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Abstract

In this thesis two methods for solving the diffusion-advection equation was implemented
using MPI. The two methods was a velocity guided random walk of particles and solving
the advection-diffusion equation on a grid. Both systems were solved for a oscillating dou-
ble vortex velocity system with reflective boundaries. Both implementations were shown
to give similar solutions of the advection-diffusion equation, up to numerical resolution.
The computation time of the model using velocity guided random walk of particles is
highly affected by the mapping method from particles to grid, as the mapping influence
the number of particles needed to get a sufficient picture. Using a ”boxcount” method for
mapping the particles, the total number of particles needed becomes so large that computa-
tional time for the particle model is significantly larger than the grid model. An alternative
approach, where each particle was mapped onto the grid as a truncated Gaussian was also
investigated. The code were tested on Vilje, the supercomputer located at NTNU. The
implementation of both methods show reasonable scaling as the number of the number of
ranks increase up to 512 and 1024. The grid model exhibit super linear speedup, probably
due to better usage of cache as the number of ranks increase.
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Sammendrag

I denne mastergraden ble det implementert to metoder for å løse adveksjon-diffusjons-
ligningen ved hjelp av MPI. De to metodene var partisk virrevandring av partikler og å
løse adveksjon-diffusjons ligningen på et grid. Begge implementasjoner ble løst for et
hastighetsfelt som inneholdt en oscillerende dobbelt virvel strøm med reflektive grense-
betingelser. Begge implementasjonene viste seg å gi tilsvarende løsninger på adveksjon-
diffusjons-ligingen gitt det overnevnte hastighetsfeltet, opp til numerisk nyaktighet. Bereg-
ningstiden til metoden som benyttet seg av partisk virrevandring viste seg å være sterkt
påvirket av avbildningen til griddet. Grunnen er at avbildningen direkte påvirker hvor
mange partikler man trenger for å få et tilstrekkelig korrekt bilde. Kode ble testet på Vilje,
superdatamaskinen til NTNU. Begge implementasjoner viser rimelig skalering mht at an-
tall kjerner ble økt opp til 512 og 1024. Grid modellen utviser super lineær hastighetsøkning,
sannsynligvis grunnet bedre utnyttelse av cache ettersom antallet kjerner øker.
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Chapter 1
Introduction

Science is the poetry of reality.

Richard Dawkins, The Enemies of
Reason, ”Slaves to Superstition”

Transport phenomena are involved in several physical and biological events that has impli-
cations on our lives. Given that there is a blow-out at an offshore installations in the North
Sea or a tanker sinks, were would the resulting oil spill from the accident travel? If there
is a high local resurgence of algae, where is the sudden bloom of microorganisms likely
to be in a few days or weeks? The transportation of ash in the atmosphere after a volcano
eruption affects the aerial transportation sector. The spread of salmon lice between fish
farms is a transport phenomenon since the lice is mainly moved by the currents in the
fjords.

Each one of these cases is an example of small particles or a localized concentration that
moves and spreads out due to the behavior of the medium which the concentration inhabits.
An illustrating concept is the behavior of a droplet of ink in a body of water, for instance
a river. The ink molecules are advected due to the movement of the fluid, the river. At
the same time the ink molecules are diffusing, due to the collision between the water
molecules and the ink molecules.

These types of systems are typically large and sensitive to initial conditions. Hence sim-
ulations for these kind of systems are computationally demanding, and therefore the sim-
ulations are suitable to be run on high performance computers, such as supercomputers.
The question arises to what is the most beneficial approach in terms of the required com-
putational time, which depends on several factors. This will be a theme subjected to ex-
amination and discussion during the scope of this thesis.

In this section the the governing motivation for undertaking the work of this thesis, along
with the main purpose will be presented. Also there will be an introduction to the advection-
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1.1 Purpose and the work done Chapter 1. Introduction

diffusion equation. The following section will tackle parallel architecture, as the simu-
lations in this thesis was executed on a supercomputer and a basic introduction is thus
beneficial.

1.1 Purpose and the work done

The advection-diffusion equation is applicable to several applications, as the equation is
present in both the industry and in scientific research. Such there are several approaches
to solve this equation. Therefore it is interesting to study how two fundamental different
approaches to solve the same problem perform, in terms of high performance computing,
efficiency and complexity.

The work done in this thesis consists of solving the advection-diffusion equation for an
analytical velocity field on a multi-core system using MPI. The advection-diffusion prob-
lem was solved using two methods: solving the advection-diffusion equation a grid using a
finite volume method (see section 3.2) and utilizing velocity guided random walk of parti-
cles (see section 3.3 ). The scalability of both implementations were examined accordingly
and also compared.

1.2 The Advection-Diffusion equation

The Advection-diffusion equation is

∂C

∂t
= ∇ · (D∇C)−∇ · (vC)

[19], where C is a conserved quantity, D is the diffusion parameter and v is the velocity of
the medium which the concentration inhibits. The advection-diffusion equation is essential
for understanding and modeling physical transport behavior and describes how a physical
quantity is transported inside a system by the effects of both diffusion and advection. The
term∇·(D∇C) describes diffusion, a process that is the result of concentration difference,
as the physical quantity will diffuse to areas where the concentration of is low. The term
∇ · (vC) describes advection, which is transport of the physical quantity as a result of the
flow or macroscopic motion of the system.

1.2.1 Different types of diffusion

When discussing diffusion in this thesis we talk about molecular diffusion. Molecular
diffusion has the origin of the microscopic molecular motion of the molecules of a system.
Turbulent diffusion has the origin in turbulent motion as non-laminar flow will lead to
faster mixing of substances, compared to the case when the flow is laminar[17]. Turbulent
motion is described by a nonlinearity and randomness of the flow, thus turbulent motion
is neither fully understood nor fully mathematical describable. It should be noted that
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Chapter 1. Introduction 1.3 Parallell architeture

turbulent diffusion will not be the focus of these thesis as only non-turbulent flow will be
discussed and analyzed.

1.3 Parallell architeture

1.3.1 Von Neumann architeture

The standard template for a classical computer is the von Neuman architecture, which
consists of a central processing unit (CPU), that does the computations, main memory that
stores data and instructions, and a interconnect between the memory and the CPU. An
analogy to explain the different parts is that the CPU is a factory and the memory is the
storage facility for the factory. The interconnect is the highway that connects the two. Due
to steadily increasing technological advances the von Neumann architecture is reaching its
technological threshold in terms of computational performance. Some of the challenges
of the von Neumann architecture are:

• the memory wall

• the power wall

The memory wall is the difference in operating speed of the CPU and memory due to the
von Neumann bottleneck, that is how fast one can read from main memory is determined
by the limitations of the interconnect [6], [20].

The decrease in size of the transistor has resulted in an advance in the transistor switching
speed. However as the transistor performance increase in switching speed, the power
consumption increases accordingly. With an increase in power consumption the resulting
dissipation of heat increases, leading to higher temperatures. As temperatures increase it
makes the transistor unstable. As this limits how many transistors a CPU can contain, this
”cascade” effect is called the power wall of the von Neumann architecture. For further
reading and insights on the topic see [11], [16].

Improvements to the von Neumann architecture

It should be noted that even though the von Neumann architecture is the basic blueprint
for computer architecture there are several improvements made to target the von Neumann
bottleneck. Here the concept of cache will be presented as this is the improvement that
is highly likely to influence the performance of the implementations of the gridded model
of the advection-diffusion equation method in section 3.2, and the guided random walk of
particles in section 3.3.

Cache is generally a collection of memory that is faster to access than some other memory
location. In this setting when we discuss cache we talk about CPU cache. CPU cache is
faster to access for the CPU than main memory. The cache can be located either on the
same chip as the CPU, or on a separate chip that is faster to access than an ordinary memory
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1.3 Parallell architeture Chapter 1. Introduction

chip. The point is that the cache is physically closer to the CPU than main memory, and
hence has a shorter access time. The concept of a cache block is essential to understand
cache. We will start by explaining data locality, as data locality is an important aspect
which the concept of a cache block is based upon, and the reason for implementing cache.
Data locality is that a program typically uses data and instructions that are physical close
in memory to recently used data and instructions[12]. Thus the cache reads a block of
memory values into cache, where this block of memory is called the cache block. This
usage of cache blocks is clever, since due to temporal and spatial locality, many of the
values in the cache block is probably accessed by the CPU in the near future.

Conceptually the cache is divided into levels where the lowest level (L1) is the smallest and
the fastest, whereas the higher levels (L2,L3,..) are slower and larger in size. According to
Pacheco [12], as by 2010, most systems has at least two levels of cache, and three levels
are common. As such when the CPU needs to access an instruction or data it starts with
the lowest level of cache (L1) and works its way up to higher levels. If the instruction
or data is not in the cache, the CPU accesses main memory to find what it is looking for.
If the instruction or data is in the cache it is called a cache hit. Conversely if the data or
instruction if not in cache and has to be fetched from main memory it is called a cache
miss.

Another common improvement of of the von Neumann architecture is what is known as
pipelining. Pipelining can be thought as a conveyor belt in terms of the number of in-
structions the CPU can do at the same time. Rather than processing each instruction se-
quentially, each instruction is split into a series of dependent steps so that different steps
can be executed in parallel and instruction can be executed concurrently as a instruction is
starting before the previous are finished.

1.3.2 Multi-processor systems

Multi-processor systems are computer systems with several processing units (processors)
or cores, as the terms are used interchangeably. The systems based on a multi-processor
architecture have the capability to bypass the memory wall and the power wall of the single
processor systems based on the von Neumann architecture [12]. And hence these systems
has the possibility to solve increasingly demanding computational problems. However
multi-processor systems convey new challenges in form of communication between the
processors, load balance and synchronization [12]. In the recent years the hardware ar-
chitecture of desktop computers produce CPUs with several cores, often combined with
multi-threading technology, such as the Intel Core i3, i5 or i7-series. Also mobile devices
and phones sport multi-processor systems [1]. This demonstrates that multi-processor sys-
tems is becoming an important tool for solving computationally demanding problems and
is already available as off-the-shelf commerce. Additional it should be noted that Graphics
Processing Units (GPUs) are also parallel architecture, but GPUs are outside the scope of
this thesis.
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1.3.3 Shared memory architecture

In a shared memory architecture for multiple multi-core processors, all processors have a
link via an interconnect to main memory or each processor has a direct link to a block of
main memory, and the processors can access each others memory through special hardware
[12]. One differentiates between uniform memory access (UMA) and nonuniform memory
access (NUMA). In UMA systems, the time it takes to reach all memory locations will be
the same for all cores. For the case of NUMA systems the memory locations that are
directly connected to the core can be accessed more quickly than memory locations that
must be accessed trough another chip.

1.3.4 Distributed memory architecture

In distributed memory architecture the individual computational units, called nodes, are
joined together by a communications network which let the different nodes communicate
with each other [12]. Individually each node typically has a shared memory architecture.
In general such systems are heterogeneous as each node may be built from different types
of hardware.

1.3.5 Flynn’s taxonomy

Flynn’s taxonomy is a classification for describing different hardware architectures. It
classifies a system according to how many data streams and how many instruction streams
the system can manage simultaneously [12]. Further it is worthy to mention that the clas-
sical von Neumann architecture is a single instruction stream, single data stream (SISD),
wereas the Single Instruction Multiple Data (SIMD) systems are parallel systems. The
SIMD applies the same instruction to multiple data items, and hence can be very efficient
on large data parallel problems, but typically do not do well on other types of parallel prob-
lems. Another notable classification is the Single Program Multiple Data (SPMD). SPMD
programs consists of a single executable that can behave as if it were multiple different
programs through the use of conditional branches. SPDM can implement task-parallelism
as it has the possibility to divide tasks among different processes.

1.3.6 Parallel programming for shared memory systems

OpenMP is a application programming interface (API) normally used for shared memory
parallelization. MP stands for multiprocessing. The design is based on multi-threading,
were a master thread forks a specified number of ”slave threads” which joins at a later
time [12]. This is governed by compiler directives and hence has a low amount of code
overhead. Due to OpenMP beeing governed by the compiler, the developer of the code
has therefore a limited control over memory access and communication when compared
to developing programs for distributed memory.
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1.3.7 Parallel programming for distributed memory systems

The standardized approach when programming for distributed memory systems, is to uti-
lize Message Passing Interface (MPI). This is a specialization for a standard library for
message-passing, that can be utilized from many common programming languages, such
as C, C++, Fortran, Python etc. This enables communication between processors in a dis-
tributed system. MPI was initially developed with special consideration for library writers
and application writers by the MPI Forum1. MPI lets the program developer have full con-
trol of all memory access and all communication between processors. As a result the code
will have more overhead than its shared memory implementation equivalent. For further
info see https://www.open-mpi.org/ or [12].

1http://mpi-forum.org/

6



Chapter 2
Theory

In this chapter we will first introduce the advection-diffusion equation and how this equa-
tion is discretized on a grid such that the equation can be solved numerically. Then the
transition from a random walk model to a advection-diffusion equation will be demon-
strated as validation that a model on biased random walk of particles will solve the same
problem. Concepts of how to measure performance on parallel systems will also be pre-
sented, as these concepts are needed to compare the performance of the implementation
for both models.

