
Application of Discrete-Event Dynamic
Systems in Plant Analysis and Control

Mandar Thombre

Chemical Engineering

Supervisor: Heinz A. Preisig, IKP

Department of Chemical Engineering

Submission date: June 2017

Norwegian University of Science and Technology

Abstract

Chemical process plants typically follows continuous dynamics. However, for var-
ious plant operations like start-up, shut-down and maintaining safe operability, it
is necessary to obtain information about the discrete state of the system under
consideration. This is achieved by observing the continuous system with discrete
sensors (temperature sensors, level sensors, etc.) which emit a signal when a pro-
cess variable crosses a certain value, as opposed to at constant time intervals. This
results in a ‘quantized system’ where the state-space is discretized by these dis-
crete sensors. Each partition of this discretized state-space - known as a hypercube
- corresponds to a different discrete state of the system. An ‘event’ in this context
is when the system makes a transition from one discrete state to another adjacent
discrete state. This quantized system can thus be said to be a discrete-event dy-
namic system (DEDS). The DEDS that is abstracted from a plant with continuous
dynamics can be modelled as an automaton. This thesis broadly covers the mod-
elling of such DEDS and two related aspects where these models can be used -
hazard and operability (HAZOP) analysis and supervisory control in plants.

Conventional HAZOP techniques are not reliable for identifying low-frequency,
high-risk hazards caused by multiple simultaneous failures. The total number of
all possible failure overlaps is very high, making it is infeasible to analyse them us-
ing conventional techniques. The analysis can be done computationally using the
DEDS model of the plant. HAZOP involves defining a region of ‘safe’ operation
within the entire state-space. The plant automaton and this defined safe operability
region can be combined to identify regions in the state-space where the state has
the possibility to go out of safe limits - the so-called ‘leaks’.

Synthesis of a supervisory controller - or supervisor - for plants to follow given
specifications, is based on the automaton model of the plant. In addition to the au-
tomaton information, the control strategy also makes use of the underlying gradient
information from the continuous dynamics. The control action happens through
the use of discrete inputs, where some of the inputs can be used to ‘force’ a par-
ticular transition between adjacent discrete states. A supervisor so synthesized is
itself a DEDS.

All the techniques presented in the thesis are explained using illustrative case
studies and examples. The discussion points pertinent to the different concepts are
also included.

i

Preface

This Master’s thesis was written in the Spring 2017 semester. It concludes the 2
year Master’s Degree program in the Department of Chemical Engineering at the
Norwegian University of Science and Technology (NTNU), leading to an M.Sc. in
Chemical Engineering. The final year of my studies was spent at the research
group in Process Systems Engineering within the Department. The work per-
formed in this thesis is an extension of the specialization project carried out in
the Fall 2016 semester in the same research group.

I would like to thank my supervisor, Professor Heinz Preisig, for his support
throughout the duration of this thesis. I am truly grateful to him for giving me
the opportunity to work with him on some of his projects, while also giving me the
freedom to develop my own ideas. Not only this, he has been an excellent mentor
to me ever since I first came to Norway. I have certainly learnt a lot through the
many long discussions I have had with him.

I wish to extend my gratitude to Professor Tore Haug-Warberg for helping me with
various aspects of this thesis, and to Arne Tobias Elve for taking the time to review
my thesis report. I would also like to thank my classmates for making these last
2 years a lot of fun. A special thanks to all the people who shared the study room
with me this last semester - Cristina, Melissa, Petter, Eirik and others - for the
many breaks, laughs and random discussions.

Finally, my thoughts go to my family and friends in India, without whose support
my stay in Trondheim would not have been possible.

Declaration of Compliance

I declare that this is an independent work according to the exam regulations of the
Norwegian University of Science and Technology (NTNU)

Trondheim, Norway
June 26, 2017 Mandar Thombre

ii

Table of Contents

Abstract i

Preface ii

Table of Contents v

List of Tables vii

List of Figures x

List of Symbols and Acronyms xii

1 Introduction 1
1.1 HAZOP study . 3
1.2 Supervisory control of DEDS . 4
1.3 Objectives of the thesis . 5
1.4 Structure of the report . 6
1.5 Previous work . 7

2 Going from continuous to discrete systems 9
2.1 Discrete-time equivalents of continuous systems 10
2.2 Discrete-event equivalents of continuous systems 12
2.3 Practical implementation of control in a plant 14

3 Modelling of Discrete-Event Dynamic Systems 17
3.1 Automata theory . 18

3.1.1 Deterministic automata 19
3.1.2 Non-deterministic automata 20

iii

3.1.3 Automata with inputs and outputs 21
3.2 Obtaining the discrete-event model of a continuous system 23

3.2.1 State discretization . 23
3.2.2 Input discretization . 24
3.2.3 Computing transition function 25
3.2.4 Getting the final DEDS model 26

3.3 Some pertinent issues . 30
3.3.1 Computational effort . 30
3.3.2 Selective finer discretization 31
3.3.3 State trajectory passing through a corner of hypercube . . 33

4 Using DEDS in HAZOP Analysis: A Case Study 35
4.1 The idea . 35
4.2 Case study: Two Tanks . 38

4.2.1 Model Derivation . 39
4.2.2 Performing HAZOP on the model 40

4.3 Some pertinent issues . 44
4.3.1 Model robustness . 44
4.3.2 Changing inputs to ensure safe operability 45

5 Supervisory Control of Discrete-Event Dynamic Systems 47
5.1 A simple example about the reachability specification 48
5.2 Control of DEDS models of continuous systems 50

5.2.1 The reachability specification 51
5.2.2 Control actions . 51
5.2.3 Forceable transitions . 53

5.3 Case study: Two Tanks extended 55
5.3.1 Model Derivation . 56
5.3.2 Getting the forceability graph 56
5.3.3 Reachability . 62

5.4 Some pertinent issues . 63
5.4.1 Use of correcting inputs 63
5.4.2 Other control strategies 64
5.4.3 Note on formal verification 65
5.4.4 Note on the ‘Ramadge-Wonham’ framework 66

6 Conclusion and further work 69
6.1 Further work . 71
6.2 Final remarks . 72

Bibliography 73

iv

A Brief description of conventional HAZOP 79
A.1 The basic methodology of HAZOP 79
A.2 The HAZOP study procedure . 80
A.3 Limitations of conventional HAZOP 85

B Python codes 87
B.1 Computing automaton . 87
B.2 Dijkstra’s algorithm . 93

v

vi

List of Tables

3.1 Typical tabular automaton representation. 22

4.1 Constants in the two tanks model. 39
4.2 Alternative automaton representation. 42
4.3 Automaton for the two tanks model. 43

5.1 Constants in the two tanks control model. 55

A.1 Some guidewords and their meanings. 82
A.2 Some HAZOP parameter and guidewords. 82
A.3 Typical HAZOP form. 84

vii

viii

List of Figures

1.1 Interaction between a plant and a controller. 2

2.1 A sampler . 10
2.2 A zero-order hold . 11
2.3 Discrete-time equivalent of a continuous plant. 11
2.4 A quantizer . 13
2.5 Discrete-event equivalent of a continuous plant. 13
2.6 Trajectories in continuous and discrete state-spaces 14
2.7 Practical implementation of a control system. 15

3.1 Illustration of transition function of an automaton with inputs. . . 19
3.2 Directed graph of a deterministic automaton 20
3.3 Directed graph of a non-deterministic automaton. 21
3.4 Hypercube labels and boundaries in a state-space 24
3.5 Gradients in a continuous state-space 28
3.6 Transitions in a discretized state-space 29
3.7 Possible transitions in a discretized state-space 30
3.8 Selective finer discretization. 31
3.9 Automata switching. 32
3.10 Limitation: trajectory crossing corner of hypercube 34

4.1 Safe operability region within a state-space. 36
4.2 Leaks in the safe operability region 37
4.3 The two tanks system. 38
4.4 Equilibrium lines for the two tanks model. 41
4.5 Discretized state-space and safe region 41
4.6 Equilibrium lines, discretization, safe region and leaks in the model. 43

ix

4.7 Shrunk safe region. 45
4.8 Elimination of leaks. 46

5.1 Simple reachability example, . 48
5.2 Preventing input. 52
5.3 Moving input. 53
5.4 The two tanks system - control example. 55
5.5 Forceable transitions - 1. 57
5.6 Forceable transitions - 2. 58
5.7 Forceable transitions - 3. 60
5.8 Forceable transitions in the Two Tanks example. 61
5.9 Correcting input. 63
5.10 Forceable subregion transitions 64
5.11 The plant-supervisor feedback loop. 65

A.1 Conventional HAZOP study procedure. 81

x

xi

List of Symbols and Acronyms

Latin Symbol Description
e Event
E Discrete set of events
G Automaton
Gd Deterministic automaton
Gnd Non-deterministic automaton
h Output function
Hx(x̃) Hypercube associated with x̃
Hu(ũ) Hypercube associated with ũ
int(Hx(x̃)) Interior of the hypercube associated with x̃
n Dimension of the state-space
S Supervisor
u Continuous input
ũ Discrete input
Ũ Set of discrete inputs
x Continuous state
x̃ Discrete state
X̃ Set of discrete states
ỹ Discrete output
Ỹ Set of discrete outputs
xi, ui ith state, input
xi, ui ith component of state, input

Greek Symbol Description
βi Boundaries in the state-space in the ith dimension
γi Boundaries in the input-space in the ith dimension
λi Limits of the safe operability region in the ith dimension
φ Transition function
Ψ Safe operability region
bd(Ψ) Boundary (hyper)surface of the safe operability region
Ω State-space
ξ Discretely controlled state trajectory

Acronym Description
HAZOP Hazard and Operability study
DEDS Discrete-Event Dynamic System

xii

Chapter 1
Introduction

The processes in chemical plants typically follow continuous dynamics, and can
generally be described by differential equations. On the other hand, the control
systems used to operate these processes are discrete, by virtue of being imple-
mented by a digital computer. The closed-loop behaviour of this plant-controller
system can thus be thought of as following both continuous and discrete dynamics
(Koutsoukos et al., 2000; Stiver et al., 1996).

On the regulatory level of the plant, control usually involves implementation of
control laws such as the PID control. A digital computer is capable of taking mea-
surements at extremely small time intervals. Due to this fast sampling, a control
system on the regulatory level is assumed to be continuous. The discrete part of
the plant-controller system is considered insignificant in the design of controllers
at the regulatory level.

On the supervisory level of the plant, however, tasks such as start-up and shut-
down have to be implemented. Moreover, issues such as safety and operability
- ensuring that the overall system stays within specified limits - may have to be
considered. It thus becomes important to identify the discrete state of the system
under consideration. Consequently, it is not possible to ignore the discrete nature
of the controller on the supervisory level.

Understanding the interaction between the continuous plant and the discrete
controller is important, since this is useful both in coming up with the model of the
plant and in designing the controller. The interaction typically happens through
an interface. The interface consists of a analogue-to-digital converter to relay in-
formation from the continuous plant to the discrete controller and a digital-to-
analogue converter to relay information in the opposite direction.

Analysing the interactions in an overall system that is following both continu-
ous and discrete dynamics is not straightforward. To make the analysis easier, the

1

Chapter 1. Introduction

plant and the interface can be modelled together as a discrete system (Lunze and
Raisch, 2002; Lunze and Steffen, 2002). The overall plant-interface-controller sys-
tem can then be represented by two discrete systems, one for the discrete controller
and the other for the discrete plant-interface combination, as shown in Figure 1.1.
Now the analysis relates to interactions between two discrete systems.

 Discrete
Controller

Interface

Continuous
Plant

Discrete system

Figure 1.1: Interaction between a plant and a controller.

The plant-interface combination can be represented by two types of discrete
systems at two different hierarchical levels in the plant. The first is the discrete-
time system at the regulatory level of the plant (Santina et al., 2010). This is based
on the discretization of time. The regulatory controller also follows discrete-time
dynamics (albeit with extremely fast sampling). This abstraction thus involves
interactions between two discrete-time systems (plant-interface combination and
the controller).

The second is the discrete-event system at the supervisory level of the plant.
This is based on the discretization of the state-space via the use of event sensors.
Supervisory controllers are also typically discrete-event systems 1. This abstrac-
tion thus involves interactions between two discrete-event systems (plant-interface
combination and the controller 2). This thesis deals with this latter type of abstrac-
tion: discrete-event systems, their modelling, analysis and control.

In case of discrete-event systems, the use of event sensors results in a dis-
cretized state-space, made of so-called hypercubes. Obtaining the discrete-event
model of the continuous plant is then based on determining the direction of the

1Systems where the plant follows continuous dynamics and the controller follows discrete-event
dynamics are commonly referred to as hybrid systems in literature.

2Also commonly referred to as the supervisor.

2

1.1 HAZOP study

continuous state trajectory at the boundaries of each of these hypercubes. The di-
rection is determined by checking the sign of the state derivative at the boundaries
of the hypercubes, to check whether a particular transition is possible (Philips,
2001). The knowledge of component equilibrium hypersurfaces obtained from the
continuous model can be exploited here (Preisig and Manenti, 2012). The model,
known as an automaton, represents all possible transitions from each hypercube in
the state-space.

Broadly, this thesis deals with the use of discrete-event dynamic systems (DEDS)
in two areas: plant analysis and plant control. Specifically, the analysis part covers
the hazard and operability (HAZOP) analysis in plants whereas the control part
relates to automated supervisory control of plants. These topics are introduced
here.

1.1 HAZOP study

The chemical industry has been prioritizing the safety of plants not only to ensure
the well-being of the plant personnel, but also to make certain that the concerned
stakeholders have confidence in how the plants are managed. To ensure that this
confidence is maintained, it is important to account for the safety of the plant and
the involved personnel in the design phase itself.

The HAZOP study is a systematic and structured technique to investigate a
process, with the objective of identifying potential hazards and operability prob-
lems in the process (Thomas Marlin, 2014). Conventionally, HAZOP involves a
team of experts examining the P&ID diagrams of the plant and analysing the effect
of potential changes to process variables like temperature and pressure. The team
relies on brainstorming, intuition and experience based on prior studies to deter-
mine the possibility of these deviations and how they might affect the safety and
operability of the plant (Crawley et al., 2000; Dunj et al., 2010). Such HAZOP
studies are usually time-consuming and expensive. Nonetheless, the approach is
widely used in the process industry, and international standards have been estab-
lished (IEC 61882:2001, 2001). A brief description of how a HAZOP analysis is
performed conventionally is given in Appendix A.

An important aspect of doing a HAZOP analysis is identifying the potential
causes of operational failure, or a hazard. There are various ways in which a failure
or a hazard may occur in a process plant. It may be a result of sequential series
of faulty events, one event causing the next. A very simple but realistic example
of this kind would be a fault in the cooling system for an exothermic reaction,
leading to increased reaction rate resulting in a runaway reaction. The pressure in
the reaction tank would increase and possibly result in an explosion. Such failures
or hazards, where a cause-and-effect relationship can be established, are fairly easy

3

Chapter 1. Introduction

to capture with the conventional HAZOP study described above.
In a large but highly interlinked plant with many process variables, a deviation

in one part of the plant may affect a completely different part of the plant. Small
changes to process parameters may have an unforeseen knock-on effect elsewhere.
A simple cause-and-effect analysis is inadequate to identify hazards in such com-
plex systems (Thomas Marlin, 2014). This is especially true when a failure or a
hazard is a result of a chance overlap of two or more, possibly unrelated, occur-
rences in the plant. The total number of all possible overlaps in a complex plant
is so high that failures or hazards resulting from these cannot realistically be iden-
tified by a conventional HAZOP study. The safety analysis of a complex plant
should, therefore, not depend only on conventional HAZOP analyses.

This report focuses on a different, more quantitative approach to the HAZOP
analysis that employs the discrete-event models abstracted from the continuous
plants. The idea is to use the DEDS model of the plant i.e. the automaton in
combination with a defined safe operability region. The automaton can be used to
identify parts of this region where the state has a possibility of moving out of the
safe region. Specifically, since the automaton provides a list of possible transitions
from each hypercube in the state-space, it is possible to identify those hypercubes
where the state has an outward transition with respect to the safe region (Preisig
and Manenti, 2012).

Such a quantitative analysis has the benefit that it can handle systems where
a lot of process variables have to be considered. It can identify hazards arising
out of all different combinations of (discretized) process variable values, since all
combinations are considered in the automaton. The approach may be used as a
complement rather than as an alternative to the conventional HAZOP analyses.

1.2 Supervisory control of DEDS

Normal control strategies on the regulatory level involve some insight from experts
or prior knowledge of the workings of the plant. There are various rules relating
to the various different parameters, different operating conditions, etc. that one
needs to be aware of when implementing such a control strategy. Examples of
such strategies include implementation of control laws such as the PID control.

As discussed, on the supervisor level, one is concerned with information per-
taining to the discrete state of the system. Event sensors are used to discretize the
state-space of the system, resulting in a discrete-event equivalent of the plant - an
event being the transition between the different discrete states. Supervisory control
strategies then need to be devised for this discrete-event equivalent of the plant.

Now, the topic of supervisory control of discrete-event systems is well studied
in literature. The supervisory control methods developed are based on the frame-

4

1.3 Objectives of the thesis

work of so-called formal language models (Ramadge and Wonham, 1987a,b; Won-
ham, 1989). These methods were first proposed in the 1980s and several extensions
have been proposed since then (Charbonnier et al., 1999; Koutsoukos et al., 2000;
Kumar and Garg, 1995; Stiver et al., 1996; Thistle, 1996). Notably, though, most
of this research has been developed for purely discrete systems, like the ones en-
countered in manufacturing systems.

However, in case of chemical plants, the actual process dynamics are continu-
ous and discrete-event equivalents are only abstractions of this underlying contin-
uous dynamics. The additional information provided by the continuous nature of
the process, specifically gradient information, can be very useful when developing
supervisory control methods. Control methods that exploit the continuous nature
have been presented in Philips et al. (1999a,b).

Supervisory control may have to be developed for a variety of specifications,
and there are various ways in which these specifications may be modelled into the
overall system (Cassandras and Lafortune, 2010). One common specification re-
lates to steering the system from one state in the discretized state-space to the other.
This is the reachability specification and it’s the specification primarily considered
in this work.

The supervisory control synthesis is an automated procedure and does not re-
quire case-by-case experience or expert insight. Nor is there any requirement to
follow specific rules pertaining to the process operating conditions, etc.. The super-
visory controller is itself a discrete-event system and is described by an automaton.
The automaton based procedure ensures that the supervisory controller is prepared
for all kinds of situations that may occur in the plant, since the automaton quan-
titatively encapsulates all the relevant process information. This is an advantage,
especially in case of complex systems.

1.3 Objectives of the thesis

Given the preceding discussion, the objectives of this thesis can be broadly stated
as follows:

1. To present a modelling formalism for obtaining a DEDS model from a con-
tinuous plant model described by differential equations.

2. To combine the DEDS model with a defined safe operability region for per-
forming a quantitative HAZOP analysis

3. To investigate supervisory control of the DEDS models abstracted from con-
tinuous plants, especially with regards to designing a supervisor to meet the
reachability specification.

5

Chapter 1. Introduction

The thesis mainly presents a theoretical analysis and consolidation of the vari-
ous methodologies in a systematic manner. Case studies are also used to illustrate
the techniques of quantitative HAZOP and supervisory controller synthesis.

1.4 Structure of the report

Chapter 2 aims to highlight the main difference between discrete-time and discrete-
event systems obtained from an underlying continuous system. This difference has
to do specifically with the interface that is used between the continuous plant and
the discrete controller.

Initially in Chapter 3, some basics of automata theory are presented. This
includes the definitions of different types of automata, like deterministic, non-
deterministic and input/output automata. Next, the main modelling formalism
of abstracting DEDS models from continuous plants in presented in a system-
atic manner. This includes the discretization of state-space and input-space into
hypercubes, and the computation of the transition function. The notion of hyper-
cubes and hypersurfaces is formally described in this chapter. The computational
cost involved in obtaining the DEDS model, specifically relating to the problem of
combinatorial explosion, is briefly discussed The chapter concludes with a discus-
sion on some pertinent issues/limitations specific to this modelling formalism.

Chapter 4 discusses the quantitative HAZOP analysis. The notion of a safe
operability region is formalized. The chapter explains how to use the knowledge
provided by the DEDS model of the plant to identify those regions in the state-
space where the safe operability region may be breached. These are referred to as
leaks and are formally defined. An illustrative case study involving two interacting
tanks is presented to demonstrate the use of this quantitative HAZOP technique.
The chapter concludes with a discussion on some pertinent issues related to such a
HAZOP analysis.

Chapter 5 deals with supervisory control of DEDS models obtained from con-
tinuous plants. It introduces the different kinds of specifications that a supervisor
may have to fulfil. First, a simple example demonstrating the supervisor synthesis
for realizing the reachability specification in a purely discrete system is given to
build intuition. Next, specific supervisory control actions that rely on the underly-
ing continuous dynamics of the DEDS model are presented. A modified two-tanks
case study is given to demonstrate the synthesis of the supervisor using the plant
automaton and the control actions. The last part of Chapter 5 presents pertinent
discussion points in supervisor synthesis, and control.

It must be noted that the discussion sections relevant to the different method-
ologies are presented within the corresponding chapters. Finally, Chapter 6 gives
recommendations for future work and concludes the thesis.

