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Abstract

Semiconductor nanowires have promising future applications in optical and electronic com-

ponents. Automated computer routines are developed to accurately, objectively, and effi-

ciently evaluate methods for initiating local nanowire growth. The routines are created using

Python and open source libraries, and are able to detect nanowire catalyst droplets on scan-

ning electron microscopy (SEM) images, and produce data about yield, droplet diameter and

nanowire displacement from an ideal lattice.

The developed routines are employed to analyze SEM images of three different nanowire

samples, all containing self-catalyzed GaAsSb nanowires grown using molecular beam epi-

taxy (MBE). The first case shows a set of nanowire arrays patterned using a focused ion beam

(FIB) with varying patterning diameter and ion fluence, in order to efficiently study the effect

these parameters have on nanowire growth. The second case consists of a large area ana-

lyzed using stitched SEM imaging. In this case nanoimprint lithography was used to pattern

a mask prior to MBE nanowire growth. Images of regions larger than 0.047 mm2 are assem-

bled by stitching multiple adjacently acquired images. Studying a large amount of nanowires

(> 50 000) enables the acquisition of highly detailed data. Finally, the nanowire density and

droplet size is analyzed for randomly positioned nanowires initiated by FIB.

For the FIB patterned arrays, patterning with lower ion fluence and patterning diameter

results in better single nanowire yield (up to 84 %), and higher placement uniformity. Higher

fluence and patterning diameter results in the growth of 2D-crystals or multiple nanowires

per hole. Displacement analysis shows that nanowires tend to nucleate along edges of pat-

terned holes. Analysis of the NIL sample show that large numbers of nanowires can be an-

alyzed. Imaging and image stitching can have severe effects on accuracy of the analysis.

Nanowires near empty regions have larger catalyst droplets, and nanowires with other growth

at the same hole tend to be displaced with threefold symmetry. For both samples, it is shown

that single nanowires have larger catalyst droplets with higher size uniformity. Analysis of

the random growth dataset shows that the low effective fluence experienced outside of ar-

eas directly patterned by FIB gives good conditions for high density non-position controlled

nanowire growth.
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Sammendrag

Nanotråder av halvledermateriale har lovende potensiale for bruk i optiske og elektroniske

komponenter. Automatiserte databehandlingsrutiner utvikles for å evaluere prosesser for

initiering av nanotråd-vekst på en nøyaktig, objektiv og effektiv måte. Rutinene er laget

med språket Python og støttebiblioteker med åpen kildekode, og er i stand til å detektere

katalysatordråper på nanotråder på bilder tatt i sveipeelektronmikroskop (SEM), og produsere

data om utbytte, dråpediameter og nanotrådenes forskyvning fra et ideelt gitter.

De utviklede rutinene blir brukt til å analysere SEM-bilder av tre ulike prøver, som alle

inneholder selvkatalyserte GaAsSb-nanotråder grodd med molekylstråleepitaksi (MBE). Det

første tilfellet viser et sett med nanotråd-arrays mønstret med en fokusert ionestråle (FIB)

med varierende diameter og ion-fluens, for effektivt å studere virkningen disse parameterne

har på nanotråd-veksten. Det andre tilfellet består av et stort område som er analysert ved

hjelp av sammenføyde SEM-bilder. I dette tilfellet ble nanoimprint-litografi brukt til å møn-

stre en maske før nanotråder ble grodd med MBE. Bilder av områder større enn 0,047 mm2

skapes ved å føye sammen flere overlappende bilder. Å studere en stor mengde nanotråder

(> 50 000) gjør det mulig å skaffe seg svært detaljerte data. Til slutt analyseres tettheten av

nanotråder og dråpestørrelsen for tilfeldig plasserte nanotråder initiert av FIB.

For FIB-mønstrede arrays resulterer mønster med lavere ion-fluens og mønstringsdiame-

ter i en høyere andel av vellykkede enkeltnanotråder (opptil 84 %) og mer regulær posisjoner-

ing. Høyere fluens og mønstringsdiameter fører til vekst av 2D-krystaller eller flere nan-

otråder per hull. Forskyvningsanalyse viser at nanotråder har en tendens til å nukleere langs

kantene av mønstrede hull. Analyse av NIL-prøven viser at det er mulig å analysere et stort

antall nanotråder. Kvaliteten på bildetaking og -sammenføying kan ha alvorlig innvirkning på

nøyaktigheten av analysen. Nanotråder i nærheten av tomme områder har større katalysator-

dråper, og nanotråder med annen vekst i samme hull blir ofte trisymmetrisk forskjøvet. For

begge prøvene vises det at enkeltstående nanotråder har større kata-lysatordråper med mer

regulær størrelse. Analyse av de ikke-posisjonerte nanotrådene viser at den lave effektive

fluensen som oppnås utenfor områder direkte mønstret av FIB, gir gode betingelser for ikke-

posisjonert nanotråd-vekst med høy tetthet.
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List of Acronyms

BSE backscattered electrons

CVD chemical vapor deposition

FIB focused ion beam

LMIS liquid metal ion source

MBE molecular beam epitaxy

MOCVD metalorganic chemical vapor deposition

px pixel(s)

SE secondary electrons

SEM scanning electron microscope

VLS vapor liquid solid
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Chapter 1

Introduction and motivation

Semiconductor nanowires have the potential to be useful for many different applications due

to their optical and electronic properties. Among the possible applications are use in sensors,

lasers, transistors, and solar cells [1, 2]. The viability of usage of nanowires for these appli-

cations depends on the ability to develop processes to reliably synthesize large amounts of

nanowires with the desired properties. To optimize nanowire properties, it is necessary to

accurately control their size, position, morphology and composition.

In order to develop these processes, it is necessary to analyze the quality of nanowires grown

using different methods, and determine the effects of varying process parameters on nanowire

properties. The counting and measurement necessary for such analysis is commonly done

manually [3], and thus only for a small number of nanowires, even though samples contain

thousands or even millions of nanowires. This leads to the collected data being inaccurate,

as it is based on a small sample size, and limited by the restrictions of manual measure-

ment. The collected data is also subject to human bias, as the researcher manually selects

the nanowires to be analyzed. Improved methods for analyzing nanowire growth would thus

be helpful for the development of good nanowire growth processes.

This thesis aims to develop automated computer routines to objectively and efficiently ana-

lyze micrographs of nanowire growth, and extract useful data. Feature detection techniques
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2 CHAPTER 1. INTRODUCTION AND MOTIVATION

are employed to detect position and size of nanowire catalyst droplets, and the the resulting

data is processed and analyzed to provide useful insights about nanowire growth. To demon-

strate their viability, the developed routines are deployed for three different tasks. All tasks

consist of studying self catalyzed GaAsSb nanowires grown using molecular beam epitaxy

(MBE) on a patterned substrate consisting of Si covered by a SiOx thin film. The differences

lie in the patterning of the samples, and the purpose of the studies.

Firstly, a matrix of 8×8 nanowire growth arrays patterned using a focused ion beam (FIB) is

studied. The FIB has been used to pattern holes in the substrate using varying ion fluence

and patterning diameter for each array. Nanowires growing at each array is analyzed in order

to efficiently gain an overview of how the two patterning parameters affect nanowire growth.

Secondly, images of large areas of a nanowire growth sample patterned using nanoimprint

lithography (NIL) are studied. The images have been created by stitching together adjacently

acquired scanning electron microscopy (SEM) images. As the combined images cover areas

of up to 47 000 µm2, containing more than 50 000 nanowires, large amounts of data can be

collected, enabling high statistical accuracy.

Lastly, another area of the aforementioned FIB patterned sample is analyzed. This part of the

sample contains eight patterned squares, showing non-position controlled nanowire growth

inside the squares, and in an area surrounding the squares. Images of this area is analyzed in

order to gain insight into the conditions for of non-position controlled nanowire growth.

The developed routines are written in the Python programming language, utilizing publicly

available open source libraries. The created code is made available online as an open source

repository. This enables other researchers to utilize the routines in their own projects, inspect

the source code, and undertake further development of the project. As opposed to commonly

used proprietary black-box software packages, open source code ensures the transparency

of methods used in research, enabling researchers to know exactly how any result is found,

increasing the scientific integrity of their work.



Chapter 2

Theory

2.1 Fabrication and characterization methods

2.1.1 Scanning electron microscope (SEM)

The scanning electron microscope (SEM) [4] is a microscope that creates an image of the

specimen by raster scanning an electron beam across its surface, causing the emission of

electrons from the sample. The amount and energy of the electrons emitted varies with the

properties of the sample. The amount of detected electrons when the electron beam is hitting

a certain point on the sample is the source of the contrast in the obtained images.

The layout of a typical SEM column is shown in figure 2.1(a). Electrons are emitted by an

electron gun, which might utilize the principles of thermionic emission, field emission or

Schottky emission. The beam then passes through a column, where it is focused by a series

of magnetic lenses, and then deflected towards the desired spot on the sample by scanning

coils. There are normally two sets of scanning coils, for deflecting the beam in the x- and

y-directions. The voltage applied to the coils follows a sawtooth pattern, with one coil having

a longer period, and the other a shorter period. This results in a raster pattern which scans

across every part of the image.

3



4 CHAPTER 2. THEORY

(a) (b)

Figure 2.1: (a) Schematic of an SEM column, showing the most important components. (b)
Diagram showing the interaction volume in an SEM sample. SE will only escape from the
topmost part of the interaction volume, while the BSE might originate from somewhat deeper
in the sample.

When the electron beam hits the sample, the electrons will penetrate into the sample, and

interact with it in various ways. The volume of the sample with which most of the incoming

electrons interact is called the interaction volume. The typical shape of the interaction vol-

ume is shown in figure 2.1(b). Near the surface of the sample, the width of the interaction

volume is similar to that of the incoming electron beam. As the electrons penetrate deeper

into the sample, they have a greater chance of scattering on nuclei or other electrons, redi-

recting their momentum, and thus the interaction volume widens. The overall size of the

interaction volume depends on the energy of the incoming electrons, and the composition

of the sample. Higher energy electrons will penetrate deeper, and have a larger interaction

volume. Larger atoms in the sample will lead to more frequent scattering of the electrons,

reducing the penetration depth, and leading to a smaller interaction volume.
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Types of emissions

As the incoming electrons interact with the sample, they will cause the emission of secondary

electrons (SE), backscattered electrons (BSE), auger electrons, and x-rays. The latter two will

not be further explained in this text.

When electrons in the sample are hit by the incoming electron beam, they might gain enough

energy to escape from the sample. These are called secondary electrons (SE). Each incoming

electron can interact with several electrons in the sample, causing more than one SE emis-

sion. The energy of the SE is normally less than 100 eV. Due to this low energy, SE generated

deep within the sample will lose their energy to scattering, and will not escape from the sam-

ple. Only SE generated within the upper few nm of the sample will escape, and be detected.

Electrons from the incoming beam may also elastically scatter on the nuclei in the sample.

A portion of these electrons will escape the sample, and can be detected. These are called

backscattered electrons (BSE). Since they are elastically scattered, the BSE lose very little en-

ergy, so the energy of the BSE is approximately equal to the energy of the incoming beam,

which is typically several keV. The BSE thus have a larger escape depth than the SE, and will

provide information about a deeper section of the sample. Since the width of interaction vol-

ume increases with depth, BSE also originate from a wider region, meaning that BSE images

have a lower spatial resolution than SE images. BSE are usually less abundant than the SE,

and constitute a smaller part of the overall signal.

SE contrast

Images obtained by the detection of SE mostly exhibit topological contrast. This is due to two

factors. Firstly, the volume of the sample emitting detectable SE (the volume both exposed to

the electron beam, and within escape depth of the surface), will depend on the local topol-

ogy of the sample. This is illustrated in figure 2.2. Since the depth of the volume emitting

detectable SE is determined by the shortest distance to the sample surface, which is not nec-

essarily along the same axis as the incoming beam, this volume will vary in size with the local
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Figure 2.2: Interaction volumes for emission of SE on different topologies. Beam 1 hits a flat
surface, and has the smallest interaction volume. Beam 2 has a larger interaction volume due
to the angled surface, and the fact that the lower limit of the interaction volume is determined
by the shortest distance to the sample surface. Beam 3 meets an overhanging structure, and
has an even larger interaction volume.

topology. Surfaces which are not normal to the incoming beam will thus have a larger vol-

ume, and more SE will be emitted. Overhanging structures will lead to even larger emissions

of SE.

SE images are also subject to a shadowing effect. If there are features between the site of

emission of the SE and the electron detector, a portion of the SE will collide with these fea-

tures, and less electrons will reach the detector. If the detector is placed at an angle, this

leads to protruding features obscuring the areas behind them, creating what looks like shad-

ows on the images. These two effects lead to a topological contrast that gives the observer an

intuitive understanding of the sample’s 3D geometry.

BSE contrast

BSE exhibit different kinds of contrast than SE. The larger escape depth and wider interaction

volume of the BSE means that they are much less subject to the kinds of topological contrast

that affects SE. The amount of BSE emitted is however highly dependent on the atomic num-
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ber of the atoms in the sample. Larger nuclei are more likely to scatter the incoming electrons,

leading to a larger amount of BSE. The BSE signal thus shows compositional contrast.

The BSE signal is also subject to an effect called channeling. The penetration depth of the

BSE is affected by the crystallographic orientation of the sample relative to the incoming

electrons. This leads to a crystallographic contrast, where differing crystal structure or grain

orientation leads to differences in brightness.

Artifacts and distortions

If a sample examined with SEM is not conductive, it will build up a negative charge when hit

by the electron beam. If the sample becomes negative enough, it will deflect the incoming

electron beam. This will lead to an effect called charging, where the image becomes distorted

or obscured. SEM images can also be distorted due to vibrations or thermal drift, although

this is not a common problem.

2.1.2 Focused ion beam (FIB)

The focused ion beam (FIB) [5] is an instrument that creates a focused beam of ions which

can be used to either image or pattern a sample. The ions are generated by a liquid metal

ion source (LMIS), consisting of a tungsten tip supplied with liquid metal, often gallium. The

gallium wets the tungsten tip, and an extractor electrode applies a strong electric field. This

ionizes the gallium, and extracts and accelerates the ions. The beam of ions is focused by

a series of lenses and apertures, and directed by deflection coils. The beam can be raster

scanned across the sample, or scanned in a user determined pattern. In many modern FIB

systems, it is common to have an electron column in addition to the ion column, as illustrated

in figure 2.3(a). This allows for less destructive SEM imaging along with FIB milling. Such an

instrument is called a dual-beam or FIB-SEM system.
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(a)

(b)

Figure 2.3: (a) Schematic showing the setup of a dual-beam FIB-SEM system (b) Illustration
of the collision cascade

As the ion beam hits the sample, the ions will collide with the atoms in the sample. These

collisions will transfer energy to the atoms, and might cause them to escape from their posi-

tion in the sample material, and collide with further atoms. This process is called a collision

cascade, and is illustrated in figure 2.3(b). If the collision cascade leads to atoms near the

surface gaining enough energy to escape from the sample, they will be sputtered away. The

collision might also ionize the atoms, causing them to leave the sample as ions. Electrons in

the topmost layer of the sample may also be scattered by the collision cascade, and escape

the sample.

Since the collision cascade move atoms away from their place, the material might become

amorphous. If the incoming ions are not scattered back out of the sample, they will be im-

planted. These effects apply to the topmost layer of the sample, down to the penetration

depth of the ions. This local alteration of the sample’s properties might cause the areas ex-

posed to the beam to react differently to later processing, for instance by changing the etch

rate.
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Imaging

The ions, atoms and electrons that are ejected from the sample by the collision cascade can

be detected, and if the beam is raster scanned, this can be used to image the sample in much

the same way as with an SEM. The mechanisms of contrast will be different for ion images

and electron images, and thus these images provide complementary information.

Milling

Since the collision cascade causes atoms to sputter from the surface, the FIB can be used

for milling the sample. As the beam can be scanned in an arbitrary pattern, a wide variety

of microstructures can be created. When milling, a much higher beam current is typically

used, than when imaging. The amount of milled material scales linearly with the amount

of incoming ions. A desired depth of milled features is achieved by exposing the areas to be

milled to a given fluence. This can be achieved either by leaving the beam over the areas for

a certain amount of time, or by performing multiple passes over the pattern until the desired

fluence has been reached.

Patterns milled with the FIB can have a spatial resolution down to 10 nm. The pattern will

however not be perfectly sharp, as the beam has a Gaussian profile. This means that any

sidewalls of milled features will be somewhat sloped. The area around milled features will

also be lightly exposed to the ion beam, and might have its properties changed, even if it is

not subject to significant milling.

The depth of milled features can be increased by increasing fluence, and their width can

be increased by increasing the beam diameter. However, the Gaussian profile of the beam

means that increasing fluence also will increase feature width somewhat. An increase in

beam diameter, while keeping the fluence constant, will also increase the feature depth. Thus

feature width and depth are not adjusted independently by simply varying either beam diam-

eter or fluence.
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2.1.3 Nanowire growth

One of the most commonly utilized methods for growing nanowires is the vapor-liquid-solid

method (VLS) [6]. The method is named after the phases the source material goes through.

The material is supplied in the vapor phase. It enters liquid catalyst droplets on the substrate

surface, either directly, or by diffusing along the surface. As a droplet absorbs more and more

of the source materials, it will eventually become saturated, and at this point, crystal growth

will initialize at the droplet-substrate interface. As the growth continues, the droplet will be

pushed along the top of the growing crystal. This leads to one-dimensional growth, which

results in a nanowire structure.

The catalyst droplets used often consist of Au [6], but this can lead to the nanowire being

contaminated with the Au [7]. For semiconductor nanowires, this might severely affect their

electronic properties, and is thus undesirable. Contamination can be avoided by the utiliza-

tion of self-catalyzed VLS growth, where the catalyst is the same as one of the growth species,

for instance using Ga as the liquid catalyst when growing GaAs nanowires [8].

Figure 2.4: Illustration of VLS-growth. Vapor phase precursor material is adsorbed into the
liquid phase catalyst droplet either directly or through diffusion along the substrate and wire.
The solid nanowire grows beneath the droplet, pushing it upwards as it grows.

The source materials in the vapor phase can be supplied in several different ways, one of

which is by molecular beam epitaxy (MBE) [9]. In an MBE setup, the sample is placed in
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a chamber with ultra-high vacuum, and the material to be deposited is supplied in vapor

phase by effusion cells connected to the chamber. The sample is often rotated to avoid shad-

owing and other directional effects. The MBE instrument allows for precise control of process

parameters and deposition rates.

When growing nanowires through VLS, the positions and sizes of the nanowires can be con-

trolled through control of the catalyst droplets on the growth substrate [10]. The position and

size of the droplets determine the position and size of the nanowires grown. The droplets can

be positioned by patterning a substrate so that droplets will only form in certain locations.

For instance, a substrate of Si can be masked with a layer of SiOx . Droplets will not form on

the oxide, and thus nanowire growth will be limited to the areas where the Si is exposed.

2.2 Digital image processing and computer vision

Computer vision [11] is the subject of processing digital images to extract information. The

human brain is able to easily extract information from what we see. To replicate this in a

computer, we need to implement a variety of methods and algorithms. If successful, the

computer can analyze images in an automated fashion. This is useful in many fields, for

instance in scientific research, to analyze images acquired.

Digital image processing [12] is simply the processing of images using a computer. Image

processing has applications in many fields, and is among other things an important compo-

nent of computer vision. A variety of functions and algorithm are employed to alter images

in order to enhance desired features to facilitate the extraction of the desired information.

To discuss image processing, an understanding of the digital representation of images is

needed. A digital image is represented by an array of pixels, where each pixel can have a

single brightness value, for greyscale images, or a vector of intensity values for each color,

and opacity if relevant. For a binary image, each pixel has a value of 0 or 1. In greyscale

images, each pixel can have one of a range of integer values, typically ranging from 0 to 255.
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2.2.1 Spatial filtering

Spatial filtering [12] is the process of performing an operation on an input image, which gen-

erates an output image based on some function of the pixels in the input image. Each pixel of

the output image is defined by applying an operator to a neighborhood of pixels around the

corresponding pixel in the input image. The neighborhood can have any shape desired, but

is typically defined as a square region centered on the given pixel, with the simplest neighbor-

hood being a 3×3 square of pixels. If an operation is performed with a neighborhood of n×n

pixels, it is said to have a kernel size of n. Since the kernel must have a pixel in its center, the

kernel size is always an odd integer. Any spatial filtering where the operation performed is

a linear combination of the pixels in the input neighborhood is called linear spatial filtering.

Spatial filtering where this is not the case is called non-linear spatial filtering.

Median filtering

Median filtering is a type of non-linear spatial filtering, where the output pixel is the me-

dian value of the pixels in the input neighborhood [12]. Median filtering is able to remove

noise, while preserving sharp edges, as opposed to averaging filters like a simple box blur, or

a Gaussian blur, which will blur any sharp edges [13]. This makes median filtering useful for

preparing images for feature detection [14].

Median filtering does however affect the shape of features in the image [14], and this must be

considered when using median filtering as a preprocessing step for feature detection. While

straight edges are not distorted by median filtering, any corners will be rounded, and features

smaller than the kernel size might disappear entirely. Circular features are less affected by

this, as they have no corners, but their size might be reduced. This effect is most pronounced

when the radius of the circle is small compared to the median filter kernel size. If the kernel

size used is much smaller than the circle radius, the size reduction is small or zero [15].
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Erosion and dilation

Erosion and dilation [12] are the two primitive operations of morphological image process-

ing. They can be defined in several equivalent ways, for instance as a non-linear spatial filter-

ing operation, where the value of every pixel is replaced with the lowest (erosion) or highest

(dilation) value of the pixels in its neighborhood.

Morphological reconstruction by erosion as a hole filling algorithm

Morphological reconstruction [12] is the process of repeatedly performing erosion or dilation

on one image, the seed, limited by another image of the same dimensions, the mask. Mor-

phological reconstruction by erosion can be used to "fill holes" in an image, that is, to flatten

out any dips or valleys in the brightness function not connected to the edge of the image. In

this case, the mask used is a copy of the original image, while the seed image consists of a 1 px

thin edge copied from the original image, with the rest of the image set to the highest bright-

ness value found in the original image. Erosion is performed repeatedly, with a cross shaped

kernel with a width of 3 px. This causes darker values along the edge to "spread" and fill in

the rest of the image, but since the mask is a copy of the original image, no pixel will obtain

a value lower than in the original image. Any local minima in the brightness function will be

flattened out due to the mask image setting a lower limit on the brightness value obtainable

by erosion to that of its neighboring pixels.

2.2.2 Feature detection

Feature detection [11] is a process within computer vision where features, or points of inter-

est, are located within an image. For more advanced computer vision tasks, such as recogni-

tion of complex objects like buildings or faces, feature detection is one of the low-level steps,

giving information to be used further in a larger algorithm. When the objects to be recog-
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nized are simple, such as having a well defined shape or brightness profile, simple feature

detection might be the only step needed to locate the desired objects.

