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Abstract

The research presented in this thesis aimed at non-intrusively detecting a learner’s
emotional state in a programming tutorial environment. These results could be
used to adapt instructions and feedback to students in an online programming
tutorial, potentially leading to more effective and motivating learning.

Detection of a learner’s emotional state was done by collecting and analysing
23 participants’ keystroke dynamics (how people type on their keyboard), and
additionally pulse (heart rate) for five participants, in an online JavaScript tuto-
rial developed for this research. Participants self-reported their emotional state,
selecting one of six predefined states, hypothesised to be relevant for a learn-
ing situation. These emotions were: Bored, concentrated, confused, delighted,
frustrated and surprised.

Both multiclass and binary classifiers were trained and tested on the dataset.
In the binary classifiers, five classes were aggregated and classified against the
sixth. Classification was tested on the whole population, and on individual par-
ticipants. Every experiment was done with and without pulse features included
to see if pulse influenced the classification.

Binary classifiers, using the whole population as a dataset, yielded the most
promising results with accuracies ranging between 60% and 100%. Pulse was
not found to give a better classification in this research. No conclusive results
may be given however, as there are limitations in both the dataset and how the
pulse feature was implemented. Still, this research does show promising results
for non-intrusive emotion detecting in a programming environment.
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Chapter 1

Introduction
Towards adaptive coding tutorials

In courses with a large amount of students, it would seem impossible to adapt
the tutoring style to each individual student. All of these students do not only
have different amounts of experience, they also have their own style of learning.
Moreover there might be variances in motivation for each student from day to
day.

If the courses could have been complemented with a tutorial application that
adapted to student’s physiological and learning state, and gave appropriate in-
structions and feedback for a given state, students could be motivated and learn
more efficiently.

One way to indicate a person’s emotional state is through their typing rhythm.
Typing rhythm is how, and not what, they type on a keyboard. Previously it
has been experimented with detecting a person’s emotional state through typing
rhythm in daily activities. However, in a learning situation, this approach has
not been tested before.

This master’s thesis aim to classify student’s emotional state through the use
of typing rhythm, and additionally pulse for a few participants. The work done
in this study could lay the groundworks for moving towards an adaptive tutoring
platform, to complement lectures.

In this chapter, an overview will be given first on relevant background theory
and motivation behind this study. Then the goal and research questions will be
posed. In the following section, the research method will be presented, followed
by the contribution from this thesis. Lastly the thesis’ structure will be presented.

1



2 CHAPTER 1. INTRODUCTION

1.1 Background and Motivation

As a complementary tool to regular lectures, online programming tutorials could
be used to teach students to code on their spare time, and in their own pace.
However, the online programming tutorials available today are constructed lin-
early, meaning that everyone are taught the same way regardless of previous
experience and motivation. This could lead some students to give up if they
don’t understand the curriculum, or get bored if they aren’t challenged.

Previously, It has been shown that it is somewhat possible to detect a person’s
current emotional state by analysing how they type on their keyboard (Epp
[2010]). However, this has been tested on a number of emotional states not
relevant during learning. Baker et al. [2010] summarises six emotional states
that should be considered in a learning situation: Bored, concentrated, confused,
delighted, frustrated and surprised. Detecting these emotional states would make
it possible to adapt feedback to a student’s needs, motivating and helping them
in an appropriate manner.

Tutoring systems that adapt to a student’s cognitive state, and tries to model
their knowledge, are called intelligent tutoring systems. These systems make use
of cognitive science, learning science, artificial intelligence and mathematics to
create an environment able to adapt to a student’s way of learning. Picard [1997]
introduced the term affective tutoring systems, which are intelligent tutoring
systems able to adapt their teaching style to a student’s affective or emotional
state.

In this research, this was sought to be achieved using non-intrusive methods,
such as the computer’s keyboard. By detecting a learner’s keystroke dynamics,
it would be possible to classify a sequences of characters as one of the six pro-
posed emotional states. This classification was done using the two instance-based
classification algorithms k-nearest neighbours and support vector machine.

These algorithms share some similarities, in that each data sample (instance)
is located in a feature space (which can be any n-dimensional space). During
a training phase, instances with known classifications are used to assign certain
areas in the space to a class. When unknown instances are introduced in the
space, the already known instances are used to classify the new instance.

For k-nearest neighbours this is done by having a number of the closest in-
stances to the unknown instance vote on its classification. In support vector
machine, known instances are used to create borders between different classifi-
cations in the space. Which side of the border the unknown instance is placed
decides its classification.

The researcher’s background is as a computer science student, for whom pro-
gramming did not come easy. During his studies he has been involved with the
development of exercises for the introductory course IT2805 Web technologies.
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In this course, first year students learn HTML, CSS and JavaScript. During the
later years, he has also contributed to collecting and writing the curriculum, and
lecturing one hour each week in assignment lectures.

The work done by Yuksel et al. [2016] sparked the interest for this thesis. In
their study they measured participant’s cognitive workload to determine if the
participant were ready to go to the next challenge when learning to play music
composed by Bach.

Feedback from students taking IT2805 made it apparent that there are dif-
ferences in how challenging exercises and curriculum are to different students. If
the researcher could help students learn in a way adapted to them, it would be
a great achievement. The approach taken by Yuksel et al. [2016] does not scale
well for a course with 200 students, as each participant needs a dedicated device.
Using the keyboard to detect emotional states however, as tested by Epp [2010]
and Ko lakowska [2015], inspired a non-intrusive method to achieve this goal.

1.2 Goals and Research Questions

The overarching goal for this thesis is:

Goal Can a learner’s emotional state be detected non-intrusively in a program-
ming tutorial?

This goals is a step toward creating an adaptive programming tutorial for first
year students. In this thesis, the aim is to recognise a student’s emotional state in
a way that can be scaled to any course, regardless of size. Methods for emotion
recognition that uses any specialised equipment, e.g. electroencephalography,
would be too expensive to deploy in a course with more than just a few students.
It would probably also make it impossible for students to do exercises when they
want to. By finding a non-intrusive way to detect emotions, i.e. a method that
students does not notice, would thus be preferable.

As a way to reach the goal stated above, two research questions were asked:

Research question 1 Is it possible to detect a learner’s emotional state using
keystroke dynamics from programming keywords?

The chosen method for this thesis, as it has shown promising results as a
source of emotion recognition, is keystroke dynamics. By recording a person’s
keyboard usage, i.e. which keys are pressed, when they are pressed, and for how
long, it could be possible to see differences between emotional states.

Even though there are a number of ways to solve a problem with coding, pro-
gramming languages have a strict grammar which is important to know. Key-
words are an important part of this grammar, and important to know in order
to master the language.
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Programming keywords are reserved words in programming languages that
can only mean one thing. It can be compared with words in a written language.
Some keywords are used quite often, and are thus a good data source for emotion
recognition, since only similar strings of text can be classified against each other.

Research question 2 Will detecting a learner’s pulse yield a better classifica-
tion than typing rhythm alone?

KM et al. [2015] found that pulse somewhat could be used to assess whether
a person was in a positive or negative state. Bahreini et al. [2016a] combined
different data sources to assess people’s emotional state, which yielded a far
higher accuracy than those of the separate data sources alone. Therefore, this
thesis aims to see if adding pulse as a data source could increase the accuracy of
the classification.

This should also be done using a non-intrusive method, e.g. smartwatch,
activity tracker, or using the integrated webcamera to read changes in skin colour.

1.3 Research Method

This research focused on analysing the collected keystroke and pulse data, and
experiment with different classification methods. Both k-nearest neighbours and
support vector machine classifiers were tested with different hyperparameters,
different sets and subsets of the collected data, and two different approaches:
Multiclass and binary classifiers. This was done both to see if it was possible to
classify the selected emotional states based on the data made available, and to
find the best approach to do so within the limits of this thesis.

The data was collected using Adapt, a programming tutorial resembling
Codeacademy (www.codeacademy.com), built for this thesis. Adapt registers
three features for each keystroke that was made: the key’s unique identifier, the
key’s press time, and the key’s release time. This data was later used to create a
feature vector that could be used in the experiments.

In order to get as many participants as possible, it was possible to do the
tutorial without observation, i.e. participants could do it on their own time,
whenever they liked. However, some were invited to do the tutorial while being
observed by the researcher in order to collect pulse data, and merge this data
with the keystrokes.

There exists no openly available keystroke dynamics dataset used to classify
emotional states that the researcher is aware of. Hence it was necessary to collect
and create such a dataset for this research.
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1.4 Contributions

The results and contributions to the research field will further be discussed in
chapters 6 and 7.

Three of the selected emotional states have previously not been classified us-
ing keystroke dynamics. These were the emotions concentrated, confused and
delighted. The highest classification score for these were 60%, 79% and 100%
respectively, using a binary classifier. However the dataset used in these ex-
periments were limited, as such the results themselves should not be seen as
conclusive. What this research can conclude however, is that using keystroke dy-
namics as a basis for non-intrusive classification in a programming tutorial shows
promise for emotions relevant to learning.

Additionally, the research found that using the support vector machine algo-
rithm is more promising than using k-nearest neighbors, but other classification
algorithms should be considered.

In this study, adding pulse features did not have any major effect on the
classifications.

1.5 Thesis Structure

This thesis is structured as follows: In chapter 2, background theory on key
subjects for this thesis are presented, and a motivation for why the researcher
chose to pursue the research is given. Chapter 3 presents previous work and
research that closely relates to this thesis. In chapter 4, the data collection tool
Adapt is presented. Chapter 5 contains information on the data collection process
and how the experiments were conducted. The results from the experiments are
found in chapter 6. Lastly, in chapter 7, the research is evaluated and discussed,
contributions to the research field is presented, and some ideas for future work
are proposed.
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Chapter 2

Background and motivation

In order to understand the research presented in this thesis, a number of key
subjects must be defined and explained. These are presented in this chapter’s
first section. The subjects are emotions, intelligent tutoring systems, keystroke
dynamics and classification algorithms. The second and last section gives a ra-
tionale for why the author chose to conduct this research.

2.1 Background theory

This section explains the key subjects emotions, intelligent tutoring systems,
keystroke dynamics and classification algorithms, all relevant for this thesis.

2.1.1 Emotions

Emotions can traditionally be described in two ways, either as cognitive or be-
havioural changes (Cannon [1927]). The cognitive approach suggests that emo-
tions are experienced in the brain, independent from bodily sensations. The
behavioural approach, on the other hand, focuses on physiological responses as
an expression of emotions. The responses can be pulse, blood pressure and res-
piration rate. However, Picard [1997] state that recent approaches see these two
in combination, that emotions can be described both as cognitive activity and as
physical changes in the body.

The terms mood and emotion are often used interchangeably, however, there
is a significant distinction between them. Emotions are short lived and triggered
by either a physical or cognitive cause, whereas mood is long lived, more subtle
and either positive or negative (Picard [1997]). This thesis only concerns itself
with emotions and how they are expressed. Participants in this study were asked

7
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to register their current emotional state, as it was perceived by them. Emotional
state is a person’s current emotion. This data from the users were used to label
data samples.

2.1.1.1 Classifying emotions

In the literature review for this thesis, two main approaches for classifying emo-
tions have been found: they can either be classified as discrete categories, or in
a continuous two-dimensional space.

Discrete categories are based on how we define emotions through language, i.e.
when talking about our emotions we give labels to specific emotional episodes.
Such labels could be, but are not limited to, concentrated, nostalgic, satisfied,
frustrated, angry, bored and confused. Perhaps most famous are the six basic
and universal emotions presented by Ekman et al. [1978]: fear, anger, happiness,
sadness, disgust and surprise. These emotions are hypothesised to be universally
expressed across all cultures. Zimmermann et al. [2006] states that definitions of
emotional classes do not only vary among languages, but they also vary within
one language. This is a challenge with using discrete classes, as different people
might define emotions differently, and therefore classify them differently.

An approach to counter this limitation is to describe emotions in a continuous
two-dimensional space, as coordinates of valence and arousal (Lang [1995] and
Russell [2003]), as seen in figure 2.1.

Figure 2.1: Two-dimensional valence-arousal space, adapted from Russell [2003].

Valence is the general description of an emotion, if it’s positive or negative;
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or pleasant or unpleasant. Arousal is how active the emotion is, thus the axis is
often referred to as activation, and it is either high or low.

2.1.1.2 Emotions in learning

Graesser et al. [2007] have doubted the relevance of the six basic emotions pre-
sented by Ekman et al. [1978] for learning, as it is unlikely that a student expe-
rience e.g. fear while in a learning situation. Emotional states that are hypothe-
sised to influence cognition and learning are summarised by Baker et al. [2010].
These emotional states are: boredom, confusion, delight, engaged concentration,
frustration and surprise.

Figure 2.2 visualise the mapping between the set of emotions summarised by
Baker et al. [2010] and the two-dimensional valence-arousal space.

Figure 2.2: Mapping emotional states to the two-dimensional space by Russell
[2003], adapted from Baker et al. [2010]

BO: boredom, EC: engaged concentration, CO: confused, DE: delighted, FR:
frustration, SU: surprise, NU: neutral.

Engaged concentration, as mentioned in figure 2.2, is described by Csikszent-
mihalyi [1990] as “flow”, meaning that a person’s concentration is intense, that
they are focused and deeply involved with the task at hand.

Kort et al. [2001] proposed a model to regard the complex interplay between
emotions and learning. This model can be viewed in figure 2.3. It depicts a
learning cycle consisting of two axes: learning and emotion. The learning axis
ranges from un-learning (which is negative) on the bottom, to constructive learn-
ing at the top. The emotion axis goes from negative emotions (such as confusion
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and disappointment) to positive emotions (such as satisfaction and hopefulness).
Each quadrant describes a student’s emotional state, and how a teacher should
intervene to best help the student.

In quadrant I a student is happily engaged in exploratory learning. While
the student is in this quadrant there is no need to intervene. In quadrant II the
student is starting to encounter difficulties caused by misconceptions or an in-
complete understanding of the subject. Subtle intervention from a teacher might
be necessary, but only to fill in the gaps or errors in the student’s mental model.
In quadrant III the student has acknowledged that they had been working on the
basis of an incomplete model. Intervention from a teacher at this stage should
be supportive, reassuring the student that they will emerge from the disappoint-
ment. In the last quadrant (IV), the student is back to basic, constructing and
improving their understanding of the subject. Intervention at this point is equal
to quadrant II, with subtle hints to lead students on the correct path.

Figure 2.3: Learning cycle in a two-dimensional space, adapted from Kort et al.
[2001].

The model states that students usually start in the the two top quadrants (I
and II), and move in a counterclockwise direction. The research done by Kort
et al. [2001] indicated that learning and emotions are not stable throughout the
learning process. Despite the variance in emotions, however, it is consistent that
students do experience different emotional states as they go from un-learning to
constructive learning.

It was hypothesised that it is common to see a transition from confusion
to frustration, and confusion to boredom. However, no empirical evidence for
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this was given by Kort et al. [2001]. Perkins and Hill [1985] proposed another
transition model, where frustration led to boredom. This hypothesis was based
on data that showed these two states to be associated, but not that they were
temporally related (that boredom precedes frustration).

The selected emotional classes used in this thesis are the ones summarised by
Baker et al. [2010]: boredom, confusion, delight, engaged concentration, frustra-
tion and surprise. Engaged concentration was redefined in this thesis as concen-
trated in an effort to use words participants in the study would find familiar. This
hopefully lead to a lesser degree of them having to interpret what was meant.

2.1.2 Intelligent Tutoring Systems

Although developing or testing an intelligent tutoring system (ITS) was not a part
of the research conducted in this thesis, they are a part of the greater context.

An ITS is a digital system that adapts its teaching to the user in some fash-
ion. They make use of computational models from sciences like cognitive science,
learning science, artificial intelligence and mathematics to create a learning envi-
ronment that can model, learn and improve from a learner’s’ psychological states,
and give individual instructions. The interaction between the student and the
system evolves dynamically over time, based on the learner’s and the system’s
constraints (Graesser et al. [2012]). This means that an ITS can adapt to the
student, and should teach in a more tailored way than e.g. a linear tutorial like
Codeacademy.

ITS can be divided into four approaches (Ma et al. [2014]):

• Expectation and misconception tailoring: Where learners communicate
with the system using natural language and the system calculate miscon-
ceptions about a subject from the learner’s answer.

• Model tracing: Here the system models the user’s knowledge using ACT-R
theory. A probable path through the knowledge set is calculated for the
user, given their actions or answers. The learner’s knowledge can thus be
traced.

• Constraint-based modeling: Given a task and a constraint, the learner gives
an answer or does an action. If the answer/action is outside of the con-
straint, the learner is given a feedback from the system.

• Bayesian network modeling: This uses probabilistic reasoning to calculate
the probability that a learner has an understanding or misunderstanding of
a concept.
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Although there are different types of ITSs, the key definition is that they track
the user’s knowledge and give adaptive instructions. This is contrary to conven-
tional computer-based training (CBT), where some might adapt to individual
learners, but does so following simple learning principles. There are, however, no
sharp borders between ITS and CBT (Graesser et al. [2012]).

In 1997, the term affective tutoring systems (ATS) was introduced by Picard
[1997]. ATS refers to an intelligent tutoring system that is able to tailor the
teaching style to the user’s affective state (a person’s feeling or emotional state).
E.g. if a user is bored, the system could present more challenging tasks, hopefully
improving the student’s satisfaction and learning, and save time.

In the meta-analysis on ITS performed by Ma et al. [2014], it was shown
that ITSs are associated with significantly higher achievement outcomes than
any other learning method, except for small-group human tutoring and individual
human tutoring. The author notes, however, that the ITSs analysed are evaluated
relative to their scope. As such they should not replace other tutoring methods
currently in use.

2.1.3 Keystroke dynamics

Keystroke dynamics is the process of measuring and assessing a person’s typing
rhythm. In short, it is how, and not what, we type on a keyboard (Teh et al.
[2013]). The typing rhythm is measured by observing a keyboard, which specific
keys are used, and when they are pressed and released. Throughout this thesis,
the terms typing rhythm and keystroke dynamics are used interchangeably.

