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Abstract

In this paper we develop fundamental quantile regression models for the UK elec-
tricity price in each trading period. Intraday properties of price risk, as represented by
the predictive distribution rather than expected values, have previously not been fully
analysed. The sample covers half hourly data from 2005 to 2012. From our analysis
we are able to show how the sensitivity towards different fundamental factors changes
across quantiles and time of day. In the UK the supply of electricity is to a large extent
generated from coal and gas plants, thus the price of gas and coal, as well as the car-
bon emission price, are included as fundamental factors in our model. We also include
the electricity price lagged by one day, as well as demand and margin forecasts. We
find that the sensitivities vary across the price distribution. Our findings also suggest
that the sensitivity to fundamental factors exhibit intraday variation. We find that the
sensitivity to gas relative to coal is higher in high quantiles and lower in low quantiles.
We have demonstrated a scenario analysis based on the quantile regression models,
showing how changes in the values of the fundamentals influence the electricity price
distribution.
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1 Introduction and Literature Review

In an economy heavily reliant on electricity, and where the market structure is becoming
increasingly complex, considerable time and energy is devoted towards understanding the
electricity price formation. Electricity prices are characterized by complicated non-linear re-
lationships to fundamental variables (Chen et al. 2010), and the relationships are challenging
to model. Bunn et al. (2016) introduced quantile regression for modelling the electricity price.
Whilst they demonstrated the value of quantile models for Value-at-Risk forecasting, com-
pared to the benchmarks of GARCH and CAViAR methods, that study was a methodological
comparison and did not address in detail the distinctly different intraday characteristics hour
by hour of the price risk distribution. Specifically, in that study, only a single time series
of prices at period 38 (GMT 18:30-19:00) was analysed. Yet it is well known that price
formation (and hence risk) varies systematically throughout the day with different models
generally being specified for peak, off-peak and mid-peak hours to reflect the dynamics of
load following and the various technologies setting the marginal prices. With this in mind, it
is an open question how the determinants of risk vary on an intraday basis. In this study we
address that question through the application of multifactor, quantile regression on all 48 half
hourly prices from the GB market, across the range of quantiles from 1% to 99%, estimated
over the period 2005-2012. This represents a more complete analysis of the intraday price
risks and their separate drivers than has so far been undertaken.

For several agents in the energy market, such as consumers, suppliers, traders and regulators,
modelling the tails of price distributions is often more important than formulating central
expectations. Due to the sparseness of data in the tails and the extreme sensitivity of the
results to misspecification in the functional form of the distribution, modelling can be difficult.
Thus, robust parametric methods for specifying predictive distributions (e.g. Guermat and
Harris, 2001, 2002), regime switching models (eg. Dias and Ramos, 2014; Arvesen et. al.,
2013) as well as semi-parametric formulations for estimating specific quantiles (e.g. Engle
and Manganelli, 2004; Gerlach et al., 2011), have characterized recent research.

Quantile regression, introduced by Koenker and Basset in 1978, offers a semi-parametric
formulation of the predictive distribution so that the quantiles of the distribution can be
estimated with distinct regressions. This makes it possible to estimate different coefficient
values for the fundamental factors at different quantile levels. As electricity prices are likely
to have different sensitivities to fundamental variables across the price distribution, due to the
non-linear properties of the merit order curve, quantile regression is well suited for modelling
the electricity prices. Many different models have been developed to capture different price
formation processes for normal and extreme events. Karakatsani and Bunn (2008a) applied
a Markov regime-switching model, while Chen et al. (2010) used a smooth transition logistic
regression model.

With quantile regression we are able to model the quantiles directly, without any assumptions
about the distribution of the residuals. Electricity prices are characterized by high volatility,
skewness, volatility clustering and large spikes. This highly non-normal behavior of electricity
prices makes a semi-parametric technique, such as quantile regression, even more appealing.
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By looking at each pre-defined trading period as an individual market, we are able to reveal
intraday variation in the price sensitivity towards fundamental factors, as well as varying
sensitivities across the price distribution. We model the electricity price as a function of
the fundamental factors, resulting in a simple and parsimonious model. The explanatory
variables are the price of the main input factors in production, gas and coal, the carbon
emission price, the lagged price as well as forecasts of demand and reserve margin. By
running separate models for each year, we find that the sensitivities to the fundamental
factors are stable over time, implying that our model withstands time-varying structural
changes.

Further, we demonstrate a scenario analysis that market participants can use as an example
to plan for a range of scenarios concerning the distribution of the price given different input
ranges for the fundamental variables. We can create a conditional distribution of the electric-
ity price by changing each fundamental factor, ranging from its minimum to maximum value
of our data set. This enables us to detect the main risk drivers at different parts of the day
as well as at different parts of the price distribution. This information can be utilized by all
market participants in order to reduce risk and make better trading and bidding strategies.

This paper has the following structure: section 2 presents the background of the GB electricity
market and section 3 describes the data set we use for our analysis. Section 4 contains a
description of the models we apply and the results are reported in section 5. In section 6 you
find our scenario analysis. In section 7 we present our conclusion.

2 Electricity Market Fundamentals

2.1 The GB electricity market

Since April 2005, under the British Electricity Trading and Transmission Arrangements
(BETTA), the electricity systems of England, Wales and Scotland have been integrated.
The transmission system is also linked to continental Europe through interconnectors to
France and the Netherlands. Six major retail suppliers, British Gas, SSE, Npower, Scottish
Power, E.On and EDF, cover most of the integrated generation market. However, different
suppliers operate at different times of the day, thus implying a less competitive environment
especially at times of scarcity. When reserve margin is low, the competition will decrease
and generators with market power may create market prices substantially above short-term
marginal costs.