2.2.3 Image segmentation

Image segmentation [11] is the process of segmenting the pixels of an image into regions,

where each region consists of a set of adjacent pixels related in some way. This might be

as simple as a similarity in brightness or color, or more complex, like looking more like a

building or an animal. One of the simplest forms of image segmentation is thresholding,

where a binary image is generated, by evaluating each pixel according to some condition,

e.g. intensity less than a given value, and setting each pixel to 1 if it meets the criterion or

0 otherwise. The image is then segmented by grouping together adjacent pixels of the same

value.

2.3 Overview of software methods

The routines developed in this work are written in the Python programming language, utiliz-

ing several pre-made methods from open source libraries to perform image processing and

other tasks. This section gives an overview of the most important methods used, and explains

what they do. The methods described come from three different libraries.

SciPy [16] is a library that implements a variety of functions, algorithms and data structures

useful for scientific computing.

scikit-image [17] is an independently developed add-on package for SciPy, implementing a

wide range of image processing algorithms.

OpenCV [18] (also referred to as cv2) is an open source computer vision library written in

C++, but with bindings for Python.
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Following is the list of methods:

scipy.optimize.minimize

This function seeks to find the input values which minimize the output of a given func-

tion. The function to minimize can be any function defined in the program. The

minimize function finds the minimum of the given function numerically, using one of

several numerical minimization methods. One of the choices for minimization method

is the Nelder-Mead method [19], which while not in all cases performing as well as al-

ternate methods, provides robust results in many applications.

scipy.signal.medfilt2d

Applies a median filter to the given image, with a given kernel size

scipy.spatial.KDTree

A data structure for storing coordinates of a set of points, which allows for efficient

lookup of the nearest points to any given point

skimage.morphology.reconstruction

Performs morphological reconstruction using given seed and mask images, by either

erosion or dilation as specified by input

cv2.simpleBlobDetector

A class implementing an algorithm for detecting features in an image. Further details

are given in section 2.3.1.

2.3.1 The cv2.simpleBlobDetector class

The simpleBlobDetector class within the OpenCV library is a class that deals with the setup

and execution of a simple feature detection algorithm. The feature detection is performed

by segmenting the image using a range of thresholds, and then accepting or rejecting each

segment based on a set of criteria. The segments meeting the criteria are in the end returned
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as a list giving the center coordinates and size of each of the accepted segments, from now

on referred to as blobs.

By default, the algorithm detects dark features surrounded by brighter pixels. By inverting the

image before detection, features that were bright in the original non-inverted image, can be

detected instead. The range of values used for thresholding is by default the entire brightness

value range, from 0 to 255, but can be limited by setting a minimum and maximum threshold.

The criteria for acceptance of each segment can also be manually adjusted, setting minimum

and/or maximum limits for a set of properties. The available criteria are as follows:

Area The number of pixels in the blob

Circularity A measure for how closely the segment resembles a perfect circle, based on the

ratio of its area to its circumference. A perfect circle has a circularity of 1.

Convexity The ratio of the area of the blob and the area of its convex hull

Inertia ratio A measurement of how elongated the shape of the segment is. Defined as the

ratio between the moments of inertia about its minor and major axes.
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Experimental

This chapter presents the three cases studied using the image processing routines developed

in this thesis. The first section describes the FIB patterned sample, containing the matrix of

nanowire growth arrays. The second section describes the NIL patterned sample, and the two

sets of tiled images showing large regions of this sample. The last section describes the area

of the FIB patterned sample containing non-positioned controlled nanowire growth, hereby

referred to as the random growth sample. As this region is part of the same sample as the FIB

milled matrix of arrays, some of the sample preparation is described in the first section.

Each section details the preparation of the sample, the acquisition and properties of the im-

ages comprising each dataset, any further processing of the images, the computer vision

based feature detection, and what kinds of data was obtained about each dataset.

3.1 FIB arrays

3.1.1 Sample

A (111) p-doped Si wafer cut 5° off axis, covered by a 40 nm thick SiO2 film, was patterned

using a FEI Helios 600 NanoLab DualBeam focused ion beam system. The ions used were Ga+

17
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ions accelerated over a voltage of 30 kV. Figure 3.1 shows a schematic of the milling pattern.

The sample has several different features, two of which were studied in this work.

The first feature of interest is a matrix of 8× 8 nanowire growth arrays, represented on the

schematic as white squares in the top right part of the sample. Each array is patterned with

a hexagonal lattice of 15×18 holes with a 1µm pitch. The arrays are numbered for reference,

in the manner shown on the figure. The ion fluence and diameter used to pattern the holes

were varied for each array, increasing as shown by the arrows in the schematic. The applied

ion fluence was increased linearly from 0.06 nC/µm2 for the bottom row, to 0.53 nC/µm2 for

the top row (equivalent to 10 – 100 nm deep milling in standard Si, according to the FIB con-

trol software). The milled diameter for each hole was increased linearly from 10 nm for the

leftmost column, to 80 nm for the rightmost column.

The second feature of interest is the area around the eight gray squares labeled as "Random

Growth" on the schematic. Although this feature is part of the same sample as the matrix of

arrays, it differs significantly in its nature, and will be treated separately for the rest of this

thesis. The study of this feature is described further in section 3.3.

Table 3.1: MBE growth parameters for FIB
patterned sample (ML = monolayers)

Ga flux 0.02 ML/s

As4 flux 5.4 ·10−6 mbar

Sb4 flux 1 ·10−6 mbar

Growth time 50 min

Temperature 640 ◦C

After patterning, the sample was etched

in a 1 % HF solution for 2.5 minutes.

GaAsx−1Sbx nanowires were grown on the

sample by self-catalyzed VLS in a Varian

GEN II Modular MBE system. The growth

parameters are given in table 3.1. Fig-

ure 3.2 shows the sample after nanowire

growth.
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Figure 3.1: Schematic of the sample layout.

Figure 3.2: Micrograph of the sample after nanowire growth.
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3.1.2 Dataset

The matrix of arrays was imaged as a set of

64 SE SEM images, showing a top-down view of each of the arrays. The images were captured

using the electron beam in the Dualbeam used for patterning in immersion mode, using the

in-lens secondary electron detector, with a voltage of 5 kV, a beam current of 86 pA and a pixel

dwell time of 3µs.

The images were captured at a resolution of 4096× 3775 pixels. As shown in figure 3.3, the

background was dark, and nanowires and 2D-crystals showed as bright outlines getting darker

towards the center. The catalyst droplets on top of nanowires were distinguishable by their

circular shape. The tip of nanowires without catalyst droplets showed as very bright. Before

further analysis, the images were preprocessed to remove noise, by median filtering with a

kernel size of 3 px.

(a) (b)

Figure 3.3: Images of two of the arrays. The arrays shown are the ones patterned using re-
spectively the lowest and highest ion fluence and beam diameter. (a) array 1, and (b) array
64
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3.1.3 Detection

Both the catalyst droplets on top of nanowires, and the tips of nanowires lacking catalyst

droplets, were detected. The detection was performed using the simpleBlobDetectormethod.

For detecting the catalyst droplets, the detection parameters were adjusted to detect the dark

centers of the droplets, by looking for dark blobs with a high circularity. For detecting the

dropletless nanowires, detection parameters were adjusted to look for bright blobs with less

strict demands on circularity, but still high convexity. For both detection runs, bounds were

set for the size of detected blobs. The exact detection parameters used are given in table 3.2.

The detection yielded numbers for the size of each detected droplet/wire, and its position in

the image.

Table 3.2: Parameters used for detection of droplets and dropletless wires in the FIB patterned
arrays.

Droplet detection Dropletless wire detection

Invert False True

Minimum threshold 50 -

Maximum threshold - 130

Minimum area 200 px 20 px

Minimum circularity 0.85 0.7

Minimum convexity - 0.9

Minimum inertia ratio 0.8 -

3.1.4 Lattice of holes

To analyze the occurrences and positions of the detected nanowires in relation to the pat-

terned holes, the coordinates of the holes are needed. The holes are not visible on the top-

down images, but they are known to be positioned in a regular lattice. The coordinates of

the holes were thus approximated by fitting an ideal lattice to the positions of the detected

nanowires.
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For each image, an initial guess for the lattice was defined by manually defining the corners

of the array through mouse input. The lattice parameters were then numerically optimized to

achieve the minimum sum of squared distances between each detected wire and its nearest

lattice point. This was done using the method scipy.optimize.minimize, with the numer-

ical method Nelder-Mead. Other numerical methods were tried as well, but the Nelder-Mead

method was selected, as it provided robust results.

Each detected wire was assigned to its nearest lattice point. Wires further than half a lattice

distance from the nearest lattice point were discarded as anomalies. For each array, the yield

of holes with n wires were calculated, defined as the ratio of holes containing exactly n wires

to the total number of holes. The displacement vector of each nanowire from its lattice point

was found, and the magnitude and angle of displacement were calculated.

3.2 Large NIL array

3.2.1 Sample

Table 3.3: MBE growth parameters for NIL
sample (ML = monolayers)

Ga flux 0.7 ML/s

As2 flux 2.5 ·10−6 Torr

Sb2 flux 2 ·10−7 Torr

Growth time 35 min

Temperature 625 ◦C

This sample was produced for an earlier

study by Ren et al.[20], where it was re-

ferred to as sample A. The sample con-

sisted of a heavily p-doped Si wafer cov-

ered by a 40 nm thick SiO2 film. The

sample was patterned with a hexagonal

lattice of holes with a pitch of 1µm, us-

ing wet etching and nanoimprint lithog-

raphy (NIL). After patterning, GaAsx−1Sbx

nanowires were grown on the sample by

self-catalyzed VLS in a Varian GEN II Modular MBE system. Growth parameters are given

in table 3.3.
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3.2.2 Datasets

Two sets of images were acquired from the NIL sample, using different imaging conditions.

Both datasets were acquired with a FEI Apreo HiVac SEM using the in-lens SE detector. The

FEI Maps 2.5 software present on the SEM was used to automatically acquire a set of over-

lapping images covering a large area, and stitch the images together to form one combined

image covering the whole imaged region.

Dataset 1 was imaged with a voltage of 5 kV, a beam current of 25 pA and a pixel dwell time

of 5.00µs. 10× 10 overlapping images with a resolution of 3 072 × 2 048 px were acquired,

and stitched together to form a combined image of 27 778 × 18 100 px covering an area of

271.3µm × 176.8µm, or 0.048 mm2, giving a scale of 9.77 nm/px. The combined image was

provided as a set of 28×18 non-overlapping tiles, each with a resolution of 1024×1024 pixels.

An overview of the entire imaged region is shown in figure 3.4.

Figure 3.4: Overview of the imaged region of dataset 1. Inset: Enlarged view of the marked
tile
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Dataset 2 was imaged with a voltage of 15 kV, a beam current of 0.10 nA and a pixel dwell

time of 1.00µs. 5×5 overlapping images with a resolution of 6 144 × 4 096 px were acquired,

and stitched together to form a combined image of 28 195 × 18 458 px covering an area of

91.78µm × 60.08µm, or 0.0055 mm2, giving a scale of 3.26 nm/px. The combined image was

provided as a set of 28×18 non-overlapping tiles, each with a resolution of 1024×1024 pixels.

An overview of the entire imaged region is shown in figure 3.5.

Figure 3.5: Overview of the imaged region of dataset 2. Inset: Enlarged view of the marked
tile
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3.2.3 Preprocessing

Figure 3.6: Illustration of a padded tile. The
colored region represents the original tile,
whereas the larger square is the padded tile,
created by adjoining parts of neighboring
tiles. The illustration is not to scale.

For each of the two datasets, the tiles were

preprocessed to aid with detection. Ero-

sion based reconstruction was used to fill

in the dark centers of the droplets. To re-

move shot noise, and smooth out fuzzy

edges, the images were median filtered

with a kernel size of 5 px for dataset 1, and

7 px for dataset 2. Finally, another pass of

the erosion based reconstruction was ap-

plied.

Padded tiles were used to avoid edge ef-

fects on the borders between tiles. For

each tile, a padded tile was generated, us-

ing parts of neighboring tiles to extend the

tile by 100 px in each direction, as illus-

trated in figure 3.6. The preprocessing was run on the entire padded tile. The padded region

was then cropped away, returning the tile to its original size.

3.2.4 Detection

For both datasets, droplets were detected using the simpleBlobDetector method, with the

parameters given in table 3.4. Detection was performed on one tile at a time, but the coor-

dinates of detected blobs were stored with respect to the entire image. To avoid problems

with the detection of droplets situated on the border between tiles, padded tiles were used

for detection. Detection was performed on the entirety of the padded tile, but detected blobs

whose centers were located outside the original tile were discarded, so as to avoid duplicate

detections of the same blob.
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Table 3.4: Parameters used for blob detection for each of the two NIL datasets

Dataset 1 Dataset 2

Invert True True

Maximum threshold 200 200

Minimum area 40 px 200 px

Minimum circularity 0.8 0.85

Minimum convexity 0.0 0.9

3.2.5 Lattice of holes

As with the FIB arrays, the patterned holes were approximated with a lattice fitted to the

detected droplets. An initial guess was obtained by a combination of user input and detected

data. The lattice was then numerically fitted to the detected droplets using the same method

described in section 3.1.4.

The lattice was first fitted to the detected droplets in the top left tile of each dataset. The

resulting lattice was used as an initial guess for another round of fitting, using droplets from

additional tiles along the top row. This was repeated until the lattice was fitted to all the tiles

of the top row. The selection of droplets for the lattice to be fitted to was then expanded

downwards with additional rows, until the lattice was finally fitted to droplets from the entire

image. As the number of droplets in the region to be fitted exceeded 500, a random selection

of 500 droplets from the given region was used instead. For a final pass a random selection of

4000 droplets from the entire image was used.

After a final lattice was obtained, each blob was assigned to its nearest lattice point, and the

angle and magnitude of its displacement from the point was calculated.
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3.3 Random growth area

3.3.1 Sample

The area of non-position controlled nanowire growth studied is part of the sample described

in section 3.1.1. It is shown on the sample schematic in figure 3.2 as a set of gray squares along

the bottom labeled "Random Growth". The squares each represent a square region uniformly

FIB milled with a linearly increasing ion fluence, from 0.06 nC/µm2 for the leftmost square,

to 0.53 nC/µm2 for the rightmost square. After patterning, the sample was further processed

to grow nanowires as described in section 3.1.1.

3.3.2 Dataset

The images of the random growth area were acquired as a set of 8 overlapping images, each

with a resolution of 4096×3156 px. The images were acquired using the same imaging con-

ditions as for the matrix of arrays, as described in section 3.1.2. The images were manually

stitched together, resulting in the image shown in figure 3.7. This image was cut up into a set

of 19×4 non-overlapping tiles, each with a resolution of 1024×1024 pixels. The images had

a contrast similar to the FIB array images, with both droplets, non-vertical nanowires and 2D

growth showing as bright along the edges, and darker towards the middle. Before detection,

the dataset was preprocessed in the same way as with the NIL datasets, but with a kernel size

of 5 px for median filtering.

Figure 3.7: The entire stitched random growth image.
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3.3.3 Detection

Table 3.5: Detection parameters for random
growth

Invert True

Maximum threshold 200

Minimum area 40 px

Maximum area 450 px

Minimum circularity 0.7

Detection of the droplets was performed

for each tile, in the same way as for the NIL

sample, as described in section 3.2.4. The

detection parameters used are given in ta-

ble 3.5.
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Results

4.1 FIB arrays

4.1.1 Detection

The detection yielded a set of blobs largely corresponding to the nanowire catalyst droplets

in position and size, as shown in figure 4.1(a). Some catalyst droplets on the oxide, without

nanowire growth, were also detected by the algorithm, as shown in figure 4.1(b). Very occa-

sionally, the algorithm detected features other than catalyst droplets, which also showed as a

circular shaped decrease of intensity in the images.

Some of the detected nanowires were detected with a radius that was smaller than the actual

radius. This often happened when other bright features were adjacent to the nanowire, as in

figures 4.1(d) and 4.1(c). Figures 4.1(d) and 4.1(e) show how some nanowires, often but not

always near 2D-crystals, failed to be detected. The detection of nanowires without droplets

was not as accurate as the droplet detection, especially in size measurements. Thus, these

detected nanowires were only used for yield calculations.

29
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(a) (b)

(c) (d)

(e)

Figure 4.1: A selection of cases illustrating detection quality. (a) Well detected droplets (b)
Droplet on substrate detected (c) Nanowires near 2D-crystals. Some are detected, others not.
(d) Nanowire with protruding feature (e) Undetected droplet



4.1. FIB ARRAYS 31

4.1.2 Yields

Nanowires with catalyst droplets were detected with good accuracy. Nanowires without droplets

were detected with decent accuracy. Lattices were defined and optimized successfully. By

assigning the detected nanowires to lattice points, the percentage yield of holes containing

exactly n nanowires, with n ranging from 0 to 5, was obtained for all arrays, and is plotted in

figure 4.2.

A high yield of single nanowires (fig. 4.2(b)) was obtained in the arrays patterned with lower

dose or diameter. The highest yields were observed in arrays 6, 17 and 5, with yields of 84.1

%, 83.0 % and 81.9 % respectively.

As dose and diameter increase, there is a band in the dose-diameter parameter space where a

high amount of the holes have no nanowires at all (fig 4.2(a)). Array 26 has the largest amount

of holes with no detected nanowires, 48.9 %. Further increasing dose and diameter leads to a

high yield of 2, 3, or even more nanowires per hole.

4.1.3 Droplet size

Data on the size of all detected droplets was obtained. This data was however not perfectly

accurate, as the size of the detected blobs did not always perfectly correspond to the size of

the droplet, as explained in section 4.1.1.

Figure 4.3(a) plots the median droplet diameter in each of the 64 arrays. The parameter space

is clearly divided into two regions: one with a high median diameter (∼220 - 240 nm), and one

with a lower median diameter (∼150 - 200 nm). The high diameter region correlates well with

the region with high yield of single nanowires, shown in figure 4.2(b).

The droplet diameter distributions look significantly different in the two regions. The diam-

eter distributions in the high diameter region are similar to the one shown in figure 4.3(b).

They have a sharp peak around ∼230 nm, and fewer nanowires with lower diameters. The di-



32 CHAPTER 4. RESULTS

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Plots showing the arrays colored by percentage yield of holes containing exactly
0(a), 1(b), 2(c), 3(d), 4(e) or 5(f) nanowires. Note that the color-bar scales vary.
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(a)

(b)

(c)

(d)

Figure 4.3: (a) Median diameter for the droplets detected in each array. (b) Histograms of
the droplet diameters of droplets detected at lattice points containing 1, 2, 3 and 4 or more
nanowires respectively. (c) A typical histogram of droplet diameters for arrays with high me-
dian diameter. (d) A typical histogram of droplet diameters for arrays with a low median
diameter.
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ameter distributions in the low diameter region are similar to the one shown in figure 4.3(b).

They are broad, and without many droplets with a diameter of 230 nm and above.

Figure 4.3(d) shows that the ∼230 nm peak in the diameter distribution is only present for

single nanowires. It can also be seen that for non-single nanowires, the amount of nanowires

at a given lattice point does not influence the droplet diameter significantly.

4.1.4 Displacements from lattice

Data on each droplet’s displacement from its lattice point was successfully obtained. The

magnitude of displacement increases as dose and diameter increase, as shown in figure 4.4(a).

An intuitive overview of how the displacement of the nanowires varies between the different

arrays can be obtained by scatter plots where each wire is represented by a dot whose posi-

tion corresponds to the nanowires displacement from its nearest lattice point. An annotated

example of one such scatter plot is shown in figure 4.4(b), and similar plots for all the arrays

are shown in figure 4.5.

The figures 4.4(a) and 4.5 clearly show that the nanowires stray further from the hole centers

as dose and diameter increase, however at the lowest diameter, increasing dose does not

increase the spread much. Most displacement distributions are shaped like a circular band,

with few nanowires growing in the center. For some of the arrays, particularly those with high

dose, the displacement distribution has a "tail" going off to the right.
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(a) (b)

Figure 4.4: (a) Median magnitude of displacement from lattice point for nanowires in each ar-
ray. (b) Scatter plot of displacements for array 32. Each blue dot represents the displacement
of one nanowire from its lattice point, marked by a red x. The green histogram shows the
radial distribution of displacements. Some of the displacement distributions show a "tail"
going off to the side, here marked by a red ellipsis.



36 CHAPTER 4. RESULTS

Figure 4.5: Scatter plots showing the displacement from the nearest lattice point for each
nanowire on each of the 64 arrays. Axes are left unlabeled to avoid clutter, but the scale equal
to that of figure 4.4(b).
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4.2 Large NIL array

4.2.1 Detection

The developed routines were able to detect the nanowires on both samples. Since almost all

standing nanowires were topped by catalyst droplets, the nanowires were easily detected by

detecting the droplets. 53 494 nanowires were detected in dataset 1, and 6 543 in dataset 2.

The two datasets were taken from the same sample, but imaging conditions differed, leading

to differences in detection quality.

Dataset 1

The contrast in the images was highly favorable, as the catalyst droplets were much brighter

than any other features, and the detection was thus not disturbed by non-standing nanowires

or 2D crystals, as can be seen in figure 4.6(a). Some parts of the image showed artifacts re-

sulting from erroneous image stitching, and these were occasionally picked up as large blobs.

Dataset 2

The original images were quite noisy, and thus median filtering with a high kernel size had to

be applied. While median filtering usually preserves sharp edges, the high amount of noise

resulted in features on the images having slightly blurred edges, as can be seen on figure

4.6(b). Since the sample was slightly tilted sideways during imaging, the images showed the

nanowires as a feature protruding from the droplets. The blurring of edges lead to an unclear

boundary between the droplets and the nanowires, and this in turn lead to only the inner

part of the droplet being recognized as a circular feature. Thus all nanowires were detected

with a size somewhat smaller than their actual size. When detection was performed with no

size limitation, slight intensity variations in the background were picked up by the detector.

This was avoided by setting a minimum size limit. Some droplets on the surface, without
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nanowires, were detected. Very occasionally, 2D-crystals growing alongside the nanowire

were detected as part of the droplet, leading to a blob of a larger size.

(a) (b)

Figure 4.6: Sections of NIL dataset 1 (a) and 2 (b) showing detected droplets outlined in red

4.2.2 Yields

The yield numbers for single nanowires, as well as empty lattice points, and lattice points with

multiple nanowires, were obtained, and are given in table 4.1. Both datasets contained areas

spanning several lattice points completely devoid of nanowires, these can be seen as white

areas in the plots in figure 4.7. To obtain yield numbers not affected by these anomalous

areas, subregions of each dataset were selected, as shown in figure 4.7. Yields calculated for

these subregions as well, and are also shown in table 4.1.

Single nanowire yields were higher in dataset 1 (∼ 79 %) than in dataset 2 (∼ 74 %), as the

second dataset had a higher proportion of both empty lattice points, and double nanowires.

The subregions had a slightly lower amount of empty lattice points, but an otherwise similar

yield distribution.
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(a)

(b)

Figure 4.7: Plots of dataset 1 (a) and dataset 2 (b) where each lattice point is represented by
a circle colored by the number of nanowires found at that lattice point. The green rectangles
mark the subregions used for calculating yields while disregarding anomalous areas.
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Table 4.1: Calculated percentage yields of the proportion of lattice points with a given num-
ber of nanowires for each of the datasets, and for subregions of the datasets as marked in
figure 4.7.

