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Abstract

Music is made up of a melody and chords that accompany the melody. Finding
suitable chords, can be hard and time consuming. This thesis investigates the
use of Hidden Markov models (HMMs) to assist in this process. The idea is to
learn the underlying Markov chain chord progressions from training data, and
then adjust the chord progressions using melody input.

Four models are suggested and compared, all of them a type of HMM. Dif-
ferent definitions of state spaces and different orders of the models are used.
Considering whole measures instead of single beats as our states, result in an
improvement of the predictions. Improved predictions are also obtained by
building separate models for minor key songs and major key songs. Higher or-
der models do not improve the results. The best performing model obtains a
score of 70% when using leave-one-out-cross-validation (LOOCV) for a training
data set containing 64 children’s songs.

Sammendrag

Musikk best̊ar som oftest av en melodi og av akkorder som akkompagnerer
melodien. Det å finne passende akkorder kan være en vanskelig og tidkrevende
prosess. Denne oppgaven undersøker om skjulte Markov modeller kan bli brukt
som assistanse i denne prosessen. Ideen er å lære den underliggende Markov-
kjeden i modellen akkordprogresjoner fra treningsdata, for s̊a å justere denne
modellen basert p̊a observasjoner av melodien.

Fire modeller blir foresl̊att og implementert, hvorav alle er en variant av en
skjult Markov modell. Det vil bli benyttet forskjellige tilstandsdefinisjoner og
forskjellig orden p̊a modellene. Ved å definere en tilstand som en hel takt
i musikken, i stedet for kun et slag, oppn̊as det en forbedring i resultatene.
Resultatene blir ogs̊a bedre n̊ar separate modeller bygges for dur og moll. Høyere
ordens modeller gir ingen nevneverdig forbedring av prediksjonene. Metodene
blir evaluert ved hjelp av utelat-en-om-gangen kryssvalidering. For treningsdata
best̊aende av 64 barnesanger f̊ar vi et resultat p̊a 70% korrekte prediksjoner med
den best presterende modellen.
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Chapter 1

Introduction

In this thesis, we want to see if machines and algorithms can help creating
music. Most composers have heard a vast amount of music. They are generally
not creating something out of the blue. They use patterns they have heard
before, and compose based on prior experience. In addition to this, they follow
some basic rules of harmonization. This thesis investigates the possibilities of
capturing these regularities in music using statistical learning methods.

A typical musical piece consists of a melody and of chords that accompany the
melody. The process of finding suitable chords is called harmonization, and can
be both hard and time consuming. This thesis proposes a method that assists
in this process. We consider the usage of Hidden Markov Models (HMMs) for
predicting musical chord progressions given a melody input.

A HMM is a convenient tool for modelling double stochastic processes, where
one of these processes is not observable (hidden). The methodology and theory
behind HMMs are described in many sources, among others (Rabiner and Juang,
1986; Ghahramani, 2001; MacDonald and Zucchini, 1997; Ibe, 2013). The HMM
is a widely used method especially within pattern recognition. Two important
application areas are within speech recognition (Rabiner, 1989; Picone, 1990;
Levinson, 1986) and biological sequence analysis (Krogh et al., 1994; Thompson,
1983).

When musicians assign chords, they consider the adjacent chords and the notes
appearing in the melody. We want to exploit these dependencies in the music.
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Chapter 1. Introduction 2

By considering the chords to be hidden variables in a HMM, the dependencies
between chords can be modelled with a Markov chain. In a Bayesian setting, this
can be considered as the prior knowledge. The notes in the melody are regarded
as observations, and our prior belief is updated with this new information to
obtain a posterior distribution. Lastly, this posterior distribution is used for
prediction.

By varying the state space of the HMM and the order of the model, four meth-
ods are proposed. The models are trained using a data base of training data
consisting of 64 lead sheets of children’s songs commonly used in Norway. Leave-
one-out-cross-validation (LOOCV) is used to evaluate the different models.

Similar problems, combining music with statistical methods have been con-
sidered. The article (Allan and Williams, 2005) uses a HMM for harmoniza-
tion of chorales, (Suzuki and Kitahara, 2014) explores Bayesian network models
that generate four-part harmonies and (Cunha and Famalho, 1999) combines
a neural network with a rule-based approach for chord prediction. The article
(Chen et al., 2015) compares multiple machine learning methods for our prob-
lem, among others, a simple HMM. The article has been an inspiration for this
thesis, and we want to further develop the HMM used in this.

Chapter 2 gives an overview of basic music theory. This is needed to get a better
understanding of the results. Chapter 3 discusses the theory behind HMMs, and
the models used in this thesis are presented in Chapter 4. The training data
and the implementation of the methods are explained in Chapter 5. Chapter
6 presents and discusses the results, before some closing remarks are given in
Chapter 7.



Chapter 2

Basic Music Theory

This chapter presents a basic introduction to music theory. This is given to get
a better understanding of the proposed models and the results we obtain.

2.1 Notes

Music can be considered as sound arranged in time. The sounds are notes, and
at a single time step there can be one note sounding alone, or multiple notes
sounding together. The pitch of a note is defined by the frequency of the sound
wave. A high frequency leads to a high-pitched note, and low frequency leads to
a low-pitched note. In western music, twelve note names are defined based on
the frequency of the note. Table 2.1 shows note names and some of their most
common corresponding frequencies.

Note C C] D D] E F F] G G] A A] B
Freq (Hz) 130.8 138.6 146.8 155.6 164.8 174.6 185.0 196.0 207.7 220.0 233.1 246.9
Freq (Hz) 261.6 277.2 293.7 311.1 329.6 349.2 370.0 392.0 415.3 440.0 466.2 493.9

Table 2.1: Table showing the note names together with some of their most
common corresponding frequencies.

As seen from the table, there are more than one frequency corresponding to one

3



Chapter 2. Basic Music Theory 4

note. When the ratio of the frequency of two notes is equal to any integer power
of two, they are perceived very similar when listening to them, and hence the
two notes has the same note name. As an example, do both 220 Hz and 440
Hz, correspond to the note A, which have a 2:1 ratio. In this thesis, we use the
twelve notes from Table 2.1 in our models. We do not distinguish between high
pitched or low pitched notes of the same kind, because this does not affect the
harmonization and our problem of chord prediction.

Figure 2.1: Illustration of a piano with the name of the notes written on the
tangents.

Figure 2.1 shows the notes on a piano. Using the piano is an easy way to picture
the notes and their relation, and it will be used as reference later in this chapter
and throughout the thesis. The piano has the lower pitched notes to the left
and the pitch increases as we go to the right. The white tangents represent the
notes without accidentals (] and b) and the black tangents represent the notes
with accidentals.

2.2 Representation

A common way of denoting music, is to use sheet music. Figure 2.2 shows an
excerpt from the sheet music of ”Silent Night”. This song will be used as an
example throughout the thesis. Some basic concepts are circled in the figure,
and are explained below.

