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Abstract

Fluid–structure interaction in a simplified 2D model of the upper airways is simulated to study
flow–induced oscillation of the soft palate in the pharynx. The goal of our research has been a better
understanding of the mechanisms of the Obstructive Sleep Apnea Syndrome and snoring by taking
into account compressible viscous flow. The inspiratory airflow is described by the 2D compressible
Navier–Stokes equations, and the soft palate is modeled as a flexible plate by the linearized Euler–
Bernoulli thin beam theory. Fluid–structure interaction is handled by the arbitrary Lagrangian–
Eulerian formulation. The fluid flow is computed by utilizing 4th order accurate summation by
parts difference operators and the 4th order accurate classical Runge–Kutta method which lead
to very accurate simulation results. The motion of the cantilevered plate is solved numerically
by employing the Newmark time integration method. The numerical schemes for the structure
are verified by comparing the computed frequencies of plate oscillation with the associated second
mode eigenfrequency in vacuum. Vortex dynamics is assessed for the coupled fluid-structure system
when both airways are open and when one airway is closed. The effect of mass ratio, rigidity and
damping coefficient of the plate on the oscillatory behaviour is investigated. An acoustic analysis
is carried out to characterize the acoustic wave propagation induced by the plate oscillation. It is
observed that the acoustic wave corresponding to the quarter wave mode along the length of the
duct is the dominant frequency. However, the frequency of the plate oscillation is recognizable in
the acoustic pressure when reducing the amplitude of the quarter wave mode.

Keywords: Fluid-structure interaction (FSI); High order finite difference method; Cantilevered
flexible plate; Acoustics; Obstructive sleep apnea syndrome (OSAS)

1. Introduction

Fluid structure interaction (FSI) refers to a phenomenon where a flow field interacts with
compliant or elastic structures. The behaviour of many dynamic systems is influenced by the
interaction between the fluid flow and structural components that are involved in the system. This
interaction happens in a wide range of phenomena such as flapping of insect wings, the flutter of5

flags, the vibration of bridges and structures and the aeroelasticity of aircraft wings. With growing
interest in the multidisciplinary field of biomedical and biomechanical engineering, a vast amount
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of research has been conducted to comprehend fluid-structure interaction in physiological systems
in the human body (Tian et al., 2014; Wu and Cai, 2014; Larsson and Müller, 2012).

One of the prime examples of FSI in biomechanical systems is the dynamics of the upper10

airways where the interaction between inspiratory and expiratory airflow with soft tissues may lead
to flow-induced instabilities. Disorders of the upper airways are often associated with respiratory
syndromes. Among these, obstructive sleep apnea (OSA) and snoring are closely related to the
flow conditions in the upper airways. Obstructive sleep apnea syndrome (OSAS) is one of the most
prevalent types of sleep-disordered breathing caused by repetitive collapse of the soft tissues in the15

upper airways. Estimates show that OSAS affects 2–4% of the adult population (Young et al., 1993).
The significant consequence of OSAS is sleep fragmentation which can lead to increased daytime
sleepiness, fatigue-related accidents and risk of cardiovascular diseases (Malhotra and White, 2002).
Even though snoring does not necessarily mean that one has sleep apnea, estimates show that 10%
of snorers are at risk of OSAS (Bertram, 2008).20

In recent years, the fluid flow over a cantilevered plate has been a reliable theoretical model
not only for many engineering applications but also for many biomechanical systems like human
palatal snoring (Kuhl and DesJardin, 2012; Huang and Zhang, 2013). Computational models have
been increasingly employed to model upper airways. In most of the investigations, inviscid flow
has been assumed to develop numerical models for flow-induced instabilities (Guo and Päıdoussis,25

2000; Howell et al., 2009; Shoele and Mittal, 2016). A cantilevered beam immersed in a channel
flow has been investigated by Auregan and Depollier (1995) both analytically and experimentally
to understand snoring. They employed linear small deflection beam theory and neglected frictional
losses. Quasi-parallel flow was assumed and the pressure on the beam was estimated by mass con-
servation and the Bernoulli equation. Huang (1995) modeled a cantilevered elastic plate immersed30

in an axial flow, and also conducted wind tunnel experiments to verify theoretical results for palatal
snoring. The governing equation for linear plate bending was solved by using finite expansion of
orthogonal in vacuum modes. Although the viscous effect of circulation was implicitly imposed by
the Kutta–Joukowski condition at the free trailing edge of the plate, viscosity was neglected and
potential flow theory was used. He found that fluid loading resulting from the interaction of the35

wake vortices is responsible for the irreversible energy transfer in the flow–induced instability.
Linear instability of thin elastic plates with different leading and trailing edge conditions in

2D channel flow was investigated by Guo and Päıdoussis (2000). Similar to the work done by
Auregan and Depollier (1995), the 1D linear plate equation was solved by applying the Galerkin
method where plate deflections were recast in the form of an expansion series of orthogonal beam40

functions. A Fourier transform technique was applied to solve the perturbation pressure from the
potential flow equations. They found that single-mode and coupled-mode flutter are dominant
modes for plates with a free trailing edge and free-free edge, respectively. However, the instability
of plates with either clamped or pinned boundary condition at edges may occur through first-mode
divergence exceeding other types of instability modes (Guo and Päıdoussis, 2000).45

Tang and Päıdoussis (2007, 2008) performed computational investigations of non-linear large
deflection of cantilever plates using the inextensibility condition surrounded by axial flow. The flow
was assumed purely inviscid even if a separate viscous drag was coupled into the plate equation,
and the imposed pressure difference on the plate was estimated using an unsteady lumped vortex
model. Their analytical results show that if critical flutter velocity and frequency increase, the50

drag coefficient will increase. Furthermore, in experimental results they observed sudden flutter
vibration at critical velocities. However, the onset of oscillation will be more unlikely, if the flow
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velocity is reduced from an initial plate flutter. They demonstrated the possibility of a hysteresis
phenomenon by including an unsteady von Kármán vortex street in their simulation. Conduct-
ing more theoretical investigations on the effect of trailing edge wakes on plate instability, they55

concluded that longer plates together with higher critical frequencies cause higher ratios of plate
vibration velocity to wake-induced flow velocity, and thus a smaller effect of wake-induced flow
velocities on the plate.

In contrast to the studies mentioned above, Balint and Lucey (2005) and Tetlow and Lucey
(2009) included viscous effects directly in their instability analysis by solving the Navier–Stokes60

equation in a 2D channel surrounding a cantilever plate. Whereas Balint and Lucey (2005) modeled
the motion of a thin plate using linear plate theory under differential pressure, Tetlow and Lucey
(2009), added a tension term defined as the skin friction force acting on both the upper and lower
sides of the plate. In both studies, the finite element method was employed in order to solve the
unsteady, laminar Navier–Stokes equations in a channel geometry with inlet boundaries above and65

below the flexible plate and to estimate fluid loads interfacing with the plate. Their fluid solver was
explicitly coupled to the structural finite difference solver. Based on their numerical results, when
both upper and lower inlets are open, a flutter-type instability is initiated at a critical Reynolds
number, while if one of the inlets is closed, a divergence-type instability occurs at a critical velocity.
Although Tetlow and Lucey (2009) imposed a constant pressure drop along the channel rather than70

assuming velocity-driven flow, flutter instabilities similar to those found by Balint and Lucey (2005)
were observed.

In this paper, we use a compressible viscous flow model to simulate the flow-induced oscillation
of the soft palate in the pharynx by a simplified 2D model (cf. Fig.1). We couple the compressible
flow in the pharynx to a cantilevered thin plate model of the soft palate in an arbitrary Lagrangian-75

Eulerian (ALE) formulation by using a two-way explicit coupling. A high order finite difference
method based on summation by parts (SBP) (Strand, 1994; Svärd and Nordström, 2014) is used
for the spatial discretization of the compressible Navier–Stokes equations. The classical fourth
order explicit Runge–Kutta scheme is applied for time integration for the sake of accuracy and easy
parallelization. The Newmark time integration method and central finite difference method are80

used to solve the linearized Euler–Bernoulli thin beam model. To achieve geometric flexibility with
high order operators for this simplified model in the upper airways, the multi block structured grid
approach is employed. We investigate the effect of material properties on the oscillation behaviour
of the flexible plate. Using compressible fluid flow permits us to investigate the acoustic waves
inside the channel and also the effect of flexible plate oscillation on sound generation.85

The paper is organized as follows. In Section 2, the models for fluid flow, structure and their
coupling by FSI are presented. In Section 3, first the verification of the structure scheme is per-
formed. Next, the numerical simulation of the plate oscillation for flow with artificially increased
Mach numbers up to 0.02 and Reynolds numbers up to 756 is presented. Then, the effects of plate
properties on the plate oscillation induced by the flow are examined, and finally the results of the90

acoustic analysis are shown. Conclusions are stated in Section 4.
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(a) Schematic of the computational model (b) The anatomy of up-
per airways.

Figure 1: Computational model and real geometry.

2. Model

2.1. Fluid flow

In the present study, the 2D compressible Navier–Stokes equations in perturbation form are
solved. The perturbation formulation is employed to minimize cancellation errors when discretiz-
ing the Navier–Stokes equations for compressible low Mach number flow (Sesterhenn et al., 1999;
Müller, 2008). The conservative form of the 2D compressible Navier–Stokes equations in perturba-
tion formulation can be written as

U′t + Fc′x + Gc′
y = Fv ′x + Gv ′

y (1)

where U′ = U−U0 is the vector of conservative perturbation variables with U = (ρ, ρu, ρv, ρE)T

the vector of the conservative variables and U0 = (ρ0, 0, 0, (ρE)0)T the stagnation values.95

The conservative perturbation variables U′ and the inviscid (Fc′, Gc′) and viscous perturbation
flux vectors (Fv ′, Gv ′) are defined by Fc′ = Fc(U)− Fc(U0), etc.

U′ =


ρ′

(ρu)′

(ρv)′

(ρE)′

 ,

Fc′ =


(ρu)′

(ρu)′u′ + p′

(ρv)′u′

((ρH)0 + (ρH)′)u′

 , Gc′ =


(ρv)′

(ρu)′v′

(ρv)′v′ + p′

((ρH)0 + (ρH)′)v′

 ,

Fv ′ =


0
τ ′xx
τ ′xy

u′τ ′xx + v′τ ′xy + κT ′x

 , Gv ′ =


0
τ ′yx
τ ′yy

u′τ ′yx + v′τ ′yy + κT ′y

 ,

where t is physical time and x and y are the Cartesian coordinates. ρ denotes density, u and v
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the x- and y-direction velocity components, E the specific total energy, T the temperature and100

κ the heat conduction coefficient calculated from the constant Prandtl number Pr = 1. ρ0, (ρE)0

and (ρH)0 denote the stagnation values of density, total energy density and total enthalpy density,
respectively. The perturbation variables are given as follows
ρ′ = ρ− ρ0, (ρu)′ = (ρu), (ρE)′ = ρE − (ρE)0, (ρH)′ = (ρE)′ + p′

u′ = (ρu)′

ρ0+ρ′ , τ ′ = µ(∇u′ + (∇u′)T )− 2
3µ(∇ · u′)I, T ′ = p′/R−ρ′T0

ρ0+ρ′105

Here, R is the specific gas constant and µ is the viscosity which is determined from the Sutherland
law µ

µ0
= ( TT0 )1.5[(1 + Sc)/(

T
T0

+ Sc)] with non-dimensional Sutherland constant Sc = 110
301.75 .

Since perfect gas is considered, the pressure perturbation can be related to the conserva-
tive perturbation variables p′ = (γ − 1)[(ρE)′ − 1

2((ρu′ · u′))], where the ratio of specific heats
γ = cp/cv = 1.4 for air.110

The viscous flux vectors Fv ′ and Gv ′ are the same as for the standard conservative form,
except for using the temperature perturbation T ′ instead of temperature T for the heat flux terms.
The momentum density and velocity perturbations are taken as the same as their unperturbed
counterparts, i.e. (ρu)′ = ρu (Larsson and Müller, 2009). For convenience the variables are non-
dimensionalized with ρ0, stagnation speed of sound c0, L the length of the flexible plate and ρ0c

2
0 as

reference values. In order to generalize the geometry for the human upper airways, the equations
of motions are transformed from the physical domain (x, y) to the computational domain (ξ, η) by
the following relations, and obviously for time-dependent geometry the transformation depends on
time as well.

t = τ
x = x(ξ, η, τ)
y = y(ξ, η, τ).

(2)

Thus, the transformed 2D compressible Navier–Stokes equations in perturbation form are expressed
as

Û′τ + F̂′ξ + Ĝ′η = 0, (3)

where Û′ = J−1U′, F̂′ = J−1(ξτU
′+ ξx(Fc′−Fv ′) + ξy(G

c′−Gv ′)) and Ĝ′ = J−1(ητU
′+ ηx(Fc′−

Fv ′)+ηy(G
c′−Gv ′)). The chain rule for partial differentiation provides the expressions for Cartesian

derivatives in the viscous flux vectors Fv ′ and Gv ′, e.g. u′x = u′ξξx + u′ηηx and u′y = u′ξξy + u′ηηy.

The Jacobian determinant of the transformation is J−1 = xξyη − xηyξ and time-dependent metric
terms are

J−1ξx = yη, J−1ξy = −xη, J−1ξτ = −xτξx + yτξy,

J−1ηx = −yξ, J−1ηy = xξ, J−1ητ = −yτxξ + xτyξ.
(4)

2.1.1. Numerical schemes

The high order finite difference method based on SBP operators (Strand, 1994; Gustafsson,
2008; Gustafsson et al., 1995) is employed for space discretization of the compressible Navier–
Stokes equations. We use a globally fourth order SBP operator to discretize the first ξ- and η-

derivatives in (4) and (3) and apply them twice to approximate the viscous parts of F̂ξ
′

and Ĝη
′
.115

The SBP operators for ∂
∂ξ and ∂

∂η correspond to the sixth order central difference operator in the
interior but degrade to third order accuracy near the boundary, resulting in fourth order global
accuracy (Gustafsson, 2008). This approach is based on the energy method, which permits us
to derive well-posedness for the continuous problem and to guarantee stability for the discrete
problem. The summation by parts operators and the stability criteria are discussed in detail in the120

Appendix.
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For the time integration process, the classical fourth order explicit Runge–Kutta method is
used. A time step size 4t corresponding to CFL = 0.333 is chosen to ensure stability.

The multi-block structured grid approach is employed to represent the simplified geometry in
the upper airways. Fig. 2(a) shows that we employ 6 blocks. Blocks 1, 3 and 5 have the lower125

channel wall as their southern boundaries and the rigid plate, flexible plate and the line between
the trailing edge of the flexible plate and the outlet, respectively, as their northern boundaries, cf.
lower plot in Fig. 2(a). The upper neighbouring blocks 2, 4 and 6 with the upper channel wall
as their northern boundaries are set apart in the upper plot of Fig. 2(a) to show the overlapping
regions. The decomposition of the computational domain into blocks allows us to accommodate130

geometric flexibility with high order operators. Having an overlap region of grid points at the
block interfaces, a smooth transition of the numerical solution from one block to another block is
achieved. For the seven-point stencil of the standard sixth order central finite difference method, a
three-point overlap at each side of inter-block boundaries is added cf. Fig.2(b). The black points
are located on the non–overlapping block boundary. The three red points in the interior of the135

left block communicate their data to the overlapping white points of the right block. Likewise,
the three green points in the interior of the right block communicate their data to the overlapping
white points of the left block. The inter-block communication between neighbouring blocks is
accomplished by using the Message Passing Interface (MPI) such that each block is assigned to a
single process, enabling parallel solution of the flow field.140

This fluid solver has been validated in previous investigations (Müller, 2008; Larsson and Müller,
2012) for single-domain structured grids.

2.1.2. Boundary conditions

Adiabatic no-slip boundary conditions are applied on the walls and the fluid-structure interface.
At the inflow, the velocities in the x- and y-directions are imposed using a uniform inlet profile
normal to the boundary, u(x = 0, t) = U0 and v = 0. In addition, the inlet temperature is set to
T = T0 = 310 K. The outlet pressure is set to atmospheric pressure, i.e., p′ = p− p0 = p− patm = 0
Pa. Non-reflecting characteristic boundary conditions are employed at the inflow and outflow
boundaries to minimize wave reflections. The Navier–Stokes characteristic boundary conditions
(NSCBC) developed by Poinsot and Lele (1992) are employed to approximate incoming waves
based on local one-dimensional inviscid (LODI) relations. The primitive variables can be related
to the wave amplitude (Li) by LODI relations. The amplitudes of the characteristic waves are
L1 = λ1( ∂p∂x − ρc

∂u
∂x), L2 = λ2(c2 ∂ρ

∂x −
∂p
∂x), L3 = λ3( ∂v∂x) and L4 = λ4( ∂p∂x + ρc∂u∂x). Since fully

non-reflecting conditions may lead to an ill-posed problem (Poinsot and Lele, 1992), this approach
is partially reflecting. Imposing a constant pressure at the outlet requires L1 = −L4. To keep the
reflections low and pressure close to atmospheric pressure, the incoming wave amplitude is set to

L1 = K(p− patm), (5)

where K is the relaxation coefficient. Rudy and Strikwerda proposed the relaxation coefficient as
K = σ(1−Ma2)(c/Lt) where Ma is the Mach number, c the sound speed, Lt the total length of the145

domain and σ a constant value (Rudy and Strikwerda, 1980). The optimum value σ = 0.25 derived
by Rudy and Strikwerda (1980) is employed. For reverse flow (negative velocity in x-direction) at
the outlet, L1, L2 and L3 are set to zero.
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(a) Block-structure topology of the computational domain. The three
upper blocks are detached in the figure for illustration of the three-point
overlap, shown with magenta lines.

(b) Illustration of points overlapping along a line.
The black points lie on the block boundary, the
red and green points are internal points in dif-
ferent blocks, the white points are added ghost
points which overlap the internal points in the
other block, and the arrows indicate the direc-
tion of data transfer between blocks.

Figure 2: Multiblock topology used for the simplified geometry of the upper airways.

2.2. The structure model

In the present study, the motion of the thin plate is based on the linear Euler–Bernoulli thin
beam theory. This theory provides the correlation between the deflection of the beam and the
applied load. In the Euler–Bernoulli thin beam theory, the deflection is assumed to be unidirectional
in the normal direction of the thin beam. Thus, deflection occurs only as a result of bending; the
shear-deformation and normal strains are neglected. There is no contribution from the fluid shear
stress, i.e., viscous effects on the plate are ignored and only the difference in fluid pressure is
accounted for. The oscillation of the flexible plate is constrained to vertical direction without any
stretch along the horizontal direction. The governing equation for the vertical displacement φ(x, t)
is expressed as

ρsh
∂2φ
∂t2

+ d∂φ∂t +B ∂4φ
∂x4

= −δp, (6)

where ρs, h, d and B denote respectively the density, thickness, flexural rigidity and structural150

damping of the plate, and δp denotes the applied pressure load. The flexural rigidity B is defined by
B = Eh3/[12(1− ν2)], where E and ν are the elastic modulus and Poisson ratio, respectively. The
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variables in Eq. (6) are non-dimensionalized with respect to the stagnation density ρ0, stagnation
speed of sound c0 and the length of the flexible plate L, in the same way as for the fluid solver.

The equation for calculating the energy of the plate per unit width can be derived by multiplying155

Eq. (6) by φ̇ = ∂φ
∂t and integrating over the length of the plate L (Balint and Lucey, 2005).

d
dt


Et︷ ︸︸ ︷

1

2
ρsh

∫ L

0
φ̇2dx︸ ︷︷ ︸

Ek

+
1

2
B

∫ L

0
(φxx)2dx︸ ︷︷ ︸
Es

 =

∫ L

0
(−δp)φ̇dx︸ ︷︷ ︸
Ẇ

− d

∫ L

0
φ̇2dx︸ ︷︷ ︸

Ḋφ

. (7)

The left hand side of the Eq. (7) is the time derivative of the total energy of the plate Et composed
of the kinetic and strain energies, Ek and Es, respectively. The right hand side represents the rate
of work done by the fluid on the plate Ẇ and the rate of energy dissipation due to damping of the
plate Ḋφ.160

2.2.1. Computational methods

The Newmark time integration method (Newmark, 1959) is employed for solving Eq.(6) implic-
itly. The displacement and velocity from time step t are integrated to t +4t using the relations

φ̇n+1 = φ̇n + [(1− γ) φ̈n + γφ̈n+1]4t, (8)

φn+1 = φn + φ̇n4t+ [(
1

2
− β)φ̈n + βφ̈n+1]4t2, (9)

where γ and β are parameters of the Newmark scheme and φ̈n+1 is the acceleration at the new
time level.

The most accurate, unconditionally stable scheme of the Newmark family is used. Its coefficients
are β = 1/4 and γ = 1/2. The scheme is second order accurate and preserves the energy for the165

linear system (Hughes, 2012). The standard second order central difference discretization is used
for the fourth order spatial derivative (φxxxx)n+1

j ≈ 1
4x4 (φn+1

j+2 − 4φn+1
j+1 + 6φn+1

j − 4φn+1
j−1 + φn+1

j−2 ).
The integration scheme works by first computing the updated displacement and applying it to
obtain the structure acceleration at the new time level, and then finding the updated velocity of
the structure.170

2.2.2. Boundary conditions

The cantilevered flexible plate is clamped at the leading edge and free at the trailing edge. For
a clamped configuration the first two nodes are stationary. The continuous and discrete boundary
conditions read

φ(0, t) = 0, φ1 = 0,
∂φ(0,t)
∂x = 0, φ1 = φ2.

(10)

For a free end configuration it is assumed that the bending moment and shear force are zero at
the last node. Thus, we have

∂2φ(L,t)
∂x2

= 0, φN−1 = 2φN−2 − φN−3,
∂3φ(L,t)
∂x3

= 0, φN = 3φN−2 − 2φN−3.
(11)
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2.3. Fluid-structure interaction

The Arbitrary Lagrangian–Eulerian (ALE) formulation is employed to handle the fluid flow in175

Eulerian description using moving fluid grids and the plate structure in a Lagrangian formulation
using stationary structure grids. In the time-dependent coordinate transformation of the fluid
flow domain, the grid point velocities ẋ and ẏ are subtracted from the fluid velocity to define the
contravariant velocity components U = ξx(u− ẋ) + ξy(v− ẏ) and V = ηx(u− ẋ) + ηy(v− ẏ) which

yield simple expressions for the transformed inviscid flux vectors F̂c and Ĝc (Pulliam and Steger,180

1980). The mesh update is implemented by remeshing the whole fluid domain in each time step
using the positions and velocities of the flexible structure at the boundary and a linear interpolation
for interior points in the fluid domain.

Solving fluid flow on a moving mesh, the numerical scheme should satisfy the Geometric Con-
servation Law (GCL) for mathematical consistency (Visbal and Gaitonde, 2002). This law states
that

(J−1)τ + (J−1ξt)ξ + (J−1ηt)η = 0, (12)

where the time derivatives of the computational coordinates ξ and η are calculated from grid point
velocities ẋ = xτ , ẏ = yτ as follows

ξt = −ξxẋ− ξyẏ, ηt = −ηxẋ− ηyẏ. (13)

Then, the 2D Navier–Stokes equations in ALE formulation (Peyret et al., 1975) are given by

U′τ = 1
J−1 (−F̂′ξ − Ĝ′η − (J−1)τU

′), (14)

where F̂′ = J−1(ξtU
′ + ξxF

′ + ξyG
′) and Ĝ′ = J−1(ηtU

′ + ηxF
′ + ηyG

′) are the transformed flux
vectors.185

The coupling between the fluid and the structure is handled by an explicit, two-way method
where forces and deformations are exchanged between the flow and the deformable structure in
each time-step, as shown in Figure 3. The fluid and structure interact with each other by applying
equal vertical displacement and velocity at the interface, satisfying the no-slip and adiabatic wall
boundary conditions.190

Generate initial 

fluid grid t = 0

Fluid solver 

Force of flow on

 structure interface

Structure solver

Update fluid grid

Grid velocities t = t + Δt

t    tmax

No

Yes

Output solution

End 

Figure 3: Schematic of two way coupling model.
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3. Results and discussion

3.1. Verification of structure solver in vacuum

3.1.1. Eigenmode analysis

The numerical schemes for the structural model have been verified through the plate oscillation
in vacuum associated with its eigenmodes. Following the work by Balint and Lucey (2005), d and
δp in Eq. (6) are set to zero. Assuming a harmonic vibration of time dependency eiωt, Eq. (6)
can be rewritten based on the harmonic vibration. Thus, for vibration in vacuum, the cantilevered
plate has the eigenfunctions

φm(x) = A [(cosh(kmx)− cos(kmx))− cosh(kmL)+cos(kmL)
sinh(kmL)+sin(kmL) (sinh(kmx)− sin(kmx))],

m = 1, 2, 3, . . .∞
(15)

where A denotes the amplitude scaling constant and km = βm/L the characteristic wavenumber
obtained by finding the roots of an eigenvalue equation. The coefficients βm are obtained from

coshβm cosβm + 1 = 0. (16)

The five first values of βm, m = 1, ..., 5, are 1.875, 4.694, 7.855, 10.996, 14.137. The angular eigen-
frequencies can be calculated as

ωm = k2
m

√
B/(ρsh). (17)

The modal configurations of the cantilevered plate are shown in Figure 4.
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Figure 4: The first five eigenfunctions φm(x) with A = 1 in Eq.(15).

3.1.2. Comparison with analytical solution195

Our numerical schemes have been first verified and tested by simulating plate oscillation in
vacuum associated with the second eigenmode of the structure. The physical properties of the
flexible structure were taken the same as in the study by Balint and Lucey (2005), namely m =
2.6 kg/m2, B = 4.92 kN m and the length of the flexible structure L = 2 m. The number of grid
points for discretizing the plate was set to N = 201 and the time step size was set to ∆t = 5×10−6

200

s. The plate was initially deformed using the amplitude A = 0.01 m in Eq. (15). Figure 5 illustrates
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the time variation of the plate deformation, the displacement of the tip position and the oscillating
frequency. The frequency is calculated by performing a fast Fourier transform (FFT) on the time
history of the tip displacement of the plate. The error between the analytical solution of the second
mode eigenfrequency ω2 = 38.1366 Hz in Eq. (17) and the computed frequency ω2 = 38.0906 Hz205

amounts to 0.12 %.
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Figure 5: (a) Sequence of flexible plate deformation in the second eigenmode, (b) time history of the displacement of
the trailing edge (tip), (c) oscillation frequency of displacement of trailing edge (tip).

3.2. Problem description and initial conditions for fluid–structure interaction

The problem domain consists of a horizontal channel with an interior wall representing the hard
and soft palate along the center-line (cf. Fig. 1), dividing the inlet boundary into an upper and
a lower inlet. We allow the inlet boundary to operate in two different configurations: one where210

both inlets have uniform inflow of air, and one where only the upper inlet has inflow while keeping
the lower inlet at zero velocity. The flexible plate has length L = 8 mm, and the streamwise length
and duct height (H) are 40 mm and 9.6 mm, respectively, cf. Fig.1(a).

The flexible plate is initially displaced using an eigenfunction. To initialize the flow field, we
keep the flexible plate fixed in its initial position and integrate the flow solver in time from stagnant215

flow U′ = 0, except for the inlet velocity, until an approximately steady state flow solution has been
reached. Thereafter, the flexible plate is released from its initial position and allowed to interact
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with the flow.
As mentioned above, for a linear cantilevered plate with length L and flexural rigidity B, the

vertical displacement φm(x) of the mth eigenmode can be described by Eq. (15). In the present220

study, only the second eigenmode is considered for the initial plate displacement, mainly due to
the fact that this mode has been known to be responsible for the soft palate flutter (Huang, 1995).

3.3. Verification of fluid–structure interaction

To assess the validity of the present solver, grid independence was investigated by computing
the oscillation frequency of the flexible plate on coarse and fine grids. The fluid density was set225

to ρ = 1.18 kg/m3 based on T = 301.75 K. We used the Reynolds number Re = ρUL
µ = 378 and

the Mach number Ma = U
c0

= 0.01 based on inlet velocity (U = 0.32 m/s), speed of sound and
length of the plate. The speed of sound was deliberately reduced to speed up the computation. The
dynamic viscosity and other fluid properties were calculated as discussed in section 2.1. The initial
tip amplitude was given by φ(L, 0)/H = 0.2. The elastic modulus and Poisson ratio were E = 880230

MPa and ν = 0.3333, respectively, with a plate density of ρs = 2477 kg/m3, plate thickness of
h = 10−5 m and an undamped thin plate, i.e., d = 0 N s/m3. Therefore, the plate is modeled as an
infinitely thin 1D plate with the thickness parameter h chosen to obtain the desired second mode
eigenfrequency. Using these values, the analytical second mode frequency in vacuum determined by
Eq. (17) is 100 Hz. Numerically, the second in vacuum eigenfrequency is computed with N = 101235

grid points and ∆tc0/L = 0.001 as 99.18 Hz which agrees well with the analytical value with a
0.82% error.

Fig. 6 shows the time history of the tip displacement from coarse to fine grids. Since the
solution on the last two fine grids agree quite well, the 501×201 grid is adopted as a sufficiently
fine grid. The oscillation frequency and the time variation of the plate deformation for fine grid240

are shown in Fig. 7. The oscillation frequency of the flexible plate for the fine grid is obtained at
91.5 Hz (corresponding to the non-dimensional frequencies, f∗c0 = f L

c0
= 0.022875 based on speed

of sound c0 and f∗U = f LU = 2.2875 based on inlet velocity U). Note that the in vacuum second
mode frequency for the undamped flexible plate has been obtained by setting the external force
(pressure difference) to zero in Eq. (6). However, in the simulation of fluid–structure interaction245

the pressure difference provides the external force which drives the plate oscillation. According
to the measurements performed by Brietzke and Mair (2006), the palatal oscillation frequency of
snoring ranges from 21 to 323 Hz with an average of 89.4 Hz.

In the following, the temporal discretization error of the fluid–structure interaction is investi-
gated for the tip displacement of the plate. The parameters are identical to those used for the250

501×201 fine grid in section 3.3 while varying the time step sizes. The tip displacement of the
flexible plate is plotted versus time for five cycles of oscillation in Fig. 8. The time step sizes ∆t
are varied such that the CFL numbers become CFL ≈ 1/3, 1/6, 1/12 and 1/24. Fig. 8 shows that
the time history of the tip displacment is hardly affected by the time step size.

3.4. Simulation of plate oscillation255

3.4.1. Both inlets open

The time sequence of vorticity contours for the case when both inlets are open is shown in Fig.
9. The initial tip displacement is φ(L, 0)/H = 0.2, Re = 378 and Ma = 0.01. At time tc0/L = 0
(when the flexible plate is released from its initial displacement after steady state has been reached),
boundary layers have been established at the channel walls, rigid and flexible structures and the260
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Figure 6: Test of grid independence, time history of tip displacement.
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Figure 7: (a) Oscillation frequency of displacement of trailing edge (tip) for the fine grid, (b) sequence of flexible
plate deformation for five cycle oscillations, the initial and final deformation are marked by solid blue line and red
dashed lines, respectively.

flow is already separated from the trailing edge. At tc0/L = 8 corresponding to tU/L = 0.08, the
third vortex leaving the trailing edge is observed. The first and second vortices are about to pair
and create a strong vortex at tc0/L = 13. The fourth vortex is about to separate from the tip of
the plate at tc0/L = 25. The leading vortex rolls up at tc0/L = 39. The vortex shedding from the
trailing edge repeats itself almost symmetrically. The vortices formed as a result of the oscillation265

of the flexible plate and the interaction with the fluid flow are convected downstream. During the
processes, the interaction between the vortices sometimes leads to vortex pairing.

To ensure that the outlet boundary conditions in this channel do not affect the vortices, this
simulation is repeated for a longer channel. Fig. 10 shows the results. The only difference between
Fig. 10 and Fig. 9 is that the length of the outlet blocks (from trailing edge of the plate towards270

outlet boundary in Fig. 1) and the number of grid points in these blocks have been doubled (6L
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Figure 8: Test of time step independence, time history of tip displacement for five cycles of oscillation.

instead of 3L in Fig.1). The first and second snapshots show the status of the vortices at the same
time for these two different channels. Except for the vortex close to the outlet being a little smaller
and a little closer to centerline in the simulation with the longer channel at the considered time
instant, the results for the two different channel lengths are in excellent agreement.275

3.4.2. Lower inlet closed

Fig. 11 represents the results of vorticity contours when the lower inlet is closed. The initial
tip amplitude is φ(L, 0)/H = 0.1, Reynolds number and Mach number based on inlet velocity
U=0.64 m/s are equal to 756 and 0.02, respectively. The leading vortices are already shed before
the structure was released. At tc0/L = 9, the leading vortex rolls up. The vortices near the trailing280

edge roll down at tc0/L = 27. At tc0/L = 48, the leading vortex is becoming weakened and
pairing of the vortices near the trailing edge is observed. The vortex shedding tends to propagate
towards the lower part of the domain, since the lower inlet is closed. Clearly, the vortex shedding
is unsymmetrical. Vortex pairing occurring quite often creates a complex vortical structure.

3.5. The effect of plate properties285

Since one of the surgical treatments of OSAS and snoring involves soft palate implants, the flow
induced oscillation of the flexible plate with different material parameters is studied in this section.
The structural model is governed by three parameters: mass, damping and stiffness. We used these
parameters as control parameters to investigate the oscillation behaviour of the flexible structure
in the fluid flow. The non-dimensional mass, rigidity and damping are defined as

m∗ =
ρsh

Lρ0
, B∗ =

B

L3ρ0c2
0

, d∗ =
d

ρ0c0
. (18)

Dividing these non–dimensional rigidity and damping of the plate by Ma2 and Ma, respectively,
gives us the non–dimensional quantities for B and d in incompressible flow using U2 instead of
c2

0 and U instead of c0, respectively. In order to examine the oscillation behaviour of the flexible
structure, the Reynolds number and Mach number are fixed at 378 and 0.01, respectively. Figures
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Figure 9: Time sequence showing vorticity contour plots, both inlets are open at Re = 378 and Ma = 0.01. The
contour levels are from −0.2 s−1 to 0.2 s−1 corresponding to −5×10−5 6 (5×U)zL/c0 6 5×10−5 and −5×10−3 6
(5×U)zL/U 6 5× 10−3.

12, 14 and 16 illustrate the effect of changing the parameters on the displacement of the trailing290

edge.
The range of values of the non-dimensional mass is m∗ = 1.31− 5.24, as shown in Fig 12.

The largest mass ratio decreases the oscillation frequency of the flexible plate to 61.06 Hz (non–
dimensional frequency based on speed of sound f∗c0 = f L

c0
= 0.015265 and based on inlet velocity
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Figure 10: Time sequence showing vorticity contour plots, both inlets are open at Re = 378 and Ma = 0.01. The
outlet blocks of two lower plots have a length of 6L instead of 3L, cf. in Fig. 1, of the upper plot. The contour
levels are from −0.2 s−1 to 0.2 s−1 corresponding to −5 × 10−5 6 (5×U)zL/c0 6 5 × 10−5 and −5 × 10−3 6
(5×U)zL/U 6 5× 10−3.

Figure 11: Time sequence showing vorticity contour plots, lower inlet is closed at Re = 756 and Ma = 0.02.
The contour levels are from −0.2 s−1 to 0.2 s−1 corresponding to −5 × 10−5 6 (5×U)zL/c0 6 5 × 10−5 and
−5× 10−3 6 (5×U)zL/U 6 5× 10−3.
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Figure 12: Time history of the tip displacement with
different non-dimensional masses for undamped flexible
plate (d∗=0) and fixed rigidity (B∗ = 1.3× 10−4).

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

E
n
e
rg
ie
s

tc0/L

 

 

Strain energy

Kinetic energ

total energy

Figure 13: Evaluation of total energy E∗t , strain energy
E∗s and kinetic energy E∗k of the plate in vacuum for
m∗ = 2.62, B∗ = 1.3× 10−4 and d∗ = 0 .

f∗U = f LU = 1.5265) compared to the smallest one which enhances the oscillation frequency to 106.8295

Hz (f∗c0 = 0.0267 and f∗U = 267). Figure 13 shows the total energy E∗t , strain energy E∗s and
kinetic energy E∗k of the plate in vacuum when the plate properties are m∗ = 2.62, B∗ = 1.3×10−4

and d∗ = 0. It indicates that in the in vacuum situation the total energy of the plate remains
nearly constant. Figure 14 gives the oscillation behaviour of the trailing edge as a representative
of the flexible plate motion for three different non-dimensional rigidities. It is observed that for300

the higher rigidity case (B∗ = 2.6 × 10−4) in the absence of damping, the oscillation frequency is
higher, i.e. f = 122 Hz (f∗c0 = 0.0305 and f∗U = 3.05) than for B∗ = 1.3×10−4 and B∗ = 6.6×10−5

when f = 91.5 Hz (f∗c0 = 0.022875 and f∗U = 2.2875) and f = 64 Hz (f∗c0 = 0.016 and f∗U = 1.6),
respectively. The non-dimensional total energies (E∗t (t) = E∗s (t) + E∗k(t)) for these three different
rigidities are illustrated in Fig. 15 showing oscillatory decrease (stable oscillation) of total energy305

for these cases. Furthermore, the transfer of energy between fluid flow and plate leads to larger
amplitudes in the oscillation of the total energy compared to Fig. 13. Here, a warning is in place for
the simulation with the largest stiffness B∗ = 2.6× 10−4. Our standard approach led to increasing
total energy for B∗ = 2.6 × 10−4, d∗ = 0 and m∗ = 2.62. Close inspection showed that the
displacement of the structure developed high wavenumber oscillations. Solving the Euler–Bernoulli310

beam equation not as usual at every fluid time step, but at every other fluid time step led to a
larger structure time step size, i.e., ∆ts = 2∆tf . Choosing the time step size for the structure
computation twice as large as the time step size for the flow computation, has a stabilizing effect
and suppresses the numerical instability. Fig. 16 shows that in the presence of damping, the plate
is gradually losing its oscillatory behaviour and reaches an undeformed shape. Fig. 17 compares315

the non-dimensional rate of work done by the fluid on the plate without damping and with two
different damping coefficients. As expected, the damping coefficient has a large effect on whether
the oscillations are damped or not.

3.6. Acoustic analysis

In this section, the acoustic pressure signal is analyzed to study the effect of plate oscillation320

on generating sound. Figs. 18 (a) and (c) demonstrate the time history of the acoustic pressure
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Figure 14: Time history of the tip displacement with
different non-dimensional rigidities for undamped flexi-
ble plate (d∗=0) and fixed mass (m∗ = 2.62). Note ∆ts
= 2∆tf was used for B∗ = 2.6× 10−4.
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Figure 15: Evaluation of plate’s total energy E∗t for three
different rigidities (d∗ = 0, m∗ = 2.62). Note ∆ts =
2∆tf was used for B∗ = 2.6× 10−4.
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Figure 16: Time history of the tip displacement with
different non-dimensional dampings and fixed mass and
rigidity (m∗ = 2.62, B∗ = 1.3× 10−4).
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Figure 17: Variation of the non-dimensional rate of work
done by the fluid on the plate (m∗ = 2.62, B∗ = 1.3 ×
10−4).

for the simulation between tc0/L = 0 and tc0/L = 240. The flexible plate has its second mode
initial configuration with φ(L, 0)/H = 0.1 as initial tip displacement. The Reynolds number and
Mach number are 378 and 0.01, respectively. The initial flow field for this study was determined
by simulating the flow field from U′ = 0, except for the inlet velocity, with the flexible plate fixed325

at its second mode position with φ(L, 0)/H = 0.1. The simulation was run until tc0/L = 40,
when steady state was approximately reached. The approximate solution was used as the initial
condition for the present FSI for which the initial time was set as tc0/L = 0. The acoustic pressure
is recorded at four points, two points at y = H/4 and y = 3H/4 both near the inlet x = Lt/10
and near the outlet x = 9Lt/10, where Lt is the total length of duct and H the height of the330
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duct. The acoustic pressure is transformed to a spectrum by applying the fast Fourier transform
(FFT), as shown in Figs. 18 (b) and (d). In the Fourier transform of the pressure signal, the
frequencies as a consequence of the plate oscillation and the eigenfrequencies of the duct can be
clearly distinguished.
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Figure 18: (a) and (c) Time history of acoustic pressure p′/(ρ0c
2
0) at inlet and outlet, respectively; (b) and (d)

Spectrum of pressure signal. The fluid flow is at Re = 378 and Ma = 0.01, the structure data are as in section 3.4,
except for the initial tip displacement φ(L, 0)/H = 0.1. The flexible plate was released at tc0/L = 40 corresponding
to tc0/L = 0 in plots (a) and (c).

The eigenfrequencies for an acoustically closed end duct with imposed velocity at inlet and
outlet pressure (Selle et al., 2004) can be obtained as

fn = (2n+ 1)(c/(4Lt)) (19)

These represent the odd modes in terms of n = 0, 1, ..., where c is the speed of sound and Lt335

the total length of the duct (Selle et al., 2004). The first three modes predicted by Eq. (19) are
observed in Fig. 18(b) and (d). It shows that the three first acoustic resonance frequencies of the
duct appear in the spectrum of the computed pressure both near the inlet (Fig. 18(b)) and even
clearer near the outlet (Fig. 18(d)).

We investigated means to reduce the reflections of the acoustic waves in the domain by means340

of non-reflecting boundary conditions with a simple scaling (Selle et al., 2004) and non-reflecting
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boundary condition with plane wave masking (Polifke et al., 2006). However, the results using those
approaches are not presented, because they were similar to the results obtained by the conditions
explained in subsection 2.1.2. This similarity of the results obtained with the boundary conditions
outlined in subsection 2.1.2 and with those by Selle et al. (2004) and Polifke et al. (2006) is not345

surprising, because those are also based on NSCBC by Poinsot and Lele (1992) like ours.
The spectrum analysis in Fig. 18(b) and (d) shows that the 1/4 wave mode (cf. Eq. (20))

pointed out by Selle et al. (2004) as the quarter wave mode frequency is dominant compared to the
other harmonics and the frequency of plate oscillation.

f0 = (1−M2)(c/(4Lt)) (20)

Figure 19: Time sequence showing acoustic pressure contour plots for the first two cycles of oscillation, Re = 378
and Ma = 0.01, the structure data are as in section 3.4, except for the initial tip displacement φ(L, 0)/H = 0.1.
The outflow pressure is at p = p∞ and the contour levels are from −3 Pa to 3 Pa corresponding to −2.48× 10−3 6
p′/(ρ0c

2
0) 6 2.48× 10−3.

Fig. 19 shows the acoustic pressure contours for this simulation. At tc0/L = 0, low and
high pressure regions are located over and below the flexible structure, respectively, because the
flow there is accelerated and decelerated respectively. When the flexible structure is released at
tc0/L = 0, the flow field periodically changes. However, the pressure field is dominated by acoustic350

waves travelling back and fourth in the channel. As the inlet velocity is fixed, the acoustic pressure
waves will be reflected at the inlet. When the acoustic waves hit the outlet, their amplitude will
be reduced due to the partly non–reflecting property of Rudy and Strikwerda (1980) boundary
treatment, cf. subsection 2.1.2. Thus, the simulated amplitudes of the acoustic pressure waves
decrease by interaction with the right boundary. Viscous attenuation contributes to damping of355
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the acoustic waves. Eventually, the acoustic wave amplitudes decay, which can be observed in Fig.
20.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.01

−0.005

0

0.005

0.01

0.015

A
co

u
st
ic

p
re
ss
u
re

p′
/(
ρ
0
c2 0
)

tc0/L

Figure 20: Time history of acoustic pressure p′/(ρ0c
2
0) at inlet. The fluid flow is at Re = 378 and Ma = 0.01, the

structure data are as in section 3.4, except for the tip displacement φ(L, t)/H = 0 which the plate is a stationary
straight splitter.

Therefore, we define a cutoff time tc0/L = 2000 to allow the acoustic pressure to decay. The
simulation is repeated with the steady state computation run until tc0/L = 2000. Compared
to the previous simulation, the flexible plate is not released from its second mode position with360

φ(L, 0)/H = 0.1 at tc0/L = 40, but at tc0/L = 2000. Fig. 21 illustrates the time history of the
acoustic pressure and the frequency of the acoustic pressure spectrum for this simulation. After
turning on the fluid–structure interaction at tc0/L = 2000, the frequency of the oscillation of the
flexible plate can be observed better due to the decayed acoustic wave amplitudes. Fig. 22 shows
the results of the acoustic pressure contours for this simulation.365

In Figure 21, a very noisy signal is observed compared to Fig. 18 which is associated with a
very complicated behaviour of waves over a long period of time. Since the structure has a curved
form, more complex reflections of the pressure waves travel through the computational domain.
A plane wave hitting a plate allows reflected waves going out in many directions, hitting the
top and bottom walls of the channel. Then these reflected waves interact and make a complex370

interference pattern which leads to build up a very noisy pressure field. Three acoustic resonance
frequencies corresponding to the first three eigenfrequencies of the duct are not as sharp and are
more damped compared to those of the previous simulation(cf. Fig. 18) and relatively shifted,
particularly high frequencies cf. f = 600 Hz (non–dimensional frequencies f∗c0 = f L

c0
= 0.15 and

f∗U = f LU = 15) and 1000 Hz (f∗c0 = 0.25 and f∗U = 25). The quarter wave mode f = 200 Hz375

(f∗c0 = 0.05 and f∗U = 5) is no longer dominant. The fundamental frequency of the soft palate
model oscillation f = 91.5 Hz (f∗c0 = 0.022875 and f∗U = 2.2875) and some harmonics can be
observed. The plane waves travelling through the channel change to the circular wave nears the
trailing edge (as can be seen in Fig. 19 at tc0/L = 0 and in Fig. 22 at tc0/L = 2000) when the
plate starts to oscillate. The resonance frequency f = 490 Hz can be identified as a consequence of380

this phenomenon in both figures 18(b) and 21(b). This acoustic resonance frequency corresponds
to the eigenfrequency of each of the two ducts from the inlet to the trailing edge of the flexible
plate, i.e., f = c/(4(Lrigid plate + Lflexible plate)) = 500 Hz (f∗c0 = 0.125 and f∗U = 12.5 ).
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Figure 21: (a) and (c) Time history of acoustic pressure p′/(ρ0c
2
0) at inlet and outlet, respectively; (b) and (d)

Spectrum of pressure signal. The fluid flow is at Re = 378 and Ma = 0.01, the structure data are as in section 3.4,
except for the initial tip displacement φ(L, 0)/H = 0.1. The flexible plate was released at tc0/L = 2000.

4. Conclusions

A numerical approach for a simplified model of fluid–structure interaction for the soft palate385

in the upper airways is developed. This FSI model for the interaction between the inspiratory
airflow through nose and mouth with the soft palate has been modeled as compressible viscous flow
over a cantilevered flexible plate in a duct. The coupling between the fluid and the structure is
handled in an arbitrary Lagrangian–Eulerian (ALE) formulation with an explicit, two–way coupling
strategy where forces and deformations are exchanged between the flow and plate at the end of390

every time step. Strict stability and high order accuracy are obtained by employing summation
by parts (SBP) difference operators, which are 6th order accurate in the interior and 3rd order
accurate near the boundaries (Svärd and Nordström, 2014). To achieve high accuracy and easy
parallelization, the 4th order explicit Runge–Kutta method is applied for time integration. The
motion of the cantilevered flexible plate is obtained by solving the linearized Euler–Bernoulli thin395

beam equation. The numerical method for computing the structure equation is based on the 2nd

order central finite difference method and the most accurate and unconditionally stable scheme of
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Figure 22: Time sequence showing acoustic pressure contour plots for the first two cycles of oscillation, Re = 378
and Ma = 0.01, the structure data are as in section 3.4, except for the initial tip displacement φ(L, 0)/H = 0.1.
The outflow pressure is at p = p∞ and the contour levels are from −3 Pa to 3 Pa corresponding to −2.48× 10−3 6
p′/(ρ0c

2
0) 6 2.48× 10−3.

the Newmark family.
The dependence of oscillation frequencies of the plate on the grid is studied by varying the

number of grid points. The frequencies of plate are compared with the corresponding second mode400

eigenfrequencies of the structure to assess the required number of grid points. The dynamics of
the vortices produced by the interaction of the fluid flow and the structure is investigated when
both the upper and lower inlets are open and when only the upper inlet is open the lower one
closed. The numerical simulations of FSI show that when both inlets are open the vortices are
more stable than when one inlet is closed. Having one inlet closed creates a very complex vortical405

structure. Several cases are presented to investigate the oscillation behaviour of the flexible plate
under different material parameters. For all cases considered, the oscillation of the plate remains
stable. The highest rigidity evokes a warning. Close inspection showed that the displacement of the
structure developed high wavenumber oscillations. Choosing the time step size for the structure
computation twice as large as the time step size for the flow computation, has a stabilizing effect and410

suppresses the numerical instability. Finally, in order to identify the effect of plate oscillation as a
source of sound generation in the evaluation of snoring, the acoustic pressure is analyzed. Although
at the given boundary conditions the quarter wave mode is identified as dominant frequency, the
frequency of the sound produced by oscillation is in good agreement with the frequency of the
plate oscillation. However, the quarter wave frequency and its harmonics dominate the oscillation415

frequency, as long as the acoustic waves have not yet decayed sufficiently.
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Appendix A. Summation by parts operators

To demonstrate the SBP operators, we apply the procedure to a simplified PDE, that is, rather
than analysing the full Navier–Stokes equations in this section, we only focus on the 1D convection–
diffusion equation as a model equation.

ut + aux = buxx, 0 ≤ x ≤ 1 t ≥ 0
u(x, 0) = f(x)
u(0, t) = u(1, t) = g(t) = 0

(A.1)

where a and b are assumed to be constant and positive, and u is the dependent variable.425

The basis of getting such an energy estimate is to satisfy integration by parts in the discrete
sense called Summation–By–Parts (SBP) property (Gustafsson, 2008; Svärd and Nordström, 2014).
To outline this technique for model problem (A.1), we consider uj = uj(t) the numerical solution of
the convection–diffusion equation at grid point xj = jh, j = 0, ..., N, with grid spacing h = 1

N . The
solution vector containing the solution at the discrete grid points is u = [u0(t), u1(t), ..., uN (t)]T .
Using a difference operator Q approximating the first derivative in space, the semi-discrete form of
the model equation can be expressed as

du
dt = −aQu + bQQu, uj(0) = f(xj) (A.2)

The discrete scalar product and corresponding norm and energy can be defined by

(u,v)h = huTHv,
Eh(t) = ‖u‖2h = (u,u)h

(A.3)

where H is a diagonal and positive definite matrix defined by H = diag(HL, I,HR). The SBP
property is satisfied by the difference operator Q, if

(u, Qv)h = uNvN − u0v0 − (Qu,v)h (A.4)

or if Q can be written on the form hQ = H−1P for P satisfying

P + P T = EN − E0 = diag(−1, 0, ..., 0, 1) (A.5)

where E0 = diag(1, 0, ..., 0) and EN = diag(0, 0, ..., 1). Using the semi–discrete equation A.2, the
energy estimate for the semi–discrete problem can be obtained as

dE
dt = d

dt‖u(·, t)‖2 = (ut, u)h + (u, ut)h
= (−aQu+ bQQu, u)h + (u,−aQu+ bQQu)h
= −a[u2

N − u2
0] + 2b[uN (Qu)N − u0(Qu)0]

−2b(Qu,Qu)h ≤ au2
0 + 2b[uN (Qu)N − u0(Qu)0].

(A.6)
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We would get non-growing energy in time if the homogeneous boundary conditions could directly
be imposed in (A.6). However, this will change the difference operator Q such that its SBP property
might be lost. To avoid this problem, boundary conditions are weakly imposed by the simultaneous
approximation term (SAT) technique (Gustafsson, 2008). A first derivative SBP operator with
diagonal quadrature matrix H in A.3 is a O(h2s) accurate central difference operator which is430

O(hs) accurate at and near boundaries s = 1, 2, 3. Such an SBP operator is globally O(hs+1)
accurate.

Appendix B. Time step selection

We solve the compressible Navier–Stokes equations explicitly in time. Hence, the time step
is restricted by the stability region of the Runge–Kutta method. To analyse the approach for the435

model (A.1), we consider that the x–derivative is approximated by a standard central pth order finite

difference operator Q
(p)
x and the time–derivative by an explicit Runge–Kutta method. Therefore,

the von Neumann stability analysis leads to the stability condition 4t(−aQ̂(p) + b(Q̂(p))
2
) ∈ S,

where Q̂(p) and S are the Fourier transform of Q
(p)
x and the stability domain of the Runge–Kutta

method, respectively. The stability condition for SBP operators is more restrictive, due to the440

requirement 4t‖ − aQ(p)
x + bQ

(p)
x )

2
‖h ≤ R1 < R, where the open semicircle {z ∈ C | |z| < R and

Real(z) < 0} is contained in the stability domain S (Kreiss and Wu, 1993). For the standard sixth

order difference operator, i.e., (Q
(6)
x u)j = 1

604x(uj+3 − 9uj+2 + 45uj+1 − 45uj−1 + 9uj−2 − uj−3),

the Fourier transform is Q̂(6) = i
4x [3

2 sin(k4x) − 3
10 sin(2k4x) + 1

30 sin(3k4x)], where k is the

wave number. Thus, the von Neumann stability condition for Q
(6)
x and the classical fourth order445

Runge–Kutta reads CFL = |a|4t
4x ≤ 1.783 for b = 0 and V NN = |b|4t

4x2 ≤ 1.124 for a = 0 (Larsson

and Müller, 2009).
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