Electricity is a flow commodity and is sold and consumed continuously and instantaneously.
Traded products are therefore defined and sold in the form of metered contracts for the
constant delivery of a certain amount of power over a specific period of time. In GB the
specified time period is half an hour, giving 48 periods each day. Period 1 corresponds to
GMT 00:00-00:30, period 2 corresponds to GMT 00:30-01:00 and so on, ending with period
48, corresponding to GMT 23:30-24:00. The APX (formerly UKPX) is the spot market where
power contracts are traded. Members submit their bids electronically up to two days ahead

2



of delivery, and the market is cleared.

In the short run consumers are inelastic (Karakatsani and Bunn, 2008b) and prices are thus
a function of demand, competition and costs. The electricity supply curve is a merit order
curve, where each plant’s spot on the curve represents the cost and capacity of the plant. The
difference between costs is mainly due to technology and fuels used in production. The plants
with the lowest marginal costs, enter at the lowest level of the curve. These are renewables
and nuclear plants. Coal fired plants follow, and together they cover base load, operating
most of the time. At the right end of the curve, natural gas enters through CCGT plants,
which are fired up to cover peaks in demand. CCGT plants are mostly powered using natural
gas, but they can also be fueled using coal and biomass, making them very flexible.

2.2 Electricity price formation

We model the electricity price as a function of the fundamental variables influencing the
price.1 2 Naturally, the electricity price will to a large extent depend on the price of the main
fuels used in production. In 2012 the electricity in Britain was generated from coal (39%),
gas (28%), nuclear (19%), renewables (11%) and other sources (3%) (Macleay and Annut,
2013). Gas and coal are the two largest fuel sources and are thus considered fundamental
factors in our model. We have chosen not to include renewables. The share was only 4% in
2005, and even though it increased towards the end of our data set, ending at 11% in 2012
(Macleay and Annut, 2013), the share was still not sufficiently high for it to have a large
impact on prices in the whole timespan we are studying.3 Coal is the fuel that emits the
most carbon, hence the carbon emission price acts as an add-on to the coal price. For period
38 (GMT 18:30-19:00), Bunn et al. (2016) found that the carbon emission price did not
significantly affect the electricity price. This might, however, be different for other periods
when coal comprises a larger share of the fuels used in production. Further, we believe it is
still important to include the carbon emission price in the model, because it is intended to
affect the dynamics between coal and gas based electricity generation.

The market clearing price is set at the level where demand equals supply, thus demand has
a crucial role in the price formation process and should be a part of our model. Further, we
include the reserve margin forecast, as it reflects the level of scarcity in the market. With
inelastic demand the level of scarcity will be crucial for determining the price. We include the
demand forecast and reserve margin forecast made by the system operator. These forecasts
are available the previous day and may be used by market participants when submitting

1The explanatory variables used in this kind of model needs to be specifically adapted to the market under
investigation, as well as the period of the day that is being modelled. If the input mix changes dramatically
over time one should also allow for time varying coefficients. (Paraschiv et al., 2014)

2The model is built on observable variables for some fundamentals that might influence the price formation.
We acknowledge that there can be certain unobservable factors that we are unable to include in the model,
and therefore we are not able to fully explain the whole price formation.

3The share of renewables, particularly wind, has increased significantly after 2012 in the UK. There is
therefore a need to investigate specifically how the wind production influences the energy price formation,
similar to Hagfors et al. (2016) who investigates the influence on renewables on the price formation in the
german energy market.
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their bids. We expect the lagged price, fuel prices and demand to have a positive effect on
the electricity price, whereas the margin level is expected to have a negative effect. The
sensitivity of the electricity price to each fundamental variable, both across time and across
quantiles, is elaborated in the sections below.

Lagged price
High prices have a tendency to be followed with high prices. (Bunn et al., 2016) Also, as
prices approach marginal cost, we expect them to stabilize at a certain level depending on
the degree of market power in the market. Market power can allow producers to keep prices
high enough to make a profit, but at the same time keep them sufficiently low to prevent
other producers, with technologies higher on the merit order curve, to enter. Market power
opens up possibilities for repeated gaming (Rothkopf, 1999), such as signaling between the
producers to keep prices above what can be explained by marginal costs. This can be seen
as a form of behavioral adaption and is reflected in a high sensitivity to yesterday’s price.
Because high prices are associated with situations with a strong degree of market power, we
expect to see sensitivity to lagged price increasing with higher quantiles as well.

Gas price
We expect the sensitivity to changes in the gas price to be higher in high demand periods,
because gas is the main fuel used to cover peak load (demand in excess of base load). Also,
we expect electricity prices to be more sensitive to changes in all fuel prices during periods
with high demand. This being because higher demand gives producers greater capability to
exercise market power, and thus allow changes in fuel prices to be more directly reflected in
electricity prices. Sensitivity to the gas price should increase with quantiles.

Coal price
Unlike gas, coal is mainly used to cover base load, and thus the use of coal is relatively
constant for the entire 24-hours. However, as for gas, we expect electricity prices to be more
sensitive to changes in all fuel prices during periods with high demand. This also means that
sensitivity to the coal price is not expected to increase across quantiles in the same way as
gas price sensitivity.

