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Abstract

In this paper we study implied and realized volatility for the Nordic
power forward market. We create an implied volatility index with a fixed
time to maturity. This index is compared to a realized volatility time
series calculated from high-frequency data. The results show that the
implied volatility has a positive bias against the realized volatility measure
indicating that there is a risk premium imposed by option traders. The
results are consistent with previous research in other markets.

1 Introduction

Understanding and managing risk is crucial for all participants involved in finan-
cial transactions. In order to price assets, hedge production, or hedge financial
positions, the risk characteristics need to be understood. Electricity is different
from other commodities in that there is yet to exist a technology that lets us
economically store electricity. Therefore, mismatches in electricity demand and
generation must be covered immediately, resulting in short spikes or troughs in
prices and transient periods of high volatility. The non-storability of electric-
ity makes understanding risks more important, but also increases complexity.
Financially settled forwards and options on these forwards help participants
manage risks. These contracts also create the opportunity of designing models
that describe and predict the market’s expectation of volatility.

Volatility, as implied from option prices, is a commonly used measure of
the market’s expectation of future risk and it has been extensively studied,
particularly for equities. Previous research shows that implied volatility (IV)-
indices provide better forecasts for volatility than traditional time series methods
such as GARCH (Martens and Zein, 2004). Christensen and Prabhala (1998)
show this for the VIX index for S&P500 volatility and Haugom et al. (2014a)
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for WTI futures1. However, Agnolucci (2009) found that a Component-GARCH
model performs slightly better than IV in forecasting the volatility of crude oil
futures.

The main contribution of this paper is to introduce an implied volatility in-
dex for the Nordic power forward market. This is, to the best of our knowledge,
the first electricity implied volatility index in the world. We also test how well it
predicts realized volatility calculated from intraday data. We use methods com-
monly used in finance. It would be possible to use more advanced approaches,
but we wanted to make the results as comparable as possible to results from
other markets.

Volatility in the Nordic power forward market has been studied extensively in
the academic literature. Haugom et al. (2011) was the first paper to utilize high-
frequency data to analyze the Nord Pool forward market and to apply known
market measures to forecast the future volatility. Haugom et al. (2010) com-
pared forecasts of day-ahead volatility obtained from GARCH models with fore-
casts obtained with various auto-regressive models of realized volatility. They
find that latter approach outperforms the GARCH framework.

However, these papers are concerned with realized volatility only, and do
not make any use of the implied volatility. Implied volatilities from options on
power forwards in the Nordic Market have not been studied yet. In this paper a
unique dataset on bid and ask prices of options from market makers allows us to
create an implied volatility index. The implied volatility index is then compared
to realized volatility calculated from intra-daily returns. We find that implied
volatility on average is greater than realized volatility, and hence that there is
evidence of a volatility risk premium in the Nordic power market.

The rest of this paper is organized as follows. Section 2 describes derivatives
trading in the Nordic power market, Section 3 the methodology, Section 4 the
data, and Section 5 the results. Finally, Section 6 concludes.

2 Nordic Power Market

Many countries have liberalized their power markets in the past 30 years and
the Nordic countries are no exception. The deregulation of the power market
resulted in competitive markets and sometimes large movements in spot prices.
With prices fluctuating, a healthy and increasingly liquid derivatives market
sprung from the need to control risk. Consequently, academic research studying
the pricing of electricity derivatives also emerged, see Vehvilainen (2002), Benth
et al. (2007), Weron (2008) and Kiesel et al. (2009).

Norway and Sweden established the Nord Pool electricity and power market
exchange in 1996, as the world’s first multinational exchange for trading and
clearing financial power contracts. Clearing of standardized financially settled
contracts was introduced in 1997, and standardized options on forward and
futures contracts were introduced in 1999. Nord Pool Clearing was in 2008
acquired by Nasdaq OMX, and the exchange changed name to Nasdaq OMX

1VIX is a trademark ticker symbol for the Chicago Board Options Exchange (CBOE)
Market Volatility Index. WTI is short for ‘West Texas Intermediate’ and is a light sweet
crude oil product that is the underlying commodity of the New York Mercantile Exchange’s
oil futures contracts.
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Commodities Europe in 2010. However, Nord Pool remains in existence today
as an independent exchange for spot electricity.

The Nasdaq OMX Commodities Europe exchange is open for trading on
power derivatives between 08:00 and 15:30 (CET) and both the underlying
forward and the option contracts are cleared within this time span. Options
on forwards are mostly traded over-the-counter (OTC) at various brokerage
firms and trades are cleared the same day as long as they are submitted before
the deadline of 15:30. Trading after the deadline is cleared the next day. Closing
prices are fixed at a random time between 15:25 and 15:30 and the contracts are
settled financially. Forwards are available for daily, weekly, monthly, quarterly
and yearly contracts.

