
Adaptive learning based on cognitive load
using artificial intelligence and
electroencephalography

Håkon Jarle Hassel

Master of Science in Computer Science

Supervisor: Asbjørn Thomassen, IDI

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

i
i

“output” — 2017/6/10 — 17:22 — page I — #1 i
i

i
i

i
i

I

Sammendrag

Domenet hvor kunstig intelligens og kognitiv vitenskap møtes har ikke blitt til-

strekkelig utforsket innen instruksjonsdesign og lærings-systemer. Dette til tross

for optimismen til deres positive effekt, dersom de benyttes p̊a riktig måte i

disse omr̊adene. Passiv måling av elektrisk potensiale i hjernens overflate via

elektroencefalogram-utstyr muliggjør rask og nøyaktig uthenting av signaler. Dette

har gjort at EEG og tilhørende utstyr har blitt populært til bruk innen hjerne-

datamaskin grensesnitt, samt som en basis for mønstergjenkjenning i maskin-

læringsmekanismer. For å gi innsikt i god praksis og tidligere erfaringer fra å

benytte b̊ade kunstig intelligens og EEG-utstyr i mønstergjenkjenningsoppgaver,

har en litteraturstudie har blitt gjennomført. Den relativt lave kostnaden av EEG-

hodesett fra leverandører som Emotiv muliggjør utføring av flere eksperiment in-

nenfor ulike applikasjoner og domener, og utgjør en positiv effekt for utforskning

av prototypers kvaliteter. I prosjektet har en driver blitt benyttet for å uthente

r̊adata fra Emotiv Epoc EEG-hodesettet, og et tilbakevendende nevralt nettverk

har blitt konstruert for å klassifisere følelser ut ifra r̊adata. R̊adataen benyttet

i prosjektet er supplert av Swartz Senter for Komputasjonell Nevroforskning, og

inneholder kategorisert data for femten forskjellige følelser. Nettverket har vist

god ytelse i klassifisering av følelser fra flerkanals EEG-signaler, og oppn̊adde 99%

treffsikkerhet for b̊ade trening- og test-sett. Nettverket generaliserte ikke godt nok

til å kunne brukes i sanntidsinnhenting av data fra EEG-hodesettet p̊a et nytt

subjekt, men nettverket kan trolig benyttes videre ved å trene det p̊a et tilpasset

datasett.

i
i

“output” — 2017/6/10 — 17:22 — page II — #2 i
i

i
i

i
i

II

Abstract

The domains of artificial intelligence and cognitive sciences have not been properly

explored within instructional design and learning systems, despite being optimistic

in their positive effects when utilized correctly in these areas. Passive measure-

ments of the cerebral cortex allows for rapid and accurate signal extraction, which

is why EEG-equipment has become popular in brain-computer interfaces, as well

as the base for feature extraction in machine learning mechanisms within these.

To gain insights into good practice and past experiences in utilizing both AI and

EEG-equipment in classification tasks, a literature study has been performed. The

relative low cost of the Emotiv EEG-headsets enables more experiments to be con-

ducted in many applications and domains, which is beneficial for proof-of-concepts

and exploring the feasibility of their application. In this project a driver has been

utilized to sample raw sensor-data from the Emotiv Epoc EEG-headset, and a re-

current neural network has been constructed to classify fifteen different emotions

from raw data provided by Swartz Center for Computational Neuroscience. The

RNN has shown great performance in emotion classification from multi-channel

EEG-signals, achieving 99% accuracy for both training- and test-sets. The RNN

did not generalize enough for practical usage in real-time sampling using the Emo-

tiv Epoc EEG-headset on a new subject, but its qualities can possibly be utilized

in further work by re-training it on a customized data set.

i
i

“output” — 2017/6/10 — 17:22 — page III — #3 i
i

i
i

i
i

III

Acknowledgments

I wish to extend my greatest gratitude to Professor Asbjørn Thomassen. Who not

only gave me the opportunity to take on a task which incorporates my acquired

knowledge and introduced me to new and intriguing domains, but did so after

accepting a fair share of other students. The gesture, along with impeccable avail-

ability, is much appreciated. Furthermore I would like to express my appreciation

to my friends, family and fellow students. All of which have proven an essential

aspect of my studies and research. This project could not have been completed

without any of you.

H̊akon Jarle Hassel

Trondheim, June 10, 2017

i
i

“output” — 2017/6/10 — 17:22 — page IV — #4 i
i

i
i

i
i

Contents

1 Introduction and Overview 1

1.1 Terms and Abbreviations . 4

1.2 Background and Motivation . 6

1.3 The Human Brain . 6

1.4 History of Electroencephalography 8

1.5 Electroencephalography in Practice 9

1.6 EEG Data set . 10

1.7 Emotiv . 11

1.8 MATLAB . 11

1.9 EEGLAB . 14

1.10 Learning Technology . 14

1.11 Goals and Research Questions . 15

1.12 Research Method . 16

2 Theory and Background 17

2.1 EEG sensor-labelling . 17

2.1.1 10-20 system . 17

2.1.2 ABC system . 18

2.1.3 Corresponding sensor labels 18

2.2 Perceptron . 18

2.3 Artificial Neural Networks . 21

2.4 Recurrent Neural Networks . 25

2.5 Long Short-Term Memory . 27

2.6 EEG . 34

i
i

“output” — 2017/6/10 — 17:22 — page V — #5 i
i

i
i

i
i

Contents V

3 Results 35

3.1 RNN . 38

3.1.1 Inputs and outputs . 39

3.1.2 Hyperparameters . 39

3.1.3 Learning rate . 40

4 Evaluation and Conclusion 43

4.1 Evaluation . 43

4.2 TensorFlow . 43

4.2.1 TensorBoard . 44

4.2.2 TFRecords . 47

4.3 Summary . 47

4.4 Conclusion . 48

4.5 Discussion . 48

4.6 Sources of error . 49

4.7 Contributions . 51

4.8 Impact . 51

4.9 Future Work . 51

Bibliography 55

Appendices 59

A Emokit Driver . 60

B EEGLAB . 62

C Environment setup . 65

D Using the software . 67

E Using TensorBoard . 69

i
i

“output” — 2017/6/10 — 17:22 — page VI — #6 i
i

i
i

i
i

List of Figures

1.1 Mental state as a function of skill and challenge level 7

1.2 Top view of the brain . 8

1.3 Cerebral cortex lobes . 9

1.4 Spatial resolution of Emotiv Epoc 12

1.5 Emotiv Epoc EEG Headset . 13

2.1 Corresponding sensors . 19

2.2 Illustration of a perceptron. 20

2.3 Trained perceptron . 22

2.4 The sigmoid activation function . 23

2.5 The rectified linear activation function. 23

2.6 Typical feed forward network . 24

2.7 Effectiveness of depth . 24

2.8 RNN Design Pattern I . 28

2.9 RNN Design Pattern II . 29

2.10 RNN Design Pattern III . 30

2.11 Vanishing gradient . 31

2.12 LSTM cell architecture . 33

2.13 The tanh activation function . 34

3.1 Code listing of LSTM in TensorFlow 38

3.2 Code listing of output implementation choice 39

3.3 8000 epoch training run . 41

4.1 Visualization in TensorBoard . 45

i
i

“output” — 2017/6/10 — 17:22 — page VII — #7 i
i

i
i

i
i

List of Figures VII

4.2 Histograms in TensorBoard . 46

3 Navigating folders in MatLab . 63

4 Starting Eeglab . 63

5 Eeglab environment . 64

i
i

“output” — 2017/6/10 — 17:22 — page VIII — #8 i
i

i
i

i
i

List of Tables

1.1 Frequency bandwidths of common bands. 10

3.1 EEG raw data . 36

3.2 RNN Output Mapping . 37

i
i

“output” — 2017/6/10 — 17:22 — page 1 — #9 i
i

i
i

i
i

Chapter 1

Introduction and Overview

This chapter will cover the background for the project, define terms and abbrevia-

tions used and presents the problem statement chosen for the project. It will also

briefly go over the motivation behind the project, and its main driving forces.

This project is the continuation of autumn project of the same title, and will

aim to implement an initial design iteration of the software proposed. This will

serve to research the effectiveness and characteristics of the suggested program,

relying on learning patterns within raw data and labels from the Swartz Center for

Computational Neuroscience’s international research EEG recordings of multiple

subjects. Due to this continuation much of the theory covered in the autumn

project is reused in chapter 2.

Sadly, the project did not reach the intended goal of implementing an initial de-

sign iteration of the overlying learning system. This was due to issues that arose

from the training data used, which is detailed in section 1.6. The training data

contained processing steps which made it differ from the raw data sampled from

the electroencephalography-equipment used, which combined with very long se-

rialization times for encoding the data and labels into TensorFlow’s TFRecord

data-format did not allow for the time needed to rework the data. This has the

unfortunate consequence of not being able to quantify potential benefits of the pro-

posed software discussed in section 1.2. The project did however result in an arti-

fact within artificial intelligence coupled with multi-sensor electroencephalography-

i
i

“output” — 2017/6/10 — 17:22 — page 2 — #10 i
i

i
i

i
i

2

headset samples, which will be discussed in chapter 3. Thus, said chapter will fo-

cus on further work necessary to utilize the implemented recurrent neural network,

which acts as the back-bone of the intended system.

i
i

“output” — 2017/6/10 — 17:22 — page 3 — #11 i
i

i
i

i
i

Introduction and Overview 3

Page intentionally left blank.

i
i

“output” — 2017/6/10 — 17:22 — page 4 — #12 i
i

i
i

i
i

4 Terms and Abbreviations

1.1 Terms and Abbreviations

The thesis will utilize several terms and abbreviations, which will be listed in this

section.

ANN Artificial Neural Network - Software architecture loosely modelling the hu-

man brain.

API Application Programming Interface - Protocols and tools for creating com-

puter programs.

C Programming language.

Cerebral Relating to the brain.

CNN Convolutional Neural Network - ANN optimized for matrix inputs, mainly

images.

Cortex The outermost layer of neural tissue.

CUDA API from NVIDIA allowing parallel computing and general purpose pro-

cessing of software on supported graphic cards.

DC Direct Current. The one-way current of electric charge.

Dendrite Input branch responsible for conducting electrical impulses towards the

body of a nerve cell.

EEG Electroencephalography - The monitoring of electric activity (potential) in

the brain.

EEG-headset Headset for monitoring the electric activity of a human brain.

Flow From psychology; full involvement and enjoyment of an activity.

