
The robust vehicle routing problem with time windows

Agostinho Agra ∗ Marielle Christiansen † Rosa Figueiredo ‡

Lars Magnus Hvattum § Michael Poss ¶ Cristina Requejo ‖

September 25, 2012

Abstract

This paper addresses the robust vehicle routing problem with time windows. We
are motivated by a problem that arises in maritime transportation where delays are
frequent and should be taken into account. Our model only allows routes that are fea-
sible for all values of the travel times in a predetermined uncertainty polytope, which
yields a robust optimization problem. We propose two new formulations for the robust
problem, each based on a different robust approach. The first formulation extends the
well-known resource inequalities formulation by employing adjustable robust optimiza-
tion. We propose two techniques, which, using the structure of the problem, allow
to reduce significantly the number of extreme points of the uncertainty polytope. The
second formulation generalizes a path inequalities formulation to the uncertain context.
The uncertainty appears implicitly in this formulation, so that we develop a new cutting
plane technique for robust combinatorial optimization problems with complicated con-
straints. In particular, efficient separation procedures are discussed. We compare the
two formulations on a test bed composed of maritime transportation instances. These
results show that the solution times are similar for both formulations while being sig-
nificantly faster than the solutions times of a layered formulation recently proposed for
the problem.
Keywords: robust optimization; uncertainty polytope; vehicle routing problem; time
windows; dynamic programming.

1 Introduction

This paper demonstrates how to efficiently solve the vehicle routing problem with time
windows (VRPTW) when travel times are uncertain. The aim is to find robust solutions,
where routes are feasible for all travel times defined by a predetermined uncertainty polytope.
Although the formulations developed in this paper are general enough to describe many types
of applications, the motivation for the work comes from maritime transportation, where
routing problems are known to include many types of uncertainty [11] and where travel
times and service times can vary due to unforeseen events such as bad weather, mechanical
breakdowns and port congestion.

Much research has been performed on vehicle routing problems, not the least due to
its importance for applications in transportation, distribution and logistics [14]. Two well

∗CIDMA, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal, aagra@ua.pt
†Department of Industrial Economics and Technology Management, Norwegian University of Science and

Technology, NO-7491, Trondheim, Norway, marielle.christiansen@iot.ntnu.no
‡CIDMA, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal,

rosa.figueiredo@ua.pt
§Department of Industrial Economics and Technology Management, Norwegian University of Science and

Technology, NO-7491, Trondheim, Norway, lars.m.hvattum@iot.ntnu.no
¶CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra; UMR CNRS 6599

Heudiasyc, Université de Technologie de Compiègne, Centre de Recherches de Royallieu, 60200 Compiègne,
France, Portugal, mjposs@gmail.com.
‖CIDMA, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal, crequejo@ua.pt

1

known classes of vehicle routing problems are the capacitated vehicle routing problem (CVRP)
and the VRPTW. The V RPTW and CV RP share many common features, and path-flow
formulations where integer variables represent paths in the network are very similar for both
problems [21]. However, arc-flow formulations, where integer variables represent single arcs
in the network, have notable differences: While it is straightforward to express the capacity
constraint in the space of arc variables, time windows require either additional variables or
an exponential number of inequalities [15].

We study integer programming formulations for a variant of the V RPTW . More specif-
ically, we study the problem where travel times belong to an uncertainty polytope. Hence,
our approach falls into the framework of robust programming, where a solution is said to be
feasible only if it is feasible for all realizations of the data in a predetermined uncertainty
set T . Robust programming stems from the original work of Soyster [22] and has witnessed
a continuous attention in the last decade. We refer the interested reader to the survey from
Bertsimas et al. [6].

Prior to our recent note [1], Sungur et al. [25] were the first to mention a robust vehicle
routing problem with time windows and uncertain travel times (T -V RPTW). However,
their modeling assumption led to all travel times taking their maximum values, yielding an
over-conservative model. In fact, Sungur et al. [25] mainly focused on the robust CV RP and
study conditions under which robust versions of the CV RP can be solved through methods
similar to the ones used for the deterministic version of the CV RP , see also [18] for a survey
on the robust CV RP . The literature on stochastic versions of the V RPTW is scant when it
comes to stochastic travel times, the only example coming from Chardy and Klopfenstein [9]
who propose pre-processing techniques based on stochastic inequalities. In contrast to this,
the stochastic versions of the CV RP have witnessed continued attention for many years,
see [10] and the references therein.

Our recent note [1] presents the first general approach to the robust vehicle routing
problem with time windows and uncertain travel times. Travel times belong to a demand
uncertainty polytope, which makes the problem harder to solve than its deterministic coun-
terpart. The benefit of the addition in complexity is that the model from [1] is more flexible
than the one from [25] and leads to less conservative robust solutions. The work presented
in [1] focuses on applying the classical dualization technique for robust programming which
yields a very large formulation that are hardly solved for instances with more than 20 nodes.
The limited results obtained in [1] motivate us to tackle the T -V RPTW with the more so-
phisticated robust approaches used in this paper. Our first approach uses adjustable robust
optimization, while the second one substitutes robust constraints with canonical cuts.

The first of our formulations extends the classical resource inequalities formulation to
the robust context. This yields a two-stage robust program, based on the framework of
adjustable robust optimization from Ben-Tal et al. [4]. Robust integer programs with arbi-
trary decision rules are extremely hard to solve exactly so that most authors have devised
approximation schemes that are computationally tractable, such as the affine decision rules
introduced in [4]. However, some authors have raised the possibility of obtaining exact so-
lutions to robust programs with arbitrary decision rules, see [8, 20]. When it is possible to
compute all extreme points of the uncertainty set and the number of these points is limited,
Poss and Raack [20] suggest to consider all of them and to solve the resulting formulation.
Very often, the numbers of extreme points are too large to be handled explicitly so that
Bienstock and Özbay [8] propose decomposition algorithms that require solving non-convex
subproblems.

For our two-stage robust program, we follow the approach of Bienstock and Özbay [8]
and generate dynamically the extreme points of the uncertainty polytope. First, we propose
two techniques that allow a significant reduction of the number of extreme points needed
to formulate the problem. The first technique shows that the number of extreme points
which we must consider is not larger than the number of extreme points of the projection of
the uncertainty polytope into the subspace corresponding to the coefficients defining any of
its constraints. The second technique introduces the notion of dominance among extreme

2

points. Finally, we apply a column-and-row generation algorithm to generate only a subset
of the non-dominated extreme points. In contrast to the approach of [8] that solves NP-hard
subproblems, our subproblem can be solved in polynomial time by a dynamic programming
algorithm. This is an important feature of our method that makes it scalable with the
problem size.

The second of our formulations extends the path inequalities formulation from Kallehauge
et al. [15]. The uncertain parameters do not appear explicitly in the constraints of this
formulation, so that we decompose the problem into a master problem and a subproblem.
The master problem contains the deterministic constraints of the original problem plus a set
of canonical cuts ensuring that the robust constraints are also satisfied, while the subproblem
generates additional canonical cuts when the master problem’s solution violates some of the
robust constraints. We apply this approach to V RPTW and T -V RPTW and our numerical
results show that the resulting optimization problems for V RPTW and T -V RPTW are of
the same difficulty for our instances. This is an important result since the introduction of
uncertainty in an integer program usually makes the problem much harder to solve. For
instance, the classical dualization approach increases significantly the number of variables
and constraints of the original problem.

To summarize our contributions, we present in this paper two formulations for the
T -V RPTW that can handle instances of the maritime transportation problem for real-
istic dimensions. Both formulations studied in this paper are tackled by decomposition
algorithms which makes them scalable and limits the computational difficulty that normally
arises from the introduction of robustness. Our main contributions are (i) the study of
techniques to reduce the number of extreme points of the uncertainty polytope that must
be considered in the model, and (ii) the implementation of a cutting-plane algorithm for the
paths inequalities formulation that solves the robust instances as easily as the deterministic
ones.

This paper is structured as follows. The next section introduces two different formula-
tions of the V RPTW . Section 3 presents some key aspects of robust programming that are
needed to provide finite linear programming formulations for linear problems under poly-
hedral uncertainty. In particular, Section 3.1 presents our new technique based on implicit
representation of robust constraints. The tools from Section 3 are used in Section 4 to pro-
vide two formulations for the T -V RPTW . Section 4.1 also presents a detailed study on how
to reduce the number of scenarios that must be considered. Section 5 presents a numerical
assessment of our formulations on a maritime transportation problem that is described in
Section 5.1, and we conclude the paper in Section 6.

