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5.4 Summary of the soil characteristics

The model-sand investigated is characterized as a uniform, medium grained and medium dense

quartz-sand. The two following tables summarize the conducted laboratory-tests.

Parameter Value
Cu = d60/d10 2.3

d50 0.6 mm
ρs 2.64 g/cm3

w 0
nmax 46.4%
nmi n 35.4%

Dr 65 %

Table 5.3: Index test summary

Parameter Value

E r e f
50 28MPa

E r e f
oed 28MPa

E r e f
ur 58MPa
m 0.4
Rf 0.85

OCR 1
K nc

0 = K0 1-sinφ=0.36
ϕ 39.5 ◦

ψ 11.5 ◦

c 0.1 kPa
υur 0.2

ei ni t 0.645
emax 0.71
pr e f 100kPa

Table 5.4: Hardening Soil parameters summary





Chapter 6

Calibration of the macro-model

By simulating the application of different load-combinations, the capacity and soil behavior are

investigated by finite elements. On the basis of the obtained results, the 24 necessary parameters

for the macro-model are chosen.

The macro-model is run with a script coded in MATLAB, version R2016a. The script can be

either run with displacement-, load- or combined control. Thence, the first step of calibrating

the macro-model is ensuring adequate match with the compared results obtained in Plaxis.

6.1 Introductory analysis

The chosen finite-element software is Plaxis 2D, version 2016.01, run with 15-noded triangular

elements in plane strain conditions.

6.1.1 Choice of mesh and pure vertical capacity

The first finite element analysis(FEA) done is an investigation into the maximum vertical bear-

ing capacity. The chosen mesh is the coarsest one, where no further refinement leads to a

change of vertical bearing capacity. The refinement was first and foremost done locally close

to the foundation. The mesh used is shown in the figure below.
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Figure 6.1: Chosen mesh for the finite element analysis

As can be seen from Figure 6.2 the ultimate bearing capacity is not uniquely defined at a sin-

gular load, but rather oscillating. This can be attributed to the non-associativity of the problem,

and that Plaxis has difficulties in deciding on which mechanism is more critical. However, for

the finer mesh a maximum vertical bearing capacity is set at 14.5kN. A further refinement of the

mesh does not lead to a change in bearing capacity.

This ultimate bearing capacity is high compared to the expressions proposed by e.g. Terza-

ghi(11.5kN, according to Equation 3.1), Brinch-Hansen(10.4kN, according to Equation 3.2) and

Janbu(11.6kN, according to Equation 3.3).
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Figure 6.2: Vertical bearing capacity versus deformation

6.2 Yield surface

The calibration of the yield surface is done through swipe-tests in the V-H and V-M/B planes, as

well as observation of the behavior in the M/B-H plane.

6.2.1 M/B-H plane and ”a”-factor

To observe the behavior in the M/B-H plane the vertical load is held constant, while rotational

and horizontal displacement increments are imposed on the foundation. The model used in

Plaxis to achieve this end is shown in the figure below, and two phases are applied:

1. V=1 kN

2. dV=0. du and Bdθ are applied from point displacements points 0.1m and 1m above foun-

dation base to simulate the prototype-tests

With different magnitudes of the two point displacements the foundation is subject to ro-

tation. The size of the imposed rotation depends naturally on the difference between the two

point displacements applied.

The formula proposed by Butterfield and Gottardi (1994) is used to account for the ellipse-

rotation:
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a = t an2ρ · (th − tm)(th + tm)/2th tm (6.1)

The th- and tm-values are the initial slopes of the yield-locus in the V-H- and V-M-planes.

Figure 6.3: Plaxis model for the M/B-H tests

Thence, force paths can be traced to ultimate yield. The points in the following figure indi-

cate failure, and on the basis of these points an ellipse is suggested as a generalized shape in the

M/B-H plane. The plane investigated is that of 1kN. There is suggested a rotated ellipse on the

basis of the observed failures. The rotation in Figure 6.6 is rotated 6 degrees and has an axis ratio

of 1.61.
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Figure 6.4: M/B-H plane for V=1kN
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6.2.2 Swipe

The concept of swipe testing is outlined in Chapter 5.3. The β-values control if the loci are

leaned towards Vmax , or zero vertical force, and to which extent. The h0 and m0 values are

chosen for an appropriate maximum horizontal and moment-loading. This is modelled simply

by having an initial phase of vertical load application, and then a second phase of either pure

horizontal or rotational movement (the vertical displacement is fixed).
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Figure 6.5: Horizontal swipe test
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Figure 6.6: Swipe test in the V-M/B plane
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6.3 Elastic behavior

As already discussed in Section 3.4.4, the dimensionless diagonal stiffnesses of the matrix can

be determined from the semi-analytical relations given by e.g. Pais and Kausel (1988).

