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Abstract

Software Defined Networks (SDNs) decouple the control plane and
the data plane, congregating control functions in a designated entity in
the network, the controller. The decoupling realizes a highly dynamic
network which has benefits such as cost reductions and programmability.
The OpenFlow protocol defines the communication between the controller
and the network nodes. This thesis aims to construct a key manage-
ment scheme for data plane encryption in SDN through an OpenFlow
channel secured by TLS. Manual operations are usually embedded in key
management solutions, but due to the dynamic nature of SDN, manual
operations are not realizable in this architecture. Therefore, an automatic
scheme needs to be designed.

Consequently, this thesis proposes a scheme for key management where
the controller manages and initializes encrypted connections in the data
plane. Encryption between the nodes is enabled by the newly developed
secure tunneling protocol, WireGuard. The key management procedures
are carried out through the secure OpenFlow channel. OpenFlow does
not provide functionality for key management operations, and therefore
this thesis proposes an extension to the protocol which facilitates this.






Sammendrag

Software Defined Networks (SDN) separerer kontrollplanet fra data-
planet, og samler kontrollfunksjonene i én enhet i nettverket, kontrolleren.
Denne oppdelingen gjgr nettverket sveert dynamisk, noe som muliggjor
reduserte driftskostnader og gjor nettverket programmerbart i sanntid.
OpenFlow er protokollen som definerer kommunikasjonen mellom kon-
trolleren og nettverksnodene. Denne masteroppgaven vil konstruere et
ngkkelhandteringssystem for kryptering av dataplanet i SDN gjennom en
OpenFlow-kanal sikret av TLS. Manuelle operasjoner er vanligvis en del
av ngkkelhdndteringslgsninger, men grunnet SDNs dynamiske natur, er
ikke manuelle operasjoner realiserbare i denne arkitekturen. Derfor trengs
et automatisk ngkkelhandteringssystem i SDN.

Denne masteroppgaven foreslar et system for ngkkelhandtering hvor
kontrolleren handterer og starter kryptert kommunikasjon i dataplanet.
Kryptering mellom nodene blir gjennomfgrt av den nylig utviklede tun-
nelleringsprotokollen WireGuard. Prosedyrene for ngkkelhdndtering er
utfort gjennom den sikre OpenFlow-kanalen. OpenFlow tilbyr ikke funk-
sjonalitet for handtering av ngkler, og derfor har det blitt utviklet en
utvidelse av protokollen spesifikt for ngkkelhandtering.
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Introduction

Software Defined Networking (SDN) is a paradigm which enables simpler and faster
innovation for network architectures. It differs from traditional networks where
control functions are defined in hardware within the nodes, as it defines control
functions in software. This shift allows for a simplified and programmable approach to
networking, enabling the rearrangement of the virtual network topology in real time.
SDN introduces a centralized approach where a designated entity — the controller —
has congregated the control functions traditionally found in the network nodes. This
allows the controller to have a global view of the network and the ability to automate
operations to improve performance. Applications can access the controller through
open APIs and can express granular policies. Innovating network processes will
thereafter become simpler because networks can be easily orchestrated by multiple
vendors.

OpenFlow is the most commonly used protocol standardizing the communication
between the controller and the nodes in SDN. It can be run securely over TLS,
ensuring encryption and authentication of the nodes. Furthermore, it decides the
possibilities of configurations that can be done to nodes in SDN, and has the ability
to be extended in order to introduce new functionality.

Network security is a topic which is increasingly gaining interest. Encryption can
be applied in different layers in the network, and the focus of this thesis is to encrypt
the traffic between the nodes in the network. Typically, secure network tunnels are
configured manually, raising the bar for implementing security in the network.

The demand for flexible solutions enabling encrypted data transmission is putting
pressure on network development. Traditional networks are built up of static hardware
appliances, which limit innovation and opens up for new approaches such as SDN.
This thesis aims to make use of the benefits of SDN in order to facilitate encrypted
data transmission between nodes in a network. A difficult problem for securing
data transmission relies on management of keys which commonly includes manual
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operations. Manual operations in the data plane of SDN cannot be realized, seeing
as the architecture is highly dynamic. Therefore, an automatic key management
scheme is essential in order to facilitate encryption of the data plane in SDN.

The problem to be solved in this thesis is how to achieve a key management scheme
for data plane encryption in SDN through an OpenFlow channel secured by TLS. The
thesis aims to develop a scheme for key management in SDN, hereafter referred to
as DPKMS. The focus lies in automating processes where the controller centralizes
and initializes the key management functions. Additionally, a protocol extension to
OpenFlow will be formulated in order to include support for key management.

1.1 Motivation

Due to the increased focus on digitalization on a global scale, network security is
gaining importance. At the core of network security is cryptography; hiding messages
with the use of algorithms which enables only parties with specific information, i.e.
keys, to read it. A challenge when it comes to encryption is the way in which these
keys are managed, that is, how to efficiently and securely handle processes related to
their lifecycle.

SDN architecture is currently being introduced to a growing number of data
centers and enterprises worldwide [SDN16]. The architecture brings new possibilities
to security research and this thesis aims to develop a key management scheme for
encrypting the data plane in SDN, utilizing these benefits. A key management
scheme implemented in SDN would imply encryption between nodes connected to a
controller. Following is a presentation of scenarios in which it would be beneficial to
enable secure traffic in this part of the network.

Today, SDN is being deployed in closed data centers which isolates data traffic
within the network, for instance in order to offer cloud services. However, if the
SDNs were to send data over unsecured networks such as the Internet, it would be
useful to encrypt traffic from the nodes connected to the insecure network. Moreover,
if two secure SDNs were located in different geographical areas, traffic transmitted
through insecure transport networks should be encrypted.

Another possible scenario is SDN in wireless networks, which is still in an early
stage of development [BQCM'16, CGMP12]. Encryption of wireless transmission
between nodes is strongly recommended seeing as the medium allows for easy
eavesdropping of the traffic to take place. Therefore, managing keys in order to
encrypt the data plane would be beneficial to the network.

Furthermore, encryption could be difficult to implement in some end-devices such
as light-weight embedded ToT devices [PGC*14, Sch14]. A possible solution to this
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would be to extract the encryption process from the devices and to offer encryption
of the traffic from the network nodes instead.

Finally, SDN could be incorporated into a network of a large company with many
departments. All of the departments would share the same infrastructure, where
some departments might want their traffic protected against other users. Hence,
encryption of the data plane in SDN would allow for specific flows — similar network
traffic routed the same way — to be isolated from the rest of the traffic. This would
make the traffic inaccessible to others.

1.2 Scope and Objectives

The goal of this thesis is to develop a scheme for management of keys in the Data
plane in SDN where the keys are used by WireGuard, a secure network tunnel. A
secure OpenFlow channel exists between the controller and each of the nodes, and it
is protected by Transport Layer Security (TLS). WireGuard is responsible for key
exchange and encryption of the connection between two network nodes.

Figure 1.1: Reference model for the scheme to be developed in the thesis, DPKMS.

Figure 1.1 shows the reference model for the scheme to be developed in this thesis,
referred to as DPKMS. The scope encompasses communication between the controller
and the nodes, in addition to the communication between the nodes. However, all
communication with and implementation of the application is beyond the scope of
this thesis.
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The main objectives for this thesis are as follows:

— Propose a scheme for management of keys in the dataplane of SDN

— Formulate an extension to the OpenFlow protocol in order for the key manage-
ment scheme to be implemented

— Analyze the proposed scheme according to a set of established requirements

1.3 Methodology

In the initial phase of the work behind this thesis, the research topic was presented
as Securing Dynamic Software Defined Networks. The topic was extensive and could
therefore possibly lead in multiple directions with regards to method and results.
Key management in the data plane was chosen as the main focus, as there exists
little research on this related to SDN.