A forward at the exchange is an obligation to buy or sell a predetermined
amount of power at a given price with delivery each hour for the time covered
by the forward. The minimum size of the contract is 1 MW and the minimum
ticker is 0.01 EUR. The contract is settled financially.

An option on a forward is the right to buy/sell a forward contract for a given
price K at time T in the future. The maturity of the option is 10 working days
before the maturity of the underlying forward and the payoff is a function of the
forward price only (Vehvilainen, 2002). Forwards and options on those forwards
are standardized agreements, making comparisons possible without introducing
unnecessary variables.

3 Methodology

3.1 Implied Volatility

Soon after the option pricing model of Black and Scholes (1973) and Merton
(1973)2 it was observed that the function could be reversed to calculate implied
volatility (Latane and Rendleman, 1976). All of the input variables in the BSM
model, except for the volatility, are observable in the market. This makes it
possible to calculate the volatility based on the current option price, current
forward price, F0, the strike price K, the time to maturity T and the risk free
interest rate, rf . Such a method was used to create several implied volatil-
ity indices, most notably the VIX from the Chicago Board Options Exchange
(CBOE) in 1993.

In 2003 the CBOE decided to change the method for calculating the VIX.
The previous model, the BSM-IV was replaced by the framework developed by
Britten-Jones and Neuberger (2000), the model-free implied volatility, for the
VIX on the S&P500 stock index (CBOE, 2003).3 This method makes the implied
volatility independent of any option price model and calculates implied volatility
from the full set of available strikes for European puts and calls (Andersen and
Bondarenko, 2007). Jiang and Tian (2005) generalized the method to include
jumps and showed that model-free implied volatility subsumes all information
contained in BSM implied volatilities and that it gives a more efficient forecast
of future realized volatilities.

2Henceforth called the BSM model
3The old BSM implied volatility index method is still in use, but with the ticker VXO for

the S&P100 index
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Our main objective is to use a measure that is readily understood by prac-
titioners which relies on standard models in the financial literature. Volatility
traders usually quote option prices not in dollars, but in implied volatilities.
These implied volatilities are calculated from the BSM. In the Nordic finan-
cial markets brokerages also report implied volatilities based on the BSM. Even
though the BSM model has its limitations, it is still the most commonly used
approach for calculating implied volatility in practice. This approach is also
frequently applied in empirical studies examining implied volatility for other
markets (see Dufour et al. (2012) for a recent example). As financial electric-
ity prices are found to exhibit similar properties as more traditional financial
assets (Haugom, 2011), we believe the BSM is an appropriate approach for the
construction of a meaningful volatility index also for the Nordic power forward
market.

3.1.1 Creating an IV-Index

IVs calculated from options with different moneyness,4 but with the same ma-
turity will give different implied volatilities. Without further discussion of the
sample period, Figure 1 shows this for different dates in our data. Two factors
should be highlighted; the concavity and the variability over time.

First, we observe that the IV is convex across moneyness. This convexity is
referred to as the smile effect (Taylor, 2005; Alexander, 2008b). The reasons for
this effect varies, but some suggest transaction costs or traders including a risk
premium for out/in-of-the-money options as possible explanations (Peña et al.,
1999; Taylor, 2005). At-the-money options are most suitable for creation of a
volatility index, particularly in illiquid markets.

Many methods exist to find or use ATM option prices when an exact ATM
option is not available and Taylor (2005) suggests that the most liquid option
nearest ATM is a natural choice. An alternative is to use weighting as suggested
by Siriopoulos and Fassas (2009) and Ederington and Guan (2002). Our IV
index is therefore computed from bid prices5 of the two nearest out-of-the-money
put options and the two nearest out-of-the-money call options. Ederington and
Guan (2002) showed and our preliminary results (not included in the paper)
confirm that it is not necessary to use more options in the weighting. Hence,
equation 1 describes our model for calculating the implied volatility for a given
date.

IV =
1

M
(maIVa +mbIVb +mcIVc +mdIVd), (1)

where mi is the moneyness in case of call options and inverse of moneyness in
case of put options, with volatility IVi and M is the sum of these weights from all
four options. This weighting scheme gives larger weights to near at-the money
options. However, all the weights are close to one and this weighting scheme
does not differ much from simple arithmetic average. All IV’s are calculated on
the same day with the same time to maturity, H.

