - The Official IDE for Android.
https://developer.android.com/studio/index.html, 2017.
Accessed: 2017-06-14.

[Goo17c] Google. Application Fundamentals.
https://developer.android.com/guide/components/fundamentals.html,
2017.
Accessed: 2017-06-07.

[Goo17d] Google. Authenticating Your Client.
https://developers.google.com/android/guides/client-auth, 2017.
Accessed: 2017-06-06.

[Goo17e] Google. Authorizing Android Apps.
https://developers.google.com/drive/android/auth, 2017.
Accessed: 2017-06-08.

[Goo17f] Google. Content Providers.
https://developer.android.com/guide/topics/providers/content-
providers.html, 2017.
Accessed: 2017-06-07.

https://www.sans.org/summit-archives/file/summit-archive-1493920922.pdf
https://www.sans.org/summit-archives/file/summit-archive-1493920922.pdf
https://www.howtogeek.com/240255/password-managers-compared-lastpass-vs-keepass-vs-dashlane-vs-1password/
https://www.howtogeek.com/240255/password-managers-compared-lastpass-vs-keepass-vs-dashlane-vs-1password/
http://www.eclipse.org/downloads/packages/eclipse-android-developers/neonm6
http://www.eclipse.org/downloads/packages/eclipse-android-developers/neonm6
https://www.android.com/everyone/facts/
https://www.android.com/everyone/facts/
https://developers.google.com/drive/v3/web/branding
https://developers.google.com/android/guides/api-client
https://developer.android.com/studio/index.html
https://developer.android.com/guide/components/fundamentals.html
https://developers.google.com/android/guides/client-auth
https://developers.google.com/drive/android/auth
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html

REFERENCES 75

[Goo17g] Google. Declaring Permissions.
https://developer.android.com/training/permissions/
declaring.html, 2017.
Accessed: 2017-06-14.

[Goo17h] Google. DriveApi.
https://developers.google.com/android/reference/com/google/
android/gms/drive/DriveApi.html, 2017.
Accessed: 2017-06-16.

[Goo17i] Google. Encryption.
https://source.android.com/security/encryption/, 2017.
Accessed: 2017-06-14.

[Goo17j] Google. Introduction to Activities.
https://developer.android.com/guide/components/activities/intro-
activities.html, 2017.
Accessed: 2017-06-07.

[Goo17k] Google. Introduction to the Google Drive Android API.
https://developers.google.com/drive/android/intro, 2017.
Accessed: 2017-06-05.

[Goo17l] Google. Manifest.permission.
https://developer.android.com/reference/android/
Manifest.permission.html, 2017.
Accessed: 2017-06-12.

[Goo17m] Google. The Activity Lifecycle.
https://developer.android.com/guide/components/activities/
activity-lifecycle.html, 2017.
Accessed: 2017-06-07.

[Ins13] InfoSec Institute. File Carving.
http://resources.infosecinstitute.com/file-carving/#gref, 2013.
Accessed: 2017-06-16.

[KSBK15] R. Koppela, S. Smith, J. Blythe, and V. Kothari. Workarounds
to Computer Access in Healthcare Organizations: You Want My
Password or a Dead Patient? University of Pennsylvania, Dartmouth
College and University of Southern California, 2015.

[Li16] J. Li. Lecture notes from the course TDT4237 - Software Security:
Mobile Application Security. The Norwegian University of Science
and Technology, 2016.
Accessed: 2017-06-14.

[Mic] Microsoft. Branding guidelines.
https://msdn.microsoft.com/en-us/onedrive/dn673556.aspx.
Accessed: 2017-05-08.

[Mic15] Microsoft. OneDrive authentication and sign-in.
https://dev.onedrive.com/auth/msa_oauth.htm#authentication-
scopes, 2015. Accessed: 2017-06-06.

https://developer.android.com/training/permissions/declaring.html
https://developer.android.com/training/permissions/declaring.html
https://developers.google.com/android/reference/com/google/android/gms/drive/DriveApi.html
https://developers.google.com/android/reference/com/google/android/gms/drive/DriveApi.html
https://source.android.com/security/encryption/
https://developer.android.com/guide/components/activities/intro-activities.html
https://developer.android.com/guide/components/activities/intro-activities.html
https://developers.google.com/drive/android/intro
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html
http://resources.infosecinstitute.com/file-carving/#gref
https://msdn.microsoft.com/en-us/onedrive/dn673556.aspx
https://dev.onedrive.com/auth/msa_oauth.htm#authentication-scopes
https://dev.onedrive.com/auth/msa_oauth.htm#authentication-scopes

76 REFERENCES

[Mic17] Microsoft. OneDrive SDK for Android.
https://github.com/OneDrive/onedrive-sdk-android, 2017.
Accessed: 2017-06-12.

[Net] Netmarkedshare. Mobile/Tablet Operating System Market
Share. https://www.netmarketshare.com/operating-system-market-
share.aspx?qprid=8&qpcustomd=1. Accessed: 2017-05-04.

[Nie95] J. Nielsen. 10 Usability Heuristics for User Interface Design.
https://www.nngroup.com/articles/ten-usability-heuristics/, 1995.
Accessed: 2017-05-09.

[Nor] A. Nordrum. Quantum Computer Comes Closer to Cracking RSA En-
cryption. http://spectrum.ieee.org/tech-talk/computing/hardware/
encryptionbusting-quantum-computer-practices-factoring-in-
scalable-fiveatom-experiment. Accessed: 2017-05-05.

[Num17] Numberempire. Prime Numbers Generator and Checker.
http://www.numberempire.com/primenumbers.php, 2017.
Accessed: 2017-06-15.

