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Summary

As modern industry is automated the need for robots performing complex tasks in-
creases. To achieve fully automated production both making the product and inspecting it
for quality assurance needs to be automated. Robotic manufacturing processes have been
around for a long time and has greatly increased the efficiency of modern industry. In
this thesis existing framework for automatic 3D inspection is examined, and an attempt at
making a working 3D inspection implementation is made. The work is centered around
offline inspection planning, using a model reference to generate a path for fully inspecting
a 3D object with a sensor attached to a robot arm. Continuing the work in Seines (2016),
the inspection planning algorithm proposed by Bircher et al. (2015a) is adapted further in
an attempt to make it optimal for planning inspection of small to medium sized objects
with an industrial robot arm.

The modification of the structural inspection planning algorithm is evaluated com-
pared against the algorithm without modification by comparing resulting path length and
algorithm convergence. The augmentations appear to increase the performance of the in-
spection planning algorithm when planning in 5 dimensions.

To simulate inspection with a UR5 robot, a mount for the Intel RealSense SR300 sensor
is 3D printed and attached to the wrist link. Sensor position relative to the wrist joint is
measured and used to make a custom URDF and SRDF for the UR5 such that collision
between the sensor and other joints can be prevented and sensor position can be controlled
accurately.

The resulting inspection paths are simulated in Gazebo with two different approaches
to motion planning. To further test in detail how effective individual improvements to
the algorithm have been with regards to inspection path quality the algorithm is separated
into different iterative versions, where the path generated by each version with otherwise
identical parameters are simulated, and the resulting motion of the robot is compared with
the intended path.

The augmentations of the inspection planner improve robot behavior. However, log-
ging sensor state reveals the sensor has incorrect orientation when reaching the waypoints.
The Cartesian motion planner fails to produce a full trajectory for most paths. The inverse
kinematics based point to point planner leads to undesirable behavior such as arcing mo-
tions between waypoints and goal overshoot. To test basic functionality for point cloud
acquisition some of the generated paths are run on the real robot, while both the robot state
and 3D sensor output is being logged.

The SR300 performed poorly, possibly due to poor lighting conditions.
It is concluded that the inspection planner should be rewritten to incorporate trajec-

tory planning in joint space. The inspection planner appears to perform well but needs
additional measures for adapting the path for inspection with manipulators.
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Sammendrag

Moderne industri blir mer og mer automatisert, og behovet for roboter som kan utføre
komplekse oppgaver øker. For å kunne ha helt automatisk produksjon må alle deler av
produksjonen automatiseres. I denne oppgaven er fokus på å implementere automatisk
kvalitetskontroll av produktet ved hjelp av en robot arm og et dybdekamera. Oppgaven tar
først for seg eksisterende implementasjoner av ulike 3D inspeksjonsalgoritmer, og eval-
uerer hvorvidt fremgangsmåten kan kopieres for dette problemet.

Arbeidet er sentrert rundt videre utvikling av inspeksjonsplanleggings algoritmen foreslått
av Bircher et al. (2015a) for å tilpasse den til å planlegge inspeksjonsbane for små objekter
ved hjelp av en UR5 robot med en Intel RealSense SR300 sensor festet i enden.

Effekten av utvidelsene av algoritmen blir evaluert i forhold til algoritmen uten utvidelser.
Konvergens og hvorvidt algoritmen genererer optimale inspeksjonsbaner undersøkes og de
genererte inspeksjonsbanene blir sammenlignet basert på lengde. Utvidelsene av algorit-
men ser ut til å ha positiv effekt for planlegging av inspeksjonsbaner med 5 frihetsgrader.

Det 3D printes et feste for 3D sensoren, og sensorens posisjon i forhold til enden av
roboten måles og brukes til å konfigurere URDF og SRDF filer slik at roboten kan unngå
kollision mellom sensoren og omgivelsene.

Inspeksjonsbanene blir så simmulert i Gazebo for å teste hvordan roboten oppfører seg
under inspeksjon og for å sammenligne to ulike fremgangsmåter for å kontrollere roboten.
Utvidelsene av inspeksjonsbane planleggings algoritmen deles opp i iterative versoner, og
forbedring i robotens oppførsel fra verson til verson testes.

Enkelte av inspeksjonsbanene testes på UR5 roboten for å teste hvorvidt inspeksjons-
banene lar 3D sensoren inspisere objektene nøye nok til å gjenskape dem fra målingene.

3D sensoren ga ikke gode nok målinger, men det kan være verdt å teste igjen under
bedre lysforhold.

Den kartesiske bevegelses planleggeren slet med å gjennomføre mesteparten av in-
speksjonsbanene. Punkt til punkt bevegelses planleggeren hadde til tider uforutsigbare og
voldsome bevegelser mellom punkter langs banen, og førte konsistent til stier der sensoren
bevegde seg forbi målet. Under både simmuleringer og eksperimenter klarte ikke noen av
bevegelses planleggerene å få sensoren til å nå ønsket orientering. Feil i hvordan sensor
posisjon og orientering måles kan være skylden til feilen, selv om målingene for posisjon
virker korrekte.

Den utvidede inspeksjonsbane planleggeren lager gode baner, men at den manglende
koblingen mellom inspeksjonsbane og robot bane er mindre optimal. Fen foreslåtte veien
videre er å holde på fremgangsmåten for å plassere sensoren, men å skrive om infrastuk-
turen i inspeksjonsbane planleggeren slik at den gir baner som kan bevege roboten dirrekte.
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Chapter 1
Introduction

As modern industry is automated the need for robots performing complex tasks increases.
To achieve fully automated production both making the product and inspecting it for qual-
ity assurance needs to be automated. Robotic manufacturing processes have been around
for a long time and has greatly increased the efficiency of modern industry. In this thesis
existing framework for automatic 3D inspection is examined, and an attempt at making
a working 3D inspection implementation is made. The work is centered around offline
inspection planning, using a model reference to generate a path for fully inspecting a 3D
object with a sensor attached to a robot arm.

This thesis will be continuing the work from Seines (2016) of adapting an inspection
planning algorithm by Bircher et al. (2015a) for inspection with a robotic manipulator. The
algorithm is originally intended to be used with aerial drones for inspection of buildings.

1.1 Problem description
The intended use case is an assembly line quality inspection. To compare a manufactured
object against a digital reference model, sensor measurements must be accurate enough to
reconstruct the object accurately. This implies the inspection path must provide sufficient
amount of measurements to generate a dense point cloud of accurate depth measurements.
Assuming the inspection takes place on an assembly line, minimizing the amount of time
for inspection while still maintaining high accuracy inspection is desired.

To achieve this the goal the approach chosen in this paper is to compute an ordered
lists of viewpoints, where each viewpoint represents a position of the 3D sensor, in x,y,z
coordinates, and Euler angles roll, pitch and yaw. This inspection path is automatically
generated given a 3D mesh of the object being inspected in ASCII STL format, its loca-
tion relative to the robot base, and sensor specs such as operating distance and field of
vision. Automatic path generation requires solving a multi-dimensional constraint satis-
faction problem for placing viewpoints able to observe the entire object. As well as finding
the optimal path for the manipulator traversing the viewpoints. Repeated inspection means
minimizing total joint movement is of interest as well.
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In this paper, we are both looking to optimize the path generation as well as point
to point movement by researching possible motion planning approaches. Both inspection
planning and simulations are implemented for use with the Robot Operating System (ROS)
framework, and as such motion planners will mainly use functionality from MoveIt and
the Open Motion Planning Library(OMPL).

1.2 Contributions

This paper focuses on the further improvement of the path planning algorithm proposed
by Bircher et al. (2015a). Improved usability for manipulators instead of aerial vehicles
has already been started in Seines (2016). Contributions in this paper include adding
detection of self-collision and exploring measures to achieve a more optimal path given the
movement capabilities of a robotic manipulator, with the use of a fast inverse kinematics
solver.

Previous work Seines (2016) succeeded in including a variable pitch, however, sim-
ulating the resulting paths proved less successful. Not only did the paths often include
configurations bordering self-collision, several viewpoints where outside the workspace
of the robot, or in positions with no feasible solutions to the inverse kinematics. There-
fore a significant focus in this paper is to integrate manipulator kinematics into the path
planning in an attempt to generate paths more suited for the manipulator.

More specifically this includes checking the placement of viewpoints and expanding
with a randomized configuration sampler heavily inspired by the redundant roadmap ap-
proach to motion planning.

Setting up a full simulation in Gazebo, as well as implementing multiple approaches
of motion control of the manipulator, following an ordered set of waypoints. Executing a
select number of the paths on a real robot to compare the trajectory to the trajectory when
simulating the robot.

Functions for logging 3D sensor point cloud frames, robot joint positions and sensor
position real time. As well as logging and transformation of point clouds to align in a fixed
frame.

1.3 Framework and practical considerations

This paper builds heavily on the work done in previous project assignment, as the work
done in Seines (2016) heavily incentives to keep using ROS.

1.3.1 ROS and MoveIt functionality explained

Robot Operating System(ROS) is an open source collaboration with the intention of pro-
viding a large, general toolkit for robot programmers. ROS also provides a simulation
and motion planning framework that is applicable for multiple different robots regardless
of function and manufacturer in the form of Gazebo and MoveIt. It is meant to act as a
collaborative robot development platform. Thus many of the repositories used are often
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still in development and are patched regularly. This means functions are prone to change
and tutorials that are up to date are sparse.

ROS works as a virtual machine keeping track of a parameter server, available topics,
services, and actions. With this it is possible to coordinate multiple processes, possibly
running on different computers or processors, to communicate and request services of one
another.

Figure 1.1 Moveit system architecture concept. Picture from moveit home page: http:
//moveit.ros.org/documentation/concepts/

The functionality provided by MoveIt is based on the move group node, a multi-
purpose node that provides a multitude of services designed to simplify robot control and
interaction. Concept depicted in 1.1. The Move Group node provides a control layer
between the user and the sensor and/or robot drivers.

The Move Group node perform its functions by keeping internal models of both en-
vironments and of the robot. The internal models contain information on the behavior
of the robot, collision matrices, transformation data, joint type, as well as user defined
functionality of the robot.

This is typically stored in multiple variables with predetermined names on the ROS
parameter server. Meaning the Move Group node needs this information already uploaded
or as a part of a robot specific move group launch script.

As the Move Group node keeps track of the environment it is capable of performing
both point-to-point and multigoal trajectory planning, while avoiding known obstacles.
During execution of a path, it has functionality for checking whether the goal is reached
or not and will cancel a trajectory if it detects a collision along the path.
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Why ROS and MoveIt?

The work done in this paper will continue using the ROS framework, with MoveIt as a
control interface for both Gazebo and the real robot. As writing a lot of the code necessary
for my projects again would be time-consuming and mastering the use of ROS has several
benefits, as ROS is made to be a general purpose robotics control tool.

There are multiple arguments for and against using ROS in a student project.

Pro Con
Existing code for complex problems Steep learning curve

Seamless transition between simulation and real robot. Packages with experimental status
Clean and easy to use interface for logging sensor data. General lack of tutorials.

Table 1.1: Pros and cons of using ROS and MoveIt!

As previous work with ROS (Seines (2016)) mitigates the problem of the learning
curve and a lack of tutorials, the positives are considered to outweigh the negatives.

Alternative approach

ROS is an open source project, therefore most of its functionality is publicly available and
can be installed without installing ROS. Popular planning algorithms such as RRT* are
publicly available, and implementing planning frameworks specifically for the application
allows for more control of robot behavior. Robot drivers such as the UR Modern Driver
made by Andersen (2015) are publicly available and can be run without ROS installed. The
modern driver provides a UR Script control interface. Allowing for control by streaming
scripts to the robot instead of generating general purpose trajectory messages. Very little
functionality has to be implemented to use this control interface as the URscript language
contains functions for linear movement in both joint space and tool space.

For simulation, there are a dozen different robot simulation tools out there., such as
VisualComponents, a simulation program that specifies in being able to simulate full as-
sembly line functionality. It is also possible to use general-purpose simulation tools such
as LabView, or Matlab.

1.3.2 Robot setup
The robot of choice is the UR5 from Universal Robots. It is a small robot arm designed to
be safe and easy to use, and while it is less accurate than some industrial robots, less power
means less risk of crushing either the object it inspects or the 3D sensor. The weight of the
camera is minimal, meaning the arm does not need to have a lot of lifting power.

The ur5 struggles with frequent self-collision, however, it should be possible to work
around this issue with careful motion planning.

Simulations

Installing ROS Indigo and the universal robots package, you get access to simulate the
robot in Gazebo. Gazebo is a general purpose robot simulation program, able to load any
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robot given its description file. (URDF)

Figure 1.2 Gazebo simulation,depicted ur5 without end effector

Adding tools to the robot can be done by modifying the robot description file (URDF).
The sensor is added by adding two extra fixed joints and two links to the official robot
description found in the ur description package.

Figure 1.3 Gazebo simulation,depicted ur5 with and effector

Experiments

Path viability is examined by comparing the paths resulting from the unmodified algorithm
with the paths resulting from the algorithm after the possible improvements discussed in
this paper.

To test if the paths are feasible for inspection with the robot, they are first simulated
in Gazebo. The position and orientation of the sensor are logged and compared with the
viewpoints from the path to determine the quality of the motion planning approached.

A few paths are executed on the robot to attempt inspecting objects placed on the table
in front of the robot. Sensor position and orientation are logged to investigate trajectory
quality.

Sensor output from robot inspection is examined, and possibilities for reliable quality
control is discussed.
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Figure 1.4 Robot setup.

The objects are placed as far from the wall as possible to maximize the robots available
workspace.

Figure 1.5 Inspection of cube, covered in red tape in an attempt to increase sensor visibility
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1.3.3 Choice of 3D measurement sensor

Figure 1.6 Intel RealSense SR300 (left) and ASUS Xtion Pro(right)

There were several concerns when selecting a 3D sensor. Firstly our inspection plan-
ning algorithm assumes data as a continuous stream with a sensor capturing depth in a
cone. Thus sensors using time of flight, projected grids or stereo camera solutions are the
most viable.

Another concern is budget and time since the focus of the experiments are to validate
inspection optimally and the amount of surface covered by a path, not pushing maximal
millimeter accuracy. The priority will thus not be to spend several thousand dollars on
expensive top end industrial scanners, with no online price listing.

ASUS xtion pro

A cheap budget alternative is the ASUS Xtion Pro, While it is widely used for different
applications, it operates on a recommended distance of 0.8 to 2.5 meters. This is a problem
because the UR5 has a length of 85 cm from base to the tooltip, meaning the tool center
point will have difficulties being more than 40 cm away from the object consistently.

While the details in the back are captured, the object is prone to not registering. Also,
notice the deformation and choppiness of the object edges. For industrial use, this is simply
not accurate enough. In addition, the quality looks increasingly worse the closer the sensor
moves towards the object.

Intel sense

Another budget option is the Intel RealSense SR300. It operates on a recommended dis-
tance of 0.2 to 1.2 meters. Thus the optimal operation region is fitting when accounting
for the length of the UR5.

At first, glance using the demo program supplied by Intel (used to take these screen
caps) looks very promising compared to the ASUS. The much higher point density makes
it possible to construct high-quality models from the scan. The scanner conserves the
shape of the cup with what appears to be smoother edges.
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Figure 1.7 Screenshot of ASUS depth data from a coffee cup at 50 cm distance, yellow
implies depth data and black is undetermined depth

Figure 1.8 Screenshot of ASUS depth data from a box at approximately 50 cm distance,
yellow implies depth data and black is undetermined depth.

However, the sensor appears to have some issues, like higher sensitivity to light and a
higher percentage of points not capturing valid depth data at medium to long range.

It still favored as in the range of 15 to 40 cm it captures a high amount of data where
the ASUS Xtion Pro struggles when it gets closer to the object. In addition to this the Re-
alSense camera is considerably smaller, as well as it has a hole to fasten it with a standard
camera screw.

Ideal sensor

For an ideal sensor for industrial quality control existing products being marked for indus-
trial inspection create a baseline.

• Artec Spyder

• Geoscan
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Figure 1.9 Screenshot of Realsense depth data from a coffee cup at 40 cm distance, picture
to the left rotated to a view from the top

• MetraScan 750-R

https://www.artec3d.com/3d-scanner/artec-spider
http://geoscan.nl/over-ons/3dscanservice/
https://www.creaform3d.com/en/metrology-solutions/optical-3d-scanner-metrascan

These different sensors all promise more than 0.1 mm accuracy. At most all the way
down to 0.064 mm. The sensors come with software to reconstruct a model from the
measurements, thus work out of the box. The price is the only limiting factor. These
sensors have a price of 30 000 $ to 50 000 $.

Most heavy duty industrial scanners come with additional tech beyond the scanner.
Examples include positioning aids, custom lighting or additional cameras. The sensors
generally estimate distance based on laser measurements or deformation of grids made
out of high-frequency structured light.

Looking at marketing demos there is a long way to go before the setup presented in this
paper will be competitive on the professional marked. Youtube video of industrial robot
scanning a complex object in real-time for approximately a minute with the MetraSCAN
750-R, full scan timed at approximately 2 minutes. https://www.youtube.com/
watch?v=QGvoF9hT2kM
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Chapter 2
Literature Review

Automatic 3D scanning is a complex problem with many factors to consider, in this report
the focus is on path planning for 3D inspection, or more specifically attempting to solve
automated path generation and inspection of 3D objects with known shape. There is a lot
of articles covering the subject of 3D scanning, with the focus on one of the themes further
explained below, often incorporating a full system or simulation of a full system.

Coverage path planning, view planning, inspection planning are all expressions used
to describe the process of planning the position and orientation of a sensor to fully cover
a provided set of objects that need inspection. While the sensor has to yield to obstacles,
the point to point movement is often simplified to be straight lines and circular motions.

While a motion planning algorithm typically handles the movement following the in-
spection plan point to point while yielding to constraints on numerical accuracy of the
pose, maximum translational velocity, and angular velocity.

To achieve an optimal solution the coverage path planner should take account of the
limitations of the robot intended to move the sensor around as well as how much space
around obstacles is necessary to avoid risk when using expensive sensors.

2.1 Existing implementations
Section copied from Seines (2016).

2.1.1 Inspection with manipulator
The idea to use robotic manipulators for quality assurance by scanning the manufactured
object is not a new idea. The proposed applications of 3D scanning include generating
CAD models for objects without a known model, for preservation and restoration purposes
or product inspection for assembly line applications. Most implementations use a sensor
attached to the end of an industrial manipulator and estimate depth by triangulation with
laser (Kriegel et al. (2015)) or structured light projectors where deformation of a fixed
grid or pattern is used to estimate distance(Vasquez-Gomez et al. (2014), Wu et al. (2014),
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Krainin et al. (2011)). Karaszewski et al. (2016) tests how a multitude of NBV algorithms
perform on inspection of museum objects. And testing the result using various accuracy
structured light based scanners.

Most papers found with a manipulator and sensor setup utilize a next best view in-
spection planning algorithm to achieve full coverage. As a common assumption is that a
reference model is unavailable. The focus of this literature is often on detailed CAD model
generation.

The method proposed by Kriegel et al. (2015) using a laser striper attached to a Kuka
KR16 industrial robot ?? achieves an accuracy varying from 0.64mm to 1.5mm depend-
ing on the shape being scanned. Where the accuracy measured is the least squared error
when comparing the model with a hand scanned model using a very accurate scanning
tool. The method and experimental setup of Wu et al. (2014), using an Artec Spider with
an accuracy of up to 0.1mm, however using their approach the object generally has to be
scanned over several iterations to fill in details. However, their formula for calculating
resulting model accuracy, and its metric is not specified.

The company behind the MetraScan sensors has a youtube video showing a demo
where inspection of an object is done real time with their scanner and an industrial robot.
It is unclear whether or not the path is generated automatically or programmed by hand by
engineers. However, it apparently inspects a complex object accurately in approximately
2 minutes. https://www.youtube.com/watch?v=QGvoF9hT2kM

2.1.2 Inspection with unmanned vehicles or drones

There are also several papers on 3D inspection planning for unmanned vehicles or drones.
Proposed applications are often in structure inspection from air or underwater and more
detailed inspection of parts of ships or outdoor structures.

The algorithm featured in the work this paper expands upon (Seines (2016)) is pro-
posed by Bircher et al. (2015a) and is implemented to use a rotorcraft or fixed-wing UAV
to inspect large structures or areas in their examples. With a custom stereo camera sensor
as the depth measurement tool of choice. Englot and Hover (2017) proposes a Redun-
dant Road Map (RRM) planner and demonstrates its uses by inspecting ships hull with an
autonomous underwater vehicle.