The set of horizontal lines is called the staff. The notes are drawn in the staff,
and the pitch of a note is defined by where in the staff it is drawn. The higher
up in the staff, the higher the pitch. Figure 2.3 gives an overview of the different
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pitches and the notes. A note can also be raised or lowered half a step by adding
accidentals, where a ] raises the pitch and a b lowers the pitch.

Figure 2.2: An excerpt from ”Silent Night” illustrating some basic concepts of
sheet music.

Figure 2.3: Illustration of the pitch of the notes in sheet music.

Apart from knowing the pitch of a note, a musician must know how long to play
the note. The duration of a note is defined by the shape of the note. Figure
2.4 gives an overview of some different types of notes and their duration. The
figure also displays the equivalent rests; the symbols used when there is a pause
and no sound in the melody.

Furthermore, the songs are divided into bars or measures by vertical bar lines.
The length of a measure is defined by the time signature. In Figure 2.2 the time
signature is 3

4 . The numerator tells how many beats there are in each bar, and
the denominator explains what is meant by a beat. In the case of 3

4 , there are
three beats in every bar (nominator is 3) and each beat is defined as a quarter
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Figure 2.4: Illustrating the duration of notes and rests used in sheet music.

note (denominator is 4). The two most common used time signatures are 3
4 and

4
4 .

2.3 Scales and key of songs

A scale is a set of notes written in ascending order with a range from one note
to the next similar note. The intervals between the notes defines the type of
scale, and the two most common types are the major scale and the minor scale.
A major scale is shown in Figure 2.5, which is the scale of C major. And Figure
2.6 shows the scale of A minor.

The melody of a song is often built around a scale, meaning that the most
frequently used notes in the melody are the notes from the scale. The scale
of which a melody is built around, is called the key of the song. In sheet
music, the key of a song is represented by the key signature, which consists
of the accidentals for the matching scale. Figure 2.7 gives an overview of the
key signatures and their corresponding major and minor keys. As an example,
looking at the excerpt from ”Silent Night” (Figure 2.2), we find that the song
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Figure 2.5: The scale of C major.

Figure 2.6: The scale of A minor.

is either in the key of F major or D minor.

The two keys that has the same accidentals, i.e. F major and D minor, are called
relative keys. The two scales consist of the exact same notes, but the starting
point of the scale differs. Because relative keys use the same notes, it can be
hard to decide which key the song really is in. For example, how can we tell if
Silent Night is in the key of F major or D minor? A way to get an impression
of what the answer might be, is to consider the last note of the melody. It is
common that this note is the same as the root of the key. The root of the key is
the note giving name to the key, i.e D for D minor. Considering ”Silent Night”
(Figure 2.2), we see that the last note is F. Hence, the key of Silent Night is F
major and not D minor.

All songs do not have the same key signature, but this can be obtained by
transposing the songs. When transposing a song, all the notes are moved a
fixed interval up or down in pitch. To make the analysis easier, the songs in
this thesis are transposed so that they all have the same key signature. All
major songs are transposed to C major and all minor songs to A minor. C
major and A minor are relative keys and from Figure 2.7 we see that they have
no accidentals. When considering a piano (Figure 2.1), the notes of these two
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Figure 2.7: An overview of the key signatures and their corresponding keys.

keys are all the white tangents. The transposing of a song does not affect our
problem of choosing chords, and hence this can be done to make our models less
complex and the analysis easier. And after chords are predicted, the song and
chords can be transposed back to the original key.

Figure 2.8 shows a transposed version of Silent Night to the key of C major.
Comparing the transposed version to the original version in Figure 2.2, we see
that the key signature now has changed. From containing a b in Figure 2.2
to now being empty. Also, all the notes are shifted to a higher pitch in the
transposed version compared to the original version.

Figure 2.8: The excerpt from ”Silent Night” transposed to the key of C major.
All the notes are now shifted to a higher pitch.
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2.4 Chords

Music as we are used to hear it, often consists of a melody and chords that
accompany this melody. A chord is a combination of three or more notes,
and are in sheet music denoted by a capital letter above the staff (see Figure
2.2). Typically, in modern music, the melody is performed by a singer or solo
instrument and the other instruments (guitar, piano, bass etc.) use the chords to
accompany the singer. There exists a lot of chords, but to simplify the problem,
we choose to focus only on major and minor chords consisting of three notes.

The major chord is made up of the first, third and fifth step in the major scale.
Likewise, is the minor chord made up of the first, third and fifth step of the
minor chord.

Figure 2.9: Showing the C major chord and the A minor chord using sheet
music.

Figure 2.10: The chords C major and A minor illustrated using the piano. The
notes appearing in the chord are marked with blue.

Figure 2.9 shows the chord C major and the chord A minor and Figure 2.10
shows the same two chords on the piano. To distinguish between major and
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minor chords in the sheet music notation, the subscript m is added to minor
chords. Hence, denoting A minor as Am.

In Figure 2.10, the difference between the structures of the major and minor
chord can easily be seen. Counting the tangents in the first interval of the major
chord, between C and E, we find 3 free tangents. And there are 2 free tangents
in the second interval, between E and G. For the minor chord, the relation
between the notes are the opposite of the major chord. We find 2 free tangents
between A and C, and three free tangents between C and E. The structure of a
chord decides what type of chord it is. All major chord has the same structure
as the one observed on the piano for C major, and likewise do all minor chords
have the same structure as A minor.

2.5 Chord progressions

A melody has a specific key and uses the notes in the scale corresponding to
this key. The same happens for the chords of the melody. A chord may be built
upon any note of the musical scale; therefore, a seven-note scale allows seven
triads, each degree of the scale becoming the root of its own chord (Chadwick,
1987). Figure 2.11 shows the triads that can be built upon the C major scale.
Since the A minor scale consists of the same notes as the C major scale, we
obtain the same chords for this scale. One of the chords in Figure 2.11 are a
diminished chord, the chord Bo. This type of chord will not be considered in
this thesis.

A commonly used notation for chords built on the scale are obtained by using
Roman numerals, see Figure 2.11. A C major chord will be written I in the key
of C, for example, but V in the key of F. Minor chords are represented by lower
case Roman, so that D minor in the key of C would be written ii.

In Figure 2.11, there are three major chords. These chords are based on the first,
fourth, and fifth note of the scale. They are often called the tonic, subdominant
and dominant or using Roman numerals I-IV-V. In major key songs, these are
the most frequently used chords. Together the three chords include every note
of the scale, and can therefore harmonize all the scale notes.

When considering the minor scale, the chords based on the first, fourth and fifth
note of the scale are all minor chords. They also include every note of the scale
and are frequently used when harmonizing a minor key song. Sometimes, the
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Figure 2.11: Showing the seven chords that can be built upon the scale of C
major. The chords are numbered using Roman numerals.

fifth degree chord of a minor scale are exchanged with a major chord. In the
case of A minor, we obtain the chord E major instead of E minor. This comes
from a much related scale, called the harmonic minor. This scale is shown in
Figure 2.12 and compared to the A minor scale, the seventh note G is raised
half a step to G]. This change of notes, results in an E major chord as the fifth
degree chord.