An Internet Draft proposing a model for key management in the data plane of
SDN was discovered [MLLM16]. This model implemented key management for a
protocol suite called IPsec (2.4.3), which will be presented in the section for related
work (2.7). It used the control plane protocol NETCONF, and the initial intention
was to conduct a proof of concept the model. However, when the model had been
thoroughly investigated, the task proved to be too complex.

Consequently, a reference model for the thesis was processed and a decision was
made to use OpenFlow (2.2) as the control plane protocol, discussed in section 6.2.
No other attempts had been found to include key management in OpenFlow, which
would involve extending the protocol. A theoretical rather than a practical approach
was chosen due to the novelty and complexity of the task. As a result of this, a
thorough study of the technologies and how to schematically do key management in
SDN was conducted.

To determine which technologies to focus on, technical assessment was carried
out — presented in section 2.6. After testing, WireGuard — a secure network tunnel
(2.5.1) — was found to be the most suitable choice for data plane encryption, due to
its simplicity which allowed for significant focus on the scheme.

Following the decision to design a scheme for key management, a set of require-
ments were made. Appropriate requirements were made by examining standards and
protocols for key management and were made in order to enable the assessment and
analysis of the produced scheme.

Thereafter, the scheme was designed. Processes needed in the scheme were
identified by examining the requirements. Difficulties encountered were related to
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synchronization. Therefore, a state transition diagram illustrating the states of
a node was made. Each process was then made by illustrating message flow in
message sequence diagrams. Finally, each of the processes were assessed by using the
requirements previously made.

1.4 Novelty

The novelty of this thesis is the design of a scheme for key management through an
encrypted OpenFlow channel in SDN. Previous studies — to be presented in section 2.7
— have researched encryption in the data plane in an SDN approach where a central
entity in the network manages the keys. However, including key management as a
part of the established OpenFlow control plane has not — to the author’s knowledge —
previously been realized. This thesis includes both the scheme for key management
between the controller and nodes in a network as well as an extension to OpenFlow.

1.5 Outline

Chapter 2 — Background and Related Work — will explain the background information
needed in order to understand the research field on which the thesis is based. Central
technologies such as WireGuard, Open vSwitch and Floodlight are then explained,
followed by a presentation of technical assessment made prior to designing the scheme.
The chapter closes with work related to the thesis.

Chapter 3 — Key Management in SDN — presents preliminaries with regards to
the scheme that is designed, DPKMS. Two characteristics distinguishing the key
management in SDN from traditional networks are highlighted, together with the
assumptions made prior to designing the scheme. Lastly, the requirements to be used
for assessing the scheme are stated.

Chapter 4 — Data Plane Key Management Scheme (DPKMS) — presents the
scheme developed for solving key management in SDN, DPKMS. The chapter starts
by going through each entity making up the model and the interfaces connecting each
of them. Thereafter, each process in the scheme is designed. Finally, the chapter
presents extensions to the OpenFlow protocol.

Chapter 5 — Extending OpenFlow — presents the extensions made to the OpenFlow
protocol. Firstly, the Experimenter structure in OpenFlow is presented, followed
by a section for each of the messages and thereafter the attributes defined in the
experimenter structure.

Chapter 6 — Analysis and Discussion — presents a discussion and an analysis of
the developed scheme. In addition, alternative ways of implementing the scheme are
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examined in order to justify the design of DPKMS. Thereafter, limitations to the
scheme are presented.

Chapter 7 — Conclusion — summarizes the contribution of this thesis and gives
directions with regards to future work to extend the thesis.



Background and Related Work

2.1 Software Defined Networking (SDN)

In essence, the concept of Software Defined Network (SDN) is the decoupling of the
control plane and the data plane [Funl2]. The control functions from the control
plane are assembled in a central entity, called controller, which manages the network.
The controller is defined in software and captures state information from the network
nodes in order to have an updated view of the network at all times [GB14]. This
enables the controller to make routing decisions based on a global view of the network
[BEIE15]. Centralizing the controller makes it easier to define and upgrade policies,
as well as the abstraction simplifies the network equipment.

The concept is illustrated in figure 2.1, where a controller is connected with a
path to each of the nodes in the network. Additionally, the figure shows applications
that can be built on top of the controller. These applications have the ability to
directly program the network topology in real time. The connections between the
controller and the nodes are part of the control plane, and the most common protocol
for the SDN control plane is OpenFlow, thoroughly explained in section 2.2. Data
plane traffic passes through the network nodes where the path is orchestrated by the
controller.



8 2. BACKGROUND AND RELATED WORK

[ | OpenFlow
Il DATA PLANE TRAFFIC

Figure 2.1: The overall architecture of SDN; illustrating the entities in a network
with applications, a controller and nodes. The interfaces connecting the different
entities are also shown.

Traditionally, network entities consist of a control plane and a data plane imple-
mented in static hardware appliances, as illustrated in 2.2. Packets in the network are
routed through these entities by looking up in the routing table which is configured
according to a protocol. While the protocols are static, the applications on top
of the network are dynamic, making the architecture difficult to scale [CTHN16].
New functionality and small changes to protocols in traditional networks have to
be deployed in the hardware which may be a time-consuming task. Traditional
networking is unable to respond fast enough to rapid network changes. The archi-
tecture was practical when client-server computing was dominant, but as a result
of the emergence of dynamic computing and new storage requirements, traditional
architecture is unable to maintain the same rate of progress as SDN.
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CONTROL PLANE TRAFFIC
DATA PLANE TRAFFIC

Figure 2.2: The data plane and control plane in traditional networks.

The development of the SDN architecture started when the protocol OpenFlow,
discussed in section 2.2, was released in 2009 [Opel5]. In 2011, the architecture
gained salience, resulting in more research on the topic being carried out [GB14].
Motivation for the heightened interest included benefits such as cost reductions and
openness leading to a higher rate of innovation. Furthermore, the increased volumes
of data being processed in data centers has been a driving force for the popularity of
the SDN paradigm. However, during the past few years the development rate of SDN
technology has stagnated [SDN16]. As stated in OpenFlow and SDN, State of the
Union, provided by Open Networking Foundation, the lack of interoperability and
features yet made for SDN is considered the cause of this stagnation. Nevertheless,
one assumes that with the ratification of SDN technology by leading companies
within the networking industry, the technology will continue to evolve.
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2.2 OpenFlow

OpenFlow is a communication standard for SDN[Opel5]. While other protocols exist
for SDN’s control plane, OpenFlow is most commonly used. OpenFlow defines a
protocol for sending messages between the controller and the switch. An OpenFlow
switch implements the protocol and lets a controller administer the flow tables
accordingly.

OpenFlow Messages

OpenFlow messages are sent over Transmission Control Protocol (TCP) which
provides reliable message delivery [Opel5]. OpenFlow messages fit 64KB of data
in one message, and a Type Length Value (TLV) element can be added to support
additional and variable data within a packet. The protocol operates with three types
of messages — asynchronous, controller-to-switch, and symmetric — each with multiple
subtypes. The asynchronous messages are sent from the switch and can be packets
for updating the controller or they can be PacketOut messages. PacketOut messages
are sent by a switch containing a packet that either does not have a match in the flow
table or does not match with an action telling the switch to encapsulate the packet
and send it to the controller. The controller-to-switch messages are initiated by the
controller and concern messages sent from the controller to the switch. These are
related to modifications to a flow table, or a PacketIn message. A PacketIn message
is usually a response to a PacketOut message which contains the same packet and
related actions that the controller wants to perform on it. Symmetric messages are
usually messages used for setup or for system checks.