For this thesis the numerical schemes to approximate the advection-diffusion equation was
chosen as explicit. Meaning that a general differential equation ẋ = f(t,x) is approxi-
mated on a grid as:

ẋn+1 = f(t,xn) + xn (2.1)

instead of the implicit approximation:

ẋn+1 = f(t,xn+1) + xn (2.2)

when the differential equation is spatially discretized, here xn = n ·∆x where ∆x is the
grid spacing of the discretized variable x.

Implications of the choice of scheme

Forward time difference as opposed to implicit scheme were one are needed to solve a
system of equations, but as a return is unconditionally stable. With an an implicit scheme
there are more floating point operations per time-step and thus are more computational
heavy. The reason for choosing a explicit scheme is for straight forward implementation.
Solving an implicit numerical scheme on a multi-dimensional grid is typical computation-
ally demanding as one has one has to solve a system of equations. Often one has to make
use of solvers and thus unforeseen problems can arise. The main focus in this thesis was
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on results and implementation more than method. As a part of the work done during a
master thesis is to limit and define the planned endeavor, explicit schemes where chosen
to emphasize a doable implementation.

2.1 FVM for discretization of the advection-diffusion equa-
tion

Here the finite volume method (FVM) approach for discretization of the advection-diffusion
equation on cartesian grid will be presented. As stated the Advection-Diffusion equation
for a conserved quantity can be written as [19]

∂C

∂t
+∇ · (vC) = ∇ · (D∇C) (2.3)

where the D, C and v are the diffusion parameter, the conserved quantity and the velocity
of the conserved quantity respectively. Here only cases for constant diffusion parameter
will be discussed. The equation can be easily discretized over a two-dimensional Cartesian
grid by the Finite Volume Method. When using the Finite Volume approach the conserva-
tion is enforced from the fact that flux out of a cell is flux in for a neighboring cell. Thus
the content in every cell in the discretized domain must be conserved. As this conservation
of flux is highly desirable when modeling the behavior of a physical system and one of the
reasons for choosing FVM over i.e. a Finite Element Method.

Here the finite volume method and the finite difference method is equivalent. However
both methods will be presented as it is a useful and instructive exercise, and FVM has
some useful properties, so it is good to be aware of both.

The finite volume method is to integrate the equation over the discrete lattice volume
defined by the discretization of the volume of interest.

The advection-diffusion equation integrated over the volume of interest, V , is:∫
∂C

∂t
dA =

∫
∂V

∇ · (D∇C)dA−
∫
∂V

∇ · (vC)dA (2.4)

To solve equation 2.4 we utilize he divergence theorem. Thus:

∫
∂C

∂t
dV =

∫
n · (D∇C)dV −

∫
n · (vC)dV (2.5)

When evaluating ∫
n · f(c)dV (2.6)

where
f(c) = D∇C = (f1(c), f2(c)), (2.7)
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North

South

West East

Figure 2.1: Show what gridcells that influence the next timestep fo the cell in the middle.

where fi(c) is the flux of the conserved quantity c in direction i.

We can take advantage of the fact that we can divide the total volume V into several smaller
volumes. Then if eq. (2.5) is solved for all the cells, then eq. (2.3) is solved. The total
volume is discretized into Nx cells in the x-direction and Ny cells in the y-direction. With
the size of each cell as ∆x ·∆y, were ∆x is the cell-width in the x-direction and ∆y is the
cell-width in the y-direction. With the discrete variables, xi = i ·∆x, yi = i ·∆y which
in turn yields that xNx = Nx ·∆x = xmax and yNy = Ny ·∆y = ymax, with the same
for tk = k · ∆t.This approximation for solving equation (2.5) is valid for when the total
number of grid-cells goes toward infinity and the resulting size of each cell goes toward
zero.

When evaluating the integral in eq (2.6) for a particular grid-cell, realizing that it is a flux
integral gives a reason for wanting to find the solution at the boundaries of the grid-cell
number i in x-direction and number j in y-direction.

Evaluating the flux integral at the east, north, west and south boundary (as seen in figure
2.1) accordingly:

∫
Γe

n · f(c) =

∫ y
j+1

2

y
j− 1

2

f1(xi+ 1
2
, y, t)dy ≈ f1,i+ 1

2 ,j
∆y (2.8)

∫
Γn

n · f(c) = −
∫ x

i+1
2

x
i− 1

2

−f2(x, yj− 1
2
, t)dx ≈ −f2,i,j− 1

2
∆x (2.9)

∫
Γw

n · f(c) = −
∫ y

j+1
2

y
j− 1

2

f1(xi+ 1
2
, y, t)dy ≈ −f1,i− 1

2 ,j
∆y (2.10)

∫
Γs

n · f(c) =

∫ x
i+1

2

x
i− 1

2

f2(x, yj+ 1
2
, t)dx ≈ f2,i,j+ 1

2
∆x (2.11)
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Here the number 1 and 2 denotes which of the elements, from the flux function in eq (2.7),
in question. Further to evaluate the functions in eq (2.8) to eq (2.11) above we use the
forward derivative scheme :

f1i+ 1
2 ,j

= f1(ci,j , ci+1,j) = D
ci+1,j − ci,j

∆x
(2.12)

f1i− 1
2 ,j

= f1(ci−1,j , ci,j) = D
ci,j − ci−1,j

∆x
(2.13)

f2i,j+ 1
2

= f2(ci,j , ci,j+1) = D
ci,j+1 − ci,j

∆y
(2.14)

f2i,j− 1
2

= f2(ci,j−1, ci,j) = D
ci,j − ci,j−1

∆y
(2.15)

The second term in the equation 2.5 is derived by similar argument.∫
Γe

n · g(c) ≈ g1i+ 1
2 .j

∆y (2.16)∫
Γn

n · g(c) ≈ −g2i,j− 1
2
∆x (2.17)∫

Γw

n · g(c) ≈ −g1i− 1
2 ,j

∆y (2.18)∫
Γs

n · g(c) ≈ g2i,j+ 1
2
∆x (2.19)

(2.20)

where g(c) = v · C = (g1(c), g2(c)). The following equations are found by taking the
average of c at the boundaries.

g1i+ 1
2 ,j

= g1(ci,j , ci+1,j) =
vi,j(ci,j + ci+1,j)

2
(2.21)

g1i− 1
2 ,j

= g1(ci−1,j , ci,j) =
vi,j(ci−1,j + ci,j)

2
(2.22)

g2i,j+ 1
2

= g2(ci,j , ci,j+1) =
vi,j(ci,j + ci,j+1)

2
(2.23)

g2i,j− 1
2

= g2(ci,j−1, ci,j) =
vi,j(ci,j−1 + ci+1,j)

2
(2.24)

When incorporating the forward time difference, the resulting scheme for the advection-
diffusion equation is:

cn+1
i,j = cni,j + r1(ci+1,j − 2ci,j + ci−1,j)

+r2(ci,j+1 − 2ci,j + ci,j−1)− u1i,j

2
(ci+1,j − ci−1,j)−

u2i,j

2
(ci,j+1 − ci,j−1)

(2.25)
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where r1 = D∆t
∆x2 , r2 = D∆t

∆y2 and u1i,j =
∆tv1i,j

∆x , u2i,j =
∆tv2i,j

∆y .

This scheme has the numerical stability criteria of [9].

0 < r1 + r2 ≤
1

2

and
u2

1i,j

r1
+
u2

2i,j

r2
≤ 2 (2.26)

These dimensionless numbers relate the speed with which changes in c propagate, to the
spatial and temporal resolution. Thus demanding that information do not jump over a
grid-cell. We see the scheme is consistent as the scheme approaches the partial differential
equation as ∆x,∆y,∆t→ 0.

2.1.1 Finite difference scheme

There are other ways method for making partial differential equations solvable on a grid.
One is the finite difference method. The finite difference method utilizes that for a func-
tion of a variable U defined on a grid, and by Taylor expansion of Un+1

i,j and Uni,j while
combining the previous expansions with the definitions of spacial and temporal derivative;
d
dxk

f (xk) = lim
∆xk→0

f(xk+∆xk)−f(xk)
∆xk

and d
dtf (t) = lim

∆t→0

f(t+∆t)−f(t)
∆t [4]. Then for a

variable U the forward-discretization of the time-difference operator is

∂U

∂t
=
Un+1
i,j − Uni,j

∆t
(2.27)

Corresponding the spatial derivative operator in the x-direction is

∂U

∂x
=
Uni+1,j − Uni,j

∆x
(2.28)

Similar the spatial derivation operator in the y-direction is

∂U

∂y
=
Uni,j+1 − Uni,j

∆y
(2.29)

Applying the equation above on the equation 2.3 we get

cn+1
i,j = cni,j + r1(ci+1,j − 2ci,j + ci−1,j)

+r2(ci,j+1 − 2ci,j + ci,j−1)− u1i,j

2
(ci+1,j − ci−1,j)−

u2i,j

2
(ci,j+1 − ci,j−1)

(2.30)

Also since the scheme for second order derivative is second order accurate and the scheme
for first order derivative is first order accurate, the first order derivative is approximated by

11
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the centered space method, as it is second order accurate. The centered space derivative
method for a variable U in y direction is:

∂U

∂y
=
ci,j+1 − ci,j−1

2∆y
(2.31)

Note that in the two-dimensional case, on a regular rectangular grid, the finite volume
solution for the advection-diffuson equation is equal to the finite difference solution of the
advection-diffusion equation.

2.1.2 Numerical stability

To explain numerical stability we shall utilize the theory developed for finite difference
methods (FDM). Numerical stability of FDM is mainly studied using three approaches;
Fourier analysis1, the energy method and the normal mode analysis2. The energy method
and the normal mode analysis are general techniques in contrast to the Fourier method,
as it requires linear FDM with constant coefficients for periodic problems. Here only the
Fourier method is considered for a one-dimensional case, as it motivates the understanding
of numerical stability, however the derivation is easily expanded to higher dimensions.
Consider the interval [0, 1], with grid-points at xj = j ·∆x, j ∈ [0, NJ ],∆x = 1

NJ The
values in a grid-cell can be expressed as a finite sum of Fourier modes:

Cj =

l=NJ−1∑
l=0

Ĉle
2πlxj , j ∈ [0, NJ ] (2.32)

Granted there is assumed periodicity of 1, that is T0 = TNJ . The wavenumber is k = 2πl
and the index change from l to k. Thus:

Cj =
∑
k

Ĉke
kxj , for j ∈ [0, NJ ] and k ∈ [0, 2π, .., 2π(NJ − 1)] (2.33)

Inserting equation 2.33 into a FDM that is a one-step method, that the FDM contains only
time-step n and n + 1, combined with the fact that the vectors [ekx0 , ..., ekxNJ−1 ]T are
linearly independent for k ∈ [0, 2π(NJ − 1)] the following relation holds:

Ĉn+1
k = g(k∆x,∆x,∆t)Ĉnk (2.34)

Were g(k∆x,∆x,∆t) is the amplification factor. The relation 2.34 implies:

Ĉnk = (g(k∆x,∆x,∆t))nĈ0
k (2.35)

were the n on the right hand side is an exponent. The last relation 2.35 motivates the
von Neumann condition: ”A scalar one step FDM with constant coefficients and periodic
boundary conditions is stable, if and only if there is a constant K such that

|g(k∆x,∆x,∆t)| ≤ 1 +K∆t

1Which is also known as von Neumann stability analysis
2Also called GKS analysis, after Gustafsson, Kreis and Sundstrm [5]
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for
∀k, 0 < ∆x ≤ ∆x0,

and
0 < ∆t ≤ ∆t0 (2.36)

If the amplitude factor is independent of ∆x and ∆t, the von Neumann condition is re-
duced to

|g(k∆x)| ≤ 1 (2.37)

The von Neumann condition is necessary and sufficient for numerical stability and lets
there be stable schemes for exponentially growing functions [15].

2.2 From a random walk model to the advection-diffusion
equation

Here there will be a transition from a random walk model to the advection-diffusion equa-
tion . For a collective of non-interacting particles that exhibit random walk, the individual
particle trajectory can be simulated as:

xi+1 = xi + ri
√

2nDδt (2.38)

were D is the diffusivity, xi = x(t = i · δt), δt is a short time-interval, ri, is a random
vector in n-space such that the expectation value of the distribution moments is 〈ri〉 = 0,
〈ri · ri〉 = 1 and 〈ri · rj〉 = 0 for i 6= j. [19]. It can be shown that [19]

〈(xm − x0)2〉 = 2nDt (2.39)

where m an integer defining the time-step, such that t = mδt. This increasing width of
the distribution variance, is a characteristic of diffusive processes.

For the case of velocity driven random walk; were the random walk happens in a medium
that has a velocity field associated with itself, the position is also influenced by the velocity.
The position of a particle in n-dimensions is at time t = ti+1 given :

xi+1 = xi + u(xi)δt+ ri
√

2nD(xi)δt (2.40)

It can be shown, for timescales where t � δt, that the time evolution of the probability
density function for the concentration is described by [19]

∂c

∂t
= −∇ · (uc) +∇2(Dc) (2.41)

where c is the probability density function for the concentration and u is the velocity
vector-function exhibited by the particles. For neutrally buoyant particles this velocity

13



2.3 Performance measuring on parallel systems Chapter 2. Theory

will be the same as the velocity for the medium.