4By moneyness we mean the ratio = F0/K
5Using bid prices might introduce a downward bias in the volatility estimates. However, as

reader will later see, we find that implied volatility is on average higher than realized volatility.
Therefore, this possible bias makes our results even stronger.

4



Figure 1: Illustration of volatility smile and its development throughout our
sample

The second factor to notice in Figure 1 is how the smile varies with time.
This is because the volatility changes over time. Our index should capture these
changes, but to create a coherent measure of volatility time to maturity must be
constant. We follow Martens and Zein (2004) and adjust IV to the desired time
horizon by using linear interpolation between options of different maturities.
For two options with maturities at T1 and T2 on day t, and with T1 < H < T2
we create an IV measure with time horizon H from equation 2.

IVt,H = IVt,T1 +
H − T1
T2 − T1

(IVt,T2 − IVt,T1) (2)

This method for creating an IV-index is analogous to the previously men-
tioned method for VIX on the S&P Index (Martens and Zein, 2004).

3.2 Realized volatility

The theory of quadratic variation suggests that the following holds if the dis-
crete sampled returns exhibit no serial correlation and the sample path for the
volatility, σt, is continuous (Karatzas and Shreve, 1991):

plim
N→∞

 1∫
0

σ2
t+τdτ −

N∑
j=1

r2t,j

→ 0, (3)

where N is the sampling frequency, σ2
t+τ is the integrated (unobservable) vari-

ance, and rt,j is the intraday return for time j of a given day, t. Volatility is
unobservable in the market, but the last term in equation 3, which is known
as the realized variance, measures this theoretical integrated variance almost
perfectly when the sampling frequency, N , is sufficiently high. Formally, denote
total number of days as T . The realized variance for day t is given by:
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RV art =

N∑
j=1

r2t,j , t = 1, . . . , T. (4)

Anderesen and Bollerslev (1998) showed that a well behaving estimator of
volatility is realized volatility as measured by the square root of realized vari-
ance. However, in order to obtain an efficient estimate of the true volatility
over the whole day, we include the overnight return as described in Hansen and
Lunde (2005). This method is found to be optimal from a theoretical perspec-
tive and performs well in empirical applications (see Hansen and Lunde (2005)
and Haugom et al. (2014b)). The procedure is also simple to implement.

Using this methodology we calculate the realized volatility as a weighted
sum of the intradaily and overnight return by finding weights that minimize
the squared error between the realized volatility and the true volatility. Let ort
denote the overnight return between the last price on day t − 1 and first price
on day t, and let RV art denote the intradaily squared returns on day t. We
then define the following measures:

µ̂0 =
1

n

n∑
t=1

(or2t +RV art) (5)

µ̂1 =
1

n

n∑
t=1

or2t (6)

µ̂2 =
1

n

n∑
t=1

RV art (7)

η̂21 = V ar(or2t ) (8)

η̂22 = V ar(RV art) (9)

η̂212 = Cov(or2t , RV art) (10)

where n is the total number of observations. The relative importance factor
is calculated in the following way:

ϕ̂ =
µ̂2
2η̂

2
1 − µ̂1µ̂2η̂12

µ̂2
2η̂

2
1 + µ̂2

1η̂
2
2 − µ̂1µ̂2η̂12

(11)

The optimal weights are:

ω̂∗1 = (1− ϕ̂)
µ̂0

µ̂1
and ω̂∗2 = ϕ̂

µ̂0

µ̂2
(12)

In our model, 24-hour realized volatility for day t is then calculated by the
following formula:

RVt =
√
ω̂∗1or

2
t + ω̂∗2RV art (13)

as suggested by Hansen and Lunde (2005). In order to find the realized volatility
that matches the time horizon of the IV-index we average the annualized realized
volatilities over the desired time horizon, H.
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RVt,H =
1

H

t+H∑
i=t

RVi. (14)

Choosing the right sampling method and frequency is important for the va-
lidity of our estimates. We sample by extracting ticker prices prior to every
minute as suggested by Wasserfallen and Zimmermann (1985) and discussed by
Hansen and Lunde (2006). From equation 3 we see that to fully capture the
information content in high frequency data, the sampling frequency should be
as high as possible. However, higher sampling frequencies give biased measures
of RV due to microstructure effects such as bid-ask bounce (Alexander, 2008a;
Taylor, 2005). Andersen et al. (2001) suggests using 5 minute intervals, a prac-
tice that has been followed by many researchers in other markets (Haugom et al.,
2014a; Patton, 2011; Martens, 2002). To resolve the tradeoff between statisti-
cally high information content and microstructure problems we use a volatility
signature plot as suggested by Andersen et al. (2000) and used by Bollerslev
et al. (2008) and Haugom et al. (2014b). It shows the average realized volatility
such that

RV
(N)

t0,T =
1

T

t0+T∑
t=t0

RVt, (15)

where N is the number of samples per day from equation 4, and T is the
number of observations. The plot is obtained by varying N. The highest number
of N where the plot is flat, is the point where the RV measure is approximately
free of microstructure bias (Andersen et al., 2000).