During World War II, it was discovered that military units could be tracked,
not only by visual confirmation, but also because it was possible to identify the
unit’s telegraph operators by their keying rhythm. This was called “the fist of the
sender” (Dunstone and Yager [2008]). Similarly the timing of keyboard events
have been used to identify a computer user. This was first proposed in 1980
by Gaines et al. [1980]. This research found that typists appeared to have a
signature while typing, and that this signature could be used as a basis for an
authentication system.

Research on authentication systems using keystroke dynamics uses machine
learning techniques to classify a sequence of keystrokes against a reference model
(Monrose and Rubin [1997]). The benefit of using keystroke dynamics as an
authentication tool is that the keyboard already is present, so you don’t need
any additional hardware. In addition, as it is an already integrated part of
the workflow, it is non-intrusive, meaning that users probably won’t alter their
behaviour. Because of this, it is also possible to capture data in stealth mode,
meaning that you can do authentication continuously (Mondal and Bours [2014]).

Monrose and Rubin [2000] hypothesised that users change their typing rhythm
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according to their environment, stress level and cognitive state. This hypothesised
connection between cognitive state and behaviour (e.g. typing rhythm) can be
used to infer a person’s emotional state (Ko lakowska [2013]). This approach does
not only concern itself with identifying one specific person’s typing rhythm from
the others’, but identifying one specific person’s different typing rhythms.

2.1.4 Classification algorithms

Ko lakowska [2013] summarises a number of classification algorithms that have
been tested to classify keystroke data, including C4.5 decision trees, artificial
neural networks, Bayesian networks, AdaBoost, statistical analysis and k-nearest
neighbours.

This research used the two classification algorithms k-nearest neighbours and
support vector machines, the reason for which will be evident in the section 3.2.2.
K-nearest neighbours and support vector machine will be presented in the two
subsequent subsections.

2.1.4.1 K-nearest neighbours

K-nearest neighbour (KNN) is an instance-based classification algorithm (Mitchell
[1997]), meaning that training instances (known data-class pairs) are situated in
a feature space (a n-dimensional space). When a new unknown instance is added
to the space with training instances, the K closest instances already present in
the space vote on the unknown instance’s classification. K is a constant set by the
researcher. In its most simple form, the majority vote decides its classification.
Each instance consists of a number of features, and these features are collectively
called a feature vector, which looks like:

[f0, f1, f2, (...), fn−1, fn]

In figure 2.4a, a 2-dimensional feature space with training instances is illus-
trated. An instance with an unknown classification is then introduced in the
space, as seen in figure 2.4b. The K (in this case K = 4) nearest neighbours to
the new instance vote on the unknown instance’s classification. Since three out
of four neighbours are blue squares, the unknown instance is classified as a blue
square, as can be seen in figure 2.4c. Should, however, K = 1, only the closest
neighbour gets to vote, and the unknown instance’s classification will be equal to
its nearest neighbour. In that case the unknown instance would be classified as
a red circle.

It is possible, however, to alter the voting such that not all k nearest neigh-
bours have the same influence, but those instances that are closer have a greater
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(a) (b) (c)

Figure 2.4: Unknown instance classified as a blue square using KNN, with K = 4

influence on the classification. This weighting is called distance weight, while the
equal influence weight is called uniform weighting.

The weight is one of several hyperparameters, the value for K being another,
and the distance metric is a third. These hyperparameters define the algorithm,
and are used to tune the algorithm so that it does not become too specific nor
too general for a certain scenario.

Euclidean distance is one of the most common distance metrics, Manhattan
distance is another. Both metrics can be expressed through the Minkowski dis-
tance, where the value for p decides if it is the Euclidean or Manhattan distance.
The value for p would be 2 and 1 respectively.(

n∑
i=1

|xi − yi|

) 1
p

The KNN algorithm does not assume a general hypothesis about the data,
unlike e.g. a decision tree where only a subset of features might be used to
classify unknown instances. KNN, however, uses all features when calculating
the distance between two instances. This is both a strength and weakness. In
some data sets only a subset of the features might be relevant for a classification,
in such cases KNN would calculate the distance using irrelevant features. On
the other hand, KNN is robust against instances with incorrect values for certain
features (noisy instances), given a large enough training set and feature vector.
Noisy instances would then loose in the vote against other instances. It is possible
to overcome the problem of irrelevant features by:

1. Weighting the features such that important features have a high weight, or

2. removing irrelevant features during preprocessing.
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2.1.4.2 Support vector machine

Support vector machine (SVM) is also an instance-based classification algorithm
(Cortes and Vapnik [1995]). This algorithm tries to find a linear separator line (a
hyperplane for higher dimensional spaces) between instances of different classes.
Not only does it find a separator, but it will find the one with maximum distance
to the instances, yielding the largest margin possible between two classes. The
instances used to create the separator are called support vectors. Data points
that are not support vectors can mainly be disregarded during classification as
they do not affect the separator line. A two-dimensional feature space can be
seen in figure 2.5a. In figure 2.5b a linear separator is introduced, dividing the
two classes. Then in figure 2.5c an unknown instance is added, and classified as
a red circle because it is positioned to the right of the separator line. Had the
separator line not have had the largest margin possible, and instead been tilted
more to the right, the new instance could have been falsely classified as a blue
square.

(a) (b) (c)

Figure 2.5: Unknown instance classified as a red circle using SVM.
The solid line is the separator line, while the dotted lines are the margins.

The large margin allows for a safety zone, so that the classification algorithm
has a higher tolerability for noisy instances.

In some cases, it might not be possible to find a linear separator. By applying
the kernel trick, however, features can be transformed so that this is possible, in
a higher dimension (Cortes and Vapnik [1995]). The kernel trick is a method to
add new features to the data samples, derived from the features already present.
This increases the number of dimensions, hopefully making it possible to find a
linear separator in the higher dimensional space.

In figure 2.6a, a two-dimensional feature space has instances that are not
linearly separable. By applying the kernel trick, this case adding the feature z
(see figure 2.6b), the feature space can be transformed to a three-dimensional
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space. In this higher dimensional space it is possible to apply a linear separator
between the blue squares and the red circles, as seen in figure 2.6c.

(a) (b) (c)

Figure 2.6: By adding a new feature, it is possible to find a linear decision
boundary in a higher dimensional space.

The solid line is the separator line, while the dotted lines are the margins.

When applying the kernel trick, new features are not actually added to the
vector, but the dot product (inner product) for the features used to create the
new feature is calculated. This is done using a kernel function. Two notable
kernels are Radial Basis Function (RBF) and the linear kernel.

The choice of kernel is one of several hyperparameters for SVM. Another
hyperparameter is C, which is used to set how wide the decision boundary’s
margin should be. This is a tradeoff between having a smooth and simple decision
boundary, and classifying all the training instances correctly. A small value for C
allows constraints to be ignored, resulting in a larger margin and a more general
classifier. On the other hand, a high value for C classifies more training instances
correctly, but also yields a less general separator, which may lead to overfitting
(a classifier that is too specific to the given training instances).

Kernel and C are two parameters that always must be considered. For some
kernels other hyperparameters might be added. For RBF, there is a third hy-
perparameter called gamma. Gamma defines how far the influence of a single
training instance reaches. With a low gamma value, training examples have a far
reach, while the opposite is true for high gamma values. This means that training
values can affect the decision boundary’s margin. For RBF it is necessary to tune
hyperparameters C and gamma based on the dataset.

2.1.4.3 KNN versus SVM

KNN is generally slower than SVM, because all instances in the feature space
is considered when a classification is required. The poor performance in time
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can be reduced by choosing an appropriate data structure, such as a KD-tree.
With KNN, no calculations are done until an unknown instance is introduced,
hence the training time is minimal. If the dataset consist of a large amounts of
instances, and the vectors have few features, KNN is often preferred over SVM.

SVM, on the other hand, handles outliers well, and is more time efficient than
KNN. By default, it can’t categorise instances that aren’t linearly separable in
its current dimension. However, as explained, by applying the kernel trick, SVM
can go around this limitation. If there are few instances in a high dimensional
space, SVM is more preferred than KNN.

The dataset presented in this study doesn’t clearly prefer one of the classifi-
cation algorithms presented. Thus both are used in the experiments.

2.1.5 Experiment metrics

In the experiments presented in chapter 6, a number of metrics are used to
described how well the classifiers performed. These metrics are precision, recall
and Cohen’s kappa coefficient (kappa score) (Witten et al. [2016]).

Precision Precision is the percentage of instances classified as a given class
(true positives and false positives) that is truly that class (true positives). For a
classifier that classifies six instances as bored, when only four of them were true
positives (actually bored), the precision is 67%.

Recall Recall is the percentage of correctly classified instances out of all those
instances that belong to a given class. For a classifier that classifies four instances
of bored correctly (true positives), but there are seven instances of bored in the
dataset (true positives and false negatives), the recall is 57%.

Kappa score Kappa score is a measure of how well a classifier classify instances
versus chance alone. The score is given as a number between -1 and 1. If the
score is 0, the classification is as good as guessing (random). With a score less
than 0, it is actually better to guess than using the classifier. With a score of 1,
there is a perfect agreement, i.e. every instance was correctly classified. Kappa
score is only a measure for how well one classifier performed. In the study by
Epp [2010], a kappa score greater than 0.4 was seen as acceptable.

2.2 Motivation

The paper that sparked the author’s interest for this thesis was the study Brain
Automated Chorales (BACh) presented by Yuksel et al. [2016]. In the BACh
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study, researchers measured the participant’s oxygenation level in the anterior
prefrontal cortex to determine their cognitive workload. When the measured
workload was below a given threshold, indicating that users had mastered the
task at hand, the users were allowed to proceed to more challenging tasks. This
way, BACh adapted to the learner’s cognitive state. As stated by the authors,
the premise of BACh can be applied to learning situations where tasks can be
broken into increasing levels of difficulty.

From the summer of 2014, this thesis’ author has taken part in creating, su-
pervising and reviewing exercises in the course IT2805 Web technologies. IT2805
is a web development introductory course, i.e. students learn basic HTML, CSS
and JavaScript. During the fall of 2016, the author also gave exercise lectures
once a week. For some of the students the exercises were easy, and for others
they were more challenging. Because of the amount of students taking part in
the course (about 200), it was not possible to write exercises, nor give lectures,
that universally fitted every student. That would have been too demanding on
the course’s resources.

However, if exercises and curriculum could be presented as an intelligent tu-
toring system, adapting to students cognitive workload, students could go ahead
with the course in their own pace, and hopefully be more motivated and learn
more efficient. Rather than having experienced students become bored, and those
with no experience feeling overwhelmed.

The approach presented by Yuksel et al. [2016] would be difficult and expen-
sive to scale up to 200 students. However, a non-intrusive method that would
detect students’ workload could scale better. In the search for such a method of
measurement, the author came across a paper by Leinonen et al. [2016]. They
found that it is partially possible to distinguish between novice and experienced
programmers using keystroke dynamics. However, as the researcher has experi-
enced himself, not only programming experience affect how well you learn, but
also mood, emotional state and environment has an effect.

Detecting a learner’s emotional state could thus be of help to adapt instruc-
tions and feedback, and motivate students to continue learning (Sarrafzadeh et al.
[2008]), possibly also for those having a bad day. This is certainly something the
researcher would have had great use of, as learning to code did not come easy.

The researcher thus wanted to find a way to detect learner’s cognitive or
emotional state using non-intrusive methods. These findings could later be used
to develop a tool for courses like IT2805, giving large masses of students a learning
environment adapted to them.



Chapter 3

Related work

This thesis draws experience from, and builds upon, previous work on emotion
recognition and keystroke dynamics. Relevant previous research is presented in
this chapter. In the first section, some research on emotion recognition is pre-
sented. The second part of this chapter addresses research on keystroke dynamics.
In the third part, a short summary of the important research is given, and the
choice of classification algorithms is discussed.

3.1 Emotion recognition

Below, three researches on emotion recognition are presented. The first one uses
an intrusive approach, but it indicates that emotion recognition indeed is possible.
The second and third research uses a non-intrusive approach to detect computer
user’s emotional state.

In the study by Kao et al. [2015] Electroencephalogram (EEG) was used
to detect eight types of positive and negative emotions: Joyfulness, angriness,
protected, sadness, surprised, fear, satisfaction and unconcerned. The study
found that all the negative emotions had a greater energy than the positive, and
that it is possible to detect all selected emotions, except for surprise and fear
which shared the same brainwave characteristics.

KM et al. [2015] used a multimodal approach to detect user’s emotional state
by combining keystroke dynamics, written text semantics and variations in the
pulse. To detect the pulse they used a video feed of the user to extract the
skin’s color variations, indicating the user’s pulse. During the testing they did
not actually combine these three sources, but tested them separately. Keystroke
dynamics and text semantics were tested on five and nine discrete emotional
classes respectively, while pulse was used to determine if the user’s emotional
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state was positive or negative. The experiments resulted in an average accuracy
of 77.67%, 88.70% and 73% for keystroke dynamics, text semantics and pulse
respectively.

Bahreini et al. [2016a] needed real-time emotion recognition in their online
communication skills training tool. To achieve this, they used facial recognition
through the webcamera, and analysed how users spoke through their microphone.
Participants were asked to mimic the six basic and universal emotions stated by
Ekman et al. [1978]. From each source, a feature vector was created and classified.
The results from both classifiers were combined and classified again. This research
used two expert raters to individually evaluate and label the data. The multi-
modal approach resulted in an accuracy of 98.6%. Previously the researchers
had tested unimodal emotion recognition on facial recognition (Bahreini et al.
[2016b]) and voice recognition (Bahreini et al. [2016c]) alone, which yielded an
accuracy of 72% and 67% respectively.

3.2 Keystroke dynamics

The research presented in this section has been divided into two categories:
Keystroke dynamics as biometrics to infer users identity, and Recognise user’s
emotional state based on keystroke dynamics. These two categories are not mu-
tually exclusive, as there are overlapping approaches and results.

Both user detection and emotion recognition requires unknown data to be
classified. When using keystroke dynamics to authenticate users, the task is to
classify keystrokes from one person against all other people. In emotion recogni-
tion, however, keystrokes need to be classified against keystrokes from the same
person. Unless there exists some universal attributes for each emotional state,
reflected in how we type, that is.

3.2.1 Keystroke dynamics as biometrics

User authentication is the most dominant use case for keystroke dynamics. There
are three types of authentication (Teh et al. [2013]): knowledge based (something
a person knows, e.g. a password), token based (an object in a person’s possession,
e.g. access card) and biometric based (a person’s physiological or behavioral
characteristics, e.g. fingerprint or voice). Keystroke dynamics falls within the
latter category and is a behavioral characteristics.

This approach is already in use. Both the education website Coursera and the
Norwegian bank DNB uses keystroke dynamics to authenticate users. Coursera
uses it for selected courses where they offer users identification
(https://www.coursera.org/about/privacy), and DNB uses it to authenticate users



3.2. KEYSTROKE DYNAMICS 21

after they have logged into their online bank account (Bjørndal and Bakken
[2015]).

Monrose and Rubin [2000] built three classifiers to automatically authenticate
users using Euclidean distance measure, non-weighted probability, and weighted
probability. From a dataset of 63 users the accuracy ranged from 83.22% to
92.14%. The researchers argued that even though behavioral traits are a sign of
identity, it has some limitations. E.g. a user’s typing rhythm is a result of the
user and the environment (e.g. different keyboards and emotional states change
how we type). But when keystroke dynamics is implemented together with other
ways of identification, e.g. a knowledge based approach, it allows for a more
robust authentication system.

Revett et al. [2007] applied methods of machine learning to classify whether a
user was authentic or not. The study had 50 participants, 20 acting as authentic
users and 30 acting as imposters. The authentic users were told to write a chosen
login id and password three times a day during a 14-day period. The imposters
were told to log into each of the 20 authentic accounts four times each. The
researchers then compared their modified Probabilistic Neural Network (PNN)
to the approach by Sung and Cho [2006] who used SVM (which resulted in a
8-10% error rate). Using the modified PNN resulted in an error rate of 4%,
compared to 8% for the standard PNN algorithm. Compared to a multilayered
feedforward neural network, the modified PNN was superior in both training time
and accuracy. It was noted, however, that PNN’s effeciency would degrade as
the number of samples grew, and that in this case the numbers were low. On the
other hand, other methods such as backpropagation, required a large amount of
training data, which PNN did not. Revett et al. [2007] stated that one of the
most critical issues was to extract the correct parameters when using keystroke
dynamics as a biometric. In their study, no feature selection was done, but they
found that derived attributes, e.g. digraph and trigraph times, had an higher
information gain than attributes such as flight time (the time between one key
is released and the next is pressed) and dwell time (the time between one key is
pressed and released).

Mondal and Bours [2014] explored continuous authentication, i.e. the user’s
behavior was monitored while logged in, and the user’s authenticity was calcu-
lated using fuzzy logic methods. They recorded keystroke dynamics and mouse
actions for 52 participants over 5-7 days in an uncontrolled environment. All
users were genuine users. They applied different classifiers on different features,
Scaled Euclidian Distance was used on single keys, digraphs, single and double
mouse clicks. Correlation distance was used on digraphs and double mouse clicks.
On mouse movement artificial neural network and counter-propagation artificial
neural network was used as classification methods. The researchers implemented
a trust model which compares the user’s behaviour with a template of the gen-
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uine user. The trust was continuously calculated, and given predefined fuzzy
rules, the user would or would not be locked out. The results from this research
were promising, but there was need for further studies. The main challenge was
the membership functions, as these should be optimised for one user, or even for
different actions.