Homebrew Package manager for OS X.

ICA Independent Component Analysis.

ITS Intelligent Tutoring System.

i
i

“output” — 2017/6/10 — 17:22 — page 5 — #13 i
i

i
i

i
i

Introduction and Overview 5

LFP Local Field Potential - The change in polarity of a cluster of nearby neurons.

Linux Open source operating system.

LSTM Long Short-Term Memory - Structured recurrent neural network cells

which learn to decide what throughput to value and when to forget previous

information stored in memory.

NaN Not A Number, datatype signifying an undefined numerical value.

Neuron Used as a synonym/abbreviation for an artificial neuron.

Node Building part of computational graphs and artificial neural networks.

OS X Operating system mainly deployed on Macintosh (Apple) computers.

Oxyhemoglobin Oxygen-rich red blood cells.

Python Programming language.

RNN Recurrent Neural Network - ANN with recurrent connections, granting

memory over time or sequences.

SCCN Swartz Center for Computational Neuroscience.

TensorFlow Open source software library for machine learning developed by

Google. [Mart́ın Abadi, 2015].

Windows Operating system.

i
i

“output” — 2017/6/10 — 17:22 — page 6 — #14 i
i

i
i

i
i

6 Background and Motivation

1.2 Background and Motivation

Learning is a complex task, and potential pitfalls for the learners are many. Take

figure 1.1 as an example; it shows mental states as a function of a task’s challenge

level and a subject’s skill level. If the learner is provided with a task too challenging

too early it will instill a feeling of worry, which if continued without change will

become anxiety, and further demotivate the learner. The opposite is also true;

too easy tasks will bore the learner and in turn become relaxing, not fulfilling

maximal learning potential and reduce the learner’s motivation. As such, the

common teacher-pupil educational relationship has been the de-facto standard for

most of the educational domain for some time.

Teachers serves the purpose of guiding the learner to a state where learning poten-

tial is at a maximum, which would be unachievable by the learner alone. This is

however not easily accomplished, as one need to consider the task difficulty, cog-

nitive ability and motivation of the learner as well as instructional design [Yuksel

et al., 2016].

If one can detect emotional states of the learner, this can be used further to indicate

the learning progress of the learner. Adjusting the difficulty of a task based on this

information could serve to increase the learning experience, efficiency and quality,

especially beneficial to people with learning disabilities. With the potential found

within the memory of RNNs and general nature of ANNs, it isn’t unfeasible to

utilize raw EEG data to do emotion classification, and build an ITS around this

machine learning technology.

1.3 The Human Brain

The human brain is the most important organ in all of our body, and at the same

time the most complex one. It is responsible for processing nearly every signal in

our body, and contains several specialized areas that cooperate. Every signal sent

or received is the result of chemical reactions, producing electric potential.

The human brain is made up of two hemispheres, labeled the left and the right.

i
i

“output” — 2017/6/10 — 17:22 — page 7 — #15 i
i

i
i

i
i

Introduction and Overview 7

Figure 1.1: Mental state as a function of skill level given how challenging a task
is. We wish the subject to progress linearly from apathy to flow, as task difficulty
(challenge level) increases. [Søraker, 2013]

The representation can be seen in figure 1.2. The right hemisphere is responsible

for controlling the left half of the body, whilst the left hemisphere controls the

right half. As a result of evolution the brain got folds, which increased the surface

area of it whilst still being able to fit within the skull. This also meant that the

brain got capacity for more neurons.

Each hemisphere’s cortex consists of four lobes, which serves as specialized regions.

These are the following:

Frontal lobe Voluntary motor functions, overriding and suppression of motor

functions, decision-making.

Parietal lobe Interpretation of sensory input from the skin.

i
i

“output” — 2017/6/10 — 17:22 — page 8 — #16 i
i

i
i

i
i

8 History of Electroencephalography

Figure 1.2: The left and right hemispheres of the brain as seen from above with
the front facing north.

Occipital lobe Visual processing.

Temporal lobe Long-term memory, auditory processing, object- and language-

recognition, storage of new memory-input.

These regions can be seen for the right hemisphere in figure 1.3.

1.4 History of Electroencephalography

Electroencephalography was first conducted by the British scientist Richard Caton

in 1874, which recorded varying electric potential in the brain of animals such as

dogs and apes by placing electrodes directly on the brain and exterior scalp. He

observed how the electric potential changed depending on activity, location and

critically; how they faded away as the subjects expired [ric, 2016]. It was to be

several decades until electroencephalography was performed on the human brain in

1924, and the same signals were observed. The German scientist Hans Berger was

i
i

“output” — 2017/6/10 — 17:22 — page 9 — #17 i
i

i
i

i
i

Introduction and Overview 9

Figure 1.3: (Right) The right hemisphere’s cortex’s lobes.

credited for this, with his work based upon the research done by Richard Caton.

Hans Berger found the pattern of electric activity pattern of Alpha waves, which

he himself named [han, 2016]. The field still revolved around inserting electrodes

under the scalp of the subjects, and it would be until even later that technology

allowed for non-invasive measurements of the brain’s electric potential.

1.5 Electroencephalography in Practice

Modern methods of EEG are in general non-invasive and measures the power of

wave-bands. The frequency bandwidths we typically operate with are shown in

table 1.1 [S. Noachtar and Westmoreland, 1999]. These bandwidths are roughly

correct, but can vary slightly (or more significantly depending on definition) with

clinical practice and context.

i
i

“output” — 2017/6/10 — 17:22 — page 10 — #18 i
i

i
i

i
i

10 EEG Data set

Band Symbol Frequency Properties

Delta δ <4 Hz Found in babies as well as sleeping adults.

Theta θ 4 - 7 Hz Present when idling or slumbering.

Alpha α 8 - 13 Hz Present when relaxing or closing eyes.

Beta β 14 - 40 Hz Depending on intensity can range from
calm, intense, stressed or obsessive.

Gamma γ >40 Hz Present when processing multi-modal sen-
sory input and short-term memory match-
ing.

Table 1.1: Frequency bandwidths of common bands.

1.6 EEG Data set

The data set we are using is the result of an experiment conducted by Makeig

[Makeig, 2009]. The experiment involved invoking several different emotions within

31 healthy and normal test subjects whilst recording EEG-data through a 256-

sensor Biosemi EEG-headset attached to their head. This emotion study is well

suited for the use within this project, as it is conducted solely on healthy indi-

viduals and is designed to study brainwave patterns whilst instilling emotions.

A consequence of utilizing this data set is the terms and conditions that apply.

These forbid any product or service springing from any research using parts or the

entirety of the supplied data, which origins from SCCN. As such the data is for

research purposes exclusively, which is perfectly fine for the intents of this project.

The data itself is formatted into BioSig .bdf-files which can be read by EEGLAB

and also contains location files for the sensors on the scalp of each individual. The

location data is unused for now, but can serve to check the actual position of the

sensors as they were during the experiment. In its entirety the data set occupies

32GB of storage, with recordings varying from around 90 to 360 seconds with a

polling rate of 256Hz.

i
i

“output” — 2017/6/10 — 17:22 — page 11 — #19 i
i

i
i

i
i

Introduction and Overview 11

1.7 Emotiv

Modern EEG-headsets have trickled down from the laboratory to the masses,

and headsets of non-trivial quality can now be bought for around 299-799 (≈
2.500NOK-6.800NOK at time of writing). Whilst laboratory-grade EEG-headsets

are more precise, with a considerable greater amount of sensors, spatial resolution

(as seen in figure 1.4) and polling rates, they suffer from lack of portability, often

being tethered to digital apparatuses. On top of this they are rather expensive

and are difficult to put on by oneself. This gives several beneficial factors to the

cheaper versions, such as Emotiv headsets, which can be utilized nearly anywhere

and can be used without the need for cables. In this project, we are utilizing the

Emotiv Epoc+; a headset which has 14 sensors and can transmit 128 samples per

second. The headset is pictured in figure 1.5. Putting on these headsets can be

guided with the software emotiv have developed for their own headsets; EMOTIV

Control Panel. Which contains a color coded map of the sensors contact quality

for each of their headsets.

1.8 MATLAB

The MATLAB (shorthand notation for matrix laboratory) software from Math-

Works is a program designed for mathematics, and is widely used foremost in

numerical computation, simulations and visualizations. However, the software is

used for a much wider variety of tasks and solutions through the usage of exten-

sion and add-ons, such as machine learning, data analytics and signal processing

to name a few. These extensions and add-ons are available both as freeware and

paid extensions, with licensing dependent on the developers and underlying re-

sources used. MATLAB licences are freely available to me as a student at NTNU,

and as such will be used with the extension EEGLAB in this thesis as a means

to open and process the data set available from Swartz Center for Computational

Neuroscience.

i
i

“output” — 2017/6/10 — 17:22 — page 12 — #20 i
i

i
i

i
i

12 MATLAB

Figure 1.4: Spatial resolution of Emotiv Epoc. Pictured above is a typical set of
sensors utilized for an EEG-cap. Circled in orange is the subset of sensors the
Emotiv Epoc headset has. It can be seen from the picture that just as mentioned
in section 1.7, the resolution of the Emotiv Epoc is poor relative to a laboratory-
grade cap, but offers less of an hassle to equip and allows for movement.

i
i

“output” — 2017/6/10 — 17:22 — page 13 — #21 i
i

i
i

i
i

Introduction and Overview 13

Figure 1.5: The Emotiv Epoc EEG Headset. Contrary to most laboratory grade
headsets, the Epoc utilizes bluetooth, and as such has no tethers. The sensors
can be detached for safe storage, and for best results should be soaked with saline
solution before use.

i
i

“output” — 2017/6/10 — 17:22 — page 14 — #22 i
i

i
i

i
i

14 EEGLAB

1.9 EEGLAB

EEGLAB is a free extension for MATLAB which adds functionality to read several

specialized EEG data formats, as well as processing and visualizing of said data.

The data set to be used for training the RNN is formatted using BIOSIGs encoding,

and the EEGLAB software allows for the raw data to be exported to plain-text

which. Which is useful for feeding it to the RNN, seeing as the Emotiv Epoc will

output in the same format when utilizing the emokit driver covered in appendix

A.