3.3 Regression

Bias of implied volatility in comparison to subsequent realized volatility is usu-
ally studied using the following regression (see Ederington and Guan (2002) and
Martens and Zein (2004)):

RVt,H = α+ βIVt,H + εt. (16)

These tests usually find that α > 0 and β < 1. When we run this regression,
we find the same result, but α is not statistically significant even on 5% level,
whereas β is significant even at 0.01% level. Result that α > 0 and β < 1 is
usually interpreted as finding that IV is upward biased. However, such result
does not really imply that IV is upward biased, it actually implies that IV
is upward biased for large values, but downward biased for low values. We
therefore run the regression without constant:

RVt,H = βIVt,H + εt (17)

and test for possible bias in IV by testing the hypothesis H0 : β ≥ 1 against the
alternative hypothesis H1 : β < 1.

Since the RV observations in this regression are overlapping by construction
(two consecutive observations share H−1 of daily observations), the assumption
of no autocorrelation in the error term is violated. One possible solution would
be to use non-overlapping observations only. However, this would disregard a
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lot of available information and make the test less powerful. Instead we use all
the observations and report Newey-West standard errors (with 65 lags).

4 Data

Data for implied volatility is collected from ICAP Energy, a commodity broker-
age firm that provides OTC brokering and advisory services, and is presented
to us in a refined form by Fred Espen Benth of the Center of Mathematics for
Applications, University of Oslo. The raw data contains daily prices of options
on forwards with different strikes for quarterly and yearly contracts. Previous
studies find that longer time horizons provide the best predictive powers for IV
against RV (Taylor, 2005), we therefore use quarterly contracts.6

The liquidity of options on forwards is low and it is possible to argue that
there are too few trades in the market to successfully create an IV-index. How-
ever, ICAP provides the bid and ask prices from the market makers and market
participants trust these prices not to be affected by orders below 10 MW. Im-
plied volatilities are calculated by ICAP from the BSM model and we use the
implied volatilities from the closing bid prices in our analysis. We create an
index with a constant time horizon from the front forward, called 1pos, and
the forward with between one and two quarters to maturity, the 2pos contract.
These contracts have time to maturity T1 and T2 respectively, and the choice of
H is then naturally the average number of working days in one quarter, 66.

The raw data containing continuously recorded ticker prices of forwards for
trades performed in the opening hours of Nasdaq OMX was obtained from
Montel. Figure 2 shows the development of liquidity in the market as measured
by ticks per trading day. We observe that, with a few exceptions, liquidity is
stable over time. Days where trades are recorded outside of the opening hours
are few and the return is treated as overnight return.7 Our estimate of realized
volatility is based on prices from the nearest quarter, the 1pos contract. This
deviates slightly from the practice of Martens and Zein (2004) as they use 2pos
contract prices when the liquidity of the 2pos contract surpasses that of the 1pos
contract. This usually happens as the contract is close to, but before, maturity.
However, since Nordic electricity forwards are settled financially, there is no
drop in liquidity before maturity and therefore no need to roll over contracts
before this point in time.

On average there are 204 trades per day, a trade every 2 min and 11 seconds.
With this level of liquidity the impact of microstructure noise is low. This can
be observed in the volatility signature plot in Figure 4 on page 10. The expected
parabolic decrease in volatility for longer tick intervals is not observed and the
plot fails to give a clear indication of the best sampling frequency. Lien et al.
(2012) chose a 30 minute sampling interval when studying the electricity forward
market. We see from the volatility signature plot that the volatility in our data

6We consider the yearly forward contracts to have too low liquidity to be efficiently studied
using realized variance.

7Special circumstances and late clearing explains these examples. The dates include: Oc-
tober 12, 2005, March 24, 2006, April 25, 2006, May 2, 2006, May 29, 2006, June 23, 2006,
July 27, 2006, August 23, 2006, October 30, 2006, December 4, 2006, January 2, 2007, June
29, 2007, August 28, 2007, November 22, 2007, February 28, 2008, March 6, 2008, June 10,
2008, August 28, 2008, December 3, 2008, December 5, 2008, December 10, 2008, March 6,
2009, May 12, 2009, May 14, 2009, July 1, 2009, and December 28, 2009.
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Figure 2: Development of ticks per day throughout the sample

Figure 3: Average realized volatility as a function of time to maturity for 1pos
contracts in the Nordic electricity forward market
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Figure 4: Volatility signature plot

Figure 5: Average number of trades per half hour

is relatively stable at this frequency. We therefore use a sampling frequency of
30 minutes in this study.