Longi et al. [2015] used keystroke dynamics to identify students in a pro-
gramming course. As far as the researchers knew, that was the first time user
recognition was used in the context of programming. The goal was to recognise
users within the same course, but also in a later course, as to see if the keystroke
dynamics would change over time. Students participating in the study could use
different computers and keyboards during the data collection, which have been
found to have an effect on identification accuracy (Villani et al. [2006]). The
researchers used a KNN classifier, with an Euclidean distance measure. Data
samples were collected during two consecutive courses, each lasting 7 weeks. The
calculated features from the data samples were divided into four levels: level 0
(average dwell time of any key), level 1 (average time the programmer needed
to reach a specific key on the keyboard), level 2 (average time the programmer
needed to press a specific key-pair, i.e. a digraph) and level 3 being a combination
of the three mentioned.

To identify students within the same course, data from weeks 1 through 6 was
used as a training set, and data from week 7 was used as a test set. During weeks
1 through 6, 233 students participated, while during the 7th week 173 students
participated. The best results were found for the level 2 features, with accuracy
from 90.8% (K = 1) and 95.4% (K = 5) to 97.7% (K = 10).

To identify students between courses, all events from the first course were
used as a training set, and all events from the second course were used as the test
set. Using K = 1 and level 2 features, they got an result of 98.6%. With K = 2
they only failed to identify one out of 146 students. As stated by the researchers,
one reason for the high score might be the large amount of data available. To
detect how student’s typing change over time, the researchers used the first two
weeks of the first course as a training set, and the two last weeks of the second
course as a test set. There were eleven weeks between the training and test set.
70.8% were correctly identified when K = 1 and 90.8% were correctly identified
when k = 10.

3.2.2 Keystroke dynamics to recognise emotional states

In the subsequent sections, previous researches that closely relate to this the-
sis will be presented in detail. The two first article reviews, by Epp [2010] and
Ko lakowska [2013], are divided into four subsections: data collection, data repre-
sentation or feature selection, classification and results. Other relevant researches
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on keystroke dynamics will be presented after those two.
Ko lakowska [2013] summarises previous work on keystroke dynamics and

mouse movement, and how this can be used in emotion recognition, citing eleven
articles. These articles present results that ranges from 62% to 94% in accuracy.
Three of the articles are set in an intelligent tutoring systems context. One of
them only partially used keystroke dynamics, while the other two used mouse
movements as a data source. Therefore, these three articles are not referenced in
this thesis.

3.2.2.1 Emotion recognition by Epp [2010]

The research done by Epp [2010] is a master’s thesis written at the University of
Saskatchewan, Canada. The thesis has later been summarised in the paper by
Epp et al. [2011].

Data collection For the thesis, a data collection application was developed and
ran in the background on users computers, gathering keystroke events regardless
of which application was currently in use. At different times during the day, the
application prompted the user with the keystrokes from the last 10 minutes, an
emotional state questionnaire, and with an fixed text to type. Users could choose
to opt-out of the data collection at any time, e.g. in case they were busy or had
typed sensitive information. The questionnaire contained 15 5-point Likert scale
questions regarding the user’s current emotional state. Users were asked to rate
each emotion from “strongly disagree” to “strongly agree” on how it represented
their current emotional state. The emotional states used were: frustrated, fo-
cused, angry, happy, overwhelmed, confident, hesitant, stressed, relaxed, excited,
distracted, bored, sad, nervous and tired. The fixed text was a random piece
from Alice’s Adventures in Wonderland (Carroll [1898]). The random piece of
text was not selectable, so that users couldn’t copy and paste the text.

26 people initially participated in the study, but not all of them completed
enough samples to be included in the analysis. The study thus ended with 12
participants. The software that collected the keystroke data was installed on the
user’s private computers, and gathered data during their daily activities.

Feature selection From the provided data, three categories of information
were extracted: keystroke features, emotional state classes and additional data
points. The keystroke features consisted of key press and release events, unique
codes for each key and a timestamp for when the key event occurred. The
keystroke features were derived from the timing of single keystrokes, digraphs
(two-letter combinations) and trigraphs (three-letter combinations). The article
does not give any information on how many characters each piece of text consisted
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of, but the feature vector grew to over 100.000 features, leading the researcher
to only use aggregated features. The features used by Epp [2010] are shown in
table 3.1.

Applied to Description

Digraphs

The duration between the 1st and 2nd down keys of the digraph
The duration of the 1st key of the digraphs
Duration between 1st key up and next key down of the digraphs
The duration of the 2nd key of the digraphs
The duration of the digraphs from 1st key down to last key up
The number of key events that were part of the graph

Trigraphs

The duration between 1st and 2nd down keys of the trigraphs
The duration of the 1st key of the trigraphs.
Duration between 1st key up and next key down of trigraphs
The duration between 2nd and 3rd down keys of the trigraphs
The duration of the 2nd key of the trigraphs
Duration between 2nd key up and next key down of trigraphs
The duration of the third key of the trigraphs.
The duration of the trigraphs from 1st key down to last key up.
The number of key events that were part of the graph

Table 3.1: The feature set used by Epp [2010].

The keystroke features used were the keystroke duration (dwell time) for each
key, digraph and trigraph; keystroke latency (flight time) for each key, digraph
and trigraph; and keystroke features that combine aspects of the duration and
latency features. Additionally the number of mistakes (backspace and delete key)
were used as a feature.

Each data sample was labeled by the user using the 5-point Likert scale and
15 discrete emotional classes. The additional data points are the active process
name for each collected keystroke, so that the research can distinguish between
different applications, and analyse the data in the context of the application.

Classification Because of the large variations in number of responses per user,
no user-specific model was created. Instead data was aggregated across par-
ticipants into one dataset. The classification method used was the supervised
learning algorithm C4.5 decision tree. The previously described features were
evaluated and selected using the correlation-based feature subset attribute selec-
tion method by Hall [1999], as not all features had the same information gain
in the classification. After excluding data samples from users with too few re-
sponses (less than 50), the researchers were left with 1129 valid data samples to
analyse. As this was a limited data set, 10-fold cross-validation was used (Wit-
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ten et al. [2016]). Responses were not distributed evenly among emotion classes,
thus under-sampling was utilised, removing instances from majority classes which
resulted in more uniform class distribution.

Results The research found that a binary classifier was the best approach for
the classes confidence, hesitance, nervousness, relaxation, sadness, excitement,
anger and tiredness, with accuracies ranging between 77.4% and 87.8%.

The thesis notes that the dataset’s limitations in size and class distribution
should be taken into account.

3.2.2.2 Emotion recognition by Ko lakowska [2015]

The research by Ko lakowska [2015] focuses mostly on individual classifiers, ex-
perimenting with different classification algorithms, and a smaller set of emotion
classes than the one presented in Epp [2010].

Data collection Data collection was accomplished using an application that
ran in the background on the Windows operation system. This application
recorded all keyboard events. After a specified number of keyboard events had
occurred, the user was presented with a questionnaire containing seven radio
buttons, one for each predefined emotional states: happiness, sadness, boredom,
anger, disgust, surprise and fear. In addition there was a textbox, where users
could enter any other emotion. After selecting an emotional state, the keystroke
data, and the result from the questionnaire, were saved to an XML file. The
application needed to be started again after each questionnaire so that user’s vol-
untarily shared their keystroke data, and wasn’t disturbed by the questionnaire.

Ko lakowska gathered 9 participants, and the data was gathered while the
they were doing their daily activities. The researcher notes that data could be
manipulated by users, as self-reporting was used to label the data. Self-reporting,
however, was important for the participants, as it gave them the possibility to
decide when the keystrokes were recorded and not. The data collection was based
on the researcher’s “trust in the participants’ motivation and goodwill”.

Feature selection Only free text was collected from the users, thus a number
of words to compare were needed. From a frequency dictionary for the Polish
language, 20 two-character words and 20 three-character words were found, mak-
ing it possible to create digraphs and trigraphs from the data collected. The
digraphs and trigraphs are complete Polish words, not parts of words, as was the
case with Epp [2010]. The features extracted are similar to Epp [2010]: dwell
time, flight time, duration of key sequences and the time between subsequent
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keys. In addition, the means and standard deviation were calculated for all fea-
tures, and frequencies of the keys “backspace”, “delete”, “enter” and “spacebar”
were calculated. The features are shown in table 3.2.

Applied to Description
Single keys Dwell time

Digraphs

Dwell time for the first key
Dwell time for the second key
Time between pressing the first and the second key in a digraph
Flight time between the first and the second key
Digraph duration (time between pressing the first and releasing the second key)
Number of events for a digraph (usually 4)

Trigraphs

Dwell time for the first key
Dwell time for the second key
Dwell time for the third key
Time between pressing the first and the second key in a trigraph
Time between pressing the second and the third key in a trigraph
Flight time between the first and the second key
Flight time between the second and the third key
Trigraph duration (time between pressing the first and releasing the third key)
Number of events for a trigraph (usually 6)

Table 3.2: The feature set used by Ko lakowska [2015].

Classification No unique universal subset of features that could be used to dis-
criminate between emotions were found in the dataset. However, using a feature
filtering criterion, some features were found to discriminate between emotions for
one user. This subset of features were different for other users, however. Thus
concluding that there were no global features distinguishing between emotions in
this dataset. All 36 original features were used during the classification.

Decision trees, neural networks, KNN, naive Bayes, AdaBoost, rotation for-
est and Bayesian networks were all trained and tested. Similar to Epp [2010]
under-sampling a k-fold cross-validation (where k was a value between 20 and
30 depending on the number of classes for a given user) was used as the dataset
was unevenly distributed among classes and small in size. This research tried to
build both a universal and an individual identifier.

Results Results for the universal binary classifier ranged from 47.37% to 81.25%
in accuracy, depending on emotion class and method. It’s not possible to directly
compare all emotional classes as the results from all methods were not included.
For individual users, KNN gave promising results with accuracies ranging from
71.05% to 83.33%. However, KNN was not applied to all emotional states.

Using a multiclass classifier on one single user, resulted in an accuracy of
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63.33% for decision tree and Bayesian network, which are the only two classifiers
mentioned in this context. The recall rates ranged from 33.3% (class: sadness,
method: decision tree) to 100% (class: boredom, method: Bayesian network).
Overall, the binary classifier outperformed the multiclass classifier.

3.2.2.3 Using fuzzy logic to classify emotions from keystroke dynam-
ics

In the paper by Shukla and Solanki [2013], two data collection tools are briefly
proposed, one for fixed text and one for free text. The fixed text application
would allow the user to enter a presented text, and later select one of six emo-
tions. The free text application would prompt the user every 15 minutes for
them to enter their emotional state, choosing again from one of six emotions.
The emotional classes proposed were: confidence, sadness, nervousness, happi-
ness, tiredness and hesitation. From this data, the features session time (the total
time the user used in the system), flight time, dwell time, sequence (digraphs,
trigraphs and n-graphs), typing speed (number of keystrokes per minute), error
frequency (number of backspace and delete key presses, divided by number of
characters in the sequence), pause rate (the time users used to respond to a ques-
tion) and capitalization rate (number of capital letters in a sequence, divided by
the number of characters in that sequence) would be extracted. The paper’s au-
thor argues that a rule based system for classification, e.g. decision trees, having
a discrete set of labels, is not suited for continuous attributes. Thus they propose
to use a fuzzy logic system to classify the data. However, no results from this
study has been found, and the researcher could not find any progress later than
the paper by Solanki and Shukla [2014].

3.2.2.4 Detecting stress from keystroke dynamics

In the study by Hernandez et al. [2014], a pressure-sensitive keyboard and a
capacitive mouse was used to detect user’s stress level non-intrusively. Data la-
beling was done by self-reporting, with a sensor to measure electrodermal activity
and skin temperature, and with an accelerometer. The research found that stress
influenced typing pressure consistently with >79% of the participants (24 partic-
ipants in total) and there were consistently more mouse contact with 75% of the
participants. The article notes that while stress may lead to more muscle activ-
ity, and thus alter the typing pressure, other factors may also affect the muscle
activity, e.g. excitement and physical activity.

Ko lakowska [2016] builds upon the work from Ko lakowska [2015] by conduct-
ing a preliminary study of how time pressure affect a user’s keystroke dynamics.
Using statistical analysis, Ko lakowska analysed the dataset to find changes in 58
selected features (divided into the sections digraph features, trigraph features,
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special digraph features, frequency features and typing speed). The dataset
consisted of 36 data samples, each consisting of two parts, one with keystroke
dynamics in a normal setting, and one with keystroke dynamics under time pres-
sure. Ko lakowska found that about half of the parameters changed significantly
when under stress, most of them being digraph and trigraph characteristics and
typing speed. The conclusion is drawn on basis of all users, and not individually.
Although the study used time pressure as a mean to cause stress, the effect of
the time pressure is uncertain, as there was no self-assessment afterwards.

3.2.3 Inferring a programmers performance and experience

Leinonen et al. [2016] wanted to find out if keystroke latency data could explain
students performance on exams, and if keystroke dynamics could be used to
distinguish between novices and experienced programmers. 223 students from a
programming introductory course participated in the study. This is the same data
set that was collected by Longi et al. [2015]. Initially, over 10 000 features were
extracted from the dataset. After a feature selection process, the researchers were
left with 20-50 features to classify. The classification methods used were Bayesian
Network and Random Forest classifiers with 10-fold cross-validation. The study
found that student’s keystroke latencies could be used to explain students’ exam
performance, and that keystroke latencies could partially be used to distinguish
between novices and experienced programmers. On that note, the study found
that there was a difference in time spent to move from e.g. the character “i” to
“+” between novices and experienced programmers.

3.3 Summary

As noted by Ko lakowska [2015], the task of comparing research, specially research
on emotion recognition using keystroke dynamics, is made difficult by different
researches having different datasets, emotional states and feature sets. However,
it was possible to draw some conclusions that could be used to identify a way
forward for this research.

In the research by Ko lakowska [2015], KNN showed promise for both multi-
class and binary classifiers. The algorithm was almost never the best classifier,
but on average it performed well, whereas other classifiers performed both well
and badly. Longi et al. [2015] also had success with the KNN algorithm when us-
ing it to identify programmers. These findings on using KNN in a programming
environment makes it relevant for this thesis.

No article on keystroke dynamics and emotion recognition have described the
SVM algorithm in use, but it was used by Sung and Cho [2006] to authenticate
users with 8%-10% error rate. SVM and KNN share similarities as they are
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both instance based algorithms, and use an unknown instance’s location in a
feature space compared to other already classified instances as a way to classify
the instances. Thus it is interesting to see how well SVM fare compared to KNN.

KM et al. [2015] proposed using the pulse as a measure for positive or negative
emotions in a multimodal approach. That research, however, did not merge the
three proposed data sources. Other researches (Yuksel et al. [2016] and Epp
[2010]) also state the pulse’s relevance to detect emotional states. . Similar to
keystroke dynamics, pulse is also a feature that can be collected non-intrusively,
e.g. by using a smartwatch or activity tracker. This makes pulse a good candidate
for further study paired with keystroke dynamics.
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Chapter 4

Adapt
Keystroke dynamics collection tool

For this research, a JavaScript tutorial web application was developed. Though
it was not adaptive, the application was named Adaptive Programming Tutorial,
Adapt for short, for it’s future potential. This chapter explains the application.
In the first section, the user interface and interaction between users and the
system is presented, followed by the system’s architecture.

The application presents the user with exercises that become increasingly
more difficult. These exercises were written by the thesis author, inspired by
exercises from IT2805 Web Technologies and online JavaScript tutorials, such as
Codeacademy, W3Schools (https://www.w3schools.com/js/) and Tutorialpoint
(https://www.tutorialspoint.com/javascript/). Keystrokes that the users type in
the editor are collected together with their emotional state, as reported by them,
and stored in a database.

JavaScript was chosen as the tutorial language because computer science stu-
dents at NTNU does not learn it during their first year. They do learn Python
during their first semester and Java their second semester, however. Thus it
was possible to recruit students with programming experience, but who weren’t
familiar with JavaScript. Recruiting is further discussed in section 5.1.1.

4.1 User interface

The first view users are presented with is an information page about the project,
and an link to the application itself. Upon entering the tutorial application, the
user is presented with the view seen in figure 4.1 (the webpage is zoomed in at
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150%). The view consist of three sections, information about the exercise to
the left, the web editor in the center and the console to the right. The editor
is the Ace editor (https://ace.c9.io/), developed by Cloud9 IDE (https://c9.io)
and Mozilla (https://mozilla.org/), used by sites like Codeacademy. The console
outputs the result from the code written in the editor, once the “run” button
(bottom center, currently disabled in figure 4.1) is clicked.

Figure 4.1: Adapt’s initial view
The first exercise asks the user to accept taking part in the study. The application

view is identical throughout the tutorial, only the information on the left side changes.

The information section consist of four subsections, curriculum relevant for
the exercise (what you need to know), the exercise (do this), a hint if the user
is having problems completing the exercise (here’s a hint, if you need it), and a
form for the user to report feedback to the researcher (do you have feedback?).
The setup is inspired by Codeacademy to make an familiar tutorial to many, as
not to take the focus away from the exercises.

The run button is deactivated by default, but becomes active once the user
has entered at least one character into the editor. The “next exercise” button is
deactivated by default, and will become active once the current exercise is passed.

Users can at any time write a message in the feedback form and send it. This
does not affect the exercise, nor will the keystrokes be stored. Once sent, the user
is prompted with a “thank you”, giving feedback to the user that the message is
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sent.

4.1.1 Collecting user information

Upon entering the application an unique ID will be generated by the backend
system, which are then stored in the database. This ID is also stored locally in a
browser cookie, so that the user can be identified upon reentering the webpage.
The first exercise (exercise 0) contain a short introduction to the research, and
asks the user to accept taking part in the project, as seen in figure 4.1. By typing
the string console.log(“I accept”) into the editor and running the code, the user
confirms to participate in the research. When the user clicks the “next exercise”
button the user will be prompted with a form, asking about the user’s gender
and experience with programming, see figure 4.2.

Figure 4.2: Adapt’s user information registration form

In order to later categorise users, the user is asked to:

• Describe their experience with programming on a 7-point Likert scale (1 =
No experience, 4 = intermediate, and 7 = expert).

