
Heave Motion Estimation on a Craft Using
a Strapdown Inertial Measurement Unit

Øyvind F. Auestad ∗,∗∗ Jan T. Gravdahl ∗ Thor I. Fossen ∗

∗ Dept. of Eng. Cybernetics, NTNU, N-7491 Trondheim, Norway;
e-mail: oyvind.auestad@itk.ntnu.no

∗∗ Umoe Mandal AS, N-4515 Mandal, Norway

Abstract: This paper deals with heave position and heave velocity estimation on a craft. The
estimation is done without any knowledge of the specified craft. An accurate estimation of
these signals is useful when one wants to control or monitor the heave motions on a platform
or a ship such as in a active heave compensated systems. The necessary sensor input for the
proposed guidance system is a strapdown inertial measurement unit (IMU) which consists of
three gyroscopes and three accelerometers. In this case study, the heave motion estimation is
required as input for a control system on a Surface Effect Ship (SES) where it is desired to
control the air cushion pressure in order to damp vertical motions. The motions are induced by
sea wave propagations. A SES will experience high frequency accelerations on the hull compared
to other vessels. A lift fan sets up these accelerations or process disturbances and complicates
the performance of the estimation. The estimation is performed using an observer. The observer
model is based on a set of superimposed sinusoidals, each with a different excitation frequency.
The sum of these denotes the actual heave motion. The estimation algorithm is adaptive in
terms of changes in the sea states. Results will be given using real experimental data from
model tests of a 3 meter long SES.
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1. INTRODUCTION

Several methods for estimating heave motion is available
both in literature and on the market. One approach is to
aid the IMU with external sensors such as lasers, acoustic
or GPS measurements. The latter is done in Fossen and
Perez [2009]. However, external aiding usually results in
higher costs and dependency on the external sensor. In this
paper, only systems with a low cost such as a strapdown
Micro-Electro-Mechanical Sensor (MEMS) IMU as sensor
measurement are considered.

MRU H [Kongsberg, 2013] is an example of what is avail-
able on the market. The Motion Reference Unit (MRU)
offers high accuracy but suffers from a high purchasing
cost. Godhavn [1998] presents the Seatex MRU which
accurately estimates the heave motion using an adaptive
heave filter algorithm. The filter minimizes measured ac-
celeration error sources such as bias and noise by adap-
tively changing the cut off frequencies of a bandpass filter.
Kongsberg now owns Seatex.

The approach used in this paper is based on Küchler
et al. [2011]. Küchler estimates heave motion using a single
accelerometer and shows results both in simulation and
through a test bed that consist of two winches and a
hook. This paper estimates the motion in a similar way
but transfers the motion to a different point on the vessel.
Results will be given using real experimental data of a 3
meter long SES with severe process disturbance. Also, the
implemented proposed observer has been altered from an
EKF to a linear discrete time Kalman Filter without any

loss of generality or functionality. The proposed system
is Linear-Time-Invariant (LTI) which ensure that the
Kalman Filter will converge towards a steady-state.

1.1 Motivation

The case studied in this paper involves the Umoe Mandal’s
Offshore Service Vessel named The Wave Craft. The Craft
is designed for service missions to offshore wind-turbines.
The craft is a SES, which rides on an air cushion enclosed
by catamaran twin hulls and flexible rubber seals in the
bow and in the stern. The air cushion is pressurized using
centrifugal lift fans that lifts the vessel towards the water
surface leaving only a small portion of the side hulls in the
water. The cushion pressure can be altered by controlling
the air cushion outflow leakage area. Altering the opening
angle of an installed ventilation valve does this. It is
damping of the bow tip that is of interest since this is
the area where the service personnel will leave the vessel
and board the turbine. Is is therefore important that the
motion estimation occurs at this point.

Due to the cushion dynamics, the strapdown accelerom-
eters will experience severe process disturbances. These
disturbances are unwanted on the estimated heave motion.
The magnitudes of these accelerations are varying along
the longitudinal position of the ship. Therefore, the model
test setup was set up using two options that possibly
would alter the performance of the estimation. At the first
approach, the IMU, with the accelerometers, was placed
amidships where the magnitude is assumed low. The mo-
tion was transferred to the bow tip using a coordinate



transformation. The second approach, which is denoted
the direct approach, consist of placing the IMU directly at
the vessel bow tip. 
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Fig. 1. The SES Concept (Umoe Mandal (UM) Propri-
etary). Two coordinate systems are defined. The {b}
frame is body fixed with its origin located at the IMU.
Denote the linear translation along the zb axis as z.
The {p} frame is formulated with the zp axis pointing
downwards normal to the Earth’s surface. The origin
is located at the vessel bow tip. Denote the translation
along this axis as D. Motion in z and D are both
referred to as heave. Both coordinate systems use the
right hand rule to determine rotation signs.