Because coal comprises a larger share in base load production than gas, the electricity price
should be more sensitive to changes in coal price than gas price at low quantiles and in
periods when demand is low. Likewise, prices should be more sensitive to changes in gas
price than coal price for high quantiles and in periods when demand is high, since gas plants
are fired up to cover demand in excess of base load. We note that this to some extent is
determined by the relative price levels.

Carbon emission price
Because coal emits more carbon than gas when utilized in power production, the carbon
emission fee will have a higher incremental effect on the coal price compared to the gas
price. The intention is that in times when the coal price lies below the gas price, the carbon
emissions cost will rise to prevent substitution from gas to coal. Therefore, we expect the
variation in sensitivities to carbon emission prices across periods and quantiles to follow the
same trend as sensitivity to the coal price. However, in our data the carbon emissions price
is very low, mainly due to too many issued quotas, and thus it is unclear how it actually
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effects the electricity price.

Demand forecast
We expect demand to have the largest effect on electricity prices during the day and early
evening, when the demand is higher and the margin levels are lower. Hence, prices should
also be more sensitive to demand at higher quantiles. As the supply function is convex, we
expect this sensitivity to increase non-linearly with higher quantiles. High prices are likely
to coincide with low margin levels, making the price very sensitive to changes in demand.
Also, an increase in demand above normal levels implies firing up additional plants higher
on the merit order curve, thus pushing prices up.

Reserve margin forecast
A reduction in reserve margin will push prices upwards. We expect prices to be more sensitive
to margin levels in high demand periods and for the higher quantiles for each period. These
situations are likely to represent times of scarcity. Since demand is inelastic and producers
have more capacity to exercise market power at times of scarcity, changes in margin is
expected to cause large price changes.

3 Data

3.1 Variable description

Our data set spans from 22.04.2005 until 28.06.2012. Two events make 2005 a natural start-
ing point for our analysis. Firstly, Scotland was included in the British wholesale electricity
market April 1, 2005. Secondly, the EU Emission Trading Scheme was established on Jan-
uary 1, 2005, allowing carbon emission trading to commence at the beginning of 2005. For
electricity prices we have data for the same period, although there are some observations
missing. For these periods we have interpolated linearly by taking the average of the price
the previous and next day, within the same period. For fuel prices we have daily prices,
weekends not included. By the same principle as for electricity prices we have interpolated
using the prices quoted for Friday and Monday.

[Table 1 about here.]

Gas, coal and carbon emission prices are all lagged by one day in the model. Demand
forecasts and margin forecasts are both made the previous day. This means that all variables
used in the analysis are known to the market before the power exchange closes for the trading
period concerned. This is done to ensure exogeneity of the explanatory variables.

Power price
UKPX (now APX) is the day-ahead and on-the-day power exchange, allowing high frequency
trading up to an hour before real time. Every day consists of 48 periods of 30 minutes each.
Prices are quoted in £/MWh and represents the volume weighted prices for each period as
cleared on the exchange in the preceding 48 hours.
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Demand forecast
This forecast is made available the previous day by the System Operator for each half-hourly
trading period. It reflects available market information and avoids the endogeneity issues
concerning simultaneity, which might be a problem when using actual demand, since it is
released the day before. The basis of which the demand forecast is calculated, however, is
not known to us. This means that other endogeneity issues such as omitted variables and
measurement errors might still be a problem. However, because demand is such an important
price driver, we still choose to include it in our model.

Reserve margin forecast
The System Operator makes forecasts of the available reserve margin for each half-hourly
trading period. This is defined as the difference between the sum of the maximum available
output capacities, as initially nominated by each generator prior to each trading period, and
the demand forecast described above.

Gas price
We use the daily UK natural gas spot price from the National Balance Point (NBP). The
price is quoted in £/MMBtu(MM British Thermal Unit).

Coal price
We use the daily HWWI world index coal price. The price is quoted in $/ton. We have
translated it into £/ton, taking into account the $/£ rate.

Carbon emission price
We use the EEX-EU carbon emissions allowance daily spot price. The price is quoted in
€/ton. We have translated it into £/ton, taking into account the €/£ rate.

3.2 Organization of data

In order to give an overview of the differences across periods in our analysis we chose to
divide the 48 periods into six groups each describing a certain time of the day. This allows us
to capture similar features such as sensitivities to the different exogenous variables and price
characteristics for a specific time of the day, thus providing relevant information to different
market participants. A representative period for each group has been chosen to present a
comparison of differences throughout the day. These are outlined in Table 2 below.

[Table 2 about here.]

We further define period 10 as the anti-peak, period 25 as the day-peak and period 35 as
the super-peak for each day. From Table 3 we see that of all the periods, period 35 has the
highest average price of the day and exhibits the highest volatility, skewness and kurtosis
in our data set. Period 10 has the lowest average price, and exhibits the lowest volatility,
skewness and kurtosis.
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3.3 The data series

Figure 1-4 shows the evolution of the power prices, the spot prices of gas, coal and carbon
emission, as well as the day ahead demand and reserve margin forecasts. Due to the large data
set we have chosen only to show the data series of the representative periods for electricity
prices, demand and margin forecasts. The price series reveal typical spot electricity features
such as spikes, mean reversion, seasonality and high, time varying volatility. Figure 1 also
shows clear signs that the price dynamics vary between the different time periods.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

3.4 Descriptive statistics

In Table 3 we present a summary of descriptive statistics for the representative periods,
confirming what we observed in Figure 1, that is a high standard deviation and substantial
skewness and kurtosis. A more extensive analysis of the descriptive statistics for all 48
periods has also been performed. All skew coefficients are positive. This effect is anticipated
for electricity markets at that time and reveals that extreme price outliers occur on the
upside of the average. Extreme prices are also common in electricity markets. We also see
that there is high correlation between the period’s mean price and the standard deviation,
skewness and kurtosis levels. We detect severe serial correlation in the data. However, it
drops substantially from lag 1 to 2. For some periods we detect prominent autocorrelation
in lag 7.