• Select which programming languages they have previous experience with
(Python, Java, JavaScript, C++, PHP, Matlab or other languages).
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• Answer how many years before attending the university they practiced pro-
gramming (in intervals of 0.5 years).

• Answer how many years in total they have practiced programming (in in-
tervals of 0.5 years).

• Select when they first learned programming (this is my first time, on my
own, before middle school, middle school, high school, or university/college)

This information is stored in the database together with the user’s id. The
user can choose to close the form by clicking “avbryt” (the researcher forgot to
translate this button). However, the form will be presented each time the user
clicks the “next exercise” button, until the form is answered and registered.

Each time the user clicks the “run” button, the user is prompted with a
form, asking the user to describe their current emotional state. This is a list of
radio buttons, each corresponding to one of the specific emotions bored, confused,
delighted, concentrated, frustrated and surprised. The form can be seen in figure
4.3. Upon clicking “register” the code is run and the result is made visible in the
console. The user can choose to close the form by clicking “avbryt”. Doing so
will result in the code not being executed.

Even though the code was executed once the user clicked the “run” button, it
is not displayed in the console until the user clicks “register”. Clicking “avbryt”
would lead to the result not being displayed. The reason for this was to get the
user’s genuine emotional state (Choppin [2000]) and not have the user judge their
emotional state based on how well their code performed.

Figure 4.3: Adapt’s emotion registration form
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4.1.2 Exercise handling

After accepting to do the tutorial, the user is given 32 exercises, whereas one of
them (exercise 29) is information about the last exercises. The exercise curricu-
lum, text and hint is always given in the left section of the application. When
presented with an exercise, the user writes code that should yield the expected
results. After doing so, the user must click the “run” button to execute the code.

When the code is evaluated there are three possible outcomes: “correct an-
swer”, “correct code, but wrong answer”, and “coding error”. If the answer is
correct, the “next exercise” button will become active, and when clicking it the
user will be presented with the next exercise. However, if the user got a wrong
answer, they will be presented with an orange error message giving a hint at
what might be wrong (see figure 4.4). This message is static, written by the
thesis author. As such, it is only a guess at what might be wrong. The result
will be visible in the console.

Figure 4.4: Error message display when the result is wrong

Should the code contain errors, making it impossible to run, the user will be
presented with an orange error message, stating that there is an error in the code.
The error message is provided in the console. See figure 4.5 for an example.

The error message can be exited by clicking the “x” in the top right corner
of the message. It will also be closed once the “run” button is clicked again.
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Figure 4.5: Error message when the code contain errors

4.1.3 Inducing emotions

In order to provoke some feelings with the users, as to get a better class distri-
bution, two emotion inducing features were implemented. These are:

• Random removal of text

• 4 minute timer

The random text removal feature was implemented after feedback from the
supervisor, and the timer was inspired by Ko lakowska [2016]. The random text
removal might happen any time, but the timer only occurred on selected exercises.

For each character typed, there is a one in 300 chance that the editor will be
reset, i.e. all written text will be removed from the editor and the user will need
to start again. The first exercises are fairly short, thus the chance of removal
is small. On the latter exercises, however, the chance increases as they require
more code. Once removed, the user it not given any information on what just
happened. The number 300 was chosen after some test runs, and feedback from
some early participants, so that it didn’t occur too often, nor too seldom.

The other feature, the timer, was visible at the top of the editor on selected
exercises (16, 17, 30, 31 and 32). The timer is not announced with exercises 16
and 17, but it is announced before the user starts exercises 30, 31 and 32. The
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timer starts at 4 minutes, which is an arbitrary number. When it enters 1 minute,
the color changes to orange to signal that the end is near. Upon reaching 0, the
color turns red. The timer’s three stages can be viewed in figure 4.6.

Figure 4.6: The timers three stages.

When one or both of the emotion inducing features occurred, the user would
be prompted to give feedback on whether they were affected by them. The user
would be asked to answer either yes or no. The user would also be asked to give
a written explanation on how they were affected. Due to faulty programming
logic, however, these text fields weren’t required to answer.

Should both features occur, the user would be asked to give feedback on both.
The prompt would come once the user clicked the “run” button, together with
the emotion selection. The prompt for random removal of text and the timer can
be seen in figure 4.7. As can be seen, the question for further explanation on
how the feature affected the users changed depending on the user’s answer (yes
or no).

4.1.4 Interaction with the editor

With the provided code editor, it wasn’t possible to paste code (or any other text),
it is also wasn’t possible to redo an action. The decision to restrict the users this
way came after a test user got bored writing the same code over and over again,
and started pasting (CMD+V on macOS and CTRL+V on Windows) the code
into the editor. This resulted in the session containing only a few keystrokes,
rather than keystrokes for the complete code. Similarly, when the random text
removal occurs, one user found that it was possible to redo (CMD+Z on macOS
and CTRL+Z on Windows) the last change, resetting the editor to the pre-
removal state. This also reduced the number of collected keystrokes.
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Figure 4.7: Feedback form for emotion inducing features.

After the disabling, when trying to paste, users would be prompted with the
error message “Pasting code have a negative impact on the recorded data and
have thus been disabled”. No information was given when the user tried to use
redo, it would simply not work. These features were set in the Ace Editor’s
configuration file.

4.2 System architecture

To understand the architecture, it is important to define some important terms.
These terms are used by the researcher to define parts of the system, and are
defined by the researcher.

• Key object: Each interaction between the user and the keyboard is stored in
an object consisting of the values: Key code (a unique code for one specific
key), key press timestamp and key release timestamp. Every timestamp is
expressed in milliseconds.

• Keylog: Every key object is stored sequentially in a list by when the keys
were pressed.

• Session: A session takes place between two code runs (clicking the run
button), or from the user first enters the page and the first code run. A
session object consist of the keylog for that period, exercise id, user id, the
user’s emotional state as stated by the user, the code written, the result
and information on how the emotion inducing features affected the user.

The frontend application is written in HTML, CSS and plain JavaScript, and
the backend is written in Python and the microframework Flask (flask.pocoo.org),
while the database is the document database MongoDB, developed by MongoDB,
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Inc. (https://www.mongodb.com/). The backend serves the client application
through an API. The web application does not reload when a new exercise is
presented, but the keylog is reset.

4.2.1 Key logging

At the heart of the application is the collection of keystroke data. When users
type on the keyboard, the browser fires key events. These events are captured by
the application and stored in a keylog list. Each key event can be one of three
types: keydown, keypress or keyup. For this research, the keydown and keyup
events are interesting as they represent when a key is pressed down and released,
respectively. Each key event contain information about the key’s unique identifier
and a timestamp for when the event occurred.

Each time a keydown event is registered, the key code and timestamp is
registered and stored in the keylog list. If a keyup event is registered, the list will
be looped through, starting from the end, until a key object is found with the
same key code, i.e. the last key object with the same key code. This approach
is inspired by the proof-of-concept web authentication with keystroke dynamic,
developed by Young [2012]. The information flow can be seen in figure 4.8.

Figure 4.8: Keystroke capture flow
When the user type characters in the editor, the application records each event. If it is

a keydown event, a new key object is stored in the keylog. If the event is a keyup
event, the corresponding key object is updated with a time up value.
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If the user experienced a random text removal, a key object would be added to
the log with the key code 256 (this key code is not used by any of the keyboard’s
keys), to note which key objects occur before and after the text removal. Every
key object that occurred after the last time the “run” button was clicked, is
stored in the keylog, even when the text in the editor was removed. Also the
keys “backspace”, “arrow left”, “arrow up”, “arrow right”, “arrow down” and
“delete” were stored in the keylog. These keys do not have a keyup event, thus
the keyup value is the same as the keydown value. Should a key be held down
over a period of time, it will generate several consecutive keydown events. These
events are ignored. Only when there is a keyup event in between two keys of the
same type will a new key object be created.

When the user click the “run” button, the keylog is added to a session object
together with the user id, the content of the editor, the result from the code run,
number of backspace and delete keys in the keylog, the exercise id and a flag set
to true if the random text removal occurred. After clicking the “run” button,
the user is prompted with the form shown in figure 4.3 (or figure 4.7 if one of the
emotion inducing features occurred). After clicking “register”, information from
this form (emotional state and how the features affected the user) is added to the
session object. Then that object is transferred to the database through the API.
Before it is added to the database, a timestamp is added to include information
on when the object was created. If the storage is successful the keylog list is
reset, so that only new keystrokes are stored together with the session object.
The session object model and example can be viewed in table 4.1.

4.2.2 Users

As mentioned in subsection 4.1.1, once the user enters the application, a user
object is stored in the database with an user ID. The same user ID is stored in
a browser cookie, as to track users across browser sessions. The ID is created by
MongoDB, and is guaranteed to be unique.

After the user has run the code console.log(“I accept”) as part of exercise
0, the user is prompted with a form, asking the user to give information about
gender and programming experience, see figure 4.2. This information is stored
in the user object in the database, making it possible to classify users later on,
and e.g. compare only the feature vectors of those that do not have previous
experience with JavaScript. In addition to the information given in the prompt,
the user agent is stored to distinguish those that e.g. have used a smartphone
from those using a laptop or desktop. Also, there is a timestamp for when the
user was created. There is no information on the keyboard used, so it is not
possible to see if users have changed keyboard during their testing. It is also not
possible to track users across computers or browsers, as the user ID is set on a
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Field Data type Description Example

id
ObjectId (MongoDB
data type)

The object’s ID set
by MongoDB

ObjectId(”58e4c3210b859a646c6b6db7”)

user id String The user’s ID ”58e4c1f20b859a646c6b6db2”

emotion String
The user’s self-described
emotional state

”confused”

timestamp Datetime
Timestamp for when
the session was stored

2017-04-05T10:12:49.484358+00:00

result String
The result from the
code run

”42.4”

code String Editor’s content ”console.log(42.4)”
exercise id Integer Exercise’s ID number 4

number of misses Integer
Number of misses during
the session

2

keylog List of objects
The keylog (represented
here by the first and last
object)

[{”key code” : 67,
”time down” : 266019.85000000003,
”time up” : 266142.895},
...,
{”key code” : 57,
”time down” : 277932.92000000004,
”time up” : 278040.24000000005}]

timer affected Integer

4 minute timer stress
feature 0: Timer didn’t occur
1: Timer didn’t affect
2: Timer did affect

0

timer affected reason String
Description by the user
how the timer affected
them

””

was reset Boolean
A flag set to true if the
editor’s content was
randomly removed

true

removal affected Integer

Random removal of
text stress feature
0: Removal didn’t occur
1: Removal didn’t affect
2: Removal did affect

2

removal affected reason String
Description by the user how
the random text removal
affected them

”Usikker p̊a om jeg hadde
trykket noe feil p̊a tastaturet.
Litt paff kanskje?”

pulse Float
User’s average pulse for
that session

58.7

min pulse Float User’s minimum pulse 58
max pulse Float User’s maximum pulse 60

Table 4.1: Adapt’s session model with example
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browser basis.

Four fields were added to the user object that ended up not being used:
username, email, password and completed. These fields are only present for
potential future development. The user model can be seen in table 4.2. Each
field is explained by data type and a description, and an example is given for
each field.

Field Data type Description Example

id
ObjectId (MongoDB
data type)

The user’s ID, created by MongoDB ObjectId(”58cef4460b859a30c46fab7a”)

user agent String
Information about the user’s browser,
so that e.g. mobile phones can be
excluded from the dataset

”Mozilla/5.0 (Macintosh; Intel Mac OS X
10 9 5) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/57.0.2987.133
Safari/537.36”

is admin Boolean
A flag stating if the user is an admin
or not. Admins can add and change
exercises

false

created Datetime
Time and date for when the user was
created

”2017-03-28T13:15:45.101552+00:00”

gender String Can be either male or female female

experience Integer
Integer from 1 to 7, describing the
user’s experience

2

languages
Object with Integers
and one String

Six predefined languages, which can
have the value 1 (does not know) or 2
(do know), and one string named other,
where user’s can add other languages

”python” : 2
”php” : 1
”javascript” : 2
”java” : 2
”cplusplus” : 1
”matlab” : 1

years of experience Float

The total number of years with
programming experience, in intervals
of 0.5 years as to accommodate for
academic terms

0.5

years before university Float

The total number of years with
programming experience before attending
the university, in intervals of 0.5 years as
to accommodate for academic terms

0

first learned String

Description of when the user first learned
programming, this can be one of: this is
my first time, on my own, before middle
school, middle school, high school,
college/university

”university”

current exercise Integer
The exercise id of the last exercise the
user started, but has yet not completed

1

username (not in use) String
Could be used to track users across
browsers and computers

”nousername”

email (not in use) String Could be used with user registration ”no@email.com”
password (not in use) String Could be used with user registration ”doesntexist”

completed (not in use) Boolean
A flag stating if the user have completed
the tutorial. If true, the user could e.g.
jump to any exercise

false

Table 4.2: Adapt’s user model with example

4.2.3 Exercises

After the initial information in exercise 0, users are presented with 32 exer-
cises with increasing difficulty. The subjects are, in order of presentation: basic
data types (string, int, boolean), quotes, concatenation, decimals, arithmetic,
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comparing data types, variables and constants, arrays, loops, if/else statements,
functions, and lastly three challenges.

Each exercise object consist of the values: title, and ID, curriculum, exercise
text, a hint, an error message, the expected result, a timer flag (if set, the exercise
is timed), and editor content. Editor content is not used in any of the exercises,
but allow for some code to be visible for the user, e.g. if the user should be
provided with skeleton code. The reason for not using the “editor code” field is
that the users should write as much code as possible, giving more data to analyse.

The general exercise model, and with exercise 6 as an example, is presented
in table 4.3. The complete set of exercises can be found in appendix A.

Field Data type Description Example

id
ObjectId (MongoDB
data type)

The object’s
database reference

ObjectId(”58de848a0b859a677433b98d”)

title String Exercise’s title (Arithmetic + 5) / 2

exercise id Integer
Exercise’s
order number

6

version Integer
Exercise’s
version number

1

created Datetime

Timestamp for
when the
exercise was
created

2017-03-31T16:32:10.237608+00:00

curriculum String Curriculum

Arithmetic in JavaScript is controlled
the same way as regular arithmetic.
Multiplication and division have a higher
precedence than addition and subtraction.

As with regular math, you can use
parentheses to control when a calculation
is made, e.g. if you want the addition to
happen before multiplication.

text String Exercise text

Use parentheses on the calculation
4 + 2 * 100, so that the answer
becomes 600 and not 204. Print the
answer to the console.

hint String Hint

The order of calculation is as follows:
– Calculate parentheses
– Multiplication and division, calculated
left to right
– Addition and subtraction,
calculated left to right.

error message String Error message Did you encapsulate 4 + 2 in parentheses?
result String Expected result 600

timed Boolean

A flag that,
if set to true,
will display the
timer

false

editor (not in use) String
Content of
the editor

Table 4.3: Adapt’s exercise model
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Once the user clicks the “run” button, the code is run in a web worker. A
web worker is a HTML5 feature that allow for safely execution of JavaScript in
the background, without affecting the performance of the web page, and does not
influence the client side JavaScript.

After the code execution, the result is sent to the backend together with the
session object for evaluation. If the user’s result is equal to the exercise’s expected
result, the user is allowed to proceed. When comparing answers, line breaks and
spaces are removed, all characters are made lower case, and all double quotes are
converted to single quotes. This lets the answers be a bit flexible, rather than
strictly compare the two strings which would have made the string “I accept” not
equal to “i accept”. There is no testing of the actual code, so user’s can write
“console.log(600)” on exercise 6 and get a pass. However, the code is stored
together with the session, so it is possible to implement some checks later on.

4.2.4 Backend API

The server side code receives data from, and sends data to, the client, possibly
adding some data to it along the way. The API also handles sending data to the
MongoDB database. The API endpoints used in Adapt are described in table
4.4.

Endpoint Arguments Description

add exercises
Adds a new exercise to the database.
Exercise id is create by the MongoDB

add feedback
Adds a feedback to the database
(contains exercise id, user id and feedback text)

add session
Adds a session to the database
(user id is collected from the cookie)

get exercises user id
Returns the latest version of the next exercise
for a given user

get exercises by id exercise id Returns the latest version of a specific exercise
update exercises exercise id Updates a specified exercise, creating a new version

update users
Adds user information to an already existing user
(gets user id from the cookie)

post users Creates a new user in the database

Table 4.4: Adapt’s API endpoints



Chapter 5

Data collection and
experiments

In this chapter, the data collection and experiment plans and their executions,
are described. As a part of this research it was necessary to collect a dataset
that could be used to infer the chosen emotional states from keystroke dynam-
ics gathered in a programing environment. Data collection was done using the
application Adapt, which collected data from users. The experiments aim at
classifying the dataset, using KNN and SVM with different hyperparameters and
approaches, in order to find the best classifier.

This chapter consists of four sections, first the data collection plan is pre-
sented, followed by a section on how it was set up and executed. Then the
experiments are explained in detail. Lastly an overview over the participants is
given.

5.1 Data collection plan

Similarly to Epp [2010] and Ko lakowska [2015], data collection for this research
was done using observation and measurement, where quantitative data was col-
lected for later analysis (Oates [2005]). Adapt, the data collection tool described
in chapter 4, observed participant’s keystrokes automatically. This made it possi-
ble to collect large amounts of data, without the researcher’s presence. The data
collection sessions1 which the researcher did not observe, are called unsupervised
sessions in this thesis. To collect the pulse it was necessary to ask some partic-
ipants to take part in a supervised data collection session, where the researcher

1Data collection sessions must not be confused with the sessions between two code runs.

45
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observed the participant’s pulse while they completed the tutorial. In both data
collection sessions participants were asked to self-report their emotional state in
the questionnaire presented in figure 4.3.