For comparison the same same static stiffness terms as found by Gazetas (1991), Dominguez(1978)

and Wong and Luco(1978) are added in Table 6.1, with the ratio L/B being 2 and Poisson’ ratio

1/3.

Gazetas Dominguez Wong and Luco Pais and Kausel

k1 [-] 2.469 2.625 2.524 2.555

k2 [-] 0.490 0.459 0.474 0.468

k3 [-] 1.912 1.965 1.943 1.961

Table 6.1: Comparison between stiffnesses for L/B=2 and υ= 1/3

The stiffness values are similar, and as Pais and Kausel formulated their expressions based

on the work done by the other authors named in the table, the stiffnesses of Pais and Kausel are

used. The k4 values are approximately two orders of magnitude lower than k1,k2 and k3 and

thus neglected.

When choosing an elastic shear modulus one needs first to decide at which depth, and thus

which stress, a representative shear modulus G can be found. By either turning to theory de-

scribing plastic shear zone-geometry for the foundation-geometry(B=0.4m), or by observing

shear zone-geometry with finite-elements at failure it is apparent that a representative depth

of G should be around a depth of 0.2-0.3m below the surface. With a soil unit weight of approxi-

mately 16kN /m3 and a typical vertical load of 1.5kN the stress at which G should be representa-

tive is around 8 kPa. This suggested by assuming a K
′
0 of 0.36 (K nc

0 = 1− si nφ), and further argu-

ing that the minimum principal stress is assumed to be approximately K nc
0 (γdr y ·representative

depth+ V
ar ea )=0.36(15.8kN /m3 ·0.25m + 1.5kN

0.2·0.4m2 = 8kPa.

With reference to the triaxial test with a cell-pressure of 20kPa and a correct in-situ density

the initial Youngs’ modulus is 22MPa. It is assumed that this value is representative also for

confining pressures lower than 20kPa. By further assuming an elastic isotropic material this

leads to a shear modulus of 8.3MPa.
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6.4 Hardening parameters

The plastic displacements must be related to the degree of mobilization, which for the macro-

model is described only by one state parameter, namely κ. As outlined in Chapter 3.4.5 the

dependence of the vertical plastic displacement is clear, whilst the importance of each contri-

bution of the remaining plastic displacements are determined by constants C1 and C2. There-

fore, it is found convenient to stay in the M/B- H plane by combined controlled tests. This is

done as previously explained in Section 6.2.1.

Thence, the load-paths are traced towards ultimate failure, and through observation of the

incremental load and displacement-vector for each step the calibration of representative hardening-

parameters can be done. This is done as follows. The total displacements and forces from the

FEA are extracted. By definition the total displacement is d v tot = d v e +d v p , and this in turn

leads to the following incremental plastic displacements:


d w p

Bθp

dup

=


d w tot

Bθtot

dutot

− 1

GB


1/k1 0 0

0 1/k2 0

0 0 1/k3




dV

d M/B

d H

 (6.2)

The hardening law is chosen by curve-fitting the to the FEA results. When the incremental

plastic displacements are extracted from the FEA, the combined plastic displacement can be

defined from Equation 3.17. Thence, the curve for combined plastic increments from the FEA is

evaluated. Then there should be sufficient fit with the chosen hardening law formulation.

However, the evolution of combined plastic displacement Up is heavily dependent on the

load-combination, and thus the ratio between H and M/B. It is important to define what is a

representative ratio for the loads acting on such a foundation. As can be seen from the figure

below(H/M/B)=1.15) the bi-linear relationship as described in Equation 3.18 corresponds well.
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Figure 6.7: State parameter vs combined plastic displacement for H/(M/B)=1.15
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6.5 Potential surface

Plastic increments develop when the material yields, and are directed orthogonal outward of

the potential surface. The potential surface therefore defines the direction of plastic flow, as

well as being an ingredient when deciding the size of the plastic multiplier dλ. In this thesis the

parameters defining the potential surface are chosen by curve-fitting the macro-model behavior

to the behavior observed from the FEA.

Extra attention is given to the macro-model’s capacity to reproduce uplift behavior. It is of

utmost importance for a shallow surface foundation anchoring large eccentric forces. Uplift of

the foundation-centre happens when the effective width is half of the total width. The relation-

ship between effective and total width for an eccentric load becomes:

Be f f ect i ve

B
= B −2e

B
= 1−2 · M/B

V
= 0.5 (6.3)

Therefore, the foundation should experience positive, i.e. downward, vertical increments

when M/B<0.25V. Whenever M/B≥ 0.25V the vertical increments should be negative, i.e. di-

rected upwards. Low β1hp -and β1mp -values make the peak of the potential surface lean towards

lower vertical loads in the V-H and V-M/B planes. Hence, the gradient is directed in a negative

w-direction, for low vertical loads. This accommodates for uplift-behavior when the moment is

large. How low they should be is decided by curve-fitting the FEA-results with the macro-model.