[Table 3 about here.]

As a benchmark we ran OLS regressions and performed various residual tests, revealing
that the residuals are non-normal, heteroscedastic, serial correlated and have ARCH-effects.
Results for our representative periods are summarized in Table 4. We also performed an
ADF test for stationarity in the series. The results are reported in Table 5 and 6. Electricity
price and margin forecasts appear stationary, so does the demand forecast for the most part.
We cannot, however, reject the unit root null hypothesis for gas, coal and carbon emission
prices.

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]
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4 Models

4.1 Linear quantile regression

Linear quantile regression was introduced by Koenker and Basset in 1978, and seeks to com-
pute a set of regression functions, each corresponding to a different quantile of the conditional
distribution of the price. The difference between quantile regression and OLS is that while
OLS estimates the regression coefficients so that the regression line run through the average
of the data set, quantile regression lines will pass through different quantiles of the distribu-
tions. For lower quantiles the majority of the data set will lie above the quantile regression
line. For higher quantiles the majority of the data set will lie below the quantile regression
line (Alexander, 2009). The advantage of quantile regression is that we are able to inves-
tigate the relationship between the dependent and independent variables across the entire
distribution, and thus build up a more complete picture of how fundamental factors affect
the electricity price in various price ranges.

From a risk perspective we want to be able to estimate the tail dependencies accurately and
quantile regression works well for this purpose. Quantile regression is closely related to value
at risk in estimating the price at extreme quantiles. For traders and risk managers it is thus
a useful tool for assessing price risk and developing hedging strategies.

The quantile regression model is semi parametric, thus we do not make any assumptions
about the distribution of our data or about the residuals. Due to the highly non-normal
behavior of the electricity price, as well as time-varying volatility, this is an advantage for
our research. Significance testing of quantile regression is still very much in the exploratory
stage, and no single approach has yet gained widespread support. For further discussion, see
Volgushev et al(2013).

We let qε(0, 1) be quantile 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 99%. Our linear quantile
regression model will then be given by:

Qq(lnPi,t) =αqi + βqi,1lnPi,t−1 + βqi,2lnGASt−1 + βqi,3lnCOALt−1 + βqi,4lnCO2t−1+

βqi,5lnDFi,t + βqi,6lnMFi,t

Where i = 1, ..., 48

Further we let X i,t be the 6-dimensional vector, representing the six independent variables
in Section 3.1. We can then rewrite the model as:

Qq(lnPi,t|X i,t) = αqi +X i,tβ
q
i

We find the q quantile regression coefficients for period i, α̂qi and β̂
q

i , as the solution to the
following minimization problem:
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min.
αq
i ,β

q
i

T∑
t=1

(q − 1lnPi,t≤αq
i +Xi,tβ

q
i
)(lnPi,t − (αqi +X i,tβ

q
i ))

Where 1lnPi,t≤αq
i +Xi,tβ

q
i

=

{
1 if lnPi,t ≤ αqi +X i,tβ

q
i

0 otherwise

We run the quantile regression in EViews, obtaining 432 models (48x9). The associated
standard errors are obtained using the Huber Sandwich method. This method is robust when
the residuals are heteroscedastic (Koenker, 2005). The use of natural logarithms implies that
our coefficients will be interpreted as elasticities, i.e. how sensitive the electricity price is
towards a change in the fundamental factors, measured in relative terms.

5 Quantile Regression Results

In Table 7 we present the comprehensive quantile regression results. We show the quantile
regression results for the six representative periods, with its associated pseudo R-squared
(Koenker and Machado, 1999).

[Table 7 about here.]

In general, coefficients are significant, and we find that lagged price, fuel prices and demand
forecast have a positive effect on electricity prices, while margin forecast has a negative effect.
At night, when market activity is low, lagged price is by far the variable in our model that
affect prices most. As activity increases during the day, demand, margin and fuel prices
affect the electricity price with increased strength, while the lagged price affects electricity
prices less. Carbon emission prices have little or no effect on electricity prices.

We use Pseudo R-square to measure the goodness-of-fit of the model for each associated
period and quantile. In general the Pseudo R-square is quite stable over the whole 24 hours,
and at a level ranging from 0.42 to 0.76. We note that the pseudo R-squares are slightly
higher for off-peak than peak periods. This suggests that during times of scarcity, electricity
spot prices are not completely determined by fundamental factors, but partly influenced by
the exertion of market power by producers.

Lagged price
For the trading periods from the late morning until midnight (period 16-48), sensitivity is
generally increasing with higher quantiles, as we expected. However, for the periods with
the lowest activity, during the second half of the night (period 7-12), sensitivities are instead
decreasing with higher quantiles. For the first half of the night and the early morning (period
1-6 and 13-15), sensitivities are larger for the middle quantiles. These are all periods with
moderate demand. For the periods with the least demand, in the second half of the night, the
lowest quantiles probably represent prices very close to marginal cost and behavioral adaption
might thus explain why these prices are similar to the ones observed on the previous day.
During the night, demand is neither high nor low, and under such circumstances it seems
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reasonable that the middle quantiles, representing ”normal” prices, will be consistent with
the corresponding prices the day before.

