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Abstract Numerical simulations based on the bifurcation and imperfection ver-

sions of the strain localization theory are used in this paper to predict the failure

loci of metals and applied to an advanced high strength steel subjected to propor-

tional loading paths. The results are evaluated against the 3D unit cell analyses of

Dunand and Mohr (2014) available in the literature. The Gurson porous plasticity

model (Gurson 1977) is used to induce strain softening and drive the localization

process. The effects of the void growth, void nucleation and void softening in shear
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are investigated over a large range of stress triaxialities and Lode parameters. A

correlation between the imperfection and bifurcation results is established.

Keywords Localization · failure · bifurcation · loss of ellipticity · porous materials

1 Introduction

Ductile failure in metals has been a widely studied topic in the research community

during the last decades. With the emergence of new generations of high-strength

steels and other advanced metals, accurate descriptions of the ductile failure pro-

cess become vital in enabling the use of these materials which offer very high

strength but suffer from reduced ductility. One common approach to investigate

ductile failure in metals has been so far to carry out tests in a reasonably controlled

manner using different types of specimens to cover a wide range of stress states

(Bai and Wierzbicki 2010; Gruben et al 2011). In combination with the experimen-

tal results, detailed finite element simulations are usually conducted to determine

the strain and the stress states at the location where failure is seen or supposed to

initiate in the specimen. Based on this coupled experimental-numerical approach,

several failure models have been proposed for ductile metals (Bai and Wierzbicki

2010; Gruben et al 2011). With the improvements of full-field measurements, Dig-

ital Image Correlation (DIC) is now routinely used to identify the parameters of

existing failure models and more recently to develop new failure models (Gruben

et al 2013; Jia and Bai 2016). Since ductile failure is strongly affected by load

path changes (Basu and Benzerga 2015), a failure model is most commonly ex-

pressed in terms of a damage evolution rule but often based on a fracture locus

valid for proportional load paths (Bai and Wierzbicki 2010; Gruben et al 2011). In
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this context, the inherent drawback of physical testing is that a proportional load

path is difficult to maintain up to failure initiation even if it is possible for some

particular stress states (Roth and Mohr 2015). Moreover, with the variations of

materials, specimen geometries, boundary conditions and measurement techniques

in the literature, different conclusions can be obtained on the characteristics of

ductile failure. For instance, the ductile failure strain under low stress triaxiality

conditions was found to exhibit a nonmonotonic dependence to the stress triax-

iality by Bai and Wierzbicki (2010) and Barsoum and Faleskog (2007), while a

monotonic dependence was found by Haltom et al (2013), Ghahremaninezhad and

Ravi-Chandar (2013) and Papasidero et al (2014).

While quantitative failure models require the use of physical testing, qualitative

information about the mechanisms behind ductile failure can be obtained based

solely on numerical simulations. With the increase in computational power over

the past decade, three dimensional (3D) unit cell simulations have been success-

fully employed to assess the global as well as local responses of voided materials

(Barsoum and Faleskog 2011; Benzerga et al 2012; Dunand and Mohr 2014; Tver-

gaard 2015; Bryhni Dæhli et al 2016). Based on unit cell simulations, a deeper

knowledge of ductile failure has been achieved and several experimental observa-

tions have been confirmed numerically, such as the effect of the Lode parameter

and the stress triaxiality on ductility (Bao and Wierzbicki 2004). In contrast to

experimental tests, unit cell calculations can be carried out under fully controlled

stress states which facilitate the development of failure models (Dunand and Mohr

2014). Moreover, 3D unit cell simulations can be used to study the effect of void

shape and void orientation without any limitations, and void growth can be cap-

tured rather accurately as long as the matrix material is properly defined. The
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main limitations of 3D unit cell simulations today is that the computational cost

is still rather high, despite the increase in computational power, and that the qual-

ity of the local information might be influenced by the distortion of the mesh at

large strains.

Very often, ductile failure is preceded by the localization of the plastic de-

formation within a narrow band. By assuming that the onset of localization is

close to failure initiation it is therefore possible to investigate ductile failure by

means of the localization theory as formulated in a quite general context by Rice

(1976). Strain localization can be studied using either a bifurcation analysis or

an imperfection analysis. While the bifurcation analysis has been widely used in

the literature, as for instance in Besson et al (2001), Chalal and Abed-Meraim

(2015) and Haddag et al (2009) in the context of ductile fracture, the imperfec-

tion analysis is less frequently used as a qualitative way of understanding ductile

failure. However, some notable studies adopting the imperfection analysis to in-

vestigate strain localization are those of Yamamoto (1978), Needleman and Rice

(1979), Hutchinson and Tvergaard (1981), Saje et al (1982), Mear and Hutchinson

(1985), Nahshon and Hutchinson (2008) and Gruben et al (2017). To trigger local-

ization in a material at reasonable stresses, a softening mechanism must be present

in the constitutive equations of the material (Rudnicki and Rice 1975) when the

inelastic flow is associative as commonly assumed for metals that are investigated

here. A natural way to include strain softening into the constitutive description

for ductile fracture is to consider a porous plasticity model, such as the Gurson

model (Gurson 1977), where a voided material is modelled. In this perspective,

the main limitation of the present study is the mathematical formulation of the

porous plasticity model, which is based on different types of assumptions. As a
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consequence, the conclusions to be drawn from the analysis are probably depen-

dent on the adopted formulation but one can also expect some general qualitative

conclusions. This weakness is balanced to some extent by the CPU efficiency of

localization analyses, which allows to investigate a wide range of stress states in a

limited amount of time. With the continuous improvements of the porous plastic-

ity models, e.g Madou and Leblond (2012), Morin et al (2016) and Benallal (2017)

it is expected that this weakness will be reduced.

In this study, strain localization simulations by means of the imperfection anal-

ysis proposed by Rice (1976) are employed to predict the failure locus under pro-

portional loading and to gain insight into the processes leading to ductile failure. In

order to allow for strain softening and thus trigger strain localization, the Gurson

model is applied to describe the behaviour of the material, including growth, nu-

cleation and void softening in shear. To assess the adopted approach, comparisons

are made with the results from 3D unit cell simulations presented by Dunand and

Mohr (2014). The influence of the various parameters of the Gurson model on the

predicted failure locus is evaluated in a sensitivity study. The results of the imper-

fection analysis are finally investigated from the band perspective and compared

to those of the bifurcation analysis leading to some important conclusions.

The outline of the paper is as follows. Section 2 briefly reviews the theory of

localization in its bifurcation and imperfection versions. Section 3 describes the

porous plasticity model used to trigger localization, namely the Gurson model

with its different improvements and extensions to include beside void growth,

nucleation and void softening in shear. The parameter identification and selection

is given in Section 4, while Section 5 contains the numerical implementation of

both approaches. The numerical results for the imperfection analysis are given in
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Section 6 where they are compared to the 3D cell simulations of Dunand and Mohr

(2014). Section 7 is dedicated to a deeper analysis of the imperfection approach

and the localization process occuring in the band. On the basis of these results,

a link is also established between the imperfection and bifurcation approaches.

Conclusions are provided in Section 8.

2 Localization analysis

In their investigation on localization in plastically dilatant materials with pressure

sensitive yielding, Rudnicki and Rice (1975) through the use of a bifurcation anal-

ysis on a perfect material have clearly shown that localization necessitates strongly

negative plastic moduli in the case of axially-symmetric extension or compression.