Nanowires Dataset 1 Dataset 1 subregion Dataset 2 Dataset 2 subregion

0 13.26 % 13.15 % 15.52 % 14.69 %

1 78.77 % 79.08 % 74.09 % 74.89 %

2 7.93 % 7.74 % 10.13 % 10.18 %

3 0.02 % 0.03 % 0.23 % 0.24 %

4 0.004% 0 0.03 % 0

5+ 0 0 0 0

4.2.3 Droplet size

Histograms showing the diameter distributions of the droplets detected on the two datasets

are shown in figure 4.8. For the first dataset, most of the nanowires had a droplet diameter

ranging from 150 nm to 230 nm. The diameter distribution showed two distinct peaks: A

short wide peak at 196 nm, and a tall narrow peak at 221 nm. The second dataset has a

similar diameter distribution, but shifted towards lower diameters, with the peaks appearing

at ∼170 nm and ∼190 nm. The distribution for the second dataset also has a larger portion

of the nanowires in the low diameter tail, and this tail stretches to smaller diameters than for

the first dataset.

(a) (b)

Figure 4.8: Histograms showing the diameter distribution of the detected nanowire droplets
in dataset 1 (a) and dataset 2 (b)
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(a)

(b) (c)

Figure 4.9: (a) Plot of all detected droplets in dataset 1. Each droplet is represented by a dot
colored by droplet diameter. (b) Enlarged view of region marked in (a). Droplets with diam-
eters smaller than 195 nm or larger than 232 nm have been excluded to increase contrast. (c)
Plot of all droplets with a diameter larger than 234 nm (not colored by size).
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(a) (b)

Figure 4.10: (a) Plot of all detected droplets in dataset 2. Each droplet is represented by a dot
colored by droplet diameter. (b) Enlarged view of region marked in (a). Droplets with diame-
ters smaller than 157 nm or larger than 223 nm have been excluded to increase contrast.

The diameter maps shown in figures 4.9(a) and 4.10(a) show that the size of droplets is mostly

independent of location on the sample. Some interesting phenomena are however seen.

Droplets around areas with no nanowire growth tend to be slightly larger than droplets fur-

ther away from such areas, as shown in figures 4.9(b) and 4.10(b). For the first dataset, it is

also observed that many of the largest detected blobs lie along stitching lines in the image, as

seen in figure 4.9(c). As explained in section 4.2.1, the size of these blobs are due to the fact

that droplets from adjacent images have been misaligned during stitching.

4.2.4 Displacements from lattice

Dataset 1

The magnitude and angle of displacement from the lattice point of each nanowire is plotted

in figure 4.11. From the displacement magnitude map it seems that the nanowire positions

are well matched by the lattice in two bands to the left and right of the middle. In the middle

of the image, the nanowires seems to generally be further from the lattice, and towards the

left and right edge, the mismatch is even larger. The displacement angle map shows that the

angle of displacement varies across the image, and nanowires in a certain region seem to be

displaced at a similar angle from the lattice. Additionally, both plots show that the displace-
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ment seems to change abruptly across the stitching boundaries of the original images, visible

as a grid like pattern. This is most clearly visible in the displacement angle map.

Looking at the plots in figure 4.12, the displacement density decreases gradually from the

center. The region with highest density seems to be slightly down and to the left of the center.

Dataset 2

The displacement magnitude and displacement angle maps for the second dataset, shown

in figure 4.13 show that the nanowire displacement does not really vary across the sample.

The magnitude of displacement (figure 4.13(a)) is consistently low, with a few outliers dis-

tributed across the whole imaged region. The displacement angle (figure 4.13(b)) seems to

vary randomly, with no large regions of similarly displaced nanowires.

The plots in figure 4.14 show a displacement distribution distinctly different from that of the

first dataset. Most of the nanowires are displaced less than 125 nm from their lattice point.

These nanowires are displaced at all angles equally. Almost all of the rest of the nanowires are

displaced between 125 nm and 232 nm from their lattice point. The angular distribution of

these nanowires features a trigonal symmetry, where the wires tend to be displaced towards

one of three angles 120° apart. A closer look at the images reveals that almost all of these

nanowires have either other nanowires or 2D crystals growing in the same hole. This is shown

in figure 4.15. The remainder of the nanowires are outliers, with a displacement larger than

232 nm.
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(a)

(b)

Figure 4.11: Plots showing all detected droplets in dataset 1 colored by the magnitudes (a)
and angles (b) of displacements from their lattice points. Angles given in radians.
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(a)

(b)

Figure 4.12: (a) Scatter plot showing the displacement from lattice for all detected droplets in
dataset 1. Distances in nm. (b) Histogram showing the radial density of the plot in (a).

(a) (b)

Figure 4.13: Plots showing all detected droplets in dataset 2 colored by the magnitudes (a)
and angles (b) of displacements from their lattice points. Angles in radians.
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(a)

(b)

Figure 4.14: (a) Scatter plot showing the displacement from lattice for all detected droplets in
dataset 1. Distances in nm. (b) Histogram showing the radial density of the plot in (a).

Figure 4.15: A section of the second dataset, showing blobs with a displacement distance
from their lattice point of between 125 nm and 232 nm circled in red.
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4.3 Random growth area

Figure 4.16: Histogram showing the diam-
eter distribution of the detected nanowire
droplets in the random growth dataset

34 107 droplets were detected. The loca-

tion and diameter of each wire was ob-

tained. The density map in figure 4.17(a)

shows a low density of droplets inside the

patterned squares, a higher density in the

growth areas around the squares. The

density is about the same in the whole

growth area, except for along the edges,

where the density is higher. The size map

in figure 4.17(b) shows that the droplets are smaller along the edges where the density is

higher. The droplets are also smaller within the patterned squares, and the droplets found

outside the growth area are smaller still. The size histogram in figure 4.16 has a large peak at

∼200 nm, and a smaller one at ∼100 nm.

(a)

(b)

Figure 4.17: Maps showing how the droplet density (a) and diameter (b) vary across the ran-
dom growth sample.
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Chapter 5

Discussion

5.1 Developed routines

5.1.1 Preprocessing

Median filtering was shown to be a good technique for removing noise from images to pre-

pare them for subsequent feature detection. As the nanowire droplets are circular, their shape

is not significantly distorted by median filtering, and as the droplet diameters were much

larger than the kernel sizes used for median filtering, the median filtering would not reduce

their size significantly. Median filtering also preserved sharp feature edges well, except for

in cases with large amounts of noise, where edges were somewhat blurred. When nanowires

were standing very closely together, such as in the random growth sample, the kernel size

used for median filtering had to be limited to prevent the nanowire droplets from melding

together.

Morphological reconstruction by erosion worked nicely to fill in the dip in intensity in the

middle of nanowire catalyst droplets when this was desired for detection. With large amounts

of non-vertical nanowires or 2D-crystals present, one must be careful with the usage of this

49
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algorithm, and make sure it does not cause problems with detection by filling in areas be-

tween these features.

5.1.2 Detection

The segmentation based detection method used in this work is able to detect nanowire droplets

in a manner sufficient to obtain several kinds of useful data. Given circular droplets, and

good contrast between the droplets and other features in the image, excellent data can be

obtained. If there is insufficient contrast between the droplets and other adjacent features,

detection might be problematic. Contrast within the droplet will often still allow for detec-

tion, but the detected area will in that case be smaller than the actual size of the droplet, thus

any size measurements will be too low.

Under some imaging conditions, the nanowire catalyst droplets will appear bright at the

edges, and gradually darkening towards the center. In this case, detection can be performed

in two different ways. Firstly, the dark centers of the droplets can be detected. This method

is robust when it comes to features surrounding the droplet, but depending on the contrast

and the resolution of the images, the detected size could end up being smaller than in reality.

Given high resolution images with low noise, most droplets can however be detected with a

highly accurate radius in this way.

The other way to detect such droplets is to fill in the centers using erosion based reconstruc-

tion, and detect the resulting bright droplets. If the droplets are clearly brighter than their

surroundings, this will give an accurate detected size. If however there are other bright fea-

tures adjacent to the droplet, these might either be detected along with the droplet, resulting

in a much too large detected size, or prevent the detection of the droplet in question.
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5.1.3 Optimizing lattice

The lattice used to approximate the ideal positions of the nanowires was defined by using

an initial guess lattice, generated from a combination of knowledge about the sample, user

input on images, and detected data. The lattice parameters were then optimized using a min-

imization algorithm to adjust the parameters until a minimum total square distance between

droplets and their neighboring lattice point was obtained, thus achieving the lattice that best

fit the detected droplets.

The process of assigning blobs to their nearest lattice point was found to be too time con-

suming to be done for each iteration of the optimization. Thus blobs were not reassigned

during a round of optimization, so the lattice points used for distance calculation were the

lattice points nearest each given blob at the start of optimization. This means that for the

optimization result to be accurate, the initial guess must be accurate enough that each blob

has the correct nearest neighbor lattice point.

For the smaller arrays, this was not a problem, as the user could input the corners, and things

would be pretty good. With the large tiled images, this was more difficult. As the initial guess

was based on one part of the image, any slight error in lattice distance would translate to

a large error on the other side of the image. This would mean that droplets would not be

assigned to the correct lattice point before optimization, and the optimization would fail to

produce a good fit.

To mitigate this, a method was developed where the lattice first is optimized for a small part

of the image, and the area then is stepwise expanded, running a new round of optimization

each time, using the previous lattice as an initial guess. This ensures that the lattice is never

too far off from the droplets in the region for which it is optimized, and finally fits the entire

image.

Another concern was the fact that calculating the sum of squared distances to the nearest

lattice point for all blobs becomes very time consuming when the number of blobs becomes

large (up to 50 000 for the largest dataset). Since this is performed many times for every
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optimization round, lattice optimization becomes unusably slow when there are too many

blobs. To solve this, a smaller selection of blobs was used. It was found that using a random

selection of the blobs in the region where optimization occurred was sufficient to obtain a

good lattice fit, as long as the number of blobs was not too small. To ensure good accuracy of

the final result, a larger selection of blobs was used for the final round of optimization.

5.2 FIB arrays

Patterning a matrix of arrays in the fashion done in this experiment, where the matrix rep-

resents a parameter space, with arrays patterned using all possible combinations of the se-

lected values of the two parameters studied, allows for an in-depth study of how these pa-

rameters affect nanowire growth independently, and how they interact. Using automated

computer vision techniques enables an efficient analysis of the arrays, and gives objective, re-

producible and well documented results. The results of computer analysis can be presented

in ways that make it easy to spot trends and see connections.

5.2.1 Yields

Nanowire yield is one of the most important figures when evaluating nanowire growth pro-

cedures. With nanowires identified algorithmically, the nanowire count in an area is easily

obtained, much more efficiently than when counting by hand. Simply using the nanowire

count to obtain a yield number is however not a good indication of growth quality. An ar-

ray where half of the growth sites contained two nanowires each, while the other half con-

tained no nanowires, would have the same nanowire count as a similar array of perfect single

nanowires. To obtain yield numbers that accurately represent the state of the sample, de-

tected nanowires must be assigned to their respective growth sites, and the percentage yield

of growth sites containing the desired number of nanowires must be calculated.
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Analyzing the patterned arrays in the aforementioned manner yielded the results shown in

figure 4.2. It is clear that different regimes in the parameter space favors different numbers

of nanowires per hole. The lower end of the parameter space favors single nanowires. As

patterning diameter and fluence are increased, a regime is encountered where the growth of

2D-crystals is favored over nanowire growth, leading to a high percentage of holes containing

no nanowires. Further increasing patterning diameter and fluence will lead to a high yield of

double nanowires, followed by an increasing number of nanowires per hole as the parameters

increase further. This is to be expected, as milling larger holes allows room for more catalyst

droplets to form inside each hole, without merging with other droplets inside the same hole,

thus allowing for the growth of multiple nanowires in close proximity.

5.2.2 Droplet size

Droplet size measurements show a clear difference in median droplet size between the arrays

in the lower end of the parameter space, and the rest of the arrays. Comparing the median

diameter plot in figure 4.3(a) with the plot of single nanowire yield in figure 4.2(b), it is clear

that the arrays with a high yield of single nanowires also are the ones with higher median

droplet diameter. Looking at the droplet size distributions for each array, we see that for

these arrays, most droplets fall within a narrow peak of a diameter between about 220 nm

and 250 nm, as exemplified in figure 4.3(b). The other arrays have broader droplet diameter

distributions, as exemplified in figure 4.3(b), with diameters reaching from below 100 nm to

above 200 nm.

This indicates that single nanowires undisturbed by other nanowires or 2D-crystals in their

neighborhood develop large catalyst droplets, due to their plentiful access to Ga. Their droplet

size is only limited by the maximum contact angle between the droplet and nanowire, and

most droplets come close to this limit, leading to a narrow size distribution.

As patterning parameter change to accommodate 2D-crystals and multiple nanowires per

hole, Ga is sparse, as it is used to grow many structures in a small space. Thus the catalyst
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droplets are not provided with enough Ga to reach their maximum size, and they become

smaller. The size distribution widens as droplets are no longer restricted by a hard limit, but

rather limited by local conditions which might vary from wire to wire.

The histograms plotted in figure 5.1(a) confirm that the larger droplets are found on single

nanowires, as the size distribution for single nanowire droplets show the aforementioned

narrow peak at high diameters, whereas this peak is absent for the droplet size distributions

for clustered nanowires. Interestingly, this plot also shows that droplet diameter does not

seem to further decrease for holes with 3 or more nanowires. This might be due to the droplet

size being just as affected by 2D-growth, which is not represented in the plot.

5.2.3 Displacements from lattice

The analysis of displacements form perfect lattice is something that can only be done using

computerized analysis to gain accurate knowledge about the location of the lattice point, and

the nanowire’s displacement from it. This novel technique makes it possible to objectively

quantify the regularity of positioning of the nanowires, which allows for optimization of the

growth process to achieve maximum regularity. This is desirable as many of the applications

for nanowire require a regular pattern, and a well defined pitch is often necessary for the

nanowire array to obtain the desired properties.

From the displacement scatter plots shown in figure 4.5, it is clear that the displacement in-

creases with increasing fluence and patterning diameter. Increasing these parameters leads

to larger holes in the oxide film, and thus a larger area from which the nanowires can grow,

which explains their larger displacement. For most arrays the scatter plots clearly show that

there are very few nanowires with close to zero displacements. This shows that nanowires

tend to grow along edges of holes. As a catalyst droplet along the hole edge can contact both

the hole bottom and the hole wall, it will have a greater contact area with the substrate, and

thus have lower energy than if it were situated elsewhere. Thus the droplets tend to end up

along the edges of holes, and initiate nanowire growth there.
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Given that the displacements correspond to the size of the holes, it is also apparent that the

hole diameter is not simply a function of patterning diameter. While the intention is to vary

hole depth by varying fluence, and to vary hole diameter by varying patterning diameter, we

see that the hole diameter is also affected by varying the fluence. For low patterning diameter,

this effect is not very pronounced, but for the higher patterning diameters, it is highly visible.

For a patterning diameter of 80 nm, increasing the fluence from 0.06 nC/µm2 to 0.53 nC/µm2

increases the median displacement from around 100 nm to around 200 nm. This can be

explained by the Gaussian profile of the ion beam. A patterning diameter of 80 nm means

that most of the beam is within this area, but the tails of the Gaussian beam reach beyond this

area. When increasing fluence, the amount of ions across the whole distribution increases,

and a larger area gains a sufficient ion dose to reach the Si after the subsequent etching.

Some of the displacement distributions have a tail going down and to the right. This tail is

likely due to the fact that the blanking of the ion beam is not instantaneous, and ions continue

to be emitted as the beam moves to pattern the next hole, causing an unintended groove in

the substrate along the path of he ion beam. This groove can be seen on some of the SEM

images. The scatter plots show that nanowires occasionally nucleate in these grooves, espe-

cially in the arrays milled with higher fluence. This is to be expected, as the higher fluence is

attained by milling the pattern many times over, something which would deepen the groove,

allowing it to reach down to the Si. The presence of these grooves is unfortunate, as it re-

duces the accuracy of the nanowire positioning. This problem can be mitigated by using an

instrument with faster beam blanking, or using alternative patterning techniques.

5.2.4 Optimal process parameters

The data gathered from the computer analysis of the FIB patterned arrays enables an eval-

uation of the nanowire growth conditions under varying patterning parameters. For most

nanowire applications the desired outcome is an array with a high yield of highly uniform

single nanowires. The plot shown in figure 4.2(b) makes it easily apparent what combina-

tions of patterning diameter and fluence is best for achieving single nanowires. Two of the
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arrays have a particularly high yield: array 6, with a yield of 84.1 %, and array 17, with a yield

of 83.0 %. To select the best parameter combination, one could look at the other data avail-

able. Array 17 has a slightly lower median displacement magnitude than array 6 (75 nm vs

82 nm), but the median displacement of array 6 is heightened by the tail coming from insuf-

ficient beam blanking, and would be lower if this was mitigated. Looking at the droplet size

histograms, array 17 seems to have a larger portion of the detected droplets fall within the

high diameter peak, indicating a higher amount of well formed nanowires. The arrays with a

high yield of single nanowires are on the edge of the observed parameter space. Thus it could

also be useful to perform a similar study with arrays patterned with even lower diameter and

fluence, to see if this would further increase single nanowire yield.

5.3 Large NIL array

The ability to detect and analyze nanowire growth across large areas, such as those present

in the tiled NIL datasets, presents an opportunity to acquire highly accurate insight into

nanowire growth from a large sample size. Being able to count and measure thousands of

nanowires (more than 50 000 for the largest dataset) enables the acquisition of accurate and

detailed data on nanowire yield, droplet size and nanowire displacement from the intended

ideal lattice.

5.3.1 Yields

The calculated yield numbers were slightly different for the two NIL datasets (see table 4.1).

Dataset 2 had slightly less single nanowires than dataset 1, and slightly more both empty

lattice points and double nanowires. As both datasets are taken from the same sample, no

difference in yields is expected. The observed difference might be the result of differences in

nanowire detection between the two datasets. However, if nanowires in dataset 2 were more

easily detected, one would not expect to see an increase in empty lattice points. Conversely,
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if they were harder to detect, one would not see an increase of double nanowires. Thus, the

effects at play must be more complex.

Excluding the anomalous nanowire-free regions when calculating yield did not have a sub-

stantial influence. The calculated yield for the datasets increased by only 0.4 % and 1.1%

respectively, when using subregions of the image without empty areas. This indicates that

the yield is very homogeneous across the sample, and that the nanowire free spots do not

have a substantial influence on the overall yield.

5.3.2 Droplet size and displacements from lattice

The droplet size distribution of the two datasets seems to be similar in shape, but shifted

towards somewhat lower sizes for dataset 2. This is due to the fact that only the inner part

of the droplets were detected on the second dataset, leading to a constant underestimation

of droplet size. In reality, the two datasets likely have very similar size distributions, as they

were acquired from the same sample.

Both datasets display a bimodal droplet size distribution. Looking at the histogram in figure

5.1(a), there is one lower diameter peak which is smaller, and more spread out (peak i), and

another peak at a higher diameter which is taller and narrower. Looking at the images, and

marking droplets with diameters falling within either peak reveals that peak ii represents well

formed single nanowires with no 2D-crystals or other nanowires within its domain, whereas

peak i represents nanowires sharing their hole with either other nanowires or 2D-crystals.

This is consistent with what was found for the matrix of arrays, where single nanowires were

shown to have larger droplets with a narrower size distribution.

Looking at the displacement distributions, the one of the first dataset (figure 4.12(a)) was

fairly featureless, whereas the one of the second dataset (figure 4.14(a)) was more interest-

ing. Most nanowires were located within 125 nm of the ideal lattice position, with increasing

density closer to the center. However, a significant portion of the nanowires were displaced

between 125 nm and 250 nm from their ideal lattice position, and these nanowires displayed
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a threefold symmetry in their displacement, tending towards displacement towards one of

three angles.

To investigate this further, scatter plots were made of the displacements of only the nanowires

within certain droplet diameter ranges, more specifically, nanowires whose droplet diame-

ters fall within the two aforementioned peaks. The displacements of nanowires from peak

i (figure 5.1(c)) are generally within 125 nm of the ideal lattice point, wit a few outliers. The

nanowires with lower diameters however, are found to be the ones with larger displacements,

(a)

(b) (c)

Figure 5.1: (a) Histogram of detected droplet diameters for NIL dataset 2. Two peaks are
marked. (b) and (c) Scatter plots of the displacements from perfect lattice for the droplets
found in peak (i) and (ii) in (a) respectively. Distances given in nm.
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and displaying the threefold symmetry, as is shown in figure 5.1(b). This coincides with what

is seen in figure 5.2, where there seems to be to types of nanowires: ones with larger droplets

and smaller displacement, and ones with smaller droplets and larger displacements.

This shows that the presence of multiple nanowires or 2D-crystals tends to not only reduce

droplet diameter, but also displace nanowires, preferentially towards one of three angles,

with threefold symmetry. Both the Si substrate and the GaAsSb nanowires have crystal struc-

tures with threefold symmetry, and the Si substrate is cut along its (111) plane, which is the

plane along which threefold symmetry is found. This is believed to be the cause of the three-

fold symmetry in the displacement.

Another interesting observation is that for both datasets the displacement distributions have

a higher density for lower displacements, with many nanowires placed very close to ideal

lattice position. This contrasts the nanowires in the FIB matrix, where few nanowires were

located near the center of the holes, and nucleation was preferred along hole edges. The

Figure 5.2: Scatter plot of diameter and displacement for all droplets on NIL dataset 2.
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nanowires growing in the NIL array do not seem to preferentially nucleate along edges. This

could be an effect of inaccuracies in the lattice definition blurring the displacement distribu-

tion enough to hide the dip towards the center, or it could be a physical effect.

Lastly, it is apparent through figures 4.9(b) and 4.10(b) that droplets on nanowires near empty

areas tend to be slightly larger than normal. Since nothing in the empty areas consumes the

Ga that hits the surface, it will end up at nanowires near these areas. Since they are supplied

with Ga from a larger area, they have a larger supply, which allows their catalyst droplets to

grow larger. This shows that most nanowires in the array have not reached the upper limit of

catalyst droplet size, as the droplet can be further enlarged by additional supply of Ga.

Image stitching

Both NIL datasets were acquired from the same sample. Still, the data pertaining to nanowire

displacement from the ideal lattice was substantially different between the two datasets. For

the first dataset (see figure 4.11), the displacement magnitude was generally larger towards

the left and right edges of the image, and along the vertical middle part of the image, with

smaller displacements for nanowires located between these areas. Different regions of the

image seemed to have certain preferred displacement angles, with a majority of nanowires

in these regions displaced towards the preferred angle. This preferred angle varied between

regions of the image. The displacement data for the second dataset (figure 4.13) showed none

of these properties. Displacement magnitude was consistently low for most nanowires, and

displacement angle seemed to vary randomly from wire to wire, with no correlation to that of

nearby wires.