Match field | Priority | Counters | Instructions | Timeouts ‘ Cookie‘

Table 2.1: Flow table entries in an OpenFlow switch.

Switch Architecture

The main components of an OpenFlow switch are a secure channel connecting the
switch to the controller, the packet processing pipeline and ports [GB14]. The
OpenFlow channel supports TLS-based two-way asymmetrical encryption, but this
is not mandatory [Opel5]. The secure channel has the ability to receive packets from
the switch to send it to the controller and to let the controller send packets to the
switch.

An OpenFlow Switch contains several flow tables that implement the core function
of the switch, which is to handle incoming packets [Opel5]. The packet processing
pipeline determines how to handle incoming packets. The flow tables contain several
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entries for defining a flow — a set of packets that are routed the same way — shown in
table 2.1. The first field in a flow table entry — the match field — tells which packets
will be routed by this entry. An example of this is matching flows with the same
IP-destination address, type of packet or header. If no entries match, the “table-miss”
entry decides what to do with the packets. The priority field is distinguishing between
packets that match several entries. The packets are matched with the entity with the
highest priority and counters are used for tracking statistics in the network. Further,
the instruction field decides how the packet is processed. It can either be a set of
actions — such as drop, forward, encapsulate or send to the controller — or it can be
a pipeline processing instruction for instance when forwarding the packet to the next
flow table.

Ports in an OpenFlow Switch can either be a physical port for the device or a
virtual port[GB14]. Each port contains queues corresponding to different Quality of
Service (QoS) for the packet processing pipeline to choose for outgoing packets.

The Controller’s Role in OpenFlow

A controller that implements the OpenFlow protocol can add packets to the switches
using two different modes; proactively and reactively [Opel5]. Reactively adding
flow table entries means that packets that do not match any field in the flow tables
will be sent to the controller. Here, the controller decides what will be applied to
the packet. An example is making a new entry in the flow table. In proactive mode,
the controller will transmit the rules before starting, and packets that do not match
any fields will be dropped if nothing else is specified in the "table miss" entry. The
network can be defined as having multiple controllers working together to achieve a
more stable and reliable network. This is achieved through supplementary controllers
doing load balancing and being able to take over the control when a controller fails.

State of the art

OpenFlow was, as stated in section 2.1, the driving force behind SDN, ready for
early deployment in 2009. Open Networking Foundation (ONF) was established in
2011 by leading operators — for instance by Google, Facebook and Microsoft — to
be responsible for the OpenFlow standard [GB14]. As mentioned, a considerable
amount of research on the OpenFlow protocol was conducted in the early phase,
but the interest has decreased the last couple of years. The challenge of introducing
OpenFlow is that both hardware and software needs to guarantee inseparability
[SDN16]. However, as the protocol remains the most widespread and acclaimed
protocol for SDN; the interest will persist as long as the evolution continues.
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Plaintext ,  Encryption Ciphertext » Decryption Plaintext
algorithm algorithm
ALICE BOB

Figure 2.3: Illustration of symmetric key cryptography where two parties are using
the same key for encryption and decryption.

2.3 Cryptography

To comprehend how a key management scheme is built up, a basic understanding of
cryptography is needed. Consequently, the following section will provide a further
explanation of the concepts with regards to cryptographic keys.

The basic concept of encryption is that two parties wish to share a secret, without
anyone else being able to understand it. This is done by running it through a
cryptographic algorithm, illustrated in figure 2.3. For the other party to be able
to extract the secret, the algorithm is reversible if it is exposed to a specific key.
The figure illustrates how the plaintext — the secret to be shared — and a key are
inserted in a cryptographic algorithm, calculating the ciphertext, the hidden secret.
Thereafter, the ciphertext can be supplied in a decryption algorithm together with a
key in order to obtain the plaintext.

2.3.1 Cryptographic Keys

From a key-management perspective, there are two types of keys used for ensuring
security, namely long-term keys and session keys. Long-term keys are generated to
last for a relatively long period in an entity and are commonly not used directly
for encryption or decryption. Session keys are often generated using information
from the long-term key and are used to encrypt a specific session. For long-term
keys, there are two main categories of implementation; either the two parties share
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Bob's Bob's
public private
key \ f' key
Plaintext » Encryption Ciphertext _,  Decryption Plaintext
algorithm algorithm
ALICE BOB

Figure 2.4: The operation of a public key algorithm where a key pair, consisting of
a public key and a private key, are used for encryption and decryption respectively.

a symmetric key or the algorithm is made so that it has one encryption key and a
different decryption key, asymmetric keys.

Symmetric Key Cryptography

Symmetric key cryptography is based on the fact that both parties in the communi-
cation share the same secret key used for both encryption and decryption, illustrated
in figure 2.3. Algorithms for symmetric key cryptography are simple and operate at
a high speed, but the distribution of the symmetric key is complex. This is because
it needs to be transported securely so that a third party is not able to read the key
without permission. Symmetric keys are often used subsequently to establishing a
secure channel with asymmetric keys as session keys.

Asymmetric Key Cryptography

Asymmetric key cryptography — also called public-key cryptography — is based on
each peer having two keys each, a public key and a private key. Algorithms for
asymmetric keys allow for the plaintext and the public key to be used for encryption
while the private key together with the ciphertext are used for decryption, shown in
figure 2.3.1. Each peer can share its public key so that it is possible for anyone to
encrypt a message meant for the peer. Algorithms used for computing asymmetric
keys are slower than the ones used for symmetric cryptography, but allows for easier
distribution of keys.
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2.4 Key Management

Essentially, the purpose of key management is to process cryptographic keys that
are used in a system. Key management is based on the phases of the key’s lifecycle,
defined as creation, distribution, usage, archiving and destruction [DMO04]. Properties
of key management systems often rely on the design of protocol rather than the
cryptographic algorithms used [FM90]. Consequently, it is very important to design
secure and correct protocols for key management.

The following section specifies the different phases in a key management scheme.
Thereafter, different architectures for key management are discussed in section 2.4.2.
Finally, the section presents some key management implementations that were used
to draw inspiration for the design of DPKMS.

2.4.1 Phases in Key Management

These phases have been considered to be the main phases in any key management
scheme. However, depending on implementation, various others could also be included,
such as registering keys when a registration authority is present or making a certificate.

Key Generation Generation of keys is a crucial phase in a key management scheme.
Keys are generated with the use of algorithms that process random numbers.
For keys to be secure, their randomness needs to be true, at the same time
as the algorithms need to have no known weaknesses that can be exploited
by attackers. The generation process depends on which type of key needs to
be generated [DMO04]. Symmetric keys are easy to compute while generation
of asymmetric keys is a CPU-intensive task. Key generation is not to be
exchanged for key derivation, because when generating a key, the process relies
on random number generation. Deriving a key, however, is deterministic, and
the inputs to an algorithm are secret but not random.

Key Distribution Key distribution is the task of delivering keying material to the
right entities in a network. Distribution technique dependents on which type of
keys are used, either symmetric or asymmetric, both explained in section 2.3.
Asymmetric keys are easy to distribute because the public key can be given
to whoever wishes communication, and does not reveal anything crucial about
the private decryption key. For symmetric keys, the distribution technique is
more difficult, often relying on an already secured channel.