2.2 Coverage path planning

In this paper, coverage path planning is used to describe the process of calculating sensor
positions to sufficiently cover an object.

2.2.1 Offline coverage path planning

For industrial use, it is likely that a manufactured product is made with a 3D model refer-
ence. Therefore a model dependent algorithm should be ideal compared to an exploratory
algorithm, as a model dependent algorithm will have computational overhead while scan-
ning.
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If real-time 3D model reconstruction achieved, holes in the model can be filled by
revisiting viewpoints known to observe missing areas of the reconstructed mesh.

The structural inspection planner proposed by Bircher et al. (2015a) is an offline plan-
ner for structural inspection with either a rotorcraft or a fixed wing drone. Their method
utilizes a stereo camera setup and assumes that the depth sensor captures data in a pyramid
shaped cone. The algorithm first solves a constraint satisfaction problem placing a view-
point observing each part, or triangle, of the input mesh. After this, the TSP is solved to
find the shortest path connecting these points. This is repeated for a set number of itera-
tions. With each iteration, the viewpoints are updated to minimize the distance between
the preceding and succeeding viewpoints of the previous path. In this way, the inspection
path is iteratively updated. The source code for the planner is open source and utilizes
RRT* for point to point planning in the proximity of obstacles and an LKH based solver
for the Traveling Salesman sub-Problem

The redundant roadmap planner proposed by Englot and Hover (2017) (also Englot
and Hover (2011)) is an offline planner, exemplified by using the algorithm to plan the
inspection of a ship hull by an unmanned underwater vehicle. The algorithm starts by
constructing a roadmap by adding configurations until each point is observed a certain
number of times, hence the term redundant. The configurations are sampled in the neigh-
borhood of the object and kept if it is collision free and has a free line of sight towards one
or more discrete parts of the model. The configuration that adds unique observations is
selected, and this continues until each part of the model has at least been observed by one
configuration. By adding post processing or heuristics, this process can be augmented to
have higher priory to add configurations close to already added configurations, or the path
between existing configurations.

Galceran and Carreras (2013) defines coverage path planning and explains multiple
popular approaches to the problem. The explanations are quite superficial but show how
both simple and complex problems can be approached. The article refers to papers us-
ing random sampling based methods to cover complex 3D structures (Englot and Hover
(2011)), genetic algorithm (Jimenez et al. (2007)) for full coverage as well as literature on
coverage with the use of multiple robots.

2.2.2 Model independent scanning algorithms
The more common approach in literature, when planning with industrial robot arms, is
model independent scanning. Robot independent scanning is algorithms exploring the
object, filling it out to make a continuous surface while constructing a mesh from the point
cloud in real-time. The papers usually focus on the application of reconstruction and object
preservation for archaeologists, or model generation for use in 3D modeling or film etc.
The object shape and exact size are not considered known in advance.

Next Best View/Scan (NBV/NBS) algorithm variants are widely used for view plan-
ning of unknown objects. Next Best View(NBV) is a greedy algorithm concept, where
the algorithm is using feedback from real-time model generation and sensor feedback to
estimate where the sensor should be placed next. The algorithms are usually driven by
heuristics deciding if it is optimal to keep exploring the object, or if it is more desirable to
fill details of the existing models given the number of scans already performed. This is to
ensure the algorithm produces a detailed model after a finite number of scans.
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Kriegel et al. (2015) use a method based on boundary detection and shape estimation to
estimate what parts of the model are missing. On-line boundary detection is implemented
by iterating over newly acquired parts of the mesh identifying edges in the generated tri-
angle mesh without any bordering triangles. Surface trends are used to estimate object
curvature aiding scanner placement. The 3D sensor of choice is a 3D laser stripe measur-
ing depth by triangulation. A scan is represented as a start and end position with a fixed
sensor orientation. Different candidates are selected by a utility function depended on
how much area they are expected to cover and distance from the current position, as well
as execution time. The utility function has objective values for exploration and modeling,
dependent the number of scans performed so far. For modeling small distances are pre-
ferred to fill out holes in the scanned surface. While for exploration, maximizing covered
area is preferred to discover the object shape as fast as possible.

Krainin et al. (2011) inspects a model by gripping the object and turning it in front of
the camera, using an NBV inspired algorithm for planning gripper orientations.

2.2.3 Path optimization and post processing

The art gallery problem is the problem exemplified by covering an art gallery by a minimal
number of observers. In this case a solution of the art gallery problem mean inspecting
the object with a minimal number of viewpoints. Concerning coverage of the object,
an inspection path defined by a minimal number of sensor positions is likely not to be
desired. However, when considering efficiency with respect to time, a path represented
by a minimal number of waypoints is ideal. The Triangle Inequality states that the total
length between point A and B is always shorter or equal to the distance from point A to
C plus the distance from C to B. Thus removing redundant viewpoints should reduce path
length. If the robot has to slow down or stop to ensure the sensor position and orientation
is correct at each waypoint, fewer waypoints mean less overhead.

Path smoothing algorithms benefit inspection, as continuous motion will lead to a
smooth motion of the sensor. For industrial application, minimizing jerk and actuator
stress is vital for minimizing manipulator stress and wear.

Englot and Hover (2012) proposes an extension of the RRT* algorithm by adding a
heuristic smoothing and simplifying the resulting path. The algorithm is tested by employ-
ing an AUV to inspect the running gear of two ships. The algorithm starts by removing
redundant waypoints, as in waypoints not uniquely observing a part of the object. Then
the heuristic will prioritize waypoints forming paths along smooth lines. As the heuristic
is implemented in the RRT* algorithm, it reduces the time needed to find the connecting
path.

The algorithm proposed by Bircher et al. (2015a) has minimal post processing, as it
relies on forming a smooth path when iteratively improving the viewpoints. With ad-
ditional measures ensuring linear inspection paths when planning inspection with fixed
wing AUVs. While the algorithm is said to minimize the number of viewpoints in the plan
by solving the Art Gallery Problem, previous experience with the planner Seines (2016)
shows that output paths will contain the same amount of waypoints as the number of trian-
gles forming the input mesh. Implementing a way to remove redundant waypoints likely
to improve path quality.
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Gasparetto and Zanotto (2007) proposes an algorithm for smoothing trajectory veloc-
ity, acceleration, and jerk. The algorithm focuses on generating a trajectory with continu-
ous acceleration for each joint. Starting with a path defined in operating space, kinematic
inversion is applied to get a path in joint space. The optimal path from point to point is
found iteratively by an SQP solver by minimization of an objective function penalizing
squared jerk over the trajectory. Yang and Sukkarieh (2010) proposes an algorithm for fit-
ting a path to an ordered number of waypoints in 3D space to satisfy curvature constraints.
By projecting the trajectory onto two 2D spaces, applying changes and then transforming
back to 3D space. With the goal of generating paths with minimal joint jerk.

2.3 Motion planning
As the solution to the coverage planning problem, in this case, is a set of goal positions
providing the required sensor positions for full coverage of the object being inspected, the
motion between each point is not necessarily specified. In an attempt to optimize the time
used for inspection, the accuracy the path is followed and maximize the time where the
sensor is making use full observations. A motion planner resulting in the end effector and
manipulator motion providing maximum stability of the 3D sensor and minimize the time
spent inspection is desirable.

There are several approaches to motion planning available. ROS, via MoveIt, pro-
vides a large variety of general purpose motion planners from the Open Motion Planning
Library(OMPL). This includes implementation of Rapidly-exploring Random Tree algo-
rithms such as RRT* and RRTConnect. Probabilistic RoadMap algorithms, and projection
based motion planners. It also provides an interface for collision detection, kinematic
solvers, and communication with robot drives through the Move Group node.

To plan robot trajectories from poses in tool space it is required to have a kinematic
solver to translate between operation space and joint space. A collision checker capable
of checking whether a given joint configuration has self-collision or collision with the
environment, and a motion planner that can calculate trajectories between two states.

Saha et al. (2006) proposes a planning algorithm suited for inspection and welding
with an industrial robot. The algorithm assumes that multiple poses in tool space have to
be reached, but the order in which they are reached is not of importance. It is assumed that
it is desired to reach the points in minimal time and robot motion. The algorithm uses a
heuristic based path generation algorithm for generating close to optimal paths from goal
to goal, and a bi-directional PRM planner for generating the full trajectory.

Descartes is an experimental path planning package for ROS (found at https://
github.com/ros-industrial-consortium/descartes ) with the purpose
of providing a high-level interface for robot manipulation. The package is made specif-
ically for applications where the robot needs to move the end effector linearly between
multiple poses defined in tool space. The package includes a dense motion planning al-
gorithm that returns a robot trajectory optimized for speed, minimal joint movement or
energy consumption given a list of waypoints as input. The algorithm requires a specific
inverse kinematics interface, and solves the shortest and optimal path by computing all
possible inverse kinematics solutions for each goal point, and optimizing linear movement
between the goals.

15

https://github.com/ros-industrial-consortium/descartes
https://github.com/ros-industrial-consortium/descartes


Chapter 2. Literature Review

2.3.1 inverse kinematics
Since the inspection planning algorithm returns plans in tool space and not joint space, a
vital part of planning the robot trajectory is an inverse kinematics solver to translate way-
points into joint space. There are multiple approaches to solving the inverse kinematics,
with the focus on maximizing either accuracy, speed or providing additional functionality
such as returning the configuration closest to a given seed.

A widely used kinematics application worldwide is the Kinematics and Dynamics Li-
braries (KDL http://www.orocos.org/kdl) by the Orocos(Open Robot Control
Software) Project. Using kinematic chains to represent robots and providing real-time
forward and inverse kinematics solvers.

While widely used as a generic kinematics solver, KDL has some issues. Beeson and
Ames (2015) attempts to solve some of this issues in ”trac ik”. The solvers are set up
similarly as to those in KDL, where the main difference is the inclusion of seeded states
and fixes for false negatives in some of KDL’s functionality.

The inverse kinematics solver used in the ROS package ur kinematics are made by
Hawkins (2013) from Georgia Tech. The work was motivated by the conventional so-
lutions being both slow and returning wrong solutions at times. This application is an
extremely efficient analytic solver.

2.3.2 Point to point planning algorithms
There are a multitude of algorithms for point to point planning in multi-dimensional con-
figuration space. Most are implemented as general purpose algorithms able to plan trajec-
tories in both three and six dimensions, needing only a function for calculating distance
and checking for collisions.

RRTConnect, proposed by Kuffner and LaValle (2000) is a single query path plan-
ning algorithm focused on returning a viable path quickly. The algorithm initializes two
Rapidly-expanding Random Trees with the two states. The trees are expanded by adding
collision free states with linear, collision-free paths to an existing state until the two trees
intersect. When a connection between the trees are found the resulting path is returned.
As such this algorithm Can not be expected to return an optimal path. RRTConnect is the
default planner selected when planning for a UR5 in ROS using the Move Group interface.

Karaman and Frazzoli (2011) performs an analysis of popular probabilistic planners
such as RRT and PRM and proposes three asymptotically optimal path planning algorithms
in the form of RRT*, PRM* and RRG. These algorithms are extensions of the discussed
probabilistic planners.

PRM or Probabilistic Road Map is a multiple query planning algorithm consisting
of a pre-processing phase and a query phase. In the processing phase, the roadmap is
put together by adding a given number of random states and collision free connections
with already existing nodes as edges to the road map. Further path planning queries are
computed based on the assembled road map. The PRM algorithm is effective in scenarios
where the environment is static and the robot has to perform repetitive motions. RRT*
is an expansion of the RRT algorithm, where asymptotic optimally is reached by adding
edges not only to the node a new state is expanded from, but also to any state within a
given radius. To keep the tree structure, whenever a new state is added, it is added in a
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way that the branch it is connected to forms the shortest path from the root to the new
node, of the available paths. After adding a new node redundant edges, as in edges not
part of an optimal path, are removed.

Akbaripour and Masehian (2016) proposes a semi lazy probabilistic roadmap algo-
rithm. Under the roadmap construction, random configurations are added to the roadmap,
until it is sufficiently rich. However, the end effector is the only link being checked for
collisions. Then each node is connected to the k closest nodes, with a distance correspond-
ing to a weighted distance of the difference. The shortest path is computed by adding both
start state and goal state to the map and using Dijkstra to compute the shortest path.

Due to the fact that the widely used random planners are either asymptotically optimal
and require a lot of time computing optimal solutions, others are only probabilistic com-
plete, meaning they will return a solution if it exists and fail if not, however, there are no
guarantees that the solution is optimal with any given margin. Thus a common approach
is to add augmentations where the path is optimized through the use of heuristics or post
processing algorithms.

Nonprobabilistic approaches include general purpose path search algorithms, adapted
for use with the given robot. Erdős et al. (2016) uses an A* search to generate a collision-
free path.

2.3.3 3D model reconstruction
Both the Intel Realsense SR300 and the Asus Xtion Pro outputs sensor measurements as
point clouds. While the point cloud data can be used directly for quality inspection (see
subsection), it may be necessary to reconstruct the object from the point cloud to compare
some qualities, such as object curvature. A detailed and accurate model, reconstructed
from inspection measurements, can be used to prove inspection accuracy, and possibly
validate coverage percentage, and the sensors ability to detect details.

ROS has a designated library for point cloud utility functions, PCL Rusu and Cousins
(2011), that adds several features for processing point cloud data. The library contains
functions for processing, filtering and transforming different point cloud data types it can
be used as a framework for point cloud acquisition and model reconstruction.

Marton et al. (2009) proposes a greedy triangulation algorithm for connecting the
points in a point cloud together into triangles. The triangles are combined to form a 3D
model. Surface normals are estimated and maintained during reconstruction to retain ob-
ject shape. Example code for its intended use can be found at http://pointclouds.
org/documentation/tutorials/greedy_projection.php.

Iterative Closest Point(ICP) is an algorithm that can be used for fitting point clouds
together. The ICP algorithm attempts to match a point cloud to an another set of points
by minimizing the total distance between the sets. Working frame by frame, the first
frame serves as a basis, then iteratively each subsequent frame is added with a matching
transform given by the ICP algorithm, the resulting point cloud is filtered between each
iteration. The points can be connected with connecting each point to its closest k neighbors
and filling each completed shape formed this way.

There are multiple possible modifications to the ICP algorithm Cappelletto et al. (2013)
adds color to the square error to improve the surface generation when using a 3D camera
with color and depth output.
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Using sensor output for quality control

The subsection is copied from Seines (2016).
The resulting point cloud data from a scan is typically transformed to match a fixed

frame and then used for reconstructing a 3D model of the object. The resulting model
is then compared to a reference to measure quality as a function of how well the models
match.

These methods often apply orientation matching strategies, such as PCA. Principal
component analysis fits the measured data onto an orthogonal set of vectors, where the
first vector defines the axis with the highest measurement variance and has a length pro-
portional to this variance. Additional vectors are added as the vectors defining the axes
with highest measurement variance orthogonal to the vectors already in the set. By com-
puting the transform required to match the orthogonal base for each model, it is likely
that the same transform will make the two objects have matching orientation and scale.
Principal Component Analysis(PCA) is explained in detail Jolliffe (2002)

Tangelder and Veltkamp (2003) proposes a method of comparing similarities between
two polyhedra. First Principal Component Analysis(PCA) if performed to match object
orientation. Secondly, the objects are divided into a grid. Each object is assigned a signa-
ture, based on the properties of each area of the grid. Possible properties include Gaussian
curvature and variation of surface normals. These signatures are then compared by cal-
culating Proportional Transportation distance. The Proportional Transportation distance
is the estimate of the amount of work required to transform a set of weighted points to
resemble another set.

Another method for comparing polyhedra is proposed by Tuzikov et al. (2000). It is
rather complex and covers a similarity measure between two convex polyhedra. Based on
Minkowski addition, as well as Volume relations between the two polyhedra.

Reconstructing a 3D model is not necessary for inspection as shown byBergström
(2016) (As well as Bergström and Edlund (2016)). Bergström (2016) demonstrates an
application an ICP based fitting algorithm in real-time. By fitting a point cloud onto a
reference model after performing a Principal Component Analysis(PCA) to match ori-
entations, it is possible to perform an effective on-line error measurement by using the
fitting error of the point cloud. This is used to distinguish what object is being observed
in the demo by assuming it is the one with the least error https://www.youtube.
com/watch?v=lm7_mwpOk0E&feature=youtu.be, as well as to detect deforma-
tion of the object surface, exemplified by a small piece of paper in the video https:
//www.youtube.com/watch?v=cPS-DY9sCz4&feature=youtu.be.
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Chapter 3
Theory

This paper is building on previous project work Seines (2016), where the structural inspec-
tion planner by Bircher et al. (2015b) was expanded to include variable pitch. Sections 3.1
to 3.1.5 are taken from Seines (2016).

This section will go into detail on the structural inspection algorithm and describe
expansions to the algorithm intended to adapt it for planning inspection of small objects
by a manipulator with a 3D sensor attached as an end effector.

The focus will be on possible modifications and extensions to the algorithm resulting
in more manipulator friendly paths. This chapter will have a detailed look on an alternative
model based approach, as well as have a detailed look on motion planning for a manipu-
lator, to have the output path more closely resemble the resulting path when simulating it
with a manipulator.

3.1 Structural inspection planner, finding viewpoints
Algorithm overview. In case two viewpoints cannot be connected linearly because of

Algorithm 1 Inspection path planner

1: k← 0
2: Sample initial viewpoint configurations
3: Compute cost matrix for the TSP solver
4: Solve TSP to obtain initial tour
5: while running do
6: Resample viewpoint configurations
7: Recompute cost matrix
8: Recompute best tour
9: Update best tour cost if applicable

10: k← k + 1
return Tbest, cbest
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obstacles or similar issues, the algorithm uses the RTT* method by Karaman and Frazzoli
(2011) to connect the points and estimate a cost. To compute the optimal tour the algorithm
uses a Lin-Kernighan-Helsgaun Heuristic based TSP solver by Helsgaun (2000) Camera
position is formulated as a QP and solved by the QP solver implemented in qpOASES
(see Ferreau et al. (2014)), which features an efficient implementation of the active set
algorithm.

3.1.1 Path computation and cost estimation

An initial tour is made by connecting the viewpoints found by solving the Constraint Sat-
isfaction Problem(CSP) for each triangle in the input mesh. The tour is improved each
iteration, according to an objective function determined by the order and value of the
viewpoints from the preceding tour. Motion between viewpoints is assumed to be linear in
absence of collision objects. To guarantee linear motion between each viewpoint does not
exit the workspace, the workspace has to be locally convex. The linear motion from point
gk−1 to gk can be described as:

g(t) = (1− s)gk−1 + sgk

For s from 0 to 1.

Collision avoidance

The algorithm employs lazy collision detection for simplicity, using the RRT* algorithm
for point to point planning if the workspace is obstacle heavy or for viewpoints in the
presence of obstacles.

Obstacles are represented as boxes with variable dimension, position and orientation.
When updating viewpoints the algorithm does not actively avoid obstacles. The posi-

tion minimizing the QP is checked for collisions. If a collision is found, the position is
used to initialize an RRT structure. The tree is expanded until a collision free state satisfy-
ing the constraints of the QP is reached. If no feasible state is found the planner will exit
assuming the obstacle is blocking feasible inspection of the triangle.

3.1.2 Viewpoint sampling

For each iteration of the planning algorithm, the optimal sensor positions are sampled
first, based on the inspection tour from the previous iteration. Followed by optimization
of orientation. Constraints on position must, therefore, be selected in a way that makes all
feasible positions able to observe the triangle.

Position constraints independent of craft orientation

Assume the input mesh is made up of multiple triangles. Let the camera position be given
by g = [x, y, z]. Corners of the triangle given by the vector xi, i = 1, 2, 3, and the unit
normal of the triangle is given by aN .
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Distance constraints (dmin, dmax) and the minimal incidence angle (θmin), is selected
to guarantee that the point selected is within the 3D sensors ideal range and will observe the
triangle with an angle allowing for accurate measurements of the entire triangular surface.

Figure 3.1 Feasible region defined by min incidence angle and min and max distance

The minimal incidence angle constraint is given by 3 planes defined by each of the
triangle edges and the triangle normal rotated (θmin) around the same edge. Let Rv(θ) be
a matrix representing a rotation of θ around the vector(axis) v and ni, i = 1, 2, 3 be the
normal of these planes. Then the line given by g − xi is at least at an angle of θmin from
the triangle surface if.