5.1.1 Participants

As JavaScript was the chosen language, participants without previous experience
with the language were preferred. The researcher hypothesised that these stu-
dents would have a greater variance in how they reacted to the exercises than
those familiar with the language. Additionally, participants without experience
with JavaScript might find the exercises more challenging than those with expe-
rience. However, it was desirable to have participants with some programming
experience, so that they didn’t need to learn the very basics of programming.
As bachelor and master students in informatics (the researcher’s study program)
have experience with JavaScript through the course IT2805 Web technologies,
first year students from the five years integrated master’s degree in computer
science were recruited (they do not attend IT2805).

These students learned Python in an introductory programming course dur-
ing their first semester. During the data collection phase, they are in their sec-
ond semester where they are learning Java in an introductory course on object-
oriented programming. Thus, the computer science students are familiar with
programming, but are not necessarily proficient.

As reported by both Epp [2010] and Ko lakowska [2015], their datasets were
limited in size due to a small number of participants, 12 and 9 respectively.
Hence, this research should aim to increase the number of participants, with no
upper limit. Recruiting was done through the researcher’s network at NTNU and
during a presentation in TDT4100 object-oriented programming.

5.1.2 Data collection

To gather data, participants were introduced to the tutorial application described
in chapter 4. Completing the tutorial in one sitting takes about 40 to 60 minutes.
By using this tutorial, participant’s keystroke data was collected and stored in a
database for later analysis. If the participants choose to come into the lab and
go through the tutorial, their pulse data would also be stored in the database.

Participants in the study by Epp [2010] used an average of four weeks to collect
enough data, while participants in the study by Ko lakowska [2015] used from two
weeks to three months, and participants in the the study by Longi et al. [2015]
used 7 weeks to collect data, due to the programming course’s length. Following
these researches, and due to the duration of this master’s thesis, data collection
was set to last for four weeks, but it was possible to also gather data after this.
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The collected keystroke dynamics are discrete quantitative data by nature,
as each event occur between two specific timestamps. Pulse, on the other hand,
is continuous, but was in this research stored as discrete values, measured in 10
second intervals.

In this research there were two types of data collection settings: Participants
could do the tutorial without supervision from the researcher (unsupervised data
collection), or participants could do the tutorial with supervision from the re-
searcher (supervised data collection). Unsupervised data collection was used in
order to collect large amounts of keystroke data in a time efficient and scalable
manner. This way, there was no limit to how many could participate, as it de-
manded no resources from the researcher. Supervised experiments were used to
gather pulse data in addition to the keystroke data. This demanded, however,
that the researcher was present. Participants could take part in both data collec-
tion types, but preferably first in the supervised data collection to capture their
initial response to the exercises together with their pulse data.

5.1.2.1 Unsupervised data collection

With the unsupervised data collection, the researcher had to trust that partic-
ipants had good intentions and that they did not try to deliberately apply the
incorrect label. This approach is similar to Ko lakowska [2015]. Allowing partici-
pants to do the tutorial on their own time, and in a place that is natural to them,
would give more authentic emotions. As stated by Ko lakowska [2015] this is im-
portant to get good data. As the number of exercises were limited, participants
were encouraged to retake the tutorial when they experienced different moods or
emotional states, thus generating a greater number of instances for each class.

5.1.2.2 Supervised data collection

During this research, there was no time to develop an automatic collection of
pulse data, hence it was not possible to collect pulse during the unsupervised
experiments. In order to capture this data, participants were asked to do the
tutorial while supervised, and with a non-intrusive pulse detecting device. This
information was updated live, displaying the data on the researcher’s phone, so
that the pulse measures could be written down at 10 second intervals. 10 seconds
is an arbitrary number, allowing for longer exercises to have a manageable number
of entries.

A python application that uses the laptop’s integrated webcamera to track a
user’s pulse based on changes in their skin colour, by Hearn [2013], was tested as
a non-intrusive method to collect participant’s pulse. However, this application
required participants to sit perfectly still while doing the exercises. As that was
an unlikely scenario, a smartwatch or activity tracker was preferred. Such a device
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was also preferred rather than a dedicated pulse monitor as the smartwatches are
more likely to be used in a natural setting, e.g. while studying. These devices
are owned by many, while a dedicated pulse monitor is mostly owned by those
who are serious about their workouts.

When participants arrived, they were given time to calm down and ready
themselves, as to limit influence from outside the controlled environment. The
researcher started with some small talk, and practical information about the
research as seen in the list below:

• Talk about the research’s goal

• Introduce the participants to their task

• Let them know that they aren’t the ones who are being tested, they are
here only to provide data

• Introduce the data collection tool

• Tell the participants that they should answer honestly, and that the re-
searcher would not get offended should the participant answer “bored”

During the experiment, the participant’s laptop’s screen and the researcher’s
phone (where the pulse was displayed) were filmed so that it would be possible
to go through the data later, controlling and correcting pulse values where there
was a mismatch between the number of sessions and the researcher’s notes. It
was not necessary to film the participant’s face, only the screen to see when the
“run” button was clicked, indicating the end of a session.

After the experiment, the researcher would debrief the participant to get
insight into possible improvements, how the participant found the tutorial and
application interface, and how they were affected by emotion inducing features.

5.2 Data collection setup

The web tutorial described in chapter 4 was a crucial part of the data collec-
tion setup. As the application should not be a limiting factor for the partici-
pants, nor distract them from the exercises, it was decided to make it similar to
Codeacademy’s tutorial. User interaction, layout and flow in the application was
discussed with an fourth year interaction design student at NTNU.

Participants were asked to use their own computer and keyboard while doing
the tutorial, as users type differently on a keyboard they are unfamiliar with
(Teh et al. [2013]). The researcher could not control this during the unsupervised
sessions, but participants taking part in the supervised sessions were asked to
bring their own computer.



5.2. DATA COLLECTION SETUP 49

5.2.1 Supervised data collection setup

During the supervised sessions, participants were equipped with a Fitbit Charge
2 activity tracker, Fitbit [2016], on their non-dominant arm (as per instructions).
The Fitbit was chosen over other smartwatches and activity trackers because of
Fitbits widespread use, and possibility for later integration against an application
to automatically register pulse data on both Android and iOS devices. Salazar
et al. [2017] found that the Fitbit Charge 2 provided adequate values for recre-
ational use, but not for serious workouts. This lead to the decision that the Fitbit
was good enough for this research, and also fitted well within the goal of being
non-intrusive.

The phone that displayed the pulse had to be positioned outside the partic-
ipant’s view so that the participant did not focus on their own pulse. This was
first done in later data collection sessions, after feedback from some participants.
The Fitbit was connected to the phone via Bluetooth to display the pulse live.
The camera did not capture any footage except for when the participant did the
tutorial, so that no passwords or other sensitive data were recorded. A screenshot
from the supervised data collection setup can be seen in figure 5.1.

Figure 5.1: Screenshot from the supervised data collection session.
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5.2.2 Personal information handling

No written personal information (name, address, e-mail, birthday) was collected
that could link recorded data to one specific person. However, as reported by
Longi et al. [2015], it is potentially possible to infer a person’s identity from their
keystroke dynamics. More importantly for this study was the filming of some
participants, and potentially so using the webcamera (as described in section
5.1.2.2). The collection of such data could be used to detect people’s identity.

Thus, it was necessary to register the research with the Norwegian Centre for
Research Data (NSD) and apply for being able to collect data. The application
can be seen in its entirety in appendix B. A part of the application was the
information letter given to participants in the supervised data collection. This
information letter can be seen in appendix C. The response from NSD can be
seen in appendix D.

The video files of participants’ pulse were stored locally on the researcher’s
computer, and deleted once the pulse was added to the sessions objects. No video
was taken using the webcamera, and no footage showed the participant’s face.

5.3 Experiments

In this section the collected data and the classification tool developed for this re-
search is explained, together with all the necessary feature vector creation meth-
ods. This tool, which in all fairness is a script, extracts and derives features from
the collected dataset, and apply them in the selected classification methods.

5.3.1 Nature of the dataset

To better understand the feature extraction and classification processes, it is
necessary to understand how the dataset looks like, and what it consist of.

Each user is stored as an object with the fields described in table 4.2. The im-
portant fields to notice, however, are: id, experience, languages and years of experience.
These fields make it possible to classify users against similar users, e.g. to dif-
ferentiate between novice and expert programmers, as these might have different
traits in their typing rhythm.

Each session (the data collected between two code runs) is stored as an ob-
ject with the fields described in table 4.1. The important fields to notice here
are: emotion, keylog, pulse, min pulse and max pulse. These fields are, together
with fields from the user object, used to create the feature vector used during
classification.

The keylog list in the session object was used to create the main bulk of
features in the vector. From here, it was possible to derive a number of features,
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which describe the relationship between two or three keys, and how each key is
pressed. The keylog is ordered by when each key was pressed down, meaning that
if key A, B and C was pressed down at the times t+1, t+4 and t+2 respectively,
they would be ordered A, C, B. The release time is not considered during ordering.
As such it is possible to get negative values when calculating the flight time
between two keys (the time between key A is released and key B is pressed).

Classifying two vectors require that each pair of elements in the two vectors
represent the same feature. When participants type, it is possible that they make
mistakes, or that they move the cursor to another part of the text. As pointed
out by Epp [2010], it is difficult to track corrections as users can use both the
mouse and arrow keys to navigate the editor. E.g. a user can use the up arrow
to go to another line, but as line breaks occur automatically dependent on the
browser’s width, the arrow up key might take two users to a different part of the
text. In order to compare two vectors that make up the same word, but with
different sets of keys, some actions must be taken. These actions are explored in
section 5.3.2.1.

5.3.2 Data classification tool

The data analysis tool was written in Python, with classification methods from
the data analysis library Scikit Learn by Pedregosa et al. [2011]. The tool takes
user and session objects as inputs, creates feature vectors, and classify the vectors
using the classification methods KNN and SVM.

As mentioned, it is only meaningful to compare two instances of the same
sequence of characters, so that you directly can compare the difference between
two equal features. In order to find these sequences, each keylog is compared to
a pattern defined by the author. A pattern is a sequence of keys that make up
a word or string of characters. Each pattern is an object consisting of the fields
“text” and “key codes”, where “text” is the pattern in plaintext, and “key codes”
is a list with the key codes. E.g. key codes for the pattern “let” (a JavaScript
keyword) is “[76, 69, 84]”. The object can be seen in table 5.1.

Table 5.1: Pattern used to recognise sequence of characters

Field Data type Description Example
text String The pattern in plaintext true

key codes List of integers

Each list element is a character’s key code.
The list is ordered by the key’s appearance
in the word. One key can occur several
times.

[84, 82, 85, 69]

The classification process can be divided into three main steps: feature vector
construction, feature vector processing, and classification. Only valid users (users
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who have submitted the user information form seen in figure 4.2) are used during
the classification. Session instances belonging to non-valid users are disregarded.

5.3.2.1 Feature vector construction

The first step is to construct the feature vectors. This phase is adapted from the
research done by Epp [2010], and later Ko lakowska [2015]. Not all steps from the
two articles were clear, only which features to include, but not how they were
applied to the data samples. Thus, some assumptions and adjustments were
made.

The construction is itself divided into smaller substeps: keylog cleanup, pat-
tern recognition, and feature calculation. These steps are executed on all session
objects that have a keylog with more than one element. The shortest pattern
is the two character keyword “if” ([73, 70]), and since digraphs and trigraphs
features make up a large portion of the feature vector, keylogs with less than two
characters are excluded.

Keylog cleanup Every keylog (that is two characters or longer) is first cleaned
up in order to recognise subsequences, i.e. find the sequence of keys that makes
up a pattern. One keylog may e.g. contain the character sequence [82, 69, 84, 85,
84, 8, 82, 78] (r, e, t, u, t, backspace, r, n). This should be stored as an instance
of the pattern “return”, but because there is a “t” and a “backspace” too many,
the pattern will not identify the keyword without first removing the extra keys.

The list of key objects in the keylog is looped through, and for each key, the
key object is added to a clean list (a list without certain characters). If the loop
finds any of the keys backspace (key code 8), delete (32), arrow left (37), arrow
up (38), arrow right (39) or arrow down (40), they will not be added to the clean
list. This also is the case if the loop finds a key object with the key code 256,
which indicates that the editor was randomly reset.

However, if the loop finds the backspace key (8), it naively assumes that the
previous character was removed. The last key added to the clean list, before the
backspace was found, will then also be removed. This approach will handle the
scenario presented in the previous paragraph, with the keylog [82, 69, 84, 85, 84,
8, 82, 78]. However, it would not handle instances where the mouse has moved
the cursor, or the cursor has been moved with the arrow keys.

Using this approach for the pattern “console.log(“ results in 530 valid in-
stances, rather than 469 when the cleanup was not done.

Pattern recognition The next step is to recognise patterns within a (clean)
keylog. A keylog may consist of one, or any positive number, key objects.
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Pattern recognition is done with a method that takes a keylog and a pattern as
parameters. The keylog is looped through, and if the current key element matches
the first element in the pattern, all following characters in the keylog is checked
against their respective element in the pattern. In case of a match, the first and
last element’s index are appended to a list, and the loop continues. It is thus
possible to find several matches within the same keylog. E.g. this is the instance
in exercise 26 where participants are asked to type both an “if” statement, and
an “else if” statement, generating two subsequences for the keyword “if”.

The list with the subsequence’s start and end indices are then used to extract
the correct key objects from the keylog. This reduced keylog, i.e. only the key
objects corresponding to a certain pattern, is used to construct the feature vector.

Feature selection and construction For each reduced keylog, a feature vec-
tor is constructed. The vector’s length varies with different patterns. Similar for
all feature vectors, however, are the 8 first features. The first 7 of these contain
information about the user (as collected from the user object). The 8th feature
is the vector’s class. These features weren’t used during classification, but rather
before, when the researcher decided which vectors to include in that specific clas-
sification. E.g. it could be desirable to exclude all vectors of the classes bored
and surprised. The remaining features are three pulse features, used for vectors
where the pulse was measured, and derived features from the keystroke data.

Feature vectors based on the pattern “console.log(“ have 153 derived features
(156 for pulse vectors). These features are normalised, so that units that would
otherwise be different (milliseconds and beats per minute) can be expressed within
the same range. The derived features are found by looping through the reduced
keylog, calculating the features described in table 5.2.

The features in table 5.2 are selected on the basis of research done by Epp
[2010] and Ko lakowska [2015]. However, the features “number of events in the
digraph” and “number of events in the trigraph” were not taken into account as
each key object in this research is stored with both key press and key release,
meaning that each digraph would always consist of six events and each trigraph
always consist of nine events. In addition, single key dwell times are not included,
as they are in Ko lakowska [2015], since these features are calculated in both
digraphs and trigraphs. The relationship between key events, dwell time and
flight time can be seen in figure 5.2.

The average pulse feature is calculated by finding the mean of all pulse mea-
sures for a given session (all keystrokes between two code runs). The max and
min pulse values are the highest and lowest pulse measured during the session.

Average dwell time was calculated finding the mean of each key’s dwell time
in the reduced keylog. Key objects that are not a part of the reduced keylog are
not taken into account. Average flight time is calculated finding the mean of the
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Table 5.2: Features used in this thesis. Note that the pulse features are only used
when they have been collected.

Applies to Feature description
Entire session
when pulse
was collected

Average pulse
Max pulse
Min pulse

Entire session
Number of misses
Average dwell time
Average flight time

Digraphs

Time between pressing the first and the second key in a digraph
Dwell time for the first key
Flight time between the first and second key in a digraph
Dwell time for the second key
Digraph duration (time between pressing the first key and
releasing the second key)

Trigraphs

Time between pressing the first and second key in a trigraph
Dwell time for the first key
Flight time between the first and second key
Time between pressing the second and third key in a trigraph
Dwell time for the second key
Flight time between the second and third key
Dwell time for the third key
Trigraph duration (time between pressing the first key and
releasing the third key)

flight times between all key objects in the reduced keylog. Average keystrokes
per minute is the number of key objects in the reduced keylog divided by the
duration of the reduced keylog (the last key object’s release time minus the first
key object’s press time).

The number of mistakes is the sum of all backspace (key code 8) and delete
(key code 32) keys during a session (the full keylog).

Digraph and trigraph features are calculated on all pairs and triples of key
objects. This means that for a sequence of characters [70, 65, 76, 83, 69], which
represents the keyword “false”, digraph features are calculated on the character
pairs 70 and 65; 65 and 76; 76 and 83; and lastly 83 and 69. Trigraph features
are calculated on the character triplets 70, 65 and 76; 65, 76 and 83; and lastly
76, 83 and 69. Note that the last digraph and trigraph are those that have the
sequence’s last element as their last element.

For the sequence mentioned above, the feature “flight time between the first
and second key in a digraph” is calculated by subtracting the second element’s
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Figure 5.2: Relationship between key press time and key flight time for two
keystrokes, adapted from Shukla and Solanki [2013].

press time from the first element’s release time. I.e. for a digraph pair (a, b), the
flight time between these two elements are

press time(b)− release time(a)

For the trigraph feature “trigraph duration”, the duration is calculated by
subtracting the last triple element’s release time from the first element’s press
time. I.e. for a trigraph triple (c, d, e), the trigraph duration is

release time(e)− press time(c)

As each feature is calculated, they are also normalised between the range 0
and 1. The normalisation method is

x′ =
x−min(x)

max(x)−min(x)

However, values can get higher than 1, no feature is limited to 0 or 1.
For the pulse features, the min value was 45 and the max value was 90. The

number of misses feature had a min value of 0 and a max value of 100. Average
dwell and flight time had a min value of 0 and a max value of 150. The duration
had a min value of 0 and a max value of 600. All digraph and trigraph values had
a min value of -100 and a max value of 500. The min value was negative due to
the nature of how users type. For some features it was possible to get a negative
value, e.g. for the flight time when a key was pressed before the previous key was
released. These min and max values were set based on observations made in the
dataset.