2 The vehicle routing problem with time windows

We first present a definition of the V RPTW . Considering the application to maritime
transportation that we will present in Section 5, the following definition is more general than
the standard V RPTW . By allowing travel costs and travel times to be different for each
vehicle, the definition includes other related problems such as the V RPTW with multiple
depots. Also due to our maritime transportation application, we omit capacity constraints
in the formulation. However, including capacity is easy in all of the formulations given in
this paper. We are given a directed graph G = (N,A), a set of vehicles K, a cost function
c : A × K → R+, and a time function t : A × K → R+ for traveling along the arcs of G.
The graph contains special depot nodes o (origin) and d (destination) connected to all other
nodes of G, and we denote by N∗ the set of nodes that are not depots, N∗ := N\{o, d}. We
are given time windows [ai, bi] with ai, bi ∈ R+, for each i ∈ N∗. Because different vehicles
may have access to different routes, we also introduce the subset Ak of A for each k ∈ K.

The V RPTW consists of defining routes for the vehicles in K such that the union of all
routes passes exactly once by each i ∈ N∗. When |K| = 1, the problem contains a unique
vehicle and reduces to the asymmetric traveling salesman problem with time windows [2].

In this section, we recall two well-known formulations for the V RPTW , based on resource

3

inequalities and path inequalities, respectively, and introduce a new layered formulation for
the problem. These formulations suppose that all parameters are known with certainty.

2.1 Resource inequalities

We first recall a classical formulation for the V RPTW based on resource inequalities.
The formulation uses a set of binary flow variables xkij which indicates whether vehicle k

travels from node i ∈ N to node j ∈ N , and a set of continuous variables yki indicating the
arrival time of vehicle k at node i ∈ N . In fact, since only one vehicle can serve node i,
we may drop the index k and let yi be the arrival time at node i of the vehicle that serves
i. Time windows [ai, bi] are imposed at each node i ∈ N∗, and we assume that a vehicle
arriving earlier than ai can wait until ai at no cost. The resource inequalities model for
V RPTW follows.

min
∑
k∈K

∑
(i,j)∈Ak

ckijx
k
ij (1)

s.t.
∑
k∈K

∑
j∈N :(i,j)∈Ak

xkij = 1, i ∈ N∗, (2)

(RI)
∑

j∈N :(j,i)∈Ak

xkji −
∑

j∈N :(i,j)∈Ak

xkij =

 −1 i = o
1 i = d
0 otherwise

, i ∈ N, k ∈ K, (3)

xkij(yi + tkij − yj) ≤ 0, (i, j) ∈ Ak, k ∈ K,
(4)

ai ≤ yi ≤ bi, i ∈ N∗, (5)

xkij ∈ {0, 1}, (i, j) ∈ Ak, k ∈ K.

The objective function (1) minimizes the cost of operating the set of vehicles. Constraints (2)
ensure that all i ∈ N∗ are served exactly once, and constraints (3) are the flow conservation
constraints for each vehicle. Constraints (4) link routes and schedules, that is, yj must be
greater than or equal to yi + tkij whenever vehicle k travels from i to j, while constraints (5)
ensure that the time windows are respected. Constraint (4) can be linearized and replaced
with constraints

yi − yj + (bi + tkij − aj)xkij ≤ bi − aj , (i, j) ∈ Ak, k ∈ K. (6)

It is shown in the next proposition that model (RI) can be improved by strengthening
constraints (6). Proof of Proposition 1 is straightforward and thus, we omit it.

Proposition 1. Constraints

yi − yj +
∑

k∈K:(i,j)∈Ak

max{bi + tkij − aj , 0}xkij ≤ bi − aj , (i, j) ∈ A. (7)

are valid for (RI). Moreover, any (x, y) ∈ {0, 1}|A||K| × R|N∗| that satisfies constraints (7)
also satisfies constraints (6).

Proposition 1 reinforces formulation (RI) and reduces its number of constraints. In
addition, the result is fundamental to derive, later in the paper, a robust formulation whose
dimension is not influenced (on the robust part) by the number of vehicles.

An important characteristic of (RI) is the presence of variables y that depend explicitly
on the travel time values tkij . Given routes described by variables x, variables y enable us to
know how much time the vehicles have to wait before being able to serve each node along their
route. This level of information is useful in some applications that consider costs related
to waiting times such as described by Desaulniers and Villeneuve [13]. However, in the

4

application considered in this paper, only travel costs are relevant. Hence, the formulations
presented in the next two sections only contain variables related to the vehicle routes. This
shall have a crucial impact when applying robust models and methods to the V RPTW , as
will be discussed in Sections 3 and 4.

2.2 Path inequalities

A recent formulation that is based only on arc variables x has been proposed by Kalle-
hauge et al. [15] for the V RPTW . The formulation does not explicitly consider the satis-
faction of the time windows. Instead, it forbids routes in G for which it is not possible to
construct a feasible schedule. Let Pk be the set of infeasible paths from o to d in G, that
is, the set of paths in G for which it is not possible to define arrival times yi that satisfy
constraints (4) and (5). For p ∈ Pk, we denote by |p| the number of arcs contained in p.
The main idea of this formulation is simply to forbid such paths.

min
∑
k∈K

∑
(i,j)∈A

ckijx
k
ij

(PI) s.t. (2), (3)

cycle-breaking inequalities, (8)∑
(i,j)∈p

xkij ≤ |p| − 1, p ∈ Pk, k ∈ K, (9)

xkij ∈ {0, 1}, (i, j) ∈ Ak, k ∈ K.

Formulation (PI) contains one set of variables which, as before, indicates which arcs are
used by each vehicle. Constraints (8) can be any set of constraints (possibly with additional
variables) that forbid cycles. In our computational results we use the MTZ inequalities [17]
which, essentially, uses an auxiliary set of variables similar to y in (RI) to impose an order on
the nodes visited by the vehicles. Then, constraints (9) forbid infeasible paths. Formulation
(PI) contains a very large number of inequalities (9), possibly exponential in the size of the
problem, so that branch-and-cut algorithms must be devised to solve (PI) exactly.

3 Robust linear programming

In this work, we consider uncertain travel times that belong to a polytope T . This
makes the problem a robust program, a class of optimization problems that has witnessed
an increased attention in the recent years. Conducting an exhaustive literature review of
robust programming is beyond the scope of this paper and we redirect the interested reader
to [6], among others.

The classical approach for robust programming relies on static models where the variables
of the problem are not allowed to vary to account for the different values taken by the
uncertain parameters. This is different from adjustable robust optimization that will be
introduced later in this section. Consider the following linear program in {0, 1}-variables

min cTx

(P) s.t. Bx ≤ b, (10)

Tx ≤ d, (11)

x ∈ {0, 1}n,

with c ∈ Rn, b ∈ Rr, d ∈ Rs, T ∈ Rsn, and B ∈ Rrn. Suppose that the problem is subject
to uncertainty in the sense that matrix T belongs to a polytope T ⊂ Rsn. The robust

5

counterpart of (P) is

min cTx

(T -P) s.t. Bx ≤ b,
Tx ≤ d T ∈ T , (12)

x ∈ {0, 1}n,

where the s linear constraints in (11) must now be satisfied for each value of T ∈ T . Hence,
the finite set of constraints (11) has been replaced by the infinite set of constraints (12).

The classical approach in linear robust programming under polyhedral uncertainty to
handle the infinite set of constraints (12) [5], relies on dualizing constraints (12). This
results in the addition of a polynomial set of constraints and variables which depend on the
definition of the uncertainty polytope T . To be applied to the T -V RPTW , this approach
requires to use an extended formulation, which contains a set of constraints Tx ≤ d that
describe the time windows in a static manner, that is, using only variables related to the
routes (and not to the actual schedule). Such a formulation has been proposed in [1]. The
formulation from [1] yields very poor numerical results even in the deterministic case. For
this reason, we introduce alternative formulations in this paper, respectively based on the
implicit representation of (12) and on adjustable robust optimization.

3.1 Implicit reformulation

The method described in this section is based on the implicit representation of (12)
via canonical cuts. Implicit reformulation has already been used in this paper to obtain
formulation (PI) where the satisfaction of time windows is not included explicitly. Instead,
(9) play this role by forbidding individual paths that do not satisfy the time windows. The
idea of replacing complicating constraints by canonical cuts has been used in other contexts
as well [12, 23]. To our knowledge, this paper is the first work that applies this implicit
reformulation to a robust program. In the following, we recall first the general idea for the
deterministic problem (P). Then, we extend it to the robust problem (T -P).