It is important to note that for the general case, of D not being constant, this is not the
Advection-Diffusion equation. This is shown by writing out the equation 2.41. Hence:

∂c

∂t
= −∇ · (uc) +∇ · (c∇D) +∇D(∇c) (2.42)

The equation 2.42 contains an additional advective term ∇ · (c∇D) when compared to
equation 2.3. This extra advective term transports particles down gradients of diffusivity.
For physical diffusion this is deemed non-physical and hence a corrective term must be
introduced. This is however not an issue for the case of constant diffusivity, as in this case
the extra advective term becomes ∇ · (c∇D) = 0. The existence of the extra advective
term is also not a case when the velocity is independent of the diffusive constant, which
will be the focus of this thesis. For further reading relating the corrective term see [19].

2.3 Performance measuring on parallel systems

2.3.1 Scalability of multiprocessor systems

The serial runtime, the execution time of a parallel program using one core, is defined
as Tserial = T (1). Whereas the parallel run-time is the execution-time using p cores, is
defined as Tparallel = T (p). The best parallel runtime is T (p) = T (1)/p. When this
happens it is known as linear speed-up.

Speedup of a parallel program is defined as [12]

S =
T (1)

T (p)
. (2.43)

When there is linear speedup we have S = p, and as such the term ”linear speedup” make
sense.

The efficiency of a parallel program is defined as

E =
S

p
=

Tserial
Tparallel

p
=

Tserial
p · Tparallel

(2.44)

According to Peter Pacheco [12] a program is strongly scalable if there is a rate at which
the problem size can be increased so that, as the number of processors is increased, the
efficiency remains constant. In contrast, the program is weakly scalable when the problem
size needs to be increased at the same rate as the number of processes to keep constant
efficiency.

Since parallel code is different from serial code, and needs additional program-overhead
when compared to serial code, the parallel execution time of a program can be described
as

T (p) = Tp =
Tparallel

p
+ Toverhead (2.45)

14
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were Tparallel is the part of the program that is parallelisable and hence that part will
have its runtime affected by the number of processors, p, allocated to the execution of
the program. Toverhead is the part of the program that is needed to write parallel code or
unaffected by the number of cores allocated. As the program size increases, the time used
on code overhead becomes smaller compared to the time used on the parallel part of the
program. Therefore Tp ≈ Tparallel

p as the problem-size becomes sufficiently large.

2.3.2 Amdahl’s Law

Amdahl’s Law [3] gives the theoretical speedup of the execution of a program with a fixed
workload given that the resources (or number of cores) increase. The total runtime of the
program can be written as

T = Ts + Tp (2.46)

where Ts is the time of the serial part of the program and Tp the time of the parallel part of
the program. And when f is the fraction of the program that is parallelizable, the equation
(2.46) can be written as.

T = (1− f)T + fT (2.47)

and when allocating p number of cores the total runtime of the program yields

T (p) = (1− f)T +
f

p
T (2.48)

The resulting speedup is hence calculated by

SA(p) =
T

T (p)
=

1

(1− f) + f
p

(2.49)

SA(p) is the theoretical speedup of the execution of the whole task. p can also be regarded
as the speedup of the part of the task that benefits from improved resources. We see that
as f becomes large, Amdahl’s law becomes SA(p) ≈ p.

2.3.3 Gustafson’s Law

Gustafson’s Law gives the theoretical speedup of a program while having constant exe-
cution time, given that the resources (or cores) improve [8]. If the st and ft represent
accordingly the serial and the parallel time fraction of the time spent on parallel system
such that st + ft = 1. Then the time required doing the same computation on a serial
system would be st + ft · p, were p was the total number of cores used in the parallel
execution. The resulting scaled speedup is thus: [8]

SG(p, st) = p+ (1− p) · st (2.50)

Gustafson law addresses the shortcomings of Amdahl’s law. Since Amdahl’s law only
consider a fixed amount of work. But as resource increase the amount of work one wants

15



2.3 Performance measuring on parallel systems Chapter 2. Theory

to do also increases. An another way to view Gustafson’s law is, if the problem is scaled
by a factor, by which factor do the resources need to be scaled, to keep the execution time
constant.

If the we rewrite equation (2.50) to SG(p, st) = p + (1− p) · (1− ft), we see that when
scaling the problem sufficiently large, the parallel time fraction is most significant i.e.
1− f ≈ 0. Then Gustafson’s law becomes SG(p, st) ≈ p.

2.3.4 Karp-Flat Metric

The Karp-Flat metric is a measure of to which extent the code is parallelized on a parallel
processor system [10]. Hence the Karp-Flatt metric gives the empirical serial part of the
program. Combining the expression for Amdahl’s law in its simplest form:

T (p) = Ts +
Tp
p

(2.51)

with the serial time fraction st = Ts
T (1) of total time on a parallel system. Then equation

(2.51) can be expressed as:

T (p) = T (1)st +
T (1)(1− st)

p
(2.52)

using the definition of speedup from (2.43)

1

S
= st +

1− st
p

(2.53)

solving for the serial fraction gives the resulting equation

st =

1
S −

1
p

1− 1
p

(2.54)

st is the experimental serial fraction and as st becomes smaller, the more the code is
parallelisable.

2.3.5 Optimal allocation of resources

There are two goals when doing large scale parallel simulations:

• The reason for using parallel programming is to get the results of the simulation as
fast as possible.

• The simulations should utilize the smallest amount of resources when doing the
computation. Hence being cost efficient.
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The resulting best case scenario is when the serial fraction is 0. This is what is known as
perfect scaling. Here the CPU-time is independent of the number of CPUs used for the
simulation.

In practice the serial fraction is larger than 0. This means that as the number of cores, p,
gets sufficiently large, we se from eq (2.49) that for a problem of fixed size the speedup
becomes constant: lim

p→∞
SA(p) = 1

1−f . Also by taking the derivative of eq (2.49):

d

dp
SA(p) =

f

((1− f)p+ f)2
(2.55)

Here we see that the slope of the speedup is steadily decreasing. As such there exist a point
were allocating more recourses is not necessarily advantageous, even tough there will be
an increase in speedup. An explanation could be to think in the terms of ”economic”
motivation, at some point the cost of allocating new resources outweighs the gain from
faster execution time of the program.
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Chapter 3
Method

This chapter will entail the methods implemented for solving the diffusion equation pre-
sented in section 2.1 and 2.2. First the velocity field utilized in this thesis will be presented
and discussed, as the properties of the velocity field will have certain consequences for the
resulting implementations for solving the advection-diffusion equation. Then the chosen
method for implementation of solving the advection-diffusion on a grid will be presented
along with how to maintain the boundary conditions for this implementation. Further,
the chosen method for implementing the velocity guided random walk for solving the
advection-diffusion equation, will be presented. Also here the boundary condition will
be discussed, as this method requires a different way of enforcing the boundaries. Then
there follows a discussion of the differences between the domain-decomposition in the two
models. The method for comparing the result in section 3.2 and 3.3 will be presented ac-
cordingly. The end of this chapter will entail a presentation of the system used for testing
performance the implementations.

It should be noted that in this chapter the term rank refers to a single core or thread (also
called process) in the parallel computing system.

Also the source code for implementing both the grid model method and the particle model
method can be found in the appendix A

3.1 System geometry

The analytical velocity field used in the simulations consist of two counter-rotating gyres,
where the centerline between them oscillates back and forth. The analytical expression for
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the velocity field, taken from [13], is defined as:

vx = −πA sin(πf(x, t)) cos(πy)

vy = −πA cos(πf(x, t)) sin(πy)
∂f(x, t)

∂x

(3.1)

where x ∈ [0, 2.0], y ∈ [0, 1.0] and

f(x, t) = a(t)x2 + b(t)x

a(t) = εsin(ωt)

b(t) = 1− 2ε sin(ωt)

(3.2)

The A determines the amplitude of the velocity field, ω is how fast the centerline, between
the two gyres, oscillates back and forth. As seen in the vector plot of the velocity field in
eq. (3.1) and (3.2) in figure 3.1, for different points in time. ε is a factor that determines the
width of the oscillations belonging to the centerline. In figure 3.1 and the implementations
the values were set to A = 0.1, ω = 1.0, ε = 0.25. The advantage of this particular
analytical expression is that the velocity is always parallel to the boundaries. Hence there
will not occur any advection across the boundary. As such the only possible way to cross
the boundary is by diffusion.

In order to make the system conserve mass, reflective boundary conditions was enforced.
This means that our system can be compared to a closed box, were an initially concentrated
substance is distributed by advection and diffusion.
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Figure 3.1: Plot of the velocity field specified in eq (3.1) and (3.2) for different points in time.
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3.2 The grid model

As shown in section 3.2 the advection-diffusion equation in eq. (2.3) can be numerically
approximated as eq. (2.25) and solved on a grid. As mentioned previously the system was
solved using parallel computations. When doing computations in parallel, the primary
objective has to be subdivided into tasks that can be computed in parallel, ideally inde-
pendent of how many ranks are available to the program. For this model the total domain
of the grid was divided into several sub-domains. One sub-domain for each rank and as
such each rank was solving the eq. (2.25) for its own sub-domain. As each rank solved the
equation for a different region of the domain this is an example of a SPDM system [12].

To make the communication between ranks as straightforward as possible, the ranks was
organized as a Cartesian grid that overlapped the domain. MPI has built in support for
this through what is known as a Cartesian Communicator. This is done by utilizing a
MPI functions called MPI Dims create and MPI Cart create. As MPI has func-
tionally to communicate between distributed memory systems, MPI has what is known
as a communicator that is used to let a group of ranks communicate if they belong to
the same communicator. MPI Cart create takes the arguments of how many ranks
that are available along with a number specifying the dimensional configuration and re-
turns a ”dimension array”, an array that contains the number of ranks in each dimension.
MPI Cart create takes the dimension array as an argument and returns a Cartesian
communicator. This Cartesian communicator is used to keep track of the neighbors of
each rank in the north, south, east and west direction, as seen in figure 3.2.

Thus each rank had the computational responsibility for a square of the grid, with a size de-
pending of how many ranks that was involved in the computation. By looking at eq (2.25),
we see that ct+1

i,j depends on its neighboring grid-cells, as seen in figure 3.3. Therefore
we run into a calamity when solving the eq (2.25) on the border cells of the sub-domain,
since these are belonging to a different rank. To resolve this a ”halo” of grid-cells was
added around the sub-domain grid of each rank. The halo consists of the neighboring
ranks boundaries, as seen in figure 3.2. For each rank, with neighboring ranks in all four
directions, the halo consisted of two bordering columns and two border rows. For the
ranks on the ”edges” of the domain, with no neighboring rank in a certain direction, this
part of the halo was used to enforce the boundary conditions. After each timestep, each
rank exchanges updated values for the halo cells with its neighbors.

3.2.1 Initial conditions

The system initial condition were instantiated by the master rank and were a two-dimensional
Gaussian distribution of concentration;

p(x, y) = A exp

(
−
(

(x− x0)2

2σ2
x

+
(y − y0)2

2σ2
y

))
(3.3)

where x ∈ [0, Nx], y ∈ [0, Ny], x0 = Nx
2 , y0 =

Ny
2 , σx = Nx

16 , σy =
Ny
8 . The total size

of the system is hence Ny ·Nx. A is a scaling factor. The initial condition were chosen to
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east

south

west

north

Figure 3.2: Shows border communication between processors in the domain decomposition of the
diffution advection equation

be Gaussian as any discontinuities in the concentration are not beneficial for the numerical
scheme in (2.25). As a result the initial condition for the particle model had to be similar.

3.2.2 Computational recipe

The following recipe was utilized when running a computation on p ranks;

• Divide the domain between the ranks and set up the Cartesian communicator.

• Initialize the concentration distribution on the master rank.

• Distribute the initial concentration between the p ranks.

• The next steps are performed on each rank for a number of Nsteps time steps:

– update the velocity field.

– communicate between ranks by transferring the halos.

– compute the concentration in each grid cell for the new time step by applying
eq. (2.25).