Auestad et al. [2013] presents a SES simulator and a con-
trol system for damping vertical motions at the bow. This
is done by altering the cushion pressure using feedback
from the heave motion at the craft’s nose tip. An actuator
that controls the opening of the ventilation valve will act
proportionally to the heave motion. This will arrange for
safer transfer of personnel and goods from vessel to turbine
foundation. The craft is assumed free floating at zero craft
speed. The article assumes that the heave motion is known.
In reality, heave velocity is simple to obtain, while heave
position is not. Accelerometer measurements are affected
by noise and bias. The errors accumulate by the number
of times this signal is integrated. Hence, estimating heave
position is harder than estimating heave velocity.
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∫
abowdt as Feedback Signal

Fig. 2. The plot shows the effect of a long crested regular
wave, Tp = 8.5s. D is measured by lab equipment and∫
abow dt was given by numerical integration of a high-

pass filtered accelerometer signal. The accelerometer
was attached at the origin of the {p} frame.

Figure 2 shows time series for the heave position (expressed
in {p}) from a model test where the vertical wave induced
motions are being damped. The control system is inactive
at the beginning and at the end of the left and right
sub-figure respectively. This corresponds to a constant
air cushion pressure. The control system is active for the

remaining part and note that the amplitude of the right
sub-figure is smaller than of the left. Hence, when the
craft faces a long crested wave, such as in this case, the
performance is increased when D (see fig. 1) is available.
The wave period as denoted Tp.

2. HEAVE MOTION ESTIMATION

The task of this paper is to estimate Ḋ and D using an

IMU as illustrated in figure 1. Define: D̂ :=
[

˙̂
D, D̂

]T
and

ẑ :=
[

˙̂z, ẑ
]T

. D̂ is the output of the estimator.

The proposed method for estimating heave motion involves
four steps that will be explained in the following. The first
three steps are based on [Küchler et al., 2011] while the
latter one consist of transforming the motion from the {b}
to the {p} frame.

The input for the estimator and the necessary signals from
the IMU, is roll rate, pitch rate and linear acceleration
along the zb axis. Denote these as pimu, qimu and az,imu,
respectively.

Fig. 3. Illustration of the four necessary steps in order to
estimate heave motion.

The estimator model is based on including all forms of
waves that will excite craft motions. Heave position, z =
z(t), can be modelled as a set of Nm overlaying sine waves
[Chakrabarti, 2008]:

z(t) =

Nm∑
j=1

Ajcos(ωjt+ ϕj) + v(t)

:=

Nm∑
j=1

zj(t) + v(t)
v=0
=

Nm∑
j=1

zj(t)

(1)

where j = 1, 2, .., Nm, Aj , ωj and ϕ denotes amplitude,
eigenfrequency and phase of each sine wave. Each wave
is denoted as a mode. v(t) is included to capture slowly
varying effects such as the tidal range. Since our problem
only concerns relative heave motion, v(t) is neglected for
the rest of the analysis.

2.1 Step 1 - Fast Fourier Transform (FFT)

Eq. (1) is described in the time domain. It can be expressed
in the frequency domain using a wave energy spectrum
[Faltinsen, 1993]. The spectrum is calculated online using
a FFT with a chosen memory length that is sufficiently
small to ensure smooth spectral curves. Let Ä(ω) and ϕ̈(ω)
denote the amplitude and phase spectrum of the accelera-
tion signal (therefore the double dot). The wave spectrum



illustrates the energy that acts in heave acceleration as a
function of frequency.

Figure 3 and eq. (1) indicates that it is the spectrum of
heave position that are of interest, and not the heave ac-
celeration spectrum. However, a spectrum transformation
from acceleration to position can be calculated directly
using:

A(ω) =
Ä(ω)

ω2
, ϕ(ω) = ϕ̈(ω)− π, ω > 0 (2)

The accuracy of the estimation is dependent on chosen
sampling time of the FFT which gives the spectrum a
desired resolution in the frequency plane. In the next
section we will see that this corresponds to the number
of modes (Nm) that will appear. The window length of
the FFT must include and detect the highest frequency of
the sea state as well as potential, relevant eigenfrequencies
of the craft that might be excited.