Figure 2.12: The harmonic A minor scale. The seventh note is raised half a step
compared to the natural A minor.

A series of chords is called a chord progression. Often the same series are used
in many types of music. Melodies can often be divided into sections of usually
8 or 16 measures, and it is quite common to repeat chord progressions, perhaps
with small variations, in each section.

The simplest, and very much used, chord progression, is the series V-I. The
fifth degree chord is in this progression said to lead to the root chord. This
progression occurs in many major key songs. And there are even whole songs
built entirely by the repetition of the two chords. The folk song ”Polly Wolly
Doodle” and the song ”Achy Breaky Heart” are two examples of this. The
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corresponding progression for minor key songs are v-i or for harmonic minor
V-i. Other examples of known chord progressions are I-V-vi-VI, which is widely
used in for example pop music, and ii-V-I which is a well-known jazz chord
progression.

2.6 Music genres

Musical pieces are often classified into genres. Some examples are pop, jazz, rock
and classical music. The chords assigned to a melody, depend much on the genre
of the musical piece. For instance, many pop songs are known for using only
four chords, so-called four chord songs. And in the jazz genre, the chords often
consist of more than three notes (adding the seventh, ninth or thirteenth step
of the scale). There are often some characteristic chord progressions associated
with specific genres. The blues genre is a good example of this, with its famous
twelve-bare blues scheme. Thus, when making a model for chord prediction, it
seems reasonable that the genre of the song must be taken into account.



Chapter 3

Hidden Markov Model

The models used for predicting chords in this thesis are variations of hidden
Markov models (HMMs). In this chapter, we present some theory behind HMMs
and we describe the two algorithms forward-backward and Viterbi algorithm.

3.1 Markov Chains

We define a random variable x that can take discrete values from a state space
Ωx of size N , x ∈ Ωx = {1, . . . , N}. So, x can take one of N possible classes. The
series x = (x1, x2, . . . , xT ) over the time steps t = 1, . . . , T and for xt ∈ Ωx, is a
stochastic process. If the series follows a Markov property, then it is a Markov
chain. The series is a kth order Markov chain if the conditional probability of
the state at time step t given all the previous states, depends only on the last k
states

p(xt|xt−1, . . . , x1) = p(xt|xt−1, . . . , xt−k).

Hence, a first order Markov chain has the property

p(xt|xt−1, . . . , x1) = p(xt|xt−1). (3.1)

13
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Figure 3.1 shows a graph representation of a first order Markov chain. The
arrows represent the dependencies and illustrate the first order Markov property,
since a node only depends on the previous node.

Figure 3.1: Illustration of a first order Markov chain. The arrows represent the
dependencies between the nodes.

For a stationary Markov chain, the probability of going from one state i to
another state j is the same for every time step of the series.

p(xt = j|xt−1 = i) = p(xt+s = j|xt+s−1 = i),

for any integers s ≥ 1 and t ≥ 1. This probability is called the transition
probability and we denote it Pij .

Pij = p(xt = j|xt−1 = i),

for all t = 2, . . . T .

The transition probabilities are often represented by a (N×N) transition matrix,
P

P =


P11 P12 . . . P1N

P21 P22 . . . P2N

...
...

. . .
...

PN1 PN2 . . . PNN

 (3.2)

Because the matrix P consists of the probabilities Pij , each row must sum to
one

N∑
j=1

Pij = 1,

for all i = 1, . . . , N . For a first order Markov chain, the probability mass function
of the full stochastic process is given by

p(x) = p(x1) ·
T∏
t=2

p(xt|xt−1) (3.3)
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where p(x1) can be defined from an initial stationary distribution, and p(xt|xt−1)
is defined in the transition matrix P .

3.2 Hidden Markov Models

Now, suppose we have a first order stationary Markov chain x = (x1, . . . , xT ),
for all t = 1, . . . , T and xt ∈ Ωx. In each time step t, an effect can be observed,
denoted yt, and we get the series of observations y = (y1, . . . , yT ). The obser-
vations y are conditionally independent given x and they are also single site
dependent on the elements of x. In other words, the observation yt depends
only on the variable xt. This leads to the likelihood distribution

p(y|x) =

T∏
t=1

p(yt|x) =

T∏
t=1

p(yt|xt). (3.4)

An observation y can be discrete or continuous. And in the next section, we
outline the likelihood we use in the thesis. When only y is observed and the
underlying variables x are unknown or ”hidden”, this defines a HMM. Figure 3.2
shows an illustration of a HMM. In the display, the top level (green) represents
the observations y and the bottom level (blue) is a first order Markov chain
similar to the one from Figure 3.1.

Figure 3.2: Illustration of a first order HMM. The top level (green) represents
the observations y and the bottom level (blue) is a first order Markov chain x.
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When the observed values y = (y1, . . . , yT ) are known, and we want to find the
probabilities of x, we have an inverse problem. Bayesian inversion can be used
to assess the hidden states (Kolbjørnsen, 2002). Bayes’ rule states

p(x|y) =
p(y|x)p(x)

p(y)
, (3.5)

where p(x) is the prior model given by equation (3.3) and p(y|x) is the likelihood
model from equation (3.4). Now, when considering p(y) as a constant term
C = p(y)−1 we obtain

p(x|y) ∝ p(y|x)p(x), (3.6)

which is the posterior model.

For a first order HMM, it is possible to factorize the posterior model and to
obtain

p(x|y) ∝ p(x1)

T∏
t=2

p(yt|xt) · p(xt|xt−1).

3.3 The likelihood model

We now define a likelihood model that is the same for every state t

p(yt|xt) = p(yt+s|xt+s),

for integers s ≥ 1.

When the sample space of y is discrete with size M , meaning that yt can take one
of M different classes (yt ∈ 1, . . . ,M), the likelihood model can be represented
by a (M×N) matrix. This matrix is called the emission matrix and we denote
it E. Hence, given the probabilities

Eij = p(yt = j|xt = i),
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the emission matrix is given by

E =


E11 E12 . . . E1M

E21 E22 . . . E2M

...
...

. . .
...

EN1 EN2 . . . ENM

 . (3.7)

3.4 The forward-backward algorithm

To assess the posterior probability p(x|y) from equation (3.6), the forward-
backward algorithm (Baum et al., 1970; Scott, 2002; Lindberg, 2014) can be
used. The algorithm can be divided into a forward step and a backward step, and
the two parts are more thoroughly explained in the two following subsections.

3.4.1 Forward recursion

In the forward step, we iterate from t = 1 to t = T . We introduce the notation
y1:t = y1, . . . yt. The forward recursion begins with finding the conditional
probability given the observations in all the previous steps p(xt = j|y1:t−1).
Exploiting the Markov property of a HMM (3.1), we find that

p(xt = j, xt−1 = i|y1:t−1) = p(xt = j|xt−1 = i)p(xt−1 = i|y1:t−1), (3.8)

and by summing over all the possible classes for i, we obtain

p(xt = j|y1:t−1) =

N∑
i=i

p(xt = j, xt−1|y1:t−1).