In order to assess the effects of non-uniformities in the localization process, Rice

(1976) has proposed a formulation in the spirit of the Marciniak-Kuczynski anal-

ysis in local necking of thin metal sheets (Marciniak and Kuczynski 1967). This

idea allows localization and failure to take place for lower strains than the ones

required for a perfectly homogeneous body, as shown by Yamamoto (1978) and

Needleman and Rice (1979) later. This is explained by the fact that a part of a ma-

terial that has slightly different properties from the remaining portion concentrates

deformation within this inhomogeneity (imperfection).

In the imperfection analysis, we consider a homogeneously deformed body in

which a thin planar band with a small imperfection is present (Rice 1976). The

stress and strain rates as well as the constitutive relations inside the band are

allowed to be different from those outside the band, but equilibrium and compati-

bility across the band are enforced. Taking the reference configuration to coincide
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momentarily with the current configuration, the equations for continuing equilib-

rium are expressed as

n · Ṗb = n · Ṗ (1)

where n is the normal to the band and P is the nominal stress tensor. The subscript

b denotes a quantity inside the band. Furthermore, the rate of the nominal stress

tensor Ṗ is then given by

Ṗ = σ̇ −L · σ + (D : I)σ (2)

where σ is the Cauchy stress tensor, L is the velocity gradient tensor, D =

1
2 (L + LT ) is the rate-of-deformation tensor, and I is the second-order identity

tensor. The relation between the band normals n0 and n in the initial and current

configurations, respectively, is given by Needleman and Rice (1979)

n =
n0 · F−1

‖n0 · F−1‖ (3)

where F is the deformation gradient of the material outside the band. The defor-

mation gradient F maps the initial (undeformed) configuration into the current

configuration. Compatibility implies that the velocity gradient field can only vary

along the normal direction of the planar band and thus

Lb = L+ q̇ ⊗ n (4)

where q̇ is a vector that represents the rate-of-deformation non-uniformity. The

unit vector m = q̇/‖q̇‖ determines the localization mode. If m · n = 0, a shear

band is obtained, while if m · n = 1, the band is a dilatation band. A mixed type

of localization mode is obtained in all other cases.
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Assuming rate-independent plasticity and using a formulation in terms of the

Jaumann stress rate, the rate constitutive equations may be expressed as

σ̇ = Cep : D +W · σ + σ ·W T (5)

where Cep is the elastic-plastic tangent modulus tensor, assumed to exhibit the

minor and major symmetries, and W = 1
2 (L − LT ) is the spin tensor. Using

Equation (2), we get the alternative form

Ṗ = Cep : D + σ ·W T −D · σ + (D : I)σ (6)

which becomes after some rearrangements

Ṗ = Ct : L (7)

where the tangent modulus tensor Ct is given by

Ctijkl = Cepijkl −
1

2
σikδjl +

1

2
σilδkj −

1

2
σjlδik −

1

2
σjkδil + σijδkl (8)

where δij is the Kronecker delta. A similar rate constitutive equation holds for the

material inside the band with the subscript b is attached to all quantities inside

the band.

By combining Equations (1), (4) and (7), an equation for the rate-of-

deformation non-uniformity q̇ is obtained as

(n ·Ctb · n) · q̇ = n ·
(
Ct −Ctb

)
: L (9)

where Ctb is the tangent modulus tensor inside the band. Loss of ellipticity, or

strain localization, occurs when the acoustic tensor At (n) = n · Ctb · n becomes

singular, viz.

det
(
n ·Ctb · n

)
= 0 (10)
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For materials undergoing associative plastic flow, this condition is not met un-

less strain softening is present in the constitutive response of the material in the

imperfection band (except for large stresses with no practical interest for met-

als). Strain softening in ductile metals is often linked to damage evolution and/or

thermal softening. In this study, the Gurson model (Gurson 1977) for porous plas-

ticity is adopted for the material behaviour inside the band, thus to describe

strain softening due to void growth and eventually loss of ellipticity. But any

other mechanism that is observable for real materials and leading to softening can

be considered.

In the bifurcation analysis, we consider a homogeneous and homogeneously

deformed body which is subjected to a uniform stress or velocity gradient field

and investigate the possibility of a bifurcation. Specifically, following Rice (1976),

we search for conditions ”for which continued deformation may result in an in-

cipient non-uniform field in which deformation rates vary with position across a

planar band but remain uniform outside the band”. The condition for bifurcation

is obtained from Equation (10) by setting Ctb = Ct and, accordingly, the bifurca-

tion condition is met when the acoustic tensor At of the homogeneous material

becomes singular. Loss of ellipticity, as for the imperfection analysis, can only be

obtained by including strain softening when associative plastic flow is assumed in

the elastic-plastic constitutive equations.

3 Porous plasticity

Strain softening in ductile metals is often linked to damage evolution and/or adi-

abatic heating. If the latter is dismissed when considering quasi-static loading
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conditions, damage evolution can be captured by using a micromechanical-based

porous plasticity model, such as the Gurson model (Gurson 1977). This porous

plasticity model is rather appealing due to its limited number of parameters. In

this study, a hypoelastic-plastic formulation of the Gurson model is employed in

the localization analysis.

The additive decomposition of the rate-of-deformation tensor D is assumed,

viz.

D = De +Dp (11)

where De is the elastic part of the rate-of-deformation tensor and Dp is its plastic

counterpart. The hypoelastic relation is defined by

σ̇ = C : De +W · σ + σ ·W T (12)

where C is the elasticity tensor. Isotropic elasticity is assumed here and C depends

only on Young’s modulus E and Poisson’s ratio ν.

The Gurson yield function, as modified by Tvergaard (1981), reads as

Φ =

(
ϕ (σ)

σM

)2

+ 2q1f cosh

(
q2
2

σ : I

σM

)
−
(

1 + q3f
2
)

(13)

where σeq ≡ ϕ (σ) =
√

3
2σ
′ : σ′ is the equivalent stress, σ′ is the deviatoric part of

the Cauchy stress tensor, σM is the flow stress of the matrix, f the porosity, and

q1, q2 and q3 are parameters introduced by Tvergaard (1981). The associative flow

rule is assumed and the plastic rate-of-deformation tensor Dp is therefore defined

as

Dp = λ̇
∂Φ

∂σ
(14)

where λ̇ is the plastic parameter. The loading-unloading conditions are stated in

their Kuhn-Tucker form

Φ ≤ 0, λ̇ ≥ 0, λ̇Φ = 0 (15)
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while λ̇ is obtained from the consistency condition and Φ̇ = 0 when λ̇ is positive.

The work hardening of the matrix material is described by a three-term Voce

rule in the form

σM = σ0 +
3∑
i=1

Qi

(
1− exp

(
− θi
Qi
p

))
(16)

where σ0 is the initial yield stress, Qi and θi are the saturation stress and initial

work hardening modulus of the ith hardening term. The equivalent plastic strain

p of the matrix material is defined as

p =

∫
ṗ dt =

∫
σ : Dp

(1− f)σM
dt (17)

When using the Gurson model to describe strain softening, the porosity f

requires an initial value f0 as well as an evolution rule. In the literature, the void

evolution rule is frequently decomposed as

ḟ = ḟg + ḟn + ḟs (18)

where ḟg is the void growth rate, ḟn is the void nucleation rate, and ḟs represents

the contribution of void softening in shear (not present in the original Gurson

model) to the porosity evolution. Assuming an incompressible matrix material,

the void growth rate ḟg is linked to the volumetric plastic strain rate as

ḟg = (1− f)Dp : I (19)

When nucleation of voids is taken into account in this study, the void nucleation

rate ḟn is assumed to be strain driven and expressed as (Chu and Needleman 1980)

ḟn = Aṗ (20)

where

A =
fn

sn
√

2π
exp

[
−1

2

(
p− pn
sn

)2
]

(21)
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Here, fn is the volume fraction of void nucleating particles, pn is the mean equiva-

lent plastic strain for nucleation, and sn is the associated standard deviation. The

original Gurson model does not describe strain softening for low stress triaxiali-

ties, as for example in shear-dominated stress states. To overcome this problem,

Nahshon and Hutchinson (2008) proposed a phenomenological extension of the

Gurson model in which damage growth is invoked under low stress triaxiality to

account for shear softening due to void distortion and inter-void linking. When

applied in this study, its contribution to the porosity evolution

ḟs = ksfκ
(
σ′
) σ′ : Dp

ϕ (σ)
(22)

where ks is a constant and κ
(
σ′
)

is a function of the second and third invariant

of the deviatoric stress tensor, J2 = 1
2σ
′ : σ′ and J3 = det

(
σ′
)
, respectively, viz.