2.2 Step 2 - Peak Detection

Figure 4 illustrates the amplitude spectrum discussed in
section 2.1. The peak detection consist of localizing every
local maximum of |A(ω)|. Every maximum corresponds to
a mode j, where j = 1, 2, ..., Nm.
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Fig. 4. The normalized amplitude of the frequency re-
sponse. As the figure indicates, this specific wave has
a period of 8.5 seconds (ω ≈ 0.8) where the majority
of the energy is stored. The tests were performed in a
wave tank 1

Each mode has a specific amplitude (Aj), phase (ϕj)
and eigenfrequency (ωj). This is the output of the peak
detection algorithm. In order to avoid singularities, modes
with eigenfrequency equal to zero or modes that are
sufficiently close to a neighbour mode must be removed.
In order to handle changes in the sea states, the peak
detection must be repeated every fixed time interval T .

1 All figures containing time series/frequency response, are from
model tests of the Wave Craft, performed in cooperation between,
SINTEF/Marintek, Umoe Mandal and NTNU. Test results in this
paper were performed both at the MC Lab, NTNU, and the Ship
Model Tank, Marintek.

2.3 Step 3 - Observer

An observer is required since the FFT only considers
mean values over a finite time horizon. By setting v = 0
in eq. (1), each mode is considered a solution to an
undamped oscillator The following ordinary differential
equation describes the dynamics of the oscillator:

z̈j + ω2
j zj = 0, t > t0, (3)

where j = 1, 2, ..., Nm. The initial conditions of (3),
namely zj(t0) and żj(t0) are given according to (1) and
by differentiating (1) along its system trajectories using
the output from the peak detection algorithm, t0 denote
the time whenever the system needs to be re-initialized.
In order to keep the decay time down, one must only
re-initialize the system whenever a new mode j is either
detected or vanished from the output of the peak detection
algorithm. This mode, is respectively, added or removed
from the system. The system needs to be adaptive in
terms of changes in the sea state, therefore, the dynamics
of the eigenfrequencies, ωj , are modeled as random walk
parameters:

ω̇j = ε(t), (4)

where ε(t) is defined as white noise with zero mean
and unit variance. When comparing the heave motion
estimation with the true state, which will be discussed
later, it was shown that 4 could be solved independent of
the remaining states without loosing any performance. By
first solving (4) for each mode j, the remaining, uncoupled
term of (3) can be presented as a linear system. Define the
vector: xj = [zj , żj ]

T = [x1,j , x2,j ]
T . Each mode denote

an oscillator and can be written in state space form:

ẋj = [x2,j , −ω2
jx1,j ],

T t > t0, xj(t0) = xj,0,

yj = −ω2
jx1,j ,

(5)

where j = 1, 2, ..., Nm. Each of the Nm modes are now
modeled. Before we can implement the observer, one
must compensate for certain errors when measuring heave
acceleration:

az,imu =

Nm∑
j=1

yj − cos(θ) cos(φ)g + bz + ξz (6)

where g denote gravity and is assumed constant, θ, φ
respectively denotes roll and pitch angles, bz and ξz denote
sensor offset (or bias) and some noise. Eq. (6) illustrates
that the measured acceleration signal will contain an
offset. Therefore, denote an offset state: xoff that is
modelled as a random walk parameter:

ẋoff = ε(t), xoff (0) = −cos(θ) cos(φ)g, (7)

To convert the system from continuous to discrete state
space form, let tk = k∆t, k ∀N, where ∆t is the sampling
time of the observer. The initial state is calculated in the
same way for the continuous and the discrete time system.
The dynamics of the eigenfrequencies, ωj , in (4) is solved
first since it is decoupled from the rest of the system.

We obtain the complete state space system by adding
all the Nm states of the modes together with the the
offset state xoff , the entire system is solved for every time
instance and re-initialized if a new mode is either detected
or vanishes. The complete discrete system can be written
in state space form:



xk+1 = Axk

yk = Cxk,
(8)

where

xk = [ x1,k, x2,k, ... xNm,k xoff,k]
T

C = [ω2
1,k, 0 ω2

2,k, 0, ... ω2
Nm,k, 0, 1],

A =


A1 {0}

A2

(...)
ANm

{0} 1


(9)

where Aj =

[
1 ∆t
−ω2

j,k∆t 1

]
, j = 1, 2, ..., Nm, xk is the

(2Nm+1×1) state space vector and yk is the 1×(2Nm+1)
measurement vector and {0} covers the non-diagonal parts
of A with zeroes.