5.3.2.2 Feature vector processing

There are some limitations in the feature vectors as some keystrokes were removed
from the keylog, and that the feature extraction did not consider participants
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taking a break from typing during one session, as pointed out by Epp [2010].
Because of this limitation, vectors with features that had a value greater than 40
times the upper bound set in the normalisation function, i.e. the feature’s value
was 40 or greater, were removed from the dataset as a step to remove outliers.
This process reduced the dataset for the pattern “console.log(“ from 530 to 521
instances.

This was a limited preprocessing before the classification, and many other
steps could have been taken, such as feature selection, though time did not allow
for this.

5.3.2.3 Classification

The last step was to classify the feature vectors. This was done using the classi-
fication methods KNN and SVM.

The first thing that happened in the classification step was that the vectors
were split into two lists, one with the feature vector itself, and one list with the
class label (the vector’s emotional state). Data used to categorise the vectors
(user id, experience, years of experience, years before university, first learned,
knows javascript and gender) was excluded from the vector, as it held no data
on the user’s emotional state.

The vector and label lists were then randomly divided into a training set and a
validation set with 2/3 of the vectors in the training set and 1/3 in the validation
set, as is practice. In order to get the most out of the limited data set, k-fold
cross-validation was used (Witten et al. [2016]).

Because the number of instances in each class varied greatly, as was the case
with Epp [2010], undersampling was used on the dataset to create an uniform
distributed dataset (Beckmann et al. [2015]). In addition, it was possible to
remove classes from the classification, e.g. not use instances of the class surprised
at all. This allowed for a multiclass classifier on a subset of the classes.

In addition to the six predefined classes, a seventh class “other” was added for
use in the binary classifier. This way instances that were not of a certain class, e.g.
“bored”, could be labeled as “other”, and “bored” could be classified against all
other classes in a binary classifier. Epp [2010] reported that the binary classifier
yielded the most promising results, consequently it should also be included in
this study.

When choosing to classify vectors where the participant’s pulse was mea-
sured (vectors from the supervised sessions), only sessions registered with a pulse
greater than zero (i.e. the pulse was measured) were used. This, however, lead
to a far smaller dataset. Similarly, when feature vectors without pulse data were
being classified, the pulse features were excluded from the vectors, but the par-
ticipants from the supervised sessions were included.
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The classification algorithms, KNN and SVM, were used as implemented in
Scikit Learn by Buitinck et al. [2013]. Each method was tested with different
hyperparameters against the training dataset using k-fold cross-validation, and
later verified against the previously unseen validation set.

After the k-fold cross-validation was complete using the training examples,
the classifier with the highest score was tested with the validation set. Thus
leading to a precision, recall and kappa score for the classifier.

K-nearest neighbours The KNN algorithm was tested with three different
hyperparameters: different values for K, either the distance or uniform weights
and either the value 1 or 2 for p, making the distance metric either Manhattan
or Euclidean respectively. The values for K were chosen based on the class limit
set by the researcher. The value for K was all integers from 3 and up to half the
class limit minus 1, but never greater than 8.

Support vector machine As for the SVM algorithm, the kernels RBF and
linear were used as hyperparameters. For the RBF kernel, gamma values of 1,
0.1, 0.01, 0.001 and 0.0001, and C values of 1, 10, 30 and 50 were tested. The
linear kernel was tested with values 1, 10, 30 and 50 for C. These values were
selected as arbitrary values, found fitting for the dataset.

5.3.3 Experiment plan

KNN and SVM were experimented in a range of different approaches. It has been
attempted to both classify emotional states universally, as done by Epp [2010],
and individually, as done by Ko lakowska [2015].

Universal classifications means that data samples from all users have been
aggregated together into one dataset with six discrete classes. With the individual
classifications, only data samples from one specific user were considered at a time.
Due to the small number of data samples from each participant, and the large
variation in the number of data sample per class collected, only a subset of the
participants and classes were explored in some cases.

Additionally, both multiclass and binary classifiers were tested. In a multiclass
classifier, there are more than two classes. A binary classifier consist of only two
classes. In those cases, all classes except one were aggregated into one class,
called “other”, which was classified against the remaining class.

With the universal classifier, a number of approaches were experimented with:

1. Multiclass classifier with all six emotional classes.
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2. Multiclass classifier with all six emotional classes, but only using instances
where the pulse has been measured (i.e. the pulse feature was greater than
zero).

3. Multiclass classifier only including the four emotional classes with the most
instances: Bored, concentrated, delighted, frustrated.

4. Multiclass classifier only including the four emotional classes with the most
instances: Bored, concentrated, delighted, frustrated. But only using in-
stances where the pulse has been measured (i.e. the pulse feature was
greater than zero).

5. Binary classifier where every emotional class was classified against the five
others, e.g. bored was classified against the class “other”, which was ag-
gregated from concentrated, confused, delighted, frustrated and surprised.

6. Binary classifier where every emotional class is classified against the five
others, e.g. bored was classified against the class “other”, which was ag-
gregated from concentrated, confused, delighted, frustrated and surprised.
But only using instances where the pulse has been measured (i.e. the pulse
feature was greater than zero).

Experiments done with the pulse feature also include a comparison with a
classifier where the same feature vectors were used, but did not have the pulse
features.

With the individual classifiers, the approaches experimented with were:

1. Multiclass classifier with all emotional classes available for that participant

2. Binary classifier with all emotional classes available for that participant

For those participants who took part in the supervised data collections, where
their pulse was measured, the experiments include both feature vectors with and
without the pulse features.

As mentioned, to classify a sequence of keystrokes, the sequences must have
identical characters, in the same order. These sequences were found by recognis-
ing a pattern in the collected data. Patterns used to detect keystroke sequences
were inspired by the book Eloquent JavaScript by Haverbeke [2014]. In that
book keywords and reserved words from JavaScript are listed. Programming lan-
guage specific keywords were chosen because knowing the programming language
of choice is an important skill when mastering programming. This in part means
to know the most common keywords. Patterns were additionally chosen based
on JavaScript 2015 keywords not listed in the book (e.g. “const” and “let”), and
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phrases the participants were asked to type while doing Adapt’s exercises (e.g.
“complete this tutorial”).

The most frequent pattern found was “console.log(“ (the opening parenthesis
is intentional) as each exercise asked the participant to print results to the console.
From the dataset 530 instances of this pattern was found. The pattern with
second most data samples was “let” with 43 instances.

“console.log” was also tested as a pattern, which had 558 data samples be-
fore removing the outliers. However, preliminary results showed that choosing
“console.log” as a pattern had a slightly less correct classification rate, thus there
were not any gain from choosing a shorter pattern. Additionally, it has been
hypothesised by Epp [2010] that special keys (e.g. numbers, punctuation marks
and shift key) might be an important feature, thus the shift and left parenthesis
keys were included in the pattern. Every result presented, both for the universal
and individual classifiers, has been found using the pattern “console.log(“.

5.4 Population overview

In this section an overview of the participants making up the population for this
study are presented. All data on the participants is anonymised and can’t be
linked to one specific person. In table 5.3, an overview of each participant can
be seen, ordered by how many sessions they generated (a session can be one
character short, or code for an entire exercise).

In total 23 people participated in the study, of which 9 were females and
14 were males. Two participants did not have any previous experience with
programming, while two reported to be master students (3.5 years or more of
programming experience after first attending the university).

The participants reported to have been practicing programming an average
of 1.24 years (0.95 when the master students are removed from the population),
with a population standard deviation (SD) of 1.12 (0.65 without the master stu-
dents). The reported average experience level was 3.04 (2.86 without the master
students), with a SD of 1.16 (1.04 without the master students). This means
that most participants had fairly little previous experience with programming.
As such most participants fell within the targeted population.

10 participants had previous experience with JavaScript. The questionnaire
did not ask participants to specify how well they knew certain languages, making
it difficult to assess if they knew JavaScript well, or just barely. 20 participants
had previous experience with Java, and 20 with Python. These two subsets were
not entirely identical. Of the other languages, 3 reported to know C++, 3 knew
Matlab and 1 new PHP. Additionally, some reported to know languages not spec-
ified, these were: C (1), C# (1), HTML (2), CSS (2), Rust (1) and ActionScript
(1). The number of participants that reported the language is denoted in the
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Table 5.3: Information about the participants, order by sessions

ID: Participant ID from table 6.8, Gen: gender, Exp: experience,
FL: first learned programming, YBU: years before attending university they started
learning programming, YOU: total years of programming experience, JS: JavaScript,

JA: Java, PY: Python, MA: Matlab, #: Total number of sessions
ID Gen Exp FL YBU YOE JS JA PY C++ MA PHP #

C M 5 U 4.5 x x x 100

A F 4 H 1 2.0 x x 92

F F 2 U 1 x x x 86

B M 3 H 0.5 1.0 x x x 75

D F 3 U 1.5 x x 62

H M 3 U 2.0 x x x 62

E F 2 U 0.5 x x x 60

M 3 H 1 2.0 x x x x x 48

M 3 U 1.0 x x 47

M 4 U 1.0 x x 46

F 4 U 1.0 x x x 45

G M 3 U 0.5 x x x 42

F 2 U 0.5 x x 37

M 5 S 1 2.0 x x x 36

M 3 U 0.5 x x x 36

M 1 S 24

M 2 U x x 18

F 4 S 0.5 1.5 x x 14

F 4 H 1.0 x x x 11

M 1 F 11

M 5 U 4.0 x x x 9

F 2 U 0.5 x x x 1

M 2 U 0.5 x x 1

parentheses. Although HTML and CSS are not a programming language, just
a markup and styling language respectively, they are often used together with
JavaScript and is worth mentioning in a programming language context.



Chapter 6

Results

The results from the experiments described in chapter 5 are presented in this
chapter.

The results are aggregated into tables. The hyperparameters for each unique
classifier are presented below the table. In each experiment, precision, recall
and kappa scores are calculated. Although the F1 score also was calculated by
the classification library Scikit Learn (Pedregosa et al. [2011]), this score is not
presented in the the results. This decision was made in order to limit the amount
of information given, so that the reader is not overwhelmed and that important
measurements are not drowned in other information.

6.1 Universal classifications

In this section, six different experiments is presented, all done with both KNN
and SVM classifiers and different sets of hyperparameters:

• Universal multiclass classifier

• Universal multiclass classifier with pulse

• Universal subset multiclass classifier

• Universal subset multiclass classifier with pulse

• Universal binary classifier

• Universal binary classifier with pulse

61
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There are a total of 521 data samples for the pattern “console.log(“ after
removing outliers. The class distribution for the dataset, both the entire dataset
and the dataset that only includes instances with pulse features, can be seen
in table 6.1. As the class surprised has 0 instances in the pulse dataset, it was
excluded from the pulse experiments.

Table 6.1: Class distribution

BO: bored, EC: concentrated, CO: confused,
DE: delighted, FR: frustrated, SU: surprised

Dataset BO EC CO DE FR SU

Without pulse 60 242 22 106 83 7

With pulse 12 116 4 11 14 0

6.1.1 Universal multiclass classifier

The results from the universal multiclass classifier can be seen in table 6.2. Due
to undersampling, the number of instances per class was limited to 60, resulting
in the following class distribution: Bored: 60, concentrated: 60, confused: 22,
delighted: 60, frustrated: 60, surprised: 7. Precision and recall is noted as
percentage, while the kappa score is a number between -1 and 1.

The KNN algorithm was tested with values 3, 4, 5, 6, 7 and 8 as values
for K. All hyperparameter combinations and how they compare to the other
combinations can be seen in figure 6.1. The box is the average precision score,
and the line in the center of each box is the difference between the maximum
score and the minimum score for that classifier. The best hyperparameters found
was weights: distance, p: 1, and k: 3 (blue bar, second from the left, with
an average precision score of 0.292 +/- 0.10.5), which resulted in an average
precision of 34% and an average recall of 37%, with a kappa score of 0.19. The
classes were classified as follows in order of precision (precision and recall are
written in parentheses): Bored (45%, 42%), delighted (44%, 63%), concentrated
(39%, 37%), frustrated (18%, 20%), and last confused and surprised (0%, 0%).

The different hyperparameter combinations for the SVM classifiers can be seen
in figure 6.2. The best hyperparameters for the SVM algorithm were discovered
to be: kernel: RBF, C: 30, gamma: 1 (as can be seen in the blue bar, the 11th
bar from the left, with average precision score of 0.390 +/- 0.154), which resulted
in an average precision of 39% and an average recall of 42%, with a kappa score
of 0.25. The classes were classified as follows in order of precision (precision and
recall are written in parentheses): Delighted (59%, 53%), concentrated (50%,
37%), bored (36%, 74%), frustrated (27%, 20%), and last confused and surprised
(0%, 0%).
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Table 6.2: Results from the universal multiclass classifier

Emotion Method Precision Recall

Bored
KNN1 47 42
SVM2 36 74

Concentrated
KNN 39 38
SVM 50 37

Confused
KNN 0 0
SVM 0 0

Delighted
KNN 44 52
SVM 59 53

Frustrated
KNN 18 52
SVM 27 20

Surprised
KNN 0 0
SVM 0 00

Avg / total
KNN 34 37
SVM 39 42

Kappa score
KNN 0.19
SVM 0.25

1 Weights: distance, P: 1, k: 3 2 Kernel: RBF,
C: 30, gamma: 1

SVM generally slightly outperformed KNN, both on precision and recall, ex-
cept for the class bored.

6.1.2 Universal multiclass classifier with pulse

In this experiment, only feature vectors where the pulse feature was greater than
zero was included. The results are presented in table 6.3. As a comparison,
the same feature vectors are classified with the pulse features excluded. In the
instances where the precision or recall is equal for both vectors, i.e. with pulse
included and excluded, the table cells have been merged to better visualise the
values being the same. The classes were limited to a maximum of 15 instances, re-
sulting in the following class distribution: Bored: 12, concentrated: 15, confused:
4, delighted: 11, frustrated: 14.

The KNN algorithm was tested with values 3, 4, 5, 6, and 7 as values for K.
The best hyperparameters found for the classifier was weights: distance, p: 1,
and k: 5. For the classification with the pulse features included, this resulted
in an average precision of 51% and an average recall of 47%, with a kappa score
of 0.26. For the classification with the pulse features excluded, this resulted in



64 CHAPTER 6. RESULTS

Figure 6.1: Comparison of all KNN classifier combinations for the universal mul-
ticlass classifier.

an average precision of 54% and an average recall of 47%, with a kappa score of
0.29.

The best hyperparameters for the SVM algorithm was found to be: kernel:
linear, C: 1. This resulted in an average precision of 51% and an average recall
of 41%, with a kappa score of 0.17 for both classifiers.

None of the universal classifiers with pulse could classify bored and confused,
probably due to the small number of instances. Including the pulse features
led to a worse classification than when excluding it. KNN generally slightly
outperformed SVM, both when the pulse features were included and excluded,
except for the class frustrated.

6.1.3 Universal subset multiclass classifier

In this experiment, the two classes with the fewest instances (confused and sur-
prised) were excluded. The results from the universal multiclass classifier per-
formed on the remaining classes can be seen in table 6.4. The number of instances
per class was limited to 120, resulting in the following class distribution: Bored:
60, concentrated: 120, delighted: 106, frustrated: 84. This increase in data sam-
ples was done to get larger training and validation sets, and because the class
skew was not that prominent with confused and surprised excluded.

The KNN algorithm was tested with values 3, 4, 5, 6, 7 and 8 as values for
K. The best hyperparameters found was weights: uniform, p: 1, and k: 3, which
resulted in an average precision of 48% and an average recall of 42%, with a kappa
score of 0.23. The classes were classified as follows in order of precision (precision
and recall are written in parentheses): Delighted (69%, 43%), concentrated (41%,
56%), frustrated (35%, 28%) and bored (25%, 41%).
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Figure 6.2: Comparison of all SVM classifier combinations for the universal mul-
ticlass classifier.

The best hyperparameters for the SVM algorithm were found to be: kernel:
linear, C: 30, which resulted in an average precision of 53% and an average recall
of 52%, with a kappa score of 0.33. The classes were classified as follows in order
of precision (precision and recall are written in parentheses): Delighted (61%,
64%), bored (57%, 47%), frustrated (52%, 44%) and concentrated (38%, 44%).

SVM somewhat outperformed KNN on classes bored and frustrated, while
KNN slightly outperformed SVM on classes concentrated and delighted.

6.1.4 Universal subset multiclass classifier with pulse

In this experiment, the two classes with the fewest instances (confused and sur-
prised) have been excluded, and only feature vectors where the pulse feature was
greater than zero have been included. The results are presented in table 6.5.
As a comparison, the same feature vectors are classified with the pulse features
excluded. In the instances when the precision or recall are equal for both vec-
tors, i.e. with pulse included and excluded, the table cells have been merged
to better visualise that the values are the same. The classes were limited to a
maximum of 15 instances, resulting in the following class distribution: Bored:
12, concentrated: 15, delighted: 11, frustrated: 14.

The KNN algorithm was tested with values 3, 4, 5, 6, and 7 as values for
K. The best hyperparameters found for the classifier were weights: distance, p:
1, and k: 6. For the classification with pulse features included, this resulted in
an average precision of 35%, an average recall of 44% and with a kappa score
of 0.17. For the classification with pulse features excluded, this resulted in an
average precision of 42% and an average recall of 50%, with a kappa score of 0.28.

The best hyperparameters for the SVM algorithm was found to be: kernel:
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Table 6.3: Results from the universal multiclass classifier using pulse

Class /
Total score

Method
Precision
(pulse)

Precision
Recall
(pulse)

Recall

Bored
KNN1 0 0
SVM2 0 0

Concentrated
KNN 50 56 83 67
SVM 45 83

Confused
KNN 0 0 67
SVM 0 0

Delighted
KNN 100 0.40 33
SVM 100 20 33

Frustrated
KNN 33 40 50 57
SVM 50 50

Avg / total
KNN 51 54 47
SVM 51 41

Kappa score
KNN 0.26 0.29 0.26 0.29
SVM 0.17 0.17

1 Weights: distance, P: 1, K: 5 2 Kernel: linear, C: 1

RBF, C: 30, gamma: 0.1. For the classification with pulse features included, this
resulted in an average precision of 34% and an average recall of 38%, with a kappa
score of 0.14. For the classification with pulse features excluded, this resulted in
an average precision of 48% and an average recall of 44%, with a kappa score of
0.24.