1.10 Learning Technology

The intended usage of the system is within digital learning systems which can make

use of the full potential of accurate measurements of cognitive workload. This is

highly applicable for intelligent tutoring systems (ITSs). ITSs are a learning design

which dynamically adjusts the difficulty of the tasks supplied to the learner, based

upon measurements of the learner’s knowledge state. These types of systems will

typically incorporate models from artificial intelligence and cognitive science, and

have shown significant learning gains [Graesser, 2008]. These kinds of systems are

usually expensive but the availability of relatively cheap EEG-equipment such as

the ones mentioned in section 1.7 is increasing. Together with open source software

for machine learning such as TensorFlow it is now possible to develop systems for

research rapidly, for less resources than before.

In the field of learning technology, accurate measurement of the learner’s knowl-

edge or mental state have not seen quantitative experiments. This is however

considered as a trend for the future within the field, together with the use of arti-

ficial intelligence in digital learning systems [Chen, 2011, Chapter 1]. A common

problem with present learning systems is their lack of foundation within learning

technology, and thus do not set the learner in focus. As such it is important to

acknowledge good practice within instructional design for the design science part

of this project, to ensure the best chances for the system to succeed in its function.

i
i

“output” — 2017/6/10 — 17:22 — page 15 — #23 i
i

i
i

i
i

Introduction and Overview 15

1.11 Goals and Research Questions

The final goal is to develop an intelligent learning platform, to gain insights into

the usage of artificial intelligence to assist traditional learning. This is to be

done by adjusting the difficulty of presented tasks based on cognitive workload in

the subject. The platform is aimed to assist in learning for people with learning

disabilities or special needs, due to the cost of entry associated with an EEG-

headset. Though it is entirely possible for those willing to invest in an EEG-

headset to use the same platform to learn tasks in an efficient manner. The goal

will be represented by sub-goals, which this project will strive to accomplish:

Goal 1 Train a RNN to classify the emotions labelled in the SCCN data set.

Goal 2 Determine the cognitive state of the subject using a recurrent neural net-

work which is fed data from an EEG-headset the subject is wearing.

To introduce artificial intelligence into the system, the thought of using a RNN

to process the raw data from the EEG-headset came through. As we will see

later on, hidden markov models are appropriate for classifying processed data

from such headsets, and RNNs can be based upon similar principles. For this

emotion classification, we need to train on labelled data, which in this project

is from SCCN, and is discussed further in section 1.6. Furthermore, it is seen

as good practice within instructional design to have intelligent learning systems

which automatically adjusts the difficulty of the tasks it provides based on the

learners knowledge state.

Research question Can a recurrent neural network be used for emotion classi-

fication of EEG raw-data?

We have seen that both deep feed forward neural networks and support vector

machines can be used for classifying EEG data, with great results [Chai Tong Yuen,

2010; Duan et al., 2012]. These have however used statistics or preprocessed data

to obtain their respective results. Thus, to be able to answer whether or not a

recurrent neural network can be used for emotion classification using raw-data,

one must create an artefact to measure its qualities.

i
i

“output” — 2017/6/10 — 17:22 — page 16 — #24 i
i

i
i

i
i

16 Research Method

1.12 Research Method

In this project I have chosen to use a combination of two research methods. These

are literature study and design-science. This is done to obtain a solid foundation

in the field through both empirical data and theory. This allows for better jus-

tification of the choices taken throughout the project. Due to the technological

nature of the project, design-science is a fitting research method as we wish to

answer our research question through development of a proof-of-concept solution.

Design-Science is a set of techniques used in research on information-systems and

-technology. Research which utilize these techniques follow a process where one

acquire new knowledge through innovation, or close-to-realizable artefacts. This

knowledge is used to analyze and reflect upon the effects of interaction with these

artefacts. [Kuechler, 2013]. This part is to be done after the literature study is

complete, giving insights into previous experiments in this project’s domain, as

well as related theory to increase the quality of the first design iteration.

i
i

“output” — 2017/6/10 — 17:22 — page 17 — #25 i
i

i
i

i
i

Chapter 2

Theory and Background

This chapter will cover relevant theory for the project. Much of which is covered by

the theoretical groundwork laid out in the autumn specialization project [Hassel,

2016].

2.1 EEG sensor-labelling

2.1.1 10-20 system

The 10-20 system is a commonplace method for applying and labelling the locations

of EEG-sensors on the scalp. The name of the method stems from the spacing

between the sensors, which are 10-20% of the total distance of the scalp, either

from front to back, or left to right. The system uses a combination of letters

and numbers to label locations of the sensors. The letters F, T, C, P and O are

abbreviations for the Frontal, Temporal, Central, Parietal and Occipital lobes

respectively. The numbers 1, 3, 5, 7, and 9, which are all odd numbers, are used

to denote a location on the left hemisphere, and the even numbers 2, 4, 6 and

8 denotes a location on the right hemisphere. The value of each hemisphere’s

numbers indicates distance from the center-line separating the two hemispheres

apart. A greater value indicates the position is further away from this center-line,

while the letter z is used to identify this center-line, being the abbreviation for

zero. Furthermore the 10-20 system also specifies A, Fp and Pg as identifiers

i
i

“output” — 2017/6/10 — 17:22 — page 18 — #26 i
i

i
i

i
i

18 Perceptron

for the earlobes, frontal polar sites and nasopharyngeal respectively. Using this

system, the encoding F7 would refer to the sensor location at the frontal lobe on

the outermost position of left hemisphere.

The Emotiv Epoc EEG-headset has a spacing which uses the high-resolution ver-

sion of the 10-20 system. This has sensors located between the regular 10-20

pattern, and contains labels such as AF1, which decodes to the location between

Fp (Frontal polar site) and F (Frontal lobe), closest to the center on the left hemi-

sphere. The new labels which follow this structure are AF, CP, FC, FT, PO

and TP.

2.1.2 ABC system

Higher resolution EEG-headsets such as tethered laboratory-grade EEG-equipment

often-time utilize the ABC system, due to the large amount of sensors. These head-

sets can reach upwards of 250 sensors, and as such it makes less sense to use the

10-20 system which, indicated by it’s name, has 10-20% of the scalps front-to-back

and left-to-right distance between each of the sensors.

2.1.3 Corresponding sensor labels

To be able to utilize the existing dataset for training the RNN, we will need the

sensor labels to match up with our raw output from the Emotiv Epoc. As they

have used differing labeling systems, ABC and 10-20 respectively, we have to make

a selection of sensors from the ABC-based data to make up the single output of a

labelled sensor from the 10-20-based data output. Due to ABC’s higher resolution,

certain labels may contain a greater amount of sensors from the other system,

depending on their relative location on the scalp.

2.2 Perceptron

In machine learning, a perceptron is an representation of the brain’s ability to

recognize and discriminate. In more technical terms it can be considered a mapping

between an input real-valued vector and output binary value. Due to the nature

i
i

“output” — 2017/6/10 — 17:22 — page 19 — #27 i
i

i
i

i
i

Theory and Background 19

10-20 Label ABC sensors

Fpz E12 & E13

AF3 E31 & E32

AF4 D30 & D29

F7 F28 & F29

F3 F7

Fz E17

F4 D27

F8 D11 & D12

FC5 G8 & G7

FC6 D7 & D6

T7 G11

Cz A1

T8 C18

P7 G30 & G31

Pz A6

P8 C11 & B32

O1 H29 & A12

Oz A19

O2 B9 & A29

Figure 2.1: Corresponding sensors, the first sensor label listed for the ABC-system
is the sensor which location is closest to the location of the sensor in the 10-20-
system.

i
i

“output” — 2017/6/10 — 17:22 — page 20 — #28 i
i

i
i

i
i

20 Perceptron

Figure 2.2: Illustration of a perceptron.

of the perceptron’s binary output, it can only solve linearly separable tasks, as

shown by figure 2.3. To give a deeper understanding of the perceptron’s inners,

we can illustrate it. As seen in figure 2.2, a perceptron consists of only an input

layer and an output layer. The input layer can have as many nodes as is needed,

with a minimum of at least one. A node is simply a representation of the human

perceptron’s same component, and is a single real-value. Each node is connected

to the output node, meaning a perceptron is inherently fully-connected. Each one

of these connections has a weight, ω, associated with it. These weights are usually

determined randomly within an interval, or chosen based on domain knowledge.

To determine the output, equation 2.1 is applied. The product of each node’s

value and it’s corresponding weight is summed, then the summed value is input

to a step function. The step function is continuous, with sigmoid (figure 2.4) and

rectified linear unit (ReLu, figure 2.5) being normal functions to use. This is due

to a property the ReLu function has, which is that even though it is non-linear, it

is a result of two linear components, which grants it better properties for training.

The step function outputs 1 if the value is greater then the hyper-parameter θ,

and −1 or 0 depending on the setup else-wise. Connecting multiple perceptrons

in a network allows for computing tasks which are not linearly separable, which

brings us to section 2.3: Artificial Neural Networks.

i
i

“output” — 2017/6/10 — 17:22 — page 21 — #29 i
i

i
i

i
i

Theory and Background 21

out(t) =

1 if

∑n
i=1 ωixi > θ

−1 otherwise

(2.1)

2.3 Artificial Neural Networks

As covered in section 2.2, a single perceptron struggles due to linear separability.

If one connect several of them in a multi-layered network though, one can achieve

complex behaviour, and given a big enough neural network one can represent

any function [Goodfellow et al., 2016]. ANNs are simplified models of the inner

workings of the human brain, where each perceptron can be seen as a neuron.

Whilst the human brain is estimated to have 8.6 ∗ 1010 neurons [hum, 2017], a

typical ANN considered big will have approximately 5.5∗ 106 neurons [Goodfellow

et al., 2016, p 27], underlining the oversimplification they are compared to the real

deal. A feed forward network can be seen as a directional acyclic graph, which

has an input layer, hidden layer(s) and an output layer. This can be seen in figure

2.6. As a rule of thumb, it is better to increase the depth of an ANN rather than

increasing the width of the existing layers to increase the amount of information

it can store. This can be seen from figure 2.7.

To make an ANN more robust one can apply different techniques during training.

A good approach is to use a technique called dropout, wherein every hidden node

has an assigned chance to not be included in the training epoch. This results in

greater robustness at the cost of how much information the ANN can store, and

thus the size of the ANN should be adjusted accordingly. The increased robustness

comes from the ANN not being able to store certain features within single neurons,

as it cannot be certain that it is present. After training the ANN will function

without dropout, granting redundancy in the trained network which in turn will

make it less prone to overfitting and grant better accuracy for unseen scenarios.

To furthermore reduce test error, one can apply several forms of regularization.