(g − xi)Tni ≥ 0, i = 1, 2, 3

ni = Rei(θmin)aN , i = 1, 2, 3

e1 = (x1 − x2), e2 = (x2 − x3), e3 = (x3 − x1)

Figure 3.2 Minimum incidence angle constraint

The distance from the triangle is expressed as

d = (g − x1)TaN

The constraints given by minimum and maximum distance is written as

dmax ≥ (g − x1)TaN ≥ dmin
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Combining distance and minimum incidence angle constraints. (g − xi)Tni
(g − x1)TaN
−(g − x1)TaN

 ≥
 0

dmin

−dmax

 , i = 1, 2, 3

Position constraints dependent on craft orientation

The cameras field of view is given by horizontal ψhor and vertical spread ψver. The field
of view is rotated about the y-axis by the assumed constant pitch. Because of the constant
pitch, positions g where the entire triangle is visible for some rotation about the z axis is
not convex.

Figure 3.3 Left and right normals used for convexification, by rotating feasible region
around the center of the triangle

Figure 3.4 Top and bottom camera bound, and direction of normals

By dividing the xyplane intoN sections defined by hyperplanes with normals nright, nleft
as seen in figure 3.3. The rotation of the craft is assumed to be rotating along with the
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3.1 Structural inspection planner, finding viewpoints

hyperplanes. The nonconvex problem is solved asN separate approximately convex prob-
lems, the local solutions are compared to select the optimal position. Given xrellower and
xrelupper as the respective relative corners of the mesh triangle that are the corners of the
triangle constraining choice of g the most. m is the triangle center and ncamlower, n

cam
upper are

rotated camera normals. And rotation increment from section to section as ψincr = 2π/N

φlower = φcam + θver/2 , φupper = φcam − θver/2

nright =

− sin (ψi − ψincr/2.0)
cos (ψi − ψincr/2.0)

0

nleft =
− sin (ψi + ψincr/2.0)

cos (ψi + ψincr/2.0)
0


ncamlower =

sinφlower cosψi

sinφlower sinψi

− cosφlower

ncamupper =

sinφupper cosψi

sinφupper sinψi

− cosφupper


xrellower = max

xi

xTi n
cam
lower , xrelupper = max

xi

xTi n
cam
upper

Horizontal angular constraints are not encoded but are handled by choosing dmin large
enough to guarantee to observe the entire triangle.

(g − xrellower)
Tncamlower

(g − xrelupper)
Tncamlower

(g −m)Tnright
(g −m)Tnleft

 ≥


0
0
0
0


Let gk−1 be viewpoint sampled for observing the same triangle the previous algorithm

iteration. gk−1
p the preceding viewpoint on the old tour and gk−1

s the subsequent viewpoint
on the old tour. The optimization goal is to minimize the distance traveled by the craft by
decreasing the distance between the current iteration viewpoint and its subsequent view-
point, preceding viewpoint and the viewpoint observing the same triangle of the best tour
generated so far.

This results in a covex QP with linear constraints, meaning it can be solved by efficient
solvers such as the active set solver by Ferreau et al. (2014).

min
gk

(gk − gk−1
p )T (gk − gk−1

p ) + (gk − gk−1
s )T (gk − gk−1

s ) + (gk − gk−1)T (gk − gk−1)

st.



nT1
nT2
nT3
aTN
−aTN
ncamlower

ncamupper

nright
nleft


gk ≥



nT1 x1
nT2 x2
nT3 x3

aTNx1 + dmin

−aTNx1 − dmax

ncamlowerx
rel
lower

ncamupperx
rel
upper

nrightm
nleftm
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The viewpoint is further constrained to be within the bounding box specified as a pa-
rameter. g = [x, y, z]

Xmin < x < Xmax, Ymin < y < Ymax, Zmin < z < Zmax

Heading

Heading is determined with a grid search, and is computed given the cost function:

cost = (αk−1
p − ψk)2/dp + (αk−1

s − ψk)2/ds

αk−1
p = tan(

yk − yk−1
p

xk − xk−1
p

), αk−1
s = tan(

yk−1
s − yk

xk−1
s − xk

)

Minimizing the change in yaw from the heading of the copter, given the constraints that
the triangle should be fully visible.
Given constraints on minimum and maximum distance, as well as minimum incidence
angle 3.1, 3.2 , the triangle is evaluated as visible if.[

aTN (gk − x1 − dminaN )
−aTN (gk − x1 − dmaxaN )

]
≥
[
0
0

]
(gk − x1)Tn1(gk − x1)Tn2
(gk − x1)Tn3

 ≥
00
0


The field of vision is represented by four normals bounding from left, right, below and

above. The normals are given by the fixed camera pitch ψcam, horizontal spread θhor and
vertical spread θver.

cN1 =

−sin(φcam − θver/2)0
−cos(φcam − θver/2)

 cN2 =

sin(φcam + θver/2)
0

cos(φcam + θvert/2)



cN3 = Rz(θhor/2)

sin(φcam)
0

cos(φcam)

 cN4 = Rz(−θhor/2)

sin(φcam)
0

cos(φcam)


The triangle is evaluated as visible if.

Rz(ψ)Ry(φ)c
T
Nj(xi − gk) ≥ 0, i = 1, 2, 3, j = 1, 2, 3, 4

where ψ is yaw and φ is pitch. If all six inequalities hold, then each point xi is within the
bounding hyperplanes defined by the camera normals cNj and position g. This holds for
θhor, θver less than 180o.

The final step of the visibility criterion is to perform a collision check between the state
and the triangle, however that is not covered in this paper.
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3.1 Structural inspection planner, finding viewpoints

Initial values

Initial positions are placed in the least constrained position for each triangle, without op-
timizing the distance between viewpoints. To find the initial heading the view is simply
rotated by the angle increment until the entire triangle is visible.

3.1.3 Tour length estimation
The estimated time to complete a tour is given as the sum of time it takes to transition from
one viewpoint to another. With linear movement and rotation, with bounding translational
velocity vmax and bounding angular velocity ωmax, given N viewpoints and viewpoint
g0, gN+1 being the requested start and goal positions of the tour.

cost =

N+1∑
k=1

max(

√
(gk − gk−1)T ((gk − gk−1)

vmax
, c(ψk, ψk−1, ωmax))

Where c(θk, θk−1, ω) is the smallest amount of time needed to rotate from one angle to
another given θ = [−π, π].

c(θk, θk−1, ωmax) =
mod((θk − θk−1), π)

ωmax

Adding pitch to the equation, assuming the manipulator or craft still has the given angular
and translational velocity bounds.

cost =
N+1∑
k=1

max(

√
(gk − gk−1)T ((gk − gk−1)

vmax
, c(ψk, ψk−1, ωmax), c(φk, φk−1, ωmax))

3.1.4 Path Smoothing
Due to the mobility limitations, the planning algorithm will attempt extra measures to
smooth the resulting trajectory when planning for fixed-wing AUVs. When preceding
state and succeeding state are determined before used to sample a new viewpoint. The
smoothing algorithm will attempt to instead choose states up to wmax viewpoints away on
the tour. wmax is calculated by.

psmooth = Imax/2.25 nsteps = min(2.0, 1.0 + 50.0/Imax)

wmax = min(nsteps(Imax − psmooth − i), N/2.0)

Where Imax is the maximum number of iterations i is the current iteration and N is
the total number of triangles making up the mesh.

s1, s2 are the preceding and succeeding states, tour is an ordered list of waypoints
defining the inspection tour. tri is a vector of all triangles forming the mesh, ID is the
current triangle, and the lastVisible function performs an RRT* expansion connecting the
given state the expansion its called from to the state given as an argument and returns the
state closest to the state the expansion is called from where the triangle was visible. Thus
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Algorithm 2 RRT*

1: s1 ← precedingviewpoint
2: lim← 0
3: while isDefined(s1) ∧ lim.increment() ≤ wmax do
4: s1 ← tour(current− lim).lastV isible(s2, tri[ID])

5: s2 ← succeedingviewpoint
6: lim← 0
7: while isDefined(21) ∧ lim.increment() ≤ wmax do
8: s2 ← tour(current+ lim).lastV isible(s2, tri[ID])

this should move the preceding and succeeding states further along the tour until they are
on the edge of being able to observe the triangle.

The isDefined function represents checking for if the coordinates of the state vectors
are real numbers.

The intention is to cause optimal viewpoints to align on linear or curving paths instead
of simply contracting towards one another.

3.1.5 Previous expansions on the structural inspection planner

For a manipulator there is little sense to restrict pitch of the endeffector to a predetermined
constant value. Therefore the first expansion was to increase degrees of freedom from 4 to
5 by introducing variable pitch. This section will elaborate changes done in Seines (2016),
as such this section is directly copied from that paper.

Relaxing vertical camera constraints

With a locked pitch a great deal of the issue is finding a convex space the copter can be
in and be able to observe the entire triangle. However with the introduction of pitch the
space with any valid orientation is greatly increased. 3.1

The constraints given by minimum incidence form a tetrahedron shaped feasible re-
gion when constrained by maximum distance. Assume some fixed camera spread in both
horizontal and vertical direction θhor, θver. Splitting the grid search into two 2D problems,
for there to not exist a feasible heading observing the triangle then the camera must be in a
position g such that the angle between the vectors pointing towards the extreme points on
the triangle in either direction (g − xrellower), (g − xrelupper) and (g − xrrightel), (g − xrelleft)
is larger than min(θhor, θver). If the minimal incidence angle constraint is satisfied this
angle is at most equal to π − 2θmin where these hyperplanes intersect, and is decreasing
moving along the boundaries of either constraint and with increasing distance from the
triangle. Thus selecting θmin such that;

θmin >= π/2−min(θhor, θver)/2

Implies any position stratifying the constraints given by minimum incidence angle will
have at least one feasible heading for inspecting the whole triangle.
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The new optimization constraints are then given as.

mingk (gk−gk−1
p )T (gk−gk−1

p )+(gk−gk−1
s )T (gk−gk−1

s )+(gk−gk−1)T (gk−gk−1)

st.


nT1
nT2
nT3
aTN
−aTN

 gk >=


nT1 x1
nT2 x2
nT3 x3

aTNx1 + dmin∗
−aTNx1 − dmax


Where n1, n2, n3 are calculated as above with a θmin stratifying the relation with

min(θhor, θver).

Optimalization criterion for heading

Since manipulator movement is suitable for having the sensor move perpendicular along
the object surface, resulting in a bigger portion of the object is within the FOV at all
times, compared to a sensor heading in the direction of horizontal movement whenever
the sensor moves. The normalized vector pointing towards the focus of the sensor is given
by the vector.

cf =

cos(φ)cos(ψ)cos(φ)sin(ψ)
sin(φ)


Let dp, ds be distances between this viewpoint and subsequent and preceding view-

points. Then the proposed cost function is given by.

(1+cf (ψ
k, φk)TaN )+

√
(ψk−1

p − ψk)2 + (φk−1
p − φk)2)

dp
+

√
(ψk−1

s − ψk)2 + (φk−1
s − φk)2)

ds

Along with a constraint minimizing change in yaw and pitch from one state to the next
with the goal of enforcing smooth camera movement.

3.1.6 New expansions of the inspection planner

Further expansion focus on adapting the algorithms to take account for manipulator kine-
matics. Such as avoiding viewpoints with no viable solutions, or infinite solutions from
inverse kinematics.

To penalize connections between viewpoints where the manipulator requires arcs to
avoid obstacles or self-collisions, the distance evaluation function has been expanded to
include a simple collision check along the path generated by linearly interpolating between
viewpoints and solving for joint states along the path.
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Inverse kinematics viability criterion

Singularities and poses prone to self-collision must be taken into account while sampling
an optimal viewpoint, the presence of inverse kinematics solution as well as if the solution
is in a self-collision is checked. If the checks fail, the algorithm will search for random
valid states within a small distance of the original viewpoint. Inspired by the redundant
roadmap planning approach, random configurations are sampled until K valid states are
found observing the viewpoint. Returning fewer configurations the number of attempts
exceeds a given limit. The optimal solution of the K alternatives is calculated based on
the same objective functions as specified in the sections above. If no solution is found the
point is discarded as unfeasible and treated as if it is in collision.

If a valid point is found, then whether or not to add the point to the tour is computed
as normal for the new point. Algorithm presented below 3. rL is a randomly generated
vector of fixed length. During simulations K have been between 1 and 5, and Kit has
been between 20 and 100.

Algorithm 3 Redundant roadmap inspired point viability criterion

1: Iterate viewpoint configuration
2: Compute inverse kinematics
3: Check collisions and configuration validity.
4: if No solution or invalid state then
5: solFoundLocal← false
6: sol vector← empty vector
7: k← 0 or it← 0
8: while k < K it < Kit do
9: gkr = gk + rl

10: if gkr is valid then
11: sol vector ← gkr
12: k← k + 1.

13: it← it+ 1

14: cwp ← inf
15: for gr ∈ sol vector do
16: ctot ← calcObjectiveFunc(gr) + calcRotationCost(gr)
17: if ctot < cwp then
18: g ← gr cwp ← ctot
19: solFoundLocal← true
20: if solFoundLocal ∧ cwp < cprev then
21: best← g

This is an effort to minimize the number of invalid points, and to ensure all points have
at least one valid inverse kinematics solution without collision.

Augmented distance evaluation function

For motion planners planning linear paths in tool space, linear constant velocity movement
holds, assuming a straight path is feasible between the points. And the norm 2 distance be-
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tween the points will be descriptive of the time required to move between them. However
planning in joint space with the planners in the OMPL this is not a guarantee. However,
the manipulator will approximate this behavior for sufficiently close points or if the linear
path between the viewpoints is collision and singularity free.

The linear path between points is interpolated and the presence of inverse kinematics
solutions, as well as validity, is checked along the way. Since most of the planners will
handle singularities and avoid self-collisions, the percentage of iterations where this is
present along the linear path is correlated with likelihood of arching motions deviating
from a linear path and is added to the weight as a penalty. Invalid start or end state is
treated as if the viewpoint is in a collision.

The intention is to increase the likelihood of a path where the order of the viewpoint
matches ideal movement for a manipulator. However, it does not prevent the occurrences
of paths containing several arching motions from point to point. The extension for the

Algorithm 4 linear path viability check extension

1: dist← computeDistance(s1, s2)
2: nerror ← 0
3: sik1 ← inverse(s1) sik2 ← inverse(s2)
4: if checkCollision(sik2)∨!isFeasible(sik2∨checkCollision(sik1)∨!isFeasible(sik1)

then
5: collision = true
6: for it ∈ [0, 0 + gdiscStep, ..1] do
7: s← (its1 + (1− it)s2)
8: sik ← inverse(s)
9: if checkCollision(sik)∨!isFeasible(sik) then

10: nerror ← nerror + 1

11: cpenalty ← Cscalenerror
12: distex = dist+ cpenalty

algorithm calculating the distance between two viewpoints s2 s1. inverse is a function
returning joint configurations putting the end effector in the given pose. checkCollision
checks self collision and collision with obstacles for all robot joints for a given joint state.
isFeasible is a function that checks if returned values are within joint limits. Cscale is a
variable depending on ||s1 − s2|| to compensate for the fact that the path is divided into
1/gdiscStep regardless of lenght between the points.

3.1.7 Point to point planning
The structural inspection planner plans in tool space, with a point to point planning algo-
rithm doing simple linear interpolation short distances and relying on RRT* for planning
longer paths. Collisions are checked according to the discretization parameter g discretization step.
If a collision is found while interpolating the RRT* algorithm is called to generate a
collision-free path.

As a result, the output trajectory of the system is in tool space by default. However,
this can still be used to move a manipulator by using the waypoints as tool space goals, for

29



Chapter 3. Theory

a multigoal planning algorithm.

RRT*

The RRT* algorithm is an asymptotically optimal path planning algorithm proposed by
Karaman and Frazzoli (2011). The algorithm is based on the data structure rapidly ex-
panding random tree(RRT), after which it is named. The algorithm will result in a path if
a given node is within a given distance of the goal distance, however, the algorithm will
generally run for a given number of iterations.

The algorithm adds new states to the tree to the existing branch such that the edges of
the graph are all part of an optimal path from the start state to one of the nodes. Whenever a
new state is added, if it provides a new optimal path to any vertex near it, the tree is updated
by removing the connection between the vertex and the previously optimal parent.

Algorithm 5 RRT*

1: V← xstart E← ∅
2: while n < Nplan do
3: n← n+ 1
4: xrand ← random valid state
5: xnearest ← nearest existing node
6: xopt ← solution of: minxopt

||xopt − xnearest|| st. ||xrand − xopt|| ≤ µ
7: if obstacleFree(connect(xnear, xopt)) then
8: Xnear ← all nodes within a given radius.
9: V← xopt

10: xmin ← xnearest, cmin ← cost(cnearest) + cost(Line(xnearest, xopt))
11: for each xnear ∈ Xnear do
12: cnear ← cost(xnear) + cost(connect(xopt, xnear)
13: if cnear < cmin ∧ collisionFree(connect(xopt, xnear)) then
14: cmin ← cnear xmin ← xnear
15: E← E ∪ connect(xmin, xopt)
16: for each xnear ∈ Xnear do
17: update the tree if the new minimal
18: if cost(xopt) + cost(Line(xnear, xopt)) < cost(xnear) ∧

collisionFree(connect(xopt, xnear)) then
19: xparent ← parent(xnear)
20: E ← (E \ Path(xparent, xnear)) E ∩ connect(xnew, xnear)

V is a data structure containing all nodes and E is an ordered graph containing all
edges between nodes. Connect is a function returning the value of an edge connecting two
nodes. Path returns the edges connecting two nodes. Line returns length of a straight line
connecting the two nodes.

Since the algorithm is general purpose, it should be possible to adapt it to plan paths
in joint space.
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3.2 Moving the robot

Since the algorithm by default returns a tool space trajectory, specified by a number of
waypoints with position and orientation, this needs to be translated into a joint space tra-
jectory to move the robot.

There are multiple different ways to make a UR5 execute a specified trajectory.

3.2.1 UR joint trajectory interfaces

Robots from Universal Robots have three different controller APIs. First, the graphical
user interface level for programming and control with the teach pendant. Secondly, there
is the script level API where the robot is passed scripts in a robot programming language
and the robot control box execute these scripts. The third is the C-API level where control
is done in the forms of executable programs passing trajectory messages through sockets.

The move group node is a wrapper that handles robot control for the user, implemented
in the C-API. The move group node accepts trajectory requests in the form of a robot
trajectory message object.

1 message moveit_msgs/RobotTrajectory.msg
2 trajectory_msgs/JointTrajectory joint_trajectory
3 trajectory_msgs/MultiDOFJointTrajectory

multi_dof_joint_trajectory

1 message trajectory_msgs/JointTrajectory.msg
2 std_msgs/Header header
3 string[] joint_names
4 trajectory_msgs/JointTrajectoryPoint[] points

1 message trajectory_msgs/JointTrajectoryPoint.msg
2 float64[] positions
3 float64[] velocities
4 float64[] accelerations
5 float64[] effort
6 duration time_from_start

The robot trajectory message specifies trajectories in the form of multiple points. If ac-
celeration, velocities, effort or position stray from the reference the robot controller will
interpret this as a path constraint violation if the error crosses a given threshold, and tra-
jectory execution is canceled.

The robot can be controlled by passing trajectory messages to the move group node,
that forward the desired trajectory to the robot driver. Both the tool space motion planner
and the joint space point to point motion planner uses this control API by calling functions
defined in MoveIt libraries to generate trajectory messages and execute them.
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URscript

An alternate control method is through URscript http://www.sysaxes.com/manuels/
scriptmanual_en_3.1.pdf. URscript is the robot programming language of uni-
versal robots and is used for the script level API. To use this approach, the program gen-
erates a script defining the requested movement, streams it to the robot control box which
executes the script.

URscript has functions for moving from one pose to another linearly in tool space,
moving from one configuration to another linearly in joint space as well as circular motion
and online control of the robot.

3.2.2 OMPL and ROS

ROS and moveIt nicely provide both collision avoidance and motion planning for kine-
matic chains/manipulators. Serves as the basis for several different approaches to path
planning.

Motion planning in tool space

Planning in tool space is the simplest approach with minimal specificity, the path is defined
by one or more goal poses and MoveIt handles solving inverse kinematics for each pose
and connecting poses, as well as collision avoidance and local point to point planning. The
move group interface provides functionality for single goal planning, with the focus on a
safe and collision-free execution.