κ
(
σ′
)

= 1− 27

4

J2
3

J3
2

(23)

As pointed out by Nahshon and Hutchinson (2008), when the void softening in

shear is contributing to the void evolution (Equation 18), the void content f loses

its physical meaning and should be interpreted as a damage parameter. However,

in this study this distinction is not made when discussing the results linked to the

porous plasticity model.

The Gurson model is implemented into a standalone FORTRAN programme.

The stress update algorithm proposed by Aravas (1987) is adopted due to its

robustness and cost efficiency.
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4 Material parameters

The material parameters are determined based on the data for a TRIP steel pro-

vided by Dunand and Mohr (2014). The behaviour of the material is defined by

the elastic constants, the initial yield stress and the hardening parameters, as well

as the parameters governing initial porosity and porosity evolution.

The elastic constants, namely Young’s modulus E and Poisson’s ratio ν, are

given the typical values of steel (see Table 1). The initial yield stress σ0 and work

hardening parameters Qi and θi (i = 1, 2, 3) are obtained by a least-square fitting

of Equation (16) to the data reported by Dunand and Mohr (2014). An illustration

of the obtained fit is shown in Figure 1 along with the correlation factor R2. The

parameter values are given in Table 1.

Dunand and Mohr
Equation (16)

R2 = 0.9998

Eq
ui
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Equivalent plastic strain (-)
0 2 4 6 8 10

Fig. 1 Strain hardening curve for the TRIP steel used in the simulations. The extended Voce

hardening rule given in Equation (16) is compared with data provided in Dunand and Mohr

(2014).

Dunand and Mohr (2014) carried out their unit cell analyses with an initially

spherical void representing 0.7% of the volume of the unit cell. Therefore, the ini-



14 David Morin et al.

E0 (MPa) ν σ0 (MPa) θ1 (MPa) Q1 (MPa)

210000 0.3 450.0 6010.0 371.4

θ2 (MPa) Q2 (MPa) θ3 (MPa) Q3 (MPa)

987.9 291.7 42.16 78.95

Table 1 Material parameters for the elastic and plastic behaviour of the TRIP steel.

tial porosity f0 of the porous plasticity model is set equal to 0.7 %. The parameters

governing the void nucleation and the void softening in shear cannot be estimated

from the unit cell analyses and their influences are therefore examined in a sen-

sitivity study. While the imperfection analysis allows us to include porosity both

inside and outside the band, porosity is introduced only inside the imperfection

band in this study. Thus, the porosity is initially zero and remains zero outside

the band, whereas inside the band the porosity evolves and may eventually lead to

strain softening and localization there. Note here that the Gurson yield function

is reduced to the von Mises yield function for zero initial porosity, and in absence

of void nucleation, the porosity remains equal to zero during plastic straining.

5 Numerical implementation

5.1 Imperfection analysis

The imperfection analysis is performed by prescribing a proportional load path

outside the band and then computing the response of the band material so that

continuing equilibrium and compatibility equations are satisfied at each time step.

The Gurson model is used to describe the material behaviour with non-zero poros-

ity inside the band and zero porosity outside it (thus reducing to a von Mises
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material). Localization is assumed to occur when the determinant of the acoustic

tensor becomes slightly negative for the first time. To find the critical band ori-

entation, a large number of band orientations is investigated for each prescribed

load path.

The band orientation is defined by the unit normal to the band in the initial

(undeformed) configuration n0, which in the global Cartesian coordinate system

(X1, X2, X3) (see Figure 2) is defined as

n0 =



cosφ0

cos θ0 sinφ0

sin θ0 sinφ0


(24)

Imperfection band

Fig. 2 Representation of the imperfection band with its orientation in the initial (undeformed)

configuration.

In the current configuration, at time t, the band orientation (or more precisely

the band normal) is calculated according to

n(t) =
n0 · F−1(t)

‖n0 · F−1(t)‖
(25)
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where F (t) is the deformation gradient outside the band. The inverse deformation

gradient is computed using the velocity gradient L(t) according to

F−1(t) = [I −∆tL(t)] · F−1(t−∆t) (26)

where ∆t is the current time step. In the imperfection analysis, loss of ellipticity

can occur for several band orientations (Mear and Hutchinson 1985; Nahshon

and Hutchinson 2008), but only one band will lead to the lowest ductility. It is

therefore important to search within a broad range of initial orientations for this

critical band. The procedure to find the critical band orientation is detailed at the

end of this paragraph, while the applied computational scheme for an arbitrary

band orientation is presented in the following.

The loading path outside the band is defined so as to ensure proportional

loading defined by the stress triaxiality T and the Lode parameter L, defined by

T =
1

3

σ : I

σeq
, L =

2σ2 − σ1 − σ3
σ1 − σ3

(27)

where σ1, σ2 and σ3 are the ordered principal stresses, σ1 ≥ σ2 ≥ σ3. To this end,

the stress tensor outside the band is taken as

σ(t) = ξ(t)σ̄ (28)

where ξ(t) is a dimensionless loading parameter and σ̄ represents a fixed reference

stress state which is defined by T and L. The principal reference stresses are defined

as 

σ̄1

σ̄2

σ̄3


= σ0


2

3



cos θL

cos (θL − 2π
3 )

cos (θL + 2π
3 )


+ T



1

1

1



 (29)
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where σ0 is the yield stress (used here as a scaling factor) and θL is the Lode angle,

which is defined as

cos (3θL) =
J3
2

(
3

J2

) 3
2

(30)

where θL ∈ [0, π/6]. The Lode angle θL is 0◦ for L = −1, 30◦ for L = 0 and 60◦ for

L = 1. This procedure implies that the principal stress directions are fixed outside

the band and coincide with the global Cartesian coordinate system (X1, X2, X3).

Since the spin is taken to be zero outside the band, W = 0, we have L = D

and Equation (28) leads to the incremental update

∆σ(t) = ∆ξ(t)σ̄ = Cep(t−∆t) : ∆ε(t) (31)

where ∆ε(t) = D(t)∆t. Solving for ∆ε(t), we get

∆ε(t) = ∆ξ(t) (Cep(t−∆t))−1
: σ̄ (32)

where ∆ξ(t) is adjusted to get a prescribed magnitude ∆ε(t) = ‖∆ε(t)‖ of the

incremental strain tensor at time t. The norm of the incremental strain tensor is

here defined as ‖∆ε(t)‖ =
√
∆ε(t) : ∆ε(t). As this procedure is explicit in nature,

relatively small strain increments are required to enforce the prescribed propor-

tional load path. With ∆ε(t) determined by Equation (32), the material outside

the band is then deformed up to very large strains for a given proportional load

path, and the velocity gradient L(t) and the tangent modulus tensor Ct(t) are

stored at each time step for later use in the localization analysis.