6

1.5 Previous work

1.5 Previous work

This thesis is an extension of the work conducted by the author on a specialization
project in the Fall of 2016. Some of the content presented in the specialization
project report is reused in this thesis, but with several changes and improvements
made after the completion of the specialization project.

Furthermore, during the course of this thesis, an article (Thombre and Preisig,
2017) based on the thesis work was written and sent to the ESCAPE-27 confer-
ence (European Symposium on Computer-Aided Process Engineering, Barcelona,
2017) for peer review. The article was accepted for the publication and will be
published in the ESCAPE-27 conference proceedings in October 2017. The au-
thor of this thesis is the first author of the said article. Some parts of Chapter 3 and
Chapter 4 overlap with the contents of the article due to be published.

7

Chapter 1. Introduction

8

Chapter 2
Going from continuous to discrete
systems

This chapter serves to make clear the distinction between the following types of
systems, especially with respect to the terminology used:

• Continuous systems

• Discrete-time equivalents of continuous systems

• Discrete-event equivalents of continuous systems

To form a basis for the rest of the discussion in this chapter, it is necessary to
define a continuous system described by a set of differential equations. Mathemat-
ically, a continuous-time state-space model is represented as:

ẋ(t) = f(x(t), u(t), t); x(t0) = x0 (2.1)

where x(t), u(t), f and x0 represent the continuous-time state, continuous-time
input, continuous function, and initial value vectors respectively. The following
sections discuss how discrete-time and discrete-event systems result from this con-
tinuous system, according to the use of the type of the plant-controller interface.

9

Chapter 2. Going from continuous to discrete systems

2.1 Discrete-time equivalents of continuous systems

Time is a continuous variable in the physical sense. However, most advanced
computations require the help of digital computers. For example, some complex
differential equations can only be solved using numerical methods. This necessi-
tates the approach based on discretization of time. The design of a discrete-time
control system for a continuous plant typically happens in the following steps:

• Finding a discrete-time equivalent of the continuous plant

• Designing a discrete-time controller for this discretized version of the plant

The time-based discretization typically happens through sampling. A sampler
takes in a continuous-time function as an input and gives a discrete-time sequence
as an output. This is also referred to as analogue-to-digital (A/D) conversion.
Figure 2.1 shows a continuous-time function f(t) being converted into a discrete-
time sequence f(k) using an analogue-to-digital converter. The samples may or
may not be taken at evenly spaced intervals.

Sampler

Figure 2.1: Sampler: Conversion of a continuous-time function into a discrete-time se-
quence.

In the sampler, the discrete-time sequence is represented using a finite number
of bits. The precision of the converter thus depends on the number of bits used
in the representation. For example, a 16-bit converter would mean a maximum
sampling error of 2−16 = 0.0015%. This error is found to be acceptable for most
control system applications (Santina et al., 2010).

The controller takes the discrete-time sequence as an input, takes necessary
control action and returns a discrete-time sequence as an output. The returned
sequence needs to be reconstructed into a continuous-time signal for the plant. This
is known as digital-to-analogue (D/A) conversion and typically happens through
a hold of some order. For example, a zero-order hold produces a stepwise signal
from incoming samples. The binary data is converted into a voltage and the voltage
is held constant until the next sample is available. This is represented in Figure 2.2.

10

2.1 Discrete-time equivalents of continuous systems

Zero-hold

Figure 2.2: Zero-hold: Conversion of discrete-time sequence into an analogue signal.

It is apparent that the zero-order hold will have better approximation as the
frequency of sampling increases. Another way to improve the accuracy of the
approximation is to use higher-order holds. A hold of order n will construct a
n-degree polynomial in each interval.

The design of the discrete-time controller is based on this discrete-time equiv-
alent of the plant. The continuous plant and the interface can be described together
as a discrete-time system. The obtained discrete-time system is then modelled as
the discrete-time equivalent of the plant, as shown by the shaded region in Figure
2.3.

Discrete
Controller

Discrete-time equivalent
of plant

A/D Converter
(Sampler)

Continuous
Plant

D/A Converter
(Hold)

Figure 2.3: Discrete-time equivalent of a continuous plant.

11

Chapter 2. Going from continuous to discrete systems

The discrete-time representation (Figure 2.2) of the state-space model is then:

x(k + 1) = f(x(k), u(k), k); x(0) = x0 (2.2)

where x(k) and u(k) are the state and input vectors at sample k. Thus, one goes
from differential equations (Equation 2.1) to difference equations (Equation 2.2).

An important point to note here is that discretization of time does not result in
the discretization of the state-space, since the state can still take any real value. In
other words, the state-space of the system is described by a continuous set. This
is one of the main points where discrete-time systems differ from discrete-event
systems, described in the next section.

2.2 Discrete-event equivalents of continuous systems

A system is called a discrete-state system when the state-space of a system may
be modelled as a discrete set, taking only specific values. The transition from one
state to another happens at discrete points in time. These transitions are referred to
as events and are instantaneous in nature. It can be noted that the set of all possible
events, i.e the set of all possible transitions in the state space, is a discrete set itself.
In common notation, an event is denoted by e and the discrete-set of all possible
events is denoted by E (Cassandras and Lafortune, 2010).

In such a discrete-state system, time may only be noted when an event e ∈ E
occurs. However, the state transitions themselves do not depend on the evolving
time variable. This is to say that the events are asynchronous in nature. Such
discrete-state systems with event-driven dynamics are more commonly referred to
as discrete-event dynamic systems (DEDS) and these are the focus of this work.

To be precise, a discrete-event equivalent of a continuous plant results when the
sampler discussed in Section 2.1 is replaced with a quantizer (Lunze, 1994, 1999,
2000). This means that the continuous plant is observed with event sensors which
emit a signal only when a process variable crosses a certain value, as opposed to
at constant time intervals. This is illustrated in Figure 2.4. For discrete-controller
design purposes, the DEDS describing the plant and the interface together is mod-
elled as a discrete-event equivalent of the plant (Figure 2.5). This is similar to how
it is done for discrete-time systems.

Modelling of DEDS is not as straightforward as modelling the continuous-time
system (Equation 2.1) or the discrete-time system (Equation 2.2). Like mentioned
previously, the state-space in the DEDS is described by a discrete set. Each event
sensor is represented by a ‘boundary’ in the state-space. The quantizer is thus
represented by a set of boundaries in the state-space.

From the perspective of modelling an system with an n-dimensional state, the
resulting ‘quantized’ state-space consists of n-dimensional hypercubes. An event

12

2.2 Discrete-event equivalents of continuous systems

Quantizer

Figure 2.4: Quantizer: Conversion of a continuous-time function into a discrete-event
sequence.

Discrete
Controller

Discrete-event
equivalent of plant

A/D Converter
(Quantizer)

Continuous
Plant

D/A Converter
(Hold)

Figure 2.5: Discrete-event equivalent of a continuous plant.

in this context is defined as the state crossing the surface of the hypercube, or
equivalently, making a transition from one hypercube to another. Since the sys-
tem is event-driven, the only available information is the current hypercube that
the state lies in. A continuous path of the state in a continuous-time system is
translated into a discrete set of transitions between hypercubes in a discretized
state-space. A representative example is shown in Figure 2.6. The notion of events
inducing hypercubes in the state-space and the modelling of DEDS is discussed
more formally in Chapter 3.

13

Chapter 2. Going from continuous to discrete systems

(1,1) (2,1) (3,1) (4,1) (5,1)

(5,2)

(5,3)

(5,4)

x1

x2 x2

x1

x(t=0)

x(t=t)

Continuous Discretized

(5,5)

Figure 2.6: Trajectories in continuous (red path) and discrete (black arrows) state-spaces.
Since the state-space is two-dimensional (x1 and x2 denote components of the state x),
the hypercubes are rectangles. The grid lines indicate the boundaries induced by the event
sensors.

2.3 Practical implementation of control in a plant

Practical implementation of DEDS involves plantwide control (regulatory as well
as supervisory control). The system includes both time sampling and event sam-
pling, and in sequence. The discrete-time sequence is used for computer imple-
mentation of control laws on the process level (regulatory control). The discrete-
event sequence is used for supervisory control such that the event detection hap-
pens on a discrete-time signal coming from the discrete-time equivalent of the plant
on the process level (rather than on a continuous-time signal). This is illustrated in
Figure 2.7.

This necessitates that the time sampling of the continuous plant signal is ‘fast
enough’ for event detection. This is because if two consecutive time samples are
taken before and after an event, information about that event is lost. This would
obviously lead to errors in the DEDS model. For the purposes of this thesis, how-
ever, the focus will be on the interaction between the supervisory controller - also
referred to as the supervisor - and the discrete-event equivalent of the plant. The
underlying interaction between the regulatory controller and the plant at the lower,
process level is not addressed explicitly in the discussions pertaining to the topic
of this thesis.

14

2.3 Practical implementation of control in a plant

Supervisory
Controller

Discrete-time
equivalent of the plant

Discrete-event
equivalent of the plantA/D Converter

(Quantizer)

Regulatory
Controller

D/A Converter
(Hold)

A/D Converter
(Sampler)

D/A Converter
(Hold)

Continuous
Plant

Figure 2.7: Practical implementation of a control system.

15

Chapter 2. Going from continuous to discrete systems

16

Chapter 3
Modelling of Discrete-Event
Dynamic Systems

As mentioned in Chapter 2, DEDS are discrete-state systems with event-driven
dynamics. It was further noted that in DEDS, time may only be noted when an
event e ∈ E occurs, where E is the set of all possible events. When this is done,
a timed sequence of events: (e1, te1), (e2, te2) . . . (el, tel) is obtained. This means
that the event e1 occurs at time t = te1 , and so on. Thus, it is possible to obtain the
state of the system at any point in time if the times sequence of events is available.
In this context, the set of all possible timed sequences of events is known as the
timed language model of the system (Cassandras and Lafortune, 2010) 1.

If, however, the information pertaining to the time occurrence of events is re-
moved from this model, an untimed language model of the system is obtained.
This model only contains information about the possible orderings in which events
could occur in a system. For the above given timed sequence of events, the cor-
responding untimed sequence of events would be: e1, e2 . . . el. Untimed language
models are also referred to as logical models or simply language models.

As was discussed in Chapter 2, issues such as start-up, shut-down and oper-
ating within safety limits are of concern at the supervisor level of a plant. These
issues relate to the logical behaviour of the system, satisfying a given set of spec-
ifications in the plant. In other words, the specific ordering of the events is of
particular interest, rather than the exact timing of the events. Thus it is sufficient to
model only the untimed behaviour i.e. to consider the logical model of the system.

1A spoken language consists of an alphabet which contains letters used to make words. Similarly,
the behaviour of a DEDS model can be represented as a ‘language’ where the set of events E is an
‘alphabet’, the individual events e ∈ E can be thought of as ‘letters’ of this alphabet and the finite
sequences of these events can be thought of as ‘words’ describing the behaviour.

17

Chapter 3. Modelling of Discrete-Event Dynamic Systems

It is thus clear that a model representing an evolving DEDS should account
for the different events that take place and also the sequence of these events. For
example, the untimed sequence of events: e1, e2 . . . el approximates a ‘path’ in the
state-space. The most popular logical models for DEDS are automata (Hopcroft
et al., 2006) and Petri nets (Reisig, 1985). The former alternative is employed in
this work.

This chapter first gives a brief introduction to automata theory, describing how
automata are defined and laying out the basics needed to discuss these DEDS mod-
els in general. It may be recalled from Chapter 2 that the objective here is to
model a discrete-event equivalent for the continuous plant (Figure 2.5). It is worth
mentioning here that automata are also extensively used when describing purely
discrete-event systems. The discussion in Section 3.1 pertains to these systems as
well. Typical examples of purely discrete systems are queuing systems, communi-
cation systems and computer systems.

The chapter then proceeds to describe how to obtain a DEDS model of a con-
tinuous system. More specifically, the methodology used to derive an automaton
from the given set of differential equations describing a continuous system (plant),
is shown formally. A brief discussion regarding the computational cost of obtain-
ing the automaton, and other relevant issues, is also included.

3.1 Automata theory

This section serves only as a brief introduction to the theory behind automata and
some types of it. Automata theory has been studied extensively in the domain
of computer science (Hopcroft et al., 2006). It also has various systems theory
applications like supervisory control (Lin and Wonham, 1988b; Skoldstam et al.,
2007; Tousi et al., 2008), fault diagnosis (Bouyer et al., 2005; Chang and Chen,
2011; Tripakis, 2002; Xi et al., 2001) and HAZOP analysis (Preisig and Manenti,
2012; Srinivasan and Venkatasubramanian, 1996).

Simply stated, an automaton is a model that performs computations by moving
through a predetermined sequence of configurations (or states). In an automaton,
the next state in the sequence is determined by the current state and an associated
transition function. If the automaton takes in inputs (as in case of a Mealy automa-
ton, discussed later in this section), the transition function incorporates the inputs
in addition to the states to determine the next states in the sequence, as shown in
Figure 3.1.

Automata may be deterministic or non-deterministic; and with or without in-
puts and outputs. The different types are defined below.

18

3.1 Automata theory

(1,1) (2,1) (3,1) (4,1) (5,1)

(5,2)

(5,3)

(5,4)

(5,5)

x
1

x
2

x
2

x
1

x(t=0)

x(t=t)

Continuous Discretized

Transition Function

(5,5)

State

Inputs

Next State

Figure 3.1: Illustration of transition function of an automaton with inputs.

3.1.1 Deterministic automata

Definition 3.1. A deterministic automaton Gd is a four-tuple

Gd = (X̃, E, φ, x̃0)

where:

• X̃ is the set of discrete states

• E is the finite set of events associated with Gd

• φ : X̃ × E → X̃ is the partial transition function: φ(x̃, e) = ỹ implies that
event e leads to the transition of the system from state x̃ to state ỹ

• x̃0 is the initial state of the system

The automaton Gd starts at x̃0, the initial state of the system. When an event
e ∈ E occurs, it makes a transition to the state φ(x̃0, e) ∈ X̃ . Further transitions
follow according to the transition function φ. The following example shows a
deterministic automaton.

Consider the event set E = {e1, e2} and the state set X̃ = {x̃1, x̃2, x̃3, x̃4}.
Further consider the following transition function φ:

φ(x̃1, e1) = x̃2 φ(x̃1, e2) = x̃3

φ(x̃2, e1) = x̃4 φ(x̃2, e2) = x̃3

φ(x̃3, e1) = x̃3 φ(x̃4, e2) = x̃1

This automaton can be represented as a directed graph where the states are the
nodes and the events are the arcs, as shown in Figure 3.2. The automaton is de-
terministic because a state cannot make transitions to multiple states for the same
event. This implies that for a state, a specific event results only in a specific tran-
sition. Thus the transition function φ maps X̃ × E → X̃ , as can be seen from the
given example.

19

Chapter 3. Modelling of Discrete-Event Dynamic Systems

e
1

e
1

e
1

e
2

e 2

e
2

~x1
~x2

~x4
~x3

Figure 3.2: Directed graph of the deterministic automaton

3.1.2 Non-deterministic automata

In a non-deterministic automaton, an event e at state x̃ may cause transitions to
multiple states. In other words, φ(x̃, e) does not just represent a single state but a
set of states. Further, it may be the case that the initial state of the automaton is
itself be a set of states.

Definition 3.2. A non-deterministic automaton Gnd is a four-tuple

Gnd = (X̃, E, φ, x̃0)

where:

• X̃ is the set of discrete states

• E is the finite set of events associated with Gnd

• φ : X̃ × E → 2X̃ is the partial transition function such that φ(x̃, e) ⊆ X̃
whenever it is defined

• x̃0 is the initial state of the system, which may be a set of states i.e. x̃0 ⊆ X̃

Consider the following transition function for the same sets E and X̃ defined
in Section 3.1.1:

φ(x̃1, e1) = {x̃2, x̃3} φ(x̃1, e2) = x̃3

φ(x̃2, e1) = x̃4 φ(x̃2, e2) = x̃3

φ(x̃3, e1) = x̃3 φ(x̃4, e2) = {x̃1, x̃3}

Here, the transition function maps from X̃×E → 2X̃ . The state transition diagram
is shown in Figure 3.3.

20

3.1 Automata theory

e
1

e
1

e
1

e 2

e
2

e
1
,e
2

e
2

~x1
~x2

~x3
~x4

Figure 3.3: Directed graph of a non-deterministic automaton. The events marked in red
and green respectively show transitions from states x̃1 and x̃4 to multiple states for the
same event.

3.1.3 Automata with inputs and outputs

Automata may also be classified based on inputs and outputs of the system. The
two classes of automata based on this classification are the Moore automata and
the Mealy automata (Cassandras and Lafortune, 2010).

• In Moore automata, the output of the automaton depends only on the cur-
rent state of the automaton. Each state is associated with a corresponding
output via an output function. This means that the automaton ‘gives out’ the
corresponding output when some state is reached.

• In Mealy automata, the output of the automaton depends on the current state
as well as the input to the automaton. Inputs and outputs can be thought
of in terms of ‘input events’ and ‘output events’. This means that if the
automaton is in a particular state x̃ and receives an input event ei, it makes a
transition to state ỹ according to the transition function and an output event
eo corresponding to this x̃ → ỹ transition is then ‘given out’ in the process,
according to the output function.

Viewed in the context of inputs and outputs, a non-deterministic automaton is de-
fined as shown next.

21

Chapter 3. Modelling of Discrete-Event Dynamic Systems

Definition 3.3. A non-deterministic input/output automaton G is a six-tuple

G = (X̃, Ũ , φ, Ỹ , h, x̃0)

where:

• X̃ is the set of discrete states

• Ũ is the set of discrete inputs (input events)

• φ : X̃ × Ũ → 2X̃ is the transition function

• Ỹ is the set of discrete outputs (output events)

• h : X̃ × Ũ → Ỹ is the output function

• x̃0 is the initial state of the system

If the output ỹ ∈ Ỹ is only a function of the state x̃ ∈ X̃ , i.e. if ỹ = h(x̃), then
G is a Moore automaton. If it is a function of the state as well as the input ũ ∈ Ũ ,
i.e. if ỹ = h(x̃, ũ), then G is a Mealy automaton. The typical way of representing
such automata is as shown in Table 3.1.

Input events . . .
Current States Next states (and associated output events) . . .

...
...

...
...

Table 3.1: Typical tabular automaton representation.

22

3.2 Obtaining the discrete-event model of a continuous system

3.2 Obtaining the discrete-event model of a continuous
system

A continuous system (plant) is represented by a set of differential equations. This
section discusses a method to obtain an automaton from this set of differential
equations. Consider the following set of differential equations 2:

ẋ(t) = f(x(t), u(t)); x(t0) = x0 (3.1)

where x(t) ∈ Rn, u(t) ∈ Rm, f : Rn+m → Rn and x0 is the initial state vector.
This continuous plant has inputs but no outputs. This is to say that an explicit
mapping from the state to output is not considered in this discussion 3. To develop
a DEDS model for this system, it is necessary to correspondingly define the set of
discrete sets X̃ ,the set of discrete inputs Ũ and the transition function φ.

3.2.1 State discretization

The concept of a quantizer (event sensors) leading to formation of so-called hyper-
cubes in the state-space was briefly mentioned in Section 2.2. Consider the state
x = (x1 x2 ... xn). The boundaries βi for each state component xi, induced
by the event sensors, can be represented as:

βi0 ≤ βi1 ≤ βi2 . . . ≤ βipi (pi ≥ 1) (3.2)

The region of interest is then determined by the state-space represented by:

Ω = {x ∈ Rn|βi0 ≤ xi ≤ βipi , i = 1, 2, . . . , n} (3.3)

The state-space Ω can be thought of as being partitioned into n-dimensional
hypercubes by these boundaries. Each hypercube thus represents a discrete state x̃.
Let x̃ be represented by a n-dimensional hypercube that is labelled by an n-tuple
of integers a = (a1, a2, . . . , an) with 1 ≤ ai ≤ pi, for each i. Then the hypercube
Hx(x̃) is the bounded region given by (Philips, 2001):

Hx(x̃) := {x ∈ Rn|βiai−1 ≤ x
i ≤ βiai , i = 1, 2, . . . , n} (3.4)

2This is a time-invariant case of Equation 2.1. In a time-invariant dynamic system, the same
input always produces the same output. Here, it implies that f does not explicitly depend on time.

3Obtaining the DEDS model for the plant with outputs is more involved and is covered in Ushio
and Takai (2009) and Philips (2001).

23

Chapter 3. Modelling of Discrete-Event Dynamic Systems

Put simply, this shows how the ‘location’ of the hypercube is identified in the n-
dimensional state-space Ω, given the n-tuple of integers representing x̃. It can be
seen that the total number of hypercubes in Ω is given by the product

∏
i pi The

simplest example of a 2-dimensional state-space having four hypercubes is shown
in Figure 3.4.

β0
1 β1

1 β2
1

β1
2

β2
2

(1,1)

(1,2) (2,2)

(2,1)

β0
2

Figure 3.4: Hypercube labels and boundaries in a state-space

Further, if the hypercubes Hx(x̃1) and Hx(x̃2) share a boundary hypersurface
Hx(x̃1) ∩ Hx(x̃2) that is of (n − 1) dimension, then the corresponding discrete
states x̃1 and x̃2 are said to be adjacent to each other. The transition from one
hypercube to other across the boundary hypersurface is called as an event and is
denoted by x̃1 → x̃2

4.