Thereon we update the probabilities in (3.8), adding information from the ob-
servation yt at the current time step t. This is done by using Bayes’ rule (3.5)
and exploiting the conditional independence property of the likelihood model
(3.4). We obtain

p(xt = i|y1:t) =
p(yt|xt = i)p(xt = i|y1:t−1)

p(yt|y1:t−1)
,
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where

p(yt|y1:t−1) =

N∑
i=1

p(yt|xt = i)p(xt = i|y1:t−1).

Initial values for the forward step are found by

p(x1 = i|y1:1) =
p(y1|x1 = i)p(x1 = i)∑N

i=1 p(y1|x1 = i)× p(x1 = i)
.

3.4.2 Backward recursion

The backward recursion starts where the forward recursion ends. Now we iterate
backwards from t = T to t = 1 and the goal is to find the backward probabilities
p(xt = i|y). This is the probabilities of x being class i given all the observations
y. Making use of the Markov property (3.1), the backward probabilities can be
found by

p(xt−1 = i, xt = j|y) =
p(xt−1 = i, xt = j|y1:t)

p(xt = j|y1:t)
p(xt = j|y),

and by summing over all the possible values of j we obtain the backward prob-
ability

p(xt−1 = i|y) =

N∑
j=1

p(xt−1 = i, xt = j|y).

Then we can update considering the previous step as well by

p(xt = j|y, xt−1 = i)) =
p(xt−1 = i, xt = j|y)

p(xt−1|y)
.
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3.4.3 Pseudocode

Pseudocode for the forward-backward algorithm is presented in Algorithm 1. In
the pseudocode we denote the forward probabilities by

αt(i|y1:t) = p(xt = i|y1:t)

αt(i, j|y1:t) = p(xt−1 = i, xt = j|y1:t)

Similarly, the backward probabilities are denoted by

βt(i, j|y) = p(xt−1 = i, xt = j|y)

βt(i|y) = p(xt = i|y)

βt(j|i,y) = p(xt = j|xt−1 = i,y),

We also introduce the following notation for the likelihood model

lt(i) = p(yt|xt = i).

This is the likelihood of the data at time step t, when the state xt is in class i.

When all the backward probabilities are obtained from the forward-backward
algorithm, the full joint posterior can be assessed by

p(x|y) = β1(x1|y)×
T∏
t=2

βt(xt|xt−1,y).
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Algorithm 1 The forward-backward algorithm

Forward step:

Initialize:

C1 =
[∑N

i=1 l1(i)× p(x1 = i)
]−1

α1(i|y1:1) = C1 × l1(i)× p(x1 = i), i = 1, . . . , N

for t=2, . . . , T do

Ct =
[∑N

i=1

∑N
j=1 lt(j)× Pij × αt−1(i|y1:(t−1))

]−1
αt(i, j|y1:t) = Ct × lt(j)× Pij × αt−1(i|y1:(t−1)), i, j = 1, . . . , N

αt(j|y1:t) =
∑N
i=1 αt(i, j|y1:t), j = 1, . . . , N

end for

Finding the normalizing constant:

C = 1
p(y) =

∏T
t=1 Ct

Backward step:

Initialize:

βT (j|y) = αT (j|y1:T ), j = 1, . . . , N

for t=T, . . . , 2 do

βt(i, j|y) = αt(i,j|y1:t)
αt(j|y1:t)

× βt(j|y), i, j = 1, . . . , N

βt−1(i|y) =
∑N
j=1 βt(i, j|y), i = 1, . . . , N

βt(j|i,y) = βt(i,j|y)
βt−1(i|y) , i, j = 1, . . . , N

end for

3.5 The Viterbi Algorithm

The Viterbi algorithm (Viterbi, 1967; Forney, 1973) is an algorithm that finds
the most likely sequence of the underlying states in a HMM. This sequence is
called the maximum a posteriori prediction (MAP) and is the sequence with the
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highest posterior probability

x̂MAP = arg max
x
{p(x|y)} .

The algorithm uses the technique of dynamic programming by breaking the
problem into a collection of simpler sub-problems. For each time step t = 1, . . . T
and for each possible class j = 1, . . . N , the algorithm finds the most probable
path that x1:t−1 that ends in the state xt = j.

We let γt(j) represent the probability of the most probable path x1:t−1 ending
in state j at time step t, i.e.

γt(j) = max
x1:t−1

{p(x1:t−1, xt = j|y)} .

Because of the Markov property of a HMM, the probability can be computed
using the probability from the previous time step γt−1(i) and the backward
probabilities obtained from the forward-backward algorithm (Algorithm 1). We
find that

γt(j) = max
i
{γt−1 × βt(j|i,y)} .

Now we define a pointer to keep track of the most probable path. We let mt(j)
be the backtrace pointer from xt = j such that it points back to the previous
state xt−1 that resulted in the most probable path to xt = j. When reaching
the last iteration t = T , the pointers lead us through the most probable path
when starting at the most probable state jmax given by

jmax = arg max
j
γT (j).

Pseudocode for the algorithm is shown below in Algorithm 2.
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Algorithm 2 The Viterbi algorithm

Initialize:

γ1(i) = β1(i|y), i = 1, . . . , N

m1(i)→ 0, i = 1, . . . , N

for t=2,. . . , T do

for j=1,. . . , M do

γt,t−1(i, j) = γt−1(i)× βt(j|i,y), i = 1, . . . , N

γt(j) = maxi {γt,t−1(i, j)}

mt(j)→ arg maxi {γt,t−1(i, j)}

end for

end for

jmax = arg maxj{γT (j)}

return x̂MAP by following the pointers starting at mT (jmax)

3.6 Second-order HMM

When the underlying Markov chain in a HMM follows the second order Markov
property

p(xt|xt−1, . . . , x1) = p(xt|xt−1, xt−2),

we have a second order HMM. The state t is now dependent on the two pre-
vious states. Figure 3.3 shows a graph representing a second-order HMM. The
dependencies of the observations y are the same as for a first-order HMM. They
are conditionally independent given x and also single site dependent on the
elements of x. The arrows in the figure illustrates this.
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Figure 3.3: Illustration of a second order HMM. The arrows in the graph show
the dependencies of the nodes. The top level (green) represents the observations
y and the bottom level (blue) is a second order Markov chain.