These techniques often result in a trade-off of accuracy during training for accuracy

during testing. Two common shapes for regularization is L1 and L2 regularization.

i
i

“output” — 2017/6/10 — 17:22 — page 22 — #30 i
i

i
i

i
i

22 Artificial Neural Networks

Figure 2.3: Screen-grab from TensorFlow Playground, showing a trained percep-
tron.

i
i

“output” — 2017/6/10 — 17:22 — page 23 — #31 i
i

i
i

i
i

Theory and Background 23

0
0

1

x

f
(x

)
=

1
1
+
e−

x

Figure 2.4: The sigmoid function; a very commonly used activation function for
ANNs. In recent times studies have shown that ReLu (figure 2.5) grants better per-
formance for feed forward ANN, and acts as an de-facto default for the activation
function for these ANNs for the time being.

0

0

x

f
(x

)
=
m
a
x

(0
,x

)

Figure 2.5: The rectified linear activation function.

i
i

“output” — 2017/6/10 — 17:22 — page 24 — #32 i
i

i
i

i
i

24 Artificial Neural Networks

Figure 2.6: A typical feed forward network, on the left we see the entire network
architecture with two input nodes fully connected to a single hidden layer consist-
ing of two hidden nodes with a single output node. On the right is a compacted
notation of the same network, which has the vectors W and ω representing the
weights going from input to hidden as well as from hidden to output. This is a
common way to model an ANN more compactly.

Figure 2.7: The effectiveness of increasing the number of hidden layers in an ANN.
The starting number in the legend denotes the number of hidden layers, whilst the
following text denotes how the layers are connected.

i
i

“output” — 2017/6/10 — 17:22 — page 25 — #33 i
i

i
i

i
i

Theory and Background 25

These introduce a new hyper-parameter for the ANN, denoted by λ. This hyper-

parameter is found within an addition to the cost function, given by C = C0 +
λ
2n

∑
w

w2 for L2 regularization, where n is the size of our training set. The L2 is

similar, only with a change in the additional cost term: C = C0+ λ
n

∑
w

|w|. Both of

these regularization forms are weight penalizing, and will prefer smaller weights,

often resulting in a more sparse ANN. L1 is also a common method for feature

selection, where weights close to zero have small to no impact on the resulting

output, and can be removed.

2.4 Recurrent Neural Networks

In this specialization project we will be using a recurrent neural network to pro-

cess the data, this section will explain the rationale behind this choice. RNNs are

artificial neural networks specialized for processing sequential data. Just as convo-

lutional neural networks excel at processing grid-structured data such as images,

RNNs are great for sequence data. They can scale to infinitely long sequences,

and can handle variable-length sequences. These are great characteristics for our

intended use, as we have data that is inherently sequential over time. As men-

tioned in chapter 1 hidden markov models have seen usage in classifying data from

EEG-equipment with success [Shi Zhong, 2002], and uses the markov assumption,

just as is commonly (but not always) done in directed graphical models of RNNs.

Furthermore, a common architecture for RNNs fits our needs exceptionally, which

will be covered later on in this section.

A RNN consists of similar components to a normal feed forward network described

in section 2.3, and the input layer remains unchanged. The main difference is in the

hidden layer, where we in most cases have cyclic connections on the hidden nodes.

It is these connections that allows the network to store information of the past.

Furthermore, we almost always have an output layer, which takes into account

the information stored in the state to make predictions. This state becomes a

sort of fixed-precision summary of the past sequence of inputs up to time step t.

Depending on the scenario, some aspects of the previous input sequences can be

i
i

“output” — 2017/6/10 — 17:22 — page 26 — #34 i
i

i
i

i
i

26 Recurrent Neural Networks

stored with more precision than others, which is one of the RNNs learning aspects.

An important aspect of RNNs is parameter sharing. The network shares the same

weights across several time steps. Sharing happens as each output is a function

of the nodes contributing to the previous output (time step t − 1). Furthermore,

each output has the same update rule applied as the previous outputs. This has

the effect of allowing parameter sharing through many layers of the RNN. Another

feature of RNNs is having cycles. Cycles influence a given variable’s value at a

future time step, with its present value. A normal way to represent discrete outputs

is to regard the output o as unnormalized log probabilities for each possible value of

the variable. We can then apply the softmax function to get a vector of normalized

probabilities for the output.

Unfolding is the process of representing a recurrent neural network as a computa-

tional graph. As given by the equation s(t) = f(s(t−1); θ) [Goodfellow et al., 2016],

where s(t) is the state of the system as a parametrized function of the previous

state. For the example of unfolding this recurrent system for time step t = 3:

s(3) = f(s(2); θ) = f(f(s(1); θ); θ) we observe the unfolded representation using the

same value for the parameter θ for all time steps, illustrating parameter sharing.

This factorization into repeated uses of the function f provides two advantages:

1. Because we have a transition of states, we do not need a fixed input size.

2. We can reuse the same transition function f with the same parameters at

every time step.

This makes it so that our RNN can handle any sequence length, and generalize to

sequence length that did not appear in the training set.

There are several architectural decisions that will affect how an RNN behaves, and

which characteristics it will possess. This in turn affects which problems the RNN

is suited for. Therefore some insights into different design patterns for RNNs is

useful for establishing a base, upon which to design the final network architecture.

The design pattern seen in figure 2.8 is a good design when wanting to summarize a

fully observed sequence of data. This has the downside of not producing an output

i
i

“output” — 2017/6/10 — 17:22 — page 27 — #35 i
i

i
i

i
i

Theory and Background 27

at each time step, as this is not it’s intended use. A more common approach, with a

balanced performance for many use-cases is the design pattern illustrated in figure

2.9. This approach grants an output at each time step, and preserves information

of the past in through its hidden nodes. The main drawback with this design is

that the network might be tough to train, which is a common catch of RNNs in

general. The last design pattern covered aims to alleviate this drawback. As seen

in figure 2.10 this is done by only allowing the network to preserve information

of the past through connections from the output at the previous time step to the

present hidden nodes. This makes the network less powerful than the one seen

in figure 2.9, as the output generally will not be of a high enough dimension to

store useful information. The advantage is that through a concept called teacher

forcing, one can parallelize training of the network.

2.5 Long Short-Term Memory

The Long Short-Term Memory, commonly abbreviated LSTM, is a RNN modeled

as such to mitigate the problems associated with vanishing and exploding gradients

in deep RNNs. This problem arises in RNNs due to repeatedly applying the same

function. This leads to cases which are highly non-linear. A vanishing gradient

represents earlier hidden layers learning more slowly than later layers, due to

a steeper gradient in later layers. This unbalance grows quickly out of hand,

and makes it difficult to learn long-term dependencies. An exploding gradient

represents later layers learning more slowly than earlier layers, due to a steeper

gradient in earlier layers. Which means that the network will forget most of what

it has already learned, although exploding gradients are more rare than vanishing

ones.

The LSTM model introduces loops within itself, granting the ability to have paths

through multiple time steps, allowing for information to flow for longer periods.

Another critical concept LSTM possesses, is to have a dynamic weight for the gated

self-loop. This allows for adjusting the time scale without adjusting parameters, as

the model can change the time scale based upon the given input because the time

constants are output by the model itself. To summarize; the weight of the hidden

i
i

“output” — 2017/6/10 — 17:22 — page 28 — #36 i
i

i
i

i
i

28 Long Short-Term Memory

Figure 2.8: Design pattern commonly used for summarizing sequence data [Good-
fellow et al., 2016]. Information over time is stored in the hidden nodes, and finally
summarized by the output node.

i
i

“output” — 2017/6/10 — 17:22 — page 29 — #37 i
i

i
i

i
i

Theory and Background 29

Figure 2.9: General design pattern for RNNs, powerful for multiple purposes
[Goodfellow et al., 2016].

i
i

“output” — 2017/6/10 — 17:22 — page 30 — #38 i
i

i
i

i
i

30 Long Short-Term Memory

Figure 2.10: Design pattern illustrating teacher forcing [Goodfellow et al., 2016].
By during train time inputting the optimal solution, y to each time step’s hidden
nodes, one achieves parallel execution. This does however make the network sus-
ceptible to variations during test time, thus a common approach to mitigate this
behaviour is to mix up the parallel execution, instead inputting the actual output
of the network, increasing robustness.

i
i

“output” — 2017/6/10 — 17:22 — page 31 — #39 i
i

i
i

i
i

Theory and Background 31

−2
−1

0
1

2 −2
−1

0
1

2

−1

0

1

Figure 2.11: Vanishing gradient.

node controlling the gated self-loop is now dependent on context, rather than a

fixed value. This context is given from the input (or the output of the previous time

step), and has granted the RNN a great additional characteristic. LSTM has been

successfully utilized in applications such as unconstrained handwriting recognition,

speech recognition, handwriting generation, machine translation, image captioning

and parsing [Goodfellow et al., 2016]. At the time of writing, LSTM has become

the go-to model for modern RNNs, with GRU (Gated Recurrent Unit) still being

experimented with as a simpler implementation.

The architectural changes in LSTM contrary to the commonplace architecture of

the basic RNN lies mostly in the usage of gates. Instead of the usual hidden

units we operate with ”LSTM cells”. These cells are connected recurrently to

each other and have an inner structure. It is within this structure gates come

into play, manipulating an internal state (which has the self-loop) in various ways.

A normal neuron acts as the input node, but its behaviour is determined by the

usage of internal gates. These gates ”gate” the flow of information, by using the

sigmoid activation function layer, which outputs a value between 0 and 1. This

value decides how much the information flowing through affects the state of the

i
i

“output” — 2017/6/10 — 17:22 — page 32 — #40 i
i

i
i

i
i

32 Long Short-Term Memory

node, where a value of 0 means the gate let’s no information through, and a value

of 1 means letting all the information through.

The first gate of an LSTM cell (which can be seen in figure 2.12) is the forget-

gate, which decides what information can be discarded from the previous cell

state (Ct−1). The output ft of the forget-gate is given by the equation seen in

2.2. Secondly, we have the input-gate, which decides which new information we

want to add to the state. The input-gate is also sigmoidal, and its equation it can

be seen in 2.3. The output from the input-gate is multiplied with a selection of

candidates, which scales the information to be added to the state. The selection

of candidates is done through a non-linear activation function layer, such as tanh

as seen in figure 2.12 [Goodfellow et al., 2016, p. 411]. The selection function can

be seen in equation 2.4. The output from it and the candidates are multiplied

before being added to the state updated by the output from the forget-gate. The

final state is then given by equation 2.5, and is sent to the next cell. Lastly, we

have the output-gate which controls what information is to be suppressed before

being sent to the following cells (both in width and depth). The output from the

gate is multiplied by taking tanh of the state (Ct) to make the values within the

range [−1, 1]. The last two functions are given by the equations 2.6 & 2.7. As seen

in figure 2.12 all gates are affected by the input, resulting in better sensitivity to

context.