6.6 Comparison between the FEA and the macro-model

In the following the comparison between the calibrated macro-model and the results from the

FEA in the M/B- H plane. The procedure is as described in Chapter 6.4 and summarized as:

1. Apply vertical force V, either 1 kN or 2 kN

2. Apply horizontal and rotational displacements du and B ·dθ, while dV=0

As the combinations of incremental displacements are different, the force path which are

traced as a result will also be different from one another. Table 4.1 summarizes the displacement-

increments which will be compared with finite elements, the macro-model and the prototype-

tests.

As was mentioned earlier, it is especially important for a bridge foundation that the model

allows for the correct kinematic behavior regarding uplift. It was reasoned that d w < 0 occurs

when M/B Ê 0.25V . As can be seen from Figure (V=1kN, M/B vs w) this behavior is observed
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Figure 6.9: M/B-H tests with V=1000N
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Figure 6.11: M/B-H tests with V=2000N
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both for the Plaxis-results and the model-response. However when M/B ' 0.3V . Interestingly

uplift was also observed for the

6.7 Calibated values

Table 6.2: Calibrated macro-model parameters

Yield surface Potential surface Elastic parameters Hardening

h0 0.1 h0p 0.35 k1 2.56 κ0 0.25

β1h 0.83 β1hp 0.01 k2 0.47 ah 45

β2h 0.98 β2hp 0.5 k3 1.96 C1 0.3

m0 0.09 m0p 0.16 k4 0 C2 0.4

β1m 0.92 β1mp 0.99 G 8.3 MPa

β2m 0.99 β2mp 0.8

a -0.1 ap 0

Vmax 14.5kN





Chapter 7

Comparison with the macro-model

In this chapter the results obtained from the prototype-tests in the sand-bin are compared with

those of the calibrated macro-model. This is done with the aim of validating the macro-model.

The test-procedures are presented in Section 4.3, and will not be repeated. Herein only tests in

the M/B-H plane are presented.

7.1 Overview

Presented first are the two sets of M/B-H tests done with the prototype-foundation and the best-

fit ellipse for these tests. Both of the ellipses are similar in shape: An axis ratio of 1.6 and a

counter-clockwise rotation of 10 degrees. A suggested a-value, whose value accounts for the

ellipsis-rotation, is -0.16 on the basis of Equation 6.1.

Tests are compared which should be equal because of their rotational and horizontal incre-

ments applied in the combined tests done in the M/B-H plane. Three tests are compared while

the vertical load is 1kN and three are done while it is 2kN. The results presented in the M/B-H

planes are compared with the suggested ellipses.

7.2 Comparison between the macro-model and the prototype-

tests

In the following are diagrams comparing the mechanical behavior. The rotational and horizon-

tal increments applied are listed in Table 4.1.
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Figure 7.1: Prototype-tests and suggested ellipse in the M/B-H plane, V=1kN
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Figure 7.2: Prototype-tests and suggested ellipse in the M/B-H plane, V=2kN
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Figure 7.3: Comparison between macro-model and prototype-tests at V=1kN
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Figure 7.4: Tests in the M/B-H plane, V=1kN
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Figure 7.5: Comparison between macro-model and prototype-tests at V=2kN
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Figure 7.6: Load paths in the M/B-H plane for V=2kN





Chapter 8

Discussion, Summary and

Recommendations for Further Work

In this chapter the results obtained by finite elements, the calibrated macro-model and the

prototype-foundation are compared. Thence, the performance of the macro-model is discussed

and to which extent it is applicable for describing the SSI between large shallow foundations and

soil.

8.1 Discussion

8.1.1 General about the prototype-tests

The compared data presented were all based on the displacement ratios from the ball-screws.

However, for the prototype test the load paths are also dependent on the start-point of the test.

Hardly any of the prototype tests are starting in the origin, and thus (V, M/B, H) 6=(V, 0, 0).

The initial eccentric loading can be caused by different things. The rigid steel box should

ideally stand perfectly orthogonal on the even sand. A leveler was used to make sure the steel

box was leveled at the start of the tests. However, the evenness of the sand was obtained by a

vacuum-cleaner and it was difficult to obtain a perfectly even sand-surface. Although most test

show small eccentric forces at the start of the tests, some did not.

The displacement ratios were chosen to investigate certain points of failure along the ellipse

in the M/B-H plane. When the initial moment and horizontal forces were different from zero it

was more difficult to control the load path to the place on the ellipse where it was expected of

failing. The fact that few prototype-tests started in the origin in the M/B-H plane are assumed

not to be too important, besides less control of the tests (assuming the initial accumulation of
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plastic displacements are insignificant). The failure points are therefore assumed to be reason-

able.