Let X ⊂ {0, 1}n be the set of all binary vectors that violate at least one of the constraints
(11). For x∗ ∈ {0, 1}n, we denote by x∗(1) ⊆ {0, . . . , n} (resp. x∗(0) ⊆ {0, . . . , n}) the set
of indices where x∗ is equal to 1 (resp. 0). Hence, a vector x∗ ∈ X can be cut-off by the
following canonical cut ∑

i∈x∗(1)

(1− xi) +
∑

i∈x∗(0)

xi ≥ 1,

first mentioned by Balas and Jeroslow [3]. Thus, constraints (11) for x binary are equivalent
to the following set of canonical cuts∑

i∈x∗(1)

(1− xi) +
∑

i∈x∗(0)

xi ≥ 1, x∗ ∈ X . (13)

We see that constraints (9) are an example of (13). Similarly, let X (T) be the set of binary
vectors that violate at least one of the constraints in (12). This set of constraints for x
binary are equivalent to∑

i∈x∗(1)

(1− xi) +
∑

i∈x∗(0)

xi ≥ 1, x∗ ∈ X (T). (14)

Therefore, (T -P) can equivalently be written as

min cTx

(T -Png) s.t. (10), (14)

x ∈ {0, 1}n,

6

which is a finite linear program in {0, 1}−variables.
Let us make a couple of remarks about (T -Png). First, canonical cuts employed in (14)

are extremely weak because each of these constraints cuts off a unique binary vector. Hence,
one should try to reinforce these constraints with problem-dependent valid inequalities. For
instance, each path inequality in (9) cuts-off a unique path o to d. They can be improved as
follows. Instead of considering a whole path from o to d, we can forbid its smallest subpath
that is not feasible for the time windows. By doing so, we cut off all paths from o to d that
contain the forbidden subpath. Even further, these inequalities can be lifted to obtain the
tournament inequalities [2].

Second, (T -Png) is likely to contain a very large number of constraints in (14). Therefore,
a solution method that intends to solve (T -Png) efficiently should employ a cutting plane
algorithm that alternates between feasibility checks – does the current x∗ belong to X (T)
– and the addition of canonical cuts to a master problem [12, 2, 15]. An important issue in
these iterative techniques is related to how to perform the feasibility check. A binary vector
x∗ belongs to X (T) if and only if there exists a T ∈ T such that Tx > d, which is equivalent
to

∃i ∈ {1, . . . , s} s.t. max
Ti∈Ti

Tix > di. (15)

Hence, checking whether x∗ belongs to X (T) amounts to solve s linear programs. Solving s
linear programs can be time consuming in general. Hence, it is useful to devise more efficient
algorithms that make use of the particular structure of the problem under the consideration
and the uncertainty polytope T .

We show later in this paper that this check can be improved when using the budget
uncertainty from Bertsimas and Sim [7] and even further for T -V RPTW by taking into
account that vector x describes a set of paths from o to d.

3.2 Adjustable robust optimization

Model (T -P) suffers from a certain rigidity in the sense that a vector x must satisfy
constraints (12) for all T ∈ T to be feasible for (T -P). In particular, the problem variables
are not allowed to adjust themselves to the values taken by the uncertain parameters. This is
an important modeling restriction that may not suit many problem formulations, including
the formulation (RI) from last section. Namely, adapting (RI) in the way suggested by
model (T -P) would yield an optimization problem where the arrival times would be fixed
once for all travel times in the uncertainty set. Such an optimization problem is likely to be
infeasible whenever T is not a singleton, see Example 1 from [1].

Ben-Tal et al. [4] have introduced a more flexible class of robust programs, where a subset
of variables is allowed to adapt itself as the uncertain parameters vary in the uncertainty
set T . Applied to (P), their model essentially allows a subset of variables, which we denote
by x2, to become functions defined on T . To keep notations simple, we suppose that these
functions take only real values, x2 : T → Rn2 . Hence, x = (x1, x2), c = (c1, c2), B =
(B1, B2), T = (T 1, T 2), and x2 is allowed to vary as T 1 takes different values in T . For the
sake of simplicity, we also suppose that c2 = B2 = 0. The problem becomes:

min (c1)Tx1

(T R-P) s.t. B1x1 ≤ b,
T 1x1 + T 2x2(T 1) ≤ d, T 1 ∈ T , (16)

x1 ∈ {0, 1}n1 ,

x2(T 1) ∈ Rn2 , T 1 ∈ T .

Problem (T R-P) is often called an adjustable robust program, which features two levels
of decisions: first-stage variables x1 must be fixed before the uncertainty is revealed, while
adjustable variables x2 can react to account for the uncertainty. Notice that (T R-P) can be
extended to the case of uncertain cost c1 by replacing the objective function with min z and

7

adding the restrictions z ≥ (c1)Tx1 to the set of uncertain constraints. Similarly, one can
suppose that B2 6= 0 or that c2 6= 0. In the latter, one must add term maxT∈T 1(c2)Tx2(T 1)
to the objective function. However, the situation where c2 or T 2 is uncertain is more
complicated and we do not address it in the following.

Model (T R-P) has an infinite number of variables x2(T 1) and constraints (16). However,
given that all constraints present in the problem are linear, it is easy to show that we can
restrict ourselves to the extreme points of T , ext(T), which exist in finite number since T
is a polytope. This simple result is recalled below.

Lemma 1. Let T ⊂ Rsn1 be a polytope and ext(T) be the set of its extreme points. Consider
vectors x1 ∈ {0, 1}n1 and d ∈ Rs. There exists x2 : T → Rn2 such that T 1x1 + T 2x2(T 1) ≤
d,∀T 1 ∈ T if and only if there exists x2 : ext(T) → Rn2 such that T 1x1 + T 2x2(T 1) ≤
d,∀T 1 ∈ ext(T).

Lemma 1 allows us to solve (T R-P) through (ext(T)R-P). Though finite, (ext(T)R-P)
tends to be very large because the number of extreme points of the uncertainty polytope
tends to grow rapidly with the problem size. For this reason, we present in Section 4.1.1
techniques to reduce the number of extreme points.

4 The robust V RPTW

From this section on, we suppose that travel times tkij are not known with precision and
belong to an uncertainty set. This is because in our application in maritime transportation,
it often happens that delays occur during some of sailings due to unstable weather. We
must however ensure that the routes proposed for the ships are feasible in most situations.
Hence, we model the travel times with the help of an uncertainty polytope T ⊂ R|A||K|,
making the optimization problem a robust program. In the following subsections, we apply
the methods described in Section 3 to the formulations for V RPTW from Section 2. For
each formulation, we first present the robust equivalent for a general uncertainty polytope T .
Then, we particularize the formulations to take into account the structure of the polytope
TΓ used in our numerical experiments.

Roughly speaking, TΓ contains all travel times where at most Γ trips suffer from delays
for each ship. More precisely, we suppose that each component tkij of t lies between its mean

value t
k
ij and its peak value t

k
ij + t̂kij and that, for each k ∈ K, at most Γ of them can reach

their peak values simultaneously. Formally, this is defined by TΓ = ×k∈KT kΓ where each T kΓ
is such that each tkij lies in [t

k
ij , t

k
ij + δkij t̂

k
ij] with 0 ≤ δkij ≤ 1,

∑
ij δ

k
ij ≤ Γ for some Γ ∈ Z

with Γ < |A|. This is the budget uncertainty polytope studied by Bertsimas and Sim [7].
To keep notations simple, we suppose throughout that Γ is the same for each vehicle.

It is however straightforward to extend our formulations and methods to the uncertainty
polytope where different values of Γ are associated to different vehicles, denoted TΓ∗ . Hence,
if the decision maker feels that some ships are more likely to be subject to delays than others,
she can increase the values of Γ for those ships.

Before presenting the robust formulations, we introduce a set of constraints that has been
proposed by Chardy and Klopfenstein [9] to check that time windows are satisfied without
the need of additional variables. Consider a binary vector x ∈ {0, 1}|A||K| that describes a
path p from i0 to in, that is, p = i0, . . . , in and xkij = 1 for each (i, j) ∈ p, such that xkij = 0
otherwise. Constraints (4) and (5) for k along p are equivalent to

ail1 +
∑

l=l1,...,l2−1

tkilil+1
≤ bil2 , 0 ≤ l1 < l2 ≤ n. (17)

Constraints (17) will be used in the next two subsections to check that a path satisfies the
time windows.