These observations indicate that the nanowire lattice displayed in dataset 1 was not a linear

lattice, but rather a distorted, non-linear lattice. As the sample was patterned with a regular

lattice through NIL, this is likely an effect of acquisition and processing, not an actual prop-

erty of the sample. The fact that dataset 2 displayed none of the same properties, while the

two datasets were taken from the same sample, further supports the notion that the lattice

nonlinearity of dataset 1 was due to errors in acquisition.
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The cause of the effects discussed above is believed to be errors in the stitching of the images

making up dataset 1. The complete dataset was put together by stitching 10 × 10 smaller

images into one large image covering the entire imaged region. This process was carried out

automatically by software on the SEM used for acquisition. Several observations support the

notion that erroneous stitching is the cause of the lattice distortions.

Figure 5.3: Section of dataset 1 showing
stitching error artifacts (circled in red)

Observation of the images shows features

like the ones shown in figure 5.3. This

kind of artifact appears when attempt-

ing to stitch two images without proper

alignment. One image transitions into

the other, and the features do not overlap.

These features were sometimes picked up

by the detection algorithm, and are shown

in figure 4.9(c). The figure shows that these

features appear in lines, which correspond

to the borders between the stitched im-

ages.

The displacement magnitude and angle

maps for dataset 1 also shows abrupt changes across lines in the image forming a grid-like

pattern corresponding with the stitching boundaries. This indicates that stitching errors

causes the lattice of the individual stitched images to be improperly aligned. When the ideal

lattice fitted to the detected droplets is a continuous lattice, whereas when each stitched im-

age is displaced with respect to the others, the lattice of each sub-image will not match the

overall lattice. This is why we get the variations in displacement angle and magnitude present

in dataset 1.

As discussed earlier, the displacement scatter plot for dataset 2, shown in figure 4.14(a),

shows interesting features such as a high density center, and a threefold symmetry of likely

displacement angles. This is not visible in the corresponding plot for dataset 1, figure 4.12(a).
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The displacements for dataset 1 are dominated by the effects of lattice mismatch due to

stitching errors, and interesting features are thus obscured by noise.

The fact that stitching errors were only observed for the first dataset demonstrates that such

errors can be avoided using the correct imaging conditions. The imaging conditions for

dataset 1 makes stitching more difficult. This could be mitigated by choosing suitable imag-

ing conditions, by correcting for distortions in the image digitally before stitching, or by uti-

lizing more advanced stitching methods able to detect and correct nonlinear distortions be-

tween images.

5.4 Random growth area

The random growth dataset shows large amounts of nanowire growth in a region reaching

beyond the squares patterned with the FIB. While some nanowires grow within the patterned

squares, the squares are mostly dominated by the growth of 2D crystals. Most nanowires

grow along the edges of the squares and in the region surrounding the squares. This can be

explained by the fact that the ion beam has a Gaussian profile, causing areas surrounding

the patterned squares, where the core of the ion beam is directed, to still be exposed to ions,

albeit in a smaller dose. The area with nanowire growth extends further from the squares as

the patterning fluence increases. This is to be expected, as an increasing overall fluence also

will increase the number of ions in the tails of the Gaussian beam. This leads to an expansion

of the area where the received ion dose is large enough to enable nanowire growth.

The density plot shown in figure 4.17(a) shows that the nanowire density is low within the

patterned squares. An exception is the first square, which has a high density of detected

droplets. Further inspection of the images reveals that these are droplets on the surface with-

out nanowires. The area surrounding the squares has a higher density of nanowires. This

indicates that the ion dose received within the squares is higher than the ideal conditions for

random nanowire growth, whereas the dose in the surrounding area is more suitable.
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The areas with the highest nanowire density lie along the edges of the nanowire growth area.

This could be due to the edges having greater access to Ga moving along the surface. How-

ever, the area between squares 2 and 3 also shows a high density of nanowires, even though

it is not near an edge. This indicates that the high nanowire density is not due to edge ef-

fects. Rather, it seems to indicate that the nanowire density is dependent on the ion dose

received, and that the lower ion dose experienced further from the patterned squares is ideal

for maximizing random nanowire growth.

Comparing the droplet diameter plot in figure 4.17(b) to the density plot in figure 4.17(a)

allows us to draw several conclusions about droplet size:

• Droplet size inside the first square, and outside the nanowire growth area, is very small:

Droplets on the substrate surface are much smaller than droplets on nanowires.

• Droplet size inside the other squares is also small: The high amount of 2D-crystals

growing within the squares consumes Ga used for droplets, causing the droplets in the

area to be smaller. This is consistent with what has been found for the other samples in

this study.

• In the areas with high nanowire density, the droplet size is lower. This includes the

area between square 2 and 3: A higher density of nanowires also causes less Ga to be

available for the droplets on each wire, leading to smaller droplets.

• At the very edge of the nanowire growth area, the droplets are larger: Droplets along the

edge have access to Ga from the empty area, as these areas contain no growing features

consuming Ga.

The random growth dataset shows that a low fluence ion beam replicating the dose received

along the edges of the area where nanowire growth was observed is ideal for inducing high

density unpatterned nanowire growth on a Si/SiOx substrate. It also shows that the ion beam

affects the properties of the sample with respect to nanowire growth in areas far from the

designated patterned area. Thus when using FIB to pattern samples for nanowire growth, the
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properties of a feature can not be assumed to be independent from the patterning performed

in its vicinity.



Chapter 6

Conclusions

Developed routines

In this work, computational routines have been developed to analyze SEM images of nanowires,

and gather growth related data such as nanowire count, yield, catalyst droplet size, and posi-

tional deviation from the desired pattern.

Using computer vision techniques, nanowire catalyst droplets can be detected in top-down

SEM images, yielding the position and size of each droplet. Imaging conditions influence

the detection accuracy, but images can be optimized for detection by preprocessing using

median filtering and dilation based reconstruction. A lattice can be numerically fitted to

the detected nanowire positions, and used to group detected wires for yield calculations, or

analyze positional uniformity, and find patterns in where nanowires grow in relation to the

patterned holes.

The developed routines are able to analyze and compare nanowire arrays patterned with dif-

ferent process parameters, analyze large datasets containing more than 50 000 nanowires,

and characterize random growth. Large amounts of data can be obtained in an efficient, ob-

jective, and reproducible manner. The obtained data can be presented in ways that are easy

to interpret, and enables the identification of growth related trends and effects of process
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parameters, some of which could not be deduced manually. This facilitates further optimiza-

tion and upscaling of nanowire growth processes.

FIB arrays

Using the developed routines, a FIB milled matrix of nanowire growth arrays patterned with

varying hole patterning diameter and ion fluence has been analyzed to gain insight into the

effect these parameters have on nanowire growth. It has been found that by varying the afore-

mentioned parameters, one can obtain either a high yield of single nanowires, 2D-crystals

with low amounts of vertical nanowire growth, or growth of two or more nanowires per milled

hole. The highest yield of single nanowires were achieved using a patterning diameter of 10

nm and a fluence of 2 500 ions/nm2 (84.1 % yield), or a patterning diameter of 30 nm and a

fluence of 400 ions/nm2 (83.0 % yield).

Analysis of the droplet diameters showed that single nanowires without nearby 2D-crystals

had a low variation in droplet diameter, and a mean droplet diameter of around 240 nm,

while nanowires growing alongside other nanowires or 2D-crystals had smaller droplets with

a wider range of sizes, from around 100 nm to around 230 nm. Analysis of the positional devi-

ation from the ideal lattice showed that nanowires tend to nucleate along the edges of holes,

and that hole sizes increase with increasing fluence and patterning diameter. This analysis

also showed that the usage of FIB milling might create grooves as the beam moves from pat-

terning one hole to another, especially pronounced when patterning with high fluence. This

is likely due to slow beam blanking Nanowires will nucleate in these grooves, leading to less

positional accuracy.

Large NIL array

Two large datasets taken from the same NIL patterned nanowire growth sample have been

analyzed using the developed routines. The datasets differ in size and SEM imaging condi-
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tions. They consist of several SEM images stitched together, showing in total > 50 000 and

> 6 000 nanowires respectively. For both datasets, the detected droplets had a diameter dis-

tribution with two peaks. The first dataset had a sharp peak centered around 230 nm, and a

wider but smaller peak at 196 nm. From the second dataset a similar diameter distribution

was found, but shifted slightly towards lower diameters. This was due to the lower image

quality causing the detection routine to consistently report lower droplet diameters. Inspec-

tion of the images with overlaid detection data revealed that the high diameter peak repre-

sented single nanowires without nearby 2D-crystals, whereas the low diameter peak repre-

sented nanowires with other growth at the same lattice point.

Despite the images having good contrast, displacement analysis of the first dataset failed

to show any interesting features. This was to errors in the stitching of the separate images

making up the dataset. The misaligned image stitching lead to an inconsistent lattice in the

combined image, and mismatches with the ideal fitted lattice dominated the displacement

data. The utilized stitching routine or the data acquisition need to be refined to avoid this

issue.

Displacement analysis of the second dataset found that most nanowires were growing within

125 nm of ideal lattice positions, while the nanowires displaced further displayed a threefold

symmetry in their displacement. The threefold symmetry in displacement was only exhibited

by wires with lower diameter droplets, i.e. the wires where either other nanowires, or 2D-

crystals, are present at the same lattice site. This symmetry may be related to the threefold

symmetry of the nanowires or growth substrate.

Random growth area

Using the developed routines to analyze a dataset showing unpatterned nanowire growth in

and surrounding FIB patterned squares revealed the relationships between ion exposure of

the substrate, nanowire growth density, and nanowire droplet size. Areas not directly pat-

terned by the FIB, but only exposed to stray ions, i.e. areas exposed to a low effective fluence,
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were shown to provide good conditions for high density non-position controlled nanowire

growth. Nanowire density was shown to be highest along the edges of the area exposed to

stray radiation. Catalyst droplets are found to be smaller in areas with high nanowire density,

or high amounts of 2D-crystals, and larger near the edge of the nanowire growth area.



Chapter 7

Recommendations for Further Work

While the work done in this thesis has come a long way in creating objective and efficient

methods for analysis of nanowire growth, much can still be gained from further develop-

ment of these kinds of techniques. While the nanowire detection methods used in this study

were able to gather useful data in several ways, there is still room for improvement. By either

fine tuning the parameters of the current method, or implementing other methods of de-

tection, the accuracy could be increased to further avoid false positives and negatives, and to

more consistently report an accurate size for the detected droplets. The accuracy of detection

could be quantified using either fabricated or manually measured datasets, where position

and size of all nanowire droplets is already known, and comparing with the detection results.

The detection routine could also be further developed to accurately detect features such as

nanowires without catalyst droplets, or 2D-crystals.

The application of computer vision techniques to characterize and analyze nanowire growth

is not limited to top-down images. If more advanced computer vision techniques were em-

ployed, side-view images could be analyzed to measure nanowire length and thickness, and

the contact angle between the nanowire and catalyst droplet. These are important parame-

ters for the properties of nanowires, which can not be measured from top-down images. Data

gathered from the analysis of side-view images, along with other data such as photolumines-

cence characterization data and electrical measurements, should be combined with the data
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obtained from top-down images, and further processed to produce useful visualizations and

insights.

The routines developed in this thesis are currently accessible only through Python scripts

calling the functions defined within the code, and providing the required parameters. Al-

though the code is well documented to aid unfamiliar users, and examples of scripts perform-

ing useful analysis are included, the usage could be more intuitive. To encourage widespread

usage of the developed routines by nanowire growers throughout the scientific community,

an intuitive user interface could be developed. Researchers unfamiliar with the code should

be able to utilize the developed routines simply by following provided instructions and pro-

viding the requested input. To more easily explore obtained data, an interactive visualization

interface could be implemented, allowing the user to dynamically limit the set of nanowires

for which to visualize a certain property by selecting a region or range of values from plots

of other properties. This would ease the discovery of otherwise hard to spot connections or

trends.

To avoid issues with stitching errors, as in this study with NIL dataset 1, a better stitching

procedure could be developed. The displacement data provided by the already developed

routines could be used to evaluate the quality of stitching, and gather data on misplacements

of sub-images, which could be fed back to the stitching routine to repeat stitching with the

added corrections. This could be repeated until displacement measures showed a good fit.

Analysis of the FIB milled arrays showed that the optimal conditions for patterned single

nanowire growth were along the edges of the chosen parameter space. To further optimize

milling parameters for FIB patterning of nanowire growth arrays, a new study could be con-

ducted, using the same techniques on an array matrix using different values of fluence and di-

ameter. The values should be chosen so as to explore parts of the parameter space surround-

ing the arrays shown to have the best conditions for single nanowire growth, but reaching

beyond the already studied parameter space, or with smaller differences between each array,

so as to explore the parameter space with higher resolution.
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The study of non position controlled nanowire growth demonstrated that exposing a SiO/SiOx

substrate to a low fluence ion beam generates good conditions for high density random

nanowire growth. To explore this further, a sample patterned with a range of low ion flu-

ences could be made, and analyzed with the developed routines. The generated density plots

would clearly show what level of ion fluence generates the best conditions for high density

nanowire growth.
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Appendix A

Poster, Nanowire Week

The following poster, presenting part of the work done for this Master’s thesis, was presented

at the conferences Nanowire Week 29 May-2 June, Lund, Sweden and EMAG, 3-6 July, Manch-

ester, UK.
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Appendix B

Conference paper, EMAG

The following paper, presenting part of the work done for this Master’s thesis, has been sub-

mitted and accepted for the 2017 EMAG conference, and will be published in the Journal of

Physics: conference series.
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Abstract. To efficiently evaluate the novel approach of focused ion beam (FIB) direct
patterning of substrates for nanowire growth, a reference matrix of hole arrays has been
used to study the effect of ion fluence and hole diameter on nanowire growth. Self-catalyzed
GaAsSb nanowires were grown using molecular beam epitaxy and studied by scanning electron
microscopy (SEM). To ensure an objective analysis, SEM images were analyzed with computer
vision to automatically identify nanowires and characterize each array. It is shown that FIB
milling parameters can be used to control the nanowire growth. Lower ion fluence and smaller
diameter holes result in a higher yield (up to 83 %) of single vertical nanowires, while higher
fluence and hole diameter exhibit a regime of multiple nanowires. The catalyst size distribution
and placement uniformity of vertical nanowires is best for low-value parameter combinations,
indicating how to improve the FIB parameters for positioned-controlled nanowire growth.

1. Introduction
III-V semiconductor nanowires are a promising material system for the creation of future
optoelectronic devices [1]. Using lithography-based patterning of an oxide mask, well-defined
nucleation sites are placed at will, often in homogeneous patterns to ensure identical growth
conditions. This approach has been successful in achieving large arrays of similar nanowires,
but wire-to-wire variations still need to be evaluated [2]. In order to improve nucleation and
further reduce variation, direct oxide patterning is expected to be advantageous, allowing for
more flexible hole geometry to optimize patterning and nanowire nucleation conditions.

In this work, focused ion beam (FIB) is used to pattern growth substrates for self-catalyzed
GaAsSb nanowires grown using molecular beam epitaxy (MBE) [3]. The FIB patterning enables
direct patterning of the oxide mask and is more flexible than the lithography based techniques
conventionally used. The parameter space to optimize nanowire growth is efficiently explored
on a single growth sample. To evaluate the effect of milling conditions on nanowire growth, a
sufficient quantity of nanowires need to be characterized in an objective and efficient way. This is
especially important for evaluating this rather novel approach to patterning for nanowire growth.
By utilizing feature detection techniques from the field of computer vision [4] to automatically
detect nanowires from top-down scanning electron microscope (SEM) images, a detailed and
objective characterization of the parameter space is achieved.



2. Methods and materials
Self-catalyzed GaAsSb nanowires were grown in a Varian GEN II Modular MBE system [5].
To pattern the substrate for position-controlled nanowire growth, a FEI Helios NanoLab 600
DualBeam FIB was used at 30 kV to mill a growth matrix into a Si(111) wafer with a 40 nm thick
SiOx film (Fig. 1(a)). The growth matrix consists of 8 × 8 hole arrays with linearly increasing
combinations of ion fluence (0.418 – 3.329 1017 ions/cm2) and hole diameter (10 – 80 nm). Each
hole array contains 270 holes in a hexagonal pattern with 1 µm pitch (Fig. 1(b)). The sample
was cleaned using 1 % HF for 150 s before insertion in the MBE system.

Each array was imaged with 5 kV SEM in the DualBeam (Fig. 1(c)). Top-down images
were then used as input for feature detection, implemented in open source Python libraries. By
optimizing the SEM contrast for computer vision, Ga catalyst droplets were identified and used
to count and characterize nanowires (Fig. 2(a)). A lattice based on the FIB-milled pattern, fitted
to the detected nanowires, assigns each nanowire to a lattice point corresponding to a FIB-milled
hole. The Python code for detection and analysis shown has been made freely available [6].
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Figure 1. (a) Reference design created in FIB: ion fluence - diameter matrix with 64 arrays
and supplemental reference fields. (b) Each array consists of 15 × 18 holes. (c) Tilted SEM of
an array after growth, with a high yield of single vertical nanowires.

3. Results and discussion
Vertical nanowire growth is observed in all milled arrays, demonstrating the viability of FIB as
an alternative patterning technique for nanowire growth substrates. There is a general trend
that smaller, shallower (i.e., lower fluence) holes give a high yield of single vertical nanowires
per hole (Fig. 2(a,b)). For larger, deeper holes, multiple vertical nanowires are observed per
hole (Fig. 2(d,e)). Between the single and multiple wire regimes, total nanowire yield is lower,
dominated by more parasitic growth. This variety demonstrates the necessity of FIB patterning
optimization to obtain full growth control among a broad range of possible structures.

The feature detection is consistently able to detect Ga droplets and distinguish them from
other features in the SEM image, such as stray Ga droplets on the sample surface (Fig. 2(a,b)).
This allows for automatic detection of nanowires giving a quantitative and objective analysis
of how the FIB milling parameter space affects nanowire growth. The maximal yield of single
nanowires, 83 %, was observed for two arrays at lower parameter combinations (Fig. 2(c)). At
higher fluence and diameter, array have more variance with several holes containing one or
multiple nanowires. The computer vision-based approach ensures correct characterization and
classification of growth regimes. For example, a maximal yield of 35 % for two nanowires per
hole is found (Fig. 2(d-f)) in the same array where one of the lowest yields of single nanowires
(30 %) is observed. For larger arrays of nanowires, the convenience and reliability of automated
over manual characterization becomes more important and ensures reproducibility.
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Figure 2. (a) Detected droplets overlaid on SEM image for low parameter combination array.
(b) Tilted-view SEM image of single nanowire regime, from frame in (a). (c) Single nanowire
yield plot across the growth matrix. (d) Detected droplets on SEM image for higher parameter
combination. (e) Tilted-view SEM image of multiple-nanowire regime, from frame in (d). (f)
Yield plot for two nanowires per hole across the growth matrix.

Taking advantage of the breadth of information provided by computer vision on SEM images,
mean droplet diameter and displacement from the fitted lattice positions can be evaluated
(Fig. 3(a,b)). The catalyst diameter decreases with increasing ion fluence and hole diameter.
This trend can be explained by the additional parasitic growth and multiple nanowires per hole
for higher fluence-diameter combinations (Fig. 2(d)). With constant Ga flux across the sample
during MBE growth, the Ga supply per wire decreases with increasing number of droplets.

At the same time, the mean deviation from fitted lattice positions increases with both fluence
and diameter (Fig. 3(b)). Plotting the deviations in scatter plots (Fig. 3(c), shown for the growth
matrix extremes), two distinct effects are identified: First, higher diameter holes consistently
have nanowires nucleating further out from lattice centers, indicating that nanowires seem to
preferentially nucleate along the hole side walls rather than in the hole center. For larger
holes, the increased circumference allows for multiple nucleation sites. Second, deeper (i.e.,
higher fluence) holes lead to more off-center nucleating nanowires (Fig. 3(c(i))) and less radially
symmetric displacement. The off-center cluster of nanowire nucleation is believed to be linked
to slow ion beam blanking, resulting in an asymmetric hole edge (visible in Fig. 2(b), blanking
lines visible in Fig. 2(e)) leading to an uneven distribution of nanowire nucleation sites within
a single hole. This can be remedied by the use of a faster beam blanker or alternative scan
strategies when deeper holes are desired.
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Figure 3. (a) Median droplet diameter per array. (b) Median droplet distance from fitted
lattice position per array. (c) Scatter plots of droplet displacements from fitted lattice, for the
four arrays indicated in (b).

As droplet size and contact angle has been shown to influence both crystallinity and
composition [7], the variation in yield, droplet size, and effective Ga/As ratio across the growth
matrix is expected to influence the GaAsSb nanowire composition and optoelectronic properties
[5]. To further investigate this, micro-photoluminescence spectroscopy, electrical probing of
single nanowires, and transmission electron microscopy of the nanowire-substrate interface
should be performed for the different arrays and correlated to the results from computer vision-
based studies. In this way the trends in growth results can be linked to FIB patterning
parameters to systematically study and achieve the optimal properties for nanowire-based
devices.

4. Conclusion
FIB milling has been systematically studied as a promising and flexible direct patterning method
for self-catalyzed nanowire growth substrates. Computer vision was successfully applied to detect
Ga droplets on top of vertical nanowires for a substantial number of holes (17 280 holes across
64 different arrays) on a single sample and thereby shed light on how the FIB milling parameters
affect nanowire growth. The ion fluence and hole diameter were found to affect vertical nanowire
yield, number of nanowires per hole, droplet size distribution, and nanowire displacement from
patterned lattice position. These nanowire characteristics can thus be correlated and optimized
in future growth trials.
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Appendix C

Source code

This appendix presents the source code written in this project. After the summer of 2017, an

updated version of the code can be found at https://github.com/nwstats/nwstats

The code is colored according to the following legend.

Magenta Keywords

Blue Identifiers

Purple Strings

Green Comments

The following files are included:

p. 84 - newField.py

Defines the NewField class, containing all the code used for analysis of single FIB pat-

terned arrays.

p. 96 - newFieldArray.py

Defines the NewFieldArray class, containing code used to deal with entire matrix of

FIB patterned arrays.
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p. 104 - tileset.py

Defines the Tileset class, containing all the code used to deal with the datasets con-

sisting of multiple tiles. In this project, the two NIL patterned datasets, and the random

growth area.

p. 133 - lattice.py

Defines the Lattice class, used for dealing with lattices of a limited size. Used by the

NewField class.

p. 134 - arbitraryLattice.py

Defines the ArbitraryLattice class, used for dealing with lattices of arbitrary size.

Used by the Tileset class.

p. 137 - detect.py

Defines the functions used for feature detection.

p. 140 - functions.py

Defines a variety of helper functions used elsewhere in the code.