Again, including pulse features led to a worse classification than when ex-
cluding it. SVM somewhat outperformed KNN on classes bored and frustrated,
but it failed to classify any instances of delighted. KNN somewhat outperformed
SVM on classes delighted, but failed to classify any instances of bored. With the
class concentrated both SVM and KNN performed similarly.

6.1.5 Universal binary classifier

In this experiment, binary classifiers were trained and tested. Five classes were
aggregated into a new class called “other”, while the sixth class remained. The
remaining class was then classified against the class “other”. This was done for
all six classes. The class limit was set equal to the instances of one class, i.e. for
bored the class limit was 60, while for confused it was 22. This was done to have
the equal amount of instances for each class, but also to maximise the number of
classes wherever possible. The results can be seen in table 6.6. Two thing should
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Table 6.4: Results from the universal subset multiclass classifier

Emotion class /
Total score

Method Precision Recall

Bored
KNN1 25 41
SVM2 57 47

Concentrated
KNN 41 56
SVM 38 44

Delighted
KNN 69 43
SVM 61 64

Frustrated
KNN 35 28
SVM 52 44

Avg / total
KNN 48 42
SVM 53 52

Kappa score
KNN 0.23
SVM 0.33

1 Weights: uniform, P: 1, K: 3 2 Kernel: linear, C:
30

be noted about the table: Parentheses behind the class name denotes the class
limits, and the precision measure is the average for that classifier, following the
example set by Ko lakowska [2015].

Each classifier was trained and tested separately, thus the hyperparameters
vary. Four out of six KNN algorithms used the uniform distance metric, while
the two other used the distance metrics. The value for p was 1 in five of the
classifiers, except for the sixth (frustrated). The value for K varied from 3 to 8.
For the SVM classifiers, four of them used the RBF kernel, while two used the
linear kernel. For those using the linear kernel, the value for C was 10 and 30.
The algorithms using the RBF kernel had values between 10 and 50 for C, and
gamma between 0.0001 and 1. The specific hyperparameters for each classifier
can be seen below table 6.6.

Bored, confused and frustrated are the classes with the highest accuracy score,
with scores of 75%, 71 and 74% respectively for KNN, and 71%, 79 and 85%
respectively for SVM. The kappa score for KNN ranges from 0.43 to 0.45, and
for SVM it ranges from 0.33 to 0.65. This can be considered a moderately good
agreement.

The class surprised also had a high precision score, 80% for KNN and 100% for
SVM. However, this class has a limited instances per class, with the validation set
containing 3 and 2 instances of surprised and “other” respectively. The training
set consisted of 4 and 5 instances, respectively. The SVM classifier correctly
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Table 6.5: Results from the universal subset multiclass classifier with pulse

Emotion class /
Total score

Method
Precision
(pulse)

Precision
Recall
(pulse)

Recall

Bored
KNN1 0 0
SVM2 17 25 33 67

Concentrated
KNN 50 56 0.83
SVM 57 67 67

Delighted
KNN 67 67 50 57
SVM 0 0

Frustrated
KNN 0 25 0 33
SVM 50 100 33

Avg / total
KNN 35 42 44 50
SVM 34 48 38 44

Kappa score
KNN 0.18 0.28 0.18 0.28
SVM 0.14 0.24 0.14 0.24

1 P: 1, k: 6, weight: distance 2 Kernel: RBF, C: 30, gamma: 0.1

classified all instances of surprised and “other” correctly. On the other hand, the
KNN classifier only found one out of three instances of surprised, and classified
all other instances as “other”.

KNN slightly outperformed SVM on the class bored, and significantly with
the class concentrated. SVM slightly outperformed KNN on the classes confused,
delighted and frustrated, and significantly on surprised.

Ko lakowska [2015] created a similar universal binary classifier as the one pre-
sented in this study. The two classes present in both studies are bored and
surprised. That study found a 58% precision for bored, and 53% precision for
surprised, using KNN. While in this study, the precisions are 75% and 80%, re-
spectively. However, the number of instances differ. In this study, the number of
instances per class was 60 and 7, while in hers study the number instances per
class was 45 and 19, respectively.

6.1.6 Universal binary classifier with pulse

In this experiment the classes confused and surprised have been excluded due
to the small number of instances, 4 and 0 respectively. For the resulting four
classes, three were aggregated into a new class called “other”, while the fourth
class remained its original class. The remaining class was then classified against
the class “other”. This was done for all four classes. The class limit was set
equal to the number of instances for each class. The class limit is denoted in the
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Table 6.6: Results from the universal binary classifier

Emotion class Method Precision
Recall for
selected
emotion

Recall for
other

emotions

Kappa
score

Bored (60)
KNN1 75 56 89 0.44
SVM2 71 44 89 0.33

Concentrated
(242)

KNN3 60 66 54 0.20
SVM4 24 0 100 0.00

Confused (22)
KNN5 71 71 71 0.43
SVM6 79 86 71 0.57

Delighted (106)
KNN7 57 82 29 0.11
SVM8 68 85 45 0.30

Frustrated (84)
KNN9 74 60 85 0.45
SVM10 85 68 96 0.65

Surprised (7)
KNN11 80 33 100 0.29
SVM12 100 100 100 1.00

1 Weights: distance, p: 1, k: 4 2 Kernel: linear, C: 10
3 Weights: uniform, p: 1, k: 8 4 Kernel: RBF, C: 10, gamma: 0.0001
5 Weights: uniform, p: 1, k: 8 6 Kernel: RBF, C: 30, gamma: 0.1
7 Weights: uniform, p: 1, k: 6 8 Kernel: linear, C: 30
9 Weights: distance, p: 1, k: 6 10 Kernel: RBF, C: 50, gamma: 0.01
11 Weights: uniform, p: 2, k: 3 12 Kernel: RBF, C: 1, gamma: 1

parentheses behind the class name. The results can be seen in table 6.7. This
approach is similar to the one presented in section 6.1.5. As with the previous
section, the precision measure is the average for that classifier, following the
example set by Ko lakowska [2015].

Each classifier was trained and tested separately, thus the hyperparameters
vary. One of the four KNN classifiers used the uniform weights, while the three
others used distance. The value for p was 2 with the first classifier, and 1 with
the other three. The value for K was 3 in two of the classifiers, 8 in another, and
4 in the last. Three out of four SVM classifiers used the RBF kernel with the
value for C being 10, 1 and 10, and the value for gamma being 1, 1 and 0.01. The
fourth classifier used the linear kernel with 10 as the value for C. The specific
hyperparameters for each classifier can be seen below table 6.7.

The first thing to note with the results in this experiment is that every score
is equal between both vectors, with and without pulse features, i.e. adding the
pulse features apparently does not give any additional information about the
class.

Delighted and frustrated are the two classes that have the highest scores, with
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Table 6.7: Results for the universal binary classifier with pulse

P = precision, (p) = pulse, KS = kappa score

Emotion class Method
P
(P)

P

Recall
for

selected
(pulse)

Recall
for

selected

Recall
other
(pulse)

Recall
for

other
emotions

KS
(P)

KS

Bored (12)
KNN1 75 67 80 0.47
SVM2 57 67 40 0.06

Concentrated
(37)

KNN3 78 100 25 0.24
SVM4 48 49 50 -0.05

Delighted (11)
KNN5 100 100 100 1.00
SVM6 089 100 075 0.72

Frustrated (14)
KNN7 100 100 100 1.00
SVM8 91 75 100 0.77

1 Weights: distance, p: 2, k: 3 2 Kernel: RBF, C: 10, gamma: 1
3 Weights: distance, p: 1, k: 8 4 Kernel: RBF, C: 1, gamma: 1
5 Weights: uniform, p: 1, k: 3 6 Kernel: RBF, C: 10, gamma: 0.01
7 Weights: distance, p: 1, k: 4 8 Kernel: linear, C: 10

100% precision and recall in KNN. In SVM, the same classes have a precision of
89% and 91% respectively. Both classes have a high kappa score with all four
classifiers.

Concentrated has a fairly high precision score with the KNN classifier. The
recall for concentrated is also very good, but a high number of “other” instances
have also been classified as concentrated. The SVM classifier has a moderate
precision and recall score, but the kappa score is negative, meaning that the
results are less than could be attributed to chance alone.

In this experiment, KNN outperformed SVM on all classes, and SVM per-
formed terrible on the classes bored and concentrated. As there are no differences
between the vectors with and without pulse features, it is possible to hypothesis
that the pulse feature carry no information gain for the classification. However,
it is important to remember that the pulse features account for three out of 156
features in the vector, thus their influence is minimal.

6.2 Individual classifications

In this section, the two individual experiments are presented, all done with both
KNN and SVM classifiers and different sets of hyperparameters:

• Individual multiclass classifier

• Individual binary classifier
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The 8 participants with the highest number of sessions have been chosen,
including those attending the supervised data collection sessions. The class dis-
tribution for each participant can be seen in table 6.8. The participants with
a p in parentheses (D through H) are the ones that had their pulse measured.
Their results are shown with both vectors classified, with and without the pulse
feature. Registered information on these participants can be seen in table 5.3.

Table 6.8: Individual class distribution

BO: bored, EC: concentrated, CO: confused, DE: delighted,
FR: frustrated: #: total number of instances

Participant BO EC CO DE FR SU #

A 4 21 9 4 52 2 92

B 1 39 3 4 28 0 75

C 0 7 15 63 15 0 100

D (p) 0 37 0 0 25 0 62

E (p) 3 45 1 2 9 0 60

F (p) 4 39 5 18 19 1 86

G (p) 2 33 4 1 1 1 42

H (p) 5 34 5 4 14 0 62

Classifications resulting in 0 correct classifications are excluded from the re-
sults. Additionally, those resulting in a kappa score of 0 or less are also excluded,
as these can be considered random or less than random. In the individual binary
classifier, classes with too few instances to be classified are also excluded from
the results.

Table 6.9: Information about individual participants

Participants selected for individual experiments,
the information is self reported.

Participant
Level of

experience
Knows

JavaScript
Years of

experience

A 4 2

B 3 1

C 5 Yes 4.5

D 3 1.5

E 2 Yes 0.5

F 2 Yes 1

G 3 Yes 0.5

H 3 2

Information about the selected participants can be seen in table 6.9. All
participants have taken the introductory programming course at NTNU, either
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learning Python or Matlab. The user registration form did not ask to what degree
the participants knew a certain programming language. Thus it is not possible
to assess how proficient they are in JavaScript. Participant C is a student at the
masters level, and differ thus from the other participants presented here.

In the multiclass experiments, the results from participants A, B, C, D, and H
yielded for some scenarios a classification better than random. With the binary
experiments, participants A, B, C, D, F and H got positive results from some
emotional states. Concentrated was somewhat correctly classified for four par-
ticipants, frustrated was also somewhat correctly classified for four participants,
while it was possible to somewhat correctly classify confused for only one par-
ticipant. No other emotional states were classified correctly with a kappa score
greater than zero.

No classifier managed to classify any of participants E’s and G’s emotional
states; This was the case in both the multiclass and binary experiments.

6.2.1 Individual multiclass classifier

In this experiment, an individual multiclass classifier was trained and verified
for each participant. The number of instances per class was limited for each
participant to create a more uniform class distribution. The class limit was a
compromise between creating a uniform class distribution and using as many
instances as possible.

The results for participants A, B, C and H can be seen in tables 6.10, 6.11,
6.12 and 6.13, respectively. Class distribution is denoted in the parentheses after
the class name. The classes that had a precision and recall score of zero for both
KNN and SVM classifiers have been excluded from the table, but are mentioned
in the table’s description. Meaning that the instances were classified, but are not
presented in the table. Class distribution is denoted in the parentheses behind
the class name.

Some classifiers have “n/a” denoted instead of the scores, this means that the
classifier did not output a classification score for that class.

For participant A (see table 6.10), even though the precision and recall score
have a moderate score, the number of instances available in the validation set is
small. Thus the classification is close to random for KNN, and equal to random
for SVM, as can be seen from the kappa score.

Participant B’s KNN classifier, see table 6.11, however has a kappa score of
0.44, which is decent. Although some of the other classes were classified falsely, all
concentrated and frustrated instances were classified correctly. This was also the
case with participant C’s KNN classifier, see table 6.12, except that the classifier
failed to classify any of the five instances of frustrated correctly. Participant C’s
SVM classifier had a negative kappa score, making the classification less precise
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Table 6.10: Individual multiclass classifier for participant A

Class limit: 10. Delighted (3) and frustrated (4)
had a score of 0 for precision and recall.

Emotion class Method Precision Recall

Bored (4)
KNN1 00 50
SVM2 n/a

Concentrated (8)
KNN 50 33
SVM 50 100

Avg / total
KNN 58 33
SVM 25 50

Kappa score
KNN 0.14
SVM 0.00

1 Weight: uniform, p: 2, k: 3
2 Kernel: RBF, C: 1, gamma: 1

Table 6.11: Individual multiclass classifier for participant B

Class limit: 10. Confused (3) and delighted (2)
had a score of 0 for precision and recall.

Emotion class Method Precision Recall

Concentrated (10)
KNN1 60 100
SVM2 0

Frustrated (10)
KNN 67 100
SVM 40 100

Avg / total
KNN 39 62
SVM 10 25

Kappa score
KNN 0.44
SVM 0.11

1 Weight: uniform, p: 1, k: 3 2 Kernel: linear, C: 10

than by chance alone.
In table 6.13 both scores for pulse and non-pulse feature vectors are denoted

for participant H. As can be seen, there is no difference between the classifiers
when the pulse features are present and when they are not. This participant has a
generally low recall rate, except for frustrated with the KNN classifier, indicating
that many of the other instances also was classified as frustrated. The kappa
score for both classifiers are close to random, SVM being less than random.

6.2.2 Individual binary classifier

Similar to the binary classifiers presented in sections 6.1.5 and 6.1.6, all classes
except one have been aggregated into a new class “other”, and then the remaining
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Table 6.12: Individual multiclass classifier for participant C

Class limit: 15. Frustrated (15) had a
score of 0 for precision and recall.

Emotion class Method Precision Recall

Concentrated (7)
KNN1 67 100
SVM2 0

Confused (8)
KNN 50
SVM 50

Delighted (15)
KNN 75 43
SVM 50 14

Avg / total
KNN 54 43
SVM 32 14

Kappa score
KNN 0.22
SVM -0.13

1 Weight: distance, p: 1, k: 6
2 Kernel: RBF, C: 1, gamma: 1

class has been classified against that class. This has been done for all classes, and
for each selected participant. The class limit is denoted after the class name in
each table. This limit is set to the number of instances for that class, generating
as large datasets as possible.

Classifiers that failed to classify any instances correctly, or that have a kappa
score of zero or less, have been excluded from the tables. The exception is when
one of the classifiers managed to get a promising classification, then the other
classifier is included as a comparison.

Participant A’s KNN classifier, see table 6.14, had a fair classification score,
and a satisfactory kappa score. However, it should be noted that the validation
set consisted of 7 instances for each class, as such, one correct classification means
an apparent high increase in accuracy. The kappa score of 0.67 gives this classifier
a good merit.

Participant C’s SVM classifier for frustrated, see table 6.16, resulted in an
moderately high classification rate, correctly classifying all instances of frustrated
correctly, although also classifying two instance of the class “other” as frustrated.
For the KNN confused classifier, it should be noted that the validation set for
the class confused only consisted of one instance, resulting in a high overall recall
and precision. But it falsely classified instances of the class “other” as confused.

Classifiers for participants B, D, F and H, see tables 6.15, 6.17, 6.18, and 6.19
respectively, however have a low kappa score, indicating that these classifications
would be equal to a random classification.

For participant H both vectors, with and without the pulse features, resulted
in the same score. This is almost also the case with participant F, however here
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Table 6.13: Individual multiclass classifier for participant H

Class limit: 10. Bored (4) and delighted (3)
had a score of 0 for precision and recall

Emotion class Method
Precision
(pulse)

Precision
Recall
(pulse)

Recall

Concentrated (10)
KNN1 1.00 0.20
SVM2 67 40

Frustrated (7)
KNN 20 100
SVM 0 0

Avg / total
KNN 65 25
SVM 42 25

Kappa score
KNN 0.08
SVM -0.12

1 Weights: distance, p: 2, k: 5 2 Kernel: RBF, C: 50, gamma: 0.01

there are small differences in the scores.