8

4.1 Resource inequalities

Model (RI) can be naturally extended to handle uncertain polytope T : x becomes the
set of first-stage variables, while y becomes y(t), a function of t ∈ T . Thanks to Lemma 1,
we only need to consider travel time vectors t that belong to ext(T). Hence, the robust
problem contains equations (5) and (7) written for every scenario t ∈ ext(T), that is

ai ≤ yi(t) ≤ bi, i ∈ N, t ∈ ext(T), (18)

and

yi(t)−yj(t)+
∑

k∈K:(i,j)∈Ak

max{(bi+tkij−aj), 0}xkij ≤ bi−aj , (i, j) ∈ A, t ∈ ext(T). (19)

The robust version of (RI) becomes

min
∑
k∈K

∑
(i,j)∈Ak

cijx
k
ij

(ext(T)-RI) s.t. (2), (3), (18), (19)

xkij ∈ {0, 1}, (i, j) ∈ Ak, k ∈ K.

A crucial feature of formulation (T -RI) is that its numbers of “robust” constraints and
variables do not depend on |K|. Namely, the number of variables y and the number of con-
straints (18) increase with |N | and | ext(T)|, while the number of constraints (19) increases
with |A| and | ext(T)|. This remarkable property is due to Proposition 1, which allows to
group constraints (4) associated to different vehicles.

To simplify notations, we assume in the rest of this section that Ak = A for each k ∈ K.
However, the results presented next are easy to generalize to the case where Ak can be
different from Ah for any pair of distinct vehicles k and h. In what follows, we denote the
elements of ext(T) either by extreme points or by scenarios. Considering every scenario in
ext(T) is certainly prohibitive when solving reasonable size instances. In the next subsection,
we focus on approaches to reduce the number of scenarios to be considered by proposing
formulations that are equivalent to (ext(T)-RI). Given a finite set S ⊂ R|A||K|, we define
(S-RI) as (ext(T)-RI) by replacing ext(T) with S in constraints (18) and (19). Hence,
we want to characterize finite sets S with the lowest possible cardinality that satisfies the
following property: a first stage solution x is feasible for (S-RI) if and only if it is feasible
for (ext(T)-RI). We mention that S may not be a subset of ext(T).

4.1.1 Reducing the number of scenarios

The simplest approach tries to withdraw individual scenarios from ext(T) by comparing
them to other scenarios that are more representative in the sense explained next. Namely,
we say that an extreme point t ∈ ext(T) is dominated by another extreme point τ ∈ ext(T)
if any solution for first stage variables x feasible for scenario τ is also feasible for t. Hence,
only those extreme points that are not dominated need to be considered. In particular, there
exists an easy sufficiency condition to check whether t is dominated by τ .

Proposition 2. Let t, τ be two vectors in ext(T). If τkij ≥ tkij for each k ∈ K and (i, j) ∈ A,
then t is dominated by τ .

Proof. The result follows directly by considering the rewriting of the time windows performed
in (17).

In what follows we make an abuse of language and say that a vector t is dominated by
τ when they satisfy the conditions of Proposition 2. The concept of dominance has already
been used with success in the context of robust network design [19, 20].

9

i′
(j′, i′)

(j′′, i′)

(j′, i′)

(j′′, i′)

T
t

t̂

t̃

(a) node i′ (b) projection of T in the space corresponding to
arcs (j′, i′) and (j′′, i′)

Figure 1: The set of scenarios {t, t̂} dominates t̃.

In what follows, we refine the concept of dominance by using the special structure of
the T -V RPTW , and more specifically the fact that a route can follow at most one arc that
enters any node of the graph. Example 1 gives an intuitive description of our idea on a
simple instance of the problem.

Example 1. Consider an instance of the problem with |K| = 1 and let i′ be a node with
two incoming arcs, see Figure 1(a). We assume that T is a polytope whose projection in
the space corresponding to arcs (j′, i′) and (j′′, i′) is the triangle depicted in Figure 1(b).
Hence, none of the scenarios in {t, t̂, t̃} is dominated by another scenario in {t, t̂, t̃}. Also,
we suppose that tij > t̃ij and t̂ij > t̃ij for all (i, j) ∈ A\{(j′, i′), (j′′, i′)}.

We are going to show that a path p feasible for both t and t̂ is always feasible for t̃. The
result follows easily from the next observation: p must contain at most one of the arcs (j′, i′)
and (j′′, i′), see Figure 1(a). Then, recall that p = i0, . . . , in is feasible for the time windows
if and only if constraints (17) are satisfied. If (j′, i′) ∈ p (resp. (j′′, i′) ∈ p), then constraint
(17) written for t (resp. t̂) implies constraint (17) written for t̃. If i′ /∈ p, constraint (17)
written for t̃ is implied by either of the two other constraints.

Let us extend Example 1 to the general case. Consider a node i ∈ N∗. Let δ+(i) (resp.
δ−(i)) be the set of arcs leaving (resp. entering) node i. We say that an extreme point
t ∈ ext(T) is dominated by a subset S ⊆ ext(T)\{t} if there exists an arc set

A′ = δ+(i) or A′ = δ−(i) (20)

and a vehicle k′ ∈ K such that the following is satisfied:

tkij ≤ τkij (i, j) ∈ A\A′, k ∈ K, τ ∈ S, (21)

tkij ≤ τkij (i, j) ∈ A′, k ∈ K\{k′}, τ ∈ S, (22)

tk
′

ij ≤ max
τ∈S

τk
′

ij (i, j) ∈ A′. (23)

Proposition 3. Let t be a scenario in ext(T) dominated by S ⊆ ext(T)\{t}. Any solution
for first stage variables x feasible for each scenario τ ∈ S is also feasible for t.

Proof. Let x be any first stage solution feasible for each scenario τ ∈ S and A′ be an arc
set that satisfies (20)–(23). The result follows directly by noticing that x is equal to one on
at most one arc from A′ and considering the rewriting of the time windows performed in
(17).

Any scenario that is dominated either by one scenario or by a group of scenarios may
be withdrawn from the set of scenarios that must be considered, which will be used in our
numerical experiments.

In what follows, we present a different approach for reducing the scenario set that com-
bines the components of t for different vehicles. Let T k ⊂ R|A| be the projection of T into
the components corresponding to vehicle k, see Figure 2. For any finite set S ⊂ R|A||K|, let
Sk be the projection of S into the components corresponding to vehicle k. We are going to
prove that we may replace ext(T) by any finite set S ⊂ R|A||K| such that ext(T k) = Sk for
each k ∈ K.

10

Proposition 4. Consider x ∈ {0, 1}|A||K| and a finite set S ⊂ R|A||K| such that ext(T k) =
Sk for each k ∈ K. There exists y ∈ R|N || ext(T)| such that (x, y) is feasible for (ext(T)-RI)
if and only if there exists y ∈ R|N ||S| such that (x, y) is feasible for (S-RI).

Proof. Consider first the following simple property whose proof is straightforward.

Lemma 2. Let T be a polytope in R|A||K|. The following holds:

1. ext(T k) ⊆ ext(T)k,

2. ext(T)k ⊆ conv(ext(T k)).