3.2.2 Input discretization

An analogous argument to state discretization can be made in case of discretization
of continuous inputs. Consider the input u = (u1 u2 ... um). The boundaries
γi for each input component ui, can be represented as:

γi0 ≤ γi1 ≤ γi2 . . . ≤ γiqi (qi ≥ 1) (3.5)

The input-space is then made of m-dimensional hypercubes. Each hypercube
thus represents a discrete input ũ. Let ũ be represented by a m-dimensional
hypercube that is labelled by an m-tuple of integers b = (b1, b2, . . . , bm) with
1 ≤ bi ≤ qi, for each i. Then the hypercube Hu(ũ) is the bounded region given
by:

Hu(ũ) := {u ∈ Rm|γibi−1 ≤ u
i ≤ γibi , i = 1, 2, . . . ,m} (3.6)

4It is assumed here that only transitions between adjacent hypercubes are allowed. This means
that the state trajectory is not allowed to cross the edges or corners of the hypercubes. This is a
limitation of the model and will be elaborated on in Section 3.3.3.

24

3.2 Obtaining the discrete-event model of a continuous system

The total number of hypercubes in the input-space is given by the product
∏

i qi.
The analysis then involves studying how the discretized inputs ũ cause transitions
between the discretized states x̃.

However, for the sake of this discussion (and the report), a simplification is
made. It is assumed that the set of inputs is already discrete by default and input
discretization is not needed. Equivalently, it may be assumed that the set of inputs
U is continuous but piecewise constant such that each element in U is mapped di-
rectly onto one of the discrete inputs in Ũ . This means that Ũ = {u1, u2, . . . , uk}
5.

This is a reasonable assumption to make especially in case of process plants
where inputs are mainly discrete valve positions (open/closed). The reason for this
assumption is that it simplifies the discussion to a visualization of transitions in the
state-space for a given discrete input. It helps in avoiding the simultaneous visual-
ization of both the state-space and the input-space, or the combined visualization of
the whole state-input-space, significantly condensing the analysis. The arguments
that follow, however, hold in the general even if this assumption is relaxed.

The discrete-event model of the continuous system should describe all possible
transitions (events) between hypercubes in the state-space for given discrete inputs.
It is clear from the discussion in Section 3.1 that, in this context, this model is a
non-deterministic Mealy automaton. The non-deterministic nature comes from the
fact that a hypercube has multiple adjacent hypercubes (in multiple dimensions)
where transitions are possible for a given discrete input. Definition 3.3 will hold
for this automaton, but without the inclusion of the set of discrete outputs Ỹ and
the output mapping h, since outputs are not explicitly considered.

3.2.3 Computing transition function

As discussed, a continuous trajectory in the continuous state-space corresponds to
discrete transitions from one hypercube to the next in the discretized state-space
(see Figure 2.6). This implies that the boundary surface between the two adjacent
hypercubes will be crossed when a transition happens between adjacent discrete
states. This fact can be exploited in the computation of the transition function
(Philips, 2001; Preisig, 1996). The derivative of the state trajectory is given by
the continuous model of the plant represented by Equation 3.1. This derivative is
checked at boundary surfaces between two adjacent hypercubes. The sign of the
derivative will then determine the direction of the state trajectory. If the derivative
does not exist at the boundary, there will be no transition between the hypercubes.

5The ‘tilde’ notation generally used for discrete variables is not used here even though the in-
puts are assumed discrete. This is because they may equivalently be assumed to be continuous but
piecewise constant.

25

Chapter 3. Modelling of Discrete-Event Dynamic Systems

Being more precise in mathematical terms (Philips, 2001), consider two adja-
cent states x̃1 and x̃2 according to the following:

• x̃1 and x̃2 are represented by hypercubes that are labelled by the n-tuples
(a1, . . . , ar, . . . , an) and (a1, . . . , ar + 1, . . . , an), respectively. This is to
say that the two hypercubes are adjacent in the rth dimension of the state-
space.

• The boundary hypersurface between these two hypercubes is denoted by
Hx(x̃1) ∩ Hx(x̃2). In this case, this is given by the locus of the points
{x ∈ Rn|xr = βrar}.

• x ∈ Hx(x̃1) =⇒ xr ≤ βrar and x ∈ Hx(x̃2) =⇒ xr ≥ βrar . This
specifies the positions of the adjacent hypercubes relative to each other i.e.
Hx(x̃1) comes ‘before’ Hx(x̃2), when moving in the positive direction in
the rth dimension.

Also, let the rth element of the f vector in Equation 3.1 be denoted by f r. Then
the transition x̃1 → x̃2 in the rth dimension is possible with a given discrete input
u ∈ Ũ , if and only if

∃x ∈ Hx(x̃1) ∩Hx(x̃2) such that f r(x, u) > 0 (3.7)

The mathematical proof is not covered here but can be found in literature (Blan-
chini, 1999; Philips, 2001).

So, computing the transition function φ essentially consists of checking the
value, or rather the sign, of trajectory derivative f r at the boundary hypersurfaces
between every pair of adjacent hypercubes. If the sign is positive, the transition is
possible and if it’s not positive, the transition is impossible. In fact, if the sign is
negative, the opposite transition x̃2 → x̃1 is possible.

3.2.4 Getting the final DEDS model

Now that X̃, Ũ and φ have been determined, the final model can be obtained.
Going back to the assumption made in Section 3.2.2, the inputs are considered
to take only discrete values. This makes checking of f r at various boundaries
relatively easier, demonstrated as follows.

For a given input u ∈ Ũ , f i(x, u) = ẋi = 0, i ∈ {1, 2, . . . , n} represents a
(n − 1)-dimensional hypersurface in the state-space. Specifically it is the corre-
sponding component equilibrium hypersurface, since xi will be the same on all
points on the hypersurface. The intersection of all the component equilibrium hy-
persurfaces, if it exists, will be the global equilibrium point of the system.

26

3.2 Obtaining the discrete-event model of a continuous system

Now, the equilibrium hypersurface across the range of the state-space 6 will di-
vide the state-space into two distinct subregions. The natural tendency of a system
is to move towards equilibrium. Since in a dynamic system the state component xi

will always move towards the corresponding equilibrium hypersurface f i = 0, it
can be seen that these two subregions will have opposing trajectories for xi. This
is illustrated in Figure 3.5.

Since the direction of the state trajectory is now known in the entirety of the
continuous state-space, knowing the transition in the event-discretized state space
boils down to ascertaining whether the hypercube that the state lies in, is on one
side of the equilibrium hypersurface or the other.

Note here that it is thus not necessary to check the sign of f r at every boundary
hypersurface, between each pair of adjacent hypercubes. One only needs to know
the location of the hypercube with respect to the equilibrium hypersurface, and
extrapolate that information to the hypercubes further away from the equilibrium
hypersurface. This classifies the hypercubes in the event-discretized state space
into three distinct types:

• Type 1 (T1): Hypercubes where transitions with respect to a state component
are in the positive direction with respect to the corresponding component
equilibrium hypersurface

• Type 2 (T2): Hypercubes where transitions with respect to a state component
are in the negative direction with respect to the corresponding component
equilibrium hypersurface

• Type 3 (T3): Hypercubes where transitions with respect to a state component
cannot be ascertained

Type 3 corresponds to hypercubes through which the component equilibrium sur-
face passes. Since the size of the hypercubes is the limit of the resolution that
can be obtained in an discretized state-space, what happens within the hypercube
is ‘hidden’ from the observer. Hence, the transitions in these Type 3 hypercubes
cannot be ascertained i.e. it is not possible to know whether the transitions will
be positive or negative - unless additional information is provided, for instance
through local refinement (discussed in Section 3.3.2). The three types are illus-
trated in Figure 3.6.

6The range of the state-space will be defined by the physical limits of the system.

27

Chapter 3. Modelling of Discrete-Event Dynamic Systems

x1

x2

f 1
(x ,u)=

0

f
2 (x
, u

)=
0

f 1(x ,u)<0

f 1(x ,u)>0

f 2(x , u)>0

f 2(x , u)<0

x2

x1

(a)

x1

x2

f 1
(x ,u)=

0

f
2 (x
, u

)=
0

f 1(x ,u)<0

f 1(x ,u)>0

f 2(x , u)>0

f 2(x , u)<0

x2

x1

(b)

Figure 3.5: A two dimensional continuous state-space. The component equilibrium hy-
persurface (here a 2-D line/curve) divides the state-space into subregions of opposing gra-
dients, with respect to (a) x1 and (b) x2.

28

3.2 Obtaining the discrete-event model of a continuous system

f 1(x ,u)>0

f 1(x , u)<0
f 1
(x , u)=0

f 2(x , u)>0

f 2(x , u)<0

f
2 (x
, u

)=
0

Type 1

Type 2

Type 3

Type 3

Type 1

Type 2

x1

x2

x2

x1

(a)

ẋ1>0

ẋ1<0

ẋ
1 =0

f 2(x , u)>0

f 2(x , u)<0

f
2 (x
, u

)=
0

Type 1

Type 2

Type 3

Type 3

Type 1

Type 2

x1

x2

x2

x1

(b)

Figure 3.6: A two dimensional discretized state-space. The three different colors represent
the three types of hypercubes, based on the type of transitions for (a) x1 and (b) x2.

29

Chapter 3. Modelling of Discrete-Event Dynamic Systems

Combining the knowledge of transitions from all the state components and
given a hypercube in the discretized state-space, one can determine exactly the list
of the possible transitions from this hypercube that may happen - which determines
the automaton that was sought.

The result here is a list of possible transitions and not an exact transition be-
cause each state component will try to drive the state in the corresponding di-
mension. It may be noted that this is precisely what gives the automaton its non-
deterministic nature. This is illustrated in Figure 3.7.

f
2 (x
, u

)=
0

x1

x2

f 1
(x ,u)=

0

Figure 3.7: Possible transitions in a discretized state-space - non-deterministic nature.

3.3 Some pertinent issues

3.3.1 Computational effort

It may seem that with increasing state dimensionality and finer discretization, the
computational cost blows up, since the number of hypercubes in the state-space
then increases rapidly - the state-explosion problem. However, in practical ap-
plications with higher dimensionality, the interdependencies between the various
state components are usually sparse - meaning that some components of the state
are not influenced by all other components or inputs.

This sparsity is only natural because if one is to think of a complex plant in a
modular way, only modules that are ‘close’ have an effect on each other. When
computing the state transitions with respect to a particular state-component, this
sparseness can be exploited to reduce the dimensionality of the corresponding sub-
problem.

30

3.3 Some pertinent issues

Further, since one is only interested in knowing whether a given hypercube lies
on one side of a component equilibrium hypersurface or the other, one only needs
to check this condition for those hypercubes that are close to the hypersurface and
use this information to extrapolate to the hypercubes further away. This does away
the need to check the sign of f r at boundaries of each pair of adjacent hypercubes,
significantly reducing the computational effort.

Moreover, it suffices to compute the intersection points of the equilibrium hy-
persurface with the various event boundaries since one is only interested in know-
ing which hypercubes the equilibrium hypersurface passes through and not its
shape within the hypercube (this however assumes that the equilibrium hypersur-
face is monotonic within the hypercube). This implies that only root solvers are
required. The computational cost for linear systems, especially, is significantly
lesser compared to non-linear systems. A Python code for generating the automa-
ton is given in Appendix B.

3.3.2 Selective finer discretization

B

A

x2

x1

Figure 3.8: Selective finer discretization.

In some cases, a region within the state-space may be of particular interest in
terms of the model analysis or control. That is, more information or accuracy may
be sought from the model in this region. A reason for this may be that one needs
much ‘tighter’ control in this region due to stricter specifications.

This higher accuracy can be achieved through finer discretization of the state-
space (in the physical sense, this would mean higher number of event sensors in
the system). As mentioned previously, the number of hypercubes in the state-space

31

Chapter 3. Modelling of Discrete-Event Dynamic Systems

determines the resolution of the DEDS model, since what happens in the interior of
the hypercube is hidden from the observer. Finer discretization of the state-space
implies higher number of hypercubes and thus higher resolution.

However, resorting to finer discretization in the entire state-space unnecessar-
ily increases the computation cost of obtaining the automaton, since now the state
component gradients (f r) have to be checked at many more boundary hypersur-
faces between hypercubes 7. A better idea is to do the finer discretization in a
selective manner. This means that a finer discretization is only sought within a
hypercube or a group of hypercubes, but not in the entire state-space. The idea
is illustrated in Figure 3.8. For instance, one can have finer discretization for the
hypercubes that are closer to the equilibrium hypersurfaces, since this is a region
where the hypercubes with uncertain transitions (Type 3) are encountered. In gen-
eral, this can be done for any region in the state-space where more accuracy might
be needed. This is also termed as local refinement (Philips, 2001).

The automaton for the finely discretized parts may then be computed sepa-
rately and the supervisor can then ‘switch’ between automata as needed. For ex-
ample, the supervisor can initiate the use of Automaton A in a coarse region A
of the state-space and switch to Automaton B in another, finer, region B of the
state-space. The switching mechanism may be extended to any finite number of
automata. This is illustrated in Figure 3.9.

Automaton A

Supervisor

Automaton B Automaton N…

Figure 3.9: The supervisor can switch between multiple automata models as needed.

7The computational cost would not be that much higher, however, since the sparsity argument
from Section 3.3.1 is still valid.

32

3.3 Some pertinent issues

3.3.3 State trajectory passing through a corner of hypercube

A limitation of this modelling approach can be seen when the continuous state tra-
jectory passes through a corner or an edge of the hypercube. For illustration, com-
pare the continuous trajectory from point A to point B (shown in black) in Figures
3.10(a) and 3.10(b). When the continuous trajectory does not pass through a hy-
percube corner, it can be described by a particular sequence of discrete transitions
(upwards and then leftwards as shown in Figure 3.10(a)). However, when it passes
through a corner, there is no definite way to represent this as a fixed sequence of
discrete transitions (it could be upwards and then leftwards, or leftwards and then
upwards, as shown in Figure 3.10(b)).

This is a major limitation, especially if it happens in a region of interest. Since
the supervisory control action is determined by the sequence of transitions given
by the automaton, choosing one or the other sequence from Figure 3.10(b) may
lead to completely different control actions. This might also have implications
in safety analyses of plants where incorrect or ambiguous information may have
serious consequences.

In view of this limitation, it will be assumed for all analyses pertaining to this
report that the trajectory does not pass through a point that belongs to more than
two hypercubes. This means that two different components xi and xj (i 6= j) of
a state cannot both cross a hypercube boundary simultaneously. Stated differently,
it is assumed that only transitions between adjacent hypercubes are allowed.

33

Chapter 3. Modelling of Discrete-Event Dynamic Systems

A

B

B

x2

x2

x1

x1

A

(a)

A

B

B

x2

x2

x1

x1

A

(b)

Figure 3.10: The continuous state trajectory (black) and the corresponding hypercube
transitions (red,blue) when (a) when trajectory does not pass through a hypercube corner
and (b) when it does.

34

Chapter 4
Using DEDS in HAZOP Analysis:
A Case Study

A HAZOP analysis deals with not only the safety issues in a process plant, but also
with it’s operability issues. Although operability issues may not lead to hazardous
or unsafe conditions in the plant, they may lead to poorer economic performance.
Thus it becomes necessary to define a safe operability region for the plant in per-
forming a HAZOP analysis. The choice of the safe operability region is a decision
that the team of engineers performing HAZOP have to make. The process plant
already has a range imposed by the physical limits that the process variables may
take, for example the mole fractions may only be between 0 and 1. The safe oper-
ability region is a subset of the entire range spanned by the process plant. This is
because operating at a physically allowable point does not necessarily mean that
such an operation is safe or economically viable. For example, some equipment
may be designed to operate within a certain specified range - a very low flow rate
is not desirable for a compressor.

4.1 The idea

Consider the continuous state-space of the kind that was discussed in Chapters
2 and 3. The state-space Ω, as defined in Section 3.2.1 represents the region of
interest in the process plant. In this context, the safe operability region, denoted
by Ψ, is a subregion within this state-space Ω (Figure 4.1).

The boundaries of Φ with respect to each state component xi can be repre-
sented by λimin and λimax, such that λimin < λimax for each i. These boundaries
are decided by the team of engineers like mentioned previously. Then,

35

Chapter 4. Using DEDS in HAZOP Analysis: A Case Study

Ψ = {x ∈ Rn|λimin ≤ xi ≤ λimax, i = 1, 2, . . . , n} (4.1)

Note that Ψ is a hypercube.

State-space

ẋ
1 =0

ẋ2=0

x1

x1

x2

x2 Safe Region

Safe Operability
Region

Ω

Ψ

Figure 4.1: Safe operability region ψ within a state-space Ω.

The use of event sensors induces hypercubes in the state-space. This dis-
cretized state-space is then superimposed with the Ψ. The DEDS model ,say an
automaton G, of the continuous plant is obtained according to the methodology
described in Chapter 3. Now, equipped with the automaton G and the defined safe
operability region Ψ, one can assess the possibilities of the system breaching the
boundaries of Ψ. This is because the automaton G contains information about the
directionality of the state trajectory throughout the state-space whereas the safe
region Ψ contains information about the boundaries within the state-space where
the process is considered ‘safe.

If the state reaches a hypercube that is in the vicinity of the boundary of the Ψ
and if for that hypercube the automaton G shows a transition that points outwards
of Ψ, one can ascertain that there is a possibility of a so-called leak happening
(Preisig and Manenti, 2012). A leak is possible state transition out of the safe
operability region. A leak in this context is defined as follows:

36

4.1 The idea

Definition 4.1. Consider the continuous system given by Equation 3.1 and a de-
fined safe operability region Ψ. Further, let the boundary surface of Ψ be a con-
tinuous set denoted by bd(Ψ). A leak in the rth dimension of Ψ is defined as part
of bd(Ψ) where, for a given input u and any state x ∈ bd(Ψ), f r(x, u) has a sign
(positive or negative) that implies a state trajectory out of Ψ.

However, it is not necessary to check sign of f r on the entire boundary bd(Ψ),
because this information is readily available if the automaton G has been com-
puted. One only needs to know which hypercubes the boundary bd(Ψ) passes
through and the automaton G would provide the transition information for those
hypercubes. If the transitions are in outward direction with respect to Ψ, then the
corresponding part of the boundary bd(Ψ) is a leak hypersurface. Moreover, if this
outward transition happens, then a leak is said to have occurred. It may be seen
that the input u that causes a leak to occur is ‘undesirable’ - a notion that will be
expanded upon in the discussion of supervisory control in Chapter 5. The concept
of leaks is illustrated in Figure 4.2.

State-space

˙x 1
=
0

ẋ2=0

x1

x1

x2

x2 Safe Region

Safe Operability
Region

Ω

Ψ

Figure 4.2: Leaks in the safe operability region, highlighted by bold green lines.

This technique has a major advantage over the conventional HAZOP in that it
can handle complex plants with numerous process variables as well, provided the
automaton is computed with respect to all relevant variables. It has the potential
to identify failures or hazards caused by multiple simultaneous failures since all
possible combinations of (discretized) process variable values are explicitly enu-
merated in the automaton. Obviously, the higher the level of discretization of the

37

Chapter 4. Using DEDS in HAZOP Analysis: A Case Study

state-space (implying more event sensors), the lower the variance of the measured
process variable value. The technique thus gives a quantitative basis for doing
HAZOP, as opposed to the conventional HAZOP that relies considerably on hu-
man judgement. A summary of the conventional HAZOP procedure is given in
Appendix A.

4.2 Case study: Two Tanks

Consider a system of two interacting tanks connected in series, as shown in Figure
4.3. This configuration is common in the process industry where the second tank
is a buffer tank to dampen disturbances in the inflow rate of the first tank.

The valve on the inlet of the first tank (Valve 0) has a valve constant of C0

(m2.5/min). The flow rate into Tank 1 when this valve is open is Q (m3/min).
The heights of liquids in the two tanks areH1 andH2 (m) respectively. Both tanks
have a base area of A (m2). The valves on the outlets of the two tanks (Valve 1
and Valve 2) have valve constants of C1 and C2 (m2.5/min) respectively. The 3
valve positions are denoted by W0, W1 and W2 respectively. Seven level sensors
each are placed in both tanks.

The numerical values for the constants in the model are given in Table 4.1. The
locations of the level sensors are: 0 m, 1.5 m, 3 m, 4.5 m, 6 m, 7.5 m, 9 m for
Tank 1, and 0 m, 1.6 m, 3.1 m, 4.6 m, 6 m, 7.5 m and 9 m for Tank 2 1.

C
1

C
2

Q

H
1 H

2
A A

C
0

Tank 1 Tank 2Valve 1 Valve 2

Valve 0

Figure 4.3: System of two tanks connected in series.

1Some of these values are chosen to avoid violating the non-corner-crossing assumption made in
Section 3.3.3.

38

4.2 Case study: Two Tanks

Constants Value Units
Q 0.3 m3/min

C0 0.15 m2.5/min

C1 0.15 m2.5/min

C2 0.15 m2.5/min

A 0.5 m2

Table 4.1: Constants in the two tanks model.