Common variables for equations 2.2, 2.3, 2.4 & 2.6 are given below:

W The weight vector of the node

ht−1 The hidden node vector for time step t− 1

b The bias vector for the node

ft = σ(Wforget ∗ [ht−1, xt] + bforget) (2.2)

it = σ(Winput ∗ [ht−1, xt] + binput) (2.3)

i
i

“output” — 2017/6/10 — 17:22 — page 33 — #41 i
i

i
i

i
i

Theory and Background 33

Figure 2.12: LSTM cell architecture, where the forget-, input-, candidate selection
and output-gate are denoted by the yellow boxes. Each green box (also labeled
’A’) is a self-contained LSTM cell, with its internal structure shown by the circular
operators and vectors or matrices denoted by the arrows. The topmost unnamed
arrow is the internal state Ct which function can be seen in equation 2.5.

Ĉt = tanh(WC ∗ [ht−1, xt] + bC)) (2.4)

Ct = ft ∗ Ct−1 + (it ∗ Ĉt) (2.5)

ot = σ(Woutput ∗ [ht−1, xt] + bo) (2.6)

ht = ot ∗ tanh(Ct) (2.7)

By default, the LSTM cells in TensorFlow uses the tanh activation function within

itself, which can be seen plotted in figure 2.13. This is due to the need for a

function which outputs values in the range [−1, 1], as covered earlier in this section.

Furthermore, we want this activation functions second order derivative to go on a

long time before converging to zero, to reduce the detriment of vanishing gradients.

i
i

“output” — 2017/6/10 — 17:22 — page 34 — #42 i
i

i
i

i
i

34 EEG

0

0

x

f
(x

)
=

ex
−
e−

x

e−
x
+
ex

Figure 2.13: The tanh activation function found as default within LSTM cells in
TensorFlow.

2.6 EEG

EEG, short for Electroencephalography, is the passive measurement of change in

polarity in the dendrites of a cluster of neurons, typically used in the field of

neuroscience. Because the change of this polarity is too small to measure for

single neurons, one can only reliably measure local field potentials (LFPs). This

means that when thousands of neurons spatially close to each other activate or

spikes, EEG-equipment can pick up on this potential. The output signal is often

measured in micro-volts (µV) after amplification. Modern EEG-equipment such

as caps and headsets share common strengths and weaknesses. These strengths

are that they are rapid, and operates in the scale of a couple of milliseconds

(typically 5-10ms), whilst not adversely affecting the brain, passively listening in

on the neural activity found within. The main drawback is that compared to other

methods, such as magnetic field imaging (MFI), they have relatively poor spatial

resolution [Gaudestad et al., 2013]. This results in a lower resolution output from

the EEG-equipment, and a greater need for signal processing to get meaningful

data.

i
i

“output” — 2017/6/10 — 17:22 — page 35 — #43 i
i

i
i

i
i

Chapter 3

Results

Training on the SCCN dataset gave great results, where the RNN would correctly

label the test-set with over 99% accuracy. The RNN was implemented such to

optimize its classification potential for EEG data, with several design choices and

parameters selected to support it in doing so, which will be detailed further in

section 2.4.

Using the open source driver, emokit [Cody Brocious, 2010], I was able to extract

raw sensor data from the Emotiv Epoc EEG-headset. It was possible to receive

the data at a frequency of 128Hz, which is sufficient for evaluating short samples,

as found by Mu Li [2009].

The output from a one and a half minute recording can be seen in figure 3.1. The

subject sat and watched a Khan-Academy video on calculus during the recording,

and running FFT on the resulting raw data for the sensor AF3 saw gamma-waves

as the most prominently changed frequency relative to the baseline measurement,

coinciding with the literature covered in chapter 1.

The insights into the conceptually different RNN architectures have led to a RNN

with the architecture described by figure 2.9. This allows it to store a lot of

information in high dimensionality, and generate an output at each time step.

Furthermore, the RNN use LSTM-cells as they have shown great performance,

and could assist in independently learning when to forget about the information

of previous signals.

i
i

“output” — 2017/6/10 — 17:22 — page 36 — #44 i
i

i
i

i
i

36

F3 V F3 Q F4 V F4 Q P7 V P7 Q FC6 V FC6 Q F7 V F7 Q

-256 16 528 8 410 8 264 24 271 16

-254 16 532 8 404 8 254 24 216 16

-260 16 524 8 411 8 271 24 257 16

-248 16 539 8 404 8 253 24 304 16

-259 16 518 8 404 8 257 24 296 16

-265 16 526 8 408 16 272 24 293 16

-258 16 537 8 407 16 250 24 296 16

-266 16 519 8 406 16 264 24 289 16

-238 16 535 8 397 16 260 24 307 16

-199 16 504 8 401 16 283 24 373 16

-457 16 589 8 354 16 211 24 82 16

-194 16 525 8 416 16 274 24 409 16

397 16 344 8 463 16 466 0 1082 16

-1695 16 906 16 189 16 -138 0 -998 16

-151 16 527 16 528 16 365 0 994 16

2222 16 -24 16 682 16 973 0 3412 16

-2163 16 924 16 106 16 -274 16 -1236 16

-750 16 563 16 461 16 298 16 -79 16

1660 16 127 16 556 16 812 16 1944 16

-1063 16 722 16 195 16 -45 16 -618 16

-504 16 492 16 425 16 367 16 -117 16

-4 16 485 16 348 16 289 16 3 16

268 16 564 16 337 16 160 16 72 16

Table 3.1: Excerpt of raw data from the Emotiv Epoc headset. V denotes the
sensor value, whilst Q denotes the sensor’s contact quality with the scalp in the
set {0, 8, 16, 24}. This is output through the emokit open source driver [Cody Bro-
cious, 2010], and measured in micro-volts (µV).

i
i

“output” — 2017/6/10 — 17:22 — page 37 — #45 i
i

i
i

i
i

Results 37

Index Code Value

0 100 Button press

1 1 Audio instruction

2 2 Baseline

3 3 Audio instruction

4 4 Audio instruction

5 5 Audio instruction

6 6 Relax

7 7 Audio instruction

8 8 Preparation

9 9 Awe

10 10 Frustration

11 11 Joy

12 12 Anger

13 13 Happiness

14 14 Sadness

15 15 Love

Index Code Value

16 16 Fear

17 17 Compassion

18 18 Jealousy

19 19 Content

20 20 Grief

21 21 Relief

22 22 Excitement

23 23 Disgust

24 24 Audio instruction

25 25 Baseline

26 26 Audio instruction

27 27 Reserved

28 28 Reserved

29 29 Reserved

30 30 Baseline End

31 31 Reserved

Table 3.2: Mapping from event code with corresponding value to index in log-
probability output vector from the RNN. If the highest value in the vector is index
9, with the value of 0.63, this can be read as the RNN stating the given input is
to be classified as the emotion of awe, with 63% certainty. As seen above, only
values in the range [9, 23] are mapped to pure emotions, with all being present as
the intent is to utilize raw data, and any information contained in the time-series.

i
i

“output” — 2017/6/10 — 17:22 — page 38 — #46 i
i

i
i

i
i

38 RNN

Although the project did not result in a fully-fledged learning system, the RNN

could serve as the inner workings of a fully developed ITS. Which can be done by

retraining on data in the same unit (µV) as the raw data sampled from the Emotiv

Epoc. Given the observed performance of the network, this should be considered a

good foundation for the remainder of the ITS-software, and should not differ with

the proposed data.

3.1 RNN

The implemented RNN will be documented and discussed in this section. Certain

implementation choices affects the characteristics of the network, and as such needs

to be described to allow for further iteration and restructuring of the network to

optimize its performance.

de f c r e a t e l s tm c e l l s w i t h d r o p ou t (num hidden , dropout prob) :

c e l l = t f . nn . r n n c e l l . LSTMCell (num units=num hidden ,

s t a t e i s t u p l e=True)

We add Dropout during t r a i n i n g to ensure robus tne s s in the

network #

i f dropout prob != 0 . 0 :

c e l l = t f . nn . r n n c e l l . DropoutWrapper (c e l l=c e l l ,

output keep prob=1−dropout prob)

re turn c e l l

Figure 3.1: Code listing showing the creation of an LSTM-cell layer and wrapper
in TensorFlow. num hidden denotes how many cells there are in the layer. The
DropoutWrapper encapsulates the LSTM cell (layer) and makes it so that each
cell in the layer has a dropout prob% chance to not be included in the training
run. A consequence of this is that multiple cells learn the same function, making
it necessary to increase the number of cells in the layer. During sampling of the
network the dropout prob is set to 0.0, as we want to utilize all of the hidden units.

i
i

“output” — 2017/6/10 — 17:22 — page 39 — #47 i
i

i
i

i
i

Results 39

. . .

p r e d i c t i on = t f . nn . s o f t s i g n (t f . matmul (l a s t , w) + b ia s)

. . .

Figure 3.2: Code listing showing the usage of the softsign function instead of
softmax function for the final output of the network. Whilst softmax is most
commonly used within ANNs, we utilize softsign in our implementation so that
each output is the log probability, as opposed to softmax making the cells output
the sum of probabilities. As an example softmax with two output cells would give
the following output vector: [0.125, 0.875] (=1.0). Meanwhile softsign allows each
cell to give the log probability: [0.22, 0.91].

3.1.1 Inputs and outputs

The RNN has an input layer that handle sequences up to a length of 29, this is

due to the structure of our training data, as discussed in section 1.6, in which

each input is the output of a single sensor for timestep t. When sampling from

the RNN using the Emotiv Epoc, we only input, at most, 14 values. As such, we

have to pass into the RNN how many values are present in the sequence, so it

can know when to stop unrolling, and that the rest of the vector is zero-padding.

During runtime, any sensors with a signal quality level of 0 will be excluded from

the input.

Due to the standard practice of zero-padding short vectors, we want to remain from

utilizing zero as an encoding. Therefore the output is a vector of log-probabilities,

each mapping to the networks certainty of a possible label or classification. This

mapping can be seen in table 3.2.