[SB05] A. Subbiah and D.M. Blough. An approach for fault tolerant and
secure data storage in collaborative work environments. Storagess
’05: Proceedings of the 2005 ACM Workshop on Storage Security and
Survivability, pages 84–93, November 2005.

[SCA14] SCAPI. Welcome to SCAPI.
https://scapi.readthedocs.io/en/latest/, 2014.
Accessed: 2017-06-14.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, November 1979.

[Sti92] D.R. Stinson. An Explication of Secret Sharing Schemes. Designs,
Codes and Cryptography, 2(4):357–390, May 1992.

[Sun] Sungard Availability Services. Top Three IT Work-
place Issues Prevent CIOs from Sleeping Easy in 2015.
http://www.sungardas.com/en/about/news/2015/january/top-three-
it-workplace-issues-prevent-cios-from-sleeping-easy-in-2015/.
Accessed: 2017-05-06.

[Tie14] T. Tiemens. Shamir’s Secret Share in Java.
https://github.com/timtiemens/secretshare, 2014.
Accessed: 2017-06-08.

[Vls] Vlsergey. 3 polynomials of degree 2 through 2 points, Wikimedia
Commons (CC-BY 3.0). https://commons.wikimedia.org/wiki/File:
3_polynomials_of_degree_2_through_2_points.svg.
Accessed: 2017-05-05.

[Win] D. Winder. How secure are Dropbox, Microsoft OneDrive, Google
Drive and Apple iCloud cloud storage services?
http://www.alphr.com/apple/1000326/how-secure-are-dropbox-

https://github.com/OneDrive/onedrive-sdk-android
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=8&qpcustomd=1
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=8&qpcustomd=1
https://www.nngroup.com/articles/ten-usability-heuristics/
http://spectrum.ieee.org/tech-talk/computing/hardware/encryptionbusting-quantum-computer-practices-factoring-in-scalable-fiveatom-experiment
http://spectrum.ieee.org/tech-talk/computing/hardware/encryptionbusting-quantum-computer-practices-factoring-in-scalable-fiveatom-experiment
http://spectrum.ieee.org/tech-talk/computing/hardware/encryptionbusting-quantum-computer-practices-factoring-in-scalable-fiveatom-experiment
http://www.numberempire.com/primenumbers.php
https://scapi.readthedocs.io/en/latest/
http://www.sungardas.com/en/about/news/2015/january/top-three-it-workplace-issues-prevent-cios-from-sleeping-easy-in-2015/
http://www.sungardas.com/en/about/news/2015/january/top-three-it-workplace-issues-prevent-cios-from-sleeping-easy-in-2015/
https://github.com/timtiemens/secretshare
https://commons.wikimedia.org/wiki/File:3_polynomials_of_degree_2_through_2_points.svg
https://commons.wikimedia.org/wiki/File:3_polynomials_of_degree_2_through_2_points.svg
http://www.alphr.com/apple/1000326/how-secure-are-dropbox-microsoft-onedrive-google-drive-and-apple-icloud-cloud-storage
http://www.alphr.com/apple/1000326/how-secure-are-dropbox-microsoft-onedrive-google-drive-and-apple-icloud-cloud-storage
http://www.alphr.com/apple/1000326/how-secure-are-dropbox-microsoft-onedrive-google-drive-and-apple-icloud-cloud-storage

REFERENCES 77

microsoft-onedrive-google-drive-and-apple-icloud-cloud-storage.
Accessed: 2017-05-06.

[Xam17] Xamarin. Xamarin.
https://www.xamarin.com/, 2017.
Accessed: 2017-06-16.

http://www.alphr.com/apple/1000326/how-secure-are-dropbox-microsoft-onedrive-google-drive-and-apple-icloud-cloud-storage
http://www.alphr.com/apple/1000326/how-secure-are-dropbox-microsoft-onedrive-google-drive-and-apple-icloud-cloud-storage
http://www.alphr.com/apple/1000326/how-secure-are-dropbox-microsoft-onedrive-google-drive-and-apple-icloud-cloud-storage
https://www.xamarin.com/

AppendixAUser Test Sheet

Figure A.1: User test: PART ONE - Basic Functionality (1).

79

80 A. USER TEST SHEET

Figure A.2: User test: PART ONE - Basic Functionality (2).

81

Figure A.3: User test: PART TWO - Advanced Functionality.

83

84 B. USER TEST RESULTS

AppendixBUser Test Results

Figure B.1: Results from the user tests.

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Background and Motivation
	Introduction to Secret Sharing
	Secret Sharing Schemes
	Shamir's Secret Sharing Scheme

	Goal and Research Question
	Goal
	Research Question

	Methodology
	Contributions
	Related Work
	Outline

	Background Theory
	Introduction to Android Development
	Core Framework Components
	Services
	Broadcast receivers
	Activities
	Content providers

	The Manifest
	Security
	User Interface
	Cloud Storage Services APIs
	Dropbox
	Google Drive
	Microsoft OneDrive

	The User Interface of the SecretSharing Application
	Initial prototype
	Final User Interface
	Logging In
	Connection Status
	Creating a New Password
	Retrieving a Password
	Deleting a Password
	Advanced Functionality

	The Functionality of the SecretSharing Application
	Introduction
	The Android Manifest
	Connecting to the APIs
	Dropbox
	Google Drive
	Microsoft OneDrive

	Activities
	Splash Screen
	Create Application Password
	Logging into the Application
	Connection Status
	Create New Password
	Retrieving Password

	Secret Sharing
	Creating the Pieces
	Reconstructing the Password

	Evaluation and Results
	Plan and Hypothesis
	Hypothesis

	Setup
	Results

	Discussion
	Development Process
	Considerations

	Conclusion and Future Work
	Future Work

	References
	User Test Sheet
	User Test Results