Table 6.14: Individual binary classifier for participant A

Emotion
class

Method Precision
Recall for
selected
emotion

Recall for
other

emotions

Kappa
score

Concentrate
(21)

KNN1 88 67 100 0.67
SVM2 50 33 67 0

1 Weights: uniform, p: 1, k: 5 2 Kernel: RBF, C: 10, gamma: 0.01
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Table 6.15: Individual binary classifier for participant B

Emotion
class

Method Precision
Recall for
selected
emotion

Recall for
other

emotions

Kappa
score

Concentrate
(39)

KNN1 50 17 83 0.00
SVM2 59 50 67 0.17

Frustrated
(28)

KNN3 57 80 29 0.08
SVM4 67 40 86 0.27

1 Weights: uniform, p: 1, K: 5 2 Kernel: linear, C: 10
3 Weights: uniform, p: 1, k: 4 4 Kernel: RBF, C: 1, gamma: 1

Table 6.16: Individual binary classifier for participant C

Emotion
class

Method Precision
Recall for
selected
emotion

Recall for
other

emotions

Kappa
score

Confused
(15)

KNN1 90 100 67 0.36
SVM2 71 0 83 -0.17

Frustrated
(28)

KNN3 59 40 75 0.14
SVM4 84 100 50 0.53

1 Weights: distance, p: 2, k: 5 2 Kernel: RBF, C: 10, gamma: 1
3 Weights: uniform, p: 1, k: 4 4 Kernel: RBF, C: 30, gamma: 1

Table 6.17: Individual binary classifier for participant D

P: precision, (p): pulse, RS: recall for selected emotion,
RO: recall for other emotions, KS = kappa score

Emotion class Method P (P) P RS (P) RS RO (P) RO KS (P) KS

Frustrated
(25)

KNN1 64 0 100 0.00
SVM2 90 68 100 50 75 50 0.55 0.00

1 Weights: uniform, p: 1, K: 5 2 Kernel: linear, C: 30

Table 6.18: Individual binary classifier for participant F

P: precision, (p): pulse, RS: recall for selected emotion,
RO: recall for other emotions, KS = kappa score

Emotion class Method P (P) P RS (P) RS RO (P) RO KS (P) KS

Concentrated
(39)

KNN1 56 84 100 0 8 0.00 0.04
SVM2 83 70 33 33 100 75 0.20 0.07

1 Weights: uniform, p: 1, k: 8 2 Kernel: RBF, C: 10, gamma: 1
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Table 6.19: Individual binary classifier for participant H

P: precision, (p): pulse, RS: recall for selected emotion,
RO: recall for other emotions, KS = kappa score

Emotion class Method P (P) P RS (P) RS RO (P) RO KS (P) KS

Concentrated
(17)

KNN1 43 33 50 -0.15
SVM2 57 83 25 0.09

Frustrated
(14)

KNN3 90 100 67 0.36
SVM4 89 100 50 0.22

1 Weights: uniform, p: 2, k: 7 2 Kernel: RBF, C: 1, gamma: 1
3 Weights: uniform, p: 1, k: 6 4 Kernel: RBF, C: 10, gamma: 1
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Chapter 7

Evaluation, contributions
and future work

In this chapter, the results presented in chapter 6 will be discussed and evaluated.
Moreover, the contributions to the research field will be presented. And lastly,
some propositions for the way forward will be made.

Firstly however, a summary of the research questions are necessary. The
overall goal for this research was to see if it was possible to detect a learner’s
emotional state non-intrusively in a programming tutorial. This research does
not give a definitive answer to this, however, it is one of many steps that has
been, and must be, taken for the answer to be a single yes.

The goal was divided into two subquestions:

Research question 1 Is it possible to detect a learner’s emotional state using
keystroke dynamics from programming keywords?

Research question 2 Will detecting a learner’s pulse yield a better classifica-
tion than typing rhythm alone?

With these questions in mind, the results can be discussed and the research
evaluated.

7.1 Evaluation and discussion

In this section, the data collection and experiment phases will be evaluated before
the research questions are answered as far as this research’s results allow.

79
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7.1.1 Data collection phase

During the course of the data collection phase, Adapt received four new features
(user information form, emotion inducing features, disabling pasting code into
the editor, and disabling undoing). This means that not all participants were
tested with the same features. It also means that not all participants registered
information about themselves, which led to the dataset having 269 fewer sessions
than what was collected in total. However, it was important to the researcher
that every user could be categorised if needed, and that the dataset was consistent
across experiments as far as necessary.

7.1.1.1 Participants

In this research, a population of 23 participants were used, where two contributed
with as little as 1 session. Epp [2010] reported that 26 users took part in the study,
but only the 12 with more responses than 50 were used during the classification.
Choosing a similar approach would have left this study with only 7 participants.
It is not clear how many responses in total were used in Epp’s research. This
research did generate a total of 963 sessions, but the quality of each session is
varying as not all could be used during classification (the once that didn’t contain
the keyword “console.log(“. This is more samples than the 207 from Ko lakowska
[2015] 9 users, however, it might happen that all those data samples could be
used during classification.

It must be mentioned, however, that participants in this research most often
did the tutorial once, while Epp [2010] and Ko lakowska [2015] gathered data over
a longer period of time.

7.1.1.2 Emotion inducing features

That the emotion inducing features (random text removal and timer) were not
implemented earlier does not affect the dataset in the researcher’s eyes, as sessions
before the implementation would be equal to those where they did not occur.

The effect these emotion inducing features had on the participants needs some
exploration to see if they did what was intended.

The timer feature occurred a total of 138 times. Out of those, participants
reported that it had an effect in 102 of the instances. When it did not have
any effect, participants wrote that it was because they either had plenty of time
for the exercise, or that the timer already had reached zero (in which case it
was still visible, but not counting). In the cases where the timer did have an
effect, participants reported that it made them stressed, irritated, more focused,
and made them more motivated to do the exercise quickly. It should be noted,
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however, that the text answer was not required, as such not all reports had an
explanation for how it affected the participants.

The random text removal occurred a total of 126 times, of which it was
reported 97 times that it did affect the participants. When it did not have an
effect, participants reported that they had gotten used to it, they were expecting
it to happen, that it did not remove any important text, or that they could
simply undo their last action and get the code back. The latter being the reason
for disabling the undo function. When the random text removal had an effect,
participants reported that it was irritating, annoying and frustrating, some felt
that they had done something wrong, and one speculated what triggered the text
deletion. However, participants got used to it after some time, expecting it to
happen at any time. Also here some answers remained empty.

From this feedback it can be assumed that the timer and text deletion did
have an effect as intended. The surprise effect of both features fades away after
they have happened some times. Though, the text deletion was seen as very
annoying on the last exercises as they demanded more code, and the chance to
encounter it was greater.

7.1.1.3 Selecting emotional states

Discrete emotional classes were selected instead of coordinates in a two-dimensional
space. Although the latter approach could have yielded more accurate emotions,
participants would have also needed to determine how aroused they were, and
how positive their emotion was. This could have lead to a more fragmented
dataset, where the researcher had to decide which coordinates related to each
emotion, possibly by using the model by Kort et al. [2001]. In order to make it
easier for the participants, six discrete classes were chosen.

As noted by Ko lakowska [2015], the researcher needs to trust that participants
label their own sessions as correctly as possible. There is no guarantee that there
does not exist any mislabeled sessions. This is a risk the researcher was willing to
take to get as many data samples as possible. Additionally, the researcher is not
an expert at emotions, and could thus not be a judge of which emotional states
were observed.

More likely than deliberate mislabeling of data samples, however, are uncon-
sciously mislabeling. During the observed data collections, some participants
seemed unsure about their emotional state, and after selecting one of the pre-
defined, selected another. This could mean that emotional states are somewhat
overlapping, or that neither of them fitted their real emotional state, thus trying
to find the closest one. This could lead to mislabeled data. One might handle
this by having another checkbox which the participants can select if neither pre-
defined emotional states represent their current state, and a free text field where
they can describe their emotional state.
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Another approach to dealing with this challenge is the way it was done by
Epp [2010]. In that study, participants were asked to answer how present each
of the 15 emotional states were, on a 5-point Likert scale. This, however, would
have lead to more classes, and possibly fewer instances of each class. Using six
discrete classes was seen as the best approach to balance the number of classes
and the number instances in each class.

It should also be mentioned that the researcher did not define the emotional
states for the participants. Thus they had to use their own definition of the
emotions, which may vary between participants.

7.1.1.4 Collecting participant’s pulse

During the observed data collection sessions, the researcher wanted to capture
both the participant’s screen and the phone displaying the participant’s pulse,
as to sync the pulse to the correct session. However, this led the phone to be
visible to participants. This allowed participants to see their own pulse, and
possibly try to relax themselves when it got too high. During the third observed
session, the phone was moved further away, making it harder for the participant
to look at it. Participant D, which was the third to take part in the observed
data collection, said after the session that she had focused the entire time to keep
her pulse low, even though she did not watch the phone. Thus she was affected
by the environment.

Participant H, which was the fifth and last to take part in the observed data
collection, did the exercises over a course of two days because of limited time the
first day. He started with a pulse of 68 the first day, and a pulse of 79 the second
day. He mentioned that he did not sleep well the night before. These were factors
that the researcher had not anticipated, and could lead to a noisy dataset.

The researcher also had no information about the participants’ resting pulse.
Using the resting pulse, it would have been possible to measure the variance per
user, instead of assuming that the pulse measures meant the same for everyone.
If the Fitbit activity tracker had been an integrated part of the system, and every
participant had used one of their own, it could have been possible to gather such
data. The researcher asked all of the participants if they knew their resting pulse,
but none did.

The Fitbit also posed a challenge for participant D, as she had thin arms. At
three different times, the Fitbit could not get a read of the pulse. Luckily this
happened while the participant was not typing, but it could have been a problem
if it occurred more often. It should be mentioned that for those instances for
which there were no pulse data, the pulse data remained zero in the session
object.

Additionally, the researchers presence affected at least one participant’s per-
formance, making her stressed. Although the researcher sat behind the partici-
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pant, out of sight, and tried to keep quiet. There is no guarantee that the presence
didn’t also affect others, but only the two participants reported it. Before the
data collection started, it was stated by the researcher that it wasn’t the par-
ticipants who were tested, and that they could choose any emotional state, even
bored. It was not pointed out that the researcher had created the exercises.

All of these factors indicate that the supervised sessions need refinement,
perhaps observing the participants while they are studying normally. Coming
into a lab will always be unnatural.

7.1.1.5 Exercises

Exercises were written by the researcher, based on his knowledge of JavaScript
and experiences with teaching this to first year informatic students. The exercises
were proofread by one native English speaker and one first year student who had
already attended the course IT2805 Web technologies. However, the researcher
does not have any pedagogically education, thus there is no guarantee that the
exercises were as good as they could have been. They were never checked by a
lecturer at the department. The exercises followed loosely the same progress as
done by Codeacademy, and in the course IT2805.

More importantly perhaps, the exercises were made to be easy to follow,
and steadily increasing in difficulty, as would a normal tutorial. However, in
the setting of capturing different emotional states, the exercises could have been
created such that they provoked certain emotions.

In the beginning of the data collection, there were four exercises on the topic
of arithmetic. These were merged together after feedback that it was boring
doing almost the same thing four times. Only after the data collection phase was
over did it dawn upon the researcher that this could have been used to provoke
participants into becoming bored

As a way to provoke some emotions, however, the emotion inducing features
were added, and two unexpected exercises with a timer were added in the middle
of the tutorial.

7.1.2 Experiment phase

The most obvious limitation for these experiments was the limited dataset, as
also reported by both Epp [2010] and Ko lakowska [2015]. Longi et al. [2015] is the
most closely related research that has reported to have a large dataset. Following
those lines, it would be interesting to gather data through the programming
exercises in IT2805 Web technologies, over the course of one entire semester.

During the experiments, only the pattern “console.log(“ was investigated thor-
oughly, and not any subpatterns of “console.log” either. As such, it may happen
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Figure 7.1: Comparison of average feature vectors for all six classes.
Y-axis denotes the normalised values, x-axis denotes the features 1 through 153 (see

appendix E for features and their corresponding values.

that part of the string contains more discriminative features for emotion recog-
nition. No feature selection on the constructed feature vectors were done before
classifying, which may have led to less accurate classifications than what could
have been achieved. This is perhaps the biggest drawback of the classification
process.

Additionally, when cleaning up the sequences, as described in section 5.3.2.1,
keystrokes important to the classification might have been removed. Removing
these keys also lead to an unnatural long pause between keys, which would result
in noisy data. This could have been overcome by only classifying sequences
without any mistakes. However, that would probably lead to an unreal dataset,
as typing errors occur often. Additionally, backspace and delete keystrokes are
seen as important features, and should be preserved in some way. Removing
outliers did remove at least some of these unnatural sequences.

In figure 7.1, average feature vectors for all classes can be seen. These curves
represent the pattern “console.log(“, and features are distributed along the x-axis,
while their normalised value are represented by the y-axis. The class surprised
differ the most from the rest at the beginning and in the middle, while the
class concentrated differ most at the beginning of the last third. This graph
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Figure 7.2: Average feature vector for bored, with the minimum and maximum
values

indicates that different parts of the vector discriminates between emotional states.
Ko lakowska [2015] found that there were not one subset of features that could be
used to discriminate between classes for all users, but that they were individual
for each class. This statement could support how the graph looks, as there are
not one subset of features that is different between all classes. However, keep in
mind that these are only average vectors.

In figures 7.2 (bored), 7.3 (concentrated), 7.4 (confused), 7.5 (delighted), 7.6
(frustrated) and 7.7 (surprised), the mean vectors can be seen for each class.
Additionally, the minimum and maximum value for each feature is included.
None of the feature vectors include the pulse features. The mean, minimum and
maximum values and their corresponding features can be found in appendix E.

Also, it might happen that even though participants have challenges in the
current exercise, they become familiar with writing “console.log(“, and their re-
ported emotional state is not reflected in how they type this specific keyword.
On the other hand however, it might happen that their emotional state is indeed
reflected in how they type the keyword. This is uncertain for the researcher.

As seen in table 5.3, two participants did not have any previous experience
with programming, and their keystrokes may differ from those that have had
at least half a year of practice. However, the researcher believes that in a real
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Figure 7.3: Average feature vector for concentrated, with the minimum and
maximum values

life scenarios such a system would attract both experienced and inexperienced
users. Although it should have been tested how these two participants affected
the classification.

It should also be noted that the classifiers created might be too adapted to
this dataset. However, this is not possible to test without a new data collection
process.

7.1.3 Research question 1

In the universal multiclass classifier, the most promising results found were for the
class delighted, with an average precision of 51.5% and an average recall of 52.5%
across the KNN and SVM classifiers. When reducing the number of classes to
four, delighted is still the class with highest accuracy with an average precision of
65% and an average recall of 53.5% across the KNN and SVM classifier. However,
the kappa score is fairly low, below 0.30 for the full set of instances, and at 0.23
and 0.33 for the KNN and SVM classifier respectively in the subset classifier. The
subset consisted of the classes bored, concentrated, delighted and frustrated.

In overall for these two classification tasks, the SVM classifier resulted in
higher precision and recall than the KNN classifiers. For the multiclass classifier
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Figure 7.4: Average feature vector for confused, with the minimum and maximum
values

tested on the complete set of instances, the average precision for the SVM was
39%, and the average recall was 42%. KNN, however, had an average precision
of 34% and average recall of 37%. SVM also generated better results for the
subset of classes with an average precision of 53% and an average recall of 52%.
KNN had an average precision of 48% and an average recall of 42%. It should be
noticed hear that by reducing the precision from 17%, which would be random
classification for 6 classes, to 50%, the chance to classify correctly have been
doubled, from 1/6 to 1/3.

Limiting the number of classes had a positive impact on the precision and re-
call, however it also removes two classes hypothesised to be important in learning.
The researcher speculates that few participants felt confused because the exer-
cises presented did not introduce unfamiliar tasks. The low number of surprised
instances might be because the feeling of surprise first came after the code had
been run, i.e. when the participant sees if the result was successful or not. Such
a case would suggest that participants felt surprised at the beginning the next
exercise, but these explanations have not been subject to further investigation.

In the universal binary classifier, which also yielded the most promising results
in Epp [2010], the precision was at 60% or higher for all classifiers except the SVM-
concentrated and KNN-delighted classifiers. The recall ranged from 45% to 100%



88 CHAPTER 7. EVALUATION, CONTRIBUTIONS AND FUTURE WORK

Figure 7.5: Average feature vector for delighted, with the minimum and maxi-
mum values

for all except the two classifiers already mentioned. Although these scores seem
higher than that of the multiclass classifier, it is important to remember that
the binary classifier only classify two classes, whereas the multiclass classifiers
classify 4-6 classes. If left to chance alone a binary classifier should have a 50%
chance to classify an instance correctly. The classifiers confidence can be seen on
the kappa score in tables 6.2 (universal multiclass classifier), 6.4 (universal subset
multiclass classifier) and 6.6 (universal binary classifier).

The binary classifier shows most promise for the classifiers KNN-bored, SVM-
confused, SVM-frustrated and SVM-surprised, which had a class limit of 60, 22,
84 and 7 instances respectively. These had a kappa score of 0.22, 0.57, 0.65
and 1.00 respectively. It should be noted that all these classifiers used different
hyperparameters. As such, the researcher has not found one specific classifier
that is best suited for this task.

In the individual multiclass classifier each satisfactory classification is further
apart than in the universal. This might be due to the limited dataset, as some
classes counted 15 instances at the most. Of these 15 instances, only 1/3 were
used in the validation set. As such, none of the individual multiclass classifiers
yielded any results possible to infer a conclusion from.

For the individual binary classifiers, the number of instances for some classes
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Figure 7.6: Average feature vector for frustrated, with the minimum and maxi-
mum values

and some participants were higher. The best being concentrated for participant
A, which yielded a precision of 88% and a recall of 67% with the KNN classifier.
The kappa score was at 0.67. Participants C had a promising result from the
binary classifier SVM-frustrated, which had a precision of 84%, recall at 100%,
and a kappa score of 0.53.

Is it possible to detect a learner’s emotional state using keystroke dynamics
from programming keywords? Not definitely, but the results are promising. The
universal classifiers showed most promise, which may indicate that there are
similarities in how typing rhythm is expressed for certain emotional states among
several people. This information could be used to construct one or several average
vectors that later could be adapted to individual people. However, this field needs
more research, especially on feature selection and looking for features in more of
the submitted code. Ko lakowska [2015] only used short polish word, long enough
for either a digraph or trigraph alone. Similarly it could be possible to use shorter
patterns to find shorter sequences that are used in several keywords, to get data
from words that are both familiar and unfamiliar to the user.



90 CHAPTER 7. EVALUATION, CONTRIBUTIONS AND FUTURE WORK

Figure 7.7: Average feature vector for surprised, with the minimum and maxi-
mum values

7.1.4 Research question 2

The dataset used for this research question is even more limited than the superset
used for the first research question. This needs to be taken into account when an-
swering the posed question. To answer this question, the same feature vectors was
classified with and without pulse the features, using the same hyperparameters.

For the multiclass classifiers the feature vectors without pulse features per-
formed equal or better than those with pulse features, however only marginally
better. The most promising result