Pseudo code for a simple move

Algorithm 6 Tool space point to point movement

1: initialize ROS node
2: move group← initializeMoveGroupInterface(manipulator)
3: PublishCollisionObjects()
4: waypoints← loadWayPointsFromFile(filename)
5: for eachwaypoint ∈ waypoints do
6: move group.poseTarget← waypoint
7: movegroup.move()

As well as functionality to compute a plan in tool space that takes multiple poses
as input. The tool space planner works by specifying a crawling distance to approximate
linear movement of the end effector between poses by interpolating and computing inverse
kinematics along the path.

Local point to point planning is handled by the default planning plugin provided by
OMPL, usually single query random planner such as RRTConnect.

The tool space path computation can be defined by the following pseudo code. full
code in the appendix.

The Cartesian motion planning function iterates along a linear path given a fixed step
size while computing inverse kinematics and checking for a collision at each step.
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Algorithm 7 Cartesian point to point movement

1: initialize ROS node
2: move group← initializeMoveGroupInterface(manipulator)
3: PublishCollisionObjects()
4: waypoints← loadWayPointsFromFile(filename)
5: Trajectory← emptyRobotTrajectory()
6: Trajectory← move group.ComputeCartesianPath( waypoints, max step size, jump treshold)
7: movegroup.execute(Trajectory)

There is a more specific package made for use with ROS for this purpose. Descartes
is a planning package providing more advanced functionality regarding planning paths in
tool space. Providing its own core functionality based on the functionality provided by
moveIt. As well as a dense planner, planning optimized path for multiple goals in tool
space.

Motion planning in joint space

The slightly more low level approach involves computing inverse kinematics, planning in
joint space with joint limits to enforce desired behavior. In this case, ROS is still han-
dling collision avoidance, as well as point to point planning. However by requesting given
configurations instead of poses, the state of the robot as it reaches each goal state is deter-
ministic.

A common approach to path planning is randomly expanding the state while checking
the validity of the expansions until the goal state is reached. The path is then smoothed
and optimized through post processing. While this is often a quick way of implementing
point to point planning, it may in some cases result in obviously non-optimal paths. As
minimizing time spent planning is often the focus of these kinds of planners.

An alternative approach is to also do both collision avoidance, velocity, and accelera-
tion computations. To create the trajectory yourself and stream it to the robot using either
the simple action interface, publishing the trajectory directly to the robot or use UR script.
To avoid usage of the move group node.

3.3 Point cloud acquisition
As the focus of the paper is inspection and motion planning, the selected approach to point
cloud reconstruction is a simple greedy algorithm, reconstructing a triangle based mesh
from one or more point clouds put together.

To reconstruct the entire object is it is desirable to transform all point clouds from the
sensor frame to a fixed coordinate system.

3.3.1 Representing measured point cloud data in a fixed frame
The end effector position and orientation can be calculated from joint states by forward
kinematics. Since the sensor is attached to the end effector the sensor position and orien-
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Algorithm 8 Tool space point to point movement

1: initialize ROS node
2: robot model← loadRobotModel(modelSpecifier)
3: planner← loadP lanner(OMPL/P lannerOfChoice)
4: scene← addRobot(robot model)
5: scene← addCollisionObjects(objects)
6: move group← initializeMoveGroupInterface(manipulator)
7: waypoints← loadWayPointsFromFile(filename)
8: for each waypoint ∈ waypoints do
9: current state← move group.getCurrentState()

10: ik solutions← inverse(waypoint)
11: for each config ∈ ik solutions do
12: if isV alid(config)∧!checkCollision(config) then
13: valid solutions← config
14: dmin ← inf
15: copt ← −1
16: for config ∈ valid solutions do
17: if weightedDistance(config, current state) ≤ dmin) then
18: dmin ← weightedDistance(config, current state) copt ← config
19: textitplanning request← workspaceBounds(), current state, copt
20: plan← planner.plan(planning request)
21: move group.execute(plan)
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tation is logged indirectly through logging the robot joint states.
The point cloud is given as positions in x,y,z coordinates relative to the camera. Using

the fixed world frame of the robot as the default frame for the point clouds a transformation
from the camera frame to the world frame is expressed by.

R = forwardKinematics(joint states)

PCworld = R−1PCsensor

Where PCsensor is the point cloud given in the sensor frame and PCworld is the point
cloud in the world frame.

3.3.2 Making a 3D mesh
Marton et al. (2009) proposes a greedy algorithm for generating a mesh from noisy point
cloud data sets of either one point cloud or multiple point clouds put together.

Algorithm 9 Greedy algorithm from mesh generation from pointcloud file

1: blob← loadPointCloud(filepath)
2: normals← cumputeNormals(blob
3: point cloud← concatenateF ields(blob, normals)
4: search tree← initialize(point cloud)
5: mesh← emptyMesh()
6: gp3← initializeGreedyProjectionTriangulation()
7: gp3.setInputData(point cloud)
8: gp3.setSearchMethod(search tree)
9: mesh← gp3.reconstruct()

Where the gp3 object represents a greedy triangulation algorithm, locally searching
the search tree for a given number of nearest neighbors and search radius to connect pairs
of three points into triangles. Surface normals are used to ensure object shape is preserved,
by connecting triangles such that the surface normal of the given triangle is equal to the
normal of the estimated normal of the surface formed by the points.
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Chapter 4
Robot setup

4.1 Dependencies

The packages that needs to be installed to follow the setup presented in this chapter. Top
cell contains the dependencies for the structural inspection planner. The second cell con-
tains the dependencies of robot path planning and simulations. The third cell contains
dependencies for running the Intel realsense sr300, as well as to perform operations on
pointclouds. The bottom row is the package used to auto generate configuration files for
the robot.

Packages without a provided url can be installed with apt-get provided apt has been
given the official ros package list. The packages with a given url has to be buildt from
source.

Dependencies
libeigen3-dev
ros-indigo-tf
ros-indigo-rviz
ros-indogo-octomap
ros-indigo-octomap-msgs
ros-indigo-moveit
ros-indigo-universal-robot
ros-indigo-ur-kinematics
ros-indigo-trac-ik
descartes (https://github.com/ros-industrial-consortium/
descartes)
ros-indigo-realsense-camera
librealsense (https://github.com/IntelRealSense/librealsense)
ros-indigo-pcl-ros
ros-indigo-moveit-setup-assistant
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4.2 Making endeffector and configuring robot
As previously mentioned, the inspection planner, the simulations, and the driver for the
3D camera, is implemented as packages for Robot Operating System indigo(ROS indigo).

To inspect the robot the SR300 was attached as a tool to the third wrist joint of the
robot. To avoid collision between the sensor and the robot link the robot description files
are modified to include collision information for the sensor, and to allow kinematic plugins
to perform forward kinematics and inverse kinematics between joint space and the sensors
position in tool space.

Attaching SR300

First to attach the sr300 to the robot I had to make a mount for it, that would fit the holes
on the end link of the ur5.

To fasten the camera to the ur5 steadily the idea was to make a mount where the camera
is fastened tightly by fastening a standard camera screw (shown in figure 4.1).

Figure 4.1 The sr300 comes attached to a plate with the usb outlet as well as a hole for a
standard camera mounting screw

To attach a custom mount to the ur5 first a base is needed to attach to the wrist link. To
this end SINTEF had a model of a cap that would fit the end effector forming a nice base.
The endeffector is made by combining this with a mount for the camera.

Figure 4.2 STL model for 3D printed base, to fit with ur5 end effector base.
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The sr300 camera only bends towards the underside of the plate, to allow the sensor to
point out from the wrist link the mount has to wrap around the sensor. The base is fastened
to the ur5 with bolts not embedded in the base, as such there need to be some extra height
under the mount. 3D printed material is easy to shape with drills or knifes after printing, as
such the camera mount was made with the intention of drilling a holes to fasten the mount
with screws.

Figure 4.3 Intended end effector before mounting camera, holes for screws for attaching
mount to base and mount to camera were drilled after printing

Results after fastening the mount to the base, and drilling a hole for attaching the
sensor.

Figure 4.4 Completed camera mount

Measurements on the end effector places the center of the camera box approximately
4.5 cm out and 3.5 cm up from the end effector link.

eeoffset =

0.0450.0
0.035

m
The sensor has a height and depth of approximately 3 cm, and a width of 12 cm. For
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Figure 4.5 End effector put together, and attached with the camera to the robot

Figure 4.6 End effector attachment measurements

4.2.1 Configuring URDF, SRDF and kinematics plugins for custom
robot

Unified Robot Description Format or URDF for short, is a description format for describ-
ing a robot. An URDF describing a robot consists of a robot definition, where links and
joints rotation, visuals and collision matrices are described. As well as the order they are
coupled together.

For ROS to be able to perform collision checks and path planning for the robot it needs
to know what it looks like, how it behaves and have the shape of its links defined by a
collision matrix.

Semantic Robot Description Format or SRDF for short, is a format for describing robot
semantics such as groups of joints intended to be moved together and define the name and
link of the endeffectors for a given joint group. The SRDF also specifies adjacent links
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and links that cannot collide such that collision checks can ignore collision between the
specified links.

Since scripts used to launch nodes and find configuration files, find the required files
with the help of ROS package navigation it is recommended to follow a file structure simi-
lar to this: https://github.com/mmseines/ur5_simulation/tree/master/
src/ur5_robot.

Configuring URDF

By installing the universal robots package it will install configuration files for all UR robots
without tools attached.

These can be found in the package ur description. To attach the sensor a new xacro
file is made by copying the existing ur5 robot.urdf.xacro file. It is recommended that the
urdf file is compiled as an appropriately named package, and linked with the shared ros
files. Such that the file can be found from any other file by searching for the package name.
For instructions for making a catkin package consult the tutorials found on the ROS home
page.

Additional joints and links are added below. Declaration of sensor joint and link shown
below. Full URDF xacro in appendix section 7.4.4.

1
2 <! -- visualize the sensor -->
3 <link name="sensor">
4 <visual>
5 <origin xyz="0.0 0.0 0.0" rpy="0 0.0 0.0" />
6 <geometry>
7 <box size="0.03 0.12 0.03"/>
8 </geometry>
9 <material name="Grey" />

10 </visual>
11 <collision>
12 <origin xyz="0.0 0.0 0.0" rpy="0 0 0" />
13 <geometry>
14 <box size="0.03 0.12 0.03"/>
15 </geometry>
16 </collision>
17 </link>
18
19 <! -- Specify joint representing origin of sensor -->
20 <joint name="tool_to_sensor" type="fixed">
21 <parent link="ee_link"/>
22 <child link="sensor"/>
23 <origin xyz="0.045 0.0 0.035" rpy="0 0.0 0.0" /> <!--

THIS LINE WAS MISPLACED DURING EXPERIMENTS -->
24 </joint>

An urdf file can be generated by opening a terminal and running the commend.

41

https://github.com/mmseines/ur5_simulation/tree/master/src/ur5_robot
https://github.com/mmseines/ur5_simulation/tree/master/src/ur5_robot
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• rosrun xacro xacro.py custom ur5.urdf.xacro > custom ur5.urdf

Generating config files and SRDF

Writing configuration files by hand would be impractical, therefore it is recommended
generating most of the configuration files using the setup assistant.

After customizing the URDF, open a terminal and run the setup assistant with the
command.

• roslaunch moveit setup assistant setup assistant.launch

This will open this window. Since the moveit configurations for the default UR robots
is located in the ros folder in /opt, it is not reccomended to alter them. Instead, make a new
configuration package located in the planner project workspace.

Figure 4.7 Moveit setup assistant

Upen the custom robot.urdf.xacro file and follow the steps one by one, be sure to
select the sensor joint.

Define a group to plan for and the joints the group consists of.
Define kinematics solver. for this project the kinematics plugin of choice will be the

analytic solver by Hawkins (2013).
Es well as defining an endeffector for the new group, specifying the link it is repre-

sented by.
Generating the files will create a moveit config folder containing a number of launch

scripts and config files. However this is not enough to simulate the robot.

URDF for joint limited robot

The UR robots have joints capable of turning 2 full rotations. This means they operate
within a range of [−2π, 2π]. The move group node, most planning libraries, and algo-
rithms used by ROS are made with industrial robots with joint limits within [−π, π] in
mind.

The URDF file installed with the universal robots package is already coded to set joint
limits to [−π, π] for all joints if the variable joint limited is set to true.

42



4.2 Making endeffector and configuring robot

Figure 4.8 Define the group you want to configure

Figure 4.9 Set the plugin to use as kinematic solver

To enable the possibility to change joint limits by launching the move group node and
drivers with the ”limited” argument to set joint limits, create an ”urdf.xacro” file identical
to the one created earlier except setting the joint limited parameter to true after loading
the robot.

1 ...
2 <!-- ur5 -->
3 <xacro:include filename="\$(find ur5_with_sr300_support)/

urdf/ur5.urdf.xacro" />
4
5 <!-- arm -->
6 <xacro:ur5_robot prefix="" joint_limited="true"/>
7 ...

Save the file as custom joint limited robot.urdf.xacro. Launch files for both the move
group, gazebo and the robot driver can handle the limited argument by loading the limited
URDF instead of the original one.
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The move group node and the nodes it launches will by default not support the limited
argument and need to be altered by hand. Full scripts can be found in appendix section
7.4.5 Using the launch files found in the ur5 moveit config package as examples it should
be simple to declare arguments and set up the statement that loads the correct URDF.

Additional configurations and Gazebo

To be able to simulate the robot with the sensor attached it is necessary to make a few
scripts providing that functionality. Full scripts are found in the appendix in section 7.4.5.

First, a script for loading the robot description into the parameter server needs to be
made.

A script for starting gazebo with the custom robot can be copied from the ur gazebo
package and slightly altered to upload the custom robot instead of the corresponding UR
model.

Create a wrapper for launching the move group node to allow communication interface
for joint trajectory execution to be switched between simulation in gazebo and a robot
driver with the ”sim” argument.

The MoveIt controller manager launch file will not be generated correctly by default.
Open the MoveIt config folder generated earlier and modify the file called: robot moveit
controller manager.launch.xml to look like shown in the appendix.

4.2.2 Limiting inspection planner workspace
To ensure the path is viable for experiments, the planner must work around obstacles and
only generate viewpoints that are reachable by the robot. Meaning they have to avoid
singularities, collision and be within the workspace of the robot.

Unobstructed workspace

The ur5 has a reach of approximately 850 mm in a spherical shape around the base.
Howver the robot does not operate well if the tcp is within 200 mm of the center of the
base. Assuming the sensor extends the tool center point by 45 mm, this range is extended
to 250 mm for safety.

For practical purposes the workspace can be considered as a sphere with radius 800
mm not including a cylinder through the base with radius 250 mm with the robot base in
the middle, passing through the sphere from bottom to top.

This can be represented by:

x2 + y2 + z2 < (800mm)2

x2 + y2 > (250mm)2

Due to the nature of the planner this has been simplified and implemented as:

XMAX = YMAX = 0.750m
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Figure 4.10 Robot workspace

XMIN = YMIN = −0.750m

ZMAX = 0.750m ZMIN = −0.300m

The inner circle is represented as a box obstacle with centre in the origin with dimen-
sions

dimBOX =

0.450.45
2.0

m
The obstacle is shown in figure 4.11 as a blue square. The projected box nearly con-

tains the extended region with minimal unnecessary obstruction.

Figure 4.11 Box obstacle approximating XY constraints projected onto actual constraints
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Obstacles

To avoid a path forcing the manipulator to collide with the environment the workspace will
be further constrained by adding obstacles and workspace limitations.

ROS maintains both the environment and the robot model in a planning scene object,
which is used to check for collision checks for any given robot state. To make the move
group plan while avoiding obstacles they need to be added to this planning scene object.

Figure 4.12 Robot workspace, seen from above. Shortest distance from center of the base
to the wall measured to be approximately 40 cm

As seen in the picture there is a table, measured to be at approximately 33 cm below
the base of the manipulator. This can be represented either by imposing a workspace limit
on the z coordinate of minimum −30cm or by adding a collision object representing the
table and its legs. The second approach will restrict the workspace less but results in higher
computational complexity.

Figure 4.13 Robot workspace, seen from the side

There is also a wall at approximately a 45o angle, the distance from the base to the
wall is approximately 40cm. Given a 45 degree angle from both x and y axis this means
offset for x and y can be described as:
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xwall =
√
40cm = ywall

Figure 4.14 visualizes the wall obstacle as a blue cube together with theXY limitations
of the workspace in Matlab on the left picture. The right picture is of the rviz visualization
of the wall. The gray grid placed in the origin of the workspace, and the green cube is
placed at coodinates: [30,−30, 30] relative to the robot base.

Figure 4.14 Wall shown in Matlab generated workspace left. Visualized in rviz on the left

Due to the minimal distance criterion and the object being convex, the path should
never collide with the object being inspected. However as the inspected object increases
in size it may be necessary to include the object in the list of collision object being passed
to the planning scene.
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Chapter 5
Experiments

To test the system there have been three experiments conducted. First a path optimally,
convergence and length comparison between the output plans from the algorithm before
and after it is augmented to only include viable poses.

Then experiments simulating a select few paths both with Gazebo and running them on
a real UR5 with an Intel Realsense sr300 development kit attached to the end of the wrist
of the robot. This is to analyze the accuracy of which the robot reaches the viewpoints
and the number of viewpoints reachable with the robot. This is done to identify potential
shortcomings of the path generation and robot motion planning.

Lastly, the point cloud data is analyzed. First to check measurement error and consis-
tency. Then two point clouds captured with the sensor attached to the robot are transformed
to overlap, the accuracy of point cloud transform and robot transform data is examined.
With the intention of model reconstruction the different models are each inspected by
atleast one of the generated paths, however model reconstruction was not attempted due to
time constraints and error in point cloud transformation.

The simulations were done on a PC running 64-bit Linux Ubuntu 14.04 LTS, with
7,8GiB RAM, and an Intel Core i5-3470 CPU with 3,20GHz x 4.

For details on setting up robot simulations and experiments see chapter 4.
Code used to simulate the robot as well as log data can be found at https://

github.com/mmseines/ur5_simulation/tree/master/src

5.1 Models for inspection and algorithm terminology

The experiments will be using simple geometric shapes as input meshes. The is done to
simplify evaluation of path quality. The box is a 3D printed box with a base of 5.6 cm x
5.4 cm, and height of 4.4 cm. The camera mount is an oblong object with small edges and
was selected to be used for specifically for model comparison. The mount has a shape that
is easy to model, but it has several artifacts of different types. Such as texture, holes, and
errors in curvature.
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Figure 5.1 Two simple objects for inspection. 3D printed cube and a old camera mount

For simplifying optimally tests of the algorithm a simple plane of approximately 21
cm x 14.8 cm is used.

Figure 5.2 Models used as input to the planning algorithm
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Version Description
SIP version 0 Besides workspace restrictions and presence of obstacles,

this is a 5-dimensional inspection planner without any
measures to ensure path viability for a manipulator.

SIP version 1 After sampling viewpoint position, during the grid search
to optimize heading, the heading is only considered valid
if the resulting 6-dimensional pose has a collision free
solution to the inverse kinematics.

SIP version 2 When calculating weights on the edges of the graph for-
mulating the TSP when linear interpolation between the
states is performed to check for collision objects, the
presence of collision free solutions to inverse kinematics
is also checked.

SIP version 3 Combining measures in version 2 and version 3.
SIP version 4 Improvement to version 3 by changing the inverse kine-

matics check during the grid search to the viewpoint via-
bility criterion described in chapter 3.

Table 5.1: Algorithm versions for testing the effectiveness of algorithm improvements

5.1.1 Planning algorithm variations

To simplify explanation regarding the proposed inspection planning algorithm, its itera-
tions will be divided into several versions. The version are divided like this.

5.2 Algorithm verification

To verify that the resulting paths from the algorithm are both feasible and looks intuitively
optimal. The paths generated for inspecting the cube and the plane are compared to intu-
itive paths observing these objects.

The viewpoint markers visualized in Rviz are the viewpoints sampled during the last
iteration of the algorithm. However, the visualized path is always the current optimal path.
This means there will frequently be markers that are seemingly not connected to the path
whenever the algorithm has multiple iterations without finding a more optimal path. Thus
the viewpoint markers visualized are always from the final iteration, and the path might
not be.