3.1.2 Hyperparameters

As mentioned in section 2.3 artificial neural networks require careful adjustments

to their inherent hyperparameters to avoid pitfalls such as overfitting, excessively

long training times, underfitting and more. A sentence often used to express

the nature of adjusting these hyperparameters in ANNs is just as apt for this

i
i

“output” — 2017/6/10 — 17:22 — page 40 — #48 i
i

i
i

i
i

40 RNN

project, and is worded thusly: ”Adjusting hyperparameters is more of an art than

a science.”. In short; it requires a lot of trial and error. Furthermore, it is difficult

to grasp the direct consequences due to being affected by random initiation of

other values. Good values from one ANN architecture might not be as decent for

another.

3.1.3 Learning rate

Choosing a good value for the learning rate is often impactful on training efficiency

and performance of the ANN. Too high of a value and one might not achieve the

desired accuracy of the network. Too low and one ends up with excessively long

training times. For our learning parameter value, one first needs to assess the char-

acteristics of the optimizer utilized. In my code, the TensorFlow-implementation

of Adam Optimizer is used. A characteristic of this optimization method is that

the learning rate passed to it is normalized throughout the training time-steps.

Hence, a learning rate schedule is absent from my code, as the Adam Optimizer

already adapts the learning rate on a lower level than a decaying learning rate

otherwise would.

i
i

“output” — 2017/6/10 — 17:22 — page 41 — #49 i
i

i
i

i
i

Results 41

Figure 3.3: > 99% accuracy on both test and training set at 8000 epoch with
learning rate = 0.0001

i
i

“output” — 2017/6/10 — 17:22 — page 42 — #50 i
i

i
i

i
i

42 RNN

i
i

“output” — 2017/6/10 — 17:22 — page 43 — #51 i
i

i
i

i
i

Chapter 4

Evaluation and Conclusion

The contents covered throughout the master thesis will be evaluated in this chap-

ter.

4.1 Evaluation

The work of Mu Li [Mu Li, 2009] shows great promise in using band powers and

specifically the gamma wave for determining mental states. Other experiments

have also shown how regular feed-forward networks can be used to classify EEG

data [Ruo-Nan Duan, 2012; Claude Robert, 2002], as well as how correlation be-

tween channels can be used for the same purpose [Saurabh Diwaker, 2016], and

the implementation of a RNN was successful in classifying unseen data from the

SCCN data set. Furthermore, the experiment conducted by Yuksel et al. [Yuksel

et al., 2016] has shown how more accurate measurements of mental states can be

used to dynamically adjust the difficulty of tasks, and from instructional design

theory we know this to benefit the learning of the subject [D’Mello et al., 2008].

4.2 TensorFlow

TensorFlow is one of many machine learning frameworks, and exists as both python

and C implementations. Other options of varying popularity are PyTorch, Keras,

Lasagne, Caffe, PyBrain and more. All of the above are implementation for gen-

i
i

“output” — 2017/6/10 — 17:22 — page 44 — #52 i
i

i
i

i
i

44 TensorFlow

eral machine learning in the python programming language, although one could

certainly use other languages, such as MatLab or C#. The main reason behind

TensorFlow as the machine learning framework of choice comes down to prior ex-

perience. An in-depth course in deep learning, which focused on best-practice for

modern deep neural network implementations was taken alongside the specializa-

tion project, which this thesis is a continuation of. This course utilized TensorFlow,

and as such, experience and understanding was gained, which could be put to good

use in this project. There certainly are reasons to be had for using several of the

alternative languages listed, and perhaps the most recurring argument for which

is the suspected slower speed of TensorFlow. Whilst it may not the fastest, it

does have several other important qualities, such as good documentation for all

versions, a vast number of examples and users as well as several implementation

perks such as TensorBoard and TFRecords, which is covered more in-depth in

subsections 4.2.1 & 4.2.2. Thus the sum of my own background, together with

perks and qualities of TensorFlow ended up being the deciding factor for it as the

framework for the project.

4.2.1 TensorBoard

Setting up logging for different variables and performance metrics within the train-

ing and test runs of the code ends up costing some performance, but is essential

for spotting potential errors in code, architecture and performance of the network

early on. As such this is implemented in the project through the use of log-files

to be read by TensorFlow’s TensorBoard module. Thus, seeing how the RNN per-

forms in terms of the time it takes to reach optimal accuracy metrics, the benefits

heavily outweighs the drawbacks. Furthermore, the benefit of being able to visu-

ally display the performance and inner workings of the RNN to people outside the

project scope and AI in general, functions as a communication and documentation

feature allowing others interested in the field of EEG and data processing with

RNNs to participate or make use of the results given in this project.

i
i

“output” — 2017/6/10 — 17:22 — page 45 — #53 i
i

i
i

i
i

Evaluation and Conclusion 45

Figure 4.1: Visualization of test accuracy for 7 different runs via TensorBoard. The
graph shows, in a cleanly fashion, that the different runs converged to around 87-
99% accuracy at different number of training epochs with learning rates spanning
from 0.01 to 0.00001.

i
i

“output” — 2017/6/10 — 17:22 — page 46 — #54 i
i

i
i

i
i

46 TensorFlow

Figure 4.2: Histogram of predictions and weights over an 8000 epoch run. Note
how the RNN prefers to output values close to either -1 or 1. This is a positive
trend, as it means the RNN prefers to be certain when it can, stating that it is very
unlikely or likely every emotion classification is is corrrect for the given input. The
bathtub-shape of the accuracy histogram has been observed for almost every run.
By default the histogram for weights and biases have been removed, due to issues
within TensorFlow, which crashes if any of the containing values get sufficiently
close to zero, which causes the histogram function to produce NaNs.

i
i

“output” — 2017/6/10 — 17:22 — page 47 — #55 i
i

i
i

i
i

Evaluation and Conclusion 47

4.2.2 TFRecords

The usage of TFRecords as the data input format, has its benefits and drawbacks.

Summarized concisely, TFRecords can be seen as very quick to load into the net-

work, but very slow to write. This makes them well suited for data intensive tasks

such as feeding batches of images into a CNN, and very long sequences as in this

case. Additional benefits to using TFRecords is that it allows for simplified code

within the TensorFlow API, where certain functions are exclusively available for

this data format such as automatic batching and randomization. Furthermore, it

is suitable for the concept of clean coding, as it will automatically fetch the neces-

sary data for TensorFlow functions when run within a TensorFlow session. As such

it allows for fewer lines of code, and increases readability. Additionally, it serves

as an encapsulation of the data, separating data processing from the TensorFlow

main loop. Lastly, it allows distributed learning, which is important. This is due

to the training time associated with sufficiently large data sets, wherein training

on a single computer is unreasonable. In real life applications of deep learning

it is common to utilize clusters to train to make ever increasing training times

feasible even for incredibly large data sets. This feature of TFRecords contributes

enormously to the ease of furthering the work already done within this thesis and

thus, is the data format of choice.

4.3 Summary

Although the brain is a complex organ, high-precision measurement methods such

as EEG show great potential for using information about our brain states in intel-

ligent systems. The fields of both artificial intelligence and cognitive sciences have

shown beneficial usages within EEG, which likely could grant benefits for modern

learning systems [Yuksel et al., 2016]. Multiple RNN architectures and input for-

mats were considered before a RNN was implemented, and displayed great results

in terms of accuracy on unseen EEG-data from the SCCN data set. The RNN got

to 99% accuracy of emotion classification of raw data on both the training- and

test-set from SCCN, but did not generalize when given variable-length raw data

input from the Emotiv Epoc. Proposed remedies to this have been discussed in

i
i

“output” — 2017/6/10 — 17:22 — page 48 — #56 i
i

i
i

i
i

48 Conclusion

section 4.9, and further research questions and goals have been defined as well.

Because of the lack of generalization, efforts into developing the overlying software

for the ITS was not pursued.

4.4 Conclusion

Research has shown that knowledge over a learner’s emotion, flow and cognitive

state can be utilized to assist in learning in the form of ITSs, as seen in the sys-

tems of Yuksel et al. [Yuksel et al., 2016] & D’Mello et al. [D’Mello et al., 2008].

As shown in experiments conducted by Claude Robert [Claude Robert, 2002] &

Saurabh Diwaker [Saurabh Diwaker, 2016] EEG-signals contain information which

can be processed to determine emotional states, which makes it suitable for this

purpose. Complementing equipment which, as elaborated in section 1.7, is be-

coming more available and affordable, making them feasible for use within ITSs.

The intent was to combine all of the above with machine learning in the form of a

RNN to do emotion classification based on EEG raw data, but the project did not

reach such a state. The RNN was however successful in its emotion classification

using only raw data in the form of an official SCCN data set, and seems suited for

further usage in this area.

4.5 Discussion

An important design choice within the project was the choice of whether to feed

the training data into the network structured as time-series data for each sensor,

or as a snapshot of all the sensors’ value. The implementation ended up going

with utilizing a snapshot of all the sensors. This was done to potentially make use

of correlations found between the sensors, and as such, the different lobes of the

brain’s cortex. This was a shortcoming of other studies involving ANNs described

by Saurabh Diwaker [Saurabh Diwaker, 2016], where the correlation of multiple

band were not explored for classification purposes. The results showed that the

correlation of multiple bands could serve to classify the EEG-output. Thus, the

mentioned design decision was made so that the network could possibly learn to

i
i

“output” — 2017/6/10 — 17:22 — page 49 — #57 i
i

i
i

i
i

Evaluation and Conclusion 49

utilize the correlation as a classification measure in addition to single-band pattern

classification.

Through the findings of Yuksel et al. [Yuksel et al., 2016] the potential of an ITS

combined with an brain-computer interface (BCI) is quantified. Through near-

infrared readings of oxyhemoglobin-levels in the frontal cortex of the brain are

used in dynamically changing the difficulty of the provided task. The experiment

showed that the ITS granted better results than the control group learning without

any assistance, and allowed for individual pacing, making it able to respond to

individual differences. The experiment references several methods of measurement

that allows for determining cognitive workload in the prefrontal cortex, such as

functional magnetic resonance imaging (FMRI), positron emission tomography

(PET) and functional near-infrared spectroscopy (fNIRS) [Yuksel et al., 2016].

The findings of Ruo-Nan Duan [Ruo-Nan Duan, 2012] coincide with those of Mu Li

[Mu Li, 2009], who concluded that the gamma band is suitable for EEG-based

emotion classification. This is beneficial for both training and tuning of the RNN,

as one could supervise the training of the network more directly with this domain

knowledge.