[Figure 5 about here.]

Gas price
For nearly all periods, sensitivity is higher for periods with high demand than for periods
with low demand. The highest sensitivities are found during the day and early evening,
while the lowest sensitivities are found during the night and late evening. This is according
to expectations.

During the night, early morning and first half of the late morning (period 1-19), sensitivities
are generally increasing with higher quantiles. From period 12 to 13, when we approach
daytime, the coefficient makes a positive jump, larger for the lowest quantiles. This underlines
the fact that prices are much more sensitive to changes in gas price when demand is high. In
the second half of the late morning, afternoon and early evening (period 20 to 38), coefficients
are more equal across quantiles (except the 95% and 99% quantile), with most coefficients
within the 0.25-0.35 range. Towards the end of this period, the coefficients start to decrease
with higher quantiles, a trend that continues for the rest of the day.

[Figure 6 about here.]

Coal price
As expected, sensitivity is higher for periods with high demand than for periods with low
demand. The highest sensitivities are found during the day and evening, while the lowest
sensitivities are found during the night. However, we can see that the variation is smaller
than for gas. This is according to expectations, because coal mainly is used for base load
production.

In the late morning, afternoon, early evening and late evening (period 15-46) the coefficient is
higher for low quantiles than high quantiles. During several evening periods, the coefficients
are so small that they even are insignificant for the 95% and 99% quantiles. At night,
sensitivities are generally highest for the extreme quantiles. The reason for the increased
sensitivity at high quantiles might be that during nighttime few gas plants are operating and
thus coal plants will cover peaks in demand caused by e.g. extreme weather. High prices
during the night will therefore be very sensitive to changes in the coal price.

[Figure 7 about here.]

Carbon emission price
As suspected, the carbon emission price has little effect on electricity prices. The coefficient
is generally close to zero and often insignificant. It is worth noticing that the carbon price
was equal to zero for quite some time in our data set.

The carbon emissions price does, however, tend to follow the sensitivity pattern of coal. It
is generally increasing with higher quantiles during the night, and decreasing with higher
quantiles during the day and evening. During the night the coefficient is mainly insignificant
for low quantiles, while during the day and night it is often insignificant for high quantiles.

[Figure 8 about here.]
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Demand forecast

[Figure 9 about here.]

Looking at the results for the night, early morning and late morning (period 45-22) as well
as the early evening (period 31-38) we observe that sensitivities for the middle quantiles
generally are higher when the period’s demand level is higher. For the extreme quantiles
there is greater variation.

In the late morning (period 15-22), the sensitivity is slightly increasing with quantiles. In the
night and early morning (period 45-14) as well as tge early evening (period 31-38) sensitivities
are generally highest for the extreme quantiles. The difference across quantiles is clearly
largest during the night.

We also notice some slightly negative coefficients around the beginning of the afternoon and
the beginning of the late evening (periods 23 and 39). This is when the demand is dropping
and marginal technolgoies may be reluctant to be called off. Hence their offers become more
competitive. With higher demand and mor expensive plant being called, this effect is likely
to be more pronounced.

Reserve margin forecast
Margin levels affect the price according to expectations, with sensitivity increasing in periods
with higher demand and with higher quantiles. During the periods of night with the lowest
demand levels (period 7-12), the coefficient gets so low that margin forecast has an insignif-
icant effect on prices for the 1%-10% quantiles. During peak hour periods, the effects from
reserve margin get higher (in absolute terms) with higher quantiles.

[Figure 10 about here.]

A comparison of sensitivities to the prices of gas and coal
Looking at Figure 11 we clearly see that the coal coefficient generally is larger than the gas
coefficient at low quantiles, whilst the opposite is the case at high quantiles. This is according
to expectations.

The coal price affects the electricity price more for the 5% quantile as compared to the
median, while the gas price has more effect for the 95% quantile as compared to the median.
This indicates that producers are generally more vulnerable to coal price volatility, while
consumers are more exposed to gas price volatility. Not surprisingly, electricity price is more
sensitive to demand and margin forecasts at the 95% quantile than at the 5% quantile.

[Figure 11 about here.]
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6 Scenario Analysis Based on the Quantile Regression

Model

In this section we present an example that demonstrates how the models can be used to
perform a scenario analysis, showing the effect of changes in the fundamental variables on
the electricity price distribution. Starting with a base scenario, we can introduce shocks to
one or more fundamental variable and obtain the resulting price distribution.

Our base scenario was formed by applying the values of the fundamental variables from the
last day of our data set, 28.06.2012, to the associated quantile regression models for period
10, 14, 19, 25, 35 and 43. The actual values on this date are reported in Table 8. By looking at
ranges of values for the fundamentals, we are able to construct scenarios of distributions for
the electricity price. In our example we investigate the effect of shocks of varying magnitude
to the reserve margin forecast. In a similar way, we can also analyze the effects on the price
distribution from changing other fundamental variables, individually or jointly. Hence we
can directly investigate how a change in one or more of the independent variables affect the
different value at risk estimates for the different time periods.

[Table 8 about here.]