A second-order HMM can be rewritten into a first-order HMM. In this way, the
two algorithms presented earlier, the forward-backward algorithm (Algorithm 1)
and the Viterbi algorithm (Algorithm 2), can be applied also to a second-order
model. The rewriting is done by introducing an augmented state

(
xt

xt+1

)
that

contains both the state t and the next state t+ 1. This new augmented state is
denoted xt,t+1. This results in an increased sample size, we have xt,t+1 ∈ Ωx×Ωx
which leads to Naug = N ×N . Now, we have the dependency

p(xt,t+1|xt−1,t, . . . , x1,2) = p(xt,t+1|xt−1,t),

which is a first order Markov property. Figure 3.4 shows a diagram of HMM
with augmented states.

Figure 3.4: Illustration of a HMM with augmented states. The arrows in the
graph show the dependencies of the nodes.
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The likelihood model for this HMM depends only on the first state in the aug-
mented state. Hence, we get

p(yt|xt,t−1) = p(yt|xt).



Chapter 4

The models for musical
chord prediction

A melody with chords can be represented by a HMM (described in Chapter
3) by letting xt represent the chord at time step t, and yt represent the note
appearing in the melody at time step t. In other words, the notes in the melody
are considered to be observations and the chords are the hidden variables. In
this chapter, we present the four models used for chord prediction.

In our models, we define the possible values of a note to be one of the twelve
notes defined in Table 2.1. Each of the twelve notes can be the root of both a
minor chord and a major chord. Thus, we get 24 possible chords. The possible
notes and chords are shown in Table 4.1 together with labels. The four proposed
models are Beat1, Measure1, Measure1m and Measure2. All the models are
variations of HMMs, but the state definition and order of the models are varied.
Each model is more thoroughly explained in the following sections.

4.1 Beat1

The Beat1 model is a first order model where the states are defined as single
beats of the music. Figure 4.1 shows an illustration of this model. In the figure,
the states xt are represented in blue and contains the chord at time step t.

25
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Note Label Chord Label Chord Label
C 1 C 1 Cm 13
C] 2 C] 2 C]m 14
D 3 D 3 Dm 15
D] 4 D] 4 D]m 16
E 5 E 5 Em 17
F 6 F 6 Fm 18
F] 7 F] 7 F]m 19
G 8 G 8 Gm 20
G] 9 G] 9 G]m 21
A 10 A 10 Am 22
A] 11 A] 11 A]m 23
B 12 B 12 Bm 24

Table 4.1: The notes and chords considered in our models together with labels.

The length of the time step corresponds to the length of a beat in the song.
Observations yt are represented in green and consist of the first note appearing
in the beat. The arrows represent the dependencies in the model. Using the
notes and chords from Table 4.1 we obtain yt ∈ [1, . . . , 12] with M = 12 and
xt ∈ [1, . . . , 24] with N = 24.

Figure 4.1: Illustration of Beat1. The states xt are represented in blue and
contains the chord at time step t. The length of the time step corresponds to
the length of a beat in the musical piece. Observations yt are represented in
green and consists of the first note appearing on the beat. The arrows represent
the dependencies in the model.
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4.2 Measure1

The Measure1 model is also using a first order HMM to represent the song, but
the states are defined differently than in Beat1. Now, a state consists of a whole
measure and not just a single beat. Figure 4.2 illustrates the model. Again, the
states xt are represented in blue and contains the chord at step t. Observations
yt are shown in green and consists of all the notes in the measure.

Figure 4.2: Illustration of model Measure1. The states xt are represented in blue
and contains the chord at time step t. The length of the time step corresponds
to the length of a measure in the musical piece. Observations yt are shown in
green and consists of all the notes in a measure represented by an indicator
vector. The arrows represent the dependencies in the model.

Since the observation yt now may consist of multiple notes, an indicator vector is
introduced to represent this in a suitable way. The vector indicates which notes
are present in a measure. Each note is represented with an index, and the index
of a note is given by the labels from 4.1. If a note is present in the measure,
the corresponding index in the indicator vector will be set to 1, otherwise it is
0. This way of representing the measure does not take into account the number
of times the note is present in the measure, nor the length of the notes. It only
tells if a note is present or not.

An example is given below, where the four indicator vectors representing the
observations yt of the first four states t = 1, . . . 4 from Figure 4.2.
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y1 = [0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0]

y2 = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

y3 = [1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]

y4 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

Measure1 has the sample size M = 212 = 4096 for the observations, and the
sample size for the hidden states (chords) are the same as for Beat1, N = 24.

4.3 Measure1m

From music theory, we know that there is a difference between the chord dis-
tribution for a major key song and a minor key song. Thus, Measure1m build
separate models for these two types. This is done by using the major songs
as training data for one model, and the minor songs as training data for the
second model. The models are built like the Measure1 model. They are first
order HMMs using whole measures as state definition, where an indicator vector
represents the observations.

Now, when predicting chords for an input melody, we first classify the song into
either major or minor. This is done by a simple approach. We know that the
final note in most melodies are the root note of the key of the song (see Section
2.3). Hence, after the melody is transposed to either C major or A minor, we
use the last note of the melody to classify the song. If this note is an A, the
song is classified as a minor key song, otherwise it is classified as a major key
song.

Figure 4.3 shows an illustration of this model. The last measures of ”Silent
Night” is used as an example. First the song is classified as a major key song
because the final note is a C, then the corresponding HMM is used for chord
prediction.
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Figure 4.3: Illustration of model Measure1m. The four last measures from
”Silent Night” is shown, and the last note is considered when classifying the
song as a major song. Two separate models are built for major and minor. In
both models, the states xt are represented in blue and contains the chord at
time step t. The length of the time step corresponds to the length of a measure
in the musical piece. Observations yt are shown in green and consists of all the
notes in a measure represented by an indicator vector. The arrows represent
the dependencies in the model.

4.4 Measure2

The last proposed model is Measure2, which is a second order model. The
transition probabilities in the underlying Markov chain now depends on the
2 previous states as described in section 3.6. The model defines a state as a
whole measure as for Measure1 and Measure1m, and it uses indicator vectors
to represent the observations. An illustration of the model is shown in Figure
4.4.

As shown in section 3.6, this model can be rewritten to a first order model by
introducing an augmented state

(
xt

xt+1

)
. This results in a sample sizes M = 4096
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Figure 4.4: Illustration of model Measure2. The states xt are represented in blue
and contains the chord at time step t. The length of the time step corresponds
to the length of a measure in the musical piece. Observations yt are shown in
green and consists of all the notes in a measure represented by an indicator
vector. The arrows represent the dependencies in the model.

and N = 24× 24 = 576.

4.5 Overview of the models

An overview of the four models and some central properties is given in Table
4.2. The table shows the order of the models, the state definitions, if separate
models is built for major and minor, and lastly the sample sizes N and M for
respectively the hidden variables (chords) and the observations (notes).

Model Order State Minor/Major N M
Beat1 1 Beat No 24 12

Measure1 1 Measure No 24 4096
Measure1m 1 Measure Yes 24 4096
Measure2 2 Measure No 576 4096

Table 4.2: Displays central properties of the four models proposed in this thesis.



Chapter 5

Training data and
implementation

In this chapter the data used to train the models from Chapter 4, are pre-
sented. Also, some details related to the implementation of the models and the
validation method are described.