Planning parameters are selected to match the expected behavior of the sensor and
manipulator. Inspection start and end positions for the plane are selected to observe the
outskirts of the plane. When inspecting the cube and mount, the start and end positions
are selected above the object looking down, to imitate a safe default position, where the
sensor can detect the arrival of a new object.
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Parameter Value
Min incidence angle π/6

Min distance 35 cm
Max distance 35.1 cm

Translational speed 15cm/s
Rotational speed 1.4rad/s

Start position[cm] [−40, 0, 5]
End position[cm] [−35, 0, 5]
Model center[cm] [−35, 15,−30]
Horizontal FOV 58 deg

Vertical FOV 45 deg

Table 5.2: Parameters for inspecting the plane with fixed z, pitch and yaw

Parameter Value
Min incidence angle π/6

Min distance 16 cm
Max distance 120 cm

Translational speed 15cm/s
Rotational speed 1.4rad/s

Start position[cm][rad] [−30, 30, 20][0.0, 1.57, 0.0]
End position[cm][rad] [−30, 30, 20][0.0, 1.57, 0.0]

Model center[cm] [−30, 30,−30]
Horizontal FOV 58 deg
Vertiical FOV 45 deg

Table 5.3: Parameters when planning for cube or camera mount

5.2.1 Optimal path comparison

To investigate the optimality of the inspection planning algorithm, the change in resulting
path for inspecting the 3 objects is examined as the allowed number of iterations increase.
Estimated path length and trajectory shape are examined and compared to the intuitive
solution of the optimization problem. Expected features of an optimal path include little
to no backtracking, smooth movement, pushing the limits of observability for parts of the
model and that each part of the model is only covered by a subset of points.

The expected path for inspecting the plane would be a sweeping pattern. The shape of
the pattern is expected to change dependent on the how much of the plane is covered by
the camera from a single position.

The expected optimal motion to inspect the cube is a circular motion around it. Min-
imizing the radius of the circular motion while maintaining visibility of each side. Each
side is only observed once before returning to the default position. The height of the circu-
lar motion above the cube is based on the minimal incidence angle parameter and vertical
spread of the camera.

The original algorithm by Bircher et al. (2015a) is deterministic and maintains this
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Figure 5.3 Expected shape of ideal inspection path of plane

Figure 5.4 Expected shape of ideal inspection path of cube

property after a variable pitch is added. The only variable changing as a result of changing
maximum iterations is the smoothing parameter implemented for use with the fixed wing
implementation. This was discovered searching the code for an explanation for the results.
Code snippet found in section 7.6.2 of the appendix. The path smoothing algorithm shown
will replace the normal states used for viewpoint sampling with states that are multiple
viewpoints away but still able to observe the same triangle. This causes subgroups of
viewpoints to be contracted to form near linear subpaths.

The augmented algorithm solves state validity by finding states is a small neighborhood
to the optimal solution, however, as a consequence of random viewpoint sampling, the
algorithm is no longer deterministic. Therefore path planning is attempted multiple times
for each parameter setting, and both average and the optimal solution is considered for
performance evaluation.

To plan for a given model, start by running the planning nod

• roslaunch koptplanner ur5.launch.

This will launch the augmented planner, as well as load the robot description of the robot
with the 3D sensor attached as an end effector, this is used in the augmentations to perform
collision checks and check the presence of a solution for inverse kinematics.
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To visualize the results the ROS gui rviz is run in a separate terminal.

• rosrun rviz rviz.

Then to request the planner to make an inspection plan with a given max number of
iterations run, this will only load stl files located in the inspection planners designated
mesh folder.

• rosrun requester urRequester iter:=NUM mesh:=”mesh.stl”

Algorithm v0 optimal inspection path, plane.

The algorithm is first given a two dimensional optimization problem. Both orientation and
position on the z axis is artificially locked by constraints.

Figure 5.5 Result after running the algorithm with locked z, pitch and yaw, optimal solu-
tion after 100 iterations
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5.2 Algorithm verification

Algorithm v4 optimal inspection path, plane.

Plot containing most optimal path resulting after the given number of iterations. The
augmented algorithm appeared to be struggling in the two dimensional space. Generally
resulting in paths with most of the viewpoints over the centre of the plane, and paths
looking discontinuous between them.

Figure 5.6 Result after running the algorithm augmented and with locked z, pitch and yaw.
Two different solutions, solution to the right showcases a more connected solution, where
the one to the left only finds valid points in the centre
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It can be observed that not only is the paths generated significantly longer, they also
appear to not have any viewpoints in proximity to the start and end state.

Algorithm v0 optimal inspection path, cube

To expand the problem the optimal path inspection a 3D object with 5 degrees of freedom.
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Figure 5.7 Result after running the algorithm as presented in my paper, 50 iterations,
optimal solution
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Algorithm v4 optimal inspection path, cube

With 5 degrees of freedom when selecting points, algorithm v4 seems to outperform al-
gorithm v0. Although the path still seems problematic for smooth linear movement, it is
estimated to be shorter.
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Figure 5.8 Optimal path found with augmented algorithm running 100 iterations, resulting
in a path of length 9.99
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Comparison

The estimated path length returned by the algorithm variations, V0 refers to the algorithm
without any extensions beyond adding variable pitch Seines (2016). V4 refers to the algo-
rithm with all additions covered in chapter 3, why it is referred to as version 4 is revealed
later in this chapter. Since algorithm version 4 is not deterministic, both expected value
and the optimal value is plotted.

Estimated length of the path inspecting the box.
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The average inspection path generated by algorithm v4 is assumed to be shorter than
the path generated by algorithm v0 at 20 iterations, longer at 50 iterations and signifi-
cantly shorter at 100 iterations. The optimal path generated by the augmented algorithm
is significantly shorter than the path generated by the unaugmented algorithm for both 20
and 100 max iterations. This implies that the augmented algorithm has high variance but
is expected to output paths of similar or less length compared to the first iteration of the
algorithm

The estimated length of the path inspecting the plane.
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Algorithm v4 returns paths that are longer than those returned by v0. However as
seen in the path visualizations, the path generated by the augmented algorithm has no
viewpoints in the vicinity of the start or the end position. A possible explanation is that
poses in this region do not have valid inverse kinematics solutions.
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5.2.2 Convergence tests

To inspect algorithm convergence, the convergence will be presented for both 20, 50 and
100 iterations when planning inspection for the cube the cube. The purpose of this test is to
find out if the algorithm converges towards a given length, and how much the convergence
depends on initial states and random samples if it does.

For this test only paths generated when planning in 5 dimensions for the cube will be
considered as the algorithm is intended to plan motions in 5 dimensions.

Algorithm v0 convergence test

As the original algorithm is deterministic, each variation was run only once and plotted
below.
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Algorithm v4 convergence test

The augmented algorithm would frequently give different solutions to a given path with
the same parameters. To get information on how the viability criterion affects algorithm
convergence, the algorithm is run 3 times for a given set of parameters. The convergence
of the inspection plan resulting from each run is plotted together.
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Comments

In all cases both algorithms have similar responses during the first few seconds, The path
starts with no improvement the first few seconds, then rapidly converge towards what
appears to be some local minimum. Followed by asymptotic improvement the remaining
iterations.

5.2.3 Complexity

To get an idea of algorithm complexity, the same model with different resolutions will be
inspected and the time spent running the algorithm will be examined.

three cubes with different resolution and identical size is run with 20 max iterations.
Of note, the time evaluation disregards time spent writing the results to file and the

time spent publishing the mesh and path, which are both considerably long, especially as
the number of triangles in the mesh increases.

It is worth mentioning that this will depend on available CPU power, to mitigate the
random effect CPU activity had on this measure the numbers used are averages.

increasing resolution of the mesh

To increase the resolution of a mesh, open the mesh in a 3D editing software such as
blender. Selecting the entire object, there should be an extrusion option called subdivide,
shown in the picture. This will divide each triangle into 4 smaller triangles.

As the original cube had a resolution of 40 triangles, running subdivide we get a cube
with a resolution of 160 and 640 triangles.
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Version 40 triangles 160 triangles 640 triangles
v0 4 450 ms 15 943 ms 54 879 ms
V4 8 256 ms 33 402 ms 106 860 ms

Table 5.4: Computation time for same mesh with varying resolution

Results

The bare bones algorithm and the augmented algorithm are run with the same cube with
increasing resolution. Each resolution is ran three times on each algorithm to minimize
the effect of background processes and CPU load on the total time estimate.
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Total time as a function of the number of triangles composing the mesh

The actual time is given in the table below.
The blue plot is the time spent for the unaugmented algorithm, and the red plot is the

time spent for the augmented algorithm. Time consumption appears to increase linearly
with the resolution of the mesh for both versions of the planning algorithm. The augmented
algorithm appears to spend twice the amount of time of the unaugmented algorithm to
generate a path.

The number of distinct viewpoints in the resulting path seems to always be equal to
the number of triangles forming the mesh.

5.2.4 Investigating varying convergence

The experiments for path length and convergence showed that algorithm behaviour changed
drastically based on the number of maximum iterations, even though it is not supposed to.

After the experiments, the source for different algorithm behavior based on maximum
iterations was discovered. Even though the smoothing algorithm for fixed wing AUVs is
not supposed to compile, it has been during the experiments. The smoothing algorithm
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is intended to shape the path to fit the maneuverability of a fixed wing AUV, however, it
appears to help minimize path length. The algorithm returned consistently longer paths
when the smoothing algorithm was removed.

Figure 5.9 Path generated with 100 iterations removing the smoothing parameter

Path length of the path resulting from 20 iterations, 50 iterations and 100 iterations.
The algorithm appears to converge a lot slower without reaching the same path lengths
reached when the path is smoothed. For this reason the path smoothing criterion was
considered beneficial to algorithm performance, and the experiments where not repeated
without it.
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5.3 Simulation and experiments

To test the viability of the plans they are simulated in gazebo. To identify motion planning
approach yielding the best manipulator behavior the most promising paths are simulated
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with either the Cartesian motion planning approach or the Inverse Kinematics Motion
Planning(IKMP) approach, both described in section 3.2.2.

5.3.1 Robot simulation
For simulation we use Gazebo, see picture.

Figure 5.10 Robot in the default initial state specified above

To launch Gazebo, the limited argument is added because MoveIt has unpredictable
behaviour with joints outside [−π, π], but it is not necessary.

• roslaunch ur5 with sr300 gazebo ur5.launch (limited:=true)

This will launch an empty world containing a UR5 manipulator with a square box repre-
senting the SR300 sensor attached to the end effector. This is necessary to provide both
an accurate visual representation of sensor position as well as loading collision data for
detecting possible collisions between the sensor and robot joints.

To launch the robot control interface start the Move Group node. The sim argument
specifies that the node is controlling a simulation in Gazebo and not an actual robot. If
Gazebo is launched with the limited robot, this should be as well.

• roslaunch ur5 with sr300 moveit config ur5 with sr300 planning execution.launch
sim:=true (limited:=true)

Then one of the motion planning services described below can be launched.

5.3.2 Cartesian motion planning service
To analyze the feasibility of the Cartesian motion planning service, the resulting paths
from the augmented inspection planning algorithm is executed using the Cartesian motion
planning approach from subsection ”Motion planning in tool space” in section 3.2.2.

For full implementation see the planner.cpp file https://github.com/mmseines/
ur5_simulation/tree/master/src/plan_pkg/src.
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Object Avg error Max error Min error Total time
Mount 0.1135 mm 0.32 mm 0.027 mm 32 245 ms
Cube — — — —
Plane — — — —

Table 5.5: Results simulating with the Cartesian motion planner

The purpose of this test is to see if the given path along with the motion planner pro-
vides a safe trajectory for the robot, allowing the sensor to hit all waypoints with the
maximal accuracy.

To run the code follow the steps to launch Gazebo and the robot control interface
(Move Group node), open another terminal and type the command below to launch the
motion planner.

• rosrun plan pkg sim eef step:=0.01 jt:=0.0 path:=”pathname.csv”

The eef step argument sets the step length used when interpolating end effector po-
sition in cartesian space. jt is short for jump threshold but it is set to 0.0 to disable it by
default.

Results

Making this algorithm output a viable path is challenging. The path quality depended
significantly on start state as well as parameter values. Out of the three paths, only the
inspection plan for the mount executed without fail.

Figure 5.11 Results for the mount inspection plan eef step = 0.03 and jump treshold =
0.0
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5.3.3 Inverse kinematics Motion Planner
The inverse kinematics point to point based motion service was implemented to ensure
robot configurations where chosen to be sensible with regards to minimizing robot mo-
tion. As well as robustness in completing a path by handling singularities and possible
collisions.

For full implementation see the ikplanner.cpp file https://github.com/mmseines/
ur5_simulation/tree/master/src/plan_pkg/src.

To launch the service, make sure Gazebo and the Move Group node are already run-
ning in separate terminals, then open a terminal and launch the motion planner with the
following command.

• rosrun plan pkg ikSim path:=”path.csv”

To analyze the feasibility of the inverse kinematics based motion planning service the
optimal path for the cube, the camera mount and plane are simulated in Gazebo, and the
joint trajectory is logged. This is used to perform forward kinematics giving both end
effector position and orientation.

The purpose of this test is to compare both accuracy and speed to the Cartesian motion
planner as well as to determine if the planner and the paths make a suitable combination
to control a real robot.

Results

Figure 5.12 Results when simulating augmented algorithm generated path for the plane
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Figure 5.13 Results when simulating augmented algorithm generated path for the mount

Figure 5.14 Results when simulating augmented algorithm generated path for the cube
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Object Avg error Max error Min error Total time
mount 9.0 mm 10.5 mm 0.6 mm 43 135 ms
cube 9.1 mm 10.4 mm 2.8 mm 53 333 ms
plane 47.6 mm 24.4 mm 51.7 mm 23 399 ms

Table 5.6: Results when simulating with IKMP inspecting all objects

While the inverse kinematics based motion planner has significantly lower accuracy
and is slower, it manages to simulate a collision free path for all three objects.

Inspection planning variations

To estimate the effect of the measures taken to ensure the inspection planner provides ma-
nipulator friendly paths, inspection planning algorithm is divided into multiple versions.
Each version is used to generate a plan with the same parameters and input, such that the
only difference is what measures implemented in that algorithm version.

Algorithm versions are iteratively improved as described in section 5.1.1.

Figure 5.15 Results when simulating path resulting from inspection planning algorithm
v0
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Figure 5.16 Results when simulating path from inspection planning algorithm v1

Figure 5.17 Results when simulating path resulting from inspection planning algorithm
v2
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Figure 5.18 Results when simulating path resulting from inspection planning algorithm
v3

Figure 5.19 Results when simulating path resulting from inspection planning algorithm
v4
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To compare the results beyond the position of the sensor over time. The number of
viewpoints that were considered to be reached by the motion planner, total time from start
to end and the average error in millimeter from the path is given in the table below.

Version Completion Total time Avg error Total path length
v0 41/41 87 452 ms 9.0 mm 4.6227 m
v1 39/41 45 323 ms 10.7mm 7.719 m
v2 41/41 67 124 ms 8.3 mm 7.1049
v3 40/41 47 976 ms 9.78 mm 4.89 m
v4 41/41 53 333 ms 9.1 mm 1.7633 m

Table 5.7: Results in path completion, total time executing and total lenght

The algorithm without any improvements performed better with regards to minimizing
actual distance traveled than any other version except version 4. However all improve-
ments reduced the total inspection time significantly. The simple inverse kinematics check
appears to not work as intended as the only paths where one or more viewpoints could
not be reached where paths generated by inspection planning algorithms with the check.
Long arcs between viewpoints are present in the trajectories from every inspection plan
except those generated by the fourth version of the inspection planning algorithm. The
trajectories for inspection of the camera mount 5.12 and the plane 5.13 are free of long
arcs as well.

Algorithm comparisons

To compare quality of motion planning service algorithms, they are plotted together and
errors are measured up against one another for the augmented mount path.

As far as performance goes the Cartesian motion planning service is far superior in
both accuracy and total time of execution. However, the inspection planning algorithm
does not return paths capable of generating a robot trajectory with the Cartesian motion
planning service.

Neither of the algorithms achieves the expected orientation at each viewpoint accord-
ing to the robot state logger, as seen in the close-ups of the path pictures below. However,
this is assuming there is no error with the end effector position and orientation measure-
ments.

Algorithm Avg. error Max error Min error Total time
IKMP 9.0 mm 10.5 mm 0.6 mm 43 135 ms
Cart 0.1135 mm 0.32 mm 0.027 mm 32 245 ms

Table 5.8: Comparison between Cartesian motion planner and IKMP performance simulating in-
spection plan for the camera mount
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Figure 5.20 IKMP and the left, Cartesian motion planner on the right

5.3.4 Descartes, dense planning algorithm
Proposed as a more robust, and optimal version of the Cartesian path planner, the Descartes
package implements an algorithm that seems to be ideal for this type of application in the
dense planner.

However, the Descartes package proved to be problematic to integrate with the ur5.
In the end, time restrictions made it unfeasible to spend a large amount of time trying to
figure out where the mistake in the implementation was.

Below you can see the resulting output when trying to generate a trajectory with the
Dense planner.

Figure 5.21 Result when running the dense planner launch files.

Full code and how it was installed is included in the appendix.

5.3.5 Motion planner experiments with UR5
To test if the simulations are accurate and if the paths are executable on a real manipulator
without triggering safety locks and similar features.

The accuracy of the robot motion compared to the simulations is tested by having two
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paths with safe behavior for the cartesian motion planner and the inverse kinematics point
to point planner run on a robot and compared to the response on the simulated trajectories.

As the robot and control box is not compatible with the standard ur driver package, a
modern driver by Andersen (2015) will be used instead. The source is downloaded from
https://github.com/ThomasTimm/ur_modern_driver and compuled using
catkin.

The default driver configuration does not support blocking path execution calls, mean-
ing it will fail when attempting to run multiple joint trajectories sequentially. This is a
problem for the IKMP as the program relies on the move group node for checking com-
pletion of each path.

• roslaunch ur modern driver ur5 bringup.launch robot ip:=255.255.255.255

The compatible configuration however, will work as it supports blocking trajectory
execution calls.

• roslaunch ur modern driver ur5 bringup compatible.launch robot ip:=255.255.255.255

Inverse kinematics planner with compatible driver

Since the point to point approach used by the inverse kinematics motion planner is only
compatible with the compatible driver.

The inspection path for the plane tested with the inverse kinematics motion planner, is
run on the robot yielding the path below.

Figure 5.22 Measured trajectory, running the inverse kinematics based planner

While it may not be apparent in the plot from the side, the trajectory as seen from the
top reveals the overshoot resulting from the jittery point to point movement.

While the path is similar to the simulated path, a significant difference is a frequent
overshoot when approaching each viewpoint. While the difference in path length can be a
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Figure 5.23 Picture from above, showing overshoot from motion control. Overshoot looks
like small branches from the main path

Figure 5.24 Error in achieving desired orientation. blue arrows are the specified orienta-
tion, measured orientation given by the red arrows

symptom of this, but the manipulator had unplanned movement towards the start position
before reaching the end state.

Cartesian planner with compatible driver

As the cartesian motion planner produces a single trajectory, it is compatible to use with
either of the drivers. However to keep the results consistent the compatible driver was
chosen for the simulations.
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Enviroment Avg error Min error Max error Total time Total length
Online 49.0 mm 39.8 mm 52.3 mm 24 899 ms 0.9743 m

Simulation 47.6 mm 24.4 mm 51.7 mm 23 399 ms 0.7156 m

Table 5.9: Comparison between online and simulation performance

Enviroment Avg error Max error Min error Total time Total length
Online 3.1 mm 17.5mm 0.0623 mm 32 545 ms 1.2914 m

Simulation 0.1135 mm 0.32 mm 0.027 mm 32 245 ms 1.2828 m

Table 5.10: Comparison between online and simulation performance

Video can be found in attachments in the video folder.

Figure 5.25 Measured trajectory, camera mount inspection with cartesian motion planner

While position is very accurate there seems to be a problem with achieving correct
rotation. By zooming in on the path error in rotation is clearly visible and measurement
error or possible controller step is visible.

The cartesian planner misses the viewpoints by a larger margin when its controlling a
real robot compared to the simulation. It is still showing a much higher accuracy than the
inverse kinematics based planner.

5.4 Point cloud reconstruction
To evaluate the possibility of using the sr300 for quality control, the inspection should be
accurate enough to be able to remodel the object with some degree of accuracy.

In this experiment, a single point cloud output from the sensor, where the majority of
the cube is visible, is first compared to the cubes measurements. This is used to estimate
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Figure 5.26 Visible fluctuations from the path as well as orientation error. Blue arrows are
the specified orientation, measured orientation given by the red arrows

the accuracy of the sensor. The point clouds captured are transformed to a fixed world
frame, using the inverse of the transformation from the world frame to the tool tip link.