Sufficiency: Let (x, y) ∈ {0, 1}|A||K| × R|A|| ext(T)| be feasible for (ext(T)-RI). We con-
struct next y ∈ R|A||S| such that (x, y) is feasible for (S-RI). First, we introduce the
following notation. Given τ ∈ S and k ∈ K, we define

t(τ, k) = {t ∈ ext(T) s.t. tk = τk}. (24)

Lemma 2.1 implies that t(τ, k) is non-empty for all τ ∈ S and k ∈ K. Then, notice that
constraints (2) and (3) force x to describe a set of |K| routes that partition the nodes of
the graph, N = N1 ∪ . . . ∪N |K|. This enables us to define y ∈ R|A||S| as follows. For each
k ∈ K and τ ∈ S, we choose arbitrarily t ∈ t(τ, k) and set yi(τ) = yi(t) for each i ∈ N . One
can easily verify that (x, y) is feasible for (S-RI), that is, (x, y) satisfies (18) and (19) where
ext(T) is replaced by S.
Necessity: We cannot extend directly (24) to this situation because ext(T)k\Sk can be non-
empty. For each t ∈ ext(T), we define K(t) = {k ∈ K s.t. tk ∈ Sk}. The pendant of (24)
is defined as τ(t, k) = {τ ∈ S s.t. τk = tk}, for each t ∈ ext(T) and k ∈ K(t). Then, we
extend τ(t, k) to the other couples (t, k) by using Lemma 2.2. Namely, we define

λ(t, k) = {λ ∈ [0, 1]|S
k| s.t.

|Sk|∑
j=1

λj = 1 and

|Sk|∑
j=1

λjτ
k
j = tk},

for each t ∈ ext(T) and k ∈ K\K(t).
We can now set up y ∈ R|A|| ext(T)| as follows. For each t ∈ ext(T) and k ∈ K(t),

we choose arbitrarily τ ∈ τ(t, k) and set yi(t) = yi(τ) for each i ∈ Nk. Then, for each

t ∈ ext(T) and k /∈ K(t), we choose arbitrarily λ ∈ λ(t, k) and set yi(t) =
∑|Sk|
j=1 λjyi(τj) for

each i ∈ Nk. One can easily check that (x, y) satisfies (18) and (19).

Proposition 4 is illustrated in the next example.

Example 2. Consider the graph G = (N,A) where N = {o, 1, 2, d}, A = {(o, 1), (1, 2), (2, d)},
K = {1, 2} and t

1
ij = t

2
ij = t̂1ij = t̂2ij = 1 for each arc (i, j) ∈ A. Taking Γ = 2 the ex-

treme points of T 1
Γ and T 1

Γ are ext(T 1
Γ) = {t11, t12, t13, t14} and ext(T 2

Γ) = {t21, t22, t23, t24}, where
t11 = t21 = (1, 2, 2), t12 = t22 = (2, 1, 2), t13 = t23 = (2, 2, 1), and t14 = t24 = (1, 1, 1). Applying
Proposition 4, it suffices to consider S = {(t11, t21), (t12, t

2
2), (t13, t

2
3), (t14, t

2
4)} instead of ext(T),

which reduces the number of scenarios in the model from 16 to 4.

The interest of Proposition 4 lies in the fact that S can be chosen in such a way that |S|
is much smaller than | ext(T)|. In particular, we will construct S that does not depend on
cardinality of K. It is easy to see that any S that satisfies the assumption of Proposition 4
must have at least maxk∈K | ext(T k)| elements, and we show below how to construct such a
set that contains exactly maxk∈K | ext(T k)| elements.

Consider the collection of discrete sets {ext(T 1), . . . , ext(T |K|)}. We examine first the
case where | ext(T 1)| = . . . = | ext(T |K|)| and let m be the cardinality of each of these
sets. Hence, ext(T k) = {tk1 , . . . , tkm} for each k ∈ K. We construct the diagonal subset of
×k∈K ext(T k):

diag(T) = {(t1i , . . . , t
|K|
i), i = 1, . . . ,m}.

It is easy to see that diag(T)k = ext(T k) for each k ∈ K. This construction is illustrated in
Example 3.

11

k2

k1

T k2

T k1

t1

t2

T

tk1
1 tk1

2

tk2
1

tk2
2

Figure 2: Polytope T and its projections T k1 and T k2 .

Example 3. Consider the polytope from Figure 2. Ordering the elements in ext(T k1) =
{tk1

1 , t
k1
2 } and ext(T k2) = {tk2

1 , t
k2
2 }, we obtain that diag(T) = {t1, t2} = {(tk1

1 , t
k2
1), (tk1

2 , t
k2
2)}.

In particular, the elements of diag(T) are not extreme points of T , that is, diag(T) * ext(T).
Then, applying the dominance from Proposition 2 to diag(T), we obtain an even smaller
uncertainty set that contains only {t2}.

Consider now that the cardinalities of {ext(T 1), . . . , ext(T |K|)} are different, and suppose
without loss of generality that | ext(T 1)| ≤ . . . ≤ | ext(T |K|)|. Then, we extend these sets
by adding copies of their last elements so that each of the extended sets has a cardinality
equal to | ext(T |K|)|, and we define the diagonal for the extended sets.

In the next subsection, we characterize explicitly ext(T) and diag(T) for the budget
uncertainty set used in our computational experiments.

4.1.2 Extreme points of the budget uncertainty polytope

Recall that TΓ = ×k∈KT kΓ where each T kΓ is such that each tkij lies in [t
k
ij , t

k
ij+δkij t̂

k
ij] with

0 ≤ δkij ≤ 1,
∑
ij δ

k
ij ≤ Γ for some Γ ∈ Z with Γ < |A|. Below we characterize the extreme

points of TΓ by providing the following two results. Their proofs are straightforward.

Proposition 5. t is an extreme point of TΓ if and only if t = ×k∈Ktk and tk is an extreme
point of T kΓ .
Proposition 6. Let t = ×k∈Ktk. For each k ∈ K, tk is an extreme point of T kΓ if and only

if tkij = t
k
ij + δkij t̂

k
ij and δkij ∈ {0, 1},

∑
ij δ

k
ij ≤ Γ, ∀(i, j) ∈ A.

Proposition 6 provides a characterization of the extreme points of T kΓ from the values of
δkij . Restricting ourselves to scenarios in ext(TΓ), the parameters δkij can be assumed to be

binary. In that case, δkij indicates whether there is a delay of vehicle k in arc (i, j) ∈ A or

not. Thus, parameters δkij permit to define the combination of the extreme points as the set
of arcs where the delays occurs for each vehicle.

In the following, we apply the methods described in Section 4.1.1 to reduce the number
of scenarios to consider. First, recall that we must only consider non-dominated scenarios.
Applying Proposition 2 to TΓ, we obtain immediately the next result.

Proposition 7. Let t ∈ ext(TΓ). If t = ×k∈Ktk and tk
′

ij = t
k′

ij + δk
′

ij t̂
k′

ij with
∑

(i,j)∈A δ
k′

ij < Γ

for some k′ ∈ K, then t is dominated by τ ∈ TΓ\{t}.
Proposition 7 establishes that only scenarios where

∑
(i,j)∈A δ

k
ij = Γ need to be considered

in (18) and (19). Those scenarios correspond to the most adverse situations in our appli-

cation. In view of Proposition 7, we shall define a smaller uncertainty set T Γ = ×k∈KT
k

Γ

12

where each T kΓ is such that each tkij lies in [t
k
ij , t

k
ij + δkij t̂

k
ij] with 0 ≤ δkij ≤ 1,

∑
ij δ

k
ij = Γ for

some Γ ∈ Z. In doing so, we reduce the number of extreme points from

| ext(TΓ)| = | ext(T 1
Γ)||K| =

[
Γ∑
i=0

(
|A|
i

)]|K|
to

| ext(T Γ)| = | ext(T 1

Γ)|
|K|

=

(
|A|
Γ

)|K|
. (25)

Then, it is easy to apply Proposition 4 to T Γ = ×k∈KT
k

Γ because all sets ext(T kΓ) contain
the same number of elements, so that the construction of diag(T Γ) does not require to use
extended sets. Namely, each element of diag(T Γ) can be related to a set of exactly Γ arcs
that take their maximum travel time:

diag(T Γ) = {(t1ij + δij t̂
1
ij , . . . , t

|K|
ij + δij t̂

|K|
ij), (i, j) ∈ A, s.t. δij ∈ {0, 1} and

∑
(i,j)∈A

δij = Γ}.

Applying Proposition 4 reduces the number of extreme points from (25) to

|diag(T Γ)| = | ext(T 1

Γ)| =
(
|A|
Γ

)
.

Finally, using the more general dominance concept from Proposition 3, we can reduce

the number of elements of each ext(T kΓ) that must be considered to construct diag(T Γ).

Namely, we can withdraw from ext(T kΓ), and therefore from diag(T Γ), all vectors where the
delay occurs on two arcs that enter or leave the same node. Hence the number of scenarios
that we must consider is a number comprised between

(|V |
Γ

)
and

(|A|
Γ

)
that depends on the

topology of G.
The construction described above can easily be extended to the uncertainty polytope

where different values of Γ are associated with different vehicles, denoted by T Γ∗ . Repeating
the construction above and using the extended sets mentioned after Example 3, we obtain

a diagonal diag(T Γ∗) with cardinality equal to |maxk∈K ext(T kΓ)|.
In the rest of this paper, we use the following abuse of language. We denote by (T -RI)

the formulation (diag(T Γ)-RI) from which dominated scenarios have been withdrawn by
using Proposition 3.