4.6 Sources of error

There are, as with any research projects, several factors of uncertainty and er-

ror present. The data set provided by SCCN displays as µV when plotted with

statistics within EEGLAB, but when exported to raw textual data a DC offset is

applied, making the values abnormally large. This offset is unknown, and as thus

negatively affects the feasibility of correctly predicting the labels of input data

from an EEG-headset from other sources than the data set provided by SCCN. As

an attempt to remedy this issue, the mean value of each channel was subtracted

from the channels values within EEGLAB, before being used further in training

the RNN. This did not affect the outcome, with the RNN still not generalizing

enough for the Emotiv Epoc EEG-headset to be usable.

The selection of sensors to utilize in training of the RNN was selected due to their

i
i

“output” — 2017/6/10 — 17:22 — page 50 — #58 i
i

i
i

i
i

50 Sources of error

relative distance to the location of their Emotiv 14-channel counterpart. Due to

the higher resolution of the Biosemi headset used in the SCCN data set, this

selection results in more sensors being included than the 14 sensors on the Emotiv

Epoc headset. The selection incurs another potential error source, as it might not

properly represent the data of a 14-channel EEG-headset, as well as the possibility

of the amount of selected sensors being incorrect. Therefore the selection has been

documented for further analysis and reflection after the initial design iteration.

Due to memory limitations on the graphic card on the laptop used for training the

largest RNN that could be processed was a 2-layered RNN with 15 LSTM-cells

in each layer. This has not seemed to affect the accuracy of the network, but

could serve to limit the abilities of the network for bigger data sets, which could

negatively affect the generalization of the RNN.

There are benefits and drawbacks of utilizing TFRecords, discussed in section

4.2.2, the drawback of long serialization times affected the project. To process all

the data would take upwards of 80 hours, making it difficult to try remedies to the

DC offset applied to the SCCN data set. As such only a tenth of the data ended

up being utilized in the current RNN implementation, which could also prohibit

the generalization aspect of the RNN.

Lastly, to emphasize a pitfall not avoided in many attempts at obtaining the po-

tential found within artificial neural networks; a probable, but most likely fictional

story: The military wanted a computerized system to detect camouflaged tanks,

and to do so a research team utilized an artificial neural network. This network

was fed with 50 images of tanks hiding in forest and bushy environments, and 50

images of trees with no tanks in them whilst 50 more of the each of the respective

images taken by the research team was put away for testing the network. The

network’s accuracy converged nicely, and the results from testing on the reserved

images were just as good. However, when the military users tested the system

on their own photos the network spewed out results seemingly at random. Not

surprisingly the military was not pleased. After several hours of figuring out why

this had happened, the research team observed that of the 200 photographs they

had taken, the 100 containing tanks had been taken on a cloudy day, whilst the

i
i

“output” — 2017/6/10 — 17:22 — page 51 — #59 i
i

i
i

i
i

Evaluation and Conclusion 51

rest had been taken under the sunlight of a clear sky. The ANN had been asked

to separate images with, and without, tanks. And had done so, not by actually

detecting features present in tanks, but by linear separation of the color of the sky.

The moral of the story is that when the size of an ANN reach more than a hand-

ful of nodes, it becomes difficult to visually represent the knowledge state of it.

Therefore it is of importance to analyze or visualize what the RNN actually learns.

4.7 Contributions

In the field of instructional design, there is a an overall lack of newer experiments

and quantification of newer findings in practice [Chen, 2011]. A future trend is

the usage of artificial intelligence to improve the usability and performance of

learning systems, but has not been properly explored as of yet. The same is true

for cognitive sciences, in which the focal point is upon accurate measurements of

cognitive- and knowledge-states of the users of learning systems.

4.8 Impact

As discussed in chapter 3 the RNN implemented has shown great accuracy, but

has not been able to generalize properly due to the processing applied to the data

used. As such no further impact can be measured from the software. The project

did however reach one of the goals defined in section 1.11, to classify the emotions

found labeled within the SCCN data set, with great accuracy, utilizing raw data.

4.9 Future Work

Seeing as the intended goal was not reached within the project, future work con-

sists of finalizing the adjustments needed to feed data from the Emotiv Epoc

EEG-headset to the trained RNN with the DC offset found within EEGLAB. Al-

ternatively one could conduct an experiment like the one conducted by Makeig

[Makeig, 2009], utilizing the Emotiv Epoc EEG-headset to re-traing the RNN to

go forth with implementing the overlaying software and quantify its performance.

i
i

“output” — 2017/6/10 — 17:22 — page 52 — #60 i
i

i
i

i
i

52 Future Work

Thus, further part-goals should be set up to lead the progress for further develop-

ment and research in the project:

Goal: Gain access to pure µV EEG-readings, either through a new experiment or

processing of the SCCN data set.

Goal: Retrain the RNN, adjusting architecture if necessary.

Goal: Utilize the emotion-recognition gained through the RNN to develop the

overlying learning system software.

Additional research questions that could serve to improve the quality should also

be defined and sought out to answer during further work. Most notably the one

listed below, which also is discussed in section 4.5.

Research question Is the data patterns found within a variable length time-

series from a single sensor’s readings more suitable for emotion recognition

than that of the patterns within a single time step of all available sensors.

This question can be tested through trying to falsify its claim by training different

RNNs, where the architecture of one is set up to input all the sensor data from a

single time step, whilst another inputs the value from a single sensor over a time-

series to its inputs where each input cell receives the value from a specific time t

within the series.

Research question Can band powers be utilized to provide a learner with chal-

lenging tasks dynamically?

Within the instructional design view cognitivism there is a focus on knowledge

states, and memory. Learning is not necessarily what one can reproduce, but

what one knows [Chen, 2011]. Accurate measurements of the cerebral cortex could

serve a powerful insight into this view of learning, and thus the question to ask

is whether or not the band powers measured by an EEG-headset contains enough

information to give an indication of the present knowledge state of the learner.

i
i

“output” — 2017/6/10 — 17:22 — page 53 — #61 i
i

i
i

i
i

Evaluation and Conclusion 53

Another option for furthering the progress towards implementing the learning sys-

tems software is to do a calibration process and training on each individual as a

setup step. However, this sidesteps a lot of the intended qualities of the envisioned

system, as it generalizes worse by not identifying patterns across multiple subjects’

EEG-data. This is therefore not encouraged as a way forth.

In addition to utilizing more data to remedy the generalization of the network,

inspiration can be drawn from common data processing techniques used in CNNs.

Seeing how the data input to the RNN is an electrical potential signal, we can

introduce noise to our data in form of additive signal noise or white-noise. This

is similar to the way CNNs introduce noise in images like blurring to artificially

increase the available data and increase generalization.

Lastly, to investigate whether the RNN in its current architecture is able to prop-

erly utilize channel correlation to aid in its emotion classification, one should seek

to obtain information over what each individual LSTM-cell is outputting for its

input distribution.

i
i

“output” — 2017/6/10 — 17:22 — page 54 — #62 i
i

i
i

i
i

54 Future Work

i
i

“output” — 2017/6/10 — 17:22 — page 55 — #63 i
i

i
i

i
i

Bibliography

(2016). https://en.wikipedia.org/wiki/Richard_Caton. Last visited

13.12.2016.

(2016). https://en.wikipedia.org/wiki/Hans_Berger. Last visited 13.12.2016.

(2017). https://en.wikipedia.org/wiki/List_of_animals_by_number_of_

neurons. Last visited 09.06.2017.

Chai Tong Yuen, Woo San San, M. R. . T. C. S. (2010). Classification of hi-

man emotions from eeg signals using statistical features and neural network.

International Journal of Integrated Engineering.

Chen, I. (2011). Instructional design methodologies.

Claude Robert, Jean-François Gaudy, A. L. (2002). Electroencephalogram pro-

cessing using neural networks. Clinical Neurophysiology, pages 694–701.

Cody Brocious, Kyle Machulis, S. O. B. S. S. L. (2010). Emokit.

Duan, R.-N., Wang, X.-W., and Lu, B.-L. (2012). EEG-Based Emotion Recogni-

tion in Listening Music by Using Support Vector Machine and Linear Dynamic

System, pages 468–475. Springer Berlin Heidelberg, Berlin, Heidelberg.

D’Mello, S., Jackson, T., Craig, S., Morgan, B., Chipman, P., White, H., Person,

N., Kort, B., el Kaliouby, R., Picard, R., et al. (2008). Autotutor detects and re-

sponds to learners affective and cognitive states. In Workshop on emotional and

cognitive issues at the international conference on intelligent tutoring systems,

pages 306–308.

https://en.wikipedia.org/wiki/Richard_Caton
https://en.wikipedia.org/wiki/Hans_Berger
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons

i
i

“output” — 2017/6/10 — 17:22 — page 56 — #64 i
i

i
i

i
i

56 Bibliography

Gaudestad, J., Gagliolo, N., Talanov, V. V., Yeh, R. H., and Ma, C. J. (2013).

High resolution magnetic current imaging for die level short localization. In

Physical and Failure Analysis of Integrated Circuits (IPFA), 2013 20th IEEE

International Symposium on the, pages 347–350.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. Book in

preparation for MIT Press.

Graesser, A. C., C. P. . K. B. G. (2008). Computer-mediated technologies.

Hassel, H. J. (2016). Adaptive learning based on cognitive load using artificial

intelligence and electroencephalography.

Kuechler, V. V. . B. (2013). Design science research in in-

formation systems. http://desrist.org/desrist/content/

design-science-research-in-information-systems.pdf.

Makeig, J. O. . S. (2009). High-frequency broadband modulations of electroen-

cephalographic spectra.

Mart́ın Abadi, Ashish Agarwal, P. B. E. B. e. a. (2015). TensorFlow: Large-scale

machine learning on heterogeneous systems. Software available from tensor-

flow.org.

Mu Li, B.-L. L. (2009). Emotion classification based on gamma-band eeg.

Ruo-Nan Duan, Xiao-Wei Wang, . B.-L. L. (2012). Eeg-based emotion recognition

in listening music by using support vector machine and linear dynamic system.

S. Noachtar, C. Binnie, J. E. F. M.-A. S. and Westmoreland, B. (1999). A glossary

of terms most commonly used by clinical electroencephalographers and proposal

for the report form for the eeg findings. Recommendations for the Practice of

Clinical Neurophysiology: Guidelines of the International Federation of Clinical

Physiology.