– At given time intervals the concentration is gathered at the master rank and
written to file.
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ci,j+1

ci,j−1 ci,j
ci+1,j

ci,j−1

Figure 3.3: Illustration of the gridcell influencing a new timestep, for the scheme in the grid model.
As seen in equation (2.25)

3.2.3 Enforcing boundary conditions

When assuring that the boundary conditions are met the value of the concentration at the
boundaries were simply set to be the same values as the ones next to the boundaries. To
be strictly formal the reflective boundaries is a Neumann boundary condition. The flux in
the advection-diffuion equation is given by:

j = jA + jD = v · C −D∇C, (3.4)

were jA and jD are the advective flux and the diffusive flux respectively. When ∂C
∂x = 0

the diffusive flux, jD, in x-direction is zero. The reason for this is that the flux out of
a grid-cell is proportional with the concentration in the cell. If ci,j = ci,j+1 in figure
3.3, then the flux is equal in both directions, so that total flux is zero. Such is the spatial
derivative of the concentration at the boundary is zero. Thus by demanding that:

cNx+1,j − cNx,j
∆x

= 0, ∀ j ∈ [0, Ny]

c0,j − c−1,j

∆x
= 0, ∀ j ∈ [0, Ny]

ci,Ny+1 − ci,Ny
∆y

= 0, ∀ i ∈ [0, Nx]

ci,0 − ci,−1

∆y
= 0, ∀ i ∈ [0, Nx]

(3.5)
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we see that the stencil in eq (2.25) on the edges of the domain becomes:

cn+1
Nx,j

= cnNx,j + r1(cNx,j − 2cNx,j + cNx−1,j) + r2(cNx,j+1 − 2cNx,j + cNx,j−1)

− u1Nx,j

2
(cNx,j − cNx−1,j)−

u2Nx,j

2
(cNx,j+1 − cNx,j−1)

∀j ∈ [0, Ny]

(3.6)

cn+1
0,j = cn0,j + r1(c1,j − 2c0,j + c0,j) + r2(c0,j+1 − 2c0,j + c0,j−1)− u10,j

2
(c1,j − c0,j)

− u20,j

2
(c0,j+1 − c0,j−1)

∀i ∈ [0, Nx]

(3.7)

cn+1
i,jmax

= cni,Ny + r1(ci+1,Ny − 2ci,Ny + ci−1,Ny ) + r2(ci,Ny − 2ci,Ny + ci,Ny−1)

−
u1i,Ny

2
(ci+1,Ny − ci−1,Ny )−

u2i,Ny

2
(ci,Ny − ci,Ny−1)

∀j ∈ [0, Ny]

(3.8)

cn+1
i,0 = cni,0 + r1(ci+1,0 − 2ci,0 + ci−1,0) + r2(ci,1 − 2ci,0 + ci,0)− u1i,0

2
(ci+1,0 − ci−1,0)

− u2i,0

2
(ci,1 − ci,0)

∀i ∈ [0, Nx]

(3.9)

As seen some of the terms cancel eachother out. As such, the stencil in equations (3.6)
- (3.9) show that to enforce the boundary conditions and thereby to change the compu-
tational stencil of eq (2.25) at the boundaries, is the same as setting the values at the
boundaries equal to the values next to the boundaries at each timestep, without changing
the stencil of eq (2.25). Here it possible to not change the stencil as each rank has its own
halo.

3.3 Method of velocity guided random walk of particles

The particle model relies on the fact that a sufficiently large amount of particles that exhibit
random walk in a velocity field will behave collectively as an advective-diffusive process,
as covered in section 2.2. The following procedure was utilized on each rank when running
a computation with N particles on p ranks;

• N/p particles were initiated on each rank. The initial conditions was chosen to be
as similar as possible to that for the gridded equations: Each particle was located at
a random position drawn from a Gaussian distribution with µx = 1.0, µy = 0.5,
σx = σy = 1/8. Such that that the expected value is at the center of the domain.
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• The next steps are performed on each rank for a number of Nsteps time steps:

– The particles were advected forward in time using the Runge-Kutta 4th-order
method as the trajectory of each particle is given as ẋ = v(x, t), where v is
the velocity of the particle given by eqs. (3.1) and (3.2).

– After each advective step the particles were given a random displacement. This
displacement fulfills the required conditions for the random vector described in
section 2.2; and used in the equation xi+1 = xi +u(xi)δt+ ri

√
2nD(xi)δt

• At given time intervals the position of the particles were sent to rank 0 and written
to file.

3.3.1 Enforcing the boundary conditions

Due to the nature of the Gaussian distribution, some initial conditions will likely be outside
the system domain. Therefore, the initial conditions of every particle was checked to be
inside the system, if this was not the case the position was rejected, resulting in a new pick
of position, and following an assertion that the new position is valid. This procedure was
repeated for each particle until all the particles had a valid initial condition.

If a particle crossed the boundary of the domain due to the random walk, the position had to
be corrected to enforce the reflective boundary condition. Thus the total distance traveled
by the particle from the boundary was calculated, in the x-direction: dr = x− xmax. The
new position is then:

x→ x− 2 · (x− xmax). (3.10)

The ”corrected” position is thus the distance dr from the boundary, in the opposite di-
rection, into the domain, as seen in figure 3.4. Hence it was as the particle had a elastic
collision with a wall.

3.4 Domain decomposition vs particle decomposition

The main difference between how parallelization was utilized in the two models is how
the overlying task is decomposed between the ranks available. For the grid-model when
decomposing the simulated domain between the ranks and letting each rank solve one
spatial part of the domain of interest, the strength of this approach is that each ranks does
not need to know the velocity field over the entire system. Another advantage is that in the
domain decomposition, each rank always know the local concentration. On the other hand
this method of domain decomposition advocates a substantial amount of communication.

In the particle based method, each rank keep track of a fraction of the conserved quan-
tity. Here the advantage lies on the fact that the number of times needed to communicate
between the ranks is greatly reduced, when compared to the domain decomposition. A
disadvantage is that particles in a given physical location can be distributed across many
ranks. This means concentration cannot be calculated without communication. A hybrid
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dr

x− 2 · dr

Figure 3.4: Shows how particles are moved into the domain if they cross the domain boundaries
due to diffusive movement. Here it is only shown in the x-direction. The cross indicates the position
of the particle initial position outside the domain. The box indicates the corrected position were the
particle is moved inside the domain.

model, where particles are assigned to ranks according to their spatial position, is also
possible. This has been investigated by Nordam et al [18].

3.5 Comparing the results

To compare the two models there were computed several plots. Concentration plot for
the grid-model, at a given time, were made from a file containing the concentration and
normalized before plotting and then presented.

When producing the concentration plot for the particle model, the particles positions that
were stored to file were mapped to grid using the grid-spacing determined by the grid-
model, hence the choice of h = 1/(512 − 1), and the resulting plot was normalized and
presented. The mapping was a ”boxcount” method, where if the a grid-cell contained a
particle the value of this cell was incremented. As such each box contains a count of
how many particles there are in each box. From this ”boxcount” a resulting heatmap was
constructed. Also there were produced concentration plots from the particle model using
a different mapping, a truncated Gaussian. Were each particle is mapped using a truncated
Gaussian function of a given size, hence smoothing the plot.

To view the resulting differences between the plots a difference plot were constructed. The
normalized concentration made from the grid-model were subtracted from the normalized
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concentration made from the particle-model and the resulting ”difference” concentration
were plotted.

Also computational time for the particle method as function of the number of particles was
demonstrated. Timings of the wall-time for both implementations were presented along
with resulting plots of speed-up, the Karp-Flat metric, CPU-time and efficiency, generated
as a result of the number of ranks.

3.6 Performance testing

This two programs were implemented in C, and tested on Vilje [7], using the openMPI im-
plementation of MPI. Vilje is a SGI Altix ICE X system procured by NTNU together with
met.no and UNINETT Sigma, with SUSE Linux Enterprise Server 11 operating system
and Mellanox FDR infiniband and Enhanced Hypercube Topology interconnect. Vilje has
a total of 1404 nodes. Each node had 2 eight-core processors (Intel Xeon E5-2670 ) with
a processor speed of 2.6 GHz. 8 cores share a L3 Cache of 20 MB. This gives a total of
1404 · 16 = 22464 cores for the complete system. The program were tested on up to 512
and 1024 ranks (64 nodes).
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Chapter 4
Performance, results and discussion

First, we present an overview of the results in this chapter, as the result gained from the
simulations done for both models will be compared and discussed. Then two different
ways of mapping particles onto grid are considered, boxcount and truncated Gaussian
kernel. We will investigate different ways of calculating a concentration grid from particle
positions, and address the question of what is a suitable number of particles. Finally,
performance characteristics of the models, as a result of the number of cores available,
will be shown and discussed.

4.1 Overview of results

In figure 4.1, results from the grid model implementation are shown from 10 different
timesteps, to give an idea of how the concentration field evolves trough time. Note that the
scale of the colorbar is kept constant.

Later certain output timesteps will be examined and compared to the results from the
particle model. We will refer to timesteps by number, where timestep 0 is the initial
condition (Upper left panel of equation figure 4.1). It should be noted that timestep here
means how many times particle position or concentration is been written to file, i.e. the
output timestep. The internal timestep δt, (see eq. (2.25)) is much shorter.
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Figure 4.1: Results from the gridded model with (Nx,Ny) = (1024, 2048). This plot show
the time evolution of the concentration, as given by the advection-diffusion equation, solved over
using the grid method. The initial condition was as described in eq. (3.3) ini a certain time period.
Timestep 0 to 9.
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Ny

Nx

2xbuf

2xbuf

2×Nb

2×Nb
d

Figure 4.2: The domain of influence from each particle, when mapping the position of the particle
to a grid by using eq (4.1) and eq (4.2).

4.2 Mapping particle onto grid

The following are a recipe for how each particle is counted, when mapping the particles to
grid, using a truncated Gaussian, such that the results from two models can be compared.

• We first define a grid that covers the area 0 ≤ x ≤ 2,≤ y ≤ 1, with constant cell
size. The number of cells are Nx × Ny , where Nx = 2048 and Ny = 1024. The
goal i to calculate the concentration in each cell, such that the particle model can be
compared directly with the grid model.

• We then define a smaller grid, G, to represent the contribution from each particle.
Each cell in the grid G is assigned a value G(i, j):

G(i, j) =
1√
2πσ

· e−
(
d2

2·σ2

)
(4.1)

where
d2 = (i−Nb)2 + (j −Nb)2 (4.2)

• Finally we loop over all the particles. For each particle we find the cell that is the
center of the particle is located. Then G will be superimposed onto the concentra-
tion grid, such that the center of G is located a the center of the particle, and the
contribution in each cell in G is added to the concentration grid.

• To assert the particles whose distance from the edge of the concentration grid than
the distance σ (note that σ is given in number of cells), the contribution from the
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4.3 Visualizing model differences Chapter 4. Performance, results and discussion

Figure 4.3: Illustration of the added Gaussian function for one particle.

cells that end up on the outside gets reflected such that they end up inside the con-
centration grid. This is necessary to ensure the mass in the concentration grid.

Note that σ = (1, 20, 40) for the pictures (a,b,c) in figure 4.4 to 4.6 respectively. The
concept of the truncated Gaussian kernel above is illustrated in figure 4.2 and the mapping
of one particle can be seen in figure 4.3

A comment relating the execution time of the griding of particles is that when the grid-
projection was implemented in python, using the Numba just-in-time compiler, the com-
putational time to calculate the grid projection was insignificant compared to the time it
took to run the particle model.

4.3 Visualizing model differences

As seen in figure 4.4 to 4.6 the behavior of the grid model and the particle model are
similar. Here the plot for particle model is made in three different ways. In picture a)
the particles are counted as a delta function, picture b) and c) maps each particle as a
truncated Gaussian. Naming the method in a) ”boxcount” is due to the fact that one counts
the number of particles in each gridcell, and afterwards normalizes the total concentration
plot. The difference between the particle plots in picture b) and c) is the σ in equation
(4.1), were σ = 20 and σ = 40 in b) and c) respectively. Also the Gaussian function was
the same for each particle.

As seen in figure 4.7 the concentration when using the grid method witness some numerical
diffusion. As this is unavoidable due to round of effects, it is well within acceptable limits
since the loss of information is less than 0.25% during the entire simulation period. As
for the particle method it is perfect conservative as it is highly unlikely that the loss of an
entire data variable will occur. Since each particle in the implementation is assigned an
element in an array, it would require the assigned memory of the data variable in question
to be overwritten.
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(a) Particle plotted using a boxcount
method.

(b) Particles plotted using a Gaussian
smoothing with σ = 20 (see eq (4.1) and
eq (4.2)).

(c) Particles plotted using a Gaussian
smoothing with σ = 40 (see eq (4.1) and
eq (4.2)).

Figure 4.4: The top panel shows the normalized concentration plot made from the particle model
using 100000 particles, the mapping of boxcount or truncated Gaussian. The middle panel show the
normalized plot of the concentration from the grid model. The bottom panel shows the difference
between the two plots. All plots were from timestep 0.
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(a) Particle plotted using a boxcount method. (b) Particles plotted using a Gaussian smoothing
with σ = 20 (see eq (4.1) and eq (4.2)).

(c) Particles plotted using a Gaussian smoothing
with σ = 40 (see eq (4.1) and eq (4.2)).

Figure 4.5: Comparison of the two models from timestep 4, where the panels are as in figure 4.4
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(a) Particle plotted using a boxcount method. (b) Particles plotted using a Gaussian smoothing
with σ = 20 (see eq (4.1) and eq (4.2)).

(c) Particles plotted using a Gaussian smoothing
with σ = 40 (see eq (4.1) and eq (4.2)).

Figure 4.6: Comparison of the two models from timestep 8, where the panels are as in figure 4.4.
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Figure 4.7: Plot over normalized concentration present in the total simulation domain for the double
gyre velocity field as a function of time. Low diffusion effect and reflective boundary conditions.