8.1.2 Discussion regarding capacity

The vertical bearing capacity for the given geometry is higher for the FEA than for the classical

bearing capacity formulae. Ideally, an analysis should be done in Plaxis 3D as this problem is in

fact of a 3D nature.

What can be seen from all model-simulations is that they are not managing to reach the

same failure loads as the results from Plaxis 2D or the prototype-tests in the M/B-H plane. The

maximum capacity of the macro-model in the V-M and V-H planes are solely calibrated from

swipe tests done in Plaxis. Interestingly, the swipe tests in e.g. the V-H plane and tests of com-

bined control in the M/B-H plane lead to different capacities.

This variation could be due to the fact that the horizontal swipe tests have zero moment,

and a slightly higher horizontal load is applicable for a small negative moment. The difference

from e.g. maximum horizontal capacity for 1kN is too big to be attributed to the lack of a small

moment working. The different horizontal capacities for a vertical load of 1kN are outlined in

Table 8.1.

FE swipe FE M/B-H Prototype

560 N 650N 650N

Table 8.1: Maximum horizontal capacity for a vertical load of 1kN

The incremental shear from horizontal swipe is shown in the figure below. The shear zone-

geometry is distinct, and it can thus be assumed to be at failure.

Figure 8.1: Incremental strains at a vertical load of 1kN from the horizontal swipe test
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Figure 8.2: Comparison between FEA, macro-model and prototype-tests at V=1kN

In addition, two swipe test were done with the prototype-foundation. The yield-surface is

only investigated at lower vertical loads due to the limitation of the test facilities not allowing

for further loading than 2.5kN. The prototype-results indicate a linear initial sliding in the V-H
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Figure 8.3: Comparison of horizontal swipe

plane, which is reasonable as the observed prototype-foundation was in fact sliding. This initial

linearity is not taken into account by the calibrated yield-locus, and for large vertical loads it is

not important to do so either. However, if relatively low vertical loads are important the yield

surface could be reformulated to better account for this.

Therefore, the tests conducted gives the initial slope in the V-H plane, with a sliding coef-

ficient tanδ corresponding to 0.63. Assuming zero cohesion, the in-situ interface roughness is

approximated to r = t anδ/t anφ=0.78. In the finite-element analysis the roughness ratio at the

interface was set to 1, on the basis of the sand glued underneath the steel-box foundation, as

was mentioned in Section 4.2. This seems to have worked with some success. Either way, the

roughness ratio was set to 1 in the FEA and can thus not be held accountable for a seemingly too

low horizontal load during swipe.

If the initial slope indicated by the prototype-tests is assumed to continue linearly up to the

vertical load of 1 kN the corresponding maximum horizontal load is approximately 650N, which

is exactly what was obtained in the M/B-H tests in Plaxis and by the prototype-foundation. Yet

again, this seems reasonable.

Which raises the question: why the big difference in horizontal load? These results stem

both from the same Plaxis-configuration, the same soil model, the same soil-parameters and

same mesh. At the same time, the higher horizontal capacity reached in the M/B-H plane are
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coinciding with the capacity obtained with the prototype-foundation(650N). Therefore, doubt is

sown regarding the possibility of directly investigating the maximum capacity from swipe tests

conducted in Plaxis 2D. They certainly give valuable information about the shape of the yield-

surface, but it seems like the swipe tests are not able to accurately model the maximum capacity.

It is therefore concluded that the use of swipe tests in Plaxis should be done with caution.

When the foundation is at failure in Plaxis, and further horizontal displacement is imposed

a new failure configuration is required. However, to get from one failure configuration to an-

other the soil is subject to unloading some places, while a reloading takes place elsewhere in the

soil medium. There is loss of stiffness some places, while other places the stiffness increases,

changing with each failure mode. The algorithms implemented in Plaxis might not be optimized

for this kind of sudden change in failure configuration, which happens with each load-step at

failure. This might cause the suggested inability to model maximum capacity with swipe-tests

accurately in Plaxis.

Analogously, the same argument can be repeated for the case of swipe in the V-M plane.

Larger moment capacity is obtained by combined controlled tests in the M/B-H plane by Plaxis

than by swipe in the V-M plane by Plaxis. The same reasoning applies here, without the need to

repetition.

The macro-model’s capacity in the V-H and V-M/B planes are calibrated on the basis of the

horizontal- and vertical swipe tests in Plaxis alone, which are criticized for seemingly being in-

accurate. This can explain why the capacity is underestimated for the load-paths in the M/B-H

plane for the macro-model.

8.1.3 Discussion regarding yield surface shape in the M/B-H plane

On the basis of the conducted FEA presented in Section 6.2.1 the rotation of the ellipse in the

M/B-H plane is 6 degrees an axis ratio of 1.6. Similar results were obtained from the prototype-

foundation tests with the same axis ratio, but with an angle of 10 degrees. This lead the ellipse-

rotation factor a to go from -0.1 for the FEA to -0.16 for the prototype-test. The latter is consid-

ered more reliable.