Key Activation Key Activation describes the process where a generated and dis-
tributed key is available for use for a cryptographic function in a system.

Key Exchange Key exchange is the process by which two already authenticated
entities decide on a key or keypair for the communication between them. There
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are several protocols for key exchange, depending on factors such as key type —
asymmetric or symmetric — and rekeying interval. Key agreement can be a part
of the key exchange phase, where the entities can agree upon the properties for
generating a shared key.

Rekeying Rekeying is the process where a session key is changed because the set
time — the cryptoperiod — has expired. Each session key has an associated
Time To Live (TTL), set by the administrators of the key management. To
accomplish Perfect Forward Secrecy, explained in section 3.3, the interval for
rekeying needs to be short. There are two main ways of exchanging an old key
for a one. Either a new key can be added before withdrawing the old one, or
the old one can first be withdrawn before adding the new one.

Key Revocation Key revocation is a routine which takes place when it becomes
necessary to remove a key from a system. Revocation can occur due to
a compromised key, a deauthorized entity or a compromised cryptographic
algorithm. Procedures for key revocation depend on the type of key management
system, but a common way of implementing this is by having an updated list
of revoked keys.

Storing Keys Also included in key management is how to store keys that are not
to be used immediately. In case the entity in which the encryption takes
place is stolen, some means of secure storage needs to be arranged. The NIST
framework for key management specifies requirements for tamper resistant
security modules (TRSM) that are used for secure storage of keys [BSBC13].

Key Destruction Key destruction is the process of deleting all duplicates of a
key in a system. Complete destruction of keys is only possible by physically
destroying the entity containing the key [DMO04]. However, there are other
processes where the destruction of devices is not needed, but these processes
do not completely destroy the key.

2.4.2 Architectures

The way in which a key management scheme is implemented depends on the specific
problem that the system is made to solve. The following section will present various
architectures where a third part is present. This is due to the fact that SDN
evolves around an architecture where a central entity is present at all times. Hence,
architectures involving a third party can be relevant to key management in SDN.

Key Distribution Center

From the definition provided by W. Stallings, a Key Distribution Center (KDC) is
used to distribute and generate keys in a system consisting of entities that share a
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key with the KDC [Sta05]. An entity needs to contact the KDC for it to issue a
shared key between the initiating entity and the one it wants to contact.

Key Translation Center

The operation of a Key Translation Center (KTC) resembles the one of KDC, but
does not generate any keys — it is the entities themselves that carry out this operation.
The KTC is a trusted entity that shares keys with all parties in the network. An
entity wishing to send something to another entity in the network encrypts the
message using the key shared with the KTC. The KTC decrypts the message and
thereafter encrypts it with the key of the destination, before transmitting it to the
rightful destination.

Public Key Authority

For asymmetric keys, a public key authority (PKA) can be kept to maintain a
directory of all public keys of entities in the network [Sta05]. The entities know the
public key of the authority and send requests to the authority to get the public key
of other entities in the network.

Public Key Infrastructure

A Public Key Infrastructure (PKI), like a PKA, provisions asymmetric cryptography
[DM04]. The PKI’s task is to manage certificates in a system. Certificates is a way of
implementing asymmetric cryptography and authentication by combining the public
key and identification for the owner of the certificate in a file signed by a Certification
Authority (CA). An entity wanting to communicate with the owner of a certificate
checks its validity by consulting a CA. Thereafter, the entity uses the public key to
encrypt private messages to the owner. The PKI’s role in this architecture is to be
the infrastructure that distributes the certificates to entities that use them.

A PKI is made up of several entities, the main ones listed below:

— (CAs generate certificates according to preconditioned policies

Registration Authority (RA)s verify that an entity requesting a certificate is
valid

— Certificate Repositories store certificates

— Certificate Status Servers provide the status of certificates, including a list of
revoked certificates
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2.4.3 Implementations of Key Management Schemes

When designing DPKMS, schemes built for other purposes needed to be examined.
This is because they served as inspiration for the development of the scheme and
requirements which will be presented in subsequent chapters. This section will
go through some of the most relevant implementations in order to discuss design
decisions in section 6.2.

Key Management in Wireless Mobile Networks

In wireless mobile networks such as 3GPP’s Long Term Evolution (LTE), managing
keys is a complex task where entities are moving and still expect secure communi-
cation when the access point changes [HC14, 3GP13]. Even though the network is
architecturally very different from SDN, some key concepts can still be examined,
such as the emphasis on key separation.

TLS, TLSA and DANE

TLS is a public key protocol that depends on a PKI and certificates for binding
keys and names. In general, TLS is used for one-way authentication, where only
the server is authenticated. However, two-way authentication is possible [DR08]. A
potential weakness to TLS’s key management scheme is that it allows a trusted CA
to issue certificates for any domain name, and this can be problematic if any CA is
compromised.

DNS-Based Authentication of Named Entities (DANE) provides a way to bind
public keys to DNS names for TLS x.509 certificates [HS12]. This is done by using
DNSSEC [AAL™05], a protocol that provides secure communication to a DNS-server
by using public-key cryptography, signing the lookups to a DNS-server. DNSSEC is
used to store and sign the keys and certificates, while DANE provides the binding
of public keys and certificates. This protocol enables domain name holders to issue
certificates themselves, without being dependent on a CA.

The DANE and TLSA protocol works in the following way: A client wants to
contact a server and looks up the server’s name using DNS. The DNS-server then
returns the correct IP-address of the server together with its certificate. When the
correct server is contacted, and issues a TLS response to the client containing its
certificate, the client is able to authenticate the server without contacting a CA
[Ken14].

By substituting CAs with DNS-servers, a potential drawback is that the DNS-
queries are cached and therefore there is no way of revoking a certificate. If an
administrator removes a certificate from the DNS-server, clients that have already
cached the certificate will stop using it when the TTL has expired. Thus, setting the
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TTL to a very short number will force the client to always choose a certificate which
is up to date. This solution will make DNS lookups slower.

IPsec and IKE

It is important to provide a thorough description of the IPsec protocol, seeing as
this implementation provided significant inspiration in the development of DPKMS.
Additionally, IPsec is seen as an industry standard for cryptography and is widely
used for securing Virtual Private Network (VPN).

IPsec is a suite of protocols for securing communication by means of authenticating
and encrypting communication between two entities in the IP layer [FK11]. Located
below the transport layer, the protocol is transparent to applications. IPsec’s
main components are Authentication Header (AH), Encapsulating Security Payload
(ESP) and Internet Key Exchange (IKE). IKE is the protocol in the IPsec suite
responsible for key management and negotiation. Two different protocols for security
are implemented in IPsec, namely AH which authenticates the communicating entities,
and ESP which combines both authentication and encryption [Sta05].

Security Association (SA) are used in IPsec for defining security measures in
a one-way connection between sender and receiver in an IPsec message exchange.
Different databases are used in IPsec when the policies in an SA are negotiated.
These are the Security Association Database (SAD) — deciding which parameters to
use for encryption — and the Security Policy Database (SPD) — for deciding when to
use IPsec.

IKE

IKE is IPSec’s implementation of key management [KHNE10]. It is a protocol
for setting up the SAs and mutually authenticating the communicating entities.
Key management in IKE assumes that asymmetric keys are distributed to the
communicators. The protocol focuses on the exchange, and the distribution of keys is
left to out-of-band management. IKE uses UDP as transport protocol. Two versions
exist for IKE, the newest one — IKEv2 — is the one discussed in the following.