4.1.3 Column-and-row generation

As it happens with many MIP models that are defined through a possibly exponential
number of constraints but where only a few of them need to be included in the model, here
we do not consider all scenarios. Instead we describe below the column-and-row generation
algorithm we have implemented to solve (T -RI) by generating the required scenarios on
the flow. As we will see in the numerical results section, only few scenarios need to be
considered. This is expected since most of these “extreme” scenarios account for delays in
links that are not considered in a given feasible solution. Such scenarios are not relevant to
the optimal solution of the problem.

First, we choose arbitrarily a non-dominated scenario t0 from diag(T Γ) and solve the
resulting problem (T 0-RI) where T 0 := {t0}. Then, we check whether the optimal solution
to (T 0-RI) satisfies the time windows for each non-dominated t ∈ diag(T Γ), which can be
performed in polynomial time (see Section 4.2.2). If the solution violates the time windows
for some t1 ∈ diag(T Γ), we define T 1 := {t0, t1} and repeat the procedure with (T 1-RI).
This approach ends whenever the solution satisfies the time windows for each t ∈ diag(T Γ).

13

4.2 Path inequalities

In this section, we first explain how to modify (PI) to handle uncertain travel times in
a general uncertainty polytope T . Then, we show that the efficiency of the separation pro-
cedure can be improved significantly whenever we consider the budget uncertainty polytope
T Γ.

4.2.1 General uncertainty polytope

Let PkT be the set of non-feasible paths in G from o to d for the uncertainty polytope
T , that is, the set of paths in G for which it is not possible to define arrival times yi that
satisfy (18) and (19). The robust version of (PI) is as follows:

min
∑
k∈K

∑
(i,j)∈Ak

ckijx
k
ij

(T -PI) s.t. (2), (3), (8)∑
(i,j)∈p

xkij ≤ |p| − 1, p ∈ PkT , k ∈ K, (26)

xkij ∈ {0, 1}, (i, j) ∈ Ak, k ∈ K,

where the uncertainty polytope appears implicitly in the description of PkT .
In what follows, we study a cutting plane algorithm where constraints (26) are generated

iteratively by solving an associated separation problem. Of course, an efficient separation
method is essential to the success of the cutting plane algorithm. Hence, we address below
how to separate constraints (26). Consider a path p = (o = i0, . . . , in+1 = d) described by
a binary vector xk for vehicle k ∈ K. We show below that we can find whether p ∈ PkT in
pseudo-polynomial time. Recall that the time windows along p are satisfied if and only if
constraints (17) are satisfied. Therefore, p ∈ PkT if there exist 0 ≤ l1 < l2 ≤ n such that

ail1 + max
t∈T k

∑
l=l1,...,l2−1

tilil+1
> bil2 ,

that is, one of the inequalities in (17) is violated for some t ∈ T k. Hence, the question
whether p ∈ PkT amounts to solve at most n(n− 1)/2 linear programs.

Proposition 8. Let p be a path in G from o to d for vehicle k. The question whether p ∈ PkT
can be answered in pseudo-polynomial time.

4.2.2 Budget uncertainty polytope

Whenever each T k has a particular structure, it may be used to devise more efficient
algorithms than solving O(n2) linear programs. Consider again the non-dominated budget

uncertainty set T Γ = ×k∈KT
k

Γ defined in the first paragraph of Section 4 and consider the
general robust constraints

T kx ≤ dk, k ∈ K,T k ∈ T kΓ (27)

where Γ is integer.

Proposition 9. Consider a robust program under the uncertainty set T Γ and a vector
x ∈ Rn. Then, checking whether x satisfies the robust inequalities (27) can be done in
polynomial time, more specifically, by applying a sorting algorithm |K| times.

Proof. The left-hand side of each equation k in (27) can be rewritten for T kΓ as

max
δk∈{0,1}n,

∑
δk=Γ

n∑
i=1

(T
k

i + δki T̂
k
i)xi =

n∑
i=1

T
k

i xi + max
δk∈{0,1}n,

∑
δk=Γ

n∑
i=1

δki T̂
k
i xi. (28)

14

The maximum in the right-hand side of (28) can be obtained by using a sorting algorithm
that returns the Γ highest values among the elements T̂ ki xi, i = 1, . . . , n.

In the proposition below, we refine Proposition 9 for the T -V RPTW by using the fact
that we separate path inequalities, whose structure is defined on paths from o to d.

Proposition 10. Let p = (o = i0, . . . , in+1 = d) be a path in G from o to d for vehicle
k ∈ K. The question whether p ∈ Pk

T k
Γ

can be answered in (n − Γ′ + 1)Γ′ steps where

Γ′ = min{Γ, n}.

Proof. Let α(ij) be the earliest arrival time at node ij ∈ p when the travel times are
deterministic, which is formally defined by

α(ij) = max{aij , α(ij−1) + tij−1ij}.

In that case, the question whether p ∈ Pk would be answered by checking that

α(ij) ≤ bij 1 ≤ j ≤ n,

which can be done in O(n).
Let α(ij , γ) be the earliest arrival time at ij when at most γ arcs are using their maximum

time in subpath i0, . . . , ij . The robust version of the earliest arrival at ij becomes the
following recursive function

α(ij , γ) =

α(i0, γ) = ai0 0 ≤ γ ≤ Γ′

α(ij , 0) = max{aij , α(ij−1, 0) + tij−1ij} 1 ≤ j ≤ n
α(ij , γ) = max{aij , α(ij−1, γ − 1) + tij−1ij + t̂ij−1ij , α(ij−1, γ) + tij−1ij} 1 ≤ γ ≤ j
α(ij , γ) = −∞ j < γ

.

The question whether p ∈ Pk
T k

Γ

is answered by checking if

α(in+1,Γ
′) ≤ bin+1

,

which can be done in (n− Γ′ + 1)Γ′ steps.

One observes that if Γ′ = Γ, the separation problem for constraints (26) is solved in
O(nΓ). On the other hand, if Γ′ = n, the problem is solved in O(n). Notice that since each
vehicle is considered independently from the others, the dynamic programming approach
proposed in Proposition 10 can also be applied to the uncertainty polytope where different
value of Γ are associated with different vehicles.

Separating path inequalities (26) when x is fractional is more complicated because the
arcs on which xk takes positive values do not define a single path from o to d. However,
as explained by Kallehauge et al. [15], we can use the fact that there is only a polynomial
number of paths for which the associated path inequality (26) is violated. Moreover, since
paths inequalities are weak, works addressing V RPTW or the asymmetric traveling sales-
man problem with time windows rather use a lifted version of the path inequalities called
tournament inequalities [2].

In this paper, we also separate tournament inequalities rather than paths inequalities
whether x is fractional or not. The only difference between our separation heuristic and the
one from [15] is that we need to apply the dynamic programming procedure from Proposi-
tion 10 to check whether the time windows are satisfied along a candidate path. Also, in
the case where xk is binary, that is, xk defines a unique path p from o to d, the tournament
inequality defined for p is generated as soon as xk violates the path inequality (26) for p.

15

5 Computational experiments

In this section, we present a numerical assessment of the two formulations introduced in
this paper as well as the extended formulation from [1] on a maritime transportation problem.
Section 5.1 motivates and explain the real-world application. The instances composing our
test bed are then presented in Section 5.2 while the numerical results are discussed in
Section 5.3.

5.1 Application to the ship routing and scheduling problem

Maritime transportation is an area that gives rise to a wide variety of routing problems,
and Christiansen et al. [11] give a thorough introduction to many of the important issues.
In the following we will consider industrial shipping, where a company is using its own
fleet to transport its own cargoes. In this setting the goal will be to minimize the total
transportation cost, while making sure that all cargoes are transported.