The difference in rotation could be due to the fact that the soil geometry in Plaxis (small

deformations are assumed) is not updated during loading, while the physical soil below the

prototype-foundation obviously is. Another option is insecurity regarding the soil-parameters

used in Plaxis.

For comparison it can be noted that Butterfield and Gottardi (1994) did similar laboratory

tests on dense sand and got a rotation of 13 degrees and axis ratio of 1.64. Moreover, Butterfield
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and Gottardi did similar test at a vertical corresponding to approximately half of the maximum,

while the tests presented in this thesis did so for vertical loads of about 10-15% of maximum

vertical capacity. The rotation might be different due to different soil. The model-sand have a

relative density around 65%, while the sand Butterfield and Gottardi tested had 85%. Specula-

tion can be done regarding what causes the extent of rotation and axis ratio, but further tests are

necessary to conclude. However, the results obtained seem reasonable.

8.1.4 Discussion regarding mechanical behavior in the M/B-H plane

The calibration of the presented model is done with finite elements. The potential surface is

calibrated with curve-fitting with the macro-model. From Figure 6.8 it is apparent that there is

uplift behavior from Plaxis for one of the load-combinations, while for the macro-model and

prototype-foundation it is not. When calibrating it was clear that the potential surface could be

altered to accommodate for uplift for this load-combination with the macro-model. However,

this would have meant worse fit for the other load-combinations and a compromise was made:

the model did not reproduce the uplift-behavior as Plaxis did for this load-combination. The

prototype-test does not show any uplift either, and the compromise seems reasonable. The

potential parameters chosen gave overall reasonable results.

The comparison between results from the FEA, the macro-model and the prototype-testing

is done in Figure 8.4. When the load-combination is within the yield surface the soil acts elastic.

Clearly, the elastic stiffness is too high as can be seen from both the M/B-w, H-u and M/B-Bθ

diagrams shown in Figure 8.4. This can be due to either the dimensionless diagonal terms in

the elastic stiffness-matrix being too large, or the elastic shear modulus G being too large. The

dimensionless diagonal terms are totally general for the geometry given (the major side of the

foundation being twice as long as the shorter). The stiffness terms are described thoroughly in

the literature, and Table 6.1 shows that 4 authors virtually obtain the same stiffnesses.

The stiff behavior is therefore attributed to the shear modulus G. It is reasoned in Section

6.3 that a representative stress level of the shear modulus is approximately 8kPa. The chosen

shear modulus is suggested by assuming that the initial stiffness E0 at 20 kPa confining stress is

the same at a lower stress. A questionable assumption, in retrospect. The initial stiffness from

this test suggest 22MPa, and by assuming a Poisson’ ratio of 1/3, the shear modulus becomes

8.3MPa. Unfortunately, it was realized that the shear modulus was too stiff too late for it to be

changed in the analysis. Moreover, a change in the shear modulus will also have consequences

for the hardening law due to the way the plastic increments are extracted(d v p = d v tot −d v e ).

When the soil acts plastic the kinematic behavior seems reasonable. Uplift behavior is ac-
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counted for at M/B-values at approximately 0.25V. This was emphasized in Section 6.5 to be

important.

The potential surface and hardening law are governing the evolution of plastic behavior.

Seven parameters are defining the shape of the plastic surface. It could be argued that the

curve-fitting procedure for calibrating the potential surface is somewhat questionable. How-

ever, calibrating it analytically is no easy task. Furthermore, the basis of such an analysis would

be to extract the increments from Plaxis. These would need to be compared with the analytically

obtained plastic increments, which in turn are dependent on the potential surface.

At material yield and evolution of plastic displacement the consistency condition ensures

that dF=0. Thus, the point (V, M/B, H) stays on the yield surface during plastic yielding. A short

derivation of the analytic expression for such an increment is given:

dF = ∂F

∂S
·dS+ ∂F

∂V0
·dV0 = 0 (8.1)

dF = ∂F

∂S
·D ·dve + ∂F

∂V0
· ∂V0

∂κ
· ∂κ
∂Up

· ∂Up

∂vp
·dvp = 0 (8.2)

dF = ∂F

∂S
·D · [dv−dvp]+ ∂F

∂V0
· ∂V0

∂κ
· ∂κ
∂Up

· ∂Up

∂vp
· ∂Q

∂S
·dλ= 0 (8.3)

which leads to the scalar dλ being:

dλ=
∂F
∂S ·D ·dv

∂F
∂S ·D∂Q

∂S − ∂F
∂V0

· ∂V0
∂κ · ∂κ

∂Up
· ∂Up

∂vp · ∂Q
∂S

(8.4)