It should be noted that if the boxcount method for mapping the particles to a grid where uti-
lized, the number of particles has to be extremely high, if the resulting plot is compared to
the plot made from the grid model. Figure 4.11 and 4.12 shows how the boxcount method
for plotting concentration approaches the concentration plot made from the grid method
as the number of particles increase. As the number of particles increase the execution time
increases accordingly.

One of the reasons for the boxcount method requiring a a large amount of particles, is
since the amount of particle, to get a sufficient image, has to be large enough. Large
enough means that the standard deviation of the number of particles for a particular bin-
cell, imposed by the mapping function, has to be sufficiently smaller than the expected
number of particles inside a bin.

Further, the choice of mapping function, or counting method for the particles in the particle
model, dictates how many particles needed to get a similar picture as the grid model. As
seen in the figure 4.4, 4.5 and 4.6 the number of particles required here are and order of
215 fewer than the number of particles required in 4.11 and 4.12. Thus being much less
computational demanding. I.e the mapping of the particles to grid plays a significant part
in the required time of the particle model, as the boxcount method will lead to the same
results as the grid method, for the limit where the number of particles goes towards infinity,
as seen in section 2.2. The grid model when running with 64 ranks uses just under 1000
sec, running the Nsteps = 5000 number of iteration timesteps with a dt = 2.5 ·10−5. As a
comparison, in figure 4.13, the execution time of the particle method is plotted as function
of the number of particles, NP, with dt = 2.5 · 10−3, Nsteps = 5000, p = 64. Note that
the dt in the grid model are 100 times smaller than the dt used in figure 4.13.

The initial idea with the particle model is to model a physical system using a set of as-
sumptions. By using a particle based model the advection part is the relatively simple as
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it is solved by numerical integration. The diffusion part of the system is here modeled
by random walk. It is worth noting that the ”particles” in the simulation does not have
to be physical particles. Thus a computational effective method that do not yield any no-
physical result is acceptable. Example of models that are based on similar concepts as
the particle model but has other inherit abilities are Lattice Boltzmans method, which is
highly suitable for numerical fluid dynamics [2] [14], or cylinders particles with increas-
ing radius. Cylinder particles are particles that are cylinders that are defined to have a
height and radius. As the position of the cylinders are advected and diffused the radius
also increases with time. This increasing radius results in an increased smoothing when
calculating the concentration.

Due to the particles being non interacting and the random initial condition the particle
method can be run as x different executions of the same program with N particles. This
will yield the same collective particle mapping as running one execution of the program
with N · x particles.

It could be argued that as the initial conditions or velocity field have never been altered,
the difference between the models end behavior has not been examined. However this was
not the intended scope of this thesis.

The scheme in the particle model can be viewed as:

xi+1 = RK-4(xi,u(xi), δt) + ri
√

4Dδt (4.3)

where RK-4 means the Runge-Kutta 4th order method. From this we see that the accuracy
in time for the particle model is of 4th order for the advection part. When it comes to the
diffusive part, section 2.2 show that the variance of the diffusive term increases linear with
time. Variance in this case, can be thought of as the diffusive transport length. A detailed
analysis of the accuracy of the diffusion part of the particle method demands the utilization
of the theory of stochastic differential equations, as this is highly extensive it is outside the
scope of this thesis.

The Runge-Kutta 4th order scheme is a well known scheme and proven workhorse when
doing numerical integration. Combined with the fact that there is nothing in the velocity
field that changes so fast that one would expect the Runge-Kutta 4th order to not be a
sufficient integrator scheme. As the results from the particle method and the grid method
look similar and the implementation of the RK-4 is straightforward, it advocates that the
RK-4 is well suited for this purpose.

There has been no consideration for which time-steps is reasonable for the particle model,
as the focus of this thesis has been on implementing and comparing differences between
the two implementations. For the particle model the largest velocity in the velocity field
multiplied with the time-step should not be larger than the width of a grid-cell in the
resulting mapping. As the largest velocity in the velocity field was found by numerical
investigation to be vmax = 0.47. This yields the largest step, when the δt = 2.5 · 10−5,
as δt · vmax = 1.175 · 10−5. Compared this to the gridsize of ∆x = 1/(1024 − 1) =
9.78 · 10−4, we see that the distance, a particle with the largest possible speed will travel,
is a distance shorter than a grid cell. Hence the time-step are within reasonable limits.
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4.4 Model performance Chapter 4. Performance, results and discussion

For the grid model any time-step and grid size is reasonable as long as the stability criterion
of eq 2.1 are upheld. With δt = 2.5 · 10−5, D = 0.00619 and ∆x = 1/(512− 1) = 1.96 ·
10−3,∆y = 1/(512−1) = 1.96·10−3 and setting v1i,j and v2i,j in eq (2.1) equal to vmax,

the stability parameters becomes r1 = r2 = 0.0404 and u2
max

r1
=

u2
max

r1
= 8.923 · 10−4.

Here the scheme are well within the stability domain and as such could have increased the
length of the time-step in order to make the computations faster. As as such for a given
gridsize of h in both directions, and with v1i,j = v2i,j = vmax the two stability demands

can be expressed as i) ∆t ≤ h2

4·D and ii) v2max
D ≤ ∆t meaning that δt ≤ 5.04 · 10−4 and

δt ≤ 0.028. Thus the time-step could have been increased by a factor 10, for the system
in this thesis, without violating the stability criterion.

4.3.1 A note on gridsize parameters used in timing runs

A note should be made regarding grid-size, the keen-eyed reader would have observed
that the grid-size in the previous consideration is not 1/(1024 − 1) which it should be in
relation to the number of grid-cells. This is due to simple human error, as the grid-size
has to be set independently of the number of grid-cells in the code. The reason for this
error inducing choice of implementation is a consequence of having the grid-size variable
declared as static in the code. Meaning that it is easy available in cache as the variable
is accessed often throughout the execution of the program, resulting in a faster execution
of the program. As this error in grid-size makes no sense physically it does not imply
any error for the execution of the program. This error is only present for the performance
tests of the grid-model and in addition as the number of floating point operations are the
same. Also the stability criterion would still be upheld if the ∆x will be doubled. Thus
the speed-test is deemed valid and as an indicator for the scalability for the grid-model.

4.4 Model performance

As seen in figure 4.8 the grid-model experience superlinear scaling. Meaning that the
speedup is more than double if the number if ranks are doubled. This is probably explained
by better use of cache. As more cores allow for a larger portion of the total problem to
be kept in the lower parts of cache, and therefore are closer to the CPU. Hence more of
the problem fit into cache and therefore the speedup is better than linear. As a result the
efficiency is higher than 1.0 some places. Note that the highest amount of efficiency is
seen at p = 27, as such the CPU-time is at its lowest.

The particle model has a more linear scaling as seen in figure 4.9. This should be expected
as the implementation of this model emphasize low of communication between the ranks
as communication occur only as a need for returning data and the calculations in it self are
independent of parallelization.

A performance plot for the particle model with a larger timestep can be seen in figure 4.10.
Here the serial part of the program is larger as the speedup starts flattening out for large
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number of ranks can be seen more clearly.

It should be noted that the reason for stopping the speedup tests at p = 512 for the particle
model with the large stepsize, was since the simulations suddenly took a much larger wall-
time while not producing any output, thus probably indicating that the program is hanging.
Node crashes were also experienced. The reasons for this are not fully understood, as if the
speedup threshold have been reached the wall-time should not increase, it should merely
be the same. Accordingly maybe the time spent on communication has increased to such
lengths that the resulting total execution time take a significant longer time. For some
reason when using the Cartesian communicator it requires a certain amount of grid-cells
for not stalling the program. One would be led to believe that when not using the Cartesian
communicator this should not be an issue. However this seems not to be the case. It turns
out that Vilje has two implementations of the MPI-library one is openMPI, the other is
”mpt” which is SGI Message Passage Toolkit 1. Mpt tends to lead to a slower performance
of the program than openMPI, but does not crash when number of ranks increase to over
1024. Since all of the other performance tests was done using openMPI and performance
trend is clearly visible from figures 4.8, 4.9 and 4.10, the performance tests was not redone
while utilizing the mpt library.

4.5 Inquiries relating performance testing

4.5.1 Gridded model

Given that the system sizes can be written as imax = 2m and jmax = 2n were m,n ∈ N,
some defined parameters are worthy of examination. Since the total number of processors
can be written as p = 2k, the total number of grid-cells pr core in the grid-model is

F (m, k) =
2m · 2n

p
= 2m+n−k = 22m−k−1 (4.4)

since by definition n = m − 1 (as x ∈ [0, 2], y ∈ [0, 1]). Given the Cartesian MPI com-
municator used in the code for the grid-model, the number of processors can be expressed
as p = 2h · 2b, the number of processors in receptively height and width of the Cartesian
structure.

Due to the boundary conditions of the system being non-periodic, there exist a number
of grid-cells that will not be sent. The reason for this is that there exist no neighbour-
processor in the direction of a boundary for the processor in question. Hence the total
number of grid-cells that is not sent is 2 · 2m + 2 · 2n = 3 · 2m.

Further the total number of grid-cells to communicate is:

C(k(h, b),m) = p ·
(

2 · 2m

2b
+ 2 · 2n

2h

)
− 3 · 2m

= 2m · (2h+1 + 2b − 3)

(4.5)

1https://support1-sgi.custhelp.com/app/home
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Thus the number of grid-cells to communicate per core is:

CP (m, k(h, b)) =
C(h, b,m)

p
=

2m+1+h + 2m+b + 3 · 2m

2h · 2b
= 2m+1−b + 2m−h − 3 · 2m−h−b

(4.6)

Then it is reasonable to define the ”area vs circumference” of a processor. That is how
large is the domain of the processor compared to halo (which has to be communicated).
Thus:

L(m,h, b) =
F (m, k(h, b))

CP (m, k(h, b))
=

22m−k−1

2m+1+h+2m+b−3·2m
2h·2b

=
2m−1

2h+1 + 2b − 3

(4.7)

4.5.2 The guided random walk model

When the total number of particles is 2N , and the total number of cores are 2k. The number
of particles for each core is:

Pc(N, k) =
2N

2k
(4.8)

Thus the total number of send operations are 1 with 2N−k elements. Number of particles
per total area of the grid model are thus:

Pa(N,m) =
2N

22m−1
(4.9)

Meaning that when using the boxcount method for mapping the particles to a grid the
number of particles particles has to be comparable to or higher than the number of bins in
the resulting picture. Np must be much larger than the number of cells in the area with
interesting concentration for the boxcount method to work. Such that random fluctuations
originating from the random walk does not influence the resulting concentration plot to
such an extend that it differs from the plot generated by the grid-model.

The plots of L and PCc in figure 4.14a and 4.14b should be correlated to speedup for not
to large amount of ranks. As the L and Pc is a indication of the amount of work done on
calculation vs the work done on sending.
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Figure 4.8: Plott of wall-time, speedup, efficiency, total CPU time and Karp-Flat metric for the grid
model with system size (Nx,Ny)=(2048,1024) and Nsteps = 500000
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Figure 4.9: Plott of wall-time, speedup, efficiency, total CPU time and Karp-Flat metric for the
particle model with 217 number of particles and Nsteps = 500000, with δt = 2.5 · 10−5
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Figure 4.10: Plott of wall-time, speedup, efficiency, total CPU time and Karp-Flat metric for the
particle model with 220 number of particles and Nsteps = 5000, with δt = 2.5 · 10−3
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Figure 4.11: Shows how the pictures generated using the boxcount method of the particle imple-
mentation, goes towards the plots from the grid method seen in figure 4.1.The pictures in each line
the left are of output timestep 0 and the right picture are of output picture 8. To generate the plots in
the top line 220 particles are used. For each line the number of particles are doubled. To generate the
plots in the bottom line 225 particles are used. Here the gridspacing h = 2/1023 = 1.955 · 10−3
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Figure 4.12: Shows how the pictures generated using the boxcount method of the particle imple-
mentation, goes towards the plots from the grid method seen in figure 4.1.The pictures in each line
the left are of output timestep 0 and the right picture are of output timestep 8. To generate the plots
in the top line 226 particles are used. For each line the number of particles are doubled. To generate
the plots in the bottom line 230 particles are used. Here the gridspacing h = 2/1023 = 1.955 ·10−3
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Figure 4.13: Shows how the computational time of the particle implementation scales as a function
of the number of particles, when using number of cores p = 64.

(a) Plot of equation (4.7), with, m = 11, n = 10
as a function of k, where h is defined as b − 1 if
k is not an equal number.

(b) Plot of equation (4.8) as it is the total number
of particles each rank has to send. Here N = 17

Figure 4.14: A visualisation of total amount of sending operations versus computational operations.
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Chapter 5
Conclusion

It was shown that both method scales rather well for increasing number of processors. The
computational time for the particle method is highly dependent of the number of particles.
As the mapping of particles to grid highly influences the number of required particles
to make a similar concentration plot as the grid model. Using a ”boxcount” method for
mapping the particles to grid demands such a large number of particles that the particle
model will be outperformed by the grid model. The grid model exhibit super linear scaling,
due to better usage of cache. Implementations of both models are highly affected by the
implementation of MPI on the test facilities. Both models produce very similar results, up
to numerical resolution. Note that ”numerical resolution” is related to number of particles,
and that a certain amount of random noise is unavoidable with this formulation. For the
box count method, the amount of noise is also related to the grid resolution used when
”box counting” the particles. From what we have seen, it appears the box count method
is unsuitable for applications where concentration must be known, due to the extremely
large number of particles required to get smooth result. As seen in figure 5.1 even for 230

(1073741824) particles, the box-count method yields a visibly noisy result when projected
onto a grid of 2048 × 1024 cells. Considering that this gives an average of 512 particles
per cell (in practice more, since the concentration is essentially zero in parts of the grid),
this is perhaps a somewhat surprising result.