5.1 Training data

To train the models, a data set of digital sheet music was used. The data set
consists of in total 64 traditional children’s song commonly sung in Norway. 22
of the songs are in a minor key and 42 of the songs are major key songs. A list of
all the songs can be found in Appendix A. The data is collected from the two song
books Sangskolen (Hukkelberg and Ekra, 1995) and Den store barnesangboka
(Holen and Nordberg, 1985), and it is transcribed using the software Sibelius
First to obtain the desired file type, MusicXML. The data consist of in total
1244 measures and 3297 notes.

The training data in this thesis is traditional children’s songs. These are often
built of simple chords and progressions, and this justifies the choice of only
considering major and minor chords consisting of three notes. The distribution
of the chords and the notes in the training are plotted in Figure 5.1. The
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(a) Notes (b) Chords

Figure 5.1: Histograms showing the distribution of the notes and the chords in
the training data.

distributions represent the data after the songs are transposed to the key of C
major or A minor.

Figure 5.1a shows that the most frequently occurring notes are the scale notes
of C major or A minor, the notes without accidentals. This is expected, since
a song is built around the scale corresponding to the key (see section 2.3). The
three tones that are most represented in the training data are C, E and G. These
three notes build the chord of C major (Figure 2.9). This is also as expected,
since there are more major songs than minor songs in the data set.

The chord distribution plot in Figure 5.1b shows that the chord of C is the most
common chord. This chord is used nearly twice as much as any of the other keys.
Again, this is because of the many major key songs in the data set. In section 2.5
the three chords named the tonic, subdominant and dominant are mentioned.
For C major these chords are C, F and G, and for the key of A minor the chords
are Am,Dm and Em/E. From figure 5.1b we see that these chords are highly
represented compared to the other chords, like the music theory indicates. The
chord distribution plots also show that some of the notes and chords are never
used. This will be further discussed in Chapter 6, when presenting the results.

Figure 5.2 shows the distribution of the chords after separating the major and
minor key songs into two separate data sets. It can be seen that the chord
distributions for the two types differ much. The tonic (C), subdominant (F)
and dominant (G) are highly represented in the major chord distribution in
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(a) Major songs (b) Minor songs

Figure 5.2: Histogram showing the distribution of the chords after separating
the songs into major and minor key songs.

Figure 5.2a. The same can be seen for the minor chord distribution, the tonic
(Am), subdominant (Dm) and dominant (E) are frequently used chords for the
minor key songs. In both the major distribution and the minor distribution, we
can see that the root chord, respectively C and A, has the highest representation.

5.2 Implementation

The article by (Nichols et al., 2009) proposes a pre-processing toolkit for the
digital sheet music format MusicXML, and we use this toolkit in this thesis.
The toolkit is written in MATLAB, and reads a data base of MusicXML files
and creates a MATLAB struct with information about the songs. Amongst
other things, this struct contains information about the notes of the melodies
and the chords of the songs. Documentation can be found, and the script can
be downloaded from the site http://music.informatics.indiana.edu/code/
musicxml. The script transposes all the songs to either C major or A minor.

5.2.1 Estimation of transition and emission matrices

The training data was used to estimate the transition matrix (3.2) and the
emission matrix (6.1). This was done by computing the relative frequency of

http://music.informatics.indiana.edu/code/musicxml
http://music.informatics.indiana.edu/code/musicxml
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the occurrence for each transition, given the training data. Hence, P̂ij was found
by counting the number of transitions from state i to j in the training data, and
dividing by the total number of transitions from state i

P̂ij =
∑
t

#{xt = i, xt+1 = j}
#{xt = i}

.

The emission probabilities were found in a similar way, by

Êij =
∑
t

#{xt = i, yt = k}
#{xt = i}

.

Since the different models from Chapter 4 have different state definitions, differ-
ent transition and emission matrices, were obtained. After finding the matrices,
the MATLAB function hmmviterbi was used to find the most likely chord pro-
gression given a melody input. This function is an implementation of the Viterbi
algorithm explained in Algorithm 2.

5.2.2 Model validation

To analyse the performance of our models, the validation method leave-one-out
cross-validation (LOOCV) (Wong, 2015) was used. The method leaves out one
of the songs in the training data and build the models based on the remaining
songs. Then the song that is left out is used as input data, and the chords are
predicted for this song. This is done for every song in the training data, and
the score is measured as the percentage of the correctly predicted chords. A
similar and common way of validating the performance is by using k-fold cross-
validation, but because of the small size of the training data, this method was
not chosen.



Chapter 6

Results and discussion

The four models proposed in Chapter 4 were tested using the training data
described in Chapter 5. This chapter presents the results after implementing
and testing the models. First some general results are discussed, before we
proceed to more specifically look at the results for three of the songs. The two
major key songs ”Silent Night” and ”Fagert er landet” and one minor key song
”Byssan lull”.

6.1 Transmission matrices

Firstly, we look at the transition matrices as described in equation (3.2). The
matrices for Beat1, Measure1 and two matrices for Measure1m (one for the
major model and one for the minor model) are presented in Figure 6.1. The
transition matrix for model Measure2 is not included, because of its large size.
The color of the plot represents the value of the matrix, according to the color
bars to the right of each plot.

From the figures, it can be seen that a lot of the transition probabilities are zero.
According to Figure 5.1b in Chapter 5, a lot of the chords are not represented
in our training data. The rows and columns for the chords not present, will
all have zero probability. This is clear from the figure, and we can reduce
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the transition matrices by removing these rows and columns. These reduced
transition matrices are displayed in Figure 6.2.

(a) Beat1 (b) Measure1

(c) Measure1 Major (d) Measure1 Minor

Figure 6.1: Plot of the transition matrices for the different models. The color of
the plot shows the value of each entry, according to the color bars to the right
of each plot.

When considering the transition matrix for Beat1 (Figure 6.2a), we find high
probabilities for two ascending chords to be the same. This is seen by the
high probabilities occurring on the diagonal of the matrix. This model uses
states consisting of only one beat, and since chords generally are held for whole
measures consisting of multiple beats, there will be many transitions from one
chord to the same chord. This property is a weakness for the Beat1 model, and
leads to predictions with too few chord changes. This is clearly seen later, in
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the song examples.

(a) Beat1 (b) Measure1

(c) Measure1 Major (d) Measure1 Minor

Figure 6.2: Plot of the transition matrices of the four models after removing
unused chords. The color of the plot shows the value of each entry, according
to the color bars to the right of the plots.

The trend of high probabilities on the diagonal is less clear for the three other
transition matrices (Figures 6.2b, 6.2c and 6.2d) for Measure1, Measure1 major
and Measure1 minor. These models use states consisting of whole measures and
this leads to less transitions between similar chords compared to Beat1.