Note: What is referred to as a "matrix of arrays" in the rest of the thesis, is referred to as an

"array of fields" in the code.

newField.py

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import cv2

4 from scipy import misc

5 import os

6 import pickle

7

8 import functions as f

9 from lattice import Lattice

10 import detect

11
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12 class Field:

13

14 def __init__(self , Na , Nb , path , name , scale , ext='.tif'):

15 self.Na = Na

16 self.Nb = Nb

17 self.number_of_points = Na * Nb

18 self.path = path

19 self.name = name

20 self.scale = scale

21 self.ext = ext

22 self.image_path = path + '/' + name + ext

23 self.blobs_path = path + '/data/' + name + '_blobs.p'

24 self.lattice_path = path + '/data/' + name + '_lattice.p'

25 self.blobs_by_point_path = path + '/data/' + name + '_blobs_by_point.p'

26 self.figure_path = path + '/figures/'

27 self.lattice = None

28 self.blobs = np.array ([])

29 self.blobs_by_point = []

30

31 data_dir = path + '/data'

32 if not os.path.exists(data_dir):

33 os.makedirs(data_dir)

34

35 def prepImage(self):

36 """ Preprocess the image of the field by applying median filtering """

37 from scipy.signal import medfilt2d

38 image = misc.imread(self.image_path , flatten=True)

39

40 image = medfilt2d(image , 3)

41

42 path = self.path + '/prep_2/' + self.name + '.png'

43 print(path)

44

45 misc.imsave(path , image)

46 print('Saved image ' + self.name)

47

48 def detectBlobs(self , methods =( detect.droplets ,)):

49 """ Detect blobs using up to several methods , and store them in self.blobs

50

51 Keyword arguments:

52 methods -- a tuple of methods to use for detecting blobs

53 """

54

55 image = cv2.imread(self.image_path)

56 blobs_a = []
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57 for method in methods:

58 blobs_detected = method(image)

59 blobs_a.append(blobs_detected)

60

61 blobs = np.concatenate(blobs_a)

62

63 self.clearBlobsByPoint ()

64

65 self.blobs = blobs

66 pickle.dump(blobs , open(self.blobs_path , 'wb'))

67 print('Blobs detected for field ', self.name , ': ', blobs.shape[0], ' blobs ', sep

='')

68

69 def getBlobs(self , methods =( detect.droplets ,)):

70 """ Return all detected blobs for field. Load if possible , detect if necessary."""

71 if self.blobs.shape [0] > 0:

72 return self.blobs

73 else:

74 try:

75 self.blobs = pickle.load(open(self.blobs_path , 'rb'))

76 if self.blobs.shape [0] < 1:

77 print('Loaded blobs , but array was empty. Detecting blobs.')

78 self.detectBlobs(methods)

79 except FileNotFoundError:

80 print('Blobs file not found! Detecting blobs.')

81 self.detectBlobs(methods)

82

83 if self.blobs.shape [0] > 0:

84 return self.blobs

85 else:

86 raise RuntimeError('Not able to obtain blobs!')

87

88 def clearBlobs(self):

89 """ Delete all stored and loaded information about blobs for this tile """

90 self.blobs = np.array ([])

91

92 try:

93 os.remove(self.blobs_path)

94 except FileNotFoundError:

95 pass

96

97 self.clearBlobsByPoint ()

98

99 def makeLattice(self):
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100 """ Generate and save a lattice for the field by user input and lattice

optimization """

101 from math import floor

102

103 image = cv2.imread(self.image_path)

104

105 good_guess = False

106 while not good_guess:

107 fig , ax = plt.subplots(figsize =(24, 12))

108 ax.imshow(image , cmap='gray')

109 plt.get_current_fig_manager ().window.showMaximized ()

110

111 print('Please input points to define an initial guess for lattice.')

112 points = plt.ginput (3)

113 plt.close()

114

115 adjust = floor ((self.Nb - 1) / 2)

116

117 offset = np.array(points [0])

118 vec_a = (np.array(points [1]) - offset) / (self.Na - 1)

119 vec_b = (np.array(points [2]) - offset + vec_a * (adjust - self.Na + 1)) / (

self.Nb - 1)

120

121 self.lattice = Lattice(self.Na, self.Nb , vec_a , vec_b , offset)

122

123 self.plotLattice ()

124

125 answer = input('Does the lattice look decent? (Y/N) ')

126 if answer == 'y' or answer == 'Y':

127 good_guess = True

128 else:

129 print('Try again.')

130

131 print('Optimizing lattice ')

132 self.lattice = self.optimizeLattice(self.lattice)

133 print('Lattice optimized ')

134 self.plotLattice ()

135 print('Saving new lattice ')

136 self.clearBlobsByPoint ()

137 pickle.dump(self.lattice , open(self.lattice_path , 'wb'))

138

139 def optimizeLattice(self , lattice):

140 """ Optimze the lattice to fit with the detected blobs """

141

142 def getRSS(params , Na , Nb , blobs_by_point):
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143 """ Return the sum of squared distances between all blobs and their lattice

point """

144 vax , vay , vbx , vby , ox, oy = params

145 lattice = Lattice(Na, Nb, [vax , vay], [vbx , vby], [ox, oy])

146

147 lattice_points = lattice.getLatticePoints ()

148 sum = 0

149

150 for i, point in enumerate(blobs_by_point):

151 point_x , point_y = lattice_points[i]

152 for blob in point:

153 blob_y , blob_x , r = blob

154 square_dist = (point_x - blob_x) ** 2 + (point_y - blob_y) ** 2

155

156 sum += square_dist

157

158 return sum

159

160 def fixParams(params):

161 """ Help function for optimizeLattice

162

163 Format the parameters given by lattice.getParams to be used by scipy.

optimize.minimize

164 """

165 vax = params [2][0]

166 vay = params [2][1]

167 vbx = params [3][0]

168 vby = params [3][1]

169 ox = params [4][0]

170 oy = params [4][1]

171

172 return vax , vay , vbx , vby , ox, oy

173

174 from scipy.optimize import minimize

175 params = np.array(fixParams( lattice.getParams () ))

176 res = minimize(getRSS , params , args=(self.Na, self.Nb, self.getBlobsByPoint ()),

method='Nelder -Mead')

177

178 vax , vay , vbx , vby , ox, oy = res['x']

179 lattice = Lattice(self.Na, self.Nb, [vax , vay], [vbx , vby], [ox, oy])

180

181 return lattice

182

183 def readjustLattice(self):



89

184 """If field already has lattice defined , readjuts lattice to fit best with

current detected blobs """

185 found = True

186 if self.lattice == None:

187 try:

188 self.lattice = pickle.load(open(self.lattice_path , 'rb'))

189 if self.lattice == None:

190 found = False

191 except FileNotFoundError:

192 found = False

193

194 if found:

195 self.lattice = self.optimizeLattice(self.lattice)

196 pickle.dump(self.lattice , open(self.lattice_path , 'wb'))

197 print('Lattice ', self.name , 'readjusted ')

198

199 return 1

200

201 else:

202 print('No lattice to adjust for field', self.name)

203

204 return 0

205

206 def getLattice(self):

207 """ Return lattice object for field. Load if possible , make if necessary."""

208 if self.lattice != None:

209 return self.lattice

210 else:

211 try:

212 self.lattice = pickle.load(open(self.lattice_path , 'rb'))

213 if self.lattice == None:

214 print('Loaded lattice , but object was empty.')

215 self.makeLattice ()

216 except FileNotFoundError:

217 print('Lattice file not found!')

218 self.makeLattice ()

219

220 return self.lattice

221

222 def clearLattice(self):

223 """ Delete all stored and loaded information about the lattice for this tile """

224 self.lattice = None

225

226 try:

227 os.remove(self.lattice_path)
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228 except FileNotFoundError:

229 pass

230

231 self.clearBlobsByPoint ()

232

233 def generateBlobsByPoint(self):

234 """ Assigns all blobs to their nearest lattice point , and stores the list of blobs

by point """

235 blobs = self.getBlobs ()

236 lattice = self.getLattice ()

237

238 lattice_points = lattice.getLatticePoints ()

239 lattice_distance = lattice.getMinLatticeDist ()

240 self.blobs_by_point = []

241

242 for point in lattice_points:

243 blobs_for_this_point = []

244

245 for blob in blobs:

246 y, x, r = blob

247

248 if f.isInCircle(x, y, point[0], point[1], lattice_distance / 2):

249 blobs_for_this_point.append(blob)

250

251 self.blobs_by_point.append(blobs_for_this_point)

252

253 pickle.dump(self.blobs_by_point , open(self.blobs_by_point_path , 'wb'))

254 print('Blobs assigned for field', self.name)

255

256 def getBlobsByPoint(self):

257 """ Return all detected blobs for field. Load if possible , detect if necessary."""

258 if len(self.blobs_by_point) > 0:

259 return self.blobs_by_point

260 else:

261 try:

262 self.blobs_by_point = pickle.load(open(self.blobs_by_point_path , 'rb'))

263 if len(self.blobs_by_point) < 1:

264 print('Loaded blobs by point , but array was empty. Assigning blobs.')

265 self.generateBlobsByPoint ()

266 except FileNotFoundError:

267 print('Blobs per point file not found! Assigning blobs.')

268 self.generateBlobsByPoint ()

269

270 if len(self.blobs_by_point) > 0:

271 return self.blobs_by_point
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272 else:

273 raise RuntimeError('Not able to obtain blobs by point!')

274

275 def clearBlobsByPoint(self):

276 """ Delete all stored and loaded information about blobs by point for this tile """

277 self.blobs_by_point = []

278

279 try:

280 os.remove(self.blobs_by_point_path)

281 except FileNotFoundError:

282 pass

283

284 def getBlobCount(self):

285 """ Return the number of detected blobs """

286 blobs = self.getBlobs ()

287 return blobs.shape [0]

288

289 def getDiameters(self):

290 """ Return list of diameters of detected blobs in nm"""

291 blobs = self.getBlobs ()

292 diameters = blobs[:, 2] * 2 * self.scale

293

294 return diameters

295

296 def getMeanDiameter(self):

297 """ Return mean diameter of detected blobs in nm"""

298 return np.mean(self.getDiameters ())

299

300 def getMedianDiameter(self):

301 """ Return median diameter of detected blobs in nm"""

302 return np.median(self.getDiameters ())

303

304 def getBlobCountByPoint(self):

305 """ Return list of count of assigned blobs for each lattice point """

306 blobs_by_point = self.getBlobsByPoint ()

307 return [len(point) for point in blobs_by_point]

308

309 def getDisplacements(self):

310 """ Returns an array of x and y displacement of blobs from their lattice point """

311 lattice_points = self.getLattice ().getLatticePoints ()

312 blobs_by_point = self.getBlobsByPoint ()

313 displacements = []

314

315 for i, point in enumerate(blobs_by_point):

316 point_x , point_y = lattice_points[i]
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317 for blob in point:

318 blob_y , blob_x , r = blob

319

320 displacements.append ([ blob_x - point_x , blob_y - point_y ])

321

322 return displacements

323

324 def getDisplacementMagnitudes(self):

325 """ Returns an array of displacement magnitudes of blobs from their lattice point

"""

326 displacements = self.getDisplacements ()

327 return [np.linalg.norm(displacement) * self.scale for displacement in

displacements]

328

329 def getDisplacementAngles(self):

330 """ Returns an array of displacement angles of blobs from their lattice point """

331 displacements = self.getDisplacements ()

332 angles = [np.angle( d[0] - 1j*d[1] ) for d in displacements]

333

334 return angles

335

336 def getYields(self):

337 """ Returns an array of the yield numbers for n blobs per point for all applicable

values of n"""

338 blob_count_by_point = self.getBlobCountByPoint ()

339 yields = []

340

341 for n in range(0, max(blob_count_by_point) + 1):

342 yields.append( blob_count_by_point.count(n) )

343

344 return yields

345

346 def getYield(self , n, percentage=False):

347 """ Returns the number or yield percentage for n blobs per point for a given value

of n"""

348 yields = self.getYields ()

349

350 try:

351 number = yields[n]

352 except IndexError:

353 number = 0

354

355 if percentage:

356 return number * 100 / self.number_of_points

357 else:
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358 return number

359

360 def plotBlobs(self , show_image=True , save=False , prefix='', postfix=''):

361 """ Plot detected blobs

362

363 Keyword arguments:

364 path -- if set , the plot is saved to the path , otherwise the plot is

displayed

365 show_image -- if false , blobs are plotted without the background image

366 """

367

368 blobs = self.getBlobs ()

369

370 fig , ax = plt.subplots(figsize =(24, 24))

371 ax.set_aspect('equal ', adjustable='box -forced ')

372 plt.axis((0, 1024, 883, 0))

373 if show_image:

374 image = cv2.imread(self.image_path)

375 plt.imshow(image , cmap='gray', interpolation='nearest ')

376 plt.axis((0, image.shape [1], image.shape[0], 0))

377 f.plotCircles(ax, blobs , fig , dict(color='red', linewidth =2, fill=False))

378 ax.set_yticklabels ([])

379 ax.set_xticklabels ([])

380 plt.tight_layout ()

381 fig.subplots_adjust (0, 0, 1, 1)

382

383 fig_name = 'blobs'

384 if save:

385 full_path = self.figure_path + fig_name + '_' + prefix + self.name + postfix

+ '.png'

386 plt.savefig(full_path)

387 print('Saved', fig_name , 'plot for field', self.name)

388 else:

389 plt.show()

390 plt.close()

391

392 def plotLattice(self , lattice_color='red', figsize =(10, 10), save=False , prefix='',

postfix=''):

393 """ Plot lattice points """

394 image = cv2.imread(self.image_path)

395 lattice_points = self.getLattice ().getLatticePoints ()

396

397 plt.figure(figsize=figsize)

398 plt.imshow(image , cmap='gray')

399 ax = plt.gca()
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400 ax.set_axis_off ()

401

402 x = [x for [x, y] in lattice_points]

403 y = [y for [x, y] in lattice_points]

404

405 plt.scatter(x, y, marker='.', color=lattice_color , zorder =10)

406

407 plt.tight_layout ()

408

409 fig_name = 'lattice '

410 if save:

411 full_path = self.figure_path + fig_name + '_' + prefix + self.name + postfix

+ '.png'

412 plt.savefig(full_path)

413 print('Saved', fig_name , 'plot for field', self.name)

414 else:

415 plt.show()

416 plt.close()

417

418 def plotLatticeAndBlobs(self , blob_color='', lattice_color='cyan', figsize =(10, 10),

save=False , prefix='', postfix=''):

419 """ Plot lattice points , and detected blobs colored by lattice point """

420 from matplotlib.collections import PatchCollection

421

422 lattice_points = self.getLattice ().getLatticePoints ()

423 blobs_by_point = self.getBlobsByPoint ()

424 image = cv2.imread(self.image_path)

425

426 plt.figure(figsize=figsize)

427 plt.imshow(image , cmap='gray')

428 ax = plt.gca()

429 ax.set_axis_off ()

430

431 if blob_color == '':

432 colors = f.randomColors(len(lattice_points))

433 else:

434 colors = [blob_color] * len(lattice_points)

435

436 patches = []

437

438 for i, point in enumerate(blobs_by_point):

439 color = colors[i]

440

441 for blob in point: # Plot blobs

442 y, x, r = blob
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443 c = plt.Circle ((x, y), r, color=color , linewidth=2, fill=False)

444 patches.append(c)

445

446 x = [x for [x, y] in lattice_points]

447 y = [y for [x, y] in lattice_points]

448

449 plt.scatter(x, y, marker='.', color=lattice_color , zorder =10)

450

451 p = PatchCollection(patches , match_original=True)

452 ax.add_collection(p)

453

454 plt.tight_layout ()

455

456 fig_name = 'blobs+lattice '

457 if save:

458 full_path = self.figure_path + fig_name + '_' + prefix + self.name + postfix

+ '.png'

459 plt.savefig(full_path)

460 print('Saved', fig_name , 'plot for field', self.name)

461 else:

462 plt.show()

463 plt.close()

464

465 def plotHistogram(self , property , bins=40, fontsize =20, save=False , prefix='',

postfix=''):

466 """ Plot a histogram of a given property of the detected blobs

467

468 :param property: the property to be plotted. Can be either 'diameter ', 'distance '

or 'angle'

469 :param bins: the number of bins used for the histogram

470 :param fontsize: size of the font used in the plot

471 """

472 if property == 'diameter ':

473 label = 'diameter [nm]'

474 data = self.getDiameters ()

475 elif property == 'distance ':

476 label = 'displacement from lattice point [nm]'

477 data = self.getDisplacementMagnitudes ()

478 elif property == 'angle ':

479 label = 'angle'

480 data = self.getDisplacementAngles ()

481 else:

482 raise ValueError("'" + property + "' is not a valid property")

483
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484 fig , ax = plt.subplots(1, 1, figsize =(6, 3), subplot_kw ={'adjustable ': 'box -

forced '})

485

486 ax.set_ylim ((0, 70))

487 ax.hist(data , bins=bins , range = [0, 300], edgecolor='none', color='#033 A87')

488 plt.xlabel(label , fontsize=fontsize)

489 plt.ylabel('count', fontsize=fontsize)

490

491 for tick in ax.xaxis.get_major_ticks ():

492 tick.label.set_fontsize(fontsize)

493

494 for tick in ax.yaxis.get_major_ticks ():

495 tick.label.set_fontsize(fontsize)

496

497 plt.tight_layout ()

498

499 fig_name = property + ' histogram '

500 if save:

501 full_path = self.figure_path + fig_name + '_' + prefix + self.name + postfix

+ '.png'

502 plt.savefig(full_path)

503 print('Saved', fig_name , 'plot for field', self.name)

504 else:

505 plt.show()

506 plt.close()

newFieldArray.py

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 from math import ceil , log10

5

6 import functions as f

7 import detect

8 from newField import Field

9

10 class FieldArray:

11 field_ext = '.fld'

12

13 def __init__(self , nfa , nfb , Na, Nb , path , scale , ext='.tif'):

14 self.nfa = nfa

15 self.nfb = nfb

16 self.Na = Na
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17 self.Nb = Nb

18 self.path = path

19 self.scale = scale

20

21 self.num_fields = nfa * nfb

22 self.fields = [Field(Na , Nb , path , str(num+1).zfill (3), scale , ext) for num in

range(0, self.num_fields)]

23

24 def detectBlobs(self , methods =( detect.droplets ,)):

25 for field in self.fields:

26 field.detectBlobs(methods)

27

28 def ensureBlobs(self , methods =( detect.droplets ,)):

29 for field in self.fields:

30 field.getBlobs(methods)

31

32 def clearBlobs(self):

33 for field in self.fields:

34 field.clearBlobs ()

35

36 def makeLattices(self):

37 for field in self.fields:

38 field.makeLattice ()

39

40 def ensureLattices(self):

41 for field in self.fields:

42 field.getLattice ()

43

44 def readjustLattices(self):

45 for field in self.fields:

46 success = field.readjustLattice ()

47 if not success:

48 raise RuntimeError('No lattice to adjust for field ' + field.name)

49

50 def clearLattices(self):

51 for field in self.fields:

52 field.clearLattice ()

53

54 def generateBlobsByPoint(self):

55 for field in self.fields:

56 field.generateBlobsByPoint ()

57

58 def ensureBlobsByPoint(self):

59 for field in self.fields:

60 field.getBlobsByPoint ()
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61

62 def clearBlobsByPoint(self):

63 for field in self.fields:

64 field.clearBlobsByPoint ()

65

66 def getMeanDiameters(self):

67 return [field.getMeanDiameter () for field in self.fields]

68

69 def getMedianDiameters(self):

70 return [field.getMedianDiameter () for field in self.fields]

71

72 def getYields(self , n):

73 return [field.getYield(n, percentage=True) for field in self.fields]

74

75 def listFieldsByYield(self , n):

76 yields = self.getYields(n)

77 field_list = list(enumerate(yields , start =1))

78 field_list = sorted(field_list , key=lambda x: (x[1]), reverse=True)

79 for field in field_list:

80 print(str(field [0]).rjust(ceil(log10(len(field_list)))), ': ', round(field

[1], 1), sep='')

81

82 def plotBlobs(self):

83 for field in self.fields:

84 field.plotBlobs(save=True)

85

86 def plotLattices(self , path):

87 for field in self.fields:

88 field.plotLattice(save=True)

89

90 def plotLatticesWithBlobs(self , path):

91 for field in self.fields:

92 field.plotLatticeAndBlobs(save=True)

93

94 def plotAvgBlobs(self , kwargs):

95 average_blobs = [field.getBlobCount () / field.number_of_points for field in self.

fields]

96 plt = f.surfacePlot(average_blobs , ** kwargs)

97 plt.show()

98

99 def plotMeanDiameters(self):

100 mean_diameters = self.getMeanDiameters ()

101 plt = f.surfacePlot(mean_diameters)

102 plt.show()

103
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104 def plotMedianDiameters(self , kwargs):

105 median_diameters = self.getMedianDiameters ()

106 plt = f.surfacePlot(median_diameters , ** kwargs)

107 plt.show()

108

109 def plotMeanDisplacements(self , kwargs):

110 mean_displacements = [np.mean(field.getDisplacementMagnitudes ()) for field in

self.fields]

111 for i, d in enumerate(mean_displacements):

112 print(i+1, d)

113 plt = f.surfacePlot(mean_displacements , ** kwargs)

114 plt.show()

115

116 def plotMedianDisplacements(self , kwargs):

117 median_displacements = [np.median(field.getDisplacementMagnitudes ()) for field in

self.fields]

118 plt = f.surfacePlot(median_displacements , ** kwargs)

119 plt.show()

120

121 def plotDisplacementStd(self):

122 std_displacements = [np.std(field.getDisplacementMagnitudes ()) for field in self.

fields]

123 plt = f.surfacePlot(std_displacements)

124 plt.show()

125

126 def plotDisplacementMdev(self):

127 mdevs = []

128 for field in self.fields:

129 data = field.getDisplacementMagnitudes ()

130 d = np.abs(data - np.median(data))

131 mdev = np.median(d)

132 mdevs.append(mdev)

133

134 plt = f.surfacePlot(mdevs)

135 plt.show()

136

137 def plotYield(self , n):

138 yields = self.getYields(n)

139 title = str(n) + ' blobs '

140 plt = f.surfacePlot(yields , title=title , percentages=True)

141 plt.show()

142

143 def plotAllYields(self):

144 pass # TODO: Make the function

145
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146 def plotDiameterHistograms(self):

147 from math import ceil

148 diametersPerField = [field.getDiameters () for field in self.fields]

149 fig , axes = plt.subplots(8, 8, figsize =(21.5 , 10), subplot_kw ={'adjustable ': 'box

-forced '})

150 for n, diameters in enumerate(diametersPerField):

151 a = 215

152 row = 7 - (n) % 8

153 col = ceil((n + 1) / 8) - 1

154

155 x_max = 300

156 ax = axes[row , col]

157 ax.set_title(n + 1)

158 ax.set_xlim ((0, x_max))

159 ax.set_ylim ((0, 70))

160 ax.get_xaxis ().set_ticks ([])

161 ax.get_yaxis ().set_ticks ([])

162 x = np.arange(len(diameters))

163 ax.hist(diameters , bins=40, histtype='stepfilled ', color='#033 A87', edgecolor

='none', range=[0, x_max])

164 line_kwargs = {'linewidth ': 2, 'color': 'red'}

165 ax.plot([a, a], [0, 100], ** line_kwargs)

166

167 plt.tight_layout ()

168 plt.show()

169

170 def plotAmountOverLimit(self , limit):

171 values = []

172 for field in self.fields:

173 diameters = field.getDiameters ()

174 amount_over_limit = len([d for d in diameters if d > limit ])

175 ratio = amount_over_limit / len(diameters) * 100

176 values.append(ratio)

177

178 f.surfacePlot(values , percentages=True)

179 plt.show()

180

181 @staticmethod

182 def reject_outliers(data , m):

183 d = np.abs(data - np.median(data))

184 mdev = np.median(d)

185 s = d / mdev if mdev else 0.