For a given proportional loading path (T,L) and an initial band orientation

n0, the velocity gradient inside the band Lb is calculated, according to Equation

(4), as

∆tLb(t) = ∆ε(t) +∆q(t)⊗ n(t) (33)
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with ∆q(t) = ∆tq̇(t), and then used to calculate the tangent modulus tensor Ctb(t)

inside the band. In the above equation, ∆q(t) is unknown and is determined with

a fixed point iteration method using ∆q(t−∆t) as the initial value. An improved

estimate of ∆q(t) is then obtained from the residual form of Equation (10), viz.

R(t) = At(t) ·∆q(t)−B(t) = 0 (34)

where

At(t) = n(t) ·Ctb(t) · n(t) (35)

B(t) = n(t) ·
(
Ct(t)−Ctb(t)

)
: ∆ε(t) (36)

Next, the updated value of ∆q(t) is inserted into Equation (33) and the tensors

Lb(t) and Ctb(t) inside the band are updated accordingly. Convergence is assumed

when the ratio ‖R‖/σ0 is less than a given tolerance.

The proposed computational scheme will experience difficulties in enforcing

equilibrium when ellipticity is lost, as the problem becomes ill-posed. To avoid

such numerical instabilities, the determinant of the acoustic tensor detAt(t) is

computed before initiating a new iteration and loss of ellipticity is detected when

this quantity becomes negative. While the condition expressed in Equation (10)

is the stringent condition for loss of ellipticity, it is difficult to satisfy it exactly

within a numerical framework. Loss of ellipticity is therefore assumed to occur for

the first negative value of detAt(t), and, thus, when a negative value is detected,

the time incrementation is stopped. As stated in the beginning of this paragraph,

loss of ellipticity may be detected for several band orientations and it is important

to find the most critical orientation, i.e., the orientation for which the ductility

is smallest. As found by means of imperfection analysis in (Mear and Hutchinson

1985; Nahshon and Hutchinson 2008) and unit cell simulations in (Dunand and
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Mohr 2014; Barsoum and Faleskog 2011), the failure strain is a convex function

of the initial orientation of the band. It is considered here that localization takes

place within a planar band with normal in the plane defined by the major and

minor principal stress directions, as remarked by Rudnicki and Rice (1975). The

conditions for which this result holds are given in Benallal and Comi (1996) for

general constitutive equations within the small strain assumption. Corotational

terms will not change these results for materials like metals considered here. This

fact is also adopted in the cell calculations of Dunand and Mohr (2014) to which

our results will be compared. Accordingly, the band normal n0 can be expressed

in the global Cartesian coordinate system (X1, X2, X3) as

n0 =



cosφ0

0

sinφ0


(37)

where φ0 is the angle between the band normal and the X1-axis. This allows us

to characterize the localization bands by a single angle, either φ0 in the initial

configuration or φ in the current configuration. As a result, it is possible to search

for the most critical band using an iterative procedure with domain reduction. A

graphical illustration of this method is given in Figure 3. In iteration i, a set of

11 bands is distributed in the search domain of φ0 ∈ [0◦, 90◦] and the localization

analysis is carried out for each of these orientations until loss of ellipticity is de-

tected for one of them. At iteration i + 1 the eleven orientations are distributed

between the orientations bounding the critical one in iteration i. This operation is

repeated until the equivalent plastic strain at localization in the material outside

the band has converged within a given tolerance.
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Initial band orientation Initial band orientation

Iteration i Iteration i+1

Initial bands Current critical band Bounding bands

Fig. 3 Schematic description of the optimization procedure used to determine the critical

band orientation.

5.2 Bifurcation analysis

A similar approach as described in the previous section, is also used in the bifur-

cation analysis. First, the material is deformed until very large strains using the

Gurson model and then bifurcation is sought for within a set of band orientations.

Recall that bifurcation is only possible when the material exhibits strain softening,

and there is no need to search for localization in the hardening region of defor-

mation. The maximum deformation the material can sustain occurs at the strain

which gives a porosity f equal to 0.9q−1
1 , with the underlying assumption that

q3 = q21 . The material is then loaded incrementally up to this maximum strain by

keeping the stress triaxiality T and the Lode parameter L constant, using the same

method as explained above. The tangent modulus tensor Ct(t) of the material is

then extracted and used in the bifurcation analysis.

The condition for bifurcation, or loss of ellipticity, is given by

det
(
At(t)

)
= det

(
n(t) ·Ct(t) · n(t)

)
= 0 (38)
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As for the imperfection analysis, the first instant where the determinant of the

acoustic tensor becomes negative is assumed to be the point of bifurcation.

In order to find the critical orientation of the localization band in the softening

regime, a set of potential band orientations is checked for localization. The band

normal n in the current configuration is defined in the global Cartesian coordinate

system (X1, X2, X3) as

n =



cosφ

0

sinφ


(39)

where φ is the angle between the band normal and the X1-axis. The band orien-

tations investigated are in the domain φ ∈ [0◦, 90◦]. The sequential method with

domain reduction is also applied here to determine the critical band orientation

yielding the smallest ductility. The bifurcation analysis is significantly less CPU

time consuming because we do not have to follow the evolution of a set of im-

perfection bands from the initial configuration until localization occurs in one of

them.

6 Numerical study

6.1 Preamble

The strain localization analysis with the imperfection approach will be compared

to the localization analysis carried out by Dunand and Mohr (2014) using 3D

unit cell simulations. A large range of stress states is investigated here using the

previously described algorithm. The stress triaxiality T ranges from 0 to 4 and

the Lode parameter L varies between -1 and 1. A total of 1600 different stress
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states are used. The sequential method with domain reduction investigates, in

average, 30 band orientations per stress state, and, in average, three iterations

are required to obtained a converged failure strain εf with a tolerance of ±1e−4.

The proposed computational strategy leads to a run time below 10 minutes for the

1600 stress states on a Linux cluster equipped with 48 Intel Xeon X5650 processors.

According to Dunand and Mohr (2014), one unit cell analysis for a particular stress

state has a run time of 3 hours. This average computational time would lead to a

total computation time of approximately 17 years using 3D unit cell analyses to

cover the same range of stress states. The very good computational efficiency of

the localization imperfection analysis makes this technique worth investigating to

obtain qualitative knowledge on ductile failure.

All quantities used in this section are extracted from the material outside the

band when localization is detected in the critical imperfection band. Thus, the

failure strain εf is defined as the equivalent plastic strain p from the material

outside the band and is obtained through Equation (17) with f = 0.

6.2 Effect of porous plasticity parameters

As already mentioned, the imperfection analysis relies on the quality of the porous

plasticity model used to describe damage evolution and strain softening inside the

band. To evaluate the effect of the porous plasticity model, the Gurson model is

used first with porosity evolution based only on growth of pre-existing voids, i.e.,

both nucleation and void softening in shear are neglected, while the parameters

q1, q2 and q3 are varied. Figure 4 shows the effect of these parameters on the

failure strain obtained with the imperfection analysis and how the results compare
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with those reported by Dunand and Mohr (2014). Results are shown for stress

triaxialities T = 0.2, 0.5 and 1.0 and with the Lode parameter L varied between -1

and 1. Three sets of porous plasticity parameters are considered:

– q1 = q2 = q3 = 1.0 corresponding to the original Gurson model (Gurson 1977),

– q1 = 1.5, q2 = 1.0, q3 = q21 corresponding to parameters proposed by Tvergaard

(1981),

– q1 = 1.86, q2 = 0.74, q3 = q21 corresponding to parameters used by Faleskog

et al (1998).