The observer itself is implemented using a standard dis-
crete time Kalman Filter. The process covariance matrix
(Q) is weighted in such a way that the modes with high
eigenfrequencies are penalized compared to modes with
lower ones. A suitable solution is to multiply each element
in Q, which is associated to a mode, with the correspond-
ing eigenfrequency wj . The covariance of the measurement
noise equals the standard deviation of the sensor noise
squared.

2.4 Step 4 - Transformation of Motion

Fig. 5. Structure of the proposed heave motion transfor-
mation from {b} to {p}

The output of the proposed observer is ẑ which is heave
position and heave velocity at the location of the IMU.
This section transfer the motion from this point to the
bow tip, thus from the body fixed reference frame {b} to
the {p} frame as illustrated in figure 1. We will divide the
problem into two parts. In (I) we will translate the body
fixed heave motion from {b} to the bow tip. Let the axes
point in the same body fixed directions. Denote this new
coordinate frame as {bbow}. Linear translation along the
body fixed z axis of {bbow} is denoted zbow. In the second
part, (II), we transform zbow to the defined {p} frame
using Euler angle transformation.

Roll and pitch angles are required for the transformation.
Since the angular output from an IMU is angular rate it
is necessary to integrate these signals. Additional filtering
is required in order to handle measurement errors such as
drift and noise. It is assumed that the angular positions are
correctly calculated and available for measurement using
a method such as in Sabatelli et al. [2011]. Denote roll as
φ and pitch as θ.

It is also assumed that the unwanted process disturbance,
which will be discussed in section 3.1, will only have a

very small impact on the calculation of roll and pitch
angles. This assumption is made since the angular lab
measurements shows no sign of the process disturbance
frequencies. Thus, with correct handling of the angular
rates, a smooth and accurate estimation of the angular
positions will be made.

I) Transforming the motion from one point is discussed
in chapter 7.5.4 in Fossen [2011] where one is assuming
small roll and pitch angles. This results in a simplified
linear transformation. Since the Wave Craft is a vessel
designed to handle very rough seas, we will approach the
problem without linearisation. The translation is illus-
trated in figure 6. Remember we are only interested in
relative heave motion. It is assumed that both the IMU
and the bow point is positioned at the centerline and share
the same position on the baseline.
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Fig. 6. Coordinate transformation from {b} to {bbody}

where L is the longitudinal length from the location of
the MRU to the bow tip. Note that the pitch is defined
negative with the nose down according to the right hand
rule. Hence:

zbow = ẑ + x

= ẑ + L tan(−θ)
= ẑ− L tan(θ)

(10)

II) To change coordinate system from the body fixed
{bbody} to the {p} frame we use section section 2.2.1 in
Fossen [2011]. The results follow directly using the Euler
angle transformation matrix:

D̂ = cos(θ) cos(φ) zbow (11)

3. RESULTS

As mentioned, the results in this section and figure 2 and 4
are based on time series from model test of a 3 meter long
SES, namely the Wave Craft. The scale factor is 1 : 8. The
peak detection is run online with T = 15s (see section 2.2)
The FFT has a certain memory sequence with az,imu(k)
as input in a first in, last out approach. The accelerometer
used for the test is an [ICSensors, 2013] and the true
heave position is read using [Qualisys, 2013]. Most axis
are unified due to UM proprietary rights.

3.1 Severe process disturbances on the accelerometer

Figure 1 illustrates the lift fan that blows air into the
air cushion. The cushion dynamics involves large large
changes in net air flow due to nonlinear lift fan char-
acteristics and sudden leakages under seals and through
the ventilation valve. The dynamics will correspond in



accelerations denoted as process disturbances. Figure 7
illustrates the challenges that occur on a SES compared to
other crafts when it comes to estimate heave motion using
an accelerometer. The lift fan is turned off through the
second half of the time series. When the fan is turned off, it
is assumed that the process disturbances can be compared
to craft such as catamarans or swaths. Figure 7 shows
the time series of the air cushion pressure (Pc(t)), the
accelerometer placed in the origin the {b} frame (az,imu)
and an accelerometer placed at the bow tip (az,bow).