5.1 Sugestions for further work or inquiries

Further work could relate to examine if the results from this thesis is equivalent if the
dimensionality of the problem is increased. Does there exist a point were one method are
highly favorable over the other as a result of the dimensionality? The equation could also
be expanded from advection-diffusion equation to advection-diffusion-reaction equation.
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Figure 5.1: Shows how the picture made from the particle implementation of timestep 8 generated
using the boxcount method. Here 230 particles are used and the gridspacing is h = 2/1023 =
1.955 · 10−3
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Appendix A
Source code

Here the source code for the models presented in section 3.2 and 3.3. First the code for the
gridded model will be presented and after the code for the particle model will be presented.

Listing A.1: Grid model implementation

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>

#include <mpi.h>

/* Prototypes */
void ftcs_solver ( int step );
void border_exchange ( int step );
void gather_temp( int step );
void scatter_temp();
void scatter_material();
void scatter_velocity();
void commit_vector_types ();
void external_heat ( int step );
void write_temp ( int step );
void print_local_temps(int step);
void init_temp_material();
void init_local_temp();
//void init_velocity_material();
void init_local_velocity_material(double time);
void enforce_reflective_boundaries(int step);
double double_gyre_x_direc( double x, double y, double t, double A, double

e, double w);
double double_gyre_y_direc( double x, double y, double t, double A, double

e, double w);
void conservation(int step);
void generate_position_file(int number);
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void write_conservation_to_file(char* filename);
/*velocity field properties*/
const float AMPLITUDE = 0.1;//0.1;
const float OMEGA = 1.0;
const float EPSILON = 0.25;
/*material diffusive parameter*/
const float MERCURY = 0.00619;

const float two = 2.0;
const int one = 1.0;
#define M_PI acos(-1.0)

/* Size of the computational grid */
const int GRID_SIZE[2] ={2048,1024};

/* Parameters of the simulation: how many steps */
const int NSTEPS = 500000;

/* How often to dump state to file (steps). */
const int SNAPSHOT = 25000;

/* Border thickness */
const int BORDER = 1;

/* Arrays for the simulation data */
float

*material, // Global material constants, on rank 0

*temperature, // Global temperature field, on rank 0

*velocity[2], // global velocity field in x and y direction,
on rank 0

*local_material, // Local part of the material constants

*local_temp[2], // Local part of the temperature (2 buffers)

*local_velocity[2], // Local part of the velocity field

*total_conservation; // Array containing the total amount of
consentraton/heat

/* Discretization: 5cm square cells, 2.5ms time intervals */
const float

h = 1.0/(512-1),
dt = 2.5e-5;

/* Local state */
int

size, rank, // World size, my rank
dims[2], // Size of the cartesian
periods[2] = { false, false }, // Periodicity of the cartesian
coords[2], // My coordinates in the cartesian
north, south, east, west, // Neighbors in the cartesian
local_grid_size[2], // Size of local subdomain
local_origin[2]; // World coordinates of (0,0) local

// Cartesian communicator
MPI_Comm cart;

// MPI datatypes for gather/scater/border exchange
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MPI_Datatype
border_row, border_col, grid_block, receive_block,

receive_block_material;

/* Indexing functions, returns linear index for x and y coordinates,
compensating for the border */

// temperature
int ti(int x, int y){

return y*GRID_SIZE[0] + x;
}

// material
int mi(int x, int y){

return ((y+(BORDER-1))*(GRID_SIZE[0]+2*(BORDER-1)) + x + (BORDER-1));
}

// local_material
int lmi(int x, int y){

return ((y+(BORDER-1))*(local_grid_size[0]+2*(BORDER-1)) + x + (BORDER
-1));

}

// local_temp
int lti(int x, int y){/* this is with the border */

return ((y+BORDER)*(local_grid_size[0]+2*BORDER) + x + BORDER);
}

int inside(int x, int y){//this checks if you are inside local area
return x >= local_origin[0] &&
x < local_origin[0] + local_grid_size[0] &&
y >= local_origin[1] &&
y < local_origin[1] + local_grid_size[1];

}

void ftcs_solver( int step ){//#
for(int i = 0; i < local_grid_size[0]; i++){

for(int j = 0; j < local_grid_size[1]; j++){
local_temp[(step+1)%2][lti(i,j)] = local_temp[step%2][lti(i,j)]

+ local_material[lmi(i,j)]*( local_temp[step%2][lti(i+1,j)]
+ local_temp[step%2][lti(i-1,j)] + local_temp[step%2][lti(i,
j+1)] + local_temp[step%2][lti(i,j-1)] - 4.0*local_temp[step
%2][lti(i,j)]) + local_velocity[0][lmi(i,j)]*( local_temp[
step%2][lti(i+1,j)] - local_temp[step%2][lti(i-1,j)]) +
local_velocity[1][lmi(i,j)]*( local_temp[step%2][lti(i,j+1)]
- local_temp[step%2][lti(i,j-1)]);

//implementing stability crit
if (local_material[lmi(i,j)]>=0.25){

perror("Stability criteria violated! Diffusion parameter to
large\n");

}
if (local_material[lmi(i,j)]<0.0){
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perror("Stability criteria violated! Diffusion parameter to
small\n");

}
if (( local_velocity[0][lmi(i,j)]*local_velocity[0][lmi(i,j)]/

local_material[lmi(i,j)] + local_velocity[0][lmi(i,j)]*
local_velocity[0][lmi(i,j)]/local_material[lmi(i,j)]) >2.0 )
{
perror("Stability criteria violated! Advection parameter to

large\n");
}

}
}

}

void commit_vector_types ( void ){//#
/* TODO: Create and commit the types for the border exchange and

collecting the subdomains */
MPI_Type_vector( local_grid_size[1], 1, local_grid_size[0]+2*BORDER,

MPI_FLOAT, &border_col );
MPI_Type_commit( &border_col);

MPI_Type_vector( local_grid_size[0], 1, 1, MPI_FLOAT, &border_row );
MPI_Type_commit( &border_row);

MPI_Type_vector( local_grid_size[1], local_grid_size[0], GRID_SIZE[0],
MPI_FLOAT, &grid_block);

MPI_Type_commit( &grid_block);

MPI_Type_vector( local_grid_size[1], local_grid_size[0],
local_grid_size[0]+2*BORDER, MPI_FLOAT, &receive_block);

MPI_Type_commit( &receive_block);

MPI_Type_vector( local_grid_size[1], local_grid_size[0],
local_grid_size[0], MPI_FLOAT, &receive_block_material);

MPI_Type_commit(&receive_block_material);
}

void border_exchange ( int step ){//#
/* TODO: Implement the border exchange */

float* newest_local_temp = local_temp[(step)%2];

MPI_Sendrecv(&newest_local_temp[ lti(0,0)], 1, border_col, west, 1, &
newest_local_temp[lti(local_grid_size[0],0)], 1, border_col, east,
1, cart, MPI_STATUS_IGNORE);

MPI_Sendrecv(&newest_local_temp[ lti(local_grid_size[0]-1,0)], 1,
border_col, east, 1, &newest_local_temp[lti(-BORDER,0)], 1,
border_col, west, 1, cart, MPI_STATUS_IGNORE);

MPI_Sendrecv(&newest_local_temp[lti(0,0)],1,border_row, north, 1, &
newest_local_temp[lti(0,local_grid_size[1])], 1, border_row, south
, 1, cart, MPI_STATUS_IGNORE);
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MPI_Sendrecv(&newest_local_temp[lti(0,local_grid_size[1]-1)],1,
border_row, south, 1, &newest_local_temp[lti(0,-BORDER)], 1,
border_row, north, 1, cart, MPI_STATUS_IGNORE);

}

void gather_temp( int step){//#
/* TODO: Collect all the local subdomains in the temperature array at

rank 0 */

MPI_Barrier(cart);
if(rank!=0){

MPI_Send(&local_temp[0][lti(0,0)],1,receive_block,0,3,MPI_COMM_WORLD
);

}
if (rank==0){
for (int i=1; i<size; i++){

MPI_Cart_coords( cart, i, 2, coords);

MPI_Recv(&temperature[ti(coords[0]*local_grid_size[0],coords[1]*
local_grid_size[1])],1,grid_block,i,3,MPI_COMM_WORLD,
MPI_STATUS_IGNORE);

}

MPI_Cart_coords( cart, 0, 2, coords);
MPI_Sendrecv(&local_temp[0][lti(0,0)],1,receive_block,0,1,&

temperature[ti(coords[0]*local_grid_size[0],coords[1]*
local_grid_size[1])],1,grid_block,0,1,cart,MPI_STATUS_IGNORE);

}
MPI_Barrier(cart);

}

void scatter_temp(){//#
/* TODO: Distribute the temperature array at rank 0 to all other ranks

*/
MPI_Barrier(cart);
if (rank==0){

MPI_Cart_coords( cart, 0, 2, coords);
MPI_Sendrecv(&temperature[ti(coords[0]*local_grid_size[0],coords

[1]*local_grid_size[1])],1,grid_block,0,1,&local_temp[0][lti
(0,0)],1,receive_block,0,1,cart,MPI_STATUS_IGNORE);

for (int i=1; i<size; i++){
MPI_Cart_coords( cart, i, 2, coords);
MPI_Send(&temperature[ti(coords[0]*local_grid_size[0],coords[1]*

local_grid_size[1])],1,grid_block,i,2,MPI_COMM_WORLD);
}

}
if (rank!=0){
MPI_Recv(&local_temp[0][lti(0,0)],1,receive_block,0,2,MPI_COMM_WORLD

,MPI_STATUS_IGNORE);
}
MPI_Barrier(cart);

57



Chapter A. Source code

}

void scatter_velocity(){//this could be deleted
/*have a deadlok here, bad code and not used anyways*/

if(rank==0){
for (int i=0; i<size; i++){

MPI_Cart_coords(cart, i, 2, coords);

MPI_Send(&velocity[0][mi(coords[0]*local_grid_size[0],coords[1]*
local_grid_size[1])],1,grid_block,i,1,MPI_COMM_WORLD); //
sending x-velocities

MPI_Send(&velocity[1][mi(coords[0]*local_grid_size[0],coords[1]*
local_grid_size[1])],1,grid_block,i,2,MPI_COMM_WORLD); //
sending y-velocities

}
}
MPI_Recv(&local_velocity[0][lmi(0,0)],1,receive_block_material,0,1,

MPI_COMM_WORLD,MPI_STATUS_IGNORE);
MPI_Recv(&local_velocity[1][lmi(0,0)],1,receive_block_material,0,2,

MPI_COMM_WORLD,MPI_STATUS_IGNORE);
}

void scatter_material(){//#
//this function is only valid for border=1, since border-1=0
/* Distribute the material array at rank 0 to all other ranks */

MPI_Barrier(cart);
if (rank==0){

MPI_Cart_coords( cart, 0, 2, coords);
MPI_Sendrecv(&material[mi(coords[0]*local_grid_size[0],coords[1]*

local_grid_size[1])],1,grid_block,0,1,&local_material[lmi(0,0)
],1,receive_block_material,0,1,cart,MPI_STATUS_IGNORE);

for (int i=1; i<size; i++){
MPI_Cart_coords( cart, i, 2, coords);
MPI_Send(&material[mi(coords[0]*local_grid_size[0],coords[1]*

local_grid_size[1])],1,grid_block,i,4,MPI_COMM_WORLD);
}

}
if (rank!=0){

MPI_Recv(&local_material[lmi(0,0)],1,receive_block_material,0,4,
MPI_COMM_WORLD,MPI_STATUS_IGNORE);

}
MPI_Barrier(cart);

}

int main ( int argc, char **argv ){
MPI_Init ( &argc, &argv );
MPI_Comm_size ( MPI_COMM_WORLD, &size );
MPI_Comm_rank ( MPI_COMM_WORLD, &rank );

MPI_Dims_create( size, 2, dims );
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MPI_Cart_create( MPI_COMM_WORLD, 2, dims, periods, 0, &cart );
MPI_Cart_coords( cart, rank, 2, coords );

MPI_Cart_shift( cart, 1, 1, &north, &south );
MPI_Cart_shift( cart, 0, 1, &west, &east );

local_grid_size[0] = GRID_SIZE[0] / dims[0];
local_grid_size[1] = GRID_SIZE[1] / dims[1];
local_origin[0] = coords[0]*local_grid_size[0];
local_origin[1] = coords[1]*local_grid_size[1];

commit_vector_types ();

if(rank == 0){
size_t temperature_size = GRID_SIZE[0]*GRID_SIZE[1];
temperature = calloc(temperature_size, sizeof(float));
size_t material_size = (GRID_SIZE[0]+2*(BORDER-1))*(GRID_SIZE