The flow rule requires that the plastic increment is the following:

d v p = dλ · ∂Q

∂S
(8.5)

Hence, all the ingredients for determining the plastic increment are in place. The plastic

increments from the FEA are compared with those obtained analytically, whose values should

not deviate much from one another. The introduction of an algorithm minimizing the error

between the extracted plastic increments from the FEA and the analytically obtained plastic

increments could lead to more well-suited potential parameters than the ones chosen in this

thesis. A limited amount of time led this option not to be considered further. However, the

plastic soil behavior is reproduced adequately.
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Figure 8.4: Comparison between FEA, macro-model and prototype-tests at V=2kN
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8.1.5 Discussion regarding the hardening law

If the shear modulus is changed, consequently the hardening law-parameters are changed as

well. The plastic increments extracted from the FEA are dependent on the chosen shear modu-

lus, as can be seen in Equation 6.1. Thence, the development of the combined plastic displace-

ment Up is changed. If the shear modulus is reduced, then the elastic incremental displacement

are larger, and thus the plastic incremental displacements are smaller. Therefore, the develop-

ment of the combined plastic displacement would evolve slower.

The chosen hardening law relation is bi-linear on the basis of the idealized plastic combined

displacement extracted from the FEA. However, as pointed out earlier the trend is highly depen-

dent on load-combination. The trend might be bi-linear for H/(M/B)-ratios close to 1, but when

this ratio increases, i.e. when the horizontal load becomes more dominant the observed trend

becomes less linear. This is apparent exemplified in the figure below. The figure to the left have

a ratio H/(M/B) of 1.15, while the one to the right 6.6.
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κ
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]
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Hardening law
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Figure 8.5: State parameter vs combined plastic displacement for two load-combinations

It could therefore be convenient to introduce a different hardening-relationship if load-combinations

with H/(M/B)-ratios far from 1 are important. One such example could be a hyperbolic harden-

ing relation.

8.1.6 Discussion regarding triaxial results

HS-parameters are found on the basis of two triaxial tests relatively close in confining stress-

range, i.e. 20 and 30 kPa. These results compare very well. However, for FEAs with lower stress

ranges, the corresponding stiffnesses are extrapolated from triaxial results with higher confining

stress. The figure shown below is a typical test in the M/B-H plane for a constant vertical load

of 2kN. The average minimum principal stresses are approximately 14kPa. For a vertical loading
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of 1kN the average minimum principal stresses are lower. Ideally, tests with lower confining

stresses should have been done.

Figure 8.6: Typical load-combination and the development of stress. M/B-H plane with con-
stant vertial load of 2kN

8.1.7 Discussion regarding up-scaling procedure

The only geometry investigated within this thesis is a rectangular foundation with lengths 0.4

and 0.2 m. The soil is described within Chapter 4. If the studied model is to be coupled with

a structure-analysis an up-scaling procedure must follow. The constitutive relationship pre-

sented herein is related to two different categories of parameters: the geometry and the soil-

stratification. The constitutive relationship is however totally general, and can be adapted to fit

different geometries and soil-profiles.

The macro-model framework presented within this thesis can therefore be adopted for any

kind of large shallow foundations with rigid behavior with respect to the soil. In essence, that

would mean most large shallow foundation, e.g. GBS-foundations anchoring suspension bridge

cable.

Important characteristics regarding the mechanical behavior is investigated in the test-chamber.

Scale-effects, if any, can be studied with large-scale testing, or centrifuge swipe testing, as ar-

gued by Gottardi and Govoni (1995).
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8.2 Summary

The performance of a presented macro-model is studied. The model is calibrated with finite

elements and validated with prototype tests. Index- and triaxial tests are conducted to get rep-

resentative parameters for the Hardening Soil-model, which is used for calibration in Plaxis.

It is emphasized that the model’s ability to reproduce the mechanical behavior is impor-

tant, especially its ability to reproduce uplift behavior for large moments. Comparison with

prototype-testing for similar load-combinations show that the macro-model is able account for

uplift.

The model and its theoretical formulation seems well-suited for large foundations subject to

eccentric forces. The overall reproduction of the mechanical behavior seems satisfactory for the

small-scale foundation investigated, although some modifications are suggested. The elastic

stiffness is somewhat high (attributed to a high shear modulus), and the capacity in the M/B-H

plane is slightly underestimated.

Application at Bjørnafjorden, and inclusion of the macro-element in the structural analysis

can be done. Moreover, the macro-model framework presented herein is general, and can thus

be adapted to other geometries and soil-profiles.

8.3 Recommendations for further work

8.3.1 Updated shear modulus

Comparison with the prototype-tests show that the behavior in the elastic regime is generally

too stiff, due to the shear modulus. The issue of determining a better suited shear modulus can

be approached through FEA and the ”unit-load method”.