4.2.1 Model Derivation

The objective here is to get a simple model for the two tanks system in the con-
tinuous state-space representation (Equation 3.1). The states, inputs and constants
in the model are determined. The states in the model are the heights H1 and H2.
Thus the continuous state vector is x = (H1 H2).

The inputs in the model are determined by the positions of the 3 valves. The
valve positions are components of the input vector and are considered to be binary
- open or closed. This is to say that the input vector u = (W0 W1 W2)

2, where
each of the valve positions W0, W1 and W2 is either 0 (closed) or 1 (open). For
example the input u = (1 0 0) represents the case where the Tank 1 inlet valve is
open but both outlet valves are closed. It may be seen that in this case there are a
total of 23 = 8 different discrete inputs.

The inflow rate is Q when the valve position W0 = 1. The constants in the
model are thus the inflow rate Q, the base areas of the tanks A and the valve
constants C0, C1 and C2, with values as shown in Table 4.1.

The continuous state-space model is obtained from the total mass balances in
the two tanks. Assuming constant densities for the liquid contents in the tanks, this
boils down to a volume balance. Further, the flow rate through the outlet valve in
each tank is the function of the square root of the ‘net’ heights in the corresponding
tanks 3. The following model thus results:

A
dH1

dt
= W0Q−W1C1sgn(H1 −H2)

√
|H1 −H2|

A
dH2

dt
= W1C1sgn(H1 −H2)

√
|H1 −H2| −W2C2

√
H2

(4.2)

where, sgn represents the sign function.
2To be clear, H1 and H2 are the 2 components of the state x, i.e. x1 = H1 and x2 = H2.

Similarly u1 = W0, u2 = W1 and u3 = W2.
3The terms inlet and outlet valves refer to the locations of the valves and not the flow direction

through the valve. Note that it is possible to have a flow into Tank 1 through the Tank 1 outlet valve
if H2 > H1.

39

Chapter 4. Using DEDS in HAZOP Analysis: A Case Study

4.2.2 Performing HAZOP on the model

For the scope of this analysis, in addition to being discrete, the input is considered
to be constant also. All 3 valves are considered to be in the ‘open’ position i.e. a
constant u = (1 1 1) is considered.

Further, the ‘safe’ or feasible operating region for this system is considered to
be when the H1 is between 2 m and 7 m, whereas H2 is between 2 m and 6 m.
The use of seven level sensors in each tank implies that there are a total of 6 × 6
i.e. 36 states to be considered.

The two component equilibrium hypersurfaces are obtained by setting the
derivatives in the respective model equations to 0. These hypersurfaces are lines
since the dimensionality of the state-space is 2.

W0Q = W1C1sgn(H1 −H2)
√
|H1 −H2|

W1C1sgn(H1 −H2)
√
|H1 −H2| = W2C2

√
H2

(4.3)

Putting in the values given in Table 4.1 for u = (1 1 1) and squaring both sides,
the following model equations are obtained:

H2 = H1 − 4

H2 = 0.5H1
(4.4)

The equilibrium lines in the state-space are shown in the Figure 4.4. The event-
discretized state-space and the chosen safe operability region are together shown
in Figure 4.5. The tuple numbering of the hypercubes is also shown.

40

4.2 Case study: Two Tanks

H
2

(m)

0 9
0

9

H
1
(m)

Ḣ1=0

Ḣ 2=0

H
2

(m)

0 9
0

9

Safe
region

(6,6)(1,6)

(1,1) (6,1)

H
1
(m)

3

6

3 6

3 6

3

6

Figure 4.4: Equilibrium lines for the 2D model.

H
2

(m)

0 9
0

9

H
1
(m)

Leak!

Leak!

Safe
region

(6,6)(1,6)

(1,1) (6,1)
Ḣ1=0Ḣ2=0

H
2

(m)

0 9
0

9

(6,6)(1,6)

(1,1) (6,1)

H
1
(m)

3.1

6

3 6

3 6

3.1

6

State
Space

Safe
region

State
Space

1.6

4.6

7.5

1.5 4.5 7.5

1.5 4.5 7.5

1.6

4.6

7.5

Figure 4.5: Event-discretized state-space, the chosen safe operability region and the num-
bering of hypercubes (here rectangles) for the system.

41

Chapter 4. Using DEDS in HAZOP Analysis: A Case Study

The automaton is typically represented as shown in Table 3.1. In this analysis,
only one input u = (1 1 1) is considered. According to Table 3.1, there will be
36 rows for each of the 36 states. The transitions caused by the given input u will
be considered for each of these 36 states. The next state (or list of possible next
states) will be shown next to each of the 36 current state entries for the given input
u.

However, for the purposes of this analysis, a much better representation as
shown in Table 4.2 is be used. This representation has the advantage that it di-
rectly maps the discretized state-space onto the automaton table, making for better
visualization of the system 4. So instead of showing the next states, it shows the
transitions associated with each current state (hypercube). The next state associ-
ated with each state and the given input, although not explicitly shown, is implicitly
obvious from the type of transition shown (T1, T2 or T3).

Event boundaries (state component i) . . .
Event boundaries

(state component j)
Possible events (type of transitions) . . .

...
...

Table 4.2: Automaton representation for the interacting tanks analysis for a given input u.

Using the DEDS modelling methodology explained in Chapter 3 for the inter-
acting tanks system, the automaton shown in Table 4.3 is obtained. The automaton
in Table 4.3 maps directly onto the discretized state-space shown in Figure 4.5.
This means that the 6 × 6 entries in the automaton can be superimposed directly
onto the 6×6 grid squares (hypercubes) in Figure 4.6. Thus the automaton denotes
the type of transitions that the state is likely to make from a particular region in the
(H1 H2) state-space for the given input u.

For example, the tuple marked (1, 6) in Figure 4.6 corresponds to the top left
entry in Table 4.3: (T1,T2). This means that for this hypercube, the transition with
respect to H1 will be T1 i.e. positive (rightwards) and with respect to H2 will be
T2 i.e negative (downwards). This is because both components will move towards
their corresponding equilibrium hypersurfaces (left or right for H1, up or down for
H2).

With the knowledge of the automaton and the safe region, the so-called leak-
hypercubes can be identified. The leaks in hypercubes (2, 2) and (5, 4) will be

4Note that this representation may only be used for 2D or 3D systems, since such a tabular
representation for higher dimensions cannot be realized in print.

42

4.2 Case study: Two Tanks

Automaton
(T1,T2) (T1,T2) (T1,T2) (T1,T2) (T1,T2) (T1,T2)

↑ (T1,T2) (T1,T2) (T1,T2) (T1,T2) (T1,T2) (T1,T2)

H2
(T1,T2) (T1,T2) (T1,T2) (T1,T2) (T1,T2) (T3,T2)

↓ (T1,T2) (T1,T2) (T1,T2) (T1,T2) (T3,T3) (T3,T3)
(T1,T2) (T1,T2) (T1,T3) (T3,T3) (T3,T3) (T2,T1)
(T1,T3) (T1,T3) (T3,T3) (T3,T1) (T2,T1) (T2,T1)

← H1 →

Table 4.3: Model automaton for the system for u = (1 1 1). The first entry in each
tuple corresponds to transition types with respect to H1 and the second entry to those with
respect to H2.

detected by the automaton. The hypercube (2, 2) has the T2 transition associated
with it in the H2 direction and this transition will take the state out of the safe
region. Similarly the hypercube (5, 4) has the T1 transition associated with it in
the H1 direction and this transition will take the state out of the safe region. This
is illustrated in Figure 4.6.

H
2

(m)

0 9
0

9

H
1
(m)

Leak!

Leak!

Safe
region

(6,6)(1,6)

(1,1) (6,1)
Ḣ1=0Ḣ2=0

H
2

(m)

0 9
0

9

(6,6)(1,6)

(1,1) (6,1)

H
1
(m)

3.1

6

3 6

3 6

3.1

6

State
Space

Safe
region

State
Space

1.6

4.6

7.5

1.5 4.5 7.5

1.5 4.5 7.5

1.6

4.6

7.5

Figure 4.6: The equilibrium lines, the discretization, the safe region and the leaks in the
system. The tuples show the numbering of the hypercubes.

43

Chapter 4. Using DEDS in HAZOP Analysis: A Case Study

However, the leaks in hypercubes (3, 2) and (5, 3) will not be detected since
these correspond to T3 transitions (since the equilibrium lines passes through these
hypercubes). In cases such as these, selective finer discretization (as discussed in-
Section 3.3.2) can be employed near the equilibrium lines to get better resolution.
The automated nature of such a HAZOP analysis makes it possible to take preven-
tive actions even in complex plants where the failures are seemingly ‘random’ (i.e
those failures occurring due to a chance overlap of simultaneous events rather than
due a cause-and-effect mechanism). When a leak detection is made, the supervisor
can initiate an appropriate control action to ‘steer’ the system back into the safe
operability region.

The leaks in the interacting tanks case are easy to understand instinctively due
to the simplistic nature of the case. Since the inflow valve is open, it is to be ex-
pected that a possible breach of the safe region will be when the level in Tank 1
becomes too high. Also, the outflow valve on Tank 2 is open, continuously drain-
ing the tank. Thus another possible breach is when the level in Tank 2 becomes
too low. In the absence of any control action, which leak will happen first, or if
any leak happens at all, is decided by the initial state of the system i.e. which hy-
percube the system starts in. It may be recalled from Chapter 3 that the initial state
of the system is also generally modelled into the automaton. Some relevant issues
relating to the automated HAZOP analysis are discussed in the next section.

4.3 Some pertinent issues

4.3.1 Model robustness

There is always a certain gap between the developed model and the actual system
dynamics. A perfect model representation of the actual system dynamics is not
possible. It therefore becomes imperative this automated HAZOP approach to
take into consideration the robustness of the model. This is because, in terms of
hazard and safety issues, a model mismatch may turn out to be very dangerous,
not to mention costly.

For example, the automaton would identify a wrong leak-hypercubes or not
identify any leak-hypercubes at all if there is a serious model mismatch. One way
of dealing with model robustness is to ‘shrink’ the safe operability region as shown
in Figure 4.7. That is, one can have tighter specifications on the operability con-
ditions than those deemed conventionally necessary in the system. This creates a
‘buffer’ to account for any modelling errors. Thus, a model that is more robust
would need a smaller buffer in the safe operability region. A less robust model,
on the other hand, would have to account for larger deviations from expected be-
haviour and thus need a larger buffer in the safe operability region.

44

4.3 Some pertinent issues

State-space

Shrunk safe
region

Safe region

x2

x1

Ω

Ψ
Ψ

'

Figure 4.7: The shrunk safe region ψ′.

4.3.2 Changing inputs to ensure safe operability

The automaton is used to identify regions in the state-space where there are pos-
sibilities of leaks in the safe operability region i.e. the so-called leak-hypercubes.
The exact leaks themselves (from a modelling perspective, not an operability per-
spective), however, do not depend on the discretization of the state-space (see Def-
inition 4.1). They depend on the equilibrium hypersurfaces as defined by the con-
tinuous model and their intersections with the boundaries of the chosen safe region
(see Figure 4.2).

So one can change the environmental conditions i.e. the model inputs to
‘move’ the equilibrium hypersurfaces such that safe operability is ensured. This is
a supervisory control action that may be implemented in response to the automaton
identifying a leak-hypercube. The idea is illustrated in Figure 4.8.

In the case of the interacting tanks, the control action may be to stop the inflow
rate Q by closing the inlet valve so as to preventH1 from rising. Similarly the out-
let valve on Tank 2 can be closed to prevent H2 to go too low. Another possibility
is to add an extra inlet valve for Tank 2 (this would increase number of components
of input u from 3 to 4). From the modelling perspective, these changes would shift
the equilibrium lines for H1 and H2 and possibly eliminate the leaks.

All such control actions in the plant can be automatically taken by a supervi-
sory controller designed according to given specifications. A supervisor thus needs
to be designed for the given DEDS model and the given specifications. The topic
of supervisory control and supervisor synthesis are the subject of Chapter 5.

45

Chapter 4. Using DEDS in HAZOP Analysis: A Case Study

ẋ2=0

ẋ2=0

Safe Region

x2

x2

x1

x1

Safe Region

(a)

ẋ2=0

ẋ2=0

Safe Region

x2

x2

x1

x1

Safe Region

(b)

Figure 4.8: The leak (shown in bold green) in (a) is eliminated in (b) by moving the
equilibrium line for x2.

46

Chapter 5
Supervisory Control of
Discrete-Event Dynamic Systems

The discussion up to this point was limited to the modelling of DEDS and analysing
how they evolve; and using this analysis to make predictions about plant behaviour
(such as HAZOP). In this chapter, however, the focus shifts to the control of such
discrete-event systems. This chapter relates to the supervisory control of plants.
More precisely, it relates to how the behaviour of the DEDS describing the plant
can be modified by a so-called supervisor - denoted by S - in such a way that
the DEDS meets certain given specifications. Note here that supervisory control
systems are typically themselves DEDS, described by automata.

Specifications for plant behaviour may be needed for a variety of reasons. Sup-
pose that the plant behaviour is modelled by an automaton G. Certain discrete
states in G may be undesirable because of safety and operability issues, as in case
of HAZOP discussed in Chapter 4. In context of HAZOP, all discrete states in G
that are outside the safe operability region are undesirable.

In some cases, it might be the case thatG reaches a state which is in ‘deadlock’
(meaning that the system cannot escape the state), making it undesirable. These
situations are common in purely discrete-event systems like complex scheduling
problems or computer systems. A possible specification might relate to the physi-
cal inadmissibility of a certain discrete state - for example negative mass fractions
are not possible. It should however be noted here that it is best to avoid such
scenarios in the modelling phase itself, rather than in the controller design phase.

A common specification is about the reachability of certain states in the plant.
This means that given an initial state, the task of the supervisor S is to direct the
trajectory of the state to the desired final state via a path in the state-space that is

47

Chapter 5. Supervisory Control of Discrete-Event Dynamic Systems

considered ‘optimal’. The optimality might be related to time, if it is considered.
That is, the supervisor S should be able to take the system from state a to state b as
fast as possible. More commonly though, the optimality factors in the profitability
of the plant. For instance, even though there may be multiple ‘paths’ for a plant to
go from state a to state b, one of these paths would be optimal in terms of profits
(due to lower energy costs, better resource usage, lessening the burden on the lower
level regulatory control operations, etc.).

Stated in rudimentary terms, supervisor synthesis would involve the following
steps:

• Define a specification relating to the desired behaviour of the system - this
would be the ‘control goal’ that needs to be realized

• Next, a control strategy needs to be devised in order meet the desired speci-
fication

• Finally, the supervisor may be designed according to the chosen control
strategy

5.1 A simple example about the reachability specification

A representative example is given here to demonstrate the reachability specifica-
tion. How to devise the control strategy and how to synthesise a supervisor for this
specification, is also shown.

u
1

~x1
~x2

~x3
~x4

~x8
~x7

~x6
~x5

~x9
~x10

~x11
~x12

u
1

u
1

u
2

u
2

u
3

u
1

u
1

u
3u

1

u
2

u
2

u
2

u
1

u
1

u
3

u
3

u
1

u
2

u
1

u
2

4

5 2

2

2

03

2 1 0 2 4

1

3

2
6

10

111

5

Figure 5.1: Directed graph of a purely discrete-event system with weights for transitions.

48

5.1 A simple example about the reachability specification

Consider the automaton represented by the directed graph shown in Figure
5.1. The system has 12 discrete states i.e. X̃ = {x̃1, . . . , x̃12}, and 3 discrete
inputs i.e. Ũ = {u1, u2, u3}. The inputs are input events that cause transitions
between the discrete states. The numbers associated with each transition show the
‘weights’ associated with each transition. Each number may be thought of as a
‘cost’ of making the transition. The weights can be thought of as being related to
the specifications of the desired behaviour. Transitions that are desired are given
low weights and those that are undesired are given higher weights.

Suppose that the system is initially in the discrete state x̃9 and it is desired to
reach state x̃2, in the most optimal way. That is, the reachability of x̃2 from x̃9 has
to be ensured by the supervisor in a way that minimises the associated cost.

It is evident from Figure 5.1 that there are multiple paths from x̃9 to x̃2. The
most cost-effective path can be found using Dijkstra’s algorithm, which is an algo-
rithm conceived by computer scientist Edsger Dijkstra for finding the shortest path
between nodes in a graph (Dijkstra, 1959). A Python code for Dijkstra’s algorithm
is provided in Appendix B.2. Running the algorithm for the graph shown in Figure
5.1, the most optimal path is found to follow the trajectory:

x̃9 → x̃10 → x̃11 → x̃4 → x̃3 → x̃2

Now that the path is known, a supervisor can be synthesised based on the
knowledge of which inputs cause the needed transitions so that the most optimal
path is followed 1. To be precise, when the system is in state x̃9, the supervisor
will tell the system to activate the input u2 to allow the transition to x̃10. When
the system is in state x̃10, the supervisor will again tell the system to activate the
input u2 to allow the transition to x̃11, and so on. The supervisory action would
stop when the system reaches the target state x̃2. This can be represented by the
following sequence:

x̃9
u2−→ x̃10

u2−→ x̃11
u1−→ x̃4

u2−→ x̃3
u2−→ x̃2

The supervisor thus directs the system to execute the input sequence: u2u2u1u2u2.
Suppose now that the system makes the undesirable transition from x̃9 to x̃5 by

activating the input u1 (say due to a disturbance in the system). Now the supervisor
can implement a new optimal trajectory from the new state x̃5 to x̃2 Applying the
Dijkstra’s algorithm from x̃5 to x̃2, the following sequence is obtained:

x̃9
undesirable−−−−−−−→ x̃5 → x̃6 → x̃7 → x̃4 → x̃3 → x̃2

The input sequence will then be: u1u2u1u3u2u2, with the input in red being the
one causing the undesirable transition.

1Note that the system automaton considered here is deterministic.

49

Chapter 5. Supervisory Control of Discrete-Event Dynamic Systems

Such a ‘corrective’ control strategy can be implemented every time an undesir-
able transition occurs. It should be noted here, however, that the supervisor cannot
direct the system between every given pair of states. For instance, supervisor can-
not direct the system from x̃2 to x̃9, since such path does not exit. This, however
is the property of the system and not a limitation of the supervisor.

The system considered was purely discrete. The main objective in this chapter,
however, is to design a supervisor for a continuous plant with a discretized state-
space and discrete inputs. The example presented here was meant to build some
intuition about devising a control strategy and synthesising a supervisor, to meet
the reachability specification. The basic idea for devising the control strategy for
DEDS models abstracted from continuous systems, discussed in the next section,
will be similar.

5.2 Control of DEDS models of continuous systems

Supervisor design here is based on the automaton model abstracted from the plant,
but in addition, the gradient information provided by the underlying continuous
model of the plant can also be used. The gradient information allows for the use of
control actions that are not possible to implement if only the information from the
automaton model is used. Much of the theory that follows is inspired from Philips
(2001) and Philips et al. (2003).

It may be recalled from Chapter 3 that the continuous system under consider-
ation is as follows:

ẋ(t) = f(x(t), u(t)); x(t0) = x0 (5.1)

where the boundaries βi for each state component xi, induced by the event sensors,
can be represented as:

βi0 ≤ βi1 ≤ βi2 . . . ≤ βipi (pi ≥ 1) (5.2)

The boundaries lead to the discretization of the state-space into hypercubes Hx(x̃)
representing the different discrete states. The inputs are considered to be already
discrete or piecewise continuous so that u belongs to some discrete set Ũ .

As discussed before, any observer - the supervisor in this case - would only
have information about the hypercube, and not the actual continuous state within
the hypercube. The supervisor should then be able to apply inputs from the discrete
set Ũ to the system so as to meet the control specifications. The state trajectory
that evolves under such supervisory control is referred to as a discretely controlled
trajectory, denoted by ξ. Similar to Section 5.1, the reachability specification will
be considered here as well.

50

5.2 Control of DEDS models of continuous systems

5.2.1 The reachability specification

Consider the continuous system given by Equation 5.1, the discretized state-space
induced by the boundaries given by Equation 5.2 and the set of discrete inputs
Ũ . Suppose that the initial state of the system x0 corresponds to the hypercube
Hx(x̃0) i.e. x0 ∈ Hx(x̃0). Suppose further that it is desired to reach the discrete
state represented by the hypercube Hx(x̃e).

The objective here is to design a supervisor such that for any x0 ∈ Hx(x̃0), the
discretely controlled trajectory ξ (with ξ(0) = x0) implemented by the supervisor
intersects with the hypercube Hx(x̃e). Put simply, the task for the supervisor is to
control the trajectory from the initial hypercube to the final specified hypercube in
the discretized state-space.

An important point discussed in Section 3.3.3 must be recalled here. The as-
sumption was made that only transitions between adjacent hypercubes are allowed.
This also necessitates a further assumption that the discretely controlled trajectory
ξ will be implemented by the supervisor in such a way that only transitions be-
tween adjacent hypercubes are allowed. That is, the trajectory will never reach
a point in the continuous state-space that belongs to more than two hypercubes
(corners or edges).