[1]+2*(BORDER-1));
material = calloc(material_size, sizeof(float));
velocity[0] = calloc(material_size, sizeof(float));
velocity[1] = calloc(material_size, sizeof(float));
total_conservation = calloc(NSTEPS/SNAPSHOT,sizeof(float));
init_temp_material();

}
size_t lsize_borders = (local_grid_size[0]+2*BORDER)*(local_grid_size

[1]+2*BORDER);
size_t lsize = (local_grid_size[0]+2*(BORDER-1))*(local_grid_size

[1]+2*(BORDER-1));//why is BORDER-1? THIS WILL MAKE ZERO
local_material = calloc( lsize , sizeof(float) );
local_temp[0] = calloc( lsize_borders , sizeof(float) );
local_temp[1] = calloc( lsize_borders , sizeof(float) );
local_velocity[0] = calloc( lsize ,sizeof(float));
local_velocity[1] = calloc( lsize, sizeof(float));

init_local_temp();

scatter_material();

scatter_temp();

for( int step=0; step<NSTEPS; step += 1 ){
border_exchange( step );

init_local_velocity_material((double) dt* step);
enforce_reflective_boundaries(step);

ftcs_solver( step );

if((step % SNAPSHOT) == 0){
gather_temp ( step );
if(rank == 0){

write_temp(step);
//conservation(step);
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generate_position_file(step);
}

}
}
if(rank == 0){

//write_conservation_to_file("
concentration_dump_low_not_reflective_bc.txt");

free (temperature);
free (material);
free (velocity[0]);
free (velocity[1]);
free (total_conservation);

}

free(local_material);
free(local_temp[0]);
free (local_temp[1]);
free (local_velocity[0]);
free (local_velocity[1]);

MPI_Finalize();
exit ( EXIT_SUCCESS );

}

void write_conservation_to_file(char* filename){

FILE *f = fopen(filename, "w");
if (f == NULL)
{

printf("Error opening file!\n");
exit(1);

}
/* rather unsure of this fprintf */
for(int i=0; i<NSTEPS/SNAPSHOT; i++){

fprintf(f,"%f\n",total_conservation[i]);
}
fclose(f);

}

void conservation(int step){
total_conservation[step/SNAPSHOT] = 0.0;
for (int i=0; i<GRID_SIZE[0]*GRID_SIZE[1]; i++){

total_conservation[step/SNAPSHOT] += temperature[i];
}

}

void generate_position_file(int number){//#
char filename[28];
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sprintf (filename, "data/concentration%.4d.bin", number/SNAPSHOT )
;

FILE *f = fopen(filename,"w");
if (f == NULL)
{

printf("Error opening file!\n");
exit(1);

}
fwrite( temperature,4,GRID_SIZE[0]*GRID_SIZE[1],f); /*

since the temperature array are of type float*/

fclose(f);
}

void enforce_reflective_boundaries(int step){//#

if (east==-2){
//west bc
for(int i = 0; i < local_grid_size[1]; i++ ){//this only works for

border=1!
local_temp[step%2][lti(local_grid_size[0],i)] = local_temp[step

%2][lti(local_grid_size[0]-1,i)];
}

}

if (west==-2){
//east bc
for(int i = 0; i < local_grid_size[1]; i++ ){
local_temp[step%2][lti(-1,i)] = local_temp[step%2][lti(0,i)];
}

}

if (north==-2){
//west bc
for(int i = 0; i < local_grid_size[0]; i++ ){

local_temp[step%2][lti(i,-1)] = local_temp[step%2][lti(i,0)];
}

}
if (south==-2){
//east bc
for(int i = 0; i < local_grid_size[0]; i++ ){

local_temp[step%2][lti(i,local_grid_size[1])] = local_temp[step
%2][lti(i,local_grid_size[1]-1)];

}
}

}

void init_local_temp(void){//#

for(int x=- BORDER; x<local_grid_size[0] + BORDER; x++ ){
for(int y= - BORDER; y<local_grid_size[1] + BORDER; y++ ){

local_temp[1][lti(x,y)] = 0.0;
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local_temp[0][lti(x,y)] = 0.0;
}

}
}

double double_gyre_x_direc( double x, double y, double t, double A, double
e, double w){

double a = e * sin(w*t);
double b = 1.0 - 2.0*e*sin(w*t);
double f = a*x*x + b*x;

return -1.0*M_PI*A*sin(M_PI*f) * cos(M_PI*y); // x
component of velocity

}

double double_gyre_y_direc( double x, double y, double t, double A, double
e, double w){

double a = e * sin(w*t);
double b = 1.0 - 2.0*e*sin(w*t);
double f = a*x*x + b*x;

return M_PI*A*cos(M_PI*f) * sin(M_PI*y) * (2.0*a*x + b); // y
component of velocity

}

void init_local_velocity_material(double time){
for( int x = 0; x < local_grid_size[0]; x++){

for(int y = 0; y < local_grid_size[1]; y++){

local_velocity[0][lmi(x,y)] =
-(dt/(2.0*h))*double_gyre_x_direc((double) 2.0*(

local_origin[0] + x)/(GRID_SIZE[0]-1), (double)(
local_origin[1]+ y)/(GRID_SIZE[1]-1), time,
AMPLITUDE, EPSILON, OMEGA);

local_velocity[1][lmi(x,y)] =
-(dt/(2.0*h))*double_gyre_y_direc((double) 2.0*(

local_origin[0] + x)/(GRID_SIZE[0]-1), (double)(
local_origin[1]+ y)/(GRID_SIZE[1]-1), time,
AMPLITUDE, EPSILON, OMEGA);

}
}

}

void init_temp_material(){//#
double stn_dev_x = GRID_SIZE[0]/16.0;
double stn_dev_y = GRID_SIZE[1]/8.0;
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double x_0 = GRID_SIZE[0]/2.0;
double y_0 = GRID_SIZE[1]/2.0;
double A = 100.0;

for(int x = 0; x < GRID_SIZE[0]; x++){
for(int y = 0; y < GRID_SIZE[1]; y++){

temperature[ti(x,y)] = A*exp(-( (x-x_0)*(x-x_0)/(2.0*
stn_dev_x*stn_dev_x) + (y-y_0)*(y-y_0)/(2.0*stn_dev_y*
stn_dev_y) ));

material[mi(x,y)] = MERCURY * (dt/(h*h));
}

}
}

void print_local_temps(int step){

MPI_Barrier(cart);
for(int i = 0; i < size; i++){

if(rank == i){
printf("Rank %d step %d\n", i, step);
for(int y = -BORDER; y < local_grid_size[1] + BORDER; y++){

for(int x = -BORDER; x < local_grid_size[0] + BORDER; x++)
{
printf("%5.1f ", local_temp[step%2][lti(x,y)]);

}
printf("\n");

}
printf ("\n");

}
fflush(stdout);
MPI_Barrier(cart);

}
}

/* Save 24 - bits bmp file, buffer must be in bmp format: upside - down */
void savebmp(char *name, unsigned char *buffer, int x, int y) {

FILE *f = fopen(name, "wb");
if (!f) {

printf("Error writing image to disk.\n");
return;

}
unsigned int size = x * y * 3 + 54;
unsigned char header[54] = {’B’, ’M’,

size&255,
(size >> 8)&255,
(size >> 16)&255,
size >> 24,
0, 0, 0, 0, 54, 0, 0, 0, 40, 0, 0, 0, x&255, x >> 8,

0,
0, y&255, y >> 8, 0, 0, 1, 0, 24, 0, 0, 0, 0, 0, 0,

0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0};
fwrite(header, 1, 54, f);
fwrite(buffer, 1, GRID_SIZE[0] * GRID_SIZE[1] * 3, f);
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fclose(f);
}

/* Given iteration number, set a colour */
void fancycolour(unsigned char *p, float temp) {

float r = (temp/101) * 255;

if(temp <= 25){
p[2] = 0;
p[1] = (unsigned char)((temp/25)*255);
p[0] = 255;

}
else if (temp <= 50){

p[2] = 0;
p[1] = 255;
p[0] = 255 - (unsigned char)(((temp-25)/25) * 255);

}
else if (temp <= 75){

p[2] = (unsigned char)(255* (temp-50)/25);
p[1] = 255;
p[0] = 0;

}
else{

p[2] = 255;
p[1] = 255 -(unsigned char)(255* (temp-75)/25) ;
p[0] = 0;

}
}

/* Create nice image from iteration counts. take care to create it upside
down (bmp format) */

void output(char* filename){
unsigned char *buffer = calloc(GRID_SIZE[0] * GRID_SIZE[1]* 3, 1);
for (int i = 0; i < GRID_SIZE[0]; i++) {
for (int j = 0; j < GRID_SIZE[1]; j++) {

int p = ((GRID_SIZE[1] - j - 1) * GRID_SIZE[0] + i) * 3;
fancycolour(buffer + p, temperature[(i + GRID_SIZE[0] * j)]);

}
}
/* write image to disk */
savebmp(filename, buffer, GRID_SIZE[0], GRID_SIZE[1]);
free(buffer);

}

void write_temp ( int step ){//#
char filename[15];
sprintf ( filename, "data/%.4d.bmp", step/SNAPSHOT );

output ( filename );
printf ( "Snapshot at step %d\n", step );

}

Listing A.2: Particle model implementation

#include <stdio.h>
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#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
#include <time.h>
#include <mpi.h>
#include <float.h>
/*velocity field properties*/
const double AMPLITUDE = 0.1;//0.1;
const double OMEGA = 1.0;
const double EPSILON = 0.25;
/*material constants*/
const double MERCURY = 0.00619;//6.19;// 0.0619;
const double two = 2.0;
const int one = 1.0;
#define M_PI acos(-1.0)

/* Size of the computational grid */
const int GRID_SIZE[2] ={256,128};

/* Parameters of the simulation: how many steps */
const int NSTEPS = 500000;

const int NPARTICLES = 131072;
/*The reason for not using pow is: if NPARTICLES is declared using pow,

the number is declared as const. not available on stack.*/

/*
Values for initiating particles. Remember this is the positions not index

*/
double stn_dev_x = 2.0/16.0; //GRID_SIZE[0]/16.0;
double stn_dev_y = 1.0/8.0; //GRID_SIZE[1]/8.0;
double x_0 = 1.0; //GRID_SIZE[0]/2.0;
double y_0 = 0.5; //GRID_SIZE[1]/2.0;
double A = 1;
double u_1 = 0.0;
double u_2 = 0.0;

const int SNAPSHOT = 25000;

/* Border thickness */
const int BORDER = 1;

/* Arrays for the simulation data */
double

*material, // Global material constants, on rank 0

*temperature, // Global temperature field, on rank 0

*velocity[2], // global velocity field in x and y direction,
on rank 0

*local_material, // Local part of the material constants

*local_temp[2], // Local part of the temperature (2 buffers)

*local_velocity[2], // Local part of the velocity field

*total_conservation; // Array containing the total amount of
consentraton/heat

/*Datatype for holding the information of the particle*/
struct Particle {

double x_position;

65



Chapter A. Source code

double y_position;
} test_particle;

typedef struct Particle particle;

struct Particle *total_particle_ensemble;// Array containing the total
number of particles

struct Particle *particle_ensemble; // the number of local particles
//MPI_Particle **particle_ensmeble;

double *send_array_y,

*send_array_x;
/* Discretization: 5cm square cells, 2.5ms time intervals */
const double

h = 1.0/(128-1),
dt = 2.5e-5;

/* Local state */
int

size, rank, // World size, my rank
dims[2], // Size of the cartesian
periods[2] = { false, false }, // Periodicity of the cartesian
coords[2], // My coordinates in the cartesian
north, south, east, west, // Neighbors in the cartesian
local_grid_size[2], // Size of local subdomain
local_origin[2]; // World coordinates of (0,0) local

/* Datatypes to be used in making my own datatype for MPI*/
int blen[3]; //3
MPI_Aint array_of_displacements[3];//3
MPI_Datatype array_of_types[3]; //3
MPI_Datatype oldtypes[3]; //3
MPI_Datatype MPI_Particle;

/* Prototypes for functions found at the end of this file */
void solver ( int step);
//void border_exchange ( int step );
//void gather_temp( int step );
//void scatter_temp();
//void scatter_material();
//void scatter_velocity();
void commit_vector_types(void);

//void external_heat ( int step );
void write_temp ( int step );
//void print_local_temps(int step);
void initiate_particle_ensemble(void);

//void enforce_reflective_boundaries(int step);
double double_gyre_x_direc( double x, double y, double t, double A, double

e, double w);
double double_gyre_y_direc( double x, double y, double t, double A, double

e, double w);
void conservation(int step);
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void write_conservation_to_file(char* filename);
double random_val(void);
void runge_kutta_solver(float time, int index);
void reset_temperature(void);
void generate_position_file(int number);
// Cartesian communicator
MPI_Comm cart;

// MPI datatypes for gather/scater/border exchange
MPI_Datatype

border_row, border_col, grid_block, receive_block,
receive_block_material;

/* Indexing functions, returns linear index for x and y coordinates,
compensating for the border */