186 return data[s < m]

187

188 def plotDisplacementHistograms(self):
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189 from math import ceil

190 displacements_per_field = [field.getDisplacementMagnitudes () for field in self.

fields]

191

192 fig , axes = plt.subplots(8, 8, figsize =(21.5 , 10), subplot_kw ={'adjustable ': 'box

-forced '})

193 for n, displacements in enumerate(displacements_per_field):

194

195 displacements_per_field[n] = displacements

196

197 row = 7 - (n) % 8

198 col = ceil((n + 1) / 8) - 1

199

200 ax = axes[row , col]

201 ax.set_title(n + 1)

202 ax.set_xlim ((0, 30))

203 ax.set_ylim ((0, 70))

204 ax.get_xaxis ().set_ticks ([])

205 ax.get_yaxis ().set_ticks ([])

206 ax.hist(displacements , bins=50, histtype='stepfilled ', edgecolor='none',

range=(0, 30))

207

208 plt.tight_layout ()

209 plt.show()

210 plt.close()

211

212 def plotDisplacementAngleHistograms(self):

213 from math import ceil

214 from math import pi

215 displacement_angles_per_field = [field.getDisplacementAngles () for field in self.

fields]

216 fig , axes = plt.subplots(8, 8, figsize =(21.5 , 10), subplot_kw ={'adjustable ': 'box

-forced '})

217 for n, angles in enumerate(displacement_angles_per_field):

218

219 row = 7 - (n) % 8

220 col = ceil((n + 1) / 8) - 1

221

222 ax = axes[row , col]

223 ax.set_title(n + 1)

224 ax.set_xlim((-pi, pi))

225 ax.set_ylim ((0, 25))

226 ax.get_xaxis ().set_ticks ([])

227 ax.get_yaxis ().set_ticks ([])

228 ax.hist(angles , bins=50, histtype='stepfilled ', edgecolor='none')
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229

230 plt.tight_layout ()

231 plt.show()

232

233 def plotDisplacementScatterPlots(self):

234 from math import ceil , pi

235 fig , axes = plt.subplots(8, 8, figsize =(12, 12), subplot_kw=dict(projection='

polar'))

236 for n, field in enumerate(self.fields):

237

238 row = 7 - (n) % 8

239 col = ceil((n + 1) / 8) - 1

240 ax = axes[row , col]

241

242 r = field.getDisplacementMagnitudes ()

243 angles = field.getDisplacementAngles ()

244

245 ax.scatter(angles , r, color='mediumblue ', s=3, alpha =0.5, edgecolor='none')

246 ax.grid(color='#EEEEEE ', linestyle='-', linewidth =1)

247 ax.set_axisbelow(True)

248

249 ax.set_ylim ((0, 500))

250 ax.get_xaxis ().set_ticklabels ([])

251 ax.get_xaxis ().set_ticks ([0, pi/2, pi, -pi/2])

252 ax.get_yaxis ().set_ticklabels ([])

253

254 plt.tight_layout ()

255 plt.show()

256

257 def plotSingleScatterPlot(self , n):

258 from math import pi

259

260 ax1 = plt.subplot (121, projection='polar')

261

262 field = self.fields[n-1]

263

264 r = field.getDisplacementMagnitudes ()

265 angles = field.getDisplacementAngles ()

266

267 ax1.scatter(angles , r, color='mediumblue ', s=10, alpha =0.5, edgecolor='none')

268 ax1.grid(color='#EEEEEE ', linestyle='-', linewidth =1)

269 ax1.set_axisbelow(True)

270

271 ax1.set_ylim ((0, 500))

272 ax1.get_xaxis ().set_ticklabels ([])
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273 ax1.get_xaxis ().set_ticks ([0, pi / 2, pi , -pi / 2])

274 ax1.text (2.5, 34* self.scale , str(n).rjust (2))

275

276 ax2 = plt.subplot (122)

277 ax2.hist(r, bins=70, range=[0, 500], histtype='stepfilled ', color='limegreen ',

edgecolor='none')

278

279 plt.show()

280

281 def plotSingleDisplacementHistogram(self , n):

282 displacements = self.fields[n-1]. getDisplacementMagnitudes ()

283 plt.hist(displacements , bins=26, range =(0, 26), histtype='stepfilled ', edgecolor=

'none', color='#033 A87')

284 plt.show()

285

286 def plotOverallDiameterHistogram(self):

287 diameters = [field.getDiameters () for field in self.fields]

288 data = [item for sublist in diameters for item in sublist]

289 plt.hist(data , bins =150, histtype='stepfilled ', edgecolor='none', color='#033 A87'

)

290 plt.show()

291

292 def plotFancyDiameterHistogram(self):

293 bbp = [field.getBlobsByPoint () for field in self.fields]

294 bbp = [item for sublist in bbp for item in sublist] # Flatten list

295

296 points_single = [point for point in bbp if len(point) == 1]

297 diameters_single = [blob [2] * 2 * self.scale for point in points_single for blob

in point]

298

299 max_diameter = max(diameters_single)

300 min_diameter = min(diameters_single)

301 bins = 50

302

303 max_num = 3

304 diameters_sorted = []

305 for n in range(1, max_num +1):

306 points = [point for point in bbp if len(point) == n]

307 diameters = [blob [2] * 2 * self.scale for point in points for blob in point]

308

309 diameters_sorted.append(diameters)

310 max_diameter = max(max(diameters), max_diameter)

311 min_diameter = min(min(diameters), min_diameter)

312

313 points = [point for point in bbp if len(point) > max_num]
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314 diameters = [blob [2] * 2 * self.scale for point in points for blob in point]

315

316 diameters_sorted.append(diameters)

317

318 colors2 = ['dodgerblue ', 'red', 'orange ', 'limegreen ', 'purple ', 'magenta ']

319 for n, data in enumerate(diameters_sorted):

320 if n == 0:

321 label = '1 nanowire '

322 else:

323 label = str(n+1) + ' nanowires '

324 plt.hist(data , bins=bins , zorder =0.5+n, label=label , histtype='step',

edgecolor=colors2[n], alpha=1, range=[ min_diameter , max_diameter], linewidth =3)

325

326 plt.xlabel('diameter [nm]')

327 plt.ylabel('count')

328

329 plt.legend ()

330 plt.show()

331

332 def plotOverallDisplacementHistogram(self):

333 displacements_per_field = [field.getDisplacementMagnitudes () for field in self.

fields]

334 data = [item for sublist in displacements_per_field for item in sublist]

335 plt.hist(data , bins =100, histtype='stepfilled ', edgecolor='none', color='#033 A87'

)

336 plt.show()

337

338 def plotOverallDisplacementAngleHistogram(self):

339 displacements_per_field = [field.getDisplacementAngles () for field in self.fields

]

340 data = [item for sublist in displacements_per_field for item in sublist]

341 plt.hist(data , bins=20, histtype='stepfilled ', edgecolor='none', color='#033 A87')

342 plt.show()

tileset.py

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy import misc

4 import random

5 import pickle

6 import os

7

8 from math import pi
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9

10 import functions as f

11 from arbitraryLattice import Lattice , makeLatticeByAngles , loadLattice

12

13 from timeCheckpoint import timeCheckpoint

14 from time import clock

15

16 class Tileset:

17 default_padding = 100

18

19 def __init__(self , path , cols , rows , tilew , tileh , scale , detection_method , ext='.tif

'):

20 self.path = path

21 self.ext = ext

22 self.rows = rows

23 self.cols = cols

24 self.tileh = tileh

25 self.tilew = tilew

26 self.scale = scale

27 self.detection_method = detection_method

28 self.blobs = np.array ([])

29 self.assigned_blobs = []

30 self.lattice = None

31

32

33 def getTile(self , col , row):

34 """ Load from file and return a tile specified by row and column.

35 If there is no tile at the specified position , returns an array of zeroes with

the same size as a tile.

36

37 :param col: the column of the tile to be returned

38 :param row: the row of the tile to be returned

39 :return: numpy array of the tile image

40 """

41 file_path = self.path + '/c_' + str(col) + '/tile_' + str(row) + self.ext

42 try:

43 tile = misc.imread(file_path)

44 except FileNotFoundError:

45 tile = np.zeros((self.tileh , self.tilew), dtype=np.uint8)

46

47 return tile

48

49 def getTileRegion(self , col_min , col_max , row_min , row_max):

50 """ Return a region of the image by concatenating a set of tiles

51
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52 :param col_min:

53 :param col_max:

54 :param row_min:

55 :param row_max:

56 :return: numpy array of an image spanning the specified region

57 """

58 r_width = self.tilew * (col_max - col_min + 1)

59 r_height = self.tileh * (row_max - row_min + 1)

60 region = np.zeros((r_height , r_width), dtype=np.uint8)

61

62 for col in range(col_min , col_max +1):

63 for row in range(row_min , row_max +1):

64

65 tile = self.getTile(col , row)

66

67 h_min = self.tileh * (row - row_min)

68 h_max = self.tileh * (row - row_min + 1)

69 w_min = self.tilew * (col - col_min)

70 w_max = self.tilew * (col - col_min + 1)

71

72 region[h_min:h_max , w_min:w_max] = tile

73

74 return region

75

76 def getPaddedTile(self , col , row , padding=default_padding):

77 """ Return a tile with padding from adjacent tiles

78

79 :param col: the column of the tile to be returned

80 :param row: the row of the tile to be returned

81 :param padding: size of the padding in pixels

82 :return: numpy array of the padded tile

83 """

84 if padding > min(self.tilew , self.tileh):

85 raise RuntimeError('Padding of ' + str(padding) + ' is too large!')

86

87 region = self.getTileRegion(col -1, col+1, row -1, row+1)

88

89 h_crop = self.tileh - padding

90 v_crop = self.tilew - padding

91

92 padded = region[h_crop:-h_crop , v_crop:-v_crop]

93

94 return padded

95

96 def prepTiles(self , output_path , kernel_size , fill=True):
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97 """Do preprocessing on all tiles in tileset , and save the preprocessed tiles to

output_path

98 Preprocessing consists of filling in using reconstruction , and median filtering

99

100 :param output_path: the path where the processed tiles will be saved

101 :param kernel_size: width of the kernel used for median filtering

102 :return: Tileset object containing the preprocessed tiles

103 """

104 from scipy.signal import medfilt2d

105

106 for col in range(0, self.cols):

107 col_path = output_path + '/c_' + str(col)

108 if not os.path.exists(col_path):

109 os.makedirs(col_path)

110

111 for row in range(0, self.rows):

112 tile = self.getPaddedTile(col , row)

113

114 if fill:

115 tile = f.fillWires(tile)

116

117 tile = medfilt2d(tile , kernel_size)

118

119 if fill:

120 tile = f.fillWires(tile)

121

122 p = self.default_padding

123 cropped_tile = tile[p:-p, p:-p]

124

125 filename = col_path + '/tile_' + str(row) + self.ext

126 misc.imsave(filename , cropped_tile)

127 print('Saved tile ' + str(col) + ', ' + str(row))

128

129 return Tileset(output_path , self.cols , self.rows , self.tilew , self.tileh , self.

scale , self.detection_method ,

130 self.ext)

131

132 def detectBlobs(self , col , row , globalize=False):

133 """ Run detection and return array of detected blobs for the specified tile

134

135 :param col: column number of the tile on which to perform detection

136 :param row: row number of the tile on which to perform detection

137 :param globalize: if true , blobs will be returned with global coordinates

138 :return: numpy array of the detected blobs

139 """
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140 padded_tile = self.getPaddedTile(col , row)

141

142 blobs = self.detection_method(padded_tile) # detect blobs

143

144 padding = self.default_padding

145 outside = []

146 for i, blob in enumerate(blobs): # figure out which blobs lie outside the non -

padded tile

147 if min(blob [0:2]) < padding or blob [0] >= (self.tileh+padding) or blob [1] >=

(self.tilew+padding):

148 outside.append(i)

149

150 blobs = np.delete(blobs , outside , 0) # delete blobs that lie outside the non -

padded tile , to avoid duplicates

151

152 blobs[:, 0:2] -= padding # readjust the coordinates of the blobs to be relative

to the non -padded tile

153 if globalize: # convert the coordinates of the blob from coords within the tile

to coords for the whole tileset

154 blobs[:, 1] += col * self.tilew

155 blobs[:, 0] += row * self.tileh

156

157 print('Blobs found:', blobs.shape [0])

158

159 return blobs

160

161 def detectAllBlobs(self):

162 """ Run detection on all tiles , and save the result."""

163 blobs = False

164 for col in range(0, self.cols):

165 for row in range(0, self.rows):

166 found = self.detectBlobs(col , row , globalize=True)

167 print('Detected blobs for tile ' + str(col) + ', ' + str(row))

168 if blobs is False:

169 blobs = found

170 else:

171 blobs = np.append(blobs , found , axis =0)

172

173 self.blobs = blobs

174 self.assigned_blobs = []

175

176 self.saveBlobs ()

177

178 def saveBlobs(self):

179 """ Store all currently detected blobs to a file located at self.path """
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180 full_path = self.path + '/blobs.p'

181 pickle.dump(self.blobs , open(full_path , 'wb'))

182

183 def deleteBlobs(self):

184 """ Delete the file and clear the variable containing detected blobs."""

185 full_path = self.path + '/blobs.p'

186 try:

187 os.remove(full_path)

188 except FileNotFoundError:

189 print('No file to delete ')

190 self.blobs = np.array ([])

191

192 def getBlobs(self):

193 """ Return all detected blobs for tileset. Load if possible , detect if necessary.

"""

194 if self.blobs.shape [0] > 0:

195 return self.blobs

196 else:

197 try:

198 full_path = self.path + '/blobs.p'

199 self.blobs = pickle.load(open(full_path , 'rb'))

200 if self.blobs.shape [0] < 1:

201 print('Loaded blobs , but array was empty. Detecting blobs.')

202 self.detectAllBlobs ()

203 except FileNotFoundError:

204 print('Blobs file not found. Detecting blobs.')

205 self.detectAllBlobs ()

206

207 if self.blobs.shape [0] > 0:

208 return self.blobs

209 else:

210 raise Exception('Not able to obtain blobs!')

211

212 def getSubsetOfBlobs(self , x_min , x_max , y_min , y_max):

213 """ Return all detected blobs for specified coordinate region. Load if possible ,

detect if necessary."""

214 # Get all blobs

215 blobs = self.getBlobs ()

216

217 # Remove the ones outside the specified area

218 outside = []

219 for i, blob in enumerate(blobs):

220 if blob [0] < y_min or blob [0] > y_max or blob [1] < x_min or blob [1] > x_max:

221 outside.append(i)

222



110 APPENDIX C. SOURCE CODE

223 blobs = np.delete(blobs , outside , 0)

224

225 return blobs

226

227 @staticmethod

228 def findFirstBlob(blobs):

229 """ Helper function for makeLattice: Return the most top left blob in the given

set of blobs."""

230 vals = []

231 for blob in blobs:

232 vals.append(blob [0] + blob [1]) # x + y coordinate of blob

233

234 i = np.argmin(vals) # minimum x + y is top left

235

236 return blobs[i]

237

238 @staticmethod

239 def getAnglesFromInput(tile , blobs , offset):

240 """ Helper function for makeLattice:

241 Display an image with detected blobs plotted , and get user input to define angles

for lattice vectors.

242

243 :param tile: the tile to be displayed as background image

244 :param blobs: the detected blobs for the tile

245 :param offset: the point representing the origin of the lattice , angles are

defined relative to this point

246 :return: the two angles defined by the user input , in radians

247 """

248 fig , ax = plt.subplots(figsize =(24, 12))

249 ax.set_aspect('equal ', adjustable='box -forced ')

250 plt.axis((0, tile.shape [1], tile.shape[0], 0))

251 plt.title("Please click two points")

252 plt.tight_layout ()

253

254 plt.imshow(tile , cmap='gray', interpolation='nearest ')

255 f.plotCircles(ax, blobs , fig , dict(color='#114400 ', linewidth =4, fill=False))

256 plt.plot(offset [0], offset [1], '.', color='red', markersize =10)

257

258 # Get input

259 points = plt.ginput (2)

260 plt.close()

261

262 # Calculate angles from input

263 displacements = [np.array(point) - offset for point in points]

264 angles = [np.angle(dis[0] + 1j*dis [1]) for dis in displacements]



111

265

266 return angles

267

268 @staticmethod

269 def getTypicalDistance(blobs):

270 """ Helper function for makeLattice: Get an initial guess for the magnitude of

lattice vectors by finding the

271 typical distance between blobs.

272

273 :param blobs: the blobs between which to find the typical distance

274 :return: float representing the typical distance between blobs in pixels

275 """

276

277 def reject_outliers(data , m):

278 """ Removes outliers from a dataset using deviations from the median instead

of the mean , since this is

279 more robust , and less affected by outliers

280

281 :param data: the data to be filtered , must be a numpy array of numbers

282 :param m: the amount of median deviations from the median beyond which to

discard data

283 :return: all the data points laying within m median deviations from the

median

284 """

285 d = np.abs(data - np.median(data)) # array of each number 's deviation from

the median value

286 mdev = np.median(d) # the median deviation from the median value

287 s = d / mdev if mdev else 0. # array of each number 's deviation from the

median value , given in

288 # multiples of the median deviation from the

median value

289 return data[s < m]

290

291 from scipy.spatial import KDTree

292 points = blobs[:, 0:2] # get just x and y coordinates of blobs , not the radii

293

294 tree = KDTree(points) # put the points into a data structure allowing for quick

neighbor distance lookup

295 results = [tree.query(points , 7)] # return the six nearest points to each point

296

297 distances = [result [1:7] for result in results [0][0]] # get the actual distances

298 distances = np.array(distances).flatten () # make a flattened array of all the

inter -point distances

299 distances = reject_outliers(distances , 5) # remove outliers beyond 5 median

deviations from the median
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300

301 return np.mean(distances) # return the median value of the filtered distances

302

303 @staticmethod

304 def optimizeLattice(lattice , assigned_blobs , debug=False):

305 """ Use given lattice as an initial guess , and numerically optimize lattice to

minimize

306 the sum of square distances between each blob and it's nearest lattice point.

307

308 :param lattice: the initial guess for a lattice

309 :param assigned_blobs: the blobs to which to fit the lattice , allready assigned

to their nearest lattice point

310 :param debug: if True , debug info will be printed

311 :return: the optimized lattice

312 """

313 def getRSS(params , assigned_blobs):

314 """ Return the sum of the squared distance between each of the given blobs and

it's nearest lattice point."""

315 mag_a , ang_a , mag_b , ang_b , ox, oy = params

316 lattice = makeLatticeByAngles(mag_a , ang_a , mag_b , ang_b , [ox, oy])

317

318 sum = 0

319

320 for blob_p in assigned_blobs:

321 if blob_p['point'] != []:

322 blob_y , blob_x , r = blob_p['blob']

323 [point_x , point_y] = lattice.getCoordinates (* blob_p['point'])

324 square_dist = (point_x - blob_x) ** 2 + (point_y - blob_y) ** 2

325

326 sum += square_dist

327

328 return sum

329

330 from scipy.optimize import minimize

331 params = np.array([ lattice.len_a , lattice.ang_a , lattice.len_b , lattice.ang_b ,

332 lattice.offset [0], lattice.offset [1]])

333

334 print('Blobs: ' + str(len(assigned_blobs)))

335

336 # Minimize the sum of square distances between blobs and their nearest lattice

point , by adjusting the given

337 # parameters.

338 res = minimize(getRSS , params , args=( assigned_blobs), method='Nelder -Mead')

339
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340 mag_a , ang_a , mag_b , ang_b , ox, oy = res['x'] # the parameters found to give the

best lattice fit

341 lattice = makeLatticeByAngles(mag_a , ang_a , mag_b , ang_b , [ox, oy])

342

343 if debug:

344 print(mag_a , ang_a , mag_b , ang_b , ox, oy)

345

346 return lattice

347

348 def makeLattice(self , max_blobs =500, final_blobs =4000, step=3, debug=False):

349 """ Run the whole process necessary to get a lattice defined for the tileset , and

save it to file.

350

351 :param max_blobs: the maximum number of blobs to use for each round of

optimization

352 :param final_blobs: the maximum number of blobs to use for the final round of

optimization

353 :param step: how many new rows/columns to add for each new round of optimization

354 :param debug: if True , some debug info will be printed , and extra steps will be

shown

355 """

356 # Setup

357 tw = self.tilew

358 th = self.tileh

359 bounds = (0, tw, 0, th)

360

361 # The process starts with an initial guess based on the top left tile.

362 tile = self.getTile(0, 0)

363 blobs = self.getSubsetOfBlobs (* bounds) # get the blobs for the top left tile

364 # The top left blob is used as the offset for the initial lattice guess.

365 first = self.findFirstBlob(blobs)

366 offset = [first[1], first [0]]

367

368 # Angles of the lattice vectors for the initial lattice guess are given by manual

input.

369 angles = self.getAnglesFromInput(tile , blobs , offset)

370 if len(angles) < 2:

371 raise RuntimeError("Insufficient input received.")

372 # The magnitude of the lattice vectors for the initial lattice guess is given by

the typical neighbor distance.

373 magnitude = self.getTypicalDistance(self.getSubsetOfBlobs (0, 4*tw, 0, 4*th))

374

375 lattice = makeLatticeByAngles(magnitude , angles [0], magnitude , angles [1], offset)

376 assigned_blobs = self.assignBlobs(blobs , lattice)

377
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378 # Show the initial guess lattice to the user , to ensure input was not completely

wrong

379 self.lattice = lattice # needs to be set for displayTileRegion

380 self.displayTileRegion (0, 0, 0, 0, blob_color='green', lattice_color='red')

381

382 lattice = self.optimizeLattice(lattice , assigned_blobs)

383 print('Lattice optimized for first tile.')

384

385 if debug:

386 self.lattice = lattice # needs to be set for displayTileRegion

387 self.displayTileRegion (0, 0, 0, 0, blob_color='green', lattice_color='red')

388

389 def optimizeWithBounds(self , lattice , bounds , max_blobs):

390 """ Optimize the given lattice to fit best with blobs selected from a region

of the tileset

391

392 :param self: the tileset object

393 :param lattice: the lattice to optimize

394 :param bounds: bounds of the region from which to select blobs

395 :param max_blobs: the max number of blobs to optimize against. If the total

number of blobs in the region

396 specified by bounds is larger than max_blobs , a random

selection of mox_blobs blobs from

397 the region is used

398 :return: optimized lattice

399 """

400 blobs = self.getSubsetOfBlobs (* bounds)

401 # If there are more than max_blobs blobs within bounds , get a random

selection of max_blobs blobs

402 if blobs.shape [0] > max_blobs:

403 blobs_list = list(blobs)

404 blobs_list = [blobs_list[i] for i in random.sample(range(len(blobs_list))

, max_blobs)]

405 blobs = np.array(blobs_list)

406

407 assigned_blobs = self.assignBlobs(blobs , lattice)

408 optimized_lattice = self.optimizeLattice(lattice , assigned_blobs)

409

410 return optimized_lattice

411

412 # Gradually expand the area for which the lattice is being optimized column by

column

413 for n in range(1, self.cols , step):

414 bounds = (0, (n+1)*tw, 0, th)

415 lattice = optimizeWithBounds(self , lattice , bounds , max_blobs)
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416 print('Lattice optimized for', n+1, 'of', self.cols , 'columns.')