6.1 Scenario analysis example - Reserve margin forecast

[Figure 12 about here.]

We applied a set of margin forecasts ranging from 1500MW to 40925MW, which is equal
to the minimum and maximum margin forecasts in our data set. The results can be seen
in Figure 12. For all periods and parts of the distribution, a decrease in reserve margin
will lead to an increase in the electricity price. However, the effect on the electricity price
is rapidly decreasing with higher levels of reserve margins. As soon as the reserve margin
reaches a threshold level the effect converges for all quantiles and approach zero. When
there is no scarcity in the market prices will simply not respond to changes in the margin
forecast. On the other hand, if margin levels fall below the threshold, prices will respond to
this by increasing exponentially as the margin levels drop further. Changes in margin below
the threshold affect the electricity prices more than any other fundamental variable. This
implies that both producers and buyers should monitor the threshold level carefully, and take
into account whether margin levels are expected to fall below or rise above it when placing
their bids. The threshold level is different for each period and quantile. During nighttime
(period 10 and 43) the effect is small and almost equal to zero for levels of reserve margin
above 1500MW. During daytime the effect on the price of changes in reserve margin is larger.
For low margin levels the conditional price distribution has a long right tail. The thresholds
levels are higher during day than night, and increasing with higher quantiles during daytime.
Market participants should pay close attention when margin levels drop below 20000MW.
Above this level effects on the price will be minor. With the extreme impacts of forecasted
scarcity on the electricity price, producers will have incentives to under-report the production
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capacity of their plants. This underlines the importance of strong regulation and surveillance
of the reporting procedures.

7 Conclusions

Using quantile regression, we have characterized the non-linear effects of fundamental factors
on the wholesale electricity price for each delivery period in the UK electricity market. The
complex market dynamics were confirmed as we found that the sensitivity to the different
factors vary substantially both across the day and across the price distribution. We have paid
special attention to the tails, both in our regression analysis and in the scenario analysis.

We demonstrated how lagged prices, prices of gas, coal and carbon, and forecasts of demand
and reserve margin influence the price distribution in each of the 48 periods in rather intu-
itive ways. In general, we find positive elasticities for the underlying fuel commodities. It
was revealed how the sensitivity to gas relative to coal is increasing with the demand level
throughout the day. We found, that for our data set, carbon emission prices generally had
no significant effect on electricity prices. The sensitivity to changes in demand is generally
positive, but the way its impact on prices develops over quantiles varies with the time of
day. The elasticity of reserve margin is negative, with increased impact on higher quantiles
and in periods with high demand. We confirm the positive sensitivity to lagged price and
how it is decreasing with the demand level. We found that the model explained more of
the variation in electricity prices, as measured by the adjusted R-squared, in off-peak than
in peak periods. This is likely because periods with low margin allow producers to exercise
market power more effectively, pushing prices above what is explained by the fundamental
variables included in our model.

By performing an example scenario analysis, we have demonstrated how scenario analysis can
be used to illustrate the actual magnitude changes in the fundamental variables have on the
electricity price distribution. The effect of previous prices, as captured by the lagged price,
represents the main risk factor for producers, in terms of large price drops. Additionally,
producers face risk if the price of the fuel used in production increases, and they cannot
recover the extra cost through a sufficient increase in the electricity price. The main risk
drivers for buyers and consumers are a high lagged price and low levels of reserve margin. In
general, the main risk is carried by the consumer side.

We believe that our findings have important implications for market participants in both
the spot and financial electricity market. Our paper provides a deeper understanding of
the price formation process and reveals insight on the main risk drivers. Based on this
market participants can fine tune their bids and reduce their exposure to risk. An advantage
of quantile regression is that it is easy to apply compared to alternatives such as regime
switching models or CaViaR based models. This gives it a widespread appeal, and increase
the probability that it will be implemented by market participants.

The next natural step is to do forecasts based on this model and test its forecasting ability.
Further research can extend the quantile regression analysis to include more explanatory
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variables. Our model can then serve as a point of reference. Renewables have over the time
span of our data set become a much more influential fuel source, and will have a natural
place in future electricity market modelling, when the share of electricity produced from
renewables has stabilized at a sufficient level. For some periods the model might benefit from
including lag 7 of the endogenous variable in order to capture weekday effects. Also, a proxy
for market power could be included for the peak periods. By comparing the goodness-of-fit
and forecasting performance to our model, one can evaluate whether these modifications are
successful.
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Figures