0

1

P
c

−0.5

0

0.5

0.5

a
z
,i
m
u

0 14 28 42
−0.5

0

0.5

0.5

a
z
,b
o
w

t [s]

Fig. 7. The air cushion dynamics on a model test SES
produce more process disturbances when the lift fans
are on versus off. However, it is doubtful that the
process noise is directly scalable for a full-sized SES.
Regular wave, Tp = 8.5s

Note that the process disturbance is even larger on the
bow tip. This is why we propose to transform the motion
from the {b} frame to the bow tip instead of estimating
heave motion directly from the bow tip.

3.2 Heave Motion Estimator Performance

For the following results, the control system discussed in
section 1.1 is at all times turned on. Two different time
series will be shown using an irregular JONSWAP wave
with Tp = 8.5s. First, we will illustrate heave motion
estimation at the location of the MRU in the {b} frame.
On the following figure, this motion will be transferred to
the {p} frame where it will be compared to measurements
of the true heave position. There will not be done any
comparison between estimated heave velocity and the
true heave velocity since these results are assumed better
than of the position estimates (Küchler et al. [2011]). As
previously, the output of the observer/estimator is denoted
with a hat (�̂) and the true state without.
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Fig. 8. The time series shows accelerometer signal and
heave motion estimation in the {b} frame.
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Fig. 9. The motion has been transformed from the {b}
frame to the {p} frame where it is compared to the
true heave position read by lab equipment.

Figures 8 and 9 illustrates the performance of the system
with acceleration error terms such as gravity, measurement
noise and process disturbance. The following figures, 10
and 11 illustrates the performance when we add an instant,
fake, bias to the accelerometer, bz,k = 2 at t = ∆t. In
other words, for each time step after the first, az,imu(k) =
az,imu(k) + bz,k. This illustrates the robustness of the
system if a sudden bias or drift error appear on the signal.
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Fig. 10. Bias is added to the accelerometer, bz,k = +2.

In figure 10, observe that the offset state converge to the
correct value. The estimated heave motion also converges
and does not experience any offset. All the figures illus-
trates that the process disturbances are rejected well since
we do not want to expose the actuator to such oscillations
in terms of wear and tear.

3.3 Estimate heave motion directly from an accelerometer
located at the bow tip

In this section we will investigate the results if we place an
accelerometer at the bow tip and use the proposed observer
without any transformation of motion from the IMU to
the bow tip as explained in section 2.4.1. Note that we are
still transforming the motion to the {p} reference frame
as explained in section 2.4.2 in order to compare it to the
true heave position. Figure 12 illustrate this scenario where
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Fig. 11. Bias is added to the accelerometer, bz,k = +2.

we denote D̂DIRECT as the direct heave estimation. The
time series used are the same as in figure 8. Therefore
we will compare if it is best to position the accelerometer
amidships and perform a transformation of motion to the
bow, or just position the accelerometer directly on the bow
tip. The observer remains unchanged in both cases.
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Fig. 12. Heave position estimation of an accelerometer
placed at the vessel bow tip (D̂DIRECT ) versus amid-

ships (D̂).

As expected, due to a larger process disturbance on an
accelerometer placed on the bow tip, the performance is
decreased using the direct approach.

4. CONCLUSIONS AND FURTHER WORK

We are interested in estimating heave motion at a specific
point on a vessel in environments with high process distur-
bance. The case studied is a SES and we want to estimate
heave motion at the bow tip. The focus is proper handling
of an accelerometer signal, which includes unwanted terms
for the heave motion estimation. Remember, the vent valve
actuator are going to act accordingly to our estimated
signals.

By studying the time series of the two accelerometers, one
located at the bow tip and the other at amidships. We have
seen that the process disturbance is larger at the former.
Our results indicate that it is better to measure the ac-
celeration at amidships, perform heave motion estimation
and then transform the motion to the bow tip (D) in order
to gain the highest performance.

According to figures 9 and 11, the heave motion estimation
works as expected. However, the estimator fails to follow
the true state at some points. These points are located at
extreme heave positions. In this situation the actuator,
that is assumed to act proportionally to the estimated
heave motions, might saturate. This leads to a lack of
compensation and can justify some of the deviation.

All in all the results are satisfactory and the estimation is
usable as input signal for the controller.

Further work involves a study on how the process dis-
turbances affects roll and pitch rates read by the IMU
gyroscopes.
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