417

418 # Gradually expand the area for which the lattice is being optimized row by row

419 for n in range(1, self.rows , step):

420 bounds = (0, self.cols*tw, 0, (n+1)*th)

421 lattice = optimizeWithBounds(self , lattice , bounds , max_blobs)

422 print('Lattice optimized for', n+1, 'of', self.rows , 'rows.')

423

424 # Run one last optimization , using a larger selection of blobs taken from the

entire tileset

425 # Optimization is never done for all blobs , as this would take a very long time ,

and a random selection is

426 # sufficient if the selection is large enough.

427 bounds = (0, self.cols * tw, 0, self.rows * th)

428 lattice = optimizeWithBounds(self , lattice , bounds , final_blobs)

429 print('Final optimization finished.')

430

431 if debug:

432 self.lattice = lattice # needs to be set for displayTileRegion

433 self.assignBlobs ()

434 self.displayTileRegion (0, 0, 0, 0, blob_color='green', lattice_color='red')

435

436 self.lattice = lattice

437 self.saveLattice ()

438 self.deleteAssignedBlobs ()

439

440 def saveLattice(self):

441 """ Save the lattice stored in self.lattice to a file located at self.path """

442 full_path = self.path + '/lattice.p'

443 pickle.dump(self.lattice , open(full_path , 'wb'))

444

445 def deleteLattice(self):

446 """ Delete the file and clear the variable containing the lattice."""

447 full_path = self.path + '/lattice.p'

448 try:

449 os.remove(full_path)

450 except FileNotFoundError:

451 print('No file to delete ')

452 self.lattice = None

453

454 def getLattice(self):

455 """ Obtain a lattice by whatever means necessary. Try the following order:

456 1: return self.lattice

457 2: load lattice from file

458 3: generate new lattice
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459 """

460 if self.lattice != None:

461 return self.lattice

462 else:

463 try:

464 full_path = self.path + '/lattice.p'

465 self.lattice = pickle.load(open(full_path , 'rb'))

466 if self.lattice == None:

467 print('Loaded lattice , but array was empty.')

468 self.makeLattice ()

469 except FileNotFoundError:

470 print('Lattice file not found!')

471 self.makeLattice ()

472

473 return self.lattice

474

475 def assignBlobs(self , blobs=None , lattice=None , save=True):

476 """ Assign a set of blobs to a lattice. Each blob is assigned to it's nearest

lattice point.

477 Return an array of dictionaries , each dictionary representing a blob , and

containing the following:

478 ['blob ']: y, x, and r of the blob

479 ['point ']: lattice indices of the nearest lattice point

480 ['distance ']: absolute distance to the nearest lattice point

481 ['angle ']: angle of the displacement vector from blob to point

482

483 :param blobs: the blobs to be assigned to lattice points , if none is given , self.

getBlobs () is used

484 :param lattice: the lattice to which to assign the bobs , if none is given , self.

getLattice () is used

485 :param save: if True , self.blobs will be set to the result , and assigned blobs

will be saved to file

486 if False , the result will be returned , but not saved

487 :return: described above

488 """

489 from scipy.spatial import KDTree

490 checkpoint = clock()

491

492 if blobs == None:

493 blobs = self.getBlobs ()

494 if lattice == None:

495 lattice = self.getLattice ()

496

497 assigned_blobs = [{'blob': blob} for blob in blobs]

498 radius = lattice.getMinLatticeDist ()/2
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499

500 x_min = min(blobs[:, 1]) - radius

501 x_max = max(blobs[:, 1]) + radius

502 y_min = min(blobs[:, 0]) - radius

503 y_max = max(blobs[:, 0]) + radius

504

505 points = lattice.getLatticePoints(x_min , x_max , y_min , y_max)

506 tree = KDTree(points)

507

508 for a_blob in assigned_blobs:

509 y, x, r = a_blob['blob']

510 distance , index = tree.query([x, y])

511 point = tree.data[index]

512 a_blob['point'] = lattice.getIndices(point[0], point [1])

513 a_blob['distance '] = distance

514 dis = np.array(point) - np.array ([x, y])

515 a_blob['angle'] = np.angle(dis[0] + 1j * dis [1])

516

517 timeCheckpoint(checkpoint , 'assigning blobs')

518

519 if save:

520 self.assigned_blobs = assigned_blobs

521 self.saveAssignedBlobs ()

522

523 return assigned_blobs

524

525 def saveAssignedBlobs(self):

526 """ Store all currently assigned blobs to a file located at self.path."""

527 full_path = self.path + '/assigned_blobs.p'

528 pickle.dump(self.assigned_blobs , open(full_path , 'wb'))

529

530 def deleteAssignedBlobs(self):

531 """ Delete the file and clear the variable containing assigned blobs."""

532 full_path = self.path + '/assigned_blobs.p'

533 try:

534 os.remove(full_path)

535 except FileNotFoundError:

536 print('No file to delete ')

537 self.assigned_blobs = []

538

539 def getAssignedBlobs(self):

540 """ Return assigned blobs for tileset. Load if possible , detect and assign if

necessary."""

541 if len(self.assigned_blobs) > 0:

542 return self.assigned_blobs
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543 else:

544 try:

545 full_path = self.path + '/assigned_blobs.p'

546 self.assigned_blobs = pickle.load(open(full_path , 'rb'))

547 if len(self.assigned_blobs) < 1:

548 print('Loaded assigned blobs , but array was empty. Assigning blobs.')

549 blobs = self.getBlobs ()

550 lattice = self.getLattice ()

551 self.assignBlobs(blobs , lattice)

552 except FileNotFoundError:

553 print('Assigned blobs file not found. Assigning.')

554 blobs = self.getBlobs ()

555 lattice = self.getLattice ()

556 self.assignBlobs(blobs , lattice)

557

558 if len(self.assigned_blobs) > 0:

559 return self.assigned_blobs

560 else:

561 raise Exception('Not able to obtain assigned blobs!')

562

563 def getBlobCountPerPoint(self , region=None):

564 """

565 Get a list of all lattice points containing blobs , and the number of blobs they

contain.

566

567 :param region: list of 4 ints

568 if given , this denotes the limits of the subregion from which to get the list

of points

569 if nothing is given , the whole tilset is used

570 :return: list of dicts

571 a list of dictionaries containing indices of each lattice point containing

blobs , and the number of blobs

572 in it's neighborhood

573 the dictionary has the following elements:

574 'point ': a list of 2 ints , representing the indices of the lattice point

575 'count ': the number of blobs that have this lattice point as their nearest

lattice point

576 """

577 checkpoint = clock()

578

579 if region == None:

580 assignedBlobs = self.getAssignedBlobs ()

581 elif len(region) != 4:

582 raise RuntimeError("'region ' must have exactly 4 elements (x_min , x_max ,

y_min , y_max)")
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583 else:

584 blobs = self.getSubsetOfBlobs (* region)

585 assignedBlobs = self.assignBlobs(blobs , self.getLattice ())

586

587 checkpoint = timeCheckpoint(checkpoint , 'get blobs')

588

589 # Sort the blobs by lattice point

590 sortedBlobs = sorted(assignedBlobs , key = lambda x: (x['point'][0], x['point'

][1]))

591

592 points = [{'indices ': sortedBlobs [0]['point'], 'count': 1}] # Initialize the

dict

593

594 for i, blob in enumerate(sortedBlobs): # Go through the sorted blobs

595 if i == 0:

596 continue # Skip the first blob , as it is allready counted

597 if blob['point '] == sortedBlobs[i-1]['point']: # If this blob belongs to the

same point as the last blob

598 points [-1]['count'] += 1 # Increment the count of the last listed point

by 1

599 else:

600 points.append ({'indices ': blob['point '], 'count ': 1}) # Append a new

point to the list

601

602 timeCheckpoint(checkpoint , 'count points ')

603

604 return points

605

606 def getYield(self , count =1):

607 """

608 Get the yield of n nanowires per point , default = 1 nanowire

609

610 :param count:

611 :return:

612 """

613 lattice_points = self.getLattice ().getLatticePoints (*self.getExtremes ())

614 counts = self.getBlobCountPerPoint ()

615

616 total = len(lattice_points)

617 good = sum(1 for point in counts if point['count'] == count)

618

619 return good/total

620

621 def getBlobsOfCount(self , count):

622 """
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623 Get all blobs located near lattice points with a given number of blobs in their

neighborhood

624

625 :param count: int > 1

626 the number of blobs that have to be in a lattice point's neighborhood for

those blobs to be in the returned list

627 :return: a list on assigned blobs format containing blobs meeting the criterion

described above

628 """

629 if count < 1:

630 raise RuntimeError('count must be 1 or larger ')

631

632 points = self.getBlobCountPerPoint () # get a list of blob counts for each

lattice point

633 # filter the list to only contain points with the desired blob count

634 points_with_count = [point['indices '] for point in points if point['count'] ==

count]

635

636 assigned_blobs = self.getAssignedBlobs ()

637 # filter the list of blobs to only contain blobs belonging to points listed in

the filtered point list

638 assigned_blobs_of_count = [a_blob for a_blob in assigned_blobs if a_blob['point']

in points_with_count]

639

640 return assigned_blobs_of_count

641

642 def getExtremes(self , plus_radius=False , flip=False , region=None):

643 """

644 Get the coordinates limiting a set of blobs

645

646 :param plus_radius:

647 :param flip:

648 :param region:

649 :return:

650 """

651 if region == None:

652 blobs = self.getBlobs ()

653 else:

654 blobs = self.getSubsetOfBlobs (* region)

655

656 if plus_radius:

657 r_max = blobs[:, 2].max() # Largest radius

658 else:

659 r_max = 0

660
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661 x_min = blobs[:, 1].min() - r_max

662 x_max = blobs[:, 1].max() + r_max

663 y_min = blobs[:, 0].min() - r_max

664 y_max = blobs[:, 0].max() + r_max

665

666 if flip:

667 return (x_min , x_max , y_max , y_min)

668 else:

669 return (x_min , x_max , y_min , y_max)

670

671 def displayTileRegion(self , col_min , col_max , row_min , row_max , blob_color='red',

lattice_color='cyan',

672 connector_color='yellow ', figsize =(24, 12), path='', hide_axes=

False , feature_scale =1):

673 """ Display a figure showing a region of the image , with blobs , lattice points and

displacement vectors marked

674

675 :param col_min:

676 :param col_max:

677 :param row_min:

678 :param row_max:

679 :param blob_color:

680 :param lattice_color:

681 :param connector_color:

682 :return:

683 """

684 checkpoint = clock()

685 total_checkpoint = clock ()

686 tiles = self.getTileRegion(col_min , col_max , row_min , row_max)

687

688 x_min = self.tilew * col_min

689 x_max = self.tilew * (col_max + 1) - 1

690 x_len = x_max - x_min

691 y_min = self.tileh * row_min

692 y_max = self.tileh * (row_max + 1) - 1

693 y_len = y_max - y_min

694 checkpoint = timeCheckpoint(checkpoint , 'initialize ')

695

696 blobs = self.getSubsetOfBlobs(x_min , x_max , y_min , y_max)

697

698 checkpoint = timeCheckpoint(checkpoint , 'filter blobs ')

699

700 fig , ax = plt.subplots(figsize=figsize)

701 ax.set_aspect('equal ', adjustable='box -forced ')

702 plt.axis((x_min , x_max , y_max , y_min))
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703 checkpoint = timeCheckpoint(checkpoint , 'setup plot')

704

705 plt.imshow(tiles , extent =[x_min , x_max , y_max , y_min], cmap='gray', interpolation

='nearest ')

706 checkpoint = timeCheckpoint(checkpoint , 'plot tiles')

707 f.plotCircles(ax, blobs , fig , dict(color=blob_color , linewidth =1* feature_scale ,

fill=False))

708 checkpoint = timeCheckpoint(checkpoint , 'plot blobs')

709

710 if self.lattice:

711 lattice = self.getLattice ()

712 points = self.lattice.getLatticePoints(x_min , x_max , y_min , y_max)

713 flip_points = np.fliplr(points)

714 f.plotCircles(ax, flip_points , fig , dict(color=lattice_color , linewidth =5*

feature_scale , fill=True))

715 checkpoint = timeCheckpoint(checkpoint , 'plot lattice ')

716

717 assigned_blobs = self.getAssignedBlobs ()

718 checkpoint = timeCheckpoint(checkpoint , 'get assigned blobs')

719

720 from matplotlib.collections import LineCollection

721 from matplotlib.colors import colorConverter

722

723 connectors = np.zeros((len(assigned_blobs), 2, 2), float)

724 for i, a_blob in enumerate(assigned_blobs):

725 if len(a_blob['point']) > 0:

726 bx = a_blob['blob'][1]

727 by = a_blob['blob'][0]

728 [px, py] = lattice.getCoordinates (* a_blob['point'])

729 connectors[i, :, :] = [[bx, by], [px, py]]

730

731 colors = colorConverter.to_rgba(connector_color)

732 line_segments = LineCollection(connectors , colors=colors , linewidths =1*

feature_scale)

733 ax.add_collection(line_segments)

734

735 timeCheckpoint(total_checkpoint , 'total time')

736

737 if hide_axes:

738 ax.set_yticklabels ([])

739 ax.set_xticklabels ([])

740 plt.tight_layout ()

741

742 if path == '':

743 plt.show()
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744 plt.close()

745 else:

746 plt.savefig(path)

747 print('Saved figure to', path)

748

749 def plotBlobs(self , col , row):

750 """ Display a figure showing a given tile , and blobs detected for that tile

751

752 :param col: column number of the tile to be displayed

753 :param row: row number of the tile to be displayed

754 """

755 blobs = self.detectBlobs(col , row)

756 tile = self.getTile(col , row)

757

758 fig , ax = plt.subplots(figsize =(24, 12))

759 ax.set_aspect('equal ', adjustable='box -forced ')

760 plt.axis((0, 1023, 1023, 0))

761

762 plt.imshow(tile , cmap='gray', interpolation='nearest ')

763 f.plotCircles(ax, blobs , fig , dict(color='red', linewidth =1, fill=False))

764 ax.set_yticklabels ([])

765 ax.set_xticklabels ([])

766 plt.tight_layout ()

767

768 plt.show()

769 plt.close()

770

771 def plotBlobRegion(self , col_min=0, col_max=None , row_min=0, row_max=None , property='

radius ', hide_axes=False , colormap='',

772 bg_color='', auto_limits=False):

773 """ Show a figure plotting all detected blobs from the specified tile region

without any background image

774

775 :param col_min:

776 :param col_max:

777 :param row_min:

778 :param row_max:

779 :param property:

780 :return:

781 """

782 if col_max == None:

783 col_max = self.cols - 1

784 if row_max == None:

785 row_max = self.rows - 1

786



124 APPENDIX C. SOURCE CODE

787 checkpoint = clock()

788 x_min = self.tilew * col_min

789 x_max = self.tilew * (col_max + 1) - 1

790 y_min = self.tileh * row_min

791 y_max = self.tileh * (row_max + 1) - 1

792

793 label = ''

794 if property == 'radius ' or property == 'diameter ':

795 property = 'radius '

796 label = 'diameter [nm]'

797 if colormap == '': colormap = 'jet'

798 elif property == 'displacement ' or property == 'distance ':

799 property = 'distance '

800 label = 'Displacement from lattice point [nm]'

801 if colormap == '': colormap = 'viridis '

802 elif property == 'angle ':

803 label = 'Angle of displacement from lattice point'

804 if colormap == '': colormap = 'hsv'

805 else:

806 raise RuntimeError("Invalid property '" + str(property) + "'")

807

808 checkpoint = timeCheckpoint(checkpoint , 'setup')

809

810 def isInside(a_blob , x_min , x_max , y_min , y_max):

811 inside = False

812 blob_x = a_blob['blob'][1]

813 blob_y = a_blob['blob'][0]

814 if x_min <= blob_x <= x_max and y_min <= blob_y <= y_max:

815 inside = True

816

817 return inside

818

819 assigned_blobs = self.getAssignedBlobs ()

820 assigned_blobs = [a_blob for a_blob in assigned_blobs if isInside(a_blob , x_min ,

x_max , y_min , y_max)]

821

822 blobs = np.zeros ((len(assigned_blobs), 4))

823 for i, a_blob in enumerate(assigned_blobs):

824 blobs[i, 0] = a_blob['blob'][0]

825 blobs[i, 1] = a_blob['blob'][1]

826 blobs[i, 2] = self.getLattice ().getMinLatticeDist () * 0.5

827 if property == 'radius ':

828 blobs[i, 3] = a_blob['blob'][2] * 2 * self.scale

829 elif property == 'distance ':

830 blobs[i, 3] = a_blob['distance '] * self.scale
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831 elif property == 'angle ':

832 blobs[i, 3] = a_blob['angle ']

833

834 checkpoint = timeCheckpoint(checkpoint , 'getting stuff')

835

836 fig , ax = plt.subplots(figsize =(12, 6))

837 ax.set_aspect('equal ', adjustable='box -forced ')

838

839 if auto_limits:

840 plt.axis(self.getExtremes(plus_radius=True , flip=True))

841 else:

842 plt.axis((x_min , x_max , y_max , y_min))

843

844 from matplotlib.collections import PatchCollection

845

846 patches = []

847 colors = []

848

849 checkpoint = timeCheckpoint(checkpoint , 'figure setup ')

850

851 for circle in blobs:

852 y, x, r, c = circle

853 colors.append(c)

854 patch = plt.Circle ((x, y), r, linewidth=0, fill=True)

855 patches.append(patch)

856

857 checkpoint = timeCheckpoint(checkpoint , 'figure loop')

858

859 p = PatchCollection(patches , match_original=True , cmap=colormap)

860 p.set_array(np.array(colors))

861 fig.colorbar(p, ax=ax , label=label)

862 ax.add_collection(p)

863

864 checkpoint = timeCheckpoint(checkpoint , 'figure end')

865

866 plt.tight_layout ()

867 if hide_axes:

868 ax.set_yticklabels ([])

869 ax.set_xticklabels ([])

870 if bg_color != '':

871 ax.set_axis_bgcolor(bg_color)

872

873 plt.show()

874 plt.close()

875
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876 def plotBlobCountPerPoint(self , region=None , only_ones=False):

877 counts = self.getBlobCountPerPoint(region)

878 if only_ones:

879 counts = [point for point in counts if point['count']==1]

880 lattice = self.getLattice ()

881

882 blobs = np.zeros ((len(counts), 4))

883 for i, point in enumerate(counts):

884 coordinates = lattice.getCoordinates(point['indices '][0], point['indices '

][1])

885 blobs[i, 0] = coordinates [1]

886 blobs[i, 1] = coordinates [0]

887 blobs[i, 2] = self.getLattice ().getMinLatticeDist () * 0.55

888 blobs[i, 3] = point['count ']

889

890 fig , ax = plt.subplots(figsize =(11, 6))

891 ax.set_aspect('equal ', adjustable='box -forced ')

892 plt.axis(self.getExtremes(plus_radius=True , flip=True , region=region))

893

894 from matplotlib.collections import PatchCollection

895

896 patches = []

897 colors = []

898

899 for circle in blobs:

900 y, x, r, c = circle

901 colors.append(c)

902 patch = plt.Circle ((x, y), r, linewidth=0, fill=True)

903 patches.append(patch)

904

905 p = PatchCollection(patches , match_original=True , cmap='jet')

906 p.set_array(np.array(colors))

907 fig.colorbar(p, ax=ax, ticks=range(0, 10), label='Blobs per lattice point ')

908 ax.add_collection(p)

909 ax.set_yticklabels ([])

910 ax.set_xticklabels ([])

911

912 plt.tight_layout ()

913 plt.show()

914 plt.close()

915

916 def printYields(self , region=None):

917 extremes = self.getExtremes(region=region)

918 lattice_points = self.getLattice ().getLatticePoints (* extremes)

919 counts = self.getBlobCountPerPoint(region)
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920

921 total = len(lattice_points)

922 print(total)

923 empty = total

924

925 for n in range(1, 10):

926 good = sum(1 for point in counts if point['count'] == n)

927 empty -= good

928 ratio = good / total * 100

929

930 print('Yield ', n, ': ', ratio , sep='')

931

932 ratio = empty / total * 100

933 print('Yield 0:', ratio)

934

935 def plotHistogram(self , property , bins =100, fontsize =16, normalized=True):

936 """ Plot a histogram of a given property of the detected blobs

937

938 :param property: the property to be plotted. Can be either 'diameter ', 'distance '

or 'angle'

939 :param bins: the number of bins used for the histogram

940 :param fontsize: size of the font used in the plot

941 :param normalized: when plotting displacement distance , determines weather to

normalize histogram bins by the

942 area they represent , to get a plot of radial density

943 """

944 if property == 'diameter ':

945 label = 'diameter [nm]'

946 blobs = self.getBlobs ()

947 data = blobs[:, 2] * self.scale * 2

948 normalized = False

949 elif property == 'distance ':

950 label = 'displacement from lattice point [nm]'

951 assigned_blobs = self.getAssignedBlobs ()

952 data = [a_blob['distance '] * self.scale for a_blob in assigned_blobs]

953 elif property == 'angle ':

954 label = 'angle'

955 assigned_blobs = self.getAssignedBlobs ()

956 data = [a_blob['angle'] for a_blob in assigned_blobs]

957 normalized = False

958 else:

959 raise ValueError("'" + property + "' is not a valid property")

960

961 fig , ax = plt.subplots(1, 1, figsize =(9, 6), subplot_kw ={'adjustable ': 'box -

forced '})
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962

963 plt.grid()

964 plt.xlabel(label , fontsize=fontsize)

965

966 if normalized:

967 hist , bin_edges = np.histogram(data , bins=bins)

968 adjusted_hist = np.zeros(hist.shape [0])

969

970 for i, count in enumerate(hist):

971 r0 = bin_edges[i] # inner radius of the region represented by the bin

972 r1 = bin_edges[i+1] # outer radius of the region represented by the bin

973 # divide the counts by the area of the region

974 adjusted_hist[i] = float(count) / ( (pi * r1**2) - (pi*r0**2) )

975

976 center = (bin_edges [:-1] + bin_edges [1:]) / 2

977 width = (bin_edges [1] - bin_edges [0])

978 ax.bar(center , adjusted_hist , align='center ', width=width , edgecolor='none',

color='#033 A87')

979

980 plt.ylabel('density ', fontsize=fontsize)

981 ax.get_yaxis ().set_ticks ([])

982 else:

983 ax.hist(data , bins=bins , histtype='stepfilled ', edgecolor='none', color='#033

A87')

984 plt.ylabel('count', fontsize=fontsize)

985

986 for tick in ax.xaxis.get_major_ticks ():

987 tick.label.set_fontsize(fontsize)

988

989 for tick in ax.yaxis.get_major_ticks ():

990 tick.label.set_fontsize(fontsize)