The sensor driver is run together with other functionality such as computing surface
normals and adding color to the point cloud. To start the node, open a terminal and run the
command.

• roslaunch realsense camera sr300 nodelet rgbd.launch

This will start the camera and publish point clouds without color to the topic /camera/depth/points
and point clouds that have been added color data to /camera/depth registered/points.

Logging the data is done by opening a separate terminal and running

• rosrun point cloud io write topic:=”topic of choice” folder path:=”folder of
choice”

The topic argument specifies the point cloud topic to log, and the folder path argument
specifies where to save the logged point clouds.

5.4.1 Intel Realsense SR300 sensory tests
To get a baseline of expected sensory input, a still image with the sensor facing one of the
corners of the cube is used as a baseline. Sensor input is visualized by a screenshot of an
example program for visualizing colored point clouds in realtime.

A point cloud from the same angle is shown in blender below, after being logged and
written to a ply file, after filtering nondetermined and infinite values.

As observed the sensor is able to get information of the top of the cube, but the depth
information on the sides are sparse. A series of faulty measurements can be seen above
the cube as if there is something placed atop of it.
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Figure 5.27 Screen shot of realsense point cloud visualization example code, observing
the cube

Figure 5.28 Point cloud after transformation, written to stanford(.ply) file, rotated manu-
ally in blender

The sensor was also largely unable to observe the mount.
The gaps along the top of the camera mount are visible while the dark plastic around

is not.

5.4.2 Point cloud transformation tests

To simplify point cloud reconstruction, it would be ideal to transform each captured cloud
into a fixed reference frame, ideally in such a way that the point clouds would overlay one
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Figure 5.29 Point cloud captured during execution of cartesian trajectory, to the right:
missing data in the shape of the camera mount

another.
The transformation is done before the point cloud is logged to file, by transforming

it with the transformation from the sensor frame to the fixed world frame. Given as the
inverse to the global link transform to the sensor tip.

However viewing the point clouds in Blender, point clouds do not align. Especially
the table does not have the same orientation or position from frame to frame, it is therefore
likely that the attempted implementation of point cloud rotation has not been done suc-
cessfully, or the mismatch between successive frames is due to an error in the state-logger.

Single point cloud.
The sensor was attached to the robot, where the robot performed simple linear motions

programmed using the teach pendant.
As visible in this picture, the point cloud transformation does not succeed in trans-

forming the clouds to a fixed frame.
When testing a path involving non constant orientation, successive frames did not

match orientation or offset.
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Figure 5.30 Point cloud after transformation, written to stanford(.ply) file, pictured in
Blender

Figure 5.31 Simple linear trajectory to test performance of pointcloud transformation
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Figure 5.32 Same point cloud together with frame captured 1.3s later from a different
angle, pictured in Blender

Figure 5.33 Same point cloud together with frame captured 0.7s later from a different
angle, pictured in Blender
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Chapter 6
Analysis

6.1 Evaluation of inspection planning algorithm improve-
ments

The main goal of this work was improving the inspection planner proposed in Seines
(2016) such that resulting paths were well suited for manipulator movement. As well
as implementing a motion planning approach accurately executing the inspection paths in
order to accurately scan an object, and reconstruct a 3D model from the measurement data.

6.1.1 Path quality
The augmented algorithm adds random sampling to a previously deterministic algorithm,
making resulting path length depend on the random states being sampled during execu-
tion. The distance evaluation function used when solving the TSP is updated to penalize
manipulator collision or lack of feasible solutions from inverse kinematics along the path.
As the update to the distance estimation function only includes implementing penalties,
lower estimated path length will mean a shorter path.

As the augmentations constrain the search space by demanding that each viewpoint
should have a feasible solution to the inverse kinematics. As such it is natural to assume
that introducing these augmentations would cause increased path length as opposed to
reduce it.

However, the augmented inspection planning algorithm produced paths 5.8 shorter
than those of the unaugmented algorithm 5.7 for inspecting the cube. It appears the view-
point feasibility criterion improves optimality of the inspection algorithm, especially as
the number of max iterations increases (above 50). This could mean the deterministic
algorithm is finding locally optimal solutions, not global solutions. Another explanation
is that the random sampling and motion penalties force changes to the optimal path, thus
increasing the amount of the search space being explored.

The same can not be said when planning inspection of the plane ??, with state space
reduced to 2 dimensions by constraining z, yaw, and pitch. The paths resulting from the
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augmented inspection planner are consistently longer for all number of max iterations. A
possible explaination is that the path returned by the unaugmented algorithm 5.5 includes
multiple infeasible viewpoints or connections between viewpoints. This is further backed
up by the lack of viewpoints in the vicinity of the start and end positions. The results
from this test more closely resemble the expected performance of the algorithm after the
augmentations, as the state space appears to be more constrained and the resulting path is
longer and has a less convincing visual.

Possible sources of errors

When investigating the source of the varying behavior and time for convergence given a
different number of max iterations, the only possible source of this type of behavior is the
smoothing parameter, defined in the code to only compile if the vehicle model selected is
the fixed wing. As this part of the code compiles and runs without the parameter enabling
the ifdef term being set, it is difficult to say if the experiments have been done with or
without the extra functionality designed for a fixed-wing AUV. Luckily the smoothing
algorithm improves path convergence as shown in chapter 5.2.4.

6.1.2 Convergence
There appears to be significant variance to the solution generated with 20 iterations of the
planner. However, the length of the paths appears to be more consistent as the number of
iterations increase.

The general behavior of the algorithm regardless of a number of iterations is a few sec-
onds without much improvement, until the solution converges exponentially towards some
value, stabilizes itself there, then given enough iterations will converge either asymptoti-
cally or exponentially towards a more optimal value.

6.1.3 Complexity
The augmented inspection planner spends roughly twice the amount of time as the unaug-
mented planner. This makes sense as the augmentation will call the inverse kinematics
solver plugin multiple times each iteration. While the viewpoint feasibility criterion is not
guaranteed to run, the TSP is solved multiple times each iteration. Resulting in multiple
calls to the updated distance estimation function.

6.1.4 Simulation results
The augmented inspection planning algorithm was only able to make one plan resulting in
a full trajectory by the Cartesian motion planner.

While most of the plans worked with the inverse kinematics motion planner(IKMP),
only the plans generated by the augmented inspection planning algorithm produced plans
that reliably executed without taking major detours from point to point.

If a motion planner like the IKMP is desired, then the augmentations are a definite
improvement. However, the Cartesian motion planner showed considerably better ac-
curacy and execution speed. The algorithm versions with the simple inverse kinematic
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check where the only ones where multiple viewpoints where considered unreachable 5.7.
Even the unaugmented algorithm produced a path where every viewpoint was reachable.
It is, therefore, possible that the emphasis on ensuring all viewpoints being feasible is
a step in the wrong direction, as it appears adding the single inverse kinematics check
made the robot performance worse when simulating the paths. The paths generated by the
augmented algorithm(v4) had significantly better performance during simulation with the
IKMP than the paths generated by the other algorithm versions. Meaning the measures
intended to adapt the inspection plan for use with the UR5 worked to some degree. All
augmentations seemed to decrease the total time spent executing the trajectory compared
to the path generated by the unaugmented algorithm.

However attempting to simulate the path with the Cartesian motion planner, only the
inspection path for the mount could successfully be made into a robot trajectory. Since
the Cartesian motion planner appeared to be more suitable for inspection, the inspection
planner is still not good enough.

6.1.5 Evaluation of inspection planning approach
The augmentations to the algorithm improved both path length and robot behaviour, at the
cost of complexity. The results when testing the effectiveness of the individual improve-
ments hints at viewpoint feasibility not being the main obstacle between the inspection
planner and optimal motion plans.

Comparing the paths generated to the expected optimal path, the generated paths are
similar but appears to be contain multiple redundant viewpoints. A proper implementation
of an algorithm removing redundant viewpoints could have significant results.

The inspection planner assumes the end effector is able to move linearly between each
viewpoint. So far the only measure taken to ensure path viability is to penalize movement
between viewpoints where a straight line would pass through poses in which the manipu-
lator has no feasible configurations, or the inverse kinematics problem cannot be solved.
This appears to have little to no effect alone, as paths generated with only this measure
contained arcing motions between several viewpoints 5.17. The intended effect of having
viable linear paths between the viewpoints appears to fail, as no inspection path except the
plan for the mount succeeded when planning motion with the Cartesian motion planner.

The distance evaluation extension proposed is intended as a measure to improve path
quality, but still planning the optimal tour in tool space. However, it can be argued that the
viability of each viewpoint but the optimal path between them is the problem. The motion
produced by the Cartesian motion planner appears to be more accurate and predictable
compared to the motion resulting from the IKMP approach. The inspection planning algo-
rithm is already designed to output a linear trajectory in Cartesian space. A step towards
planning for a manipulator would be to combine the Cartesian motion planner and the in-
spection planner. Assuming an algorithm iteratively improving a trajectory specified by
ordered points in joint space is more suited for inspection with a manipulator.

To go from expressing the tour in tool space to expressing it in joint space, there needs
to be an overhaul of the infrastructure of the inspection planner. As such a lot of the
code would have to be rewritten, considering that altering the existing infrastructure is a
laborious process. However the framework for placing the sensor seems to require minimal
further improvement.
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Chapter 6. Analysis

Next Best View vs Offline planner

It is worth noting that an offline pre computed approach is often referenced to in papers
together with aerial or underwater drones when inspecting larger objects, but rarely when
inspecting complex objects using a stationary robot. There could be many reasons to this,
such as drones having motion and collision conveniently defined in cartesian coordinates
as well. While inspection planning for a manipulator, you either have to consider model
visibility while planning the trajectory in joint space, which might lead to non trivial work
space constraints, when solving the constraint satisfaction problem. Or plan sensor poses
and inspection path in cartesian space, and have measures to generate a valid and optimal
joint trajectory from that.

For indoor inspection of complex objects, the focus is often construction of an assumed
unavailable 3D model. Thus Next Best View and similar approaches are the most common
occurrence in literature. As the NBV variants are greedy online algorithms the inspection
is planned while scanning and the objective is often to minimize the number of scans
required rather than optimizing the path between separate scans to minimize time.

For large structures, if the given placement of the structure fixed position is off by
a few centimeters it is probably a minimal source of error. However if quality control
requires millimeter precision, not being able to measure and adapt to object orientation
and position could be a major hindrance. Measures to correct the plan while inspecting
should be considered for further improvement of the approach taken in this thesis.

6.2 Evaluation of motion planning approaches
Two different approaches was made when planning robot motion. Both motion planning
approaches where tested with the same trajectories and compared against each other.

6.2.1 Inverse Kinematics-based Motion Planner(IKMP)

The IKMP is a point to point motion planner, aiming to minimize movement of the robot
between viewpoints.

A positive side to point to point based motion planning is that inspection paths can be
simulated even if several of the viewpoints are in-feasible. However path quality is not
guaranteed between viewpoints, as paths are either linear and close to optimal or arcing
reaching the outer bounds of the workspace. The IKMPs strength is robustness and its
weakness is path quality. One can assume that quality control is a repetitive task, as such
the ability to simulate any given path is less important than the quality of the paths it is
able to produce.

While stopping at each viewpoint to ensure at least 1 frame is captured there could
be seen as a positive trait. Frequent stops and starts, goal overshoot, lower accuracy and
longer total execution time for identical paths when compared to the Cartesian motion
planning approach, are all strong arguments against continuing with this approach.

There are several possible reasons for the path quality inconsistencies. The point to
point movement is planned by a planning algorithm from the OMPL, chosen automati-
cally by MoveIt. For the UR5, the algorithm chosen is RRTConnect. RRTConnect is a
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6.2 Evaluation of motion planning approaches

Rapidly-expanding Random Tree based algorithm, expanding one tree from each state and
returning the first path found connecting the states. If the direct connection contains col-
lisions or singular configurations, the returned path is likely to be along the side branches
of the tree, resulting in large arcing motions even after post processing the path.

Attempting point to point planning with an asymptotically optimal point to point plan-
ner such as RRT* and significantly increasing available planning time, or multi-query
planners such as PRM* may be a solution to improve path quality.

Possible sources of errors

The analytical function by Hawkins (2013) calculates inverse kinematics for a UR5 with-
out any end effector. To get joint configurations placing the sensor at the desired pose, the
IKMP must compensate for end effector offset before calling the solver.

Observing the paths from simulation 5.20 it appears the end-effector offset is not giving
the correct values as there appears to be a near constant offset between the desired and
logged trajectory, this is especially visible in the plots of robot motion compared to the
desired trajectory for inspecting the plane. Which points towards an error in either setting
up the end effector transformation in the URDF or an error calculating end effector offset.

The paths also show a significant error in orientation, which is present for both mo-
tion planning approaches. Meaning either the state logger has some errors in calculating
forward kinematics unless neither of the motion planners is capable of producing configu-
rations matching most orientations.

6.2.2 Cartesian trajectory planner

The Cartesian motion planner uses the Cartesian path service provided by MoveIt to pro-
duce paths linear between successive waypoints. It does this by interpolating between
waypoints with a constant distance between successive points given by a step size param-
eter. Trajectory between points is planned in joint space, resulting in approximately linear
movement of the end effector for sufficiently small step sizes. The algorithm appears to
cancel path planning as soon as it encounters an obstacle or self-collision along the path,
making it difficult to calculate a complete path. This was a significant problem when at-
tempting to simulate the inspection paths. The cartesian planner excelled in accuracy and
execution speed compared to the IKMP.

Both the cartesian trajectory planner and the inverse kinematics trajectory planner had
significant errors regarding orientation of the end effector. This could possibly be be-
cause of inconsistencies between the analytic inverse kinematics, offset to compensate for
the sensor location for the point to point planner. However both the cartesian trajectory
planner and the robot state logger uses the kinematics plugin of the move group node.
Meaning the orientation error can not be because of inconsistencies with urdf, or different
implementations of kinematics solvers. Meaning the planner is either unable to create a
trajectory following the specified pose with position and orientation, or there are signifi-
cant numerical errors when calculating back and forth between cartesian space and joint
space.
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Chapter 6. Analysis

Descartes, dense planner

The attempted installation of the Descartes package was to test the functionality of the
dense planner. To see if it would produce high quality linear multi-goal trajectories without
the need of careful and rigorous tuning. However getting it to work with the UR5 took
much more time than anticipated and further attempts of making a planner based on the
functionality was aborted.

Given more time the performance of a possible planner should be investigated as a
more robust and customize implementation of the cartesian path service.

6.2.3 Possible error with state logger
There where multiple problems with the robot state logger, the first being that the robot
state publisher is not consistent with the order that joint states are published. When sim-
ulating in gazebo they will be published in alphabetical order, and the modern driver will
publish the states in order from the robot base to the tool. Causing problems when logging
end effector position.

There were consistent orientation errors during both simulation and experiments with
the UR5. The robot state logger is possibly returning the wrong orientations consistently
or neither of the motion planning approaches manage to accurately control orientation.

Error with URDF

There was an error in the robot URDF during the experiments. The line specifying the ori-
gin of the sensor was missing. As the tooltip was being specified as a joint 1 cm outwards
from the origin of the sensor link, the URDF error resulted in the tooltip being positioned
1 cm out from the tip of the third link of the robot wrist instead of 5.5 cm out and 3.5
cm up. This is a possible explanation of the constant position errors of the IKMP. The
Cartesian path planner and the robot state logger perform kinematic calculations based on
the URDF, meaning an error in the URDF would not necessarily lead to an error between
logged state and desired state.

6.2.4 Comparison
Both of the motion planning approaches appear to have trouble controlling sensor orien-
tation. It is difficult to guarantee that a given part of the model has been observed when
the sensor position may not satisfy the visibility criterion. Thus at the present time both
motion planning approaches need improvement.

The improvements of the inspection planning algorithm, while improving performance
during simulations, does not guarantee optimal traversal between each viewpoint. The
cartesian motion planner fail to execute most inspection plans, and the IKMP still exhibits
cases of unpredictable movement.

While both methods are capable of moving the robot, the real problem appears to be
that planning the inspection trajectory in tool space is not optimal. Rewriting the inspection
planner infrastructure in order to perform point to point planning in joint space should be
attempted as it also has the benefits of cleaning up code that is not supposed to compile.
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6.3 Point cloud acquisition

6.3 Point cloud acquisition
The SR300 had problems observing both the cube and the camera mount. Brightening the
cube with red tape was attempted but did not improve the result significantly. The lighting
conditions were not ideal, and the sensor seemed to struggle with dark surfaces. Even
though it managed to capture most of a dark cup under different lighting conditions, as
shown in figure 1.4.

While the 3D sensor captures at 30 frames per second, the system only managed to
capture frames at an approximately 1.4 fps when logging the data. This could be a prob-
lem if the manipulator is moving faster than 1 viewpoint per second. Due to the loss of
measurements from multiple viewpoints. The bottleneck of the frame logging is writing
the data to file. Waiting with writing to file to after the scan is complete should significantly
increase the number of frames being captured during execution.

There was no success with the transformation of the point cloud. This is either caused
by faults in implementation, a misunderstanding of how the RGBD-nodelet processes the
point cloud data with respect to transformation data or simply error orientation in the state
data from the robot state logger.

6.3.1 Evaluation
The sensor seems to struggle with dark and reflective surfaces. While it is probably not
up to industry standards, it is worth attempting to scan with better lighting to check if
it improves performance, before discarding the sensor. The sensor has multiple upsides
such as budget, size and driver support. While it is probably unsuitable for a commercial
product it should perform well for research purposes.

As the point cloud transformations where not successful point cloud reconstruction
will probably have to rely on ICP or similar algorithms for aligning the clouds correctly.
If the goal is to reconstruct the 3D models.
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Chapter 7
Conclusion

7.1 Closing statement on the proposed inspection planner

The proposed inspection planning augmentation greatly increased the path quality when
simulating with the IKMP, while also improving path length when planning in 5 dimen-
sions.

While there is a case for continuing to extend the algorithm, while planning the trajec-
tory in tool space, there is significant benefits to combining them. Such as the possibility
to re-plan problem viewpoints, the tour metric being the estimated length of the tour in
joint space instead of an estimate based on sensor velocity and a cartesian trajectory, and
therefore matching the resulting length 5.7 of the inspection path.

The augmentation appear to significantly improve manipulator trajectory quality, how-
ever the inspection planning and trajectory will benefit greatly by being done coopera-
tively.

7.2 Closing statement on the proposed motion planners

The Cartesian planner is accurate with regards to position, but difficult to make work with
the current inspection planning algorithm, as planning fails to due to infeasibility along
the path.

IKMP has steady improvements with the augmentation of the algorithm, and the low
accuracy may be because of mistakes when configuring robot URDF and calculating tool
center point offset. The frequent presence of arcing motions between waypoints and over-
shoot makes the approach inferior to the Cartesian motion planner.

Integrating Cartesian path functionality in the inspection planner appears to be the
most promising solution. Either by using the functionality by MoveIt, or by using the
dense planner from the Descartes package to plan a trajectory in joint space. Further aug-
mentation of the inspection planner to guarantee the inspection plan being able to form a
complete trajectory using the Cartesian motion planning service is an alternative approach.
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Chapter 7. Conclusion

7.3 Future work
For improving the automatic 3D scanning, the integration with motion planning must be
drastically improved, either by augmenting the inspection planner to output plans that are
feasible for the Cartesian motion planner or by rewriting the inspection planning algorithm
to output a robot trajectory instead of a series of viewpoints.

The sensor had difficulties observing both the cube and the camera mount, a possible
solution may be researching alternative sensors or improving the lighting conditions.

The simple transformation of the point clouds did not work as intended, implementing
a fix to this as well as an ICP algorithm or similar measure to align the point clouds may
be necessary to reconstruct models from the sensor measurements.

Based on the computational limitation of logging point cloud data implementing online
CAD model reconstruction or drastically optimizing the logging of point cloud data is
necessary. As capturing the data at under 2 fps is not sufficient if the goal is to increase
scanning performance.

The point clouds returned had data with visible artifacts 5.30. So filtering to compen-
sate for sensor noise and other artifacts is necessary.

• Rewrite inspection planner infrastructure to perform point to point planning in joint
space with a cartesian path planner.

• Identify source of orientation error and fix it.

• Implement path post processing algorithm for removing redundant viewpoints.

• Look into Redundant Roadmap approach of coverage path planning.