// temperature
int ti(int x, int y){

return y*GRID_SIZE[0] + x;
}

// material
int mi(int x, int y){

return ((y+(BORDER-1))*(GRID_SIZE[0]+2*(BORDER-1)) + x + (BORDER-1));
}

// local_material
int lmi(int x, int y){

return ((y+(BORDER-1))*(local_grid_size[0]+2*(BORDER-1)) + x + (BORDER
-1));

}

// local_temp
int lti(int x, int y){

return ((y+BORDER)*(local_grid_size[0]+2*BORDER) + x + BORDER);
}
//this checks if you are inside local area
int inside(int x, int y){

return x >= local_origin[0] &&
x < local_origin[0] + local_grid_size[0] &&
y >= local_origin[1] &&
y < local_origin[1] + local_grid_size[1];

}

void commit_vector_types ( void ){//#
/* TODO: Create and commit the types for the border exchange and

collecting the subdomains */
blen[0] = 1; array_of_displacements[0] = 0;

oldtypes[0] = MPI_DOUBLE;
blen[1] = 1; array_of_displacements[1] = sizeof(double);

oldtypes[1] = MPI_DOUBLE;
blen[2] = 1; array_of_displacements[2] = sizeof(test_particle);

oldtypes[2] = MPI_UB;
MPI_Type_create_struct( 3, blen, array_of_displacements, oldtypes, &

MPI_Particle );
MPI_Type_commit(&MPI_Particle);
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MPI_Barrier(cart);
MPI_Bcast(&test_particle, 1, MPI_Particle, 0, cart);
MPI_Barrier(cart);
}

void solver( int step ){//#
/* TODO: Implement solver */
for(int i = 0; i < NPARTICLES/size; i++){

runge_kutta_solver((step)*dt, i);
}

}

void gather_particles(void){//#
/* TODO: Collect all the local subdomains in the particle array at

rank 0 */
MPI_Barrier(cart);
MPI_Gather(&particle_ensemble[0],NPARTICLES/size,MPI_Particle,&

total_particle_ensemble[0],NPARTICLES/size,MPI_Particle,0,cart);
MPI_Barrier(cart);

}

void runge_kutta_solver(float time, int index){//#
double k_1_x,

k_1_y,
k_2_x,
k_2_y,
k_3_x,
k_3_y,
k_4_x,
k_4_y;

double x_val = particle_ensemble[index].x_position;
double y_val = particle_ensemble[index].y_position;
double val1 = sqrt(4.0*MERCURY*dt);
double temp;
k_1_x = double_gyre_x_direc(x_val, y_val, time, AMPLITUDE, EPSILON,

OMEGA);
k_1_y = double_gyre_y_direc(x_val, y_val, time, AMPLITUDE, EPSILON,

OMEGA);

k_2_x = double_gyre_x_direc(x_val + dt/2*k_1_x, y_val + dt/2*k_1_y,
time + dt/2, AMPLITUDE, EPSILON, OMEGA);

k_2_y = double_gyre_y_direc(x_val + dt/2*k_1_x, y_val + dt/2*k_1_y,
time + dt/2, AMPLITUDE, EPSILON, OMEGA);

k_3_x = double_gyre_x_direc(x_val + dt/2*k_2_x, y_val + dt/2*k_2_y,
time + dt/2, AMPLITUDE, EPSILON, OMEGA);

k_3_y = double_gyre_y_direc(x_val + dt/2*k_2_x, y_val + dt/2*k_2_y,
time + dt/2, AMPLITUDE, EPSILON, OMEGA);

k_4_x = double_gyre_x_direc(x_val + dt*k_3_x, y_val + dt*k_3_y, time
+ dt, AMPLITUDE, EPSILON, OMEGA);

k_4_y = double_gyre_y_direc(x_val + dt*k_3_x, y_val + dt*k_3_y, time
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+ dt, AMPLITUDE, EPSILON, OMEGA);

particle_ensemble[index].x_position = x_val + (dt/6.0)*(k_1_x + 2.0*
k_2_x + 2.0*k_3_x + k_4_x) + random_val()*val1;

particle_ensemble[index].y_position = y_val + (dt/6.0)*(k_1_y + 2.0*
k_2_y + 2.0*k_3_y + k_4_y) + random_val()*val1;

/*Enforcing BC*/
if (particle_ensemble[index].x_position < DBL_EPSILON){

temp = particle_ensemble[index].x_position;
particle_ensemble[index].x_position = 0.0 - temp;

}
else if (particle_ensemble[index].x_position > 2.0){

temp = particle_ensemble[index].x_position;
particle_ensemble[index].x_position = 2.0 - (temp - 2.0);

}
if(particle_ensemble[index].y_position < DBL_EPSILON){

temp = particle_ensemble[index].y_position;
particle_ensemble[index].y_position = 0.0 - temp;

}
else if(particle_ensemble[index].y_position > 1.0){

temp = particle_ensemble[index].y_position;
particle_ensemble[index].y_position = 1.0 - (temp - 1.0);

}
}

double random_val(void){ //#
return (rand()*(1.0/RAND_MAX)*2.0*sqrt(3.0) - sqrt(3.0))*(1.0/sqrt

(2.0));
}

int main ( int argc, char **argv ){
MPI_Init ( &argc, &argv );
MPI_Comm_size ( MPI_COMM_WORLD, &size );
MPI_Comm_rank ( MPI_COMM_WORLD, &rank );

MPI_Dims_create( size, 2, dims );
MPI_Cart_create( MPI_COMM_WORLD, 2, dims, periods, 0, &cart );
MPI_Cart_coords( cart, rank, 2, coords );

MPI_Cart_shift( cart, 1, 1, &north, &south );
MPI_Cart_shift( cart, 0, 1, &west, &east );

commit_vector_types();

/*Heating up randomnumber generator. */
time_t t;
srand((unsigned) time(&t));

if(rank == 0){//rank 0 initializes the global temperature grid
size_t temperature_size = GRID_SIZE[0]*GRID_SIZE[1];
temperature = calloc(temperature_size, sizeof(double));
total_particle_ensemble = calloc(NPARTICLES, sizeof(particle));

}
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particle_ensemble = calloc( NPARTICLES/size, sizeof(particle));

initiate_particle_ensemble();
// Main integration loop: NSTEPS iterations, impose external heat
for( int step=0; step<NSTEPS; step += 1 ){

solver(step);
if((step % SNAPSHOT) == 0){

gather_particles();

printf("after gather of particles \n");
if(rank == 0){
generate_position_file(step);

// conservation(step);
printf("after heatmap \n");
reset_temperature();

printf("after reset temp \n");
}

}

}

if(rank == 0){
//write_conservation_to_file("

concentration_dump_low_not_reflective_bc.txt");
free (temperature);
free (total_particle_ensemble);
free (total_conservation);

}

free (particle_ensemble);
MPI_Type_free(&MPI_Particle);
MPI_Finalize();
exit ( EXIT_SUCCESS );

}

/*void generate_heatmap(int number){
int i,j;
for (int k=0; k < NPARTICLES; k++){

i = total_particle_ensemble[k].x_position/h;
j = total_particle_ensemble[k].y_position/h;
if(i<0){
i=0;
printf("negative i idex \n");
}
if(j<0){
j=0;
printf("negative j idex \n");
}
temperature[ti( (int)i, (int)j)]+= A;

}
write_temp(number);

}
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*/
void generate_position_file(int number){//#

char filenamex[16];
char filenamey[16];

sprintf (filenamex, "data/x%.4d.bin", number/SNAPSHOT );
sprintf (filenamey, "data/y%.4d.bin", number/SNAPSHOT );
FILE *fx = fopen(filenamex,"w");
FILE *fy = fopen(filenamey,"w");
if (fx == NULL)
{

printf("Error opening file!\n");
exit(1);

}
if (fy == NULL)
{

printf("Error opening file!\n");
exit(1);

}
for (int k=0; k < NPARTICLES; k++){

fwrite( &total_particle_ensemble[k].x_position,8,1,fx);
fwrite( &total_particle_ensemble[k].y_position,8,1,fy);

}
fclose(fx);
fclose(fy);

}

void reset_temperature(void){//#
for (int k=0; k < GRID_SIZE[0]*GRID_SIZE[1]; k++){

temperature[k]=0.0;
}

}

void write_conservation_to_file(char* filename){

FILE *f = fopen(filename, "w");
if (f == NULL)
{

printf("Error opening file!\n");
exit(1);

}
/* rather unsure of this fprintf */
for(int i=0; i<NSTEPS/SNAPSHOT; i++){

fprintf(f,"%f\n",total_conservation[i]);
}
fclose(f);

}

void conservation(int step){
total_conservation[step/SNAPSHOT] = 0.0;
for (int i=0; i<GRID_SIZE[0]*GRID_SIZE[1]; i++){
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total_conservation[step/SNAPSHOT] += temperature[i];
}

}

double double_gyre_x_direc( double x, double y, double t, double A, double
e, double w){

double a = e * sin(w*t);
double b = 1 - 2.0*e*sin(w*t);
double f = a*x*x + b*x;

return (-1.0*M_PI*A*sin(M_PI*f) * cos(M_PI*y)); // x
component of velocity

}

double double_gyre_y_direc( double x, double y, double t, double A, double
e, double w){

double a = e * sin(w*t);
double b = 1 - 2.0*e*sin(w*t);
double f = a*x*x + b*x;

return (M_PI*A*cos(M_PI*f) * sin(M_PI*y) * (2.0*a*x + b)); // y
component of velocity

}

void initiate_particle_ensemble(void){//#

//creates uniformly distributed numbers
bool condition;

for(int i=0; i<NPARTICLES/size; i++){
condition = true;
while(condition){
condition = false;

u_1 = rand()*(1.0/RAND_MAX);
u_2 = rand()*(1.0/RAND_MAX);
/*First part calulate the normaly distributed numbers multiplied

with stndev and added mean*/
particle_ensemble[i].x_position = sqrt(-2.0*log(u_1))*cos(2.0*

M_PI*u_2)*stn_dev_x + x_0;
particle_ensemble[i].y_position = sqrt(-2.0*log(u_1))*sin(2.0*

M_PI*u_2)*stn_dev_y + y_0;

if (particle_ensemble[i].x_position > 2.0){
printf("Out of bonds setting value in x-direction to max.

Makes a new sample\n");
condition = true;

}
if (particle_ensemble[i].x_position < DBL_EPSILON){

printf("Out of bonds setting value in x-direction to min.
Makes a new sample\n");

condition = true;
}
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if (particle_ensemble[i].y_position > 1.0){
printf("Out of bonds setting value in y-direction to max.

Makes a new sample\n");
condition = true;

}
if (particle_ensemble[i].y_position < DBL_EPSILON){

condition = true;
printf("Out of bonds setting value in y-direction to min.

Makes a new sample\n");
}

}
}

}

/* Save 24 - bits bmp file, buffer must be in bmp format: upside - down */
void savebmp(char *name, unsigned char *buffer, int x, int y) {

FILE *f = fopen(name, "wb");
if (!f) {

printf("Error writing image to disk.\n");
return;

}
unsigned int size = x * y * 3 + 54;
unsigned char header[54] = {’B’, ’M’,

size&255,
(size >> 8)&255,
(size >> 16)&255,
size >> 24,
0, 0, 0, 0, 54, 0, 0, 0, 40, 0, 0, 0, x&255, x >> 8,

0,
0, y&255, y >> 8, 0, 0, 1, 0, 24, 0, 0, 0, 0, 0, 0,

0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0};
fwrite(header, 1, 54, f);
fwrite(buffer, 1, GRID_SIZE[0] * GRID_SIZE[1] * 3, f);
fclose(f);

}

/* Given iteration number, set a colour */
void fancycolour(unsigned char *p, float temp) {

float r = (temp/101) * 255;

if(temp <= 25){
p[2] = 0;
p[1] = (unsigned char)((temp/25)*255);
p[0] = 255;

}
else if (temp <= 50){

p[2] = 0;
p[1] = 255;
p[0] = 255 - (unsigned char)(((temp-25)/25) * 255);

}
else if (temp <= 75){

p[2] = (unsigned char)(255* (temp-50)/25);
p[1] = 255;

73



Chapter A. Source code

p[0] = 0;
}
else{

p[2] = 255;
p[1] = 255 -(unsigned char)(255* (temp-75)/25) ;
p[0] = 0;

}
}

/* Create nice image from iteration counts. take care to create it upside
down (bmp format) */

void output(char* filename){
unsigned char *buffer = calloc(GRID_SIZE[0] * GRID_SIZE[1]* 3, 1);
for (int i = 0; i < GRID_SIZE[0]; i++) {
for (int j = 0; j < GRID_SIZE[1]; j++) {

int p = ((GRID_SIZE[1] - j - 1) * GRID_SIZE[0] + i) * 3;
fancycolour(buffer + p, temperature[(i + GRID_SIZE[0] * j)]);

}
}
/* write image to disk */
savebmp(filename, buffer, GRID_SIZE[0], GRID_SIZE[1]);
free(buffer);

}

void write_temp ( int step ){
char filename[15];
sprintf ( filename, "data/%.4d.bmp", step/SNAPSHOT );

output ( filename );
printf ( "Snapshot at step %d\n", step );

}
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