5.2.2 Control actions

Again, consider the continuous system 5.1, the discretized state-space induced
by the boundaries 5.2 and the set of discrete inputs Ũ . And again, consider two
adjacent states x̃1 and x̃2, according to the following:

• x̃1 and x̃2 are represented by hypercubes that are labelled by the n-tuples
(a1, . . . , ar, . . . , an) and (a1, . . . , ar + 1, . . . , an), respectively. This is to
say that the two hypercubes are adjacent in the rth dimension of the state-
space.

• The boundary hypersurface between these two hypercubes is denoted by
Hx(x̃1) ∩ Hx(x̃2). In this case, this is given by the locus of the points
{x ∈ Rn|xr = βrar}.

• x ∈ Hx(x̃1) =⇒ xr ≤ βrar and x ∈ Hx(x̃2) =⇒ xr ≥ βrar . This
specifies the positions of the adjacent hypercubes relative to each other i.e.
Hx(x̃1) comes ‘before’ Hx(x̃2), when moving in the positive direction in
the rth dimension.

Also, let the rth element of the f vector in Equation 5.1 be denoted by f r.

51

Chapter 5. Supervisory Control of Discrete-Event Dynamic Systems

The supervisor implements the control through the discrete inputs. With re-
spect to transitions between hypercubes, the so-called preventing inputs and mov-
ing inputs are considered (Philips et al., 2003; Philips, 2001). These types are
explained here.

Preventing inputs

A preventing input prevents a transition between hypercubes from happening. It
is assumed that the continuous trajectory reaching the boundary between two hy-
percubes is detected instantaneously. Further the control action is also assumed to
be instantaneous i.e. the preventing input is considered to be applied immediately
when the continuous trajectory reaches the boundary between two hypercubes.
The preventing input is shown in Figure 5.2.

(1,1)

(1,2) (2,2)

(2,1)x0

u

up

Figure 5.2: The input up is preventing for the transition Hx((1, 1))→ Hx((2, 1)).

Definition 5.1. (Philips et al., 2003) An input u ∈ Ũ is preventing for the transition
x̃1 → x̃2 if x̃2 6∈ φ(x̃1, u).

It was discussed that in Section 3.2.4 that, for a given discrete input, the tran-
sition x̃1 → x̃2 is possible if and only if f r > 0 at some point on the boundary
surface between the hypercubes (see Equation 3.7). It thus follows that an input
will be preventing for the same transition if f r ≤ 0 for all points on the boundary
surface. This is because the given input will never result in the transition if f r ≤ 0
for all points on the boundary surface.

An input u ∈ Ũ is preventing for the transition x̃1 → x̃2 if and only if

f r(x, u) ≤ 0, ∀x ∈ Hx(x̃1) ∩Hx(x̃2) (5.3)

This should be interpreted as the sufficient condition for an input to prevent the
transition.

52

5.2 Control of DEDS models of continuous systems

Moving inputs

A moving input simply makes certain that the state trajectory moves in the desired
direction. Applying this input ensures that when the continuous state trajectory
leaves a hypercube, it is closer to the desired target hypercube.

(1,1)

(1,2) (2,2)

(2,1)
x0

um
a b

u

Figure 5.3: The input um corresponding to trajectory a is moving for the transition
Hx((1, 1)) → Hx((1, 2)). Another input u corresponds to trajectory b. The input u still
takes the state in the desired direction, but is not considered in the definition of the moving
input, since the state derivative does not have the same sign throughout Hx((1, 1)).

For the continuous state to maintain the same directionality throughout the
interior of the hypercube for a given discrete input, it is necessary that f r has the
same sign at all points in the interior of the hypercube for a given discrete input.
This corresponds to the trajectory a in Figure 5.3.

Definition 5.2. (Philips et al., 2003) An input u ∈ Ũ is moving for the transition
x̃1 → x̃2 if

f r(x, u) > 0, ∀x ∈ Hx(x̃1) (5.4)

This is a how a moving input is defined, it should not be interpreted as the
condition for an input to move a state trajectory in the direction of the desired hy-
percube. This is because even if f r has different signs at different points within the
hypercube, the discrete input may still ensure that the continuous state eventually
exits the hypercube in the desired direction. This is the case for trajectory b shown
in Figure 5.3. But, for the purposes of this chapter, it is assumed that this does not
happen and the possibility is excluded from the definition of the moving input, for
convenience.

5.2.3 Forceable transitions

The control strategy can be devised using the available control actions discussed
in Section 5.2.2. The idea is to abstract a directed graph like the one shown in the

53

Chapter 5. Supervisory Control of Discrete-Event Dynamic Systems

simple reachability example of Section 5.1, so that the reachability specification
may be realized using the kind of ‘shortest path’ algorithms like the Dijkstra’s
algorithm.

The directed graph considered in the simple reachability example was that of a
deterministic automaton (for a given state, a particular input only caused a particu-
lar transition). However, it has been discussed that when abstracting DEDS models
from continuous systems, the resulting automata are typically non-deterministic
(Mealy automata). So for a given state, a particular input may cause one of the
multiple possible transitions.

The idea, then, is to avoid non-determinism by finding those transitions be-
tween adjacent discrete states (hypercubes) that can be ‘forced’ by the available
control actions. That is, to find those inputs, from the discrete set Ũ , that ensure
that a particular transition happens while ruling out other possible transitions.

Definition 5.3. (Philips et al., 2003) A transition x̃1 → x̃2 between two adja-
cent discrete states is called forceable, if from each initial continuous state x0 ∈
Hx(x̃1) there exists a discretely controlled trajectory ξ (with ξ(0) = x0) for
which there exists a t1 > 0 such that ξ(t) ∈ Hx(x̃1) ∪ Hx(x̃1) ∀t ∈ [0, t1] and
ξ(t1) ∈ int(Hx(x̃2)).

Put simply, if there exists a ξ starting inHx(x̃1) that only crosses the boundary
hypersurface between Hx(x̃1) and Hx(x̃2), without crossing any other boundary
hypersurface of Hx(x̃1), then the transition between Hx(x̃1) and Hx(x̃2) is force-
able.

The sufficient condition for a transition to be forceable can be formulated in
terms of the control actions. Consider two adjacent discrete states x̃1 and x̃2 and
consider a set of inputs that are moving for the transition x̃1 → x̃2. Now, if in this
set of moving inputs there exists an input that is also preventing for a transition
x̃1 → x̃3 6= x̃2 to any state x̃3 that is also adjacent to x̃1, then such an input will
force the transition x̃1 → x̃2. So an input u ∈ Ũ will force the transition x̃1 → x̃2
if:

• u is moving for the transition x̃1 → x̃2, and

• u is preventing for any transition x̃1 → x̃3, where x̃3 is any state adjacent to
x̃1, other than x̃2

All such forceable transitions then define a directed graph like the one shown
in the simple reachability example of Section 5.1. Such a directed graph is referred
to as the forceabilty graph (Philips, 2001). The shortest path algorithms can now
be used on the forceability graph to realize the reachability specification.

It is, however, important to note that the existence of a path from some state a
to state bwithin the forceability graph is a sufficient but not necessary condition for

54

5.3 Case study: Two Tanks extended

realizing the reachability specification. This is because the trajectory may go from
state a to state b through non-forceable transitions as well, and the forceability
graph does not provide this information. So state b may or may not be reachable
from state a if a direct path does not exist within the forceability graph. But it is
definitely reachable if a direct path does exist.

5.3 Case study: Two Tanks extended

Consider the case of two interacting tanks that was used for the HAZOP analysis
in Chapter 4. To have more options for controlling the levels in the two tanks,
an inlet to Tank 2 is additionally considered, as shown in Figure 5.4. The inflow
rate for this second tank is same as that of the first tank i.e. Q (m3/min). The
valve constant on this inlet line is C3(m

2.5/min). Further, 6 level sensors each
are considered for both the tanks.

The values of these constants are given in Table 5.1. The locations of the level
sensors are: 0 m, 1 m, 3 m, 4 m, 6 m, 7 m for Tank 1 and 0 m, 1.9 m, 3.6
m, 4.5 m, 6.5 m, 7.5 m for Tank 2. These sensors would partition the (H1 H2)
state-space into 5× 5 = 25 hypercubes.

C
1

C
2

Q

H
1 H

2
A A

C
0

Tank 1 Tank 2Valve 1 Valve 2

Valve 0

C
3

Q Valve 3

Figure 5.4: System of two tanks connected in series - control example.

Constants Value Units
Q 0.3 m3/min

C0 0.15 m2.5/min

C1 0.15 m2.5/min

C2 0.15 m2.5/min

C3 0.15 m2.5/min

A 0.5 m2

Table 5.1: Constants in the two tanks control model.

55

Chapter 5. Supervisory Control of Discrete-Event Dynamic Systems

5.3.1 Model Derivation

The model derivation is similar to the HAZOP case study considered in Chapter
4. Now, there are 4 valves in the system i.e. u = (W0 W1 W2 W3). This
means that there are a total of 24 = 16 discrete inputs. For example, the input
u = (1 0 0 1) represents the case where both the inlet valves tanks are open but
both outlet valves are closed.

The model in Equations 4.3 are modified to incorporate the extra inlet valve
W3.

A
dH1

dt
= W0Q−W1C1sgn(H1 −H2)

√
|H1 −H2|

A
dH2

dt
= W3Q+W1C1sgn(H1 −H2)

√
|H1 −H2| −W2C2

√
H2

(5.5)

where, sgn represents the sign function.
In the HAZOP case, only a single input was considered for analysis, where all

valves were considered to be open. In this case, however, the different inputs are to
be used for control purposes. The next section discusses how (and if) the different
inputs can force various transitions among the 25 hypercubes.

5.3.2 Getting the forceability graph

The task here is to find all the forceable transitions between adjacent hypercubes
using the different discrete inputs. As was discussed in Section 5.2.3, finding
forceable transitions involves checking for moving and preventing inputs, for the
given pair of hypercubes.

According to the discussion in Section 5.2.2, finding these inputs boils down
to checking the values of f r at various points and boundaries in the state-space, for
a given pair of adjacent hypercubes and a given discrete input. The task of finding
all forceable transitions can be accomplished by a code that does this for every pair
of adjacent discrete states and for each discrete input.

In this case there are 25 discrete states and 16 discrete inputs. Presenting the
analysis for every possible combination of discrete state pairs and discrete inputs
is infeasible. Since this is a fairly simple case, however, most of the forceable
transitions can be ascertained intuitively, as follows.

It can be seen the input u = (1 0 0 0) causes Tank 1 to fill up without affecting
the level in Tank 2. This is because only the Tank 1 inlet valve is open while
all others are closed. This implies that all transitions where only Tank 1 level is
increasing are forceable with u = (1 0 0 0), as shown in Figure 5.5.

56

5.3 Case study: Two Tanks extended

H
2

(m)

H
1
(m)

(1,5)

(1,1) (5,1)

(5,5)

0
0

1.9

3.6

4.5

6.5

7.5

1 3 4 6 7

Figure 5.5: Forceable transitions for u = (1 0 0 0), shown with green arrows.

This can also be verified by checking the sign of f r. For u = (1 0 0 0), the
model equations are:

f1 =
dH1

dt
=
Q

A
= 0.3 > 0

f2 =
dH2

dt
= 0

Since f1 > 0 everywhere in the state-space, the input is moving for all transitions
in the positive H1 direction, and preventing for all transitions in the negative H1

direction. And f2 = 0 everywhere in the state-space, which implies that the input
is preventing for all transitions in the H2 direction. Thus all transitions in the
positive H1 direction are forceable with the input u = (1 0 0 0), as shown in
Figure 5.5.

It can also be seen that the input u = (0 0 0 1) causes Tank 2 to fill up without
affecting the level in Tank 1, since only the inlet valve of Tank 2 is open while all
other valves are closed. Moreover, the input u = (0 0 1 0) causes Tank 2 to drain
without affecting the level in Tank 1, since only the outlet valve of Tank 2 is open
while all other valves are closed.

This means that all transitions in the positive H2 direction are forceable with
u = (0 0 0 1), whereas all the transitions in the negativeH2 direction are forceable
with u = (0 0 1 0), as shown in Figure 5.6.

57

Chapter 5. Supervisory Control of Discrete-Event Dynamic Systems

H
2

(m)

H
1
(m)

(1,5)

(1,1) (5,1)

(5,5)

0
0

1.9

3.6

4.5

6.5

7.5

1 3 4 6 7

Figure 5.6: The transitions in the positive H2 direction are forceable with u = (0 0 0 1),
and the transitions in the negative H2 direction are forceable with u = (0 0 1 0).

Verifying this through the gradient information, for u = (0 0 0 1):

f1 =
dH1

dt
= 0

f2 =
dH2

dt
=
Q

A
= 0.3 > 0

Since f2 > 0 everywhere, the input is moving for all transitions in the positive H2

direction. Since f1 = 0 everywhere, the input is also preventing for all transitions
in the H1 direction. Thus it can be seen that all transitions in the positive H2

direction are forceable with u = (0 0 0 1).
For u = (0 0 1 0):

f1 =
dH1

dt
= 0

f2 =
dH2

dt
= −C2

√
H2 < 0

Again, it can be seen that all transitions in the negative H2 direction are forceable
with u = (0 0 1 0).

58

5.3 Case study: Two Tanks extended

From the preceding analysis, it is clear that all transitions in the positive H1,
positive H2 and negative H2 directions are forceable. The analysis is interesting
for finding inputs that can force transitions in the negative H1 direction.

Tank 1 has no ‘drain’ valve since the flow through the outlet valve of Tank 1
depends on the difference in heights of the two tanks. So if H2 > H1 and the
outlet valve on Tank 1 is open, the flow will be into Tank 1, increasing its level 2.
Thus it is clear that transitions in the negative H1 direction are not possible with
any input if H2 > H1. This is to say that the level in Tank 1 cannot be decreased
if it is lower than the level in Tank 2.

IfH1 > H2, transitions in the negative H1 direction may be possible under the
following circumstances:

• The Tank 1 inlet valve should obviously be in the ‘closed’ position, to avoid
increase in H1.

• The Tank 1 outlet valve should be in the ‘open’ position to allow for the
decrease in H1.

• The Tank 2 inlet valve should be in the ‘closed’ position to avoid H2 > H1.

• The Tank 2 outlet valve should be open to prevent the tendency of H2 to
increase simultaneously along with decrease in H1 (recall that to force tran-
sitions in the negativeH1 direction, all transitions in theH2 direction should
be preventable).

Thus, the input u = (0 1 1 0) is the best bet to force transition in the negative H1

direction, provided H1 > H2. Note that even if H1 > H2, the input u = (0 1 1 0)
may not be able to force all transitions in the negative H1 direction, because in
some cases it might not be able to prevent transitions in the H2 direction.

For u = (0 1 1 0), the model equations become:

A
dH1

dt
= −C1sgn(H1 −H2)

√
|H1 −H2|

A
dH2

dt
= C1sgn(H1 −H2)

√
|H1 −H2| − C2

√
H2

The derivatives are set to zero and the following equilibrium lines result after sim-
plification:

H2 = H1

H2 = 0.5H1

2Again, recall that the terms inlet and outlet valves refer to the locations of the valves and not the
flow direction through the valve.

59

Chapter 5. Supervisory Control of Discrete-Event Dynamic Systems

The exact transitions that can be forced in the negative H1 direction by u =
(0 1 1 0) are shown in Figure 5.7.

H
2

(m)

H
1
(m)

(1,5)

(1,1) (5,1)

(5,5)

0
0

1.9

3.6

4.5

6.5

7.5

1 3 4 6 7

Ḣ1=0

Ḣ2=0

f 2<0

f 2>0

f 1>0 f 1<0

Figure 5.7: The forceable transitions for u = (0 1 1 0), shown in green arrows. The
equilibrium lines in the model in case of u = (0 1 1 0) are also shown, with the red
and blue arrows indicating the tendency of the state to move towards the corresponding
equilibrium lines.

The possibility for forceable transitions in the negative H1 direction can only
be checked for those hypercubes where H1 > H2. Further, those hypercubes
through which the Ḣ1 = 0 equilibrium line passes are ruled out since these corre-
spond to Type 3 transitions in the H1 direction. This leaves the hypercubes (5, 3),
(5, 2), (5, 1), (4, 2), (4, 1) and (3, 1) as the ‘eligible’ hypercubes for checking for
forceable transitions in the negative H1 direction.

Consider the hypercube (4, 2) in Figure 5.7. The hypercubes adjacent to (4, 2)
are the hypercubes (5, 2), (3, 2), (4, 1) and (4, 3). The red arrows indicate the
tendency of the state to move towards the red equilibrium line. Since f1 < 0
everywhere in this hypercube, the input u = (0 1 1 0) is moving for the transition
(4, 2)→ (3, 2) and preventing for the transition (4, 2)→ (5, 2).

Further it can be seen that the blue equilibrium line Ḣ2 = 0 lying within the
hypercube (4, 2), lies entirely within the boundaries of the hypercube in the H2

direction i.e. between the 1.9 m and 3.6 m boundaries of Tank 2. Since the state
has a tendency to move towards this blue equilibrium line, it means that the input
u = (0 1 1 0) will prevent the state from leaving the hypercube (4, 2) in the H2

60

5.3 Case study: Two Tanks extended

direction i.e. the input is preventing for the (4, 2) → (4, 3) and (4, 2) → (4, 1)
transitions. This can also be verified from the gradient information. Since f2 > 0
at the boundary between the hypercubes (4, 2) and (4, 1), the input is preventing
for the transition (4, 2) → (4, 1). And since f2 < 0 at the boundary between
the hypercubes (4, 2) and (4, 3), the input is preventing for the transition (4, 2)→
(4, 3).

In conclusion, the transition (4, 2) → (3, 2) is forceable with the input u =
(0 1 1 0), since it is moving for this transition while also being preventing for
transitions to all other hypercubes adjacent to (4, 2). A similar analysis for all
the ‘eligible’ hypercubes reveals that only the transition (4, 2) → (3, 2) and the
transition (5, 2)→ (4, 2) are forceable with u = (0 1 1 0), as shown in Figure 5.7.

Combining the results from Figures 5.5, 5.6 and 5.7, the forceability graph
can be constructed, as shown in Figure 5.8. All transitions in the positive H1

direction are forceable with the input u = (1 0 0 0). All transitions in the positive
H2 direction are forceable with the input u = (0 0 0 1). All transitions in the
negative H2 direction are forceable with the input u = (0 0 1 0). Finally, those
transition that are forceable in the negative H1 direction are forceable with the
input u = (0 1 1 0).

(1,5)

(1,4)

(1,3)

(1,2)

(1,1)

(2,5)

(2,4)

(2,3)

(2,2)

(2,1)

(3,5)

(3,4)

(3,3)

(3,2)

(3,1)

(4,5)

(4,4)

(4,3)

(4,2)

(4,1)

(5,5)

(5,4)

(5,3)

(5,2)

(5,1)

H
1
(m)

H
2

(m)

Figure 5.8: The resulting forceability graph for the two tanks system.

61

Chapter 5. Supervisory Control of Discrete-Event Dynamic Systems

5.3.3 Reachability

Now, the reachability specification can be realized in a way similar to what was
shown in the simple reachability example of Section 5.1. Suppose that the reacha-
bility specification states that the system needs to be steered from the starting point
within hypercube (5, 5) to a target hypercube (4, 4). The Dijkstra’s algorithm for
the ‘shortest path’ can be applied for this forceability graph for the given initial
and target states. Note that all transitions are given equal weights here, since there
is no reason to believe that one transition is better than the other. However, if there
is a more precise specification where different transitions are weighted differently,
this can be handled by the algorithm.

The following sequence results:

Hx(5, 5)
(0,0,1,0)−−−−−→ Hx(5, 4)

(0,0,1,0)−−−−−→ Hx(5, 3)
(0,0,1,0)−−−−−→ Hx(5, 2)

(0,1,1,0)−−−−−→ Hx(4, 2)
(0,0,0,1)−−−−−→ Hx(4, 3)

(0,0,0,1)−−−−−→ Hx(4, 4)

A supervisor can thus be synthesized such that the following input sequence is im-
plemented: (0, 0, 1, 0), (0, 0, 1, 0), (0, 0, 1, 0), (0, 1, 1, 0), (0, 0, 0, 1), (0, 0, 0, 1).

The first three transitions correspond to decrease in the level of Tank 2 by
opening the Tank 2 outlet valve. Then the Tank 1 outlet valve is opened to exploit
the height differential to decrease the level in Tank 1 to the desired level, but the
Tank 2 outlet valve is also simultaneously kept open to prevent Tank 2 level from
rising and reducing this height differential. When Tank 1 reaches the desired level,
both outlet valves are closed and the Tank 2 inlet valve is opened to get the desired
level in Tank 2.

As another example, to steer the system from hypercube (5, 5) to (3, 3), the fol-
lowing input sequence would be implemented: (0, 0, 1, 0), (0, 0, 1, 0), (0, 0, 1, 0),
(0, 1, 1, 0), (0, 1, 1, 0), (0, 0, 0, 1).

62

5.4 Some pertinent issues

5.4 Some pertinent issues

5.4.1 Use of correcting inputs

The preventing input is suitable for use when the sensor emits a signal instanta-
neously when a hypercube boundary is reached. The application of the preventing
input is also assumed to be immediate. Practically though, such instantaneous re-
lay of signals is not realizable by most sensors. If there is even a slight delay in
relay of the signal, or if control action cannot be applied immediately, the state will
cross the hypercube boundary and make the undesirable transition. In these cases,
since prevention is not possible, the transitions need to be corrected.