• Look into making a working motion planner based on the descartes package

• Improve point cloud acquisition, by either acquiring a better sensor or by improved
lighting

• Implement working algorithm for aligning the point clouds in a fixed frame.

• Implement point cloud filtering algorithms to remove artifacts from measurements

• Implement real-time online model reconstruction

• Investigate ways of providing online feedback to the inspection path to increase
inspection quality.
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Appendix

7.4 ROS terminology

7.4.1 Launch files
ROS works as a framework for managing nodes, a parameter server for shared information
and manage subscribers and publishers for topics providing information. A node can either
be run directly if it does not require external parameters or similar functionality. A node is
a process that performs computation, and communicate with one another through topics,
services, and a parameter server.

To run a node directly the rosrun command is used. A node may require certain pa-
rameters to be loaded into the parameter server, or certain services to access. Therefore,
while rosrun will start running the node, it may fail or have segmentation faults because
of missing parameters or services. It is therefore often required to run or launch different
nodes in a specific order, or pass it specific arguments.

• rosrun package name executable (argument1 := value1 argument2 := ...)

If a service or process is comprised of a number of different nodes that has to be
launched in some specific order, a set of parameters needs to be uploaded to the paramter
server. Then this is specified in a .launch file that helps start the nodes in the correct order,
with the correct arguments.

• roslaunch package service.launch (argument1 := value1 argument2 := ...)

Inspection planner example

To run the algorithm the planner is launched from a launch file as a ROS service in a
terminal window.

• roslaunch koptplanner ur5.launch

The user then runs a client specifying the mesh that needs inspection, as well as pa-
rameters not related to the choice of craft (Maximal velocity, and camera pitch). The client
is assumed to be part of the request package also found in the source. A client is launched
from terminal by the command.

• rosrun request ”scenario specific executable” mesh:=”meshname.stl”
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7.4.2 Using Rviz

Rviz is the default ROS gui. It is a 3D visualization tool that can be set up to visualize most
standard topics. Rviz is used to visualize both path and mesh, viewpoints are represented
as arrows with a light blue connecting path representing the solution of the TSP of the
given set of points. The provided mesh is given as set of green triangles.

• rosrun rviz rviz

To visualize a robot rviz can be launched with a preset configuration visualizing the
robot and its trajectory.

• roslaunch robot moveit config moveit rviz.launch config:=true

7.4.3 Topics and subscribers

To communicate between nodes in you use topics. Topics are messages of a spesific class.
for instance a spesific class for messages containing information of joint states of the robot.

All messages have a standard header containing timing info, frame id and a sequence
number.

To send a topic, initiate a publisher and this will announce to the ros master that some-
body is publishing on the topic, and any other node can make a subscriber receiving this
information. Topics are named after the name of the node, followed by the specified name.

example code for advertising a topic
ros::init(argv, argc, ”node name”);
ros::nodeHandle nh;
ros::Publisher pub;
nh.advertise¡”message type”¿ (”topic name”, buffer size);

The above code will result in a topic for ”message type” data to be available under
/”node name”/”topic name” visible to the ROS master allowing other nodes to subscribe
to it.

To subscribe to a node, make a subscriber object and specify a callback function used
to process the message.

example code for subscribing to a topic
void topicCallback(const ”message type” & msg);
ros::init(argv, argc, ”node name2”);
ros::nodeHandle nh;
ros::Subscriber sub = nh.subscribe(”/node name/topic name”, buffer size, topicCallback);

ROS will automatically buffer overload, however it is possible to specify if it is desir-
able to keep the oldest messages received or keep the newest message.
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7.5 Configuring the robot

7.5.1 Configuring robot URDF

Normal URDF

1 <?xml version="1.0"?>
2 <robot xmlns:xacro="http://ros.org/wiki/xacro"
3 name="ur5" >
4
5 <!-- this file contains necessary macros to allow

visualization and simulation in gazebo -->
6 <xacro:include filename="$(find ur_description)/urdf/

common.gazebo.xacro" />
7
8 <!-- ur5: ur5.urdf.xacro is the urdf found in the

ur_description package -->
9 <xacro:include filename="$(find ur5_with_sr300_support)/

urdf/ur5.urdf.xacro" />
10
11 <!-- arm -->
12 <xacro:ur5_robot prefix="" joint_limited="false"/>
13
14 <link name="world" />
15
16 <joint name="world_joint" type="fixed">
17 <parent link="world" />
18 <child link = "base_link" />
19 <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
20 </joint>
21
22 <! -- visualize the sensor -->
23 <link name="sensor">
24 <visual>
25 <origin xyz="0.0 0.0 0.0" rpy="0 0.0 0.0" />
26 <geometry>
27 <box size="0.03 0.12 0.03"/>
28 </geometry>
29 <material name="Grey" />
30 </visual>
31 <collision>
32 <origin xyz="0.0 0.0 0.0" rpy="0 0 0" />
33 <geometry>
34 <box size="0.03 0.12 0.03"/>
35 </geometry>
36 </collision>
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37 </link>
38
39 <! -- symbolic link representing tip of sensor -->
40 <link name="tool_tip" />
41
42 <! -- Specify joint representing origin of sensor -->
43 <joint name="tool_to_sensor" type="fixed">
44 <parent link="ee_link"/>
45 <child link="sensor"/>
46 <origin xyz="0.045 0.0 0.035" rpy="0 0.0 0.0" /> <!--

THIS LINE WAS MISSING -->
47 </joint>
48
49 <! -- position of depth camera on the sensor relative to

COM -->
50 <joint name="sensor_to_tip" type="fixed">
51 <parent link="sensor"/>
52 <child link="tool_tip"/>
53 <origin xyz="0.01 0.0 0.0" rpy="0 0.0 0" />
54 </joint>
55
56 </robot>
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Joint limited URDF

1 <?xml version="1.0"?>
2 <robot xmlns:xacro="http://ros.org/wiki/xacro"
3 name="ur5" >
4
5 <!-- this file contains necessary macros to allow

visualization and simulation in gazebo -->
6 <xacro:include filename="$(find ur_description)/urdf/

common.gazebo.xacro" />
7
8 <!-- ur5: ur5.urdf.xacro is the urdf found in the

ur_description package -->
9 <xacro:include filename="$(find ur5_with_sr300_support)/

urdf/ur5.urdf.xacro" />
10
11 <!-- arm -->
12 <xacro:ur5_robot prefix="" joint_limited="true"/>
13
14 <link name="world" />
15
16 <joint name="world_joint" type="fixed">
17 <parent link="world" />
18 <child link = "base_link" />
19 <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
20 </joint>
21
22 <! -- visualize the sensor -->
23 <link name="sensor">
24 <visual>
25 <origin xyz="0.0 0.0 0.0" rpy="0 0.0 0.0" />
26 <geometry>
27 <box size="0.03 0.12 0.03"/>
28 </geometry>
29 <material name="Grey" />
30 </visual>
31 <collision>
32 <origin xyz="0.0 0.0 0.0" rpy="0 0 0" />
33 <geometry>
34 <box size="0.03 0.12 0.03"/>
35 </geometry>
36 </collision>
37 </link>
38
39 <! -- symbolic link representing tip of sensor -->
40 <link name="tool_tip" />
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41
42 <! -- Specify joint representing origin of sensor -->
43 <joint name="tool_to_sensor" type="fixed">
44 <parent link="ee_link"/>
45 <child link="sensor"/>
46 <origin xyz="0.045 0.0 0.035" rpy="0 0.0 0.0" /> <!--

THIS LINE WAS MISSING -->
47 </joint>
48
49 <! -- position of depth camera on the sensor relative to

COM -->
50 <joint name="sensor_to_tip" type="fixed">
51 <parent link="sensor"/>
52 <child link="tool_tip"/>
53 <origin xyz="0.01 0.0 0.0" rpy="0 0.0 0" />
54 </joint>
55
56 </robot>

Default robot description ur5.urdf.xacro can be fount at https://github.com/
ros-industrial/universal_robot/blob/kinetic-devel/ur_description/
urdf/ur5.urdf.xacro

7.5.2 Configurating scripts for loading custom robot into Gazebo
First a script for loading the robot description into the parameter server needs to be made.

1 <?xml version="1.0"?>
2 <launch>
3 <arg name="limited" default="false"/>
4
5 <param unless="$(arg limited)" name="robot_description"

command="$(find xacro)/xacro --inorder ’\$(find
ur5_with_sr300_support)/urdf/ur5_robot.urdf.xacro’" />

6 <param if="\$(arg limited)" name="robot_description"
command="\$(find xacro)/xacro --inorder ’\$(find
ur5_with_sr300_support)/urdf/ur5_joint_limited_robot.
urdf.xacro’" />

7 </launch>

The script for starting gazebo with the custom robot can be copied from the ur gazebo
package and slightly altered to upload the custom robot instead of the default robot.

1 <?xml version="1.0"?>
2 <launch>
3 <arg name="limited" default="false"/>
4 <arg name="paused" default="false"/>
5 <arg name="gui" default="true"/>
6
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7 <!-- startup simulated world -->
8 <include file="\$(find gazebo_ros)/launch/empty_world.

launch">
9 <arg name="world_name" default="worlds/empty.world"/>

10 <arg name="paused" value="\$(arg paused)"/>
11 <arg name="gui" value="\$(arg gui)"/>
12 </include>
13
14 <!-- send robot urdf to param server -->
15 <!-- altered to find location of new upload file and

launch it -->
16 <include file="\$(find ur5_with_sr300_gazebo)/launch/

ur5_with_sr300_upload.launch">
17 <arg name="limited" value="\$(arg limited)"/>
18 </include>
19
20 <!-- push robot_description to factory and spawn robot in

gazebo -->
21 <node name="spawn_gazebo_model" pkg="gazebo_ros" type="

spawn_model" args="-urdf -param robot_description -
model robot -z 1.1" respawn="false" output="screen" />

22
23 <include file="\$(find ur_gazebo)/launch/controller_utils

.launch"/>
24
25 <rosparam file="\$(find ur_gazebo)/controller/

arm_controller_ur5.yaml" command="load"/>
26 <node name="arm_controller_spawner" pkg="

controller_manager" type="controller_manager" args="
spawn arm_controller" respawn="false" output="screen"/
>

27
28 </launch>
29 \end{lstlistings}
30
31 Create a wrapper for launching the move group node to allow

simply switching communication between simulation in
gazebo and a robot driver given the "sim" argument.

32
33 \begin{lstlisting}[language=XML]
34 <?xml version="1.0"?>
35 <launch>
36 <arg name="sim" default="false" />
37 <arg name="debug" default="false" />
38 <arg name="limited" default="false" />
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39
40 <!-- Remap follow_joint_trajectory -->
41 <remap if="\$(arg sim)" from="/follow_joint_trajectory"

to="/arm_controller/follow_joint_trajectory"/>
42
43 <!-- Launch moveit -->
44 <include file="\$(find ur5_with_sr300_moveit_config)/

launch/move_group.launch">
45 <arg name="limited" default= "\$(arg

limited)" />
46 <arg name="debug" default="\$(arg debug)" /

>
47 </include>
48 </launch>

Fixes to auto generate config files

The moveit controller manager launch file will not be generated correctly by default. Open
the moveit config folder generated earlier and modify the file called: robot moveit con-
troller manager.launch.xml

1 <launch>
2 <rosparam file="\$(find ur5_with_sr300_moveit_config)/

config/controllers.yaml"/>
3 <param name="use_controller_manager" value="false"/>
4 <param name="trajectory_execution/

execution_duration_monitoring" value="false"/>
5 <param name="moveit_controller_manager" value="

moveit_simple_controller_manager/
MoveItSimpleControllerManager"/>

6 </launch>

controllers.yaml

1 controller_list:
2 - name: ""
3 action_ns: follow_joint_trajectory
4 type: FollowJointTrajectory
5 joints:
6 - shoulder_pan_joint
7 - shoulder_lift_joint
8 - elbow_joint
9 - wrist_1_joint

10 - wrist_2_joint
11 - wrist_3_joint

The launch files for move group, will not automaticly support loading one of two
URDF files and need to be changed by hand to do so. move group.launch
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1 <?xml version="1.0"?>
2 <launch>
3
4 <arg name="limited" default="false"/>
5
6 <include file="$(find ur5_with_sr300_moveit_config)/

launch/planning_context.launch" >
7 <arg name="limited" value="$(arg limited)"

/>
8 </include>
9

10 <!-- GDB Debug Option -->
11 <arg name="debug" default="false" />
12 <arg unless="$(arg debug)" name="launch_prefix" value=""

/>
13 <arg if="$(arg debug)" name="launch_prefix"
14 value="gdb -x $(find

ur5_with_sr300_moveit_config)/launch/
gdb_settings.gdb --ex run --args" />

15
16 <!-- Verbose Mode Option -->
17 <arg name="info" default="$(arg debug)" />
18 <arg unless="$(arg info)" name="command_args" value="" />
19 <arg if="$(arg info)" name="command_args" value="--

debug" />
20
21
22 <!-- move_group settings -->
23 <arg name="allow_trajectory_execution" default="true"/>
24 <arg name="fake_execution" default="false"/>
25 <arg name="max_safe_path_cost" default="1"/>
26 <arg name="jiggle_fraction" default="0.05" />
27 <arg name="publish_monitored_planning_scene" default="

true"/>
28
29 <!-- Planning Functionality -->
30 <include ns="move_group" file="$(find

ur5_with_sr300_moveit_config)/launch/planning_pipeline
.launch.xml">

31 <arg name="pipeline" value="ompl" />
32 </include>
33
34 <!-- Trajectory Execution Functionality -->
35 <include ns="move_group" file="$(find

ur5_with_sr300_moveit_config)/launch/
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trajectory_execution.launch.xml" if="$(arg
allow_trajectory_execution)">

36 <arg name="moveit_manage_controllers" value="true" />
37 <arg name="moveit_controller_manager" value="ur5"

unless="$(arg fake_execution)"/>
38 <arg name="moveit_controller_manager" value="fake" if="

$(arg fake_execution)"/>
39 </include>
40
41 <!-- Sensors Functionality -->
42 <include ns="move_group" file="$(find

ur5_with_sr300_moveit_config)/launch/sensor_manager.
launch.xml" if="$(arg allow_trajectory_execution)">

43 <arg name="moveit_sensor_manager" value="ur5" />
44 </include>
45
46 <!-- Start the actual move_group node/action server -->
47 <node name="move_group" launch-prefix="$(arg

launch_prefix)" pkg="moveit_ros_move_group" type="
move_group" respawn="false" output="screen" args="$(
arg command_args)">

48 <!-- Set the display variable, in case OpenGL code is
used internally -->

49 <env name="DISPLAY" value="$(optenv DISPLAY :0)" />
50
51 <param name="allow_trajectory_execution" value="$(arg

allow_trajectory_execution)"/>
52 <param name="max_safe_path_cost" value="$(arg

max_safe_path_cost)"/>
53 <param name="jiggle_fraction" value="$(arg

jiggle_fraction)" />
54
55 <!-- load these non-default MoveGroup capabilities -->
56 <!--
57 <param name="capabilities" value="
58 a_package/AwsomeMotionPlanningCapability
59 another_package/GraspPlanningPipeline
60 " />
61 -->
62
63 <!-- inhibit these default MoveGroup capabilities -->
64 <!--
65 <param name="disable_capabilities" value="
66 move_group/MoveGroupKinematicsService
67 move_group/ClearOctomapService
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68 " />
69 -->
70
71 <!-- Publish the planning scene of the physical robot

so that rviz plugin can know actual robot -->
72 <param name="planning_scene_monitor/

publish_planning_scene" value="$(arg
publish_monitored_planning_scene)" />

73 <param name="planning_scene_monitor/
publish_geometry_updates" value="$(arg
publish_monitored_planning_scene)" />

74 <param name="planning_scene_monitor/
publish_state_updates" value="$(arg
publish_monitored_planning_scene)" />

75 <param name="planning_scene_monitor/
publish_transforms_updates" value="$(arg
publish_monitored_planning_scene)" />

76 </node>
77
78 </launch>

planning context.launch

1 <?xml version="1.0"?>
2 <launch>
3 <!-- By default we do not overwrite the URDF. Change the

following to true to change the default behavior -->
4 <arg name="load_robot_description" default="false"/>
5 <arg name="limited" default="false" />
6
7 <!-- The name of the parameter under which the URDF is

loaded -->
8 <arg name="robot_description" default="robot_description"

/>
9

10 <!-- Load universal robot description format (URDF) -->
11 <group if="$(arg load_robot_description)">
12 <param unless="$(arg limited)" name="$(arg

robot_description)" command="$(find xacro)/xacro.py
’$(find ur5_with_sr300_support)/urdf/ur5_robot.urdf.
xacro’" />

13 <param if="$(arg limited)" name="$(arg
robot_description)" command="$(find xacro)/xacro.py
’$(find ur5_with_sr300_support)/urdf/
ur5_joint_limited_robot.urdf’" />

14 </group>
15
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16 <!-- The semantic description that corresponds to the
URDF -->

17 <param name="$(arg robot_description)_semantic" textfile=
"$(find ur5_with_sr300_moveit_config)/config/ur5.srdf"
/>

18
19 <!-- Load updated joint limits (override information from

URDF) -->
20 <group ns="$(arg robot_description)_planning">
21 <rosparam command="load" file="$(find

ur5_with_sr300_moveit_config)/config/joint_limits.
yaml"/>

22 </group>
23
24 <!-- Load default settings for kinematics; these settings

are overridden by settings in a node’s namespace -->
25 <group ns="$(arg robot_description)_kinematics">
26 <rosparam command="load" file="$(find

ur5_with_sr300_moveit_config)/config/kinematics.yaml
"/>

27 </group>
28
29 </launch>

Changing OMPL settings

Changing setting to the point to point planning algorithms from the Open Motion Plan-
ning Library is done by altering the OMPLplanning.yaml configuration file in the custom
moveit generation folder.

The planning algorithm is selected automatically. So to force a given planner simply
comment out all other configurations.