The protocol starts with the two exchanges called IKE_SA_INIT and IKE_AUTH.
These are followed by either CREATE_CHILD_SA or INFORMAL. IKE_SA_INIT is the
exchange for negotiating security parameters of the SA and sends nonces and values
for the Diffie-Hellman (DH) handshake to be carried out. IKE_AUTH is an exchange
for authentication, so identities are transmitted in order to set up an SA by initiating
a DH-key exchange. Authentication can be done in three ways; by digital signatures;
public-key encryption; or symmetric key encryption. The SA resulting from this
exchange is the basis for the ones created by the next exchange. CREATE_CHILD_SA
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is an exchange used to establish a session key for protecting data while INFORMAL is
used for tasks like error reporting or deleting an SA.

2.5 Applied Technologies

The following section is intended to provide an overview of technologies used mainly
for experimentation and as a basis when making DPKMS.

2.5.1 WireGuard

WireGuard is a network tunnel that implements security which is meant to replace
IPsec [Donl7]. Tt uses public key cryptography with peers identifying each other by
a simple scheme consisting of their public key and IP-address. The screenshot in
figure 2.5 shows the simplest setup of a WireGuard tunnel. The static public keys
are used for the establishment of a symmetric session key. The session key is used to
encrypt parts of a session until it is changed. It operates in layer three by encrypting
IP packets over User Datagram Protocol (UDP). It is said to use state-of-the-art
cryptography with neither cipher nor protocol agility. This is a deliberate choice, as
it avoids attacks resulting from the exploitation of broken ciphers.

WireGuard is still in an experimental stage of development, as it was released
in June 2016. There are still parts of the software that are not completed, such as
cross-platform support. Nevertheless, there is an expectation in the industry that
WireGuard can be implemented in the near future in order to replace other tunneling
protocols, and in the newly released project from Docker, LinuxKit is going to serve
as an incubator for WireGuard [Panil].

Key management in WireGuard is explained in this paragraph. Session keys in
WireGuard are established in a key exchange based on the Noise protocol framework
[Per17]. However, key distribution is not considered in the standard, and is supposed
to be provided by an out-of-band mechanism. The static keys are 32 bytes long
Curve25519 points. Curve25519 is considered a state-of-the-art Elliptic Curve Diffie-
Hellman function and is used for several applications such as OpenSSH, the Signal
Protocol and GnuPG [Ber06]. First, the keys are generated quickly but are CPU-
intensive to compute. After this, the keys are used for mutual authentication and
establishing symmetric session keys between the communicating entities. The key
exchange for the session key is only one Round Trip Time (RTT) and establishes a
pair of session keys; one for sending and one for receiving. These keys are replaced
after a relatively short time interval in order to achieve perfect forward secrecy. In
addition to asymmetric keys, WireGuard has an option to use a pre-shared symmetric
key shared with the communicators. This feature exists due to the possibility of
quantum cryptography emerging and breaking Curve25519.
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@ - 0 Node A [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help
confnodeb.conf (~/Desktop) - gedit

Open ¥ [+

# confnodeb.conf
[Interface]
PrivateKey = WL8BahndSpGnfFbaWHhFXuzZ7P9jKFcZVUo6BMXRYIm8=

[Peer]
Publickey = InjGl1ZI4E19bTBski1P6t8LUUAPaQC+gFwVyfhjraus=
AllowedIPs = 129.241.208.22ﬂ

Figure 2.5: Screenshot of the configuration file showing the simple setup of a
WireGuard tunnel in one of the peers.

WireGuard is implemented as a virtual interface that is configured with a
private key and, optionally, a UDP port that it listens to. The tunnel is implemented
in the Linux kernel which implies a smaller codebase and an effectively running
program. Encryption and decryption of data is done in-place and can be done in
parallel for utilizing all available CPU cores which speeds up the process. Perfect
forward secrecy is maintained by always deleting cryptographic operations from
memory after use.

The WireGuard API is based on ioctl(2) and its command line tool is called
wg. wg lets you do operations on the interface and includes a series of commands to
interact with the WireGuard interface.

WireGuard’s Architecture is simple and is based upon a concept referred
to as Cryptokey Routing, which deals with how the peers are authenticated. Each
WireGuard interface has, as described earlier, a private key and a port which it
listens to. Additionally, the interface has a list of peers that it is able to establish
a WireGuard tunnel with, each identified by a public key and a list of allowed
IP-addresses. This is illustrated in figure 2.7 showing WireGuard configuration in
two nodes.
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& - 0 Node B [Running] - Oracle VM VirtualBox
File Machine View Input Devices Help
Terminal
nodeb@nodeb-VirtualBox: ~
nodeb@nodeb-VirtualBox:~S sudo ip link add dev wg2 type wireguard

nodeb@nodeb-VirtualBox: sudo wg setconf wg2 Desktop/confnodea.conf
nodeb@nodeb-VirtualBox: sudo ip link set up dev wg2
nodeb@nodeb-VirtualBox:

Figure 2.6: Screenshot of how a new WireGuard interface (wg2) is added and
thereafter how a link is established.

WireGuard’s operation starts by adding an interface, shown in the screenshot
in 2.6. In the screenshot, wg2 is the interface being added in a virtual machine called
Node B. The configuration file used to set up the interface and one peer, Node A, is
similar to the configuration file in figure 2.5. Consequently, after the private key and
at least one peer has been added, a handshake is performed, shown in figure 2.7.
This is done by the initiator sending its public key to the responder, encrypted with
the public key of the responder. A counter is included in this message to protect
against Denial of Service (DoS) attacks. The responder adds the key to its list of
peers and one more handshake message is needed before a symmetric, authenticated
session key can be derived. The key exchange is only one RTT. Conclusively, the
link is set up and it is possible to view the interface as shown in the screenshot 2.8.
Thereafter, the peers can communicate securely with each other through the secure

tunnel.

Handshake
[Interface] 2 (Interface]
PrivateKey = yAnz5TF+IXXJte14ji3zIMNqg+hd2rYUlgJBgB3fBmk= Calculating PrivateKey = yAnz5TF+XXJte141ji3zIMNg+hd2rYUlgJBgB3Bmk=
symmetric keys

[Peer] :D [Peer]

PublicKey = xTIBASrboUvnHdhtod]bBe697 QJLER1 NABAMZqpaDg= 3. PublicKey = xTIBASrboUvnHahtod|b8e6STQILERtINAB4mZgpBDg=
Allowed|Ps = 10.192.122.3/32, 10.192.124.1/24 Allowed|Ps = 10.192.122.3/32, 10.192.124.1/24

Figure 2.7: The configuration information in the nodes and the steps for setting
up an encrypted tunnel through WireGuard.

Limitations with regards to the use of WireGuard are for instance the lack of
cipher agility. This can be a problem for peers that are unable to use the supported
type of cipher, and therefore the nodes cannot communicate through WireGuard.
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Another potential problem with this is that if a vulnerability is discovered in the
used cipher, whoever uses WireGuard will be insecure. Nevertheless, this was the
reason behind the choice of a rigid protocol; it is simpler for all nodes to update if
a vulnerability is discovered. A second limitation to WireGuard, in the context of
SDN, is that it only operates at layer three, only forwarding IP packets. SDN-nodes
are conceptually able to forward traffic from layer 2-5 and therefore only forwarding
IP packets is a restriction to the node. This would either demand the node to
encapsulate all packets that will go through WireGuard, or reject non-IP packets
to be sent through the WireGuard tunnel. A third limitation is the novelty of
WireGuard. The tunnel is not yet fully developed and there still might be a chance
that a severe problem occurs, leading to the tunnel loosing its reputation.

interface:
public key: sB4scxDLwdSMogGqUV54BStpd7C7xrvcG36V4U3LgI=
private key: (hidden)

listening port: 41151

dpeer: InjGLLZI4ELSl
allowed ips: 129.241.2088.2

Figure 2.8: Screenshot showing a WireGuard interface and a configured peer
through the use of the wg utility.