By considering the two matrices built for Measure1m, the major matrix in
Figure 6.2c and the minor matrix in Figure 6.2d, we can observe differences
in the structure of major key songs and minor key songs. In the distribution
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plots from chapter 5, Figure 5.2a and Figure 5.2b, we observed that the most
frequently used chords for major songs was C, F and G, and that the most
used chord in minor songs was the chord Am, Dm and E. This is reflected
in the transition matrices. In the major matrix we find high values in the
columns representing C,F and G, and in the minor matrix we find high values
in the columns representing Am, Dm and E. These high values mean that the
probability of transitioning into these chords are high, and the probability for
predicting one of these chords will be high.

The transition matrix for Measure1, Figure 6.2b, can be seen as a mix between
the major transition matrix and the minor transition matrix. Because the total
set of training data has a majority of major songs, the Measure1 matrix is most
similar to the major transition matrix. Still, some central properties occurring
in the minor transition matrix can be found in the Measure1 matrix. The
transition E → A is an example of this. The probability of this transition is high
for Measure1 and for Measure1m minor, but in the major matrix it is not. This
transition can be recognized as the chord progression V-i, which was mentioned
as a known chord progression for minor songs in section 2.5. Another chord
progression that can be recognized is the II-V-I progression for major songs. In
the major matrix, we find high probabilities of both II-V (D → G) and V-I
(G→ C).

6.2 Validation scores

The performance of the models was examined using LOOCV as described in
section 5.2.2. Table 6.1 shows the obtained results.

Model Validation score
Beat1 50.3%
Measure1 62.8%
Measure2 62.9%
Measure1m 70.1%

Table 6.1: Validation scores of the four models after using LOOCV.

An increase in performance is obtained by defining the states to be measures
instead of beats. The validation score is increased by over 10% after this ad-
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justment of the model. Measure1 and Measure2 perform quite similar. So, for
our current training data, a second order model does not improve the result
noteworthy. The hypothesis of testing a second order model, was that a lot
of chord progressions are three or four measures long. Thus, thinking that a
second order model could recognize these progressions. This does not seem to
be the case for our test data. A possible reason, is that there is too little train-
ing data. Using a second order model leads to a large transition matrix. More
training data could help to make a more even results for this matrix. Also, a
second order model might be more useful when predicting chords for another
music genre, which might have more complicated or longer chord progressions
than children’s songs do.

Building separate models for major and minor songs improves the predictions.
The validation score increases from about 63% to 70%. Measure1m classifies all
the input songs correctly into either minor or major. Because we have seen the
difference in the chord usage for the two types, this is as expected.

A score of 70 percent for the best performing method is fairly well. A fact
that must be precised when talking about the score of the models, is that there
does not exist one correct solution to this prediction problem. More than one
chord can be suitable for one measure of the melody. The same song can be
harmonized in many different ways. This does much depend on genre and on
the taste of the composer or song writer. Still, using the chords in the training
data as the correct chords, does give a good picture of how well the models
perform.

6.3 Distribution of predicted chords

In this section, we consider the distribution of the predicted chords. Histograms
showing the distributions are shown in Figure 6.3. The chord distribution of
the training data is plotted in the same figure for comparison. The predicted
distribution is plotted in blue and the correct distribution is plotted in green.

For model Beat1 in Figure 6.3a the variety of chords is very small. The chord
C is overrepresented. This can be related to the transition matrix of the model
(Figure 6.1a). When the probability of changing chord is small, and the chord
C is a very likely chord to use, then there will be a lot of predictions choosing
this chord.
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(a) Beat1

(b) Measure1

(c) Measure2

(d) Measure1m

Figure 6.3: Shows the distribution of the predicted chords (blue) together with
the distribution of the correct chord distribution (green) for each of the four
models.
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Measure1 and Measure2 have very similar chord distributions. Comparing these
two distributions to the Beat1 distribution, we see that the proportion of pre-
dicted C chords are lower. Still C is overrepresented compared to the correct
distribution.

The distribution that is closest to the training data distribution, is the one for
the Measure1m. This is as expected, since this also was the best performing
model. In the distribution we find increased values for the chords E and Am
compared to the distributions of the other models. Am and E are much used
in minor key songs as we saw in the distribution plot in Figure 5.2b. Hence,
the increase in prediction of these chords are because of the minor model that
is built in the Measure1m model.

6.4 Discussion of prediction error

Now we proceed to discuss the prediction error by creating confusion matrices.
These matrices can give us an impression of what errors our methods do. We
let xs be the correct chord corresponding to the prediction x̂s at time s. The
entries in the confusion matrix are then given by

Ĉij =
∑
x

{xs = i, x̂s = j}
{xs = i}

.

The value Ĉij tells the relative number of predictions of the chord j given that
the correct chord was i. The whole matrix is given by

Ĉ =


Ĉ11 Ĉ12 . . . Ĉ1N

Ĉ21 Ĉ22 . . . Ĉ2N

...
...

. . .
...

ĈN1 ĈN2 . . . ĈNN

 . (6.1)

Figure 6.4 shows the confusion matrices for our four models. The values of the
matrices are represented by the color defined in the colorbar. For a perfect
prediction, the diagonal of this matrix would be one and the rest of the entries
zero. This is not the case for our matrices.
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These matrices are interesting because they tell what common mistakes our
methods do. From the distribution plots of the predicted chords in Figure 6.3
we saw that the chord C was overrepresented in all the methods. This is clear
from the confusion matrices as well. The column of C has high values, meaning
that the chord C is often predicted even though it is not the correct chord.

Considering the confusion matrix for Measure1m in Figure 6.4d we see that this
method more often predicts the chords Am and E correctly compared to the
other models. These chords are typical chords in a minor song, and hence we
see that the Measure1m is a better model for minor songs.

(a) Beat1 (b) Measure1

(c) Measure2 (d) Measure1m

Figure 6.4: Confusion matrices for the four models. The value is represented by
the color defined in the colorbar to the right.
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6.5 Silent Night

The first song we consider is ”Silent Night”. This is a popular Christmas carol
composed by Franz Xaver Gruber. Figure 6.6 shows the prediction results ob-
tained from our models and Figure 6.5 shows the sheet music for the song
together with the predictions obtained from the Measure1m model.

From Figure 6.6 it can be seen that all the models perform fairly well for this
song. Beat1 and Measure1 obtains the same result for this song, and also
Measure 2 gets a similar result. All of these three models predicts the chord
Am instead of the correct chord F. A reason for this mistake, might be that the
chord Am are frequently used in minor key songs. Hence, a lot of the training
data includes this chord, as seen in Figure 5.1). This is probably the reason
why Measure1m is able to predict the F chord correctly. Measure1m classifies
this song as a major key song, and in major key songs the chord F is more used
than the chord Am.