A correcting input corrects a transition that has just occurred. This input steers
the state back into the original hypercube. To use this input, it is sufficient to
identify that a transition has taken place between two hypercubes. This control
action need not be instantaneous. The correcting input is shown in Figure 5.9.

(1,1)

(1,2) (2,2)

(2,1)x0

u

uc

Figure 5.9: The input uc is correcting for the transition Hx((1, 1))→ Hx((2, 1)).

As discussed previously, for a given discrete input, the transition x̃1 → x̃2 is
possible if f r > 0 at some point on the boundary surface between the hypercubes.
It follows that the reverse transition will happen for a given discrete input if f r < 0
for all points on the boundary.

Definition 5.4. (Philips et al., 2003) An input u ∈ Ũ is correcting for the transition
x̃1 → x̃2 if

f r(x, u) < 0, ∀x ∈ Hx(x̃1) ∩Hx(x̃2) (5.6)

Like in the case of moving inputs, this should not be interpreted as the con-
dition for an input to correct a transition. This is because the reverse transition
x̃2 → x̃1 is also possible if f r < 0 at some point (instead of all points) on the
boundary surface between the hypercubes. Again, though, it is assumed that this
does not happen and such a possibility is excluded when defining the correcting
input. Note that the inequality here is strict.

63

Chapter 5. Supervisory Control of Discrete-Event Dynamic Systems

5.4.2 Other control strategies

The notion of forceability as defined in this chapter requires that all undesirable
transitions be preventable for a particular transition between hypercubes to be
forceable. This limits the scope of control actions. In some cases, a better con-
trol strategy is to force transitions between different subregions of the state-space
rather than forcing transitions between particular discrete states themselves.

Consider the subregions A, B and C of the state-space as shown in Figure
5.10. There exists no forceable path from the discrete state a1 to c1. Thus a
‘shortest path’ algorithm cannot be employed.

a
2

a
3

a
1

b
1

b
2

b
3

c
1

A B C

Figure 5.10: Control using forceable transitions between subregions of state-space. The
arrows in green show forceable transitions between the shown discrete states. The black
dashed arrows show transitions for which moving inputs exist, but cannot be forced.

The transitions a1 → a2 and a1 → a3 cannot be forced, but if they were
to happen, then the subsequent transitions a2 → a1 or a3 → b2 can be forced.
Similarly, the transitions b1 → b3 and b2 → b3 cannot be forced, but if they were
to happen, the subsequent transition b3 → c1 can be forced and the target state can
be reached.

Thus the supervisor should ‘allow’ for transitions to states, from where sub-
sequent transitions into other subregions ‘closer’ to the target can be forced. The
supervisor thus forces transitions between subregions rather than between states.
In the above example, the subregion transitions A→ B and B → C can be forced
by the supervisor. Further details and a more comprehensive analysis can be found
in Philips (2001).

64

5.4 Some pertinent issues

5.4.3 Note on formal verification

The discrete-event equivalent of the plant and the supervisor follow a feedback
control scheme as shown in Figure 5.11. Both the plant (G) and the supervisor
(S) follow discrete-event dynamics and can be modelled as automata. The output
of the plant is the input to the supervisor whereas the output of the supervisor is the
input to the plant. This will be reflected in the individual automata representation
of the plant and the supervisor.

Supervisor
(DEDS)

Plant
(DEDS)

Plant
states

Plant
inputs

Figure 5.11: The plant-supervisor feedback loop.

The interesting thing to note here is that the two automata can be combined
to form a single plant-supervisor automaton. The properties of this automaton
can then be studied using formal verification of models. Stated simply, given a
combined automaton S/G (where S/G denotes G under the supervision of S) and
given a property P , the aim of the formal verification is to check whether S/G
satisfies P , in an automated way.

Examples of properties that can be checked are the so-called ‘blocking’ proper-
ties of deadlock and livelock. A deadlock is when the system reaches a state in the
automaton where no further transition is possible. A livelock is when the systems
reaches a set of states that cannot be escaped, meaning that there is no transition
going out of the set. The combined automaton can be checked for transitions that
can lead to such deadlocks or livelocks.

The formal verification of the combined automaton ensures efficient supervisor
synthesis. Verification techniques have been widely studied in literature (Huuck
et al., 2002; Kowalewski, 2002; Tripakis and Dang, 2009; Wang, 2006).

65

Chapter 5. Supervisory Control of Discrete-Event Dynamic Systems

5.4.4 Note on the ‘Ramadge-Wonham’ framework

Supervisory control of DEDS has been studied extensively in literature. The foun-
dation has been laid by P. J. Ramadge and W. M. Wonham in the late 1980s in
what is now called as the ‘Supervisory Control Theory’ (SCT) or the ‘Ramadge-
Wonham’ (RW) framework (Ramadge and Wonham, 1987a,b; Wonham, 1989).
This theory is based on automata and language models of the DEDS (Cassandras
and Lafortune, 2010; Hopcroft et al., 2006).

In the RW framework, logical models of DEDS are studied i.e. chronolog-
ical time is not considered. The process described by an automaton G evolves
through different discrete states, brought on by events. The events are assumed to
be generated spontaneously by the process. The behaviour of such a process is thus
described by a sequence of events. Such a behaviour is modelled as an untimed
language over the alphabet of events (see Chapter 3). The behaviour is denoted as
L(G).

The objective of the RW framework is to design a supervisor S for a given ‘un-
controlled’ process G such that the supervised process (S/G) behaves according
to given specifications. The supervisor does this by restricting the behaviour of the
process to a subset of L(G). That is, the supervisor has the ability to disable some
of the events that are being generated by process so as to modify the behaviour of
the process. The framework also incorporates the fact that not all events may be
‘observable’ to the supervisor and not all observable events may be ‘controllable’
to the supervisor. It also formalizes the ‘controllability’ property i.e. the condition
for the existence of a supervisor.

The framework has been extended for hierarchical supervision (Wong and
Wonham, 1996; Zhong and Wonham, 1990) and decentralized control (Lin and
Wonham, 1988a). Further additions to the framework have been proposed in Kout-
soukos et al. (2000); Kumar and Garg (1995); Stiver et al. (1996); Thistle (1996)
and Charbonnier et al. (1999).

The RW framework, however, proposes supervisor synthesis methods based
only on the the discrete-event models of the systems i.e. it is based purely on
automata and corresponding languages. This makes it attractive for systems that
are purely discrete, like scheduling, queueing, communications, etc.

In context of this report, however, the focus is on discrete-event equivalents
of continuous plants (Section 2.2). This means that, in addition to information
about the ‘discretized’ plant behaviour through an automaton, knowledge about
the plant’s underlying continuous dynamics can also be exploited in designing the
supervisor. The RW framework has no such provision to exploit information that
can be obtained from the continuous origin of the automaton.

Furthermore, it can be seen from Section 3.2 that automata obtained from con-
tinuous systems have a high degree of non-determinism associated with them (re-

66

5.4 Some pertinent issues

call that the DEDS equivalent of the continuous plant is a Mealy automaton). This
is because in the discretized state-space described by hypercubes, an input may
cause a state to transition to one of multiple adjacent hypercubes in the state-space.
This also makes the RW framework unsuitable for controller synthesis in such sys-
tems.

The preceding discussion is meant to give only a superficial overview of the
RW framework and why it is not suitable for synthesizing supervisors for the kind
of systems that are studied in this report. It is, nonetheless, important to mention
the RW framework in context of the topic of this thesis because it is the most
widely cited theory when it comes to supervisory control of discrete-event systems.

67

Chapter 5. Supervisory Control of Discrete-Event Dynamic Systems

68

Chapter 6
Conclusion and further work

Discrete-event dynamic systems that are abstracted from continuous systems are
the focus of this thesis. The thesis discusses DEDS in context of three issues:
modelling, analysis and control.

Modelling

DEDS are based on the premise of sampling events rather than time. The continu-
ous state-space is discretized by event sensors into hypercubes that correspond to
different discrete states. The framework for modelling such DEDS derived from
continuous systems is presented, where the models are automata. The formalism
involves the discretization of the state-space , discretization of the input-space and
obtaining the transition function of the automaton. For the latter, gradient informa-
tion from the original continuous dynamics, described by differential equations, is
used. Implementation is fairly straightforward in that the gradient information can
be easily obtained from the knowledge of the component equilibrium hypersur-
faces, obtained by setting the derivatives in the continuous model to zero.

The computational cost of this procedure can be reduced by exploiting the
spareness that is inherent in most continuous plant systems. Another way to re-
duce the computational effort is to modify the modelling procedure with the use of
selective finer discretization to increase resolution in parts of the state-space. The
automated nature of this procedure allows for ‘switching’ between different au-
tomata representing different regions in the state-space. A limitation of the frame-
work is when the state trajectory passes through a point belonging to more than
two hypercubes, since such a continuous trajectory cannot be represented by a
fixed sequence of discrete transitions.

69

Chapter 6. Conclusion and further work

Analysis

The analysis presented in this thesis is the hazard and operability (HAZOP) anal-
ysis. The DEDS approach is a viable option for conducting quantitative HAZOP
analysis in plants where low-frequency, high-risk hazards may be caused by com-
bination of different failures. It provides a framework that forms an important part
of the overall plant automation scheme. A region of safe operability is defined as
part of this analysis. Detection of potential movements out of the safe operability
region - so-called leaks - can be done with the help of the transition information
available from the automaton model of the plant.

The quantitative HAZOP analysis is demonstrated through a benchmark case
of two tanks connected in series. It is also shown how the selected state-space dis-
cretization and the chosen safe operability region affect the ability of the automaton
to detect regions of potential leaks. An important conclusion is that while some
hypercubes can be definitely identified as having positive or negative transitions
with respect to a state-component, some others will always represent uncertainty
in transitions - the so-called Type 3 transitions. It might be necessary to resort to
selective finer discretization of such hypercubes to get higher accuracy.

Further it is important to account for model robustness when choosing the
safe operability region - the safe region may have to be ‘shrunk’ to counter the
inaccuracies in the model. Also, leaks may be eliminated by changing the inputs
to ‘move’ the equilibrium hypersurfaces.

Control

With respect to the control hierarchy in a plant, the supervisory control of DEDS is
discussed in this thesis. Synthesis of a supervisor involves defining a specification
for the desired behaviour of the system, devising a control strategy to meet the
desired specification and finally designing the supervisor according to the chosen
control strategy. The reachability specification - steering the system from given
initial state to a target state - is used for demonstrating the control strategy and
supervisor design. The use of Dijkstra’s ‘shortest path’ algorithm for directed
graphs in shown on a simple reachability example to give a flavour of the procedure
that has to be followed.

It is emphasized that when devising control strategies for DEDS abstracted
from continuous systems, it is worthwhile to use the gradient information available
from the underlying continuous dynamics rather than relying purely on the au-
tomaton model of the plant. The relevance of the widely cited ‘Ramdge-Wonham’
framework for supervisory control of discrete-event systems is discussed in this
context. The control actions through the so-called preventing, correcting and mov-
ing inputs can be used to ‘force’ certain transitions in the discretized state-space.

70

6.1 Further work

All the forceable transitions define a forceability graph on which the Dijkstra’s
algorithm can be used to find the sequence of inputs that the supervisor needs to
implement.

The case study of two tanks from HAZOP is extended with some modifications
in this control discussion. The forceability graph can be obtained by systematically
checking the gradients at various points and boundaries in the state-space, for var-
ious discrete inputs. An intuitive explanation of the two tanks forceability graph is
presented, and reachability in this context is discussed. Control strategies can also
be devised such that transitions between different subregions - rather than states -
are forced by the supervisor.

6.1 Further work

When it comes to modelling, the presented formalism has some limitations that
are discussed. Specifically, the continuous state trajectory is assumed not to pass
through a point belonging to more than two hypercubes. The methodology can be
developed further so as to relax this assumption.

Further, a more practical case study representing some complex process in
the industry can be developed, and the utility of the presented methodologies, es-
pecially HAZOP, can be studied. The use of DEDS models can be extended to
incorporate logistical aspects of the process plant, for example the automation of
the supply chain.

Concerning supervisory control, better control strategies can be formulated and
specifications other than reachability can be considered. The formal verification
for the kind of plant-supervisor automata discussed in this report has not been cov-
ered in literature, although the background automata theory has been extensively
developed. A major avenue of further research in this domain is to use this devel-
oped automata theory to do the formal verification of supervisors synthesized for
DEDS abstracted from continuous plants.

Finally, only untimed models of DEDS were considered in this work. The time
information can be incorporated into the automaton - the so-called timed automa-
ton. The time it takes for a state trajectory to cross two different boundaries of
the same hypercube (entry and exit) can be ascertained, providing information on
the transitions from the hypercube that take maximum and minimum times. This
information can be used to devise better control strategies where time is a factor in
the given control specification.

71

Chapter 6. Conclusion and further work

6.2 Final remarks

Discrete-event dynamic systems can easily be abstracted from real continuous
plants. The models of these systems can be used in the industry for a variety
of important analyses, particularly related to safety issues in plants. The control of
plants based on these models is not only easy, but also cheap, to implement.

The biggest advantage of using the DEDS approach is that it is very exhaus-
tive in it’s scope, while hardly requiring any human intervention. In a world that is
becoming increasingly automated, the methodologies presented in this work defi-
nitely point in the direction of the automation of the process industry.

72

Bibliography

Blanchini, F., 1999. Set invariance in control. Automatica 35, 1747–1767.

Bouyer, P., Chevalier, F., D’Souza, D., 2005. Fault Diagnosis Using Timed Au-
tomata. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 219–233.
URL http://dx.doi.org/10.1007/978-3-540-31982-5_14

Cassandras, C. G., Lafortune, S., 2010. Introduction to Discrete Event Systems.
Springer US.

Chang, C.-T., Chen, C. Y., 2011. Fault diagnosis with automata generated lan-
guages. Computers & Chemical Engineering 35 (2), 329 – 341.
URL http://www.sciencedirect.com/science/article/pii/
S0098135410003285

Charbonnier, F., Alla, H., David, R., March 1999. The supervised control of
discrete-event dynamic systems. IEEE Transactions on Control Systems Tech-
nology 7 (2), 175 – 187.

Crawley, F., Preston, M., Tyler, B., of Chemical Engineers (Great Britain), I., Cen-
tre, E. P. S., 2000. HAZOP: Guide to Best Practice : Guidelines to Best Practice
for the Process and Chemical Industries. Institution of Chemical Engineers.

Dijkstra, E. W., Dec. 1959. A note on two problems in connexion with graphs.
Numer. Math. 1 (1), 269–271.
URL http://dx.doi.org/10.1007/BF01386390

Dunj, J., Fthenakis, V., Vlchez, J. A., Arnaldos, J., 2010. Hazard and operability
(hazop) analysis. a literature review. Journal of Hazardous Materials 173 (13),
19 – 32.
URL http://www.sciencedirect.com/science/article/pii/
S0304389409013727

73

http://dx.doi.org/10.1007/978-3-540-31982-5_14
http://www.sciencedirect.com/science/article/pii/S0098135410003285
http://www.sciencedirect.com/science/article/pii/S0098135410003285
http://dx.doi.org/10.1007/BF01386390
http://www.sciencedirect.com/science/article/pii/S0304389409013727
http://www.sciencedirect.com/science/article/pii/S0304389409013727

Eppstein, D., 2002. Dijkstra’s algorithm for shortest paths (python
recipe). http://code.activestate.com/recipes/
119466-dijkstras-algorithm-for-shortest-paths/ [On-
line: accessed 20 June 2017].

Hopcroft, J. E., Motwani, R., Ullman, J. D., 2006. Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Huuck, R., Lukoschus, B., Frehse, G., Engell, S., 2002. Compositional verification
of continuous-discrete systems. In: Engell, S., Frehse, G., Schnieder, E. (Eds.),
Modelling, Analysis, and Design of Hybrid Systems, Lecture Notes in Control
and Information Science. Springer, pp. 225–246.

IEC 61882:2001, 2001. Hazard and operability studies (HAZOP studies) Appli-
cation guide. Standard, International Electrotechnical Commission.

Koutsoukos, X., Antsaklis, P., Stiver, J., Lemmon, M., 2000. Supervisory control
of hybrid systems. Proceedings of the IEEE 88 (7).

Kowalewski, S., 2002. Introduction to the analysis and verification of hybrid sys-
tems. In: Engell, S., Frehse, G., Schnieder, E. (Eds.), Modelling, Analysis, and
Design of Hybrid Systems, Lecture Notes in Control and Information Science.
Springer, pp. 153–173.

Kumar, R., Garg, V., 1995. Modeling and Control of Logical Discrete Event Sys-
tems. Springer US.

Lin, F., Wonham, W., December 1988a. Decentralized control and coordination of
discrete-event systems. Proceedings of the 27th IEEE Conference on Decision
and Control.

Lin, F., Wonham, W., 1988b. Decentralized supervisory control of discrete-event
systems. Information Sciences 44 (3), 199 – 224.
URL http://www.sciencedirect.com/science/article/pii/
0020025588900023

Lunze, J., Mar. 1994. Qualitative modelling of linear dynamical systems with
quantized state measurements. Automatica 30 (3), 417–431.
URL http://dx.doi.org/10.1016/0005-1098(94)90119-8

Lunze, J., 1999. A timed discrete-event abstraction of continuous-variable sys-
tems. International Journal of Control 72 (13), 1147 – 1164.

74

http://code.activestate.com/recipes/119466-dijkstras-algorithm-for-shortest-paths/
http://code.activestate.com/recipes/119466-dijkstras-algorithm-for-shortest-paths/
http://www.sciencedirect.com/science/article/pii/0020025588900023
http://www.sciencedirect.com/science/article/pii/0020025588900023
http://dx.doi.org/10.1016/0005-1098(94)90119-8

Lunze, J., 2000. Diagnosis of quantised systems by means of timed discrete-event
representations. In: Lynch, N., Krogh, B. H. (Eds.), Hybrid Systems: Compu-
tation and Control: Third International Workshop, HSCC 2000 Pittsburgh, PA,
USA, March 23–25, 2000 Proceedings. Springer Berlin Heidelberg, Berlin, Hei-
delberg, pp. 258–271.
URL http://dx.doi.org/10.1007/3-540-46430-1_23

Lunze, J., Raisch, J., 2002. Discrete models for hybrid systems. In: Engell, S.,
Frehse, G., Schnieder, E. (Eds.), Modelling, Analysis, and Design of Hybrid
Systems, Lecture Notes in Control and Information Science. Springer, pp. 76–
80.

Lunze, J., Steffen, T., 2002. Hybrid reconfigurable control. In: Engell, S., Frehse,
G., Schnieder, E. (Eds.), Modelling, Analysis, and Design of Hybrid Systems,
Lecture Notes in Control and Information Science. Springer, pp. 267–284.

Philips, P., Heemels, W., Preisig, H., Bosch, P. V. D., 2003. Control of quantized
systems based on discrete event models. International Journal of Control 76 (3),
277 – 294.

Philips, P., Weiss, M., Preisig, H. A., 1999a. Control based on discrete-event mod-
els of continuous systems. Proceedings of the European Control Conference,
Karlsruhe, Germany.

Philips, P., Weiss, M., Preisig, H. A., 1999b. A design strategy for discrete control
of continuous systems. Proceedings of the 1999 American Control Conference,
San Diego, USA, 2097–2101.

Philips, P. P., 2001. Modelling, control and fault detection of discretely-observed
systems. Ph.D. thesis, TU Eindhoven, Eindhoven, The Netherlands.

Preisig, H. A., 1996. A mathematical approach to discrete-event dynamic mod-
elling of hybrid systems. Computers & Chemical Engineering 20, S1301 –
S1306.
URL http://www.sciencedirect.com/science/article/pii/
0098135496002244

Preisig, H. A., Manenti, F., 2012. HAZOP an automaton-inspired approach. In:
Proceedings of the 22nd European Symposium on Computer Aided Process En-
gineering, 17 20 June 2012, London.

Ramadge, P., Wonham, W., January 1987a. The control of discrete event systems.
Proceedings of the IEEE 77 (1), 81–98.

75

http://dx.doi.org/10.1007/3-540-46430-1_23
http://www.sciencedirect.com/science/article/pii/0098135496002244
http://www.sciencedirect.com/science/article/pii/0098135496002244

Ramadge, P., Wonham, W., 1987b. Supervisory control of a class of discrete event
processes. Control and Optimization 25 (1), 206–230.

Reisig, W., 1985. Petri Nets: An Introduction. Springer-Verlag New York, Inc.,
New York, NY, USA.

Santina, M. S., Stubberud, A. R., Hostetter, G. H., 2010. Discrete-Time Equiva-
lents to Continuous-Time Systems. In: Levine, W. S. (Ed.), The Control Hand-
book. CRC Press, Ch. 13.

Skoldstam, M., Akesson, K., Fabian, M., 2007. Modeling o f Discrete Event Sys-
tems using Finite Automata With Variables. In: Proceedings of the 46th IEEE
Conference on Decision and Control, 12 14 Dec 2007, New Orleans, LA, USA.