991

992 plt.tight_layout ()

993 plt.show()

994

995 def plotRadialHistogram(self , bins=90, fontsize =20):

996 """ Plot a radial histogram of the displacement angles of the detected blobs

997

998 :param bins: the number of bins used for the histogram

999 :param fontsize: size of the font used in the plot

1000 """

1001 assigned_blobs = self.getAssignedBlobs ()

1002 data = [a_blob['angle'] for a_blob in assigned_blobs]

1003

1004 plt.figure(figsize =[8, 8])
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1005 ax = plt.subplot (111, projection='polar ')

1006

1007 ax.hist(data , bins=bins , histtype='stepfilled ', edgecolor='none', color='#033 A87'

)

1008

1009 for tick in ax.xaxis.get_major_ticks ():

1010 tick.label.set_fontsize(fontsize)

1011

1012 for tick in ax.yaxis.get_major_ticks ():

1013 tick.label.set_fontsize(fontsize)

1014

1015 plt.show()

1016

1017 def scatterPlotDisplacements(self):

1018 assigned_blobs = self.getAssignedBlobs ()

1019 angles = [blob['angle'] for blob in assigned_blobs]

1020 displacements = [blob['distance '] * self.scale for blob in assigned_blobs]

1021

1022 fig , ax = plt.subplots(figsize =(6, 6), subplot_kw ={'projection ': 'polar'})

1023

1024 ax.scatter(angles , displacements , color='mediumblue ', alpha=1, s=10, edgecolor='

none')

1025 ax.set_ylim ([0, 500])

1026 plt.show()

1027

1028 def scatterPlotDisplacementsFiltered(self):

1029 assigned_blobs = self.getAssignedBlobs ()

1030 assigned_blobs = [a_blob for a_blob in assigned_blobs if 185 < a_blob['blob'

][2]*2* self.scale < 202]

1031 angles = [blob['angle'] for blob in assigned_blobs]

1032 displacements = [blob['distance '] * self.scale for blob in assigned_blobs]

1033

1034 fig , ax = plt.subplots(figsize =(6, 6), subplot_kw ={'projection ': 'polar'})

1035

1036 ax.scatter(angles , displacements , color='mediumblue ', alpha =0.5, s=3, edgecolor='

none')

1037 ax.set_ylim ([0, 500])

1038 plt.show()

1039

1040 def scatterSizeVsDisplacement(self):

1041 assigned_blobs = self.getAssignedBlobs ()

1042 sizes = [blob['blob'][2] * 2 * self.scale for blob in assigned_blobs]

1043 displacements = [blob['distance '] * self.scale for blob in assigned_blobs]

1044

1045 fig , ax = plt.subplots(figsize =(12, 8))
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1046 plt.xlabel('Droplet diameter [nm]')

1047 plt.ylabel('Displacement from lattice point [nm]')

1048 plt.grid()

1049

1050 ax.scatter(sizes , displacements , color='mediumblue ', alpha =0.5, s=3, edgecolor='

none')

1051 ax.set_ylim ([0, 500])

1052 plt.show()

1053

1054 def scatterPlotDisplacementsByCount(self , count):

1055 assigned_blobs = self.getBlobsOfCount(count)

1056 angles = [blob['angle'] for blob in assigned_blobs]

1057 displacements = [blob['distance '] * self.scale for blob in assigned_blobs]

1058

1059 fig , ax = plt.subplots(figsize =(6, 6), subplot_kw ={'projection ': 'polar'})

1060

1061 ax.scatter(angles , displacements , color='mediumblue ', alpha =0.5, s=3, edgecolor='

none')

1062 ax.set_ylim ([0, 500])

1063 plt.show()

1064

1065 @staticmethod

1066 def showMap(map):

1067 plt.imshow(map , cmap='viridis ')

1068 plt.colorbar(label='Average droplet diameter [nm]')

1069 plt.gca().get_xaxis ().set_ticks ([])

1070 plt.gca().get_yaxis ().set_ticks ([])

1071 plt.gca().set_axis_bgcolor('black')

1072 plt.show()

1073 plt.close()

1074

1075 def getDensityMap(self , scale_factor , radius):

1076 from math import floor , ceil , pi

1077

1078 sf = scale_factor

1079 r = ceil(radius/scale_factor)

1080 d = 2 * r # diameter

1081

1082 x_min = self.tilew * 0

1083 x_max = self.tilew * self.cols - 1

1084 x_len = x_max - x_min

1085 y_min = self.tileh * 0

1086 y_max = self.tileh * self.rows - 1

1087 y_len = y_max - y_min

1088
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1089 blobs = self.getBlobs ()

1090

1091 add_array = f.getCircleOfOnes(r)

1092

1093 blob_points = [(floor(blob [0] / sf), floor(blob [1] / sf)) for blob in blobs]

1094

1095 data = np.zeros((ceil(y_len / sf) + d, ceil(x_len / sf) + d))

1096

1097 for point in blob_points:

1098 data[point [0]: point [0] + d, point [1]: point [1] + d] += add_array

1099

1100 px_area = self.scale **2 / 10**6

1101 c_area = pi * radius **2 * px_area

1102 data = data / c_area

1103

1104 return data

1105

1106 def getRadiusMap(self , scale_factor , radius):

1107 from math import floor , ceil

1108

1109 sf = scale_factor

1110 r = ceil(radius/scale_factor)

1111 d = 2 * r # diameter

1112

1113 x_min = self.tilew * 0

1114 x_max = self.tilew * self.cols - 1

1115 x_len = x_max - x_min

1116 y_min = self.tileh * 0

1117 y_max = self.tileh * self.rows - 1

1118 y_len = y_max - y_min

1119

1120 blobs = self.getBlobs ()

1121

1122 add_array = f.getCircleOfOnes(r)

1123

1124 blob_points = [(floor(blob [0] / sf), floor(blob [1] / sf), blob [2] * 2 * self.

scale) for blob in blobs]

1125

1126 data = np.zeros((ceil(y_len / sf) + d, ceil(x_len / sf) + d))

1127

1128 for point in blob_points:

1129 data[point [0]: point [0] + d, point [1]: point [1] + d] += add_array*point [2]

1130

1131 return data

1132
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1133 def plotDensity(self , scale_factor , radius):

1134 map = self.getDensityMap(scale_factor , radius)

1135

1136 A = np.argwhere(map)

1137 (y_start , x_start), (y_stop , x_stop) = A.min (0), A.max (0) + 1

1138 map = map[y_start:y_stop , x_start:x_stop]

1139

1140 self.showMap(map)

1141

1142 def plotRadius(self , scale_factor , radius):

1143 r = self.getRadiusMap(scale_factor , radius)

1144 d = self.getDensityMap(scale_factor , radius)

1145 map = r / d

1146

1147 crop_map = np.where(np.isnan(map), 0, 1)

1148 A = np.argwhere(crop_map)

1149 (y_start , x_start), (y_stop , x_stop) = A.min (0), A.max (0) + 1

1150 map = map[y_start:y_stop , x_start:x_stop]

1151

1152 self.showMap(map)

1153

1154

1155 def createTilesFromImage(path , image_name , tilew =1024, tileh =1024):

1156 """ Cut the given image into tiles of the specified size , and store them in specified

path.

1157

1158 :param path:

1159 :param image_name:

1160 :param tilew:

1161 :param tileh:

1162 :return:

1163 """

1164 from math import ceil

1165

1166 image_path = path + '/' + image_name

1167 image = misc.imread(image_path , flatten=True)

1168

1169 print(image.shape)

1170 im_h = image.shape [0]

1171 im_w = image.shape [1]

1172

1173 rows = ceil(im_h / tileh)

1174 cols = ceil(im_w / tilew)

1175

1176 padded_height = tileh * rows
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1177 padded_width = tilew * cols

1178

1179 padding_bottom = padded_height - im_h

1180 padding_right = padded_width - im_w

1181

1182 padded_image = np.pad(image , ((0, padding_bottom), (0, padding_right)), 'constant ')

1183

1184 for c in range(0, cols):

1185 col = []

1186

1187 col_path = path + '/c_' + str(c)

1188 if not os.path.exists(col_path):

1189 os.makedirs(col_path)

1190

1191 for r in range(0, rows):

1192 tile = padded_image[r*tileh:r*tileh +1024, c*tilew:c*tilew +1024]

1193 col.append(tile)

1194

1195 filename = col_path + '/tile_' + str(r) + '.png'

1196 misc.imsave(filename , tile)

1197 print('Saved tile ', c, ', ', r, sep='')

lattice.py

1 import numpy as np

2 from math import floor

3 import pickle

4

5 class Lattice:

6

7 def __init__(self , Na , Nb , vec_a , vec_b , offset):

8 self.Na = Na

9 self.Nb = Nb

10 self.vec_a = np.array(vec_a)

11 self.vec_b = np.array(vec_b)

12 self.vec_c = self.vec_a - self.vec_b

13 self.offset = offset

14

15 def getParams(self):

16 """ Return a tuple of all relevant parameters """

17 return self.Na , self.Nb , self.vec_a , self.vec_b , self.offset

18

19 def getMinLatticeDist(self):

20 """ Return magnitude of shortest lattice vector """
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21 return min(np.linalg.norm(self.vec_a), np.linalg.norm(self.vec_b), np.linalg.norm

(self.vec_c))

22

23 def getMaxLatticeDist(self):

24 """ Return magnitude of longest lattice vector """

25 return max(np.linalg.norm(self.vec_a), np.linalg.norm(self.vec_b), np.linalg.norm

(self.vec_c))

26

27 def getLatticePoints(self):

28 """ Return a list of coordinates of all points in the lattice """

29 points = []

30 for i in range(0, self.Na):

31 for j in range(0, self.Nb):

32 points.append ([ (i-floor(j/2))*self.vec_a [0] + j*self.vec_b [0] + self.

offset [0],

33 (i-floor(j/2))*self.vec_a [1] + j*self.vec_b [1] + self.

offset [1] ])

34

35 return points

36

37 def save(self , filename):

38 """ Save the parameters of the lattice """

39 params = [self.Na, self.Nb, self.vec_a , self.vec_b , self.offset]

40 pickle.dump(params , open(filename , 'wb'))

41

42 def loadLattice(filename):

43 """ Return a lattice made from parameters in a file """

44 Na, Nb, vec_a , vec_b , offset = pickle.load(open( filename , 'rb'))

45 lattice = Lattice(Na, Nb, vec_a , vec_b , offset)

46

47 return lattice

arbitraryLattice.py

1 import numpy as np

2 from math import floor , ceil

3 import pickle

4

5 class Lattice:

6

7 def __init__(self , vec_a , vec_b , offset):

8 self.vec_a = np.array(vec_a)

9 self.vec_b = np.array(vec_b)

10 self.vec_c = self.vec_a - self.vec_b
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11 self.len_a = np.linalg.norm(self.vec_a)

12 self.len_b = np.linalg.norm(self.vec_b)

13 self.len_c = np.linalg.norm(self.vec_c)

14 self.ang_a = np.angle(self.vec_a [0] + 1j*self.vec_a [1])

15 self.ang_b = np.angle(self.vec_b [0] + 1j*self.vec_b [1])

16 self.ang_c = np.angle(self.vec_c [0] + 1j*self.vec_c [1])

17 self.offset = np.array(offset)

18

19 def getParams(self):

20 """ Return a tuple of all relevant parameters """

21 return self.vec_a , self.vec_b , self.offset

22

23 def getMinLatticeDist(self):

24 """ Return magnitude of shortest lattice vector """

25 return min(np.linalg.norm(self.vec_a), np.linalg.norm(self.vec_b))

26

27 def getMaxLatticeDist(self):

28 """ Return magnitude of longest lattice vector """

29 return max(np.linalg.norm(self.vec_a), np.linalg.norm(self.vec_b))

30

31 def decompose(self , subject , vec_a , vec_b):

32 """ Decompose a given vector into a linear combination of two other given vectors

"""

33 x = np.transpose(np.array ([vec_a , vec_b]))

34 y = np.array(subject)

35 ans = np.linalg.solve(x, y)

36

37 return ans

38

39 def getLatticePoints(self , x_min , x_max , y_min , y_max):

40 """ Return an array of coordinates of all points in the lattice bounded by the

given x and y values """

41 offset = np.array(self.offset)

42 corners = [[x_min , y_min], [x_max , y_min], [x_max , y_max], [x_min , y_max ]] #

coordinates of the corners of the region

43 displacements = [np.array(corner) - offset for corner in corners] # displacements

of the region corners from the offset point

44

45 dd = np.array ([self.decompose(displacement , self.vec_a , self.vec_b) for

displacement in displacements ]) # dd = decomposed displacements

46

47 a_min = floor(min(dd[:,0]))

48 a_max = ceil(max(dd[:,0]))

49 b_min = floor(min(dd[:,1]))

50 b_max = ceil(max(dd[:,1]))
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51

52 points = []

53 for i in range(a_min , a_max + 1):

54 for j in range(b_min , b_max + 1):

55 point = offset + self.vec_a*i + self.vec_b*j

56 if point [0] > x_min and point [0] < x_max and point [1] > y_min and point

[1] < y_max:

57 points.append(offset + self.vec_a*i + self.vec_b*j)

58

59 return np.array(points)

60

61 def getCoordinates(self , a, b):

62 """ Return the coordinates of a lattice point with the given indeces """

63 return self.offset + a*self.vec_a + b*self.vec_b

64

65 def getIndices(self , x, y, roundIndices=True):

66 """ Return the indices of a lattice point with the given coordinates """

67 displacement = np.array([x, y]) - self.offset

68 indices = self.decompose(displacement , self.vec_a , self.vec_b)

69 if roundIndices:

70 rounded = [round(index) for index in indices]

71 indices = rounded

72

73 return indices

74

75 def save(self , filename):

76 """ Save the parameters of the lattice """

77 params = [self.vec_a , self.vec_b , self.offset]

78 pickle.dump(params , open(filename , 'wb'))

79

80 def loadLattice(filename):

81 """ Return a lattice made from parameters in a file """

82 vec_a , vec_b , offset = pickle.load(open( filename , 'rb'))

83 lattice = Lattice(vec_a , vec_b , offset)

84

85 return lattice

86

87 def makeLatticeByAngles(mag_a , ang_a , mag_b , ang_b , offset):

88 """ Initialize an ArbitraryLattice class by giving angles and magnitudes of the

lattice vectors """

89 from math import sin , cos

90

91 vec_a = mag_a * np.array([cos(ang_a), sin(ang_a)])

92 vec_b = mag_b * np.array([cos(ang_b), sin(ang_b)])

93 lattice = Lattice(vec_a , vec_b , offset)
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94

95 return lattice

detect.py

1 import numpy as np

2 import cv2

3

4 def detect(image ,

5 invert ,

6 minThreshold =0,

7 maxThreshold =255,

8 thresholdStep =1,

9 minDistBetweenBlobs =0,

10 filterByArea=False ,

11 minArea=0,

12 maxArea=None ,

13 filterByCircularity=False ,

14 minCircularity =0.0,

15 maxCircularity=None ,

16 filterByConvexity=False ,

17 minConvexity =0.0,

18 maxConvexity=None ,

19 filterByInertia=False ,

20 minInertiaRatio =0.0,

21 maxInertiaRatio=None

22 ):

23 """ Wrapper for the cv2.SimpleBlobDetector method """

24

25 if invert:

26 image = 255 - image

27

28 params = cv2.SimpleBlobDetector_Params ()

29 params.minThreshold = minThreshold

30 params.maxThreshold = maxThreshold

31 params.thresholdStep = thresholdStep

32 params.minDistBetweenBlobs = minDistBetweenBlobs

33 params.filterByArea = filterByArea

34 params.minArea = minArea

35 params.maxArea = maxArea

36 params.filterByCircularity = filterByCircularity

37 params.minCircularity = minCircularity

38 params.maxCircularity = maxCircularity

39 params.filterByConvexity = filterByConvexity
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40 params.minConvexity = minConvexity

41 params.maxConvexity = maxConvexity

42 params.filterByInertia = filterByInertia

43 params.minInertiaRatio = minInertiaRatio

44 params.maxInertiaRatio = maxInertiaRatio

45

46 # Set up the detector with the given parameters.

47 detector = cv2.SimpleBlobDetector_create(params)

48 # Do the detection

49 keypoints = detector.detect(image)

50

51 blobs = np.zeros ((len(keypoints), 3))

52

53 # This is to make the output work with other code

54 for i, keypoint in enumerate(keypoints):

55 blobs[i][0] = keypoint.pt[1]

56 blobs[i][1] = keypoint.pt[0]

57 blobs[i][2] = keypoint.size / 2

58

59 return blobs

60

61 def droplets(image):

62 """ Used to detect droplets on FIB arrays """

63

64 blobs = detect(image ,

65 invert=False ,

66 minThreshold =50,

67 filterByArea=True ,

68 minArea =200,

69 filterByCircularity=True ,

70 minCircularity =0.85,

71 filterByInertia=True ,

72 minInertiaRatio =0.8

73 )

74

75 return blobs

76

77 def wiresWithoutDroplets(image):

78 """ Used to detect wires without droplets on FIB arrays """

79

80 blobs = detect(image ,

81 invert=True ,

82 maxThreshold =130,

83 filterByArea=True ,

84 minArea =20,
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85 filterByCircularity=True ,

86 minCircularity =0.7,

87 filterByConvexity=True ,

88 minConvexity =0.9,

89 )

90

91 return blobs

92

93 def tiled(image):

94 """ Used to detect droplets in the first NIL dataset """

95

96 blobs = detect(image ,

97 invert=True ,

98 maxThreshold =200,

99 filterByArea=True ,

100 minArea =40,

101 filterByCircularity=True ,

102 minCircularity =0.8,

103 filterByConvexity=True ,

104 minConvexity =0.9,

105 )

106

107 return blobs

108

109 def tiled_2(image):

110 """ Used to detect droplets in the second NIL dataset """

111

112 blobs = detect(image ,

113 invert=True ,

114 maxThreshold =200,

115 filterByArea=True ,

116 minArea =200,

117 filterByCircularity=True ,

118 minCircularity =0.85,

119 filterByConvexity=True ,

120 minConvexity =0.9,

121 )

122

123 return blobs

124

125 def random(image):

126 """ Used to detect droplets in the random growth dataset """

127

128 blobs = detect(image ,

129 invert=True ,
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130 maxThreshold =200,

131 filterByArea=True ,

132 minArea =40,

133 maxArea =450,

134 filterByCircularity=True ,

135 minCircularity =0.7

136 )

137

138 return blobs

functions.py

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 def isInCircle(point_x , point_y , circle_x , circle_y , radius):

5 """ Check if a given point is within a given circle """

6 return ( (point_x - circle_x)**2 + (point_y - circle_y)**2 ) < radius **2

7

8 def fillWires(image):

9 """ Performs hole filling by morphological reconstruction by erosion on the given

image """

10 from skimage.morphology import reconstruction

11

12 seed = np.copy(image)

13 seed[1:-1, 1:-1] = image.max()

14 mask = image

15

16 reconstructed = reconstruction(seed , mask , method='erosion ')

17

18 return reconstructed

19

20 def plotCircles(axes , circles , fig , kwargs):

21 """ Plots a collection of circles on the given axes """

22 from matplotlib.collections import PatchCollection

23

24 patches = []

25

26 for circle in circles:

27 if len(circle) == 3:

28 y, x, r = circle

29 elif len(circle) == 2:

30 y, x = circle

31 r = 1
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32 else:

33 raise RuntimeError('Wrong number of elements to define circle: ' + str(len(

circle)))

34 patch = plt.Circle ((x, y), r, ** kwargs)

35 patches.append(patch)

36

37 p = PatchCollection(patches , match_original=True)

38 axes.add_collection(p)

39

40 def randomColors(n):

41 """ Returns a list of n arrays that can be used as random colors """

42 colors = []

43 for x in range(0, n):

44 colors.append(np.random.rand (3,1))

45

46 return colors

47

48 def surfacePlot(data , title='', colorbar_label='', percentages=False , real_axes=False):

49 """ Plot type used for plotting properties of all fields in an array """

50 plt.figure(figsize =(6.5, 5))

51 ax = plt.gca()

52

53 if real_axes:

54 X = np.arange(5, 95, 10)

55 Y = np.linspace (0.416 -(0.416/2) ,3.328+(0.416/2) ,9)

56 else:

57 X = np.arange (0.5, 9.5)

58 Y = np.arange (0.5, 9.5)

59

60 X, Y = np.meshgrid(X, Y)

61 Z = np.array(data).reshape ((8, 8)) # Makes Z a 8x8 2d array

62 Z = np.transpose(Z) # Use this if fluence and diameter are flipped. Otherwise comment

out.

63 plt.pcolor(X, Y, Z, cmap='viridis ')

64

65 plt.title(title)

66

67 if real_axes:

68 from matplotlib.ticker import FormatStrFormatter

69

70 plt.xlabel('Diameter [nm]')

71 plt.ylabel(r'Fluence [10$^3$ ions/nm$^2$]')

72 plt.axis([5, 85, (0.416 / 2), 3.328 + (0.416 / 2)])

73 plt.gca().yaxis.set_major_formatter(FormatStrFormatter('%.1f'))

74 plt.yticks(np.arange(1, 9) *0.41610061)
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75

76 else:

77 plt.xlabel('Diameter ')

78 plt.ylabel('Dose')

79 plt.axis ([0.5, 8.5, 0.5, 8.5])

80 ax.set_aspect('equal ', adjustable='box -forced ')

81

82 if percentages:

83 plt.colorbar(format='%1.0f %%', label=colorbar_label)

84 else:

85 plt.colorbar(label=colorbar_label)

86

87 return plt

88

89 def getCircleOfOnes(radius):

90 """ Returns an array where all elements are 0 except for elements within a circle of

the given radius , which are 1"""

91 diameter = 2 * radius

92 ones = np.ones((diameter , diameter))

93 y, x = np.ogrid[-radius: radius , -radius: radius]

94 mask = x ** 2 + y ** 2 <= radius ** 2

95 circle = ones * mask

96

97 return circle


	Introduction and motivation
	Theory
	Fabrication and characterization methods
	Scanning electron microscope (SEM)
	Focused ion beam (FIB)
	Nanowire growth

	Digital image processing and computer vision
	Spatial filtering
	Feature detection
	Image segmentation

	Overview of software methods
	The cv2.simpleBlobDetector class


	Experimental
	FIB arrays
	Sample
	Dataset
	Detection
	Lattice of holes

	Large NIL array
	Sample
	Datasets
	Preprocessing
	Detection
	Lattice of holes

	Random growth area
	Sample
	Dataset
	Detection


	Results
	FIB arrays
	Detection
	Yields
	Droplet size
	Displacements from lattice

	Large NIL array
	Detection
	Yields
	Droplet size
	Displacements from lattice

	Random growth area

	Discussion
	Developed routines
	Preprocessing
	Detection
	Optimizing lattice

	FIB arrays
	Yields
	Droplet size
	Displacements from lattice
	Optimal process parameters

	Large NIL array
	Yields
	Droplet size and displacements from lattice

	Random growth area

	Conclusions
	Recommendations for Further Work
	Bibliography
	Poster, Nanowire Week
	Conference paper, EMAG
	Source code