For some shipping segments, it is a natural restriction that a ship can only carry at most
one cargo at any time. This is the case for some type of bulk transportation where the ship
is always loaded to its capacity or where different cargoes cannot be mixed. Then, one does
not need to explicitly model both the pickup and the delivery. Instead, one can use each
node to represent both the pickup and the subsequent delivery. Such a problem is already
expressed through the models presented in this paper: an arc (i, j) ∈ Ak represents that a
ship k starts in the pickup port of cargo i, moves to the delivery port of cargo i and then
sails to the pickup port of cargo j. The cost and time to perform these two legs can vary
by ship, and are denoted ckij and tkij respectively. Since a ship always sails directly from a
pickup port to the corresponding delivery port, it makes sense to include time windows for
the pickup port only, and yi will correspond to the time when a ship starts service of cargo
i at the pickup port of that cargo. In maritime transportation there is no central depot
and ships operate continuously. Hence, the ships may start at different positions (usually in
the port where their previous delivery was made), and they may end at any position when
completing their route. Thus, o represents the actual origin of a ship, and d is an artificial
node representing that a ship has completed its schedule.

Travel times are highly stochastic in maritime transportation. A study by Kauczyn-
ski [16] reported on probability distributions for sailing times between selected ports in
Europe, and showed that sailing times may vary significantly. Since the satisfaction of
the end consumer usually requires on time deliveries throughout the supply chain, avoid-
ing unnecessary delays in transportation has an economic consequence. In the case of port
congestion, shipping companies will usually receive demurrages from the ports, but if the
congestion leads to delays that propagate through the route of the ship, the shipping com-
pany may in turn end up paying penalties to many customers due to late deliveries. It is
therefore essential to make robust schedules that are able to absorb some delays, which is
exactly the purpose of the models presented in this paper.

5.2 Details of the instances

This section describes how the instances have been created for the maritime ship routing
and scheduling problem described above. A random instance generator is used, but where
the instances are made as realistic as possible. The instance generator takes as input the
number of ships, the number of cargoes to generate and a distance matrix. The distance
matrix used here contains 56 ports from around the world, with actual sailing distances
between each pair of ports.

Two non-overlapping subsets of ports are selected as pickup ports and delivery ports
respectively, to represent the structure of a company operating within deep sea industrial
shipping. Cargo requests are generated between two ports based on a simple inventory
model for the delivery port. Time windows are associated with each cargo based on when
the request would be generated and an acceptable time before the delivery should be made.

16

Vessel attributes are generated so that the fleet is typically heterogeneous. That is,
ships have different capacities, speeds and cost structures. The capacity is relevant in that
some cargoes may be too big to be handled by smaller ships (if so, the smaller ship cannot
service the cargo). In addition, some ports may be inaccessible by larger ships due to draft
limits and port capacity (if so, the larger ship cannot service the cargo). In the instances
generated, ship speeds vary between 13 and 20 knots, giving sailing times of more than one
month between distant ports when using the slowest ships.

The instance generator also specifies the possible delay in sailing time for each arc in
the network. This delay is calculated based on the time normally required to perform the
transportation represented by the arc. The delay also depends on the specific pickup port
and delivery port involved, where some ports are associated with more delay than others.
Such a structure is reasonable since bad weather affects the schedule more severely in some
areas. Since the planning horizon is long, there is a significant risk of a ship being delayed
at some point during its route, but the probability of experiencing longer travel times for
all legs would be small. Hence it makes sense to make routes that can handle some delays,
with Γ equal to some small number.

The computational testing contains instances with 20, 30, 40, and 50 different cargoes.
For each number of cargoes, we consider four values of Γ: 0 (deterministic case), 1 (low
uncertainty), 3+(|N |−20)/10 (middle uncertainty), and 5+(|N |−20)/5 (high uncertainty).
For each number of cargoes, we also consider three number of ships: 1, 3 + (|N | − 20)/10,
and 5 + (|N | − 20)/5. Finally, we generate five instances for each combination of values for
the number of cargoes and number of ships.

5.3 Numerical results

All models and algorithms have been coded using the modeling language Xpress Mosel
3.2.3 and solved by Xpress Optimizer 22.01.09 [24]. A time limit of 1800 seconds has been
set for each instance. They were run on a computer equipped with a processor Intel Core
i5 at 2.53 GHz and 4 GB of RAM memory. The objectives of this section are (i) assessing
the computational cost of solving the robust models as compared to their deterministic
counterparts, and (ii) comparing formulations (T -RI) and (T -PI) as well as the layered
formulation (T -LF) described in [1].

Next we illustrate the reduction techniques described in Section 4.2 on an instance with
20 nodes and 3 ships. With no reduction at all, the numbers of extreme points of TΓ for
this instance are equal to 1.70 107 and 2.85 1014 for Γ equal to 1 and 2, respectively. Using
the diagonal space from Proposition 4, these numbers are reduced to 2.57 102 and 6.62 104,
respectively. Then, using the dominance rules from Proposition 2 and Proposition 3, the
number of scenarios for Γ = 2 is further reduced to 2.96 104.

In view of these very large numbers of scenarios, we solve (T -RI) by the column-and-row
generation algorithm presented in Section 4.1.3 and report the results of that algorithm in
the following. In Table 1, we present the average number of extreme points generated to
solve (T -RI) for each number of cargoes and uncertainty level. We see that these numbers
are very small compared to the total number of reduced extreme points.

Table 2 reports the average numbers of cuts generated by (T -PI) for each number of
cargoes and uncertainty level. We see that (T -PI) generates significantly more cuts than
(T -RI) generates extreme points. This can be explained by the fact that the cuts generated
by (T -PI) are tournament inequalities, which, as well as ensure that the time windows
are respected, also increases the linear programming relaxation. Hence, their violation is
checked in every node in the branch-and-cut tree solving (T -PI). In opposition to this, the
extreme points generated by (T -RI) only enforce the satisfaction of the time windows. In
addition, their necessity is checked only after an optimal integer solution has been found for
the previous set of extreme points.

Average solution times are presented in Tables 3 and 4 for each group of 5 instances. Rows
entitled “av” compute the average of the three rows above them. Table 3 provides average

17

Uncertainty level (Γ)
|N | low mid high
20 2.93 7.2 7.67
30 3.1 9.33 9.13
40 6.67 20.7 21.7
50 7.93 22.8 23.2

Table 1: Average numbers of extreme points
generated by (T -RI).

Uncertainty level (Γ)
|N | det low mid high
20 120 251 346 762
30 1210 313 867 795
40 25097 9501 17997 17870
50 17919 10364 24547 25072

Table 2: Average numbers of cuts generated
by (T -PI).

solution times for instances with 20 nodes for the three formulations. Notice that solutions
times for (T -LF) assume that the instances have already been pre-processed by computing
longest paths [1]. We see that (T -RI) and (T -PI) are about two orders of magnitude faster
than (T -LF). Then, while (T -RI) is faster than (T -PI) for the deterministic instances (Γ =
0), it is slower than (T -PI) for the instances where Γ > 0. Table 4 presents average solution
times for the larger instances for formulations (T -RI) and (T -PI). The numbers of unsolved
instances within the 1800 seconds are given in parentheses and their values have been set
to 1800 seconds when computing the averages. We see from Table 4 that the performance
of (T -RI) and (T -PI) are comparable, although (T -RI) seems to be more efficient for the
larger instances. The results for both approaches present, however, important differences.
The solution times for (T -RI) are highly impacted by the value of Γ. Deterministic instances
are always solved faster than robust instances. Moreover, the number of extreme points of
the uncertainty sets also influences the solution times since instances with uncertainty sets
defined by few extreme points (low) are solved faster than instances with uncertainty sets
defined by larger number of extreme points (mid and high). In opposition to this, the
presence of uncertainty does not seem to influence the solution times of (T -PI).

(T -LF) (T -RI) (T -PI)
Γ det low mid high det low mid high det low mid high
|K|
1 21 244 255 162 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
3 39.9 289 330 242 0.1 2.5 15.2 15.5 1.2 1.7 2.2 3.8
5 13.6 53 406 177 0.1 0.2 1.6 1.3 0.8 0.4 0.5 0.6
av 24.8 195 330 194 0.1 0.9 5.6 5.6 0.7 0.7 0.9 1.4

Table 3: Average solution times in seconds for the three formulations for instances with 20
nodes.

Finally, Table 5 assesses the cost of protecting a solution against delays and compare
these costs to the cost of protecting the solution in the model where all travel times can
take simultaneously their maximal values. The later model can be represented by the box

uncertainty set Tbox := ×k∈K,(i,j)∈Ak [t
k
ij , t

k
ij + t̂kij]. Let optmodel be the optimal solution cost

for model ∈ {low,mid, high, box}. For each group of 5 instances, we present the geometric
mean increase of solution cost for model, computed as optmodel− optdet

optdet
. We only consider the

instances for which we know the optimal solution cost for all models.
Notice that by using the dominance from Proposition 2, the box uncertainty set can be

replaced by the singleton {t+ t̂}, yielding a model that can be solved by (T -RI) essentially
as fast as the deterministic model. We can see in Table 5 that the protection costs related
to high and box are almost the same, so that it seems more interesting to solve the model
with a box uncertainty set when a high protection is required.