By doing an elastic analysis in Plaxis 3D, and impose unit displacements to the foundation

associated with the three stiffness terms, the reactions can be extracted. The reactions should

equalize the terms on the right side of the equation stated below. This must necessarily be an

iterative process. The first iteration is suggested as the following.

A new value of G is suggested, through the stress-dependent stiffness analogy of the Hard-

ening Soil-model. The E50 is assumed to be a representative elastic Young’s modulus. The E50-

value is dependent on theσ
′
3 -stress, and a K

′
0 of 0.36 (K nc

0 = 1−si nφ) is assumed. The minimum

principal stress is assumed to be approximately 8kPa as argued in Section 6.3

Therefore, E50 = E r e f
50 (8kPa/100kPa)0.4 = 10MPa and in turn the new suggested G is G50 =

E50/2(1+0.33) which is 3.8 MPa.
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When the terms on the right and left side of the equation are practically equal, the G chosen

for the elastic soil stratum is chosen as the shear-modulus of the macro-model.


dV

d M/0.4m

d H

=G ·0.4m


2.56 0 0

0 0.47 0

0 0 1.96




d w e

0.4m ·dθe

due

 (8.6)

8.3.2 Further model-validation

As pointed out earlier there has been done test at vertical loads, approximately 15 % of max-

imum vertical bearing capacity. More tests to further validate the macro-model and to inves-

tigate if it performs well also for vertical loads closer to vertical capacity would be interesting.

There are two alternatives, either a higher vertical force is applied by e.g. a hydraulic jack, or

the area of the foundation is decreased. The maximum vertical capacity of the presented test-

facility is 2.5 kN. However, for the tests to be comparable the same relationship between the

major and minor side of the rectangular foundation must be kept constant, i.e. 2. Generally, the

geometry can be different, but for comparison with the tests done it is convenient to keep the

same foundation shape.

The bearing capacity of Brinch-Hansen suggests that a foundation-geometry with lengths of

7.5cm and 15cm the maximum vertical capacity is approximately 50kPa. The maximum possi-

ble stress induced in the sand-bin is then 220kPa, and the soil can thence be driven to vertical

failure. More geometries tested means a better understanding of the capacity. Centrifuge and

large-scale tests would also increase the understanding of potential scale-effects.

Throughout this thesis all diagrams have referred to loads in either N or kN. When a different

foundation-geometry is tested it is more convenient to normalize all loads, e.g. by dividing all

loads by the maximum vertical capacity for the specific foundation geometries.

8.3.3 Extension of the model

For a suspension bridge with large cable forces a macro-model with three degrees of freedom

is herein deemed sufficient. However, the model can be extended to account for loads acting

whichever direction, thus extending the degrees of freedom to six (the corresponding forces are

Hx, Mx, Hy, My, V and Mz). One example is Cassidy and Martin (2004), who presented a macro-

model describing a jack-up foundation with general static loading in the six-dimensional space.

In rough sea, cyclic behavior is expected and can cause both a strength reduction in the soil

and hysteretic behavior. The presented macro-model only accounts for static loads. However,
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an extension can be made to account for dynamic loading as well. The formulation presented

herein would then probably need to be significantly altered, but this is possible.





Appendix A

Complementary model sand-information

In this appendix, the specific values obtained during the sand-investigation are given.

A.1 Tables

A.1.1 Grain density

mdr y [g ] mpycno[g ] mpycno+sample [g ] ρs[g /cm3] γs[kN /m3]
27.84 150.64 168.26 2.724 26.723
26.56 148.993 165.36 2.606 25.62
34.66 148.938 170.23 2.593 25.435

Table A.1: Grain density results from pycnometer

A.1.2 Maximum porosity

dry mass [g] height [cm] γdr y [kN /m3] porosity [%]

670.47 7.7 13.886 46.43

667.49 7.7 13.824 46.64

611.65 7.0 13.934 46.21

Table A.2: Maximum porosity results

81
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A.1.3 Minimum porosity

dry mass [g] height [cm] γdr y [kN /m3] porosity [%]

1176 8.75 16.716 35.48

1148 8.55 16.771 35.26

1272 9.475 16.768 35.27

Table A.3: Minimum porosity results

A.1.4 In-situ density

dry mass [g] volume [cm3] γdr y [kN /m3] porosity [%]

2544.6 1602.37 15.579 39.87

2531.7 1572.70 15.791 39.04

1625.8 1005.37 15.836 38.77

Table A.4: In-situ density and porosity tests

A.1.5 porosity vs. tanφ

σ
′
3 [kPa] Porosity [%] Relative density [%] tanφ[−]

20 39.1 66.7 0.83

30 39.9 59.1 0.83

40 38.4 72.8 0.8

Table A.5: General overview of triaxial tests done, assuming zero attraction



Bibliography

Brinch-Hansen, J. (1970). A revised and extended formula for bearing capacity. Danish Geotech-

nical Institute, Belletin No.28:5–11.