From Figure 4 it is first interesting to note that independently from the values of

the parameters q1, q2 and q3, a similar shape of the failure locus is obtained. The

imperfection analysis predicts a global dependence of the failure strain on both

stress triaxiality and Lode parameter just as the 3D unit cells from Dunand and

Mohr (2014). While the dependence on the stress triaxiality should be expected,

because the Gurson model depends on the first invariant of the stress tensor, the

dependence on the Lode parameter is a result of the localization phenomenon.

The intrinsic Lode parameter dependency is in accordance with the findings of

Rudnicki and Rudnicki and Rice (1975) (while the Lode parameter L was not

explicity mentioned). Asymmetric convex failure loci with respect to the Lode

parameter are obtained with the imperfection analysis, giving a higher ductility for

generalized compression (L = 1) than for generalized tension (L = −1). The lowest

failure strain is typically found close to generalized shear (L = 0) for the presented

stress triaxialities. With the original Gurson model (q1 = q2 = q3 = 1.0), strain

localization was not obtained within the investigated strain range 0 ≤ ‖ε(t)‖ ≤ 3

for stress triaxialities less than or equal to 0.2. While the shape of the failure locus
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is correct for T = 0.5 and 1 with this set of parameters, the magnitude of the

failure strain is strongly overestimated. The hardening parameters used in this

study are representative for a TRIP steel, which exhibits a strong work-hardening

even at large strains (Dunand and Mohr 2014). As void growth is influenced by

the work-hardening of the surrounding matrix, the original Gurson model (q1 =

q2 = q3 = 1.0) is deemed not to be an appropriate choice for this material.
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Fig. 4 Effect of the porous plasticity parameters q1, q2 and q3 on the failure locus: a) original

Gurson model, b) parameters from Tvergaard (1981) and c) parameters from Faleskog et al

(1998)
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While the shape of the failure locus and magnitude of the failure strains at a

stress triaxiality T equal to 1 seem to be captured rather well by the parameters

proposed by Tvergaard (1981) and Faleskog et al (1998), the failure strains are still

strongly overestimated at low triaxiality (T = 0.2). At high stress triaxiality the

hypothesis of spherical void growth is most likely correct and the good agreement

between the localization analyses and the unit cell simulations might be expected.

As stated in several studies, at low stress triaxialities the void growth is no longer

spherical and the original Gurson model is then failing to describe the proper void

shape and potential growth of the void. This results in the overestimation of the

failure strains in the localization analyses compared with the unit cell simulations.

It is concluded, in the light of the obtained results here that none of the three

sets of parameters is able to reproduce all of the 3D unit cell results. In the regime

of low stress triaxialities, as already documented in the literature (Nahshon and

Hutchinson 2008), other mechanisms should be included and are the subjects of

the next two sections.

6.3 Effect of the void softening in shear

In this section, the effect of possible void softening in shear is analysed using

the shear modification proposed by Nahshon and Hutchinson (2008). The porous

plasticity parameters q1, q2 and q3 are here fixed to be those proposed by Tvergaard

(1981) since they offer the best agreement with the unit cell results. The parameter

ks is varied from 1 to 3 (as proposed by Nahshon and Hutchinson (2008)) and the

obtained results are compared to those obtained with the Gurson model without

void softening in shear (ks = 0).



26 David Morin et al.

T = 0.2

Fa
ilu

re
 s

tra
in

 ε
f (

-)

0

0,2

0,4

0,6

0,8

1,0

1,2

Lode parameter (-)
−1,0 −0,5 0 0,5 1,0

T = 0.5

Fa
ilu

re
 s

tra
in

 ε
f (

-)

0

0,2

0,4

0,6

0,8

1,0

1,2

Lode parameter (-)
−1,0 −0,5 0 0,5 1,0

T = 1.0

Fa
ilu

re
 s

tra
in

 ε
f (

-)

0

0,1

0,2

0,3

0,4

0,5

Lode parameter (-)
−1,0 −0,5 0 0,5 1,0

Dunand and Mohr

(a)

(b) (c)

Fig. 5 Effect of void softening in shear on the failure locus at different stress triaxialities: a)

T = 0.2, b) T = 0.5 and c) T = 1.0.

The resulting failure strains are reported in Figure 5 a), b) and c) for stress

triaxiality T = 0.2, 0.5 and 1, respectively. As also demonstrated in (Nahshon and

Hutchinson 2008), introducing the effect of void softening in shear into the Gurson

model allows strain localization to occur for low stress triaxialities (Figure 5 a)).

From Figure 5 a), b) and c) it can be observed that the void softening in shear has

a rather strong influence for the low stress triaxiality regime while this influence

fades away and even deteriorates the predictions at large stress triaxialities. As

suggested by Nielsen and Tvergaard (2010), this could be improved by balancing

the contribution of the void softening in shear above a given stress triaxiality
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threshold, but this modification is not included in the present work. According to

Figure 5, setting ks equal to 1 seems to be an appropriate choice to correlate with

the unit cell simulations of Dunand and Mohr (2014) even though discrepancies

are always larger around generalized compression (L = 1). In contrast, the regime

around generalized tension (L = −1) seems to be well reproduced.

Failure loci are usually depicted as failure strain εf versus stress triaxiality T

and Lode parameter L, but it is also interesting to transform the failure loci into

stress space. Several stress quantities can be used to display a failure locus, e.g. the

shear stress versus normal stress (Dunand and Mohr 2014), the major principal

stress versus stress triaxiality (Di et al 2016) or the principal stresses, which are

selected herein. We recall that the stress states emphasized here pertain to the

material outside the band. Figure 6 shows the failure loci obtained with different

shear parameters ks in the principal stress plane. The isotropy of the constitutive

model is utilized to visualize the entire failure locus from the data obtained in the

Lode angle range θL = 0◦ (L = −1) to θL = 60◦ (L = 1).

The stress-based failure loci presented in Figure 6 are covering the full range of

stress triaxialities studied, i.e., T varies from 0 to 4. It is interesting to note that the

shapes of the stress-based failure locus are always similar, independent of the value

of ks. At low stress triaxiality, some kind of flower pattern is observed. The radius of

the failure locus (the equivalent stress in this case) is decreasing when approaching

generalized shear states (30◦ in the figure) and increasing towards generalized

tension and compression (0◦ and 60◦). This phenomenon is directly linked to the

evolution of the failure strain as a function of the Lode parameter L (Figure

5). When approaching generalized shear, the ductility is decreasing and thus the
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Fig. 6 Effect of the void softening in shear on the failure locus in stress space: a) ks = 0.0,

b) ks = 1.0 and c) ks = 2.0.

equivalent stress σeq at localization is lower than the one in generalized tension or

compression because outside the band J2 plasticity is used and σeq = σM .

The flower-shaped failure locus is somewhat similar to yield and fracture sur-

faces recently proposed to account for the influence of the third invariant J3 on

the behaviour of metals (Xue and Wierzbicki 2008; Chocron et al 2011). At higher
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stress triaxiality with T ranging approximately between 0.8 and 2.0, a change in

the shape of the failure locus takes place from the flower shape to a shape resem-

bling the Tresca criterion. In this region, the modified Hosford-Coulomb criterion

recently proposed by Mohr and Marcadet (2015) would be a suitable choice to

describe the failure locus mathematically. When further increasing the stress tri-

axiality, the shape of the failure locus changes into a shape resembling the von

Mises yield surface, thus indicating that macroscopic failure takes place just after

yielding. When the hydrostatic stress applied to the band is about three times

the yield stress of the material (corresponding to a stress triaxiality T = 3 here)

the failure locus is inside the yield surface. At very large stress triaxialities, the

material inside the band experiences yielding, plastic deformation and localization

while the material outside the band is still in the elastic domain. Accordingly, a

transition from ductile failure to a macroscopic brittle failure is obtained in the

presence of initial voids at large stress triaxialities. Note that, by introducing a

small porosity outside the band, evidently smaller than the one inside, this tran-

sition from ductile to brittle fracture could be postponed to even higher stress

triaxiality. In this study, brittle failure is defined as a phenomenon where plastic-

ity, void growth and localization takes place in an infinitely small region while the

surrounding material still behaves elastically. To some extent, this definition re-

sembles the micro-plasticity phenomena used in high-cycle fatigue (Lemaitre and

Desmorat 2005; Desmorat et al 2007).
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6.4 Effect of void nucleation

Voids in metals are supposed to be either present before any straining of the

material, due to manufacturing processes, or to be nucleated during straining.