2.5.2 Open vSwitch

Open vSwitch (OVS) is a virtual OpenFlow switch [PPK*15]. The switch is a
multilayer open source and multiplatform switch, often used in SDN-research. It
was used in this thesis for testing and affirming theories. The virtual switch was
chosen because it supports the OpenFlow Experimenter structure and there exist
examples for using this in OVS. Furthermore, it was the preferred switch for Steffen
Birkeland in his thesis [SF16], as well as it is open source and has many tutorials,
making setup simple.

OVS consists of two main components for packet forwarding; ovs-vswitchd and
the datapath kernel module. ovs-vswitchd is a user-space deamon that is connected
to a controller through OpenFlow for receiving flow tables. The datapath kernel
module is the module responsible for forwarding the packets, with actions from
ovs-vswitchd on how to handle them. If no action for the specific packet is decided
in the datapath kernel module, the packet is sent to ovs-vswitchd.
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2.5.3 Floodlight

Floodlight is a java-based SDN-controller that supports virtual switches and Open-
Flow [Flo17a]. The controller is known to be simple to orchestrate and offers
Application Programming Interface (API)s to applications based on REST. The
Floodlight controller was used for defining flows to send to specific ports in OVS.
The reason for choosing Floodlight was that it was the only controller where there
was found examples of use of the OpenFlow Experimenter structure.

2.6 Technical Assessment

To get a better understanding of SDN, technical experiments were conducted using
mininet — a network emulator — and Open vSwitch (2.5.2) in Ubuntu. This allowed
for a thorough comprehension of how the characteristics of SDN could benefit a key
management scheme.

To ascertain the feasibility of implementing DPKMS, it was important to validate
a concern before designing a key management scheme for WireGuard. The concern
revolved around whether it was possible to send messages through the WireGuard
interface connected to an OpenFlow switch. To ascertain this, two already configured
WireGuard interfaces in two different virtual machines were connected to switches
with Open vSwitch software. To do this, a port in each switch was given a WireGuard
interface. Thereafter, the two switches were again connected to a controller, chosen
to be the Floodlight (2.5.3) controller. The switches with the WireGuard interfaces
were implemented in two virtual machines with Ubuntu, while the controller was run
from the native Ubuntu. The goal of this experiment was to find out whether or not
the switch was able to distinguish flows to be put into the WireGuard interface.

It was proven possible to send flows through the WireGuard interface when
conducting the experiment. This could be seen by inspecting received packets in the
packet analyzer Wireshark.

2.7 Related Work

SDN research related to security is in general focused on the security between the
nodes and the controller, in the control plane where OpenFlow operates [BEIE15,
DFP13, CTHN16]. Nevertheless, there exists other studies examining how the
security in the data plane can be enhanced by the use of a software defined scheme,
such as the Internet Draft Software-Defined Networking (SDN)-based IPsec Flow
Protection [MLLM16]. Early in the process of developing the problem description
for this thesis, it was considered to conduct a Proof of Concept (PoC) realization of
the model proposed here. The Internet Draft proposes a model where the controller
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establishes the IPsec SAs and provides protection for flows through the protocol
suite IPsec. Their approach to dynamic key management for IKE is through the
configuration protocol NETCONF by the use of YANG models [Ennll1]. The initial
plan of using this model was discarded due to the complexity residing in IPsec
and IKE. Instead, a simpler approach through OpenFlow was used. However, the
proposal served as great inspiration for DPKMS

Another study examining the security in the data plane of SDN is Steffen Birke-
land’s thesis from 2016 [SF16]. His thesis — Software Defined Data Flow Isolation
by Virtualization and Cryptographic Key Distribution — is the reason behind the
development of this thesis, as it was initially thought of as an extension to Birkeland’s
thesis. Birkeland’s objective was to explore how existing open source SDN technology
can be used to extend an SDN framework to handle a centralized control of encryption
where he used a manual setup of IPsec to provide encryption to the data traffic. His
work was used as a basis when deciding which technologies to use for this thesis.

For key management among network nodes, several schemes are proposed, for
instance for the use in Distributed Sensor Networks [EG02, CGPMO05] from which
inspiration can be derived. However, they are not directly applicable to the key
management problem in SDN. Key management itself is a well researched topic,
and there are several frameworks [FL93, BBB11] and books [Sta05] presenting the
conventional schemes. Nevertheless, none of them are directly related to the problem
of key management in a software defined scheme. IKE, the key management protocol
for IPsec [KHNE10], has also been studied thoroughly. IPsec and IKE was used as
inspiration when composing DPKMS, but the protocol was not used directly due to
its complexity which will be discussed in section 6.2.



Key Management in SDIN

This chapter examines preliminary conditions with regards to the key management
scheme to be developed, DPKMS. Firstly, the characteristics of SDN are presented.
These characteristics are recognized to interfere with the way the scheme is designed.
Thereafter, assumptions are stated, followed by requirements made in order to later
evaluate the proposed model.

3.1 Characteristics of SDIN

SDN is an architecture centered around the concept of central control of a network.
This centrality can be both an enhancement and a drawback when it comes to key
management in the communicating nodes. There are two main characteristics of
SDN that make the process of managing keys in the data plane different to other
approaches:

— The network is highly dynamic

— The controller is the initiator of secure communication

The Network is Highly Dynamic

One of the key factors adding to SDN’s popularity is that the network architecture
offers a change in the logical topology of the network in close to real time. This
feature also needs to be true for a scheme where some of the communication channels
are secured, and the controller is in charge of distributing the right keys at the same
time as maintaining the topology. For a key management scheme, this means that
all of the operations need to happen fast, doing as much work as possible before the
decision to make or change a secure tunnel is made.
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The controller is the initiator of secure communication

As previously discussed, when it comes to key management schemes, and specifically
key distribution, the entity starting the communication is conventionally the one
initiating key distribution. This way, the entity responsible for issuing and keeping
track of the keys does not have to decide when and what to encrypt, as this is entirely
up to the communicators.

In SDN, this is radically different. The controller is the entity in charge of issuing
and keeping track of the keys, as well as it initiates secure communication. As
explained thoroughly in the following chapter, an application on top decides which
links to be encrypted. This implies that it is not possible to use the exact architecture
of other traditional key management schemes.

3.2 Assumptions

In order to simplify the scope of the thesis, three assumptions were made early in
the process. These were made in order to focus on the core process of managing keys
for encrypting the data plane in SDN.

— The OpenFlow connection between the controller and the node is already
encrypted and mutually authenticated with TLS

— An application on top of the controller determines the paths to be encrypted

— Functionality for WireGuard is built into the network nodes

The OpenFlow connection between the controller and the node is
already encrypted and mutually authenticated with TLS

OpenFlow is the protocol between the switch and the controller where the default
security mechanism is encryption through TLS. The protocol recommends mutual
authentication between the switch and the controller by exchanging certificates.
Therefore, an acceptable assumption for this thesis is that the connection is already
encrypted and authenticated, allowing for the communication between the controller
and switch to be protected.