The choice of this interval in realized volatility calculations has ramifications
for what days that should be removed from our sample. With 30 minute in-
tervals, we must sample 15 ticks per day. Figure 5 shows that the trades are
not evenly distributed during the day. Hence, to avoid imposing a negative bias
in our measurements, we remove days with fewer than 20 trades. Following
these adjustments, our sample starts October 10, 2005 and ends September 14,
2011, in total 1368 daily observations. 14 outliers or days with low liquidity are
removed8 which leaves us with 1354 days for the empirical study.

5 Results

In Figure 6 we present the 24 hour realized volatility measure, RVt. It is clear
from the figure that volatility varies significantly. Days with volatility of up to
200% (annualized) illustrate significant uncertainty in the market. Such extreme
events are to be expected in power markets where disruption at one large facility
will induce large uncertainties about future prices.

Table 1 shows the descriptive statistics for IV and RV with a time horizon of
one quarter. On average, IV is higher than RV with IV having a sample mean
of 42% as opposed to 36% for RV. This suggests that there is a risk premium

8The dates include: December 23, 2005, December 28-30, 2005, June 23, 2006, March
26, 2007, January 2, 2008, June 19, 2008 March 19, 2009, June 18-19, 2009, July 23, 2009,
September 17, 2009 and June 17, 2009
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Figure 6: Annualized 24 hour daily realized volatility with 30 minute tick inter-
vals

Table 1: Summary statistics.
Volatilities are annualized.

IV RV
Mean 42% 36%
Median 41% 33%
Maximum 66% 59%
Minimum 28% 21%
Std. Dev. 7.6% 10%
Skewness 0.43 0.52
Kurtosis 2.60 1.97
Observations 1354 1354

in the option contract prices and the result is similar to finding of Ederington
and Guan (2002) for S&P 500 futures.

Figure 7 on page 12 reports the IV-index compared to the realized volatility
over the full sample period. Note that the realized volatility is much smoother
than the IV-index. This is because realized volatility is measured as the average
volatility over the next 66 working days whereas the IV-index shows data from
individual days. From the same figure we also observe that the IV measure
lag behind the RV measure. This is also caused by the fact that the realized
volatility is measured as the average volatility over the next 66 working days
whereas the IV-index shows data from individual days. Therefore, RV contains
future information (it is average over next 66 days) whereas IV contains only

Table 2: Regression results. Standard errors are Newey-
West standard errors with 65 lags. P-value is p-value for
the test H0 : β ≥ 1 against H1 : β < 1.

Coefficient Standard error p-value
β 0.866 0.036 1.8%
R2 0.21

Adjusted R2 0.21
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Figure 7: Development of implied and realized volatility over the sample.

Figure 8: The volatility risk premium defined as the difference between implied
and realized volatility over the sample period.

present information. As a result, RV leads IV. However, this is not a mistake,
our goal is to compare present IV with the subsequent (future) RV.

Figure 8 shows the evolution of the volatility risk premium (defined as the
difference between the option implied volatility and the realized volatility, see
e.g. Eraker (2009), Dufour et al. (2012), Ribeiro et al. (2012)) over time. Note
that this is ex-post volatility risk premium and therefore it is sometimes nega-
tive. However, the difference is on average positive.

To formally test the relation between IV and RV we perform the regression
analysis described in Section 3.3. We find that β̂ is 0.87 and we can reject
the hypothesis that β ≥ 1 in favor of the alternative that β < 1. We therefore
conclude that there is a positive volatility risk premium in the Nordic electricity
market. This result is in line with findings for other markets, see Ederington
and Guan (2002).

6 Conclusion

This is the first paper to calculate an implied volatility index for the Nordic
power forwards market. The creation of the index was made possible due to
a unique dataset on option prices provided by ICAP. We compare the newly
developed index with the observed realized volatility as calculated from intra-
daily data.

Our results suggest that there exists a positive volatility risk premium in
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Figure 9: Scatter plot of RV and IV.

options prices for power forwards contract at Nasdaq OMX commodities. On
average, the implied volatility index is 42% and the realized volatility is 36%
over the whole sample period. This is also supported when we formally test the
relation between these two volatility measures. The volatility index is a biased
predictor of the observed realized volatility. These findings for the Nordic power
market are similar to findings for other, more traditional, financial markets.
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