Void nucleation could be caused by decohesion between hard particles and the

matrix material or possibly between hard and soft phases. Another mechanism

for void nucleation is particle cracking. To investigate the effect of void nucleation

on failure by strain localization, the initial void content, f0 = 0.7%, is replaced

by a similar volume fraction of void nucleating particles, fn = 0.7%. The void

softening in shear is not included in the first results presented below. The effect

of void nucleation on the failure locus is shown in Figure 7 a), where the failure

strain εf is plotted against stress triaxiality T and Lode parameter L. The results

from the unit cell simulations of Dunand and Mohr (2014) are included to get a

reference for the magnitude of the failure strain. But it should be noted that a

direct comparison is not possible here because the unit cell simulations were based

on a preexisting void.

The shape of the failure locus is not markedly affected when one uses a lo-

calization analysis based either on initial porosity or void nucleation for stress

triaxialities comprised between 0.2 and 1 (Figure 7 a)). However, the magnitude

of the failure strain is affected, and the failure locus is shifted upwards by this

change of mechanism. The parameters governing the void nucleation are given the

following values: the mean equivalent plastic strain for nucleation pn is taken to

be equal to the equivalent plastic strain at diffuse necking under pure tension,

and the associated standard deviation sN is set to 0.1. As these parameters are

difficult to estimate, even with access to experimental data, a sensitivity study
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Fig. 7 Effect of void nucleation on the failure locus: a) comparison between initial porosity

and void nucleation, b) effect of the mean equivalent plastic strain for nucleation pn and c)

effect of the associated standard deviation sn.

was performed. Figure 7 b) and c) show the effect on the failure strain of varying

pn and sn, respectively. The reduction of pn from 0.175, which is the strain to

necking, to 0.04375, which is one-quarter of the strain to necking, has only a small

effect on the failure locus for moderate stress triaxialities (T = 0.5 and T = 1.0).

At the lowest stress triaxiality (T = 0.2), the failure strain is more affected by

pn. A similar trend is seen for the standard deviation sn in Figure 7 c), where sn

ranges from 0.05 to 0.2.
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Fig. 8 Effect of void softening in shear on the failure locus in stress space in the case of void
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The effect of void softening in shear on failure when void nucleation is consid-

ered is illustrated in Figure 8 in terms of the failure loci on the deviatoric stress

plane. The flower-shaped fracture loci for low stress triaxialities are seen also in

this case, and again the shape of the fracture loci changes into a shape similar

to the Tresca criterion with increasing stress triaxiality. The largest difference be-
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tween the failure loci obtained when using localization analysis based either on

initial porosity or void nucleation is found at very high stress triaxialities. The

transition from ductile to brittle failure observed for the case with initial porosity

is not found in the simulations with void nucleation. The reason for this is that the

materials inside and outside the band yield simultaneously and then the porosity

inside the band develops with plastic straining. This precludes localization inside

the band while the material outside is elastic and the failure loci in the deviatoric

stress plane will always be bounded from below by the yield locus.

7 Underlying mechanisms in the imperfection band analyses

7.1 Preamble

While Section 6 addressed the failure locus in terms of the equivalent plastic strain

and the stress state in the material outside the band, this section deals with the

evolution of the stress state inside the band. The aim is to investigate localization

from the perspective of the band and thus substantiate the observations made in

the simulations based on the imperfection analysis. In this section, the localization

strain εl is defined as the equivalent plastic strain p, either inside the imperfection

band or outside, when localization is detected into the voided material of the

critical imperfection band or in the homogeneous material in the case of bifurcation

analyses.

Two important points must be raised before presenting any result from this

perspective. First, the adopted computational procedure utilizes a finite number of

band orientations to evaluate strain localization. In this section, we only consider

the band with the orientation leading to the lowest ductility for a given stress
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state imposed outside the band. Second, when analysing the data extracted from

within an imperfection band, it must be kept in mind that these results can be

sensitive to the definition of localization. In the numerical simulations, loss of el-

lipticity is defined here as the first instant where the determinant of the acoustic

tensor At becomes negative, while the stringent condition for loss of ellipticity is

detAt = 0. By using sufficiently small strain increments ∆ε, the influence of this

approximation on the predicted values of the quantities outside the band at local-

ization can be made negligible. To this end, the norm of the strain increment ‖∆ε‖

was set to 10−5 in the above simulations. However, the incremental deformation

non-uniformity ∆q cannot be controlled and its magnitude grows exponentially

when approaching loss of ellipticity. Therefore, the final values of the equivalent

plastic strain and the stress state in the localization band are somewhat difficult

to get precisely. Obviously, the value of the equivalent plastic strain at localization

inside the band will be an upper bound.

The results presented in the following are all obtained with the Gurson model

using the porous plasticity parameters, q1 = 1.5, q2 = 1.0 and q3 = q21 , the void

softening in shear parameter ks = 1.0, and either initial porosity f0 = 0.007 or

void nucleation set by fn = 0.007 pn = 0.175 and sn = 0.1.

7.2 Evolution of the local states inside the localization band

The evolution of the equivalent stress σeq and hydrostatic stress σh = 1
3σ : I (inside

and outside the band) as a function of the equivalent plastic strain p (respectively

inside and outside the band) for a selection of stress states is shown in Figure 9.

Subfigures a) and b) present these results for an analysis with initial porosity, while



On the description of ductile fracture in metals by the strain localization theory 35

the results in subfigures c) and d) concern an analysis with void nucleation. The

results are presented for stress states outside the band defined by stress triaxiality

T = 0.5, 1.0 and 2.0 and Lode parameter L equal to 0.

For both the considered cases, the equivalent and hydrostatic stresses inside

the band are following those outside the band until void growth starts to compete

with the work hardening and eventually leads to softening. An exception is seen in

the simulation using initial porosity and a stress triaxiality equal to 2, for which

the material inside the band yields well before yielding takes place outside, and

thus the two curves differ from the start. Also, the hydrostatic stress differs inside

and outside the band, indicating a change in the stress state within the band.

This will be discussed in more detail later on. Finally, Figure 9 shows that the

equivalent plastic strain is always greater inside the band than outside due to the

porosity evolution and ensuing strain softening within the imperfection band. The

strain outside the band at localization is represented by colored circles in Figure

9.

The evolution of the porosity inside the critical band as a function of the

equivalent plastic strain outside the band is given in Figure 10 a) and b) for

analyses with initial porosity and void nucleation, respectively. It is seen that the

porosity grows exponentially when approaching localization, but for both cases

the final porosity is quite low at localization (around 6% for the largest ductility

presented here). For moderate stress triaxialities, the porosity evolution and the

final value of the porosity in the band are found to be similar in the two cases. This

agrees with the observation made in Section 6 that using either initial porosity or

void nucleation has only minor effects of the failure strain for moderate stress

triaxiality.
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Fig. 9 Evolution of the equivalent stress σeq and hydrostatic stress σh inside and outside the

localization band with the associated equivalent plastic strain p for the case of initial porosity

and void nucleation. Note that the data extracted from the imperfection band are plotted as

function of the equivalent plastic strain developed inside the band.