Srinivasan, R., Venkatasubramanian, V., 1996. Petri net-Digraph models for au-
tomating HAZOP analysis of batch process plants. Computers & Chemical En-
gineering 20, S719 – S725.
URL http://www.sciencedirect.com/science/article/pii/
0098135496001299

Stiver, J., Antsaklis, P., Lemmon, M., 1996. A logical des approach to the design
of hybrid control systems. Mathematical and Computer Modelling 23 (11), 55 –
76.
URL http://www.sciencedirect.com/science/article/pii/
0895717796000647

Thistle, J., 1996. Supervisory control of discrete event systems. Mathematical and
Computer Modelling 23 (11), 25 – 53.
URL http://www.sciencedirect.com/science/article/pii/
0895717796000635

Thomas Marlin, 2014. Safety. In: Operability in process design: Achieving safe,
profitable, and robust process operations. McMaster University, Ch. 5.

Thombre, M. N., Preisig, H. A., October 2017. Use of discrete-event dynamic
systems for hazop analysis. Proceedings of the 27 th European Symposium on
Computer Aided Process Engineering ESCAPE 27.

Tousi, M. M., Karuei, I., Hashtrudi-Zad, S., Aghdam, A. G., 2008. Supervisory
control of switching control systems. Systems & Control Letters 57 (2), 132 –
141.
URL http://www.sciencedirect.com/science/article/pii/
S0167691107001077

76

http://www.sciencedirect.com/science/article/pii/0098135496001299
http://www.sciencedirect.com/science/article/pii/0098135496001299
http://www.sciencedirect.com/science/article/pii/0895717796000647
http://www.sciencedirect.com/science/article/pii/0895717796000647
http://www.sciencedirect.com/science/article/pii/0895717796000635
http://www.sciencedirect.com/science/article/pii/0895717796000635
http://www.sciencedirect.com/science/article/pii/S0167691107001077
http://www.sciencedirect.com/science/article/pii/S0167691107001077

Tripakis, S., 2002. Fault Diagnosis for Timed Automata. In: Damm, W., Olderog,
E. R. (Eds.), Formal Techniques in Real-Time and Fault-Tolerant Systems: 7th
International Symposium, FTRTFT 2002 Co-sponsored by IFIP WG 2.2 Old-
enburg, Germany, September 9–12, 2002 Proceedings. Springer Berlin Heidel-
berg, Berlin, Heidelberg, pp. 205–221.
URL http://dx.doi.org/10.1007/3-540-45739-9_14

Tripakis, S., Dang, T., 2009. Modeling, verification and testing using timed and
hybrid automata. In: Nicolescu, G., Mosterman, P. J. (Eds.), Model-Based De-
sign for Embedded Systems. CRC Press.

Ushio, T., Takai, S., 2009. Supervisory control of discrete event systems modeled
by mealy automata with nondeterministic output functions. Transactions of the
Institute of Systems, Control and Information Engineers 22 (4), 154–160.

Wang, F., 2006. Symbolic implementation of model-checking probabilistic timed
automata. Ph.D. thesis, The University of Birmingham, Birmingham, United
Kingdom.

Wong, K. C., Wonham, W. M., 1996. Hierarchical control of discrete-event sys-
tems. Discrete Event Dynamic Systems 6 (3), 241–273.
URL http://dx.doi.org/10.1007/BF01797154

Wonham, W. M., 1989. On the control of discrete-event systems. In: Nijmeijer, H.,
Schumacher, J. M. (Eds.), Three Decades of Mathematical System Theory: A
Collection of Surveys at the Occasion of the 50th Birthday of Jan C. Willems.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 542–562.
URL http://dx.doi.org/10.1007/BFb0008476

Xi, Y.-X., Lim, K.-W., Ho, W.-K., Preisig, H. A., 2001. Fault diagnosis using
dynamic finite-state automaton models. In: Industrial Electronics Society, 2001.
IECON ’01. The 27th Annual Conference of the IEEE. Vol. 1. pp. 484–489
vol.1.

Zhong, H., Wonham, W., October 1990. On the consistency of hierarchical su-
pervision in discrete-event systems. IEEE Transactions on Automatic Control
35 (10), 1125 – 1134.

77

http://dx.doi.org/10.1007/3-540-45739-9_14
http://dx.doi.org/10.1007/BF01797154
http://dx.doi.org/10.1007/BFb0008476

78

Appendix A
Brief description of conventional
HAZOP

This appendix serves as an overview of how HAZOP studies are currently imple-
mented in the industry. HAZOP stands for Hazard and Operability Studies and
these studies were developed in Imperial Chemical Industries (ICI) in the mid-
1960s. A standard (IEC 61882:2001, 2001) for the application guide for HAZOP
has been established by the International Electrotechnical Commission (IEC), an
international standards body. Moreover, Dunj et al. (2010) provides a extensive
literature review on the subject.

There are various tools used for Process Hazard Analyses (PHA). These in-
clude:

• Checklists

• Fault Tree Analysis

• Fault Modes and Effects Analysis

• HAZOP

Out of these, checklists are a relatively less detailed analysis tool whereas the
others are more detailed.

A.1 The basic methodology of HAZOP

As mentioned in Chapter 1, a HAZOP study is a systematic and structured tech-
nique to investigate a process, with the objective of identifying potential hazards

79

and operability issues in the process (Thomas Marlin, 2014). A HAZOP study
is performed by a multidisciplinary team. The team aims to look at meaningful
(physically possible) deviations from the intended design intention 1 by studying
the P&ID diagrams of the process. A key prerequisite of a good HAZOP study is
that the process design, described by the P&ID diagrams must be firm. The team
concentrates on the deviations that could lead to potential hazards to safety, health
or the environment (Crawley et al., 2000). The team also looks for deviations in
operability conditions, in addition to the hazards. This is because operability is-
sues, although not hazardous, may affect factors such as security and economic
profitability.

The team, using intuition, judgment and experience, evaluates the consequences
of those deviations for which a cause can be determined. The consequences are
then measured up against the existing safety mechanisms. If the implemented
safety measures are found to be inadequate, the team makes a written record rec-
ommending a change or calling for a more focused investigation of the problem. A
good HAZOP study also takes into account the changes that might happen during
the lifetime of operation and attempts to identify the problems that may occur at a
later stage in the plant life, or those caused by human error (Crawley et al., 2000).

It is important to note that HAZOP does not implement solutions per se, but
rather allows engineers to identify potential hazards in the design phase of a pro-
cess plant such that adequate safety performance is ensured. The knowledge ob-
tained from HAZOP can be very useful in implementing appropriate solutions to
ensure plant safety.

A.2 The HAZOP study procedure

This section describes the step-by-step HAZOP procedure, shown in Figure A.1.
The first step in the procedure is to formulate a detailed design intention. This

refers not only to the conditions on the process variables but also on other factors
such as plant equipment, materials, control structures, etc.

The next step is to introduce a meaningful deviation. This is done by com-
bining a guideword and a parameter. Some guidewords and their meaning are
shown in Table A.1. Parameters may include flow, pressure, temperature, viscos-
ity, composition, phase, etc. A deviation may be introduced by taking a parameter
and combining it with a guideword too see if a meaningful deviation occurs. This
is referred to as the parameter-first approach. The counter approach is to take a
guideword and apply it to each parameter. This is the guideword-first approach.

1This design intention is usually more limiting than the physical design conditions. The idea of
the intended design intention more descriptive than, but similar to, that of the safe operability region
shown in Figure 4.1.

80

Figure A.1: HAZOP study procedure for a section of operation (Crawley et al., 2000).

81

Guideword Meaning
No (not, none) None of the design intent is achieved

More (more of, higher) Quantitative increase in a parameter
Less (less of, lower) Quantitative decrease in a parameter

As well as (more than) An additional activity occurs
Part of Only some of the design intention is achieved

Reverse Logical opposite of the design intention occurs

Other than (other)
Complete substitution another activity takes place

OR an unusual activity occurs or uncommon
condition exists

Table A.1: Some guidewords and their meanings (Crawley et al., 2000).

Parameter Applicable Guidewords
Flow No, more, less, reverse

Temperature Higher, lower
Pressure Higher, lower

Composition No, more of, less of, more than, other than
Phase No, more of, less of, more than, other than

Time Sequence Sooner, later, longer, shorter

Table A.2: Some HAZOP parameter and guidewords (Thomas Marlin, 2014).

An example of the former is shown in Table A.2. It is obvious than not every
guideword can be combined with a parameter to result in a meaningful deviation,
and these combinations may be avoided.

After identifying a meaningful deviation, the next step is to identify the cause
of that deviation. If the consequences are trivial, the team need not look for causes.
The triviality or the non-triviality of the consequences can be made by evaluating
the acceptable risk, since it involves both frequency and severity. In some cases, it
might be possible to group causes together, but this should only be done when the
team is sure that the consequences are same for every cause (Crawley et al., 2000).

Next, the consequences associated with each cause have to be studied to check
whether they take the system outside intended operation range (Crawley et al.,
2000). This analysis of consequences must include those that are immediate or
delayed, inside or outside the plant section that is under study. The team should be
especially careful to note consequences that appear ‘farther’ from the causes, in a
physical sense.

The next step in the procedure is to analyze the consequences against safe-
guards. One way of doing this is to ignore the existence of existing safety mecha-

82

nism, analyze the worst possible consequences and then measure them up against
the existing safeguards. Another approach is to analyze the consequences by keep-
ing in mind the existing safety mechanisms.

Once the hazards or operability problems are identified, the team may refer
the problem for further investigation. If the team can unanimously agree on a
proposed solution and if they are within their authority to do so, they may make the
recommendation in the written report. The recommended actions may be generic
or specific, but should be unambiguous and non-repetitive (Crawley et al., 2000).
A complete record of the conclusions of the HAZOP study should be made by the
team. The record is typically in form of a detailed form, an example of which is
shown in Table A.3.

All these steps are looped first through all corresponding guidewords corre-
sponding to a parameter and then through each individual parameter (in context of
the parameter-first approach). Once this is done, the HAZOP study for that section
of operation is considered complete.

83

Table A.3: Typical HAZOP form (Thomas Marlin, 2014).

84

A.3 Limitations of conventional HAZOP

Some of the limitations of conventional HAZOP are as follows (Thomas Marlin,
2014):

• The procedure might not identify a low-frequency, high-consequence hazard
caused by multiple, simultaneous failures

• The risks are not quantitatively estimated; thus, considerable judgment is
required in deciding the actions

• Hazards may not be identified for a process fault that influences a nearby
process

• Since HAZOP is typically performed on finished designs or operating pro-
cesses, fundamental changes to chemistry or equipment is usually not pos-
sible, without incurring large costs

• The team may tend to provide overly complex safety barriers, especially
control and SIS systems, that could have low reliability. Also, they might
recommend a large number of alarms

• HAZOP does not evaluate chronic hazards

Additionally, other aspects of HAZOP such as the organizational (team dy-
namics, etc.), managerial (meeting the client, etc.) and company procedures are
covered in literature (Crawley et al., 2000; IEC 61882:2001, 2001).

85

86

Appendix B
Python codes

B.1 Computing automaton

1 ”””
2 B{Course :} TKP4550 Mas te r ’ s T h e s i s
3 B{Task :} Computes an au tomaton w. r . t a s t a t e i n d e x g i v e n

i n t e r s e c t i o n p o i n t s and s t a t e i n d e x
4

5 @author : Mandar Thombre
6 @contac t : mandar t@stud . n tnu . no
7 @ o r g a n i z a t i o n : Depar tmen t o f Chemical E n g i n e e r i n g , NTNU, Norway
8 @since : Nov 1 , 2016
9 @change : June 15 , 2017

10 @version : 1 . 2
11 @todo : s e e comments a t t h e bot tom
12 @ r eq u i r e s : Python v2 . 7
13 ”””
14

15

16 i m p o r t numpy as np
17 i m p o r t copy
18

19 ## Assumpt ion ! For now , I assume I have a l l t h e p o i n t s o f
i n t e r s e c t i o n between h y p e r c u b e s and e q u i l i b r i u m

20 ## h y p e r s u r f a c e s , and t h e y a r e n o t on i n t e r s e c t i o n o f g r i d l i n e s
21

22 c l a s s Gr id :
23

24 d e f i n i t (s e l f , n o o f s t a t e s , b o u n d a r i e s) :
25 s e l f . n o o f s t a t e s = n o o f s t a t e s
26 s e l f . b o u n d a r i e s = b o u n d a r i e s
27 s e l f . p a r t i t i o n s = [l e n ()−1 f o r i n b o u n d a r i e s]

87

28

29 d e f ComputeGridSquare (s e l f , x) :
30 ’ ’ ’
31 Computes t h e g r i d s q u a r e (hype rcube) t h a t a g i v e n p o i n t x l i e s

i n
32 I n d e x i n g of g r i d i n t h i s r e p r e s e n t a t i o n i s { (1 . . n1) X (1 . . n2)

X (1 . . n3) X }
33 ’ ’ ’
34 g r i d i n d e x = [0]∗ s e l f . n o o f s t a t e s
35

36 f o r s t a t e i n d e x i n r a n g e (s e l f . n o o f s t a t e s) :
37 i f min (s e l f . b o u n d a r i e s [s t a t e i n d e x]) < x [s t a t e i n d e x] < max (

s e l f . b o u n d a r i e s [s t a t e i n d e x]) :
38 g r i d i n d e x [s t a t e i n d e x] = np . s e a r c h s o r t e d (s e l f . b o u n d a r i e s [

s t a t e i n d e x] , x [s t a t e i n d e x])
39 e l s e :
40 r a i s e V a l u e E r r o r (” P o i n t o u t s i d e g r i d ! ”)
41

42 r e t u r n g r i d i n d e x
43

44

45 d e f Nex tGr idSqua re (s e l f , g r i d i n d e x , s t a t e i n d e x) :
46 ’ ’ ’
47 Takes t o n e x t g r i d s q u a r e (+ ve) i n t h e g i v e n s t a t e i n d e x
48 ’ ’ ’
49

50 n e w g r i d i n d e x = copy . deepcopy (g r i d i n d e x)
51 i f g r i d i n d e x [s t a t e i n d e x] < s e l f . p a r t i t i o n s [s t a t e i n d e x] :
52 n e w g r i d i n d e x [s t a t e i n d e x] = n e w g r i d i n d e x [s t a t e i n d e x]+1
53 e l s e :
54 r a i s e V a l u e E r r o r (”Can ’ t go f o r w a r d ! Gr id i n t h i s s t a t e

d i r e c t i o n ends h e r e ! ”)
55

56 r e t u r n n e w g r i d i n d e x
57

58 d e f P r e v G r i d S q u a r e (s e l f , g r i d i n d e x , s t a t e i n d e x) :
59 ’ ’ ’
60 Takes t o p r e v i o u s g r i d s q u a r e (−ve) i n t h e g i v e n s t a t e i n d e x
61 ’ ’ ’
62

63 n e w g r i d i n d e x = copy . deepcopy (g r i d i n d e x)
64 i f g r i d i n d e x [s t a t e i n d e x] > 1 :
65 n e w g r i d i n d e x [s t a t e i n d e x] = n e w g r i d i n d e x [s t a t e i n d e x]−1
66 e l s e :
67 r a i s e V a l u e E r r o r (”Can ’ t go backword ! Gr id i n t h i s s t a t e

d i r e c t i o n ends h e r e ! ”)
68

69 r e t u r n n e w g r i d i n d e x
70

88

71 d e f P u l l A p a r t (s e l f , x) :
72 ’ ’ ’
73 P u l l s a p a r t t h e g i v e n p o i n t x i n each s t a t e d i r e c t i o n
74 ’ ’ ’
75 e p s i l o n = 1e−12 #some ve ry s m a l l number
76

77 x p l u s = [0]∗ s e l f . n o o f s t a t e s
78 xminus = [0]∗ s e l f . n o o f s t a t e s
79

80 f o r s t a t e i n d e x i n r a n g e (s e l f . n o o f s t a t e s) :
81 i f x [s t a t e i n d e x] == min (s e l f . b o u n d a r i e s [s t a t e i n d e x]) :
82 x p l u s [s t a t e i n d e x] = x [s t a t e i n d e x]+ e p s i l o n
83 xminus [s t a t e i n d e x] = x [s t a t e i n d e x]+ e p s i l o n
84 i f x [s t a t e i n d e x] == max (s e l f . b o u n d a r i e s [s t a t e i n d e x]) :
85 x p l u s [s t a t e i n d e x] = x [s t a t e i n d e x]− e p s i l o n
86 xminus [s t a t e i n d e x] = x [s t a t e i n d e x]− e p s i l o n
87 i f min (s e l f . b o u n d a r i e s [s t a t e i n d e x]) < x [s t a t e i n d e x] < max (

s e l f . b o u n d a r i e s [s t a t e i n d e x]) :
88 x p l u s [s t a t e i n d e x] = x [s t a t e i n d e x]+ e p s i l o n
89 xminus [s t a t e i n d e x] = x [s t a t e i n d e x]− e p s i l o n
90

91 r e t u r n xp lus , xminus
92

93

94 d e f c a r t e s i a n (a r r a y s , o u t =None) :
95 ”””
96 G e n e r a t e a c a r t e s i a n p r o d u c t o f i n p u t a r r a y s .
97 ”””
98

99 a r r a y s = [np . a s a r r a y (x) f o r x i n a r r a y s]
100 d t y p e = a r r a y s [0] . d t y p e
101

102 n = np . prod ([x . s i z e f o r x i n a r r a y s])
103 i f o u t i s None :
104 o u t = np . z e r o s ([n , l e n (a r r a y s)] , d t y p e = d t y p e)
105

106 m = n / a r r a y s [0] . s i z e
107 o u t [: , 0] = np . r e p e a t (a r r a y s [0] , m)
108 i f a r r a y s [1 :] :
109 c a r t e s i a n (a r r a y s [1 :] , o u t = o u t [0 :m, 1 :])
110 f o r j i n x ra ng e (1 , a r r a y s [0] . s i z e) :
111 o u t [j ∗m: (j +1)∗m, 1 :] = o u t [0 :m, 1 :]
112 r e t u r n o u t
113

114 i f n a m e == ’ m a i n ’ :
115

116 ## 3D sys tem
117 b o u n d a r i e s 1 = [0 , 1 , 2 , 3]
118 b o u n d a r i e s 2 = [0 , 1 , 2 , 3 , 4]

89

119 b o u n d a r i e s 3 = [0 , 1 , 2]
120

121 g = Grid (3 , [b o u n d a r i e s 1 , b o u n d a r i e s 2 , b o u n d a r i e s 3])
122

123 au tomaton = np . z e r o s (g . p a r t i t i o n s)
124 t y p e 3 s q u a r e s = []
125

126 ## i n t e r s e c t i o n p o i n t s
127 i n t p o i n t s = [[1 . 5 , 4 , 0] , [1 . 5 , 3 , 0] , [1 , 2 . 5 , 0] , [1 . 5 , 4 , 1] ,

[1 . 5 , 3 , 1] , [1 , 2 . 5 , 1] , [1 . 5 , 4 , 2] , [1 . 5 , 3 , 2] , [1 , 2 . 5 , 2]]
128 p u l l e d p o i n t s = []
129

130 f o r p o i n t i n i n t p o i n t s :
131 xp lus , xminus = g . P u l l A p a r t (p o i n t)
132 p u l l e d p o i n t s . append (x p l u s)
133 p u l l e d p o i n t s . append (xminus)
134

135 f o r p o i n t i n p u l l e d p o i n t s :
136 g r i d i n d e x = g . ComputeGridSquare (p o i n t)
137 i f g r i d i n d e x n o t i n t y p e 3 s q u a r e s :
138 t y p e 3 s q u a r e s . append (g r i d i n d e x)
139

140 g r i d p y t h o n i n d e x = [i−1 f o r i i n g r i d i n d e x] # f o r i n d e x i n g i n
python , 0 s t a r t

141 au tomaton [t u p l e (g r i d p y t h o n i n d e x)] = 3
142

143 ## Automaton based on s t a t e i n d e x = 0
144 ## Th i s p a r t won ’ t f i l l up any a r r a y i n t h e d i r e c t i o n o f

s t a t e i n d e x t h a t does n o t have a t y p e 3 s q u a r e
145 a u t o m a t o n s t a t e i n d e x = 0
146 f o r gsq i n t y p e 3 s q u a r e s :
147 tempgsq = copy . deepcopy (gsq)
148 w h i l e tempgsq [a u t o m a t o n s t a t e i n d e x] < g . p a r t i t i o n s [

a u t o m a t o n s t a t e i n d e x] :
149 tempgsq = g . Nex tGr idSqua re (tempgsq , a u t o m a t o n s t a t e i n d e x)
150 n e x t g s q p y t h o n i n d e x = [i−1 f o r i i n tempgsq]
151 i f au tomaton [t u p l e (n e x t g s q p y t h o n i n d e x)] == 0 :
152 au tomaton [t u p l e (n e x t g s q p y t h o n i n d e x)] = 2
153