Butterfield, R. and Gottardi, G. (1994). A complete three-dimensional failure envelope for shal-

low footings on sand. Gètechnique, 44:181–184.

Byrne, B. and Houlsby, G. (2001). Observations of footing behaviour on loose carbonate sands.

Gètechnique, 51:463–466.

Cassidy, M. and Martin, C.M. andHoulsby, G. (2004). Development and application of force

resultant models describing jack-up foundation behaviour. Marine Structures, 17:165–193.

Cremer, C., Pecker, A., and Davenne, L. (2002). Modelling of nonlinear dynamic behaviour of

a shallow strip foundation with macro-element. Journal of Earthquake Engineering, 06:175–

211.

Dominguez, J. Dynamic stiffness of rectangular foundations. Technical report, MIT(1977).

Gazetas, G. (1991). Formulas and charts for impedances of surface and embedded foundations.

Journal of Geotechnical Engineering, 117.

Gottardi, G. and Butterfield, R. (1993). On the bearing capacity of surface footings on sand under

general planar loads. Soils and Foundations, 33:68–79.

Gottardi, G. and Butterfield, R. (1995). The displacement of a model rigid surface footing on

dense sand under general planar loading. Soils and Foundations, 35:71–82.

Gottardi, G. and Govoni, L. (1995). Yield loci for shallow foundations by ’swipe’ testing. Soils and

Foundations, 35:71–82.

Gottardi, G., Houlsby, G. T., and Butterfield, R. a. (1999). The plastic response of circular footings

on sand under general planar loading. Gètechnique, 49:453–469.

83



BIBLIOGRAPHY 84

Houlsby, G. and Cassidy, G. (2002). A plasticity model for the behaviour of footings on sand

under combined loading. Gètechnique, 52:117–129.

Janbu, N., Grande, L., and Eggereide, K. (1976). Effective stress stability analysis for gravity struc-

tures. In Behaviour of Off-Shore Structures, volume 1, Trondheim, Norway.

Lieng, J. T. (1988). Behaviour of laterally loaded piles in sand - Large scale model test. PhD thesis,

Norwegian University of Science and Technology.

Martin, C. M. (1994). Physical and numerical modelling of offshore foundations under combined

loads. PhD thesis, University of Oxford.

Nordal, S. (2016). Geotechnical Engieering, Advanced Course [Class Handout]. Geotechnical

division, NTNU.

Nova, R. and Montrasio, L. (1991). A complete three-dimensional failure envelope for shallow

footings on sand. Gètechnique, 41:243–256.

Pais, A. and Kausel, E. (1988). Approximate formulas for dynamic stiffnesses of rigid founda-

tions. Soil Dynamics and Earthquake Engineering, 7:213–227.

Plaxis. Material Models Manual(2017).

Roscoe, K. H. and Schofield, A. N. (1956). The stability of short pier foundations in sand. British

Welding Journal, pages 343–354.

Sandven, R. (1992). Skirt foundations. Results from the model test in sand bin. Contract No. T.

182422, SINTEF Geotechnical Engineering Report.

Tefera, T. H. (2004). Large scale model study and numerical investigation of sheet pile wall. PhD

thesis, Norwegian University of Science and Technology.

Terzaghi, K. . Theoretical Soil Mechanics. John Wiley and Sons Inc. (1943).

Tistel, J. and Grimstad, G. (2016). A macromodel description of the non-linear anchor block

foundation behavior. In ZINGONI, A., editor, Structural Engineering, Mechanics and Compu-

tation Conference, Cape Town, South Africa. CRC Press Taylor Francis group.

TNPRA (2016). The E39 Coastal Highway Route. http://www.vegvesen.no/Vegprosjekter/

ferjefriE39/English. [Online; accessed 11-December-2016].

Ulstein, H., Skogstrøm, J., and Grünfeld, L. (2015). Produktivitetseffekter av ferjefri e39.

http://www.vegvesen.no/Vegprosjekter/ferjefriE39/English
http://www.vegvesen.no/Vegprosjekter/ferjefriE39/English


BIBLIOGRAPHY 85

Wong, H. L. and Luco, J. E. Tables of impedance functions and input motions for rectangular

foundations. Technical report, Univ. of Southern California(1978).

Yang, Z. X., Li, X. S., and Yang, J. (2008). Quantifying and modelling fabric anisotropy of granular

soils. Gètechnique, 58:237–248.

Zaharescu, E. (1961). The eccentricity sense influence of the inclined load on the bearing capac-

ity of rigid foundations. Journal National Buildings Organization, 6.


	
	
	
	
	
	
	
	

	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	
	
	
	


	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	

	

	
	
	

	
	
	

	
	
	
	
	

	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	


	
	
	
	
	
	
	


	