Figure 11 a) and b) present the evolution of the normalized determinant ξA

of the acoustic tensor and the strain jump parameter ξ∆ε as a function of the

equivalent plastic strain outside the band for analyses considering either an ini-

tial porosity or void nucleation, respectively. The normalized determinant of the

acoustic tensor ξA and the strain jump parameter ξ∆ε are defined as

ξA =
detAt

detA
, ξ∆ε =

√
∆εb : ∆εb√
∆ε : ∆ε

(40)
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Fig. 10 Evolution of the porosity in the critical band against equivalent plastic strain outside

the band: a) initial porosity and b) void nucleation.

where A = n ·C · n is the acoustic tensor of the elastic material. There are only

minor differences found between the two cases shown in Figure 11 a) and b). While

the normalized determinant of the acoustic tensor ξA is gradually decreasing to-

wards zero, the strain jump parameter ξ∆ε is rather constant and almost equal

to unity until exponential growth occurs in the vicinity of loss of ellipticity. Con-

sidering only the evolution of the determinant of the acoustic tensor would lead

to the conclusion that strain localization is a progressive phenomenon. But the

evolution of the strain jump parameter shows that the localization of deformation

in the band is abrupt.

Figure 12 a) and b) present the initial and final orientations φ0 and φf of

the critical band for the two types of simulations where initial porosity and void

nucleation are considered, respectively. The final orientation is obtained at the

time of failure tf . The band orientations are shown for stress triaxiality T ∈ [0, 4]

and Lode parameter L equal to -1 (i.e., generalized tension) outside the band. The

complementary angle α, which is defined by cosα = q̇ · n, defines the localization
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Fig. 11 Evolution of the normalized determinant of the acoustic tensor ξA and the strain

jump parameter ξ∆ε with the equivalent plastic strain p outside the band: a) initial porosity

and b) void nucleation.

mode, e.g., if it is a shear band (α = 90◦) or a dilatation band (α = 0◦). The final

value of the complementary angle αf = α(tf ) is also plotted in the figures. The

definitions of the angles φ, φ0 and α are given in Figure 12 c). It is easily seen that

the critical band experiences large rotation for moderate stress triaxiality, while

for large stress triaxiality (say, above 2) localization occurs rapidly and the band

does not rotate. Using initial porosity or void nucleation in the simulations has a

strong influence on the critical band orientation. In the case of initial porosity, the

critical localization mode is a shear-dominated band with φf ≈ 45◦ (αf ≈ 85◦)

for low stress triaxiality and then it turns gradually into a dilatation-dominated

band with φf ≈ 0◦ (αf ≈ 0◦) with increasing stress triaxiality. In the case of void

nucleation, the critical band retains its shear band character for the whole range

of stress triaxiality, and φf varies between 35◦ and 45◦.

As shown in Figure 9, the stress state inside the localization band is initially

similar to the one imposed outside the band, but starts to drift away when void
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Fig. 12 Band orientations φ0 and φf and the complementary angle αf as functions of stress

triaxiality (L = −1): a) initial porosity, b) void nucleation and c) definitions of the angles.

growth takes place. Figure 13 a) and b) show the stress path inside the band in

terms of stress triaxiality T and Lode parameter L for an imposed stress triaxial-

ity of 0.5 and various Lode parameters (from -1 to 1) outside the band. Even if

proportional loading is maintained outside the band during the entire loading pro-

cess (indicated by the black dots in Figure 13), a strongly non-proportional stress

history is observed inside the bands. In these simulations, the stress state inside

the band in the vicinity of loss of ellipticity is always rather close to generalized

shear (L = 0), even when the Lode parameter imposed outside the band is equal

to -1 or 1.



40 David Morin et al.

The observation that the localization occurs in the vicinity of generalized shear

for moderate stress triaxiality is interesting and could be used to explain the shape

of the failure locus obtained by Dunand and Mohr (2014). For a stress triaxiality

of 0.5, the minimum ductility is found to be close to generalized shear (L = 0),

in both the unit cell analyses and the imperfection analyses, while larger ductility

is found for generalized tension (L = −1) and generalized compression (L = 1).

The ductility is found to be larger in generalized compression than in generalized

tension. These observations can be explained from Figure 13a). When the Lode

parameter outside the band is equal or close to zero, the conditions are favourable

for localization of deformation into a shear band and as a result, the macroscopic

ductility is at the lowest. In contrast, if the material is subjected to generalized

tension or generalized compression, the localization band must be subjected to

significant straining before its stress state drifts towards generalized shear, thus

increasing the macroscopic ductility. One simple way to explain the asymmetry in

ductility between generalized tension and generalized compression is to consider

the evolution of the stress triaxiality inside the localization band. According to

Figure 13 a) and b), the stress triaxiality increases inside the localization band

when the material outside the band is subjected to generalized tension, while it

decreases if generalized compression is applied outside the band. Accordingly, the

void growth will be faster when generalized tension is applied outside the band

due to the increased hydrostatic stress and the result is a lower ductility than in

generalized compression.

At large stress triaxialities, the evolution of the stress state in terms of Lode

parameter L and stress triaxiality T inside the imperfection bands for initial poros-

ity and void nucleation are given in Figure 14 a) and b), respectively. In the case of
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Fig. 13 Evolution of the stress states inside the localization bands in simulations with T = 0.5

and a) initial porosity or b) void nucleation.

an initially voided material (Figure 14 a)) with stress triaxiality outside the band

fixed to 4, the imperfection bands still exhibit a strongly non-proportional load

path and localization always occurs around generalized tension. Accordingly, the

macroscopic failure locus at this level of stress triaxiality will find its minimum in

generalized tension. At large stress triaxialities, the initially voided imperfection

bands tend to localize into a dilational mode (Figure 12 a)). The dilatation mode

is favoured by generalized tension in contrast to shear banding which is favored

by generalized shear. When the imperfection bands consist of a void-nucleating

material, their local stress states are drifting from the one imposed outside the

bands towards generalized shear (Figure 12 b)) but never reach it, except when a

small Lode parameter is imposed outside the band. The full range of stress states

imposed outside the bands (regularly spaced black dots) and the resulting stress

states inside the bands (red circles) at strain localization are presented in Figure 15

a) and b) for simulations using initial porosity or void nucleation, respectively. In

the case of initial porosity, the stress state at localization changes gradually from
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generalized shear for low triaxiality towards generalized tension for high triaxiality.

Simultaneously, the localization mode changes from a shear band to a dilatation

band (cf. Figure 12 a)), and at the highest triaxiality localization occurs before

yielding takes place outside the band. In the case of void nucleation, the stress

state is close to generalized shear for low triaxiality, while at higher triaxiality the

Lode parameter at localization is between -0.5 and 0.5. The localization mode is

a shear-dominated band even at high triaxiality (cf. Figure 12 b)). A much larger

spread of the stress state inside the band at localization is obtained when void

nucleation is used rather than initial porosity (Figure 15 b).

7.3 Comparison between bifurcation and imperfection analyses

In this section, bifurcation analyses are carried out with the parameters of the

Gurson model used in the imperfection analyses of the previous section. The stress

triaxiality and Lode parameter are both constant until loss of ellipticity occurs.
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Simulations are performed using either initial porosity or void nucleation over a

wide range of stress states.

The localization strains εl obtained for four different values of stress triaxiality

(T = 0.5, 1.0, 2.0, 3.0) as a function of the Lode parameter L are presented in Fig-

ure 16 a) and c) for the initially voided and void nucleating materials respectively.