An application on top of the controller determines the paths to be
encrypted

Another assumption is that an application on top of the controller, bound by its
northbound interfaces, determines which paths are supposed to be encrypted. This
allows for an SDN approach to key management. However, it makes it impossible for
end-users to enforce encryption of the data plane.
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Functionality for WireGuard is built into the network nodes

This assumption narrows down the scope of the thesis. A WireGuard interface would
be included in a port belonging to an Open vSwitch. This assumption is not made
because the technology present in today’s network elements, but because it makes it
possible to only focus on the key management in SDN, which is the core problem of
this thesis.

3.3 Requirements

Requirements that should be fulfilled by DPKMS are listed in this section. Char-
acteristics listed in section 3.1 highlights why key management in SDN is different
from implementations in other types of networks. This is why it is hard to directly
apply other key management protocols. The key management protocol for IPSec —
IKE [KHNE10, FK11] - is used as a reference when formulating the requirements for
this particular case of key management, as well as the key management framework
developed by NIST A Framework for Designing Cryptographic Key Management
Systems [BSBC13]. The section characterizes two types of requirements, one related
to cryptographic properties that the scheme achieves, and the other related to how
the scheme operates.

3.3.1 Cryptographic Requirements

Synchronization Entities in the scheme need to be synchronized so that processes
do not start until all nodes are ready. This is an important requirement because
unsynchronized nodes can lead to packet loss or worst case the revelation of
secret information. In IKE, this is handled by assembling all messages in
request and response pairs [KHNE10].

Authenticated Nodes Being able to trust that the nodes in the system are who
they claim to be means having authenticated nodes. This is important so
that no malicious nodes can access and join the network secured by the key
management scheme.

Authenticated Keys This requirement refers to keys truly belonging to the person
they are said to belong to. In the key management scheme, this is of concern
because a key needs to be bounded to a peer in order to function.

Authenticated Controller The controller needs to be authenticated by the node
in order to issue keys for key management which can be achieved by mutual
authentication between the nodes and controller.

Perfect Forward Secrecy This is a property of key exchange algorithms where
the exposure of the long-term key does not expose any session keys that are



28 3. KEY MANAGEMENT IN SDN

already made [Sta05]. This is important because if an attacker obtains the
long-term key, this cannot be used for decrypting past sessions.

Key Integrity Key integrity means that one is sure that the keys are kept the way
they were made and not altered along the way. The property is important
because if the keys cannot be trusted, a secure connection cannot be constructed.

Key Freshness Freshness of a key is a property enabled by frequently changing the
session keys. This property ensures that only a small part of data is encrypted
under the same key. If it is leaked, only a small part of the data can be
decrypted.

Key Binding Key binding means binding the key to its context, for instance by
including metadata in the generation procedure or by computing a digital
signature over the key and metadata [BSBC13].

Key provides required level of attack resistance This requirement is set to
ensure that the algorithms receive a key that ensures the required level of
attack resistance.

3.3.2 Operational Requirements

DPKMS needs to be able to manage 32 bytes keys WireGuard expects keys
with a length of 32 bits and therefore the key management system needs to be
able to generate and distribute these keys.

DPKMS needs to be able to run over the OpenFlow protocol To make the
scheme as simple as possible, messages regarding the key management need to
be transmitted over the OpenFlow protocol.

Private keys that are distributed are not exposed This property is made in
order to ensure that a third party eavesdropping on traffic cannot get hold of
the private keys distributed to the nodes from the controller.

Keys are changed within a bounded time interval Keys should only be valid
for a set period of time and a Rekeying procedure should be started when the
Cryptoperiod expires. The rekeying procedure should interrupt as little as
possible in the normal operation of the scheme. This requirement for rekeying
corresponds to the one for IKE [KHNE10].

Compromised keys are revoked In case a key in a node is compromised, the key
management scheme needs to have a revocation procedure ensuring that the
compromised key cannot be used.
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Key revocation happens rapidly As soon as an error is detected, the revocation
procedure for a node needs to be initialized. This procedure must interrupt
the traffic as little as possible.

All errors are handled Errors occurring in the key management scheme must
have a pre-configured way to be processed by the controller, but DoS attacks
must at the same time be accounted for.

Secure communication sessions are set up and torn down quickly Because
of the dynamic nature of SDN, a quick procedure for setting up and tearing
down a secure connection is essential to the scheme.

Reliable message delivery To ensure synchronized nodes, reliable message de-
livery is needed. In IKE, reliable message delivery is ensured by enforcing a
response for each transmitted message.

Packet loss or delay must be handled Packets that are lost or delayed should
not have a major negative effect on the system and should be handled in a way
where synchronization between the nodes is not affected.

Following generation, the private keys are only known to the node The pri-
vate keys used in the WireGuard tunnel should only be known to the node
using the key for decryption after the controller has generated and distributed
it.

Keys are generated based on output from a Random Bit Generator (RBG)
This requirement is a part of the NIST Recommendation for Cryptographic Key
Generation [BR12] and is important to achieve secure keys.

Session keys are securely exchanged When establishing a shared session key
between two nodes, the way that the key is derived is important to ensure
secure operation.

Node crash and restart is handled If a node fails, the controller has to handle
the communicating peers so that they do not continue to send messages that
will be lost.






Data Plane Key Management
Scheme (DPKMS)

Presented in this chapter is the functionality and operation of the key management
scheme developed, referred to as Data Plane Key Management Scheme (DPKMS).
In chapter 3, assumptions and requirements were set and these are used as the basis
for the system demonstrated in this chapter.

The following section is a presentation of the topological design of the model,
represented by a reference model in figure 4.1. Subsequently, each of the entities
included in the model will be examined followed by an explanation of the interfaces
connecting the entities. Finally, the procedures that make up the scheme for key
management are addressed, each illustrated with a sequence diagram.

Following is a set of contextual definitions that will allow for a precise description of
DPKMS

Node A node is a network entity implementing both the OpenFlow protocol and
WireGuard as a secure channel and it is connected to a controller.

Peer A peer is the nodes that the initiating node can contact through a secure
WireGuard tunnel.

Initiator The initiator is the entity issuing the message to start a procedure. In
DPKMS, the application or the controller has the role as an initiator.

Responder The responder in a message exchange is the entity that the initiator
contacts, and the entity receiving the first message.

Peerlist A peerlist is a list of peers that a node is able to communicate with through
WireGuard, as it possesses its credentials. The credentials are a public key and
an Internet Protocol (IP) address.

Application An application is a program with the ability to communicate with the
controller via its northbound interface.
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Narthbound interface

OpenFlow

Figure 4.1: High level architecture of the model developed in this thesis.

4.1 Topological Design

Tllustrated in figure 4.1 is the reference model of the system where DPKMS is defined.
Consisting of only two nodes connected to a controller, the model aims to focus on
the essential task of managing keys in the data plane of SDN. This section will go
through the elements of the model — the controller, the node and the application —
explaining their main functionality.

4.1.1 Controller

Key management processes associated with the key lifecycle should be performed on
a secure platform. Secure platforms should have both logical and physical protection,
which can be provided by a controller in an SDN-scheme. Logical protection of the
controller is provided through the secure channel connecting it to the node, whereas
physical protection can be provided by physical isolation of the software.
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Responsibilities of the controller with regards to DPKMS are as follows:
— Generating WirGguard keys
— Distributing keys
— Storing public keys
— Initiating encryption
— Communicating with the application and applying its policies and cryptoperiods
— Keeping track of communicating nodes
— Keeping track of which nodes have which private keys
— Enforcing rekeying when the cryptoperiod is reached
— Storing information about which peers have each others’ public keys
— Starting the revocation procedure when a node is compromised
— Handling errors that occur in the scheme

The controller will include a database containing information about the peers in the
key management scheme. Stored in the controller is at least zero and at most two
public keys per node. At most two keys need to be stored in order to be able to
conduct rekeying and revocation. Shown in figure 4.2 is the representation of the
database tables present in the controller.