18

(T -RI) (T -PI)
Γ det low mid high det low mid high

|N | |K|

30
1 0.1 0.1 0.1 0.1 1 1.2 4.8 2.9
4 0.6 1.1 5.3 4.1 2.9 1.6 1.7 2.1
7 3.3 8.2 58.1 66.1 27.3 7.6 16.6 17
av 1.6 3.3 21.2 23.4 10.4 3.5 7.7 7.3

40
1 0.1 0.1 0.3 1.4 1.5 2.2 5.1 24
5 11.3 160 640 (2) 617 (2) 391 (1) 30 249 227
9 364 (1) 368 (1) 477 (1) 444 (1) 452 (1) 391 (1) 429 (1) 427 (1)
av 125 176 372 354 281 141 228 226

50
1 0.1 0.3 1.2 2.8 6.7 7.3 28.2 55.3
6 13.8 31.1 537 (1) 485 (1) 534 (1) 216 805 (2) 779 (2)
11 109 748 (2) 1070 (3) 962 (3) 1020 (3) 773 (2) 1160 (3) 1150 (3)
av 41 260 536 483 520 332 664 661

Table 4: Average solution times in seconds for (T -RI) and (T -PI) for larger instances.

Γ low mid high box
|N | |K|

1 0.11 1.65 1.65 1.65
30 4 2.77 3.33 3.33 3.33

7 1.71 2.38 2.41 2.41
av 0.80 2.36 2.37 2.37

1 0.17 2.07 3.27 3.27
40 5 3.15 3.87 3.87 3.87

9 1.62 2.11 2.11 2.11
av 0.94 2.57 2.99 2.99

1 0.09 1.83 2.55 2.77
50 6 2.04 2.44 2.44 2.44

11 1.64 2.28 2.28 2.28
av 0.68 2.17 2.42 2.49

Table 5: Cost of protecting the solution expressed as a percentage of the deterministic
solution cost.

6 Conclusion

This research addressed the vehicle routing problem with time windows and travel times
that belong to an uncertainty polytope T . We presented two new formulations for the prob-
lem that are based on resource inequalities (T -RI) and path inequalities (T -PI), respec-
tively, and extended well-known formulations for the deterministic version of the problem.

Each formulation used different robust optimization tools to handle the uncertainty. We
proposed for (T -PI) a new method to handle the uncertainty implicitly with the help of
canonical cuts, which did not increase the complexity of the formulation itself. Instead,
this approach sent the additional complexity to the separation routine. Then, formulation
(T -RI) relied on adjustable robust optimization and we presented dominance rules that
significantly reduced the number of extreme points needed to define the uncertainty poly-
tope. We proposed efficient solution algorithms for both formulations: (T -PI) was solved
by a branch-and-cut algorithm while (T -RI) was solved by a column-and-row generation
algorithm.

We presented computational results performed on a set of instances that model a mar-
itime transportation problem using the budget uncertainty polytope studied in [7]. The

19

performances of (T -PI) and (T -RI) were comparable for our instances and both formu-
lations could handle problems with the dimensions that arise in maritime transportation.
In addition, the results showed that (T -PI) is almost as easy to solve as its deterministic
counterpart. This is a very interesting result since it can be generalized to other robust
combinatorial optimization problems. Hence, a side contribution of this work was the in-
troduction of an alternative approach to the dualization technique habitually used for static
robust programming.

Ben-Tal et al. [4] proved that adjustable robust optimization is computationally in-
tractable so that they introduced an approximation scheme that relied on affine decision
rules. Despite its computational intractability, we have seen in this paper how we could
solve (T -RI) efficiently by generating dynamically the extreme points of the polytope (or
an equivalent set of scenarios). In view of the little number of scenarios generated by our
algorithm, it is not necessary to approximate (T -RI) with affine decision rules. In fact,
restricting y : T ⊂ R|A||K| → R|N | to an affine function and dualizing the resulting models
would yield mixed-integer programs much larger than the restricted versions of (T -RI) we
solved in this paper.

References

[1] A. Agra, M. Christiansen, R. Figueiredo, L. Magnus Hvattum, M. Poss, and C. Requejo,
Layered formulation for the robust vehicle routing problem with time windows, Lecture
Notes in Computer Science, Volume 7422/2012, 249–260, 2012.

[2] N. Ascheuer, M. Fischetti, and M. Grötschel, A polyhedral study of the asymmetric
traveling salesman problem with time windows, Networks 36 (2000),69–79.

[3] E. Balas and R Jeroslow, Canonical cuts on the unit hypercube, SIAM Journal on
Applied Mathematics 23 (1972), 61–79.

[4] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski, Adjustable robust solutions
of uncertain linear programs, Mathematical Programming 99 (2004), 351–376.

[5] A. Ben-Tal and A Nemirovski, Robust solutions of uncertain linear programs, Opera-
tions Research Letters 25 (1999), 1–13.

[6] D. Bertsimas, D.B. Brown, and C. Caramanis, Theory and applications of robust opti-
mization, SIAM Review 53 (2011), 464–501.

[7] D. Bertsimas and M. Sim, The price of robustness, Operations Research 52 (2004),
35–53.

[8] D. Bienstock and N. Özbay, Computing robust basestock levels, Discrete Optimization
5 (2008), 389–414.

[9] M. Chardy and O. Klopfenstein, Handling uncertainties in vehicle routing problems
through data preprocessing, Transportation Research Part E: Logistics and Transporta-
tion Review 48 (2012), 667 – 683.

[10] C. H. Christiansen and J. Lysgaard, A branch-and-price algorithm for the capacitated ve-
hicle routing problem with stochastic demands, Operations Research Letters 35 (2007),
773 – 781.

[11] M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen, Handbooks in operations
research and management science, vol. 14, ch. Maritime Transportation, pp. 189–284,
2007.

[12] G. Codato and M. Fischetti, Combinatorial Benders’ cuts for mixed-integer linear pro-
gramming, Operations Ressearch 54 (2006), 756–766.

20

[13] G. Desaulniers and D. Villeneuve, The shortest path problem with time windows and
linear waiting costs, Transportation Science 34 (2000), 312–319.

[14] B. Golden, S. Raghavan, and E. A. Wasil, The Vehicle Routing Problem : Latest Ad-
vances and New Challenges, Operations research/Computer science interfaces series,
43, Springer: Boston, 2008.

[15] B. Kallehauge, N. Boland, and O. B. G. Madsen, Path inequalities for the vehicle routing
problem with time windows, Networks 49 (2007), 273–293.

[16] W. Kauczynski, Study of the reliability of the ship transportation, In Proceeding of the
International Conference on Ship and Marine Research, 1994.

[17] C. E. Miller, A. W. Tucker, and R. A. Zemlin, Integer programming formulation of
traveling salesman problems, Journal of the ACM 7 (1960), 326–329.

[18] F. Ordónez, Robust vehicle routing, TutORials in Operations Research (2010), 153–178.

[19] G. Oriolo, Domination Between Traffic Matrices, Mathematics of Operations Research
33 (2008), 91–96.

[20] M. Poss and C. Raack, Affine recourse for the robust network design problem: between
static and dynamic routing, Networks, In press.

[21] G. Righini and M. Salani, New dynamic programming algorithms for the resource con-
strained elementary shortest path problem, Networks 51 (2008), 155 – 170.

[22] A. L. Soyster, Convex programming with set-inclusive constraints and applications to
inexact linear programming, Operations Research 21 (1973), 1154–1157.

[23] A. Subramanian, E. Uchoa, A. A. Pessoa, and L. Satoru Ochi, Branch-and-cut with
lazy separation for the vehicle routing problem with simultaneous pickup and delivery,
Operations Research Letters 39 (2011), 338 – 341.

[24] FICO Xpress Optimization Suite, Xpress-Optimizer reference manual, Tech. Report
Release 22.01, 2011.

[25] I. Sungur, F. Ordónez, and M. Dessouky, A robust optimization approach for the ca-
pacitated vehicle routing, IIE Transactions 40 (2008), 509–523.

21