Note that a semi-log plot is used so that the small variation at large stress triaxi-

alities can still be observed in the figure. The results obtained with the bifurcation

analysis show similar trends as those found with the imperfection analysis: the

ductility decreases with increasing stress triaxiality and the Lode dependence is

strong. It is notable that the minimum ductility at a given stress triaxiality is not

necessarily found at L = 0. In simulations using an initial porosity, the minimum

ductility is located near L = 0 for low stress triaxialities (T < 1.0), while at larger

stress triaxialities the point of minimum ductility drifts away from generalized

shear towards generalized tension. For instance, at T = 3 the minimum ductility
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is obtained for a Lode parameter of -0.5 (Figure 16 a)). When void nucleation is

adopted in the simulations (Figure 16 b)), the point of minimum ductility remains

closer to generalized shear even if some deviations are observed. Moreover, it is

important to notice that in contrast to the imperfection analysis, localization is

difficult to obtain for positive values of the Lode parameter in the investigated

range of strain. Figures 16 b) and d) present the material softening indicator Hs
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Fig. 16 Localization strain εl and material softening indicator Hs as function of the Lode

parameter L obtained with the bifurcation analyses of the band material: a) and b) initial

porosity, c) and d) void nucleation.

required to get a bifurcation in the porous materials with initial voids and void
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nucleation. The material softening indicator Hs is defined as

Hs ≡ −dΦ|σ=const = −
(
∂Φ

∂σM
dσM +

∂Φ

∂f
df

)
(41)

where Hs is positive for strain hardening and negative for strain softening. It is

noted that, according to Figure 16 b) and d), the point of minimum ductility at

a given stress triaxiality corresponds to the maximum value of Hs which allows a

bifurcation to occur and therefore the least amount of softening.

Figure 15 a) and b) compare the stress states at localization obtained with

the imperfection and bifurcation analyses. The blue dots illustrate the locations

in the stress space (defined by T and L) of the points of minimum ductility in

the bifurcation analyses, i.e., each point gives the Lode parameter L at which the

minimum ductility is obtained at a given stress triaxiality T . As an example, for

simulations with an initially voided material, the minimum ductility for a stress

triaxiality of 3 is found for a Lode parameter equal to -0.5 in Figure 16a), and a

blue circle is then present in Figure 15a) at the same location. It appears from

Figure 15 that the stress state inside the localization band in an imperfection

analysis is always close to the stress state giving the minimum ductility in the

corresponding bifurcation analysis. This observation can be explained by the fact

that loss of ellipticity can be reached for a smaller amount of material softening in

these stress states (Figure 16). To investigate the potential reasons for the spread

in the stress states of the imperfection bands at localization (Figure 15) a serie

of bifurcation analyses is carried out. These dedicated bifurcation analyses are

perfomed as follows:

– The imperfection analyses of Section 7.2 where the Lode parameter outside

the band is fixed to L = 0 or L = −1 are selected.
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Fig. 17 Comparison between the localization strain εl obtained with the imperfection and

bifurcation methods for L = 0 and −1 outside the imperfection band: a) and b) with initial

porosity, c) and d) with void nucleating.

– The stress states at localization of the imperfection bands are extracted.

– Bifurcation analyses are carried out under proportional loadings for these par-

ticular stress states.

– The localization strain εl is extracted from the bifurcation analyses when loss

of ellipticity is reached and compared to the localization strain reached in the

bands of the imperfection analyses.

Figure 17 presents the localization strains obtained for the initially voided

and void nucleating materials, respectively, when the Lode parameter outside the

imperfection band is fixed to L = 0 and L = −1. A rather good correlation is found
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between the localization strains as long as the loading is proportional or slighty

non-proportional. When the loading is strongly non-proportional like for low stress

triaxiality and L = −1 outside the band, a large difference is observed between

the localization strains εl obtained with the imperfection and bifurcation analyses.

Recall here that a large variation in the Lode parameter of the imperfection bands

is observed at low stress triaxiality for axisymmetric stress states (Figure 13),

because localization occurs for stress states near generalized shear.

Based on the present results, it appears that the spread in the stress state inside

the imperfection bands at localization (Figure 15) is linked to the degree of non-

proportionality of the loading. When the loading is nearly proportional the stress

state inside the band is located near a point of minimum ductility of the bifurcation

analyses. In the case of strongly non-proportional loading inside the imperfection

bands, loss of ellipticity might occur before the bands have reached a state giving

minimum ductility in the bifurcation analyses.

Concluding remarks

Strain localization is used here to describe ductile failure and investigated in this

study by employing the imperfection analysis proposed by Rice (1976). An im-

portant ingredient in the imperfection analysis is the inelastic mechanism used

in the imperfection band to trigger the localization process. The Gurson porous

plasticity model is used here with some of its extensions, namely the Tvergaard

parameters (Tvergaard 1981), the shear modification proposed by Nahshon and

Hutchinson (2008), and using either initial porosity or void nucleation. The results

obtained with the strain localization analyses (using the imperfection approach)



48 David Morin et al.

are compared with the 3D unit cell simulations reported by Dunand and Mohr

(2014). It is shown that the imperfection analysis provides qualitatively similar

results as the full 3D unit cell simulations reported by Dunand and Mohr (2014),

while having a significantly lower computational cost.

When using the imperfection analyses to study ductile failure, from the per-

spective of the material outside the band, the following conclusions are found:

– The shapes of the failure loci appear unaffected by the Tvergaard parameters

(q1, q2, q3) while the failure strain levels are markedly affected.

– The shapes of the failure loci in stress space show strong variations from low

to high stress triaxialities.

– The voiding mechanism (initial or nucleating porosities) does not seem to have

a large influence in the moderate stress triaxiality regime.

– At large stress triaxialities in the presence of initial porosity, a macroscopic

transition from ductile to brittle failure is observed.

When studying the imperfection analyses from the perspective of the material

inside the band, the following conclusions are drawn:

– The evolution of the stress triaxiality and the Lode parameter inside the im-

perfection bands can be used to explain the shape of the failure locus.

– When increasing the stress triaxiality, it is found that the stress states inside the

initially voided bands are drifting from generalized shear towards generalized

tension. This correlates with the transition from shear banding to dilatational

banding.
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– The void-nucleating imperfection bands do not exhibit such transition and at

localization their stress states are always shifting towards generalized shear

and their deformation modes are always shear-dominated.

– The brittle failure phenomenon observed in the presence of an initial porosity

is linked to the early yielding of the material inside the band as a result of the

high stress triaxiality imposed by the material outside the band.

In an attempt to understand the underlying mechanisms of the imperfection

approach, bifurcation analyses were carried out on the porous material of the

imperfection bands. The following conclusions are drawn:

– When the loading inside the imperfection band is nearly proportional, a good

correlation with the point of minimum ductility predicted by the bifurcation

analyses is obtained.

– When the loading inside the imperfection band is strongly non-proportional,

the stress state inside the imperfection bands is drifting towards the point of

minimum ductility of the bifurcation analyses but localization occurs before

reaching this state.

While the obtained results show that the imperfection analyses can be used

to obtain a qualitative understanding of ductile failure, quantitative estimates

of the ductility of metals are difficult to obtain at low stress triaxiality. It is

believed though that a quantitative estimate could be reached by employing a

more advanced porous plasticity model (Madou and Leblond 2012; Morin et al

2016). Current investigations also show that the approach is able to predict failure

characteristics for materials with complex microstructures without taking into

account this complexity. Another point of interest is the description of ductile
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failure under non-proportional loadings, where the imperfection band approach

could also be used.
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