Figure 1: The actual series of the power price for period 10, 14, 19, 25, 35 and 43 respectively. The data spans from 22.04.2005
to 28.06.2012.
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Figure 2: The actual series of the daily UK natural gas spot price from the National Balance Point (NBP) (quoted in
£/MMBtu), the daily HWWI world index coal price(translated into £/ton) and the EEX-EU carbon emissions allowance daily
spot price(translated into £/ton), respectively. The data spans from 22.04.2005 to 28.06.2012.
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Figure 3: The actual series of the UK national demand forecast from the system operator for period 10, 14, 19, 25, 35 and 43
respectively (quoted in MW). The data spans from 22.04.2005 to 28.06.2012.
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Figure 4: The actual series of the UK national forecast of reserve margin from the system operator for period 10, 14, 19, 25,
35 and 43 respectively (quoted in MW). The data spans from 22.04.2005 to 28.06.2012.
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Figure 5: The graphs show the development in the lagged price coefficient value associated with each quantile, across all 48
periods, found from quantile regression.
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Figure 6: The graphs show the development in the gas price coefficient value associated with each quantile, across all 48
periods, found from quantile regression.
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Figure 7: The graphs show the development in the coal price coefficient value associated with each quantile, across all 48
periods, found from quantile regression.
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Figure 8: The graphs show the development in the carbon emission price coefficient value associated with each quantile, across
all 48 periods, found from quantile regression.
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Figure 9: The graphs show the development in the demand forecast coefficient value associated with each quantile, across all
48 periods, found from quantile regression.
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Figure 10: The graphs show the development in the reserve margin forecast coefficient value associated with each quantile,
across all 48 periods, found from quantile regression.
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Figure 11: The graphs show the development in the gas price coefficient value relative to the coal price coefficient value across
quantiles for period 10, 14, 19, 25, 35 and 43, found from quantile regression.
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Figure 12: Scenario analysis of the power electricity price for period 10, 14, 19, 25, 35 and 43, when the reserve margin
forecast varies from 1500MW to 40925MW. The base scenario is calculated by applying data from the last day of the data set,
28.06.2012, to the different quantile regression models. The reserve margin forecast on 28.06.2012 was 26442MW, 22005MW,
13392MW, 12068MW, 11812MW and 18260MW for period 10, 14, 19, 25, 35 and 43, respectively.
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Tables

Table 1: Data granularity of the explanatory variables in our model.

Variable Half-hourly Daily

Power Prices X
Gas Prices X
Coal Prices X
Carbon Emission Prices X
Demand Forecasts X
Reserve Margin Forecasts X
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Table 2: We have chosen 6 periods; 10, 14, 19, 25, 35 and 43, each representing a certain time period of the day, that we will
focus on in our analysis.

Time of day Period Time period Representative Period

Night 47-12 23.00-06.00 10 (04.30-05.00)
Early Morning 13-15 06.00-07.30 14 (06.30-07.00)
Late Morning 16-22 07.30-11.00 19 (09.00-09.30)
Afternoon 23-31 11.00-15.30 25 (12.00-12.30)
Early Evening 32-38 15.30-19.00 35 (17.00-17.30)
Late Evening 39-46 19.00-23.00 43 (21.00-21.30)
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Table 3: Descriptive Statistics of the power price for period 10, 14, 19, 25, 35 and 43.

Period Mean Median Maximum Minimum Volatility Skewness Kurtosis

10 29.51 29.10 57.62 6.38 9.64 0.18 2.31
14 34.74 33.50 139.36 5.27 12.42 1.11 6.55
19 47.22 43.71 206.14 13.79 21.49 2.16 10.95
25 54.20 48.38 409.66 15.89 28.43 3.38 23.90
35 61.94 51.78 553.30 13.22 42.08 3.93 28.98
43 43.97 41.91 208.46 15.98 17.94 2.38 13.92
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Table 4: Test statistics from the Jarque Bera normality test, Breuch-Godfrey LM test, White’s Heteroscedasticity test and
ARCH LM test. *** indicates that we reject the respective null hypothesis at the 1% level.

Period Jarque Bera Test Breuch-Godfrey Test White’s test ARCH LM test

10 7659.96*** 44.45*** 523.75*** 169.63***
14 13955.5*** 284.06*** 331.18*** 145.39***
19 1365.8*** 125.69*** 311.5*** 57.96***
25 517.69*** 31.8*** 431.75*** 107.04***
35 1278.07*** 46.55*** 402.16*** 61.02***
43 3451.77*** 55.39*** 63.72*** 63.72***
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Table 5: ADF test for stationarity in the power Price, the UK national demand forecast and the UK national margin forecast,
for period 10, 14, 19, 25, 35 and 43. The data spans from 22.04.2005 to 28.06.2012. We have chosen 5 lags in the ADF test. *,
** and *** indicates that we reject the null hypothesis and find stationarity at the 10%, 5% and 1% level respectively.

10 14 19 25 35 43

Price, t-ADF -3.446*** -4.217*** -6.855*** -8.558*** -8.858*** -4.983***
Demand, t-ADF -2.665* -4.197*** -7.227*** -5.149*** -3.270** -2.804*
Margin, t-ADF -6.234*** -5.758*** -7.458*** -5.892*** -6.241*** -5.644***
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Table 6: ADF test of the daily UK natural gas spot price, the daily HWWI world index coal price(translated into £/ton) and
the EEX-EU carbon emissions allowance daily spot price(translated into £/ton). The data spans from 22.04.2005 to 28.06.2012.
We have chosen 5 lags in the ADF test. *, ** and *** indicates that we reject the null hypothesis and find stationarity at the
10%, 5% and 1% level respectively.

Gas price Coal price Carbon emission price

t-ADF -2.284 -1.367 -2.24
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Table 7: Quantile regression results for period 10, 14, 19, 25, 35 and 43. Numbers in italic represent coefficients that are
insignificant at a 5% level assuming a t-distribution. R-squared is a Koenker and Machado (1999) goodness-of-fit measure
(pseudo R-squared).