154 tempgsq = copy . deepcopy (gsq)
155 w h i l e tempgsq [a u t o m a t o n s t a t e i n d e x] > 1 :
156 tempgsq = g . P r e v G r i d S q u a r e (tempgsq , a u t o m a t o n s t a t e i n d e x)
157 p r e v g s q p y t h o n i n d e x = [i−1 f o r i i n tempgsq]
158 i f au tomaton [t u p l e (p r e v g s q p y t h o n i n d e x)] == 0 :
159 au tomaton [t u p l e (p r e v g s q p y t h o n i n d e x)] = 1
160

161

162 ## Now we f i l l up a l l t h e empty a r r a y s
163 a l l s q u a r e s = c a r t e s i a n ([r a n g e (1 , g . p a r t i t i o n s [i] + 1) f o r i i n

90

r a n g e (g . n o o f s t a t e s)])
164 z e r o s q u a r e s = []
165

166 f o r gsq i n a l l s q u a r e s :
167 g s q p y t h o n i n d e x = [i−1 f o r i i n gsq]
168 i f au tomaton [t u p l e (g s q p y t h o n i n d e x)] == 0 :
169 z e r o s q u a r e s . append (gsq)
170

171 i f l a g = 0
172 m o t h e r l o a d = None
173 f o r gsq i n z e r o s q u a r e s :
174 f o r s t a t e i n d e x i n r a n g e (g . n o o f s t a t e s) :
175

176 tempgsq = copy . deepcopy (gsq)
177 w h i l e tempgsq [s t a t e i n d e x] < g . p a r t i t i o n s [s t a t e i n d e x] :
178 tempgsq = g . Nex tGr idSqua re (tempgsq , s t a t e i n d e x)
179 n e x t g s q p y t h o n i n d e x = [i−1 f o r i i n tempgsq] # f o r

py thon
180

181 i f au tomaton [t u p l e (n e x t g s q p y t h o n i n d e x)] == 3 :
182 b r e a k
183

184 i f au tomaton [t u p l e (n e x t g s q p y t h o n i n d e x)] != 0 and
au tomaton [t u p l e (n e x t g s q p y t h o n i n d e x)] != 3 :

185 f i l l a l l = au tomaton [t u p l e (n e x t g s q p y t h o n i n d e x)]
186 i f l a g = 1
187 b r e a k
188

189 i f i f l a g == 1 :
190 b r e a k
191

192 i f i f l a g == 1 :
193 b r e a k
194

195 tempgsq = copy . deepcopy (gsq)
196 w h i l e tempgsq [s t a t e i n d e x] > 1 :
197 tempgsq = g . P r e v G r i d S q u a r e (tempgsq , s t a t e i n d e x)
198 p r e v g s q p y t h o n i n d e x = [i−1 f o r i i n tempgsq] # f o r

py thon
199

200 i f au tomaton [t u p l e (n e x t g s q p y t h o n i n d e x)] == 3 :
201 b r e a k
202

203 i f au tomaton [t u p l e (p r e v g s q p y t h o n i n d e x)] != 0 and
au tomaton [t u p l e (p r e v g s q p y t h o n i n d e x)] != 3 :

204 f i l l a l l = au tomaton [t u p l e (p r e v g s q p y t h o n i n d e x)]
205 i f l a g = 1
206 b r e a k
207 i f i f l a g == 1 :

91

208 b r e a k
209 i f i f l a g == 1 :
210 b r e a k
211

212 f o r gsq i n z e r o s q u a r e s :
213 g s q p y t h o n i n d e x = [i−1 f o r i i n gsq]
214 au tomaton [t u p l e (g s q p y t h o n i n d e x)] = f i l l a l l
215

216 p r i n t au tomaton
217

218 ’ ’ ’
219 The p r e s e n c e o f ” nan ” i n t h e au tomaton i n d i c a t e s t h a t t h e

e q u i l i b r i u m h y p e r s u r f a c e i s ” p a r a l l e l ”
220 or ” c l o s e t o p a r a l l e l ” t o d i r e c t i o n o f chosen s t a t e i n d e x , s i n c e

au tomaton c o m p u t a t i o n i s based
221 on ly on i n t e r s e c t i o n p o i n t s (and c o r r e s p o n d i n g g r i d h y p e r c u b e s)

and n o t t h e s u r f a c e i t s e l f .
222

223 Thi s happens when , b e f o r e t h e f i l l a l l c a l c u l a t i o n , a r r a y s a l o n g
a s t a t e i n d e x a r e e i t h e r a l l 3 o r a l l 0 .

224 Knowledge o f t h e h y p e r s u r f a c e may be e x p l o i t e d h e r e . For example
, t h e normal from any p o i n t i n any of t h e

225 ’ z e r o s q u a r e s ’ t o t h e h y p e r s u r f a c e may be c a l c u l a t e d and t h e s i g n
of normal would d e t e r m i n e t h e s t a t e d i r e c t i o n a l i t y

226 of a l l z e r o s q u a r e s (1 o r 2) . Th i s i s s t r a i g h t f o r w a r d f o r l i n e a r
h y p e r s u r f a c e s b u t t r i c k i e r f o r non l i n e a r h y p e r s u r f a c e s

227 (f u t u r e i m p l e m e n t a t i o n)
228 ’ ’ ’

92

B.2 Dijkstra’s algorithm

This Python code for the Dijkstra’s algorithm is taken from Eppstein (2002) and
modified according to the examples used in this thesis. The copyright of the code
remains with the author, David Eppstein.

1 # D i j k s t r a ’ s a l g o r i t h m f o r s h o r t e s t p a t h s
2 # David E p p s t e i n , UC I r v i n e , 4 A p r i l 2002
3

4 # h t t p : / / aspn . a c t i v e s t a t e . com / ASPN / Cookbook / Python / Rec ipe /117228
5 from f u t u r e i m p o r t g e n e r a t o r s
6

7 c l a s s p r i o r i t y D i c t i o n a r y (d i c t) :
8 d e f i n i t (s e l f) :
9 ’ ’ ’ I n i t i a l i z e p r i o r i t y D i c t i o n a r y by c r e a t i n g b i n a r y heap

10 of p a i r s (va lue , key) . Note t h a t c h a n g i n g o r removing a d i c t e n t r y
w i l l

11 n o t remove t h e o l d p a i r from t h e heap u n t i l i t i s found by
s m a l l e s t () o r

12 u n t i l t h e heap i s r e b u i l t . ’ ’ ’
13 s e l f . h e a p = []
14 d i c t . i n i t (s e l f)
15

16 d e f s m a l l e s t (s e l f) :
17 ’ ’ ’ F ind s m a l l e s t i t em a f t e r removing d e l e t e d i t e m s from

heap . ’ ’ ’
18 i f l e n (s e l f) == 0 :
19 r a i s e I n d e x E r r o r , ” s m a l l e s t o f empty

p r i o r i t y D i c t i o n a r y ”
20 heap = s e l f . h e a p
21 w h i l e heap [0] [1] n o t i n s e l f o r s e l f [heap [0] [1]] != heap

[0] [0] :
22 l a s t I t e m = heap . pop ()
23 i n s e r t i o n P o i n t = 0
24 w h i l e 1 :
25 s m a l l C h i l d = 2∗ i n s e r t i o n P o i n t +1
26 i f s m a l l C h i l d +1 < l e n (heap) and \
27 heap [s m a l l C h i l d] > heap [s m a l l C h i l d + 1] :
28 s m a l l C h i l d += 1
29 i f s m a l l C h i l d >= l e n (heap) o r l a s t I t e m <= heap [

s m a l l C h i l d] :
30 heap [i n s e r t i o n P o i n t] = l a s t I t e m
31 b r e a k
32 heap [i n s e r t i o n P o i n t] = heap [s m a l l C h i l d]
33 i n s e r t i o n P o i n t = s m a l l C h i l d
34 r e t u r n heap [0] [1]
35

36 d e f i t e r (s e l f) :

93

37 ’ ’ ’ C r e a t e d e s t r u c t i v e s o r t e d i t e r a t o r o f
p r i o r i t y D i c t i o n a r y . ’ ’ ’

38 d e f i t e r f n () :
39 w h i l e l e n (s e l f) > 0 :
40 x = s e l f . s m a l l e s t ()
41 y i e l d x
42 d e l s e l f [x]
43 r e t u r n i t e r f n ()
44

45 d e f s e t i t e m (s e l f , key , v a l) :
46 ’ ’ ’ Change v a l u e s t o r e d i n d i c t i o n a r y and add c o r r e s p o n d i n g
47 p a i r t o heap . R e b u i l d s t h e heap i f t h e number o f d e l e t e d i t e m s

grows
48 t o o l a r g e , t o a v o i d memory l e a k a g e . ’ ’ ’
49 d i c t . s e t i t e m (s e l f , key , v a l)
50 heap = s e l f . h e a p
51 i f l e n (heap) > 2 ∗ l e n (s e l f) :
52 s e l f . h e a p = [(v , k) f o r k , v i n s e l f . i t e r i t e m s ()]
53 s e l f . h e a p . s o r t () # b u i l t i n s o r t l i k e l y f a s t e r t h a n

O(n) h e a p i f y
54 e l s e :
55 newPai r = (va l , key)
56 i n s e r t i o n P o i n t = l e n (heap)
57 heap . append (None)
58 w h i l e i n s e r t i o n P o i n t > 0 and \
59 newPai r < heap [(i n s e r t i o n P o i n t −1) / / 2] :
60 heap [i n s e r t i o n P o i n t] = heap [(i n s e r t i o n P o i n t −1) / / 2]
61 i n s e r t i o n P o i n t = (i n s e r t i o n P o i n t −1) / / 2
62 heap [i n s e r t i o n P o i n t] = newPai r
63

64 d e f s e t d e f a u l t (s e l f , key , v a l) :
65 ’ ’ ’ Reimplement s e t d e f a u l t t o c a l l our c u s t o m i z e d

s e t i t e m . ’ ’ ’
66 i f key n o t i n s e l f :
67 s e l f [key] = v a l
68 r e t u r n s e l f [key]
69

70 d e f D i j k s t r a (G, s t a r t , end=None) :
71 ”””
72 Find s h o r t e s t p a t h s from t h e s t a r t v e r t e x t o a l l
73 v e r t i c e s n e a r e r t h a n or e q u a l t o t h e end .
74

75 The i n p u t g raph G i s assumed t o have t h e f o l l o w i n g
76 r e p r e s e n t a t i o n : A v e r t e x can be any o b j e c t t h a t can
77 be used as an i n d e x i n t o a d i c t i o n a r y . G i s a
78 d i c t i o n a r y , i n d e x e d by v e r t i c e s . For any v e r t e x v ,
79 G[v] i s i t s e l f a d i c t i o n a r y , i n d e x e d by t h e n e i g h b o r s
80 of v . For any edge v−>w, G[v] [w] i s t h e l e n g t h o f
81 t h e edge . Th i s i s r e l a t e d t o t h e r e p r e s e n t a t i o n i n

94

82 <h t t p : / / www. py thon . o rg / doc / e s s a y s / g r a p h s . html>
83 where Guido van Rossum s u g g e s t s r e p r e s e n t i n g g r a p h s
84 as d i c t i o n a r i e s mapping v e r t i c e s t o l i s t s o f n e i g h b o r s ,
85 however d i c t i o n a r i e s o f edges have many a d v a n t a g e s
86 ove r l i s t s : t h e y can s t o r e e x t r a i n f o r m a t i o n (here ,
87 t h e l e n g t h s) , t h e y s u p p o r t f a s t e x i s t e n c e t e s t s ,
88 and t h e y a l l o w easy m o d i f i c a t i o n o f t h e g raph by edge
89 i n s e r t i o n and remova l . Such m o d i f i c a t i o n s a r e n o t
90 needed h e r e b u t a r e i m p o r t a n t i n o t h e r g raph a l g o r i t h m s .
91 S i n c e d i c t i o n a r i e s obey i t e r a t o r p r o t o c o l , a g raph
92 r e p r e s e n t e d as d e s c r i b e d h e r e c o u l d be handed w i t h o u t
93 m o d i f i c a t i o n t o an a l g o r i t h m u s i n g Guido ’ s r e p r e s e n t a t i o n .
94

95 Of cour se , G and G[v] need n o t be Python d i c t o b j e c t s ;
96 t h e y can be any o t h e r o b j e c t t h a t obeys d i c t p r o t o c o l ,
97 f o r i n s t a n c e a wrapper i n which v e r t i c e s a r e URLs
98 and a c a l l t o G[v] l o a d s t h e web page and f i n d s i t s l i n k s .
99

100 The o u t p u t i s a p a i r (D, P) where D[v] i s t h e d i s t a n c e
101 from s t a r t t o v and P [v] i s t h e p r e d e c e s s o r o f v a l o n g
102 t h e s h o r t e s t p a t h from s t o v .
103

104 D i j k s t r a ’ s a l g o r i t h m i s on ly g u a r a n t e e d t o work c o r r e c t l y
105 when a l l edge l e n g t h s a r e p o s i t i v e . Th i s code does n o t
106 v e r i f y t h i s p r o p e r t y f o r a l l edges (on ly t h e edges seen
107 b e f o r e t h e end v e r t e x i s r e a c h e d) , b u t w i l l c o r r e c t l y
108 compute s h o r t e s t p a t h s even f o r some g r a p h s wi th n e g a t i v e
109 edges , and w i l l r a i s e an e x c e p t i o n i f i t d i s c o v e r s t h a t
110 a n e g a t i v e edge has ca us e d i t t o make a m i s t a k e .
111 ”””
112

113 D = {} # d i c t i o n a r y o f f i n a l d i s t a n c e s
114 P = {} # d i c t i o n a r y o f p r e d e c e s s o r s
115 Q = p r i o r i t y D i c t i o n a r y () # e s t . d i s t . o f non−f i n a l v e r t .
116 Q[s t a r t] = 0
117

118 f o r v i n Q:
119 D[v] = Q[v]
120 i f v == end : b r e a k
121

122 f o r w i n G[v] :
123 vwLength = D[v] + G[v] [w]
124 i f w i n D:
125 i f vwLength < D[w] :
126 r a i s e Va lu eEr ro r , \
127 ” D i j k s t r a : found b e t t e r p a t h t o a l r e a d y−f i n a l v e r t e x ”
128 e l i f w n o t i n Q or vwLength < Q[w] :
129 Q[w] = vwLength
130 P [w] = v

95

131

132 r e t u r n (D, P)
133

134 d e f s h o r t e s t P a t h (G, s t a r t , end) :
135 ”””
136 Find a s i n g l e s h o r t e s t p a t h from t h e g i v e n s t a r t v e r t e x
137 t o t h e g i v e n end v e r t e x .
138 The i n p u t has t h e same c o n v e n t i o n s as D i j k s t r a () .
139 The o u t p u t i s a l i s t o f t h e v e r t i c e s i n o r d e r a l o n g
140 t h e s h o r t e s t p a t h .
141 ”””
142

143 D, P = D i j k s t r a (G, s t a r t , end)
144 Pa th = []
145 w h i l e 1 :
146 Pa th . append (end)
147 i f end == s t a r t : b r e a k
148 end = P [end]
149 Pa th . r e v e r s e ()
150 r e t u r n Pa th
151

152 # Simple r e a c h a b i l i t y example
153 SimpleR = { ’ x1 ’ :{ ’ x2 ’ : 5 } ,
154 ’ x2 ’ :{ ’ x6 ’ : 2 } ,
155 ’ x3 ’ :{ ’ x2 ’ : 0 , ’ x7 ’ : 6 } ,
156 ’ x4 ’ :{ ’ x3 ’ : 1 } ,
157 ’ x5 ’ :{ ’ x1 ’ : 1 1 , ’ x6 ’ : 4 } ,
158 ’ x6 ’ :{ ’ x1 ’ : 5 , ’ x7 ’ : 2 } ,
159 ’ x7 ’ :{ ’ x4 ’ : 2 , ’ x8 ’ : 3 , ’ x11 ’ : 0} ,
160 ’ x8 ’ :{ ’ x4 ’ : 1 , ’ x12 ’ : 4 } ,
161 ’ x9 ’ :{ ’ x5 ’ : 2 , ’ x10 ’ : 3 } ,
162 ’ x10 ’ :{ ’ x6 ’ : 1 , ’ x7 ’ : 2 , ’ x11 ’ : 0} ,
163 ’ x11 ’ :{ ’ x4 ’ : 2 } ,
164 ’ x12 ’ :{ ’ x11 ’ : 1 } ,
165 }
166

167 # Two Tanks example
168 TwoTanks = { ’ h11 ’ :{ ’ h21 ’ : 1 , ’ h12 ’ : 1} ,
169 ’ h21 ’ :{ ’ h31 ’ : 1 , ’ h22 ’ : 1} ,
170 ’ h31 ’ :{ ’ h41 ’ : 1 , ’ h32 ’ : 1} ,
171 ’ h41 ’ :{ ’ h51 ’ : 1 , ’ h42 ’ : 1} ,
172 ’ h51 ’ :{ ’ h52 ’ : 1} ,
173

174 ’ h12 ’ :{ ’ h22 ’ : 1 , ’ h13 ’ : 1 , ’ h11 ’ : 1} ,
175 ’ h22 ’ :{ ’ h32 ’ : 1 , ’ h23 ’ : 1 , ’ h21 ’ : 1} ,
176 ’ h32 ’ :{ ’ h42 ’ : 1 , ’ h33 ’ : 1 , ’ h31 ’ : 1} ,
177 ’ h42 ’ :{ ’ h52 ’ : 1 , ’ h43 ’ : 1 , ’ h41 ’ : 1 , ’ h32 ’ : 1} ,
178 ’ h52 ’ :{ ’ h53 ’ : 1 , ’ h51 ’ : 1 , ’ h42 ’ : 1} ,
179

96

180 ’ h13 ’ :{ ’ h23 ’ : 1 , ’ h14 ’ : 1 , ’ h12 ’ : 1} ,
181 ’ h23 ’ :{ ’ h33 ’ : 1 , ’ h24 ’ : 1 , ’ h22 ’ : 1} ,
182 ’ h33 ’ :{ ’ h43 ’ : 1 , ’ h34 ’ : 1 , ’ h32 ’ : 1} ,
183 ’ h43 ’ :{ ’ h53 ’ : 1 , ’ h44 ’ : 1 , ’ h42 ’ : 1} ,
184 ’ h53 ’ :{ ’ h54 ’ : 1 , ’ h52 ’ : 1} ,
185

186 ’ h14 ’ :{ ’ h24 ’ : 1 , ’ h15 ’ : 1 , ’ h13 ’ : 1} ,
187 ’ h24 ’ :{ ’ h34 ’ : 1 , ’ h25 ’ : 1 , ’ h23 ’ : 1} ,
188 ’ h34 ’ :{ ’ h44 ’ : 1 , ’ h35 ’ : 1 , ’ h33 ’ : 1} ,
189 ’ h44 ’ :{ ’ h54 ’ : 1 , ’ h45 ’ : 1 , ’ h43 ’ : 1} ,
190 ’ h54 ’ :{ ’ h55 ’ : 1 , ’ h53 ’ : 1} ,
191

192 ’ h15 ’ :{ ’ h25 ’ : 1 , ’ h14 ’ : 1} ,
193 ’ h25 ’ :{ ’ h35 ’ : 1 , ’ h24 ’ : 1} ,
194 ’ h35 ’ :{ ’ h45 ’ : 1 , ’ h34 ’ : 1} ,
195 ’ h45 ’ :{ ’ h55 ’ : 1 , ’ h44 ’ : 1} ,
196 ’ h55 ’ :{ ’ h54 ’ : 1} ,
197

198 }
199

200 p r i n t s h o r t e s t P a t h (SimpleR , ’ x5 ’ , ’ x2 ’)
201 p r i n t s h o r t e s t P a t h (TwoTanks , ’ h55 ’ , ’ h44 ’)

97

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Symbols and Acronyms
	Introduction
	HAZOP study
	Supervisory control of DEDS
	Objectives of the thesis
	Structure of the report
	Previous work

	Going from continuous to discrete systems
	Discrete-time equivalents of continuous systems
	Discrete-event equivalents of continuous systems
	Practical implementation of control in a plant

	Modelling of Discrete-Event Dynamic Systems
	Automata theory
	Deterministic automata
	Non-deterministic automata
	Automata with inputs and outputs

	Obtaining the discrete-event model of a continuous system
	State discretization
	Input discretization
	Computing transition function
	Getting the final DEDS model

	Some pertinent issues
	Computational effort
	Selective finer discretization
	State trajectory passing through a corner of hypercube

	Using DEDS in HAZOP Analysis: A Case Study
	The idea
	Case study: Two Tanks
	Model Derivation
	Performing HAZOP on the model

	Some pertinent issues
	Model robustness
	Changing inputs to ensure safe operability

	Supervisory Control of Discrete-Event Dynamic Systems
	A simple example about the reachability specification
	Control of DEDS models of continuous systems
	The reachability specification
	Control actions
	Forceable transitions

	Case study: Two Tanks extended
	Model Derivation
	Getting the forceability graph
	Reachability

	Some pertinent issues
	Use of correcting inputs
	Other control strategies
	Note on formal verification
	Note on the `Ramadge-Wonham' framework

	Conclusion and further work
	Further work
	Final remarks

	Bibliography
	Brief description of conventional HAZOP
	The basic methodology of HAZOP
	The HAZOP study procedure
	Limitations of conventional HAZOP

	Python codes
	Computing automaton
	Dijkstra's algorithm