Saurabh Diwaker, S. K. G. . N. G. (2016). Classifcation of eeg signal using corre-

lation coefcient among channels as features extraction method. Indian Journal

of Science and Technology, Vol 9.

http://desrist.org/desrist/content/design-science-research-in-information-systems.pdf
http://desrist.org/desrist/content/design-science-research-in-information-systems.pdf

i
i

“output” — 2017/6/10 — 17:22 — page 57 — #65 i
i

i
i

i
i

Bibliography 57

Shi Zhong, J. G. (2002). Hmms and coupled hmms for multi-channel eeg classifi-

cation.

Søraker, J. H. (2013). Innføring i computeretikk. http://www.aitel.hist.no/

fag/_innfIng/johnny/Soraker_Innforing_i_Computer-etikk_HIST_2013.

pdf.

Yuksel, B. F., Oleson, K. B., Harrison, L., Peck, E. M., Afergan, D., Chang, R.,

and Jacob, R. J. (2016). Learn piano with bach: An adaptive learning interface

that adjusts task difficulty based on brain state. In Proceedings of the 2016 CHI

Conference on Human Factors in Computing Systems, CHI ’16, pages 5372–

5384, New York, NY, USA. ACM.

http://www.aitel.hist.no/fag/_innfIng/johnny/Soraker_Innforing_i_Computer-etikk_HIST_2013.pdf
http://www.aitel.hist.no/fag/_innfIng/johnny/Soraker_Innforing_i_Computer-etikk_HIST_2013.pdf
http://www.aitel.hist.no/fag/_innfIng/johnny/Soraker_Innforing_i_Computer-etikk_HIST_2013.pdf

i
i

“output” — 2017/6/10 — 17:22 — page 58 — #66 i
i

i
i

i
i

58 Bibliography

i
i

“output” — 2017/6/10 — 17:22 — page 59 — #67 i
i

i
i

i
i

Appendices

i
i

“output” — 2017/6/10 — 17:22 — page 60 — #68 i
i

i
i

i
i

60 Emokit Driver

A Emokit Driver

The Emokit driver can be run using either python or C, and can run on Windows,

Linux or OS X. The driver was tested using the python implementation on OS X

EL Capitan v.10.11.5. The required dependencies was installed using the pack-

age system Homebrew v.1.1.2, and utilizing the Homebrew package system or an

equivalent is recommended. (The driver was also tried tested on a stationary PC

running Windows 10 education unsuccessfully.)

i
i

“output” — 2017/6/10 — 17:22 — page 61 — #69 i
i

i
i

i
i

Appendices 61

i
i

“output” — 2017/6/10 — 17:22 — page 62 — #70 i
i

i
i

i
i

62 EEGLAB

B EEGLAB

EEGLAB is a MatLab toolbox for working with EEG-data developed and dis-

tributed by Swartz Center for Computational Neuroscience. It has support for

reading the data set SCCN has provided using the BIOSIG .bdf-format, as well as

a handful of other common data-formats.

The software can be downloaded from SCCN’s website and is accessed through

MatLab. Before first use one has to install some dependecies within MatLab,

namely:

• Signal Processing toolbox

• Statistics toolbox

• Optimization toolbox

• Image processing toolbox

Worth to note is that not all the toolboxes listed above are required, but enable

further functionality which might be of help.

After downloading the EEGLAB software and installing both a compatible version

of MatLab and the required dependencies, the software can be accessed by chang-

ing the directory to the EEGLAB folder within MatLab using the cd command.

Within this folder one can enter the command ”eeglab” to open up the software in

a new window. To open the data set used in this project one need to use the Biosig

data import, accessed by pressing ”File” → ”Import data” → ”Using EEGLAB

functions and plugins” → ”From Biosemi BDF file (BIOSIG toolbox)”. This will

open a prompt for the file path, which when selected will open another window

with load options for the eeg-data. After a brief loading period a final prompt will

appear which allows us to name the data set and edit comments. Pressing OK will

finalize the data import, allowing us to plot, edit and run independent component

analysis (ICA) on the data set among many other functions.

For this project we are interested in the raw data, and as such we have opted to

use EEGLAB to export the bdf-files provided through SCCN to text-files of raw

sensory data.

i
i

“output” — 2017/6/10 — 17:22 — page 63 — #71 i
i

i
i

i
i

Appendices 63

Figure 3: Using the cd command to change directory to the EEGLAB software
folder.

Figure 4: While withing the EEGLAB software folder one can enter the command
”eeglab” to start the EEGLAB software

i
i

“output” — 2017/6/10 — 17:22 — page 64 — #72 i
i

i
i

i
i

64 EEGLAB

Figure 5: The software will open in a new window, whilst any text-based output
will be written to the MatLab window.

i
i

“output” — 2017/6/10 — 17:22 — page 65 — #73 i
i

i
i

i
i

Appendices 65

C Environment setup

To run the program, a number of dependencies has to be supported. The RNN

depends on a cuda-enabled Tensorflow and python environment along with some

python packages, whilst the Emotiv Epoc depends on the emokit driver covered

in section A. The versions used in this project are Python 2.7.13, TensorFlow

0.11.0rc1, cuDNN 5.1 and NVIDIA CUDA 8.0. For ease of setup, installation

through virtualenvironment is recommended. This ensures no other python en-

vironments on the host interferes with our one. This package can be installed

through the commands

sudo pip i n s t a l l −−upgrade v i r tua l env

pip is now bundled with python, and can be installed by calling

brew i n s t a l l python

through Homebrew on OS X/macOS or

sudo apt−get i n s t a l l python

through apt-get on Ubuntu.

From here we want to make a directory, and use it as our encapsulated environment

for Python, Tensorflow and emokit.

v i r tua l env −−system−s i t e−packages <directory name>

Thereafter one can activate the environment by calling

source <directory name>/bin / a c t i v a t e

which should result in the prompt changing to

(<directory name >)$

Within this encapsulated environment we want to install cuda-enabled Tensorflow

using the command

pip i n s t a l l −−upgrade tensor f l ow−gpu

Keep in mind that this will require a valid CUDA installation on the computer, to

which one should follow NVIDIA’s documentation found on the following websites:

• http://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x

http://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x

i
i

“output” — 2017/6/10 — 17:22 — page 66 — #74 i
i

i
i

i
i

66 Environment setup

• https://developer.nvidia.com/cudnn

https://developer.nvidia.com/cudnn

i
i

“output” — 2017/6/10 — 17:22 — page 67 — #75 i
i

i
i

i
i

Appendices 67

D Using the software

The RNN is implemented in TensorFlow version 0.11.0rc1, with version 1.1 being

the current version. Furthermore Python version 2.7.13 is used with 3.6 being the

current version. If one intends to run the software using newer versions, changes to

the code has to be made, as TensorFlow 1.1 have renamed parts of the API used

in this project. The implementation is divided into three separate python files,

which all can be run individually from the command line. These are respectively;

preprocessing.py Can be run to generate TFRecords from pre-filtered text

files containing raw sensor data if necessary, although is

very slow.

train.py Can be run to train the RNN. Supports adjustment of sev-

eral parameters of the network, and comes with logging

and save-points by default (see section E for how to run

visualization of training). Default behaviour of the train-

ing routine is to continue training if there exists a save-

point in the root folder.

sample.py Can be run to sample from a trained network using the

Emotiv Epoc headset. Due to reloading of the saved RNN

one need to re-input the variables for number of layers and

hidden node.

The files can be run with several options, with -h being a help function common

for all three.

preprocessing.py has the following options:

–num records How many TFRecords the available data will be distributed be-

tween.

–input path Valid path to folder containing pre-filtered raw data. Assumes all

.txt-files are data to be read.

i
i

“output” — 2017/6/10 — 17:22 — page 68 — #76 i
i

i
i

i
i

68 Using the software

–output path Path to write the TFRecords to. Will be created if it does not

exists (if run with correct user rights).

train.py has the following options:

–layers The number of layers the RNN should be constructed with.

–num hidden The number of hidden units each layer will have.

–batch size The number of examples to train the network on simultaneously.

–epochs How many epochs to run the training for. For each epoch all training

data is used to train the network.

–learning rate Affects how fast the network learns. The default value is 0.0001,

but values in the range [0.001, 0.00001] can be experimented with.

–dropout probability Value between 0 and 1 determining the probability that

any one hidden unit will not be included in each training run.

–gpu Whether to run training on the GPU or CPU.

–tfrecord path Valid path to the tfrecord-files written by preprocessing.py

sample.py has the following options:

–num hidden The number of hidden units in each layer of the saved network.

–layers The number of layers in the saved network.

–gpu Whether to run sampling on the GPU or CPU.

The sampling program needs to know the number of hidden nodes in each layer,

as well as the number of layers in the saved network, as this is not stored within

any variable stores during training.

i
i

“output” — 2017/6/10 — 17:22 — page 69 — #77 i
i

i
i

i
i

Appendices 69

E Using TensorBoard

To visualize training, architecture and other aspects of the RNN one can run

TensorBoard and inspect said progress in a web-browser. To do so is easily done

through the command line, using a python module call.

python −m tenso r f l ow . tensorboard −− l o g d i r=l o g s /

Where train/ and test/ are sub-directories to the logs/ directory created on run-

ning train.py. Running this call will start a lightweight server on the host machine,

and thus one can open a web-browser on the host and navigate to localhost:6006

to inspect within TensorBoard. This can also be done during training, fetching

new data on refresh or every 120s by default. This is useful for determining early

stopping manually, and seeing trends within the training for different training pa-

rameters. Each new training session will be encapsulated in its own sub-directory,

which will be graphed within the same graph in TensorBoard, with its own color.

TensorBoard supports selective graphing of any of the individual test- or training-

runs, which is why we can input the root logging directory of logs/.

	Introduction and Overview
	Terms and Abbreviations
	Background and Motivation
	The Human Brain
	History of Electroencephalography
	Electroencephalography in Practice
	EEG Data set
	Emotiv
	MATLAB
	EEGLAB
	Learning Technology
	Goals and Research Questions
	Research Method

	Theory and Background
	EEG sensor-labelling
	10-20 system
	ABC system
	Corresponding sensor labels

	Perceptron
	Artificial Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memory
	EEG

	Results
	RNN
	Inputs and outputs
	Hyperparameters
	Learning rate

	Evaluation and Conclusion
	Evaluation
	TensorFlow
	TensorBoard
	TFRecords

	Summary
	Conclusion
	Discussion
	Sources of error
	Contributions
	Impact
	Future Work

	Bibliography
	Appendices
	Emokit Driver
	EEGLAB
	Environment setup
	Using the software
	Using TensorBoard