Figure 6.5: Sheet music representation of ”Silent Night” showing the predicted
chords obtained from the Measure1m model together with the correct chords.
The correct chords are written in black and the predicted chords in blue.
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(a) Beat1

(b) Measure1

(c) Measure2

(d) Measure1m

Figure 6.6: Prediction results for ”Silent Night”. The predicted chords are
plotted as blue circles and the correct chords as green squares.
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6.6 Byssan Lull

Byssan Lull is used as a lullaby in Norway and is written by the Swedish com-
poser Evert Taube. This is a minor key song. Figure 6.8 shows the prediction
results obtained from our models and Figure 6.7 shows the sheet music for the
song together with the predictions obtained from the Measure1m model.

This song illustrates the need of a separate minor key model. The three models
Beat1, Measure1 and Measure2 performs very poorly compared to the Mea-
sure1m model. The Beat1 model in Figure 6.8a has only two correct predictions,
the last predicted Am. The Beat1, Measure1 and Measure2 model predicts typ-
ical major chords like G major and C major for this song, whilst the Measure1m
model classifies the song correctly as a minor key song and hence chooses more
typical minor chords like Am and E.

Figure 6.7: Sheet music representation of ”Byssan lull” showing the predicted
chords obtained from the Measure1m model together with the correct chords.
The correct chords are written in black and the predicted chords in blue.
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(a) Beat1

(b) Measure1

(c) Measure2

(d) Measure1m

Figure 6.8: Prediction results for ”Byssan lull”. The predicted chords are plot-
ted as blue circles and the correct chords as green squares.



47 6.7. Fagert er landet

6.7 Fagert er landet

The last song studied, is the song ”Fagert er Landet”. This is a Norwegian hymn
written by Anders Hovden. Figure 6.10 shows the prediction results obtained
from our models and Figure 6.9 shows the sheet music for the song together
with the predictions obtained from the Measure1m model.

None of the models performs well with this song. As previously mentioned, the
Beat1 model has too many C major chord predictions and small variation in
the chords. The three models Measure1, Measure2 and Measure1m predicts the
exact same chords throughout the whole song. What is interesting about this
hymn, is that it seems to change the mode (or key) of the song around measure
17. Up to this measure, the correct chords are typical major song chords like
C, F and G.

Figure 6.9: Sheet music representation of ”Fagert er Landet” showing the pre-
dicted chords obtained from the Measure1m model together with the correct
chords. The correct chords are written in black and the predicted chords in
blue.
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(a) Beat1

(b) Measure1

(c) Measure2

(d) Measure1m

Figure 6.10: Prediction results for ”Fagert er landet”. The predicted chords are
plotted as blue circles and the correct chords as green squares.
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But in measure 17, the song uses more of typical minor chords like Am and
Dm. This is where the Measure-models fail to predict the chords. To correctly
predict the chords for this song, one would need a model that recognizes this
change of mode.

This song shows the reluctance of chord change in the Beat1 model. From
Figure 6.10a we can see that nearly all the predicted chords are C, and that
there are very few changes of chords compared to the correct chord progression
and also compared to the predictions obtained from the other models.
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Chapter 7

Closing remarks

This chapter is the closing chapter of the thesis. First a summary is given,
before recommendations and further work are discussed.

7.1 Summary

In this thesis four models for chord prediction given a digital sheet music melody
input are proposed. All of the models are HMMs, but the definition of the state
and the order of the models are varied. One of the methods also builds two
separate models, one used for minor key songs and one for major key songs.

Improvement of the models are obtained when using measures as state definition
instead of single beats. The model Beat1 using the single beat state definition
leads to too few chord changes because of the high transition probabilities of
two adjacent chords being equal. Using measures as state definition helps with
this problem. The second order model Measure2 performs very similar to the
first order model Measure1 and does not lead to a noteworthy improvement of
the predictions. The model is more complex and has a much larger sample size
than the other models.

The best performing model Measure1m obtains a result of 70 % correctly pre-
dicted chords. This model classifies the input data as either minor or major

51
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and then uses a corresponding model for prediction. From plots of chord distri-
butions, we found that the chord progression used for the minor key songs and
major key songs are quite different. Because our training data consists of more
major key songs than minor key songs, the minor key songs seemed to be ne-
glected by the general models, and hence often wrongly predicted. Measure1m,
on the other hand, predicted the minor key songs much better.

The models implemented in this thesis can be of good assistance when choosing
chords for a melody, but they are not optimal. If used in addition to human
interaction, the result can be quite good. Since the problem of choosing chords
does not have one true solution, this can be considered as a good result. The
chords chosen are often suitable, although they are not the preferred chords for
a musician.

The structure of the chords progression for major key songs and minor key songs
are different. Hence, a recommendation for further work is to use models that
exploits these differences. Considering measures instead og single beats is also
very effective.

Some proposals for further work, are to use different training data. Especially,
would it be interesting to see how well the models perform with music from
other musical genres. Increasing the size of the data set by adding more songs,
would also be interesting. Perhaps would the second order model perform better
by doing this. Also, considering the song example ”Fagert er landet”, we found
that the models performed poorly when the melody changed mode. Creating a
model that could recognize such changes in the melody would probably better
the predictions. A lost proposal for further, is to change the representation of
the measure notes. In this thesis, we used an indicator vector to represent the
notes, but this does not give any information about the length of the note in
the measure. A representation containing this information, is worth testing.
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Appendix A

List of the songs used as
training data

This appendix presents a list of the songs used as training data. The songs are
a collection of traditional children’s song much used in Norway. The data is
collected from the two song books Sangskolen (Hukkelberg and Ekra, 1995) and
Den store barnesangboka. (Holen and Nordberg, 1985). It consits of in total
64, where 22 of the songs is in a minor key and 42 of the songs are major key
songs.
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17.mai sang for de sm̊a If you’re happy and you know it
Alle fugler sm̊a de er Ingerid Sletten
Amazing Grace Jeg gikk en tur p̊a stien
Auld lang syne Julekveldsvise
Ballade om en munk Kom, skal vi klippe sauen
Bind deg ein blomekrans Kona og folungen
Bjørka Lisa gikk til skolen
Bl̊amann Bl̊amann bukken min Måne og sol
Blinke blinke stjernelill Maria g̊ar blant tornekratt
Byssan lull Mellom bakkar og berg
Deck the halls My bonnie
Den første løvetann No livnar det i lundar
Den fyrste song O jul med din glede
Det bor en baker Og hver og en
Du lirande lerke Oh when the saints
Edelweiss Old McDonald
En bussj̊afør Om kvelden
Er det ikke rart P̊al sine høner
Fader Jakob Per spelmann
Fager kveldsol smiler Riv ned gjerdene
Fagert er landet S̊ag du noko
Fløy en liten bl̊afugl Scarborough fair
Fola fola blakken Se min kjole
God morgen alle sammen Ser du sola du Ola
Greensleeves Silent Night
Gubben Noa Sov no liti tuve
Happy Birthday Ta den ring
Hei Diddelumkum Trollmors vuggesang
Hevenu Shalom Vi har ei tulle
Hu hei! Kor er det vel friskt og lett Vise for gærne jinter
Hurra for deg Vuggevise
Hvem kan seile When you’re smiling
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