1% 5% 10% 25% 50% 75% 90% 95% 99%
Period 10

const -5.278 -3.333 -2.261 -0.771 0.198 0.375 1.009 0.874 -0.456
lprice 0.981 0.836 0.861 0.840 0.798 0.724 0.599 0.479 0.307

gasprice 0.037 0.076 0.066 0.080 0.092 0.125 0.190 0.243 0.321
coalprice 0.174 0.159 0.102 0.089 0.097 0.109 0.140 0.169 0.209
carbon -0.015 -0.001 0.002 0.001 0.003 0.005 0.003 0.005 0.011
demand 0.316 0.278 0.187 0.100 0.055 0.079 0.105 0.175 0.403
margin 0.094 -0.009 0.001 -0.044 -0.083 -0.113 -0.192 -0.238 -0.319

R-squared 0.611 0.682 0.718 0.749 0.752 0.716 0.659 0.627 0.571
Period 14

const -5.788 -1.636 -0.572 0.729 1.246 1.039 1.704 1.799 4.141
lprice 0.281 0.346 0.440 0.508 0.545 0.497 0.404 0.348 0.220

gasprice 0.322 0.278 0.239 0.222 0.215 0.259 0.288 0.333 0.450
coalprice 0.401 0.339 0.267 0.228 0.198 0.205 0.233 0.246 0.229
carbon 0.012 0.015 0.019 0.018 0.017 0.014 0.012 0.012 0.016
demand 0.654 0.348 0.262 0.172 0.142 0.201 0.241 0.300 0.291
margin -0.175 -0.239 -0.239 -0.269 -0.281 -0.317 -0.408 -0.476 -0.682

R-squared 0.580 0.637 0.671 0.684 0.677 0.641 0.611 0.596 0.565
Period 19

const 1.513 1.520 1.325 0.722 1.197 1.634 2.819 3.821 5.110
lprice 0.181 0.216 0.226 0.303 0.350 0.406 0.414 0.403 0.399

gasprice 0.329 0.334 0.360 0.354 0.365 0.378 0.374 0.382 0.486
coalprice 0.436 0.405 0.360 0.321 0.268 0.237 0.242 0.212 0.156
carbon 0.020 0.022 0.027 0.021 0.014 0.009 0.004 0.003 -0.023
demand 0.092 0.110 0.145 0.205 0.204 0.230 0.244 0.217 0.217
margin -0.295 -0.310 -0.319 -0.325 -0.361 -0.436 -0.565 -0.617 -0.743

R-squared 0.596 0.616 0.608 0.583 0.549 0.528 0.545 0.542 0.505
Period 25

const 2.738 4.386 4.480 4.773 4.408 5.504 5.664 5.240 4.822
lprice 0.210 0.214 0.252 0.305 0.422 0.464 0.451 0.506 0.506

gasprice 0.270 0.292 0.311 0.330 0.314 0.324 0.311 0.258 0.152
coalprice 0.397 0.403 0.353 0.289 0.221 0.201 0.214 0.181 0.265
carbon 0.030 0.028 0.025 0.017 0.008 0.001 0.002 -0.002 -0.007
demand -0.023 -0.147 -0.149 -0.143 -0.090 -0.078 0.060 0.159 0.291
margin -0.269 -0.308 -0.310 -0.336 -0.353 -0.476 -0.627 -0.669 -0.746

R-squared 0.538 0.518 0.494 0.449 0.421 0.431 0.470 0.489 0.530
Period 35

const -1.795 -2.174 -2.038 -1.611 0.276 1.776 2.846 4.122 2.781
lprice 0.216 0.268 0.288 0.372 0.467 0.528 0.492 0.455 0.471

gasprice 0.346 0.318 0.336 0.329 0.306 0.281 0.324 0.318 0.201
coalprice 0.349 0.301 0.270 0.224 0.189 0.162 0.159 0.166 0.176
carbon 0.023 0.028 0.021 0.009 0.003 -0.006 -0.016 -0.011 0.006
demand 0.385 0.391 0.400 0.373 0.270 0.227 0.292 0.286 0.565
margin -0.253 -0.202 -0.220 -0.236 -0.321 -0.420 -0.590 -0.695 -0.810

R-squared 0.624 0.597 0.577 0.569 0.556 0.560 0.573 0.577 0.561
Period 43

const 1.450 1.514 2.184 1.806 1.606 2.118 2.861 4.241 9.207
lprice 0.364 0.449 0.490 0.597 0.684 0.762 0.795 0.827 1.006

gasprice 0.247 0.194 0.204 0.168 0.155 0.129 0.116 0.130 0.082
coalprice 0.340 0.297 0.257 0.195 0.131 0.078 0.059 0.017 -0.031
carbon 0.029 0.024 0.021 0.013 0.005 0.000 -0.002 -0.005 -0.007
demand -0.047 -0.019 -0.051 -0.008 0.014 0.000 0.002 -0.041 -0.286
margin -0.128 -0.148 -0.182 -0.182 -0.178 -0.205 -0.276 -0.362 -0.616

R-squared 0.660 0.692 0.695 0.682 0.665 0.637 0.633 0.620 0.589

36



Table 8: Base scenario. Actual value of each fundamental variable on 28.06.2012.

Period Gas (-1) Coal (-1) Carbon Emission (-1) Price(-1) Demand Forecast Margin Forecast

Period 10 54.363 77.197 6.318 30.100 25161.000 26442.000
Period 14 54.363 77.197 6.318 32.570 30296.000 22005.000
Period 19 54.363 77.197 6.318 41.100 39454.000 13392.000
Period 25 54.363 77.197 6.318 48.250 41094.000 12068.000
Period 35 54.363 77.197 6.318 55.200 40874.000 11812.000
Period 43 54.363 77.197 6.318 48.260 34956.000 18260.000
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