Communicating Peers
Northbound interface PKID
PeerlD 1
Peer 1D 2
KEY
BASE NETWORK MANAGEMENT Configured Peers
PKID
FUNCTIONS EXTENSION Cryptuperd
Public key 1
Public key 2
Southbound interface: Peerlist <ID1, ID2 ... >
OpenFlow Status
Compromised

Figure 4.2: Controller illustrated with its key management extensions which shows
two tables, one displaying the peers communicating, while the other contains all
configured peers.

Instead of the private keys identifying the peers — the way WireGuard solves
authentication — a unique ID is appended to each peer in the controller. This is
because the controller should be able to constitute the switches in rekeying and
revocation procedures, where the communicating nodes may at some point have
different keys.

The state of the nodes also needs to be tracked in order to ensure that two nodes



34 4. DATA PLANE KEY MANAGEMENT SCHEME (DPKMS)

are able to make contact through the WireGuard tunnel. A bitmap showing the
state of each node is sent as a response to the key management requests. These are
received by the controller, enabling it to always have an updated view of the network.

4.1.2 Node

In the model, the entity called node is a network element; an Open vSwitch (2.5.2)
which implements support for WireGuard. The Open vSwitch functions as an
OpenFlow switch, and has a direct secure channel to the controller, as shown in
figure 4.1. The node is also assumed to have built-in functionality for the tunneling
protocol WireGuard, as stated in section 3.2. Open vSwitch functions like a normal
OpenFlow switch, explained in section 2.2, where one of the ports has a WireGuard
interface.

Responsibilities of the node with regards to DPKMS are listed below:
— Constructing status messages to send to the controller
— Reporting on errors from WireGuard

In DPKMS, the node is in general responsible for implementing functionality
that the controller dictates, as well as being responsible for translating and sending
information given by the WireGuard interface, such as status and error messages.

4.1.3 Application

The implementation and realization of a key management application on top of the
controller is beyond the scope of this thesis. Nevertheless, it is important to note
that the application would be the entity responsible for deciding which paths to
protect and how short the Cryptoperiod should be for keys in each secure connection.
This is a deliberate choice, enforcing the software defined approach. This is discussed
thoroughly in section 4.3.1. The design of the application is also included in the
section for future work 7.1.

The responsibilities of the application in DPKMS are as follows:
— Choosing which paths are to be protected through encryption
Deciding the cryptoperiod for each secure connection

— Storing public keys
— Ending secure communication
— Deciding action when a node is compromised
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4.2 Interfaces

Connecting each entity in the system — the controller 4.1.1, the node 4.1.2 and the
application 4.1.3 — are interfaces that render information from one subsystem to
another. Each entity in the system is defined to hold a state while the interfaces
between the entities transport messages that enable transitioning from one state to
another. This section gives an overview of the communication between each of the
entities in the system with regards to DPKMS.

4.2.1 Application - Controller

The northbound interface of the controller connecting it to an application is beyond
the scope of this thesis. However, it may be useful to briefly mention it in order to
get a full understanding of the model. Many APIs can be defined for the controller,
for instance in REST or SOAP. The application must be designed to communicate
with an API that has support for the key management message exchanges that the
application needs to take part in.

4.2.2 Controller - OpenFlow Switch

The interface between the controller and the switch is the OpenFlow protocol, defined
in OpenFlow Switch Specification 1.5.0 [Opel5], and previously described in section
2.2. The channel is, as stated in section 3.2, already set up securely through TLS.
In the realization of DPKMS, OpenFlow needs to be extended, and therefore the
interface between the controller and the switch need to support this extension.

Messages sent between the controller and the node are sent in a request,/response
message pattern. All requests in DPKMS are issued by the controller, and for each
request the node sends a reply to ensure synchronization in the scheme. Within
the message scope, the responses issued by the switch are status_wg messages,
described in section 4.3.7. If the controller fails to receive a response from the node,
it re-transmits the message within the re-transmission interval specified by TLS. This
is because the transmission between the controller and the switch is secured through
TLS, providing reliable message delivery.

4.2.3 OpenFlow Switch - WireGuard

The Open vSwitch has implemented the WireGuard interface (section 2.5.1) in a
port, and therefore needs to receive and send WireGuard-specific commands in order
to operate in DPKMS. This is done by using the OpenFlow Experimenter structure
to define new actions.
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4.2.4 Node A - Node B

The goal of DPKMS is to set up a secure connection through a WireGuard tunnel
between Node A and Node B. WireGuard — thoroughly explained in section 2.5.1
— is a network tunnel in layer three, therefore all communication between the two
nodes in the scheme will reside in layer three.

4.3 Detailed Description of the Data Plane Key
Management Scheme (DPKMS)

Now that the entities in the system and the interfaces between them have been
explained, the interactions in the scheme will be described. Figure 4.3 shows the state
transition diagram representing a node in DPKMS. The states and the transitions
are made based on the phases making up a key management scheme, explained in
section 2.4.1. The transitions will be the basis for the description of the operation of
the scheme.

INTERFACE
CONFIGURED

ONFIGURE

ADD PEER

ADD PEER
ﬁkevwe

WIREGUARD
READY

KEY REVOCATION END COMMUNICATION

END COMMUNICATION
KEY REVOCATION

START COMMUNICATION

COMMUNICATING
THROUGH WG

REKEYING

Figure 4.3: State transition diagram explaining states and transitions with regards
to the node involved in DPKMS. The circles represent states and the arrows represent
the transitions.
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The circles represent the possible states held by the node, while the arrows
represent the transitions from one state to another. Not all transitions present in
the model are displayed in the figure, for instance all state and error messages are
left out. This is due to the fact that the state transition diagram aims to show the
general operation in a simple manner.

The idle state in the figure depicts a node with neither private key nor any peers
in the list. To transition from this state, either a configuring procedure needs to be
initialized — providing the private key for WireGuard — or the procedure for adding a
new peer needs to be started. In the states interface configured or non-empty peerlist,
either the configuring procedure or the procedure for adding a peer needs to be run
in order to reach the WireGuard ready state. It is only in the WireGuard ready state
that communication can be started. The rekeying procedure can be run either in the
WireGuard ready state or when communication goes through WireGuard. Revoking a
key can be done in either state, but the figure only shows the communicating through
WG procedure. Here the two arrows showing the key revocation procedure represent
the two modes in which the procedure can be launched. The procedure for ending
communication also has two modes, leading to either idle state or to the interface
configured state.

This section will go through each transition of the state transition diagram, and
each procedure will be explained with a corresponding message sequence diagram.
The message sequence diagram is designed according to the requirements in section
3.3.

4.3.1 Configure WireGuard Interface

The procedure of configuring the WireGuard interface in the node can be said to
consist of three main stages. Firstly, a key is generated in the controller. Then
the key is included in the controller’s databases. Finally, the correct private key is
distributed through the secured channel in OpenFlow. In case a key already exists
for the peer, this key needs to be deleted before generating a new one. If the node
is present in other node’s peer-lists, the new key needs to be added to the peer’s
peer-list by running the add peer procedure explained further in section 4.3.2. The
OpenFlow switch is then responsible for sending the info over to the WireGuard
interface for configuration. The only parameter that is necessary for a WireGuard
interface to work is a 32-bytes long private key, representing a point in Curve25519.
Other parameters such as port number, can also be included, but for this thesis, only
the private key is used.

Two 