1 planner_configs:
2 SBLkConfigDefault:
3 type: geometric::SBL
4 range: 0.0 # Max motion added to tree. ==>

maxDistance_ default: 0.0, if 0.0, set on setup()
5 ESTkConfigDefault:
6 type: geometric::EST
7 range: 0.0 # Max motion added to tree. ==>

maxDistance_ default: 0.0, if 0.0 setup()
8 goal_bias: 0.05 # When close to goal select goal, with

this probability. default: 0.05
9 LBKPIECEkConfigDefault:

10 type: geometric::LBKPIECE
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11 range: 0.0 # Max motion added to tree. ==>
maxDistance_ default: 0.0, if 0.0, set on setup()

12 border_fraction: 0.9 # Fraction of time focused on
boarder default: 0.9

13 min_valid_path_fraction: 0.5 # Accept partially valid
moves above fraction. default: 0.5

14 BKPIECEkConfigDefault:
15 type: geometric::BKPIECE
16 range: 0.0 # Max motion added to tree. ==>

maxDistance_ default: 0.0, if 0.0, set on setup()
17 border_fraction: 0.9 # Fraction of time focused on

boarder default: 0.9
18 failed_expansion_score_factor: 0.5 # When extending

motion fails, scale score by factor. default: 0.5
19 min_valid_path_fraction: 0.5 # Accept partially valid

moves above fraction. default: 0.5
20 KPIECEkConfigDefault:
21 type: geometric::KPIECE
22 range: 0.0 # Max motion added to tree. ==>

maxDistance_ default: 0.0, if 0.0, set on setup()
23 goal_bias: 0.05 # When close to goal select goal, with

this probability. default: 0.05
24 border_fraction: 0.9 # Fraction of time focused on

boarder default: 0.9 (0.0,1.]
25 failed_expansion_score_factor: 0.5 # When extending

motion fails, scale score by factor. default: 0.5
26 min_valid_path_fraction: 0.5 # Accept partially valid

moves above fraction. default: 0.5
27 RRTkConfigDefault:
28 type: geometric::RRT
29 range: 0.0 # Max motion added to tree. ==>

maxDistance_ default: 0.0, if 0.0, set on setup()
30 goal_bias: 0.05 # When close to goal select goal, with

this probability? default: 0.05
31 RRTConnectkConfigDefault:
32 type: geometric::RRTConnect
33 range: 0.0 # Max motion added to tree. ==>

maxDistance_ default: 0.0, if 0.0, set on setup()
34 RRTstarkConfigDefault:
35 type: geometric::RRTstar
36 range: 0.0 # Max motion added to tree. ==>

maxDistance_ default: 0.0, if 0.0, set on setup()
37 goal_bias: 0.05 # When close to goal select goal, with

this probability? default: 0.05
38 delay_collision_checking: 1 # Stop collision checking
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as soon as C-free parent found. default 1
39 TRRTkConfigDefault:
40 type: geometric::TRRT
41 range: 0.0 # Max motion added to tree. ==>

maxDistance_ default: 0.0, if 0.0, set on setup()
42 goal_bias: 0.05 # When close to goal select goal, with

this probability? default: 0.05
43 max_states_failed: 10 # when to start increasing temp.

default: 10
44 temp_change_factor: 2.0 # how much to increase or

decrease temp. default: 2.0
45 min_temperature: 10e-10 # lower limit of temp change.

default: 10e-10
46 init_temperature: 10e-6 # initial temperature.

default: 10e-6
47 frountier_threshold: 0.0 # dist new state to nearest

neighbor to disqualify as frontier. default: 0.0 set
in setup()

48 frountierNodeRatio: 0.1 # 1/10, or 1 nonfrontier for
every 10 frontier. default: 0.1

49 k_constant: 0.0 # value used to normalize expresssion.
default: 0.0 set in setup()

50 PRMkConfigDefault:
51 type: geometric::PRM
52 max_nearest_neighbors: 10 # use k nearest neighbors.

default: 10
53 PRMstarkConfigDefault:
54 type: geometric::PRMstar
55 manipulator:
56 planner_configs:
57 - SBLkConfigDefault
58 - ESTkConfigDefault
59 - LBKPIECEkConfigDefault
60 - BKPIECEkConfigDefault
61 - KPIECEkConfigDefault
62 - RRTkConfigDefault
63 - RRTConnectkConfigDefault
64 - RRTstarkConfigDefault
65 - TRRTkConfigDefault
66 - PRMkConfigDefault
67 - PRMstarkConfigDefault
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7.6 Results

7.6.1 Inspection plans
Optimal path plane, unmodified algorithm

Figure 7.1 Result after running the algorithm with locked z, pitch and yaw, optimal solu-
tion after 100 iterations
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Optimal path plane augmented algorithm

Figure 7.2 Algorithm v4 optimal solution
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Figure 7.3 Algorithm v4 optimal solutons
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Optimal path cube, unmodified algorithm

Figure 7.4 Result after running the algorithm as presented in my paper, 50 iterations,
optimal solution
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Optimal path cube augmented algorithm

Figure 7.5 Optimal path found with augmented algorithm running 100 iterations, resulting
in a path of length 9.99
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Figure 7.6 Optimal path found with augmented algorithm running 100 iterations, resulting
in a path of length 9.99
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7.6.2 Robot trajectories, simulation
Robot trajectory cartesian motion planner mount

Figure 7.7 Results for the mount inspection plan eef step = 0.03 and jump treshold = 0.0
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Robot trajectory IKMP mount

Figure 7.8 Results when simulating augmented algorithm generated path for the plane

Robot trajectory IKMP plane

Robot trajectory IKMP Cube
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Figure 7.9 Results when simulating augmented algorithm generated path for the mount
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Figure 7.10 Results when simulating augmented algorithm generated path for the cube
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Robot trajectory variations IKMP Cube

Figure 7.11 Results when simulating path resulting from inspection planning algorithm
v0
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Figure 7.12 Results when simulating path from inspection planning algorithm v1
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Figure 7.13 Results when simulating path resulting from inspection planning algorithm
v2
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Figure 7.14 Results when simulating path resulting from inspection planning algorithm
v3
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Figure 7.15 Results when simulating path resulting from inspection planning algorithm
v4
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7.6.3 Robot trajectories
Robot trajectory, Cartesian planner, mount

Figure 7.16 Measured trajectory, camera mount inspection with cartesian motion planner

Cartesian planner orientation error
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Figure 7.17 Visible fluctuations from the path as well as orientation error. Blue arrows are
the specified orientation, measured orientation given by the red arrows
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Robot trajectory, IKMP, plane

Figure 7.18 Measured trajectory, running the inverse kinematics based planner
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Offset and pose error IKMP

Figure 7.19 Picture from above, showing overshoot from motion control. Overshoot looks
like small branches from the main path
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Figure 7.20 Error in achieving desired orientation. blue arrows are the specified orienta-
tion, measured orientation given by the red arrows
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7.7 Code
All code related to simulations are available at https://github.com/mmseines/
ur5_simulation.

7.7.1 Inspection planner modifications
Viewpoint feasibility criterion

Code is an outtake from Rotorcraft.hpp lines: 592 - 732

1 /*
2 Ensure all selected viewpoints have valid

IK solutions.
3 */
4
5 geometry_msgs::Pose viewpoint;
6 tf::Quaternion qu = tf::

createQuaternionFromRPY(0.0, g[4], g[5])
;

7
8 viewpoint.position.x = g[0]/100; //lage

scale constant?
9 viewpoint.position.y = g[1]/100;

10 viewpoint.position.z = g[2]/100;
11 viewpoint.orientation.x = qu.x();
12 viewpoint.orientation.y = qu.y();
13 viewpoint.orientation.z = qu.z();
14 viewpoint.orientation.w = qu.w();
15 bool found_ik = false; // = g_robot_state.

setFromIK(g_joint_model_group, viewpoint
, 8, 0.1);

16
17 collision_detection::CollisionResult c_res;
18 for(int i = 0; i <3; i++){
19 found_ik = g_robot_state.setFromIK(

g_joint_model_group, viewpoint, 8, 0.1);
20 if(found_ik == false){
21 continue;
22 }
23 g_planning_scene->setCurrentState(g_robot_state);
24 g_planning_scene->checkCollision(c_req, c_res);
25 if(!c_res.collision){
26 break;
27 }
28 }
29
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30 double c_pos = FLT_MAX * 0.9;
31 double c_orient = FLT_MAX * 0.9;
32 if(c_res.collision || !found_ik)
33 {
34 std::vector<StateVector> solutions;
35 int iter = 0;
36 //atm only one solution...
37 while(solutions.size() < 5 && iter

< 100)
38 {
39 StateVector tmp = g;
40 double pos_displ[3];
41 double ori_displ[3];
42 for(int i = 0; i < 3; i++){
43 pos_displ[i] = -0.9 + ((double)rand() / RAND_MAX)

* (1.8);
44 ori_displ[i] = -0.2 + ((double)rand() / RAND_MAX)

* (0.4);
45 }
46 //Normalize both vectors.
47
48 tmp[0] = g[0] + pos_displ

[0];
49 tmp[1] = g[1] + pos_displ

[1];// -0.9 + ((double)
rand() / RAND_MAX) *
(1.8);

50 tmp[2] = g[2] + pos_displ
[2]; //-0.9 + ((double)
rand() / RAND_MAX) *
(1.8);

51 tmp[4] = g[4] + ori_displ
[1];

52 tmp[5] = g[5] + ori_displ[2];
53
54 if(this->isVisible(tmp) &&

!this->IsInCollision(tmp
)) // this checks
distance, indece angles
and collision.

55 {
56 qu = tf::

createQuaternionFromRPY
(0.0, tmp[4],
tmp[5]);
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57
58 viewpoint.position.

x = tmp[0]/100;
//lage scale
constant?

59 viewpoint.position.
y = tmp[1]/100;

60 viewpoint.position.
z = tmp[2]/100;

61 viewpoint.
orientation.x =
qu.x();

62 viewpoint.
orientation.y =
qu.y();

63 viewpoint.
orientation.z =
qu.z();

64 viewpoint.
orientation.w =
qu.w();

65
66 found_ik =

g_robot_state.
setFromIK(
g_joint_model_group
, viewpoint, 8,
0.1);

67 if(found_ik)
68 {
69 g_planning_scene

->
setCurrentState
(
g_robot_state
);

70 c_res.clear
();

71 g_planning_scene
->
checkSelfCollision
(c_req,
c_res);

72 if(!c_res.
collision
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)
73 {
74 solutions

.
push_back
(
tmp
)
;

75 }
76 }
77
78 }
79 iter++;
80 }
81
82 if(solutions.size()>0 && this->

initialized)
83 {
84 int min_sol;
85 double cost_min = FLT_MAX * 0.9;
86 for(int ite = 0; ite < solutions.size(); ite++){
87 //Orientation:
88 StateVector tmp = solutions[ite];
89
90 double dpsi1 = tmp[5]-alfa1;
91 double dpsi2 = tmp[5]-alfa2;
92 double dom1 = tmp[4] - omega1;
93 double dom2 = tmp[4] - omega2;
94 if(fabs(dpsi1)>M_PI)
95 dpsi1 = 2*M_PI-fabs(dpsi1);
96 if(fabs(dpsi2)>M_PI)
97 dpsi2 = 2*M_PI-fabs(dpsi2);
98
99 double orien_x = cos(tmp[4])*cos(tmp[5]);

100 double orien_y = cos(tmp[4])*sin(tmp[5]);
101 double orien_z = sin(tmp[4]);
102 double dot_prod = ( orien_x*this->aabs[0] +

orien_y*this->aabs[1] + orien_z*this->aabs[2]
);

103
104 c_orient = (1+dot_prod)*0.1 + sqrt(std::max(pow(

dpsi1,2.0)/(dp),pow(dom1,2.0)/(dp)) + std::max
(pow(dpsi2, 2.0)/(ds),pow(dom2,2.0)/(ds)));
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105
106 //Objective: ()
107 c_pos = 0;
108 for(int i = 0; i < 3; i++)
109 {
110 c_pos += pow(tmp[i] - (*state1)[i], 2.0);
111 c_pos += pow(tmp[i] - (*state2)[i], 2.0);
112 c_pos += g_const_D*pow(tmp[i] - (*statePrev)[i

], 2.0);
113 }
114
115 if(c_pos+c_orient < cost_min)
116 {
117 min_sol = ite;
118 cost_min = c_pos + c_orient;
119 }
120
121 }
122 StateVector sol = solutions[min_sol];
123 for(int i = 0; i <6; i++)
124 {
125 g[i] = sol[i];
126 }
127 }
128 else if(solutions.size() == 0 && this->initialized)
129 {
130 solFoundLocal = false;
131 }
132 }
133
134 //Why run orientation optimization if solFoundLocal

is set to false?.
135 if(c_pos + c_orient < cost && solFoundLocal){
136 best = g;
137 cost = c_pos + c_orient;
138 }
139 else if(this->VPSolver->getObjVal()+xxCompensate+

costOrientation<cost && solFoundLocal)
140 {
141 best = g;
142 cost = this->VPSolver->getObjVal()+xxCompensate+

costOrientation;
143 }
144 solFound |= solFoundLocal;
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Lazy distance evaluation

Code snippet from PTPplanner.cpp in the inspection planner. Lines shown: 879 - 1069.

1 int cplusplus_callback_function(int ID, int ID2)
2 {
3 ID%=maxID;
4 ID2%=maxID;
5 #ifdef __TIMING_INFO__
6 timeval time;
7 gettimeofday(&time, NULL);
8 time_LKH += time.tv_sec * 1000000 + time.tv_usec;
9 #endif

10 long ret = INT_MAX;
11
12 if(!plannerArrayBool) // allocate
13 {
14 plannerArray = new PTPPlanner*[maxID];
15 for(int j = 0; j<maxID; j++)
16 {
17 plannerArray[j] = NULL;
18 }
19 }
20 if(reinitRRTs[ID] == 1&&plannerArray[ID]) // delete for

reinit
21 {
22 delete plannerArray[ID];
23 plannerArray[ID] = NULL;
24 }
25 if(reinitRRTs[ID] == 2&&plannerArray[ID])
26 {
27 for(int j = 0; j<g_rrt_it_init; j++)
28 plannerArray[ID]->rrts_.iteration();
29 reinitRRTs[ID] = 0;
30 }
31 if(!plannerArrayBool) // build first tree, that is not

built otherwise
32 {
33 plannerArrayBool = true;
34 StateVector tmp = VP[0];
35 plannerArray[0] = new PTPPlanner();
36 plannerArray[0]->initialize(tmp,tmp[0],tmp[1],tmp

[2],2.0*g_rrt_scope,2.0*g_rrt_scope,2.0*g_rrt_scope)
;

37 }
38 if(!plannerArray[ID]) // init
39 {
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40 plannerArray[ID] = new PTPPlanner();
41 StateVector tmp = VP[ID];
42 plannerArray[ID]->stateVec = tmp;
43 plannerArray[ID]->initialize(tmp,tmp[0],tmp[1],tmp

[2],2.0*g_rrt_scope,2.0*g_rrt_scope,2.0*g_rrt_scope)
;

44 reinitRRTs[ID] = 0;
45 }
46
47
48 double distLazy = sqrt( pow(VP[ID][0] - VP[ID2][0],2.0) +

pow(VP[ID][1] - VP[ID2][1],2.0) + pow(VP[ID][2] - VP[
ID2][2],2.0) );

49
50 if(distLazy>g_rrt_scope)
51 {
52 #ifdef __TIMING_INFO__
53 gettimeofday(&time, NULL);
54 time_LKH -= time.tv_sec * 1000000 + time.tv_usec;
55 #endif
56 bool bCollision = false;
57
58 int numSelfCol = 0;
59 // collision check also for lazy connections
60 if(g_lazy_obstacle_check)
61 {
62 //self collision check.
63 planning_scene::PlanningScenePtr

g_planning_scene(new
planning_scene::PlanningScene(
g_robot_mdl));

64
65 moveit_msgs::PlanningScene planning_sc;
66 //- -------------------------- adding obstacles.

-------
67 moveit_msgs::CollisionObject table;
68 table.id = "table";
69 shape_msgs::SolidPrimitive primitive;
70 primitive.type = primitive.BOX;
71 primitive.dimensions.resize(3);
72 primitive.dimensions[0] = 1.0;
73 primitive.dimensions[1] = 1.0;
74 primitive.dimensions[2] = 0.2;
75
76 table.primitives.push_back(primitive);
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77
78 table.header.frame_id = "world";
79
80 geometry_msgs::Pose table_pose;
81 table_pose.position.z = -0.33;
82 table_pose.position.x = -0.2;
83 table_pose.position.y = 0.0;
84 table_pose.orientation.x = 0.0;
85 table_pose.orientation.y = 0.0;
86 table_pose.orientation.z = 0.0;
87 table_pose.orientation.w = 0.0;
88
89 table.primitive_poses.push_back(table_pose);
90
91 table.operation = table.ADD;
92 planning_sc.world.collision_objects.push_back(table);
93
94 moveit_msgs::CollisionObject wall;
95 wall.id = "wall";
96 primitive.type = primitive.BOX;
97 primitive.dimensions.resize(3);
98 primitive.dimensions[0] = 0.1;
99 primitive.dimensions[1] = 2.0;

100 primitive.dimensions[2] = 1.5;
101
102 wall.primitives.push_back(primitive);
103
104 wall.header.frame_id = "world";
105
106 geometry_msgs::Pose wall_pose;
107 wall_pose.position.x = 0.0;
108 wall_pose.position.y = -0.4;
109 wall_pose.position.z = 0.0;
110
111 tf::Quaternion q = tf::createQuaternionFromRPY(0.0,

0.0, -M_PI/4.0);
112 wall_pose.orientation.x = q.x();
113 wall_pose.orientation.y = q.y();
114 wall_pose.orientation.z = q.z();
115 wall_pose.orientation.w = q.w();
116
117 wall.primitive_poses.push_back(wall_pose);
118
119 wall.operation = wall.ADD;
120 planning_sc.world.collision_objects.push_back(wall);
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121
122 planning_sc.is_diff = true;
123 g_planning_scene->setPlanningSceneDiffMsg(planning_sc

);
124 // ------------- end add collisions.
125
126 robot_state::RobotStatePtr

kinematic_state(new robot_state
::RobotState(g_robot_mdl));

127 robot_state::RobotState
g_robot_state(g_robot_mdl);

128 const robot_state::JointModelGroup

* g_joint_model_group =
g_robot_mdl->getJointModelGroup(
"manipulator");

129
130 collision_detection::

CollisionRequest c_req;
131 c_req.contacts = 1;
132
133 for(double it = 0; it < 1; it +=

g_discretization_step/distLazy) // Inperpollation
where colision is checked.

134 {
135 double * tmp = new double[DIMENSIONALITY];
136 for(int i = 0; i<DIMENSIONALITY; i++)
137 tmp[i] = VP[ID][i]*it+VP[ID2][i]*(1-it);
138
139 //set from IK, the

interpolated state.
140 if(plannerArray[ID]->rrts_.system->IsInCollision(

tmp))
141 {
142 bCollision = true;
143 break;
144 }else{
145
146 geometry_msgs::Pose viewpoint;
147 tf::Quaternion qu =

tf::
createQuaternionFromRPY
(0.0, tmp[4],
tmp[5]);

148
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149 viewpoint.position.
x = tmp[0]/100;
//lage scale
constant?

150 viewpoint.position.
y = tmp[1]/100;

151 viewpoint.position.
z = tmp[2]/100;

152 viewpoint.
orientation.x =
qu.x();

153 viewpoint.
orientation.y =
qu.y();

154 viewpoint.
orientation.z =
qu.z();

155 viewpoint.
orientation.w =
qu.w();

156 bool found_ik =
g_robot_state.
setFromIK(
g_joint_model_group
, viewpoint, 8,
0.1);

157 g_planning_scene->
setCurrentState(
g_robot_state);

158
159 collision_detection

::
CollisionResult
c_res;

160 if(!found_ik){
161 numSelfCol++;
162 continue;
163 }
164 g_planning_scene->

checkSelfCollision
(c_req, c_res);

165 if(c_res.collision)
{

166 numSelfCol++;
167 }
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168 }
169 delete[] tmp;
170 }
171 }
172 if(!bCollision)
173 {
174 return (int) std::min((double)INT_MAX-1,(((double)(

distLazy * g_scale)) + 0.5 + 5.0*g_scale*
numSelfCol));

175 }
176 }
177 state_t state;
178 state.setNumDimensions(DIMENSIONALITY);
179 for(int j = 0; j<DIMENSIONALITY; j++)
180 state[j] = VP[ID2][j];
181 ret = (int)std::min((double)INT_MAX-1,(plannerArray[ID]->

rrts_.evalDist(state)*g_scale+0.5)); // distance
182 #ifdef __TIMING_INFO__
183 gettimeofday(&time, NULL);
184 time_LKH -= time.tv_sec * 1000000 + time.tv_usec;
185 #endif
186 return ret;
187 }
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7.7.2 Misc.
This code runs even though the USE FIXEDWING MODEL constant is undefined.

Smoothing parameter

found at line 519 - 553 in plan.cpp from the inspection planner package.

1 #ifndef USE_FIXEDWING_MODEL
2
3 int lim = 0;
4 double smoothing_param = std::min(req.numIterations

/2,25);
5 double neighbour_steps = std::min(2.0, 1.0+50.0/req

.numIterations);
6 int maxWidth = (int)std::min(neighbour_steps*(

double)(req.numIterations-smoothing_param-
koptPlannerIteration), (double)(maxID)/2.0);

7
8 while((*s1)[0] == plannerArray[Npred]->stateVec[0]

&& (*s1)[1] == plannerArray[Npred]->stateVec[1]
&& (*s1)[2] == plannerArray[Npred]->stateVec[2]
&& (lim++)<maxWidth)

9 {
10 if(kpred == 0)
11 kpred = maxID-1;
12 else
13 kpred--;
14 int NpredOld = Npred;
15 Npred = PTPPlanner::Tour_[kpred]-1;
16 *s1 = plannerArray[Npred]->rrts_.getLastVisible(

plannerArray[NpredOld]->stateVec, tri[i]);
17 }
18
19 #endif
20 *s2 = plannerArray[Nsucc]->rrts_.getLastVisible(

plannerArray[i]->stateVec, tri[i]);
21 #ifndef USE_FIXEDWING_MODEL
22
23 lim = 0;
24 while((*s2)[0] == plannerArray[Nsucc]->stateVec[0]

&& (*s2)[1] == plannerArray[Nsucc]->stateVec[1]
&& (*s2)[2] == plannerArray[Nsucc]->stateVec[2]
&& (lim++)<maxWidth)

25 {
26 if(ksucc == maxID-1)
27 ksucc = 0;
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28 else
29 ksucc++;
30 int NsuccOld = Nsucc;
31 Nsucc = PTPPlanner::Tour_[ksucc]-1;
32 *s2 = plannerArray[Nsucc]->rrts_.getLastVisible(

plannerArray[NsuccOld]->stateVec, tri[i]);
33 }
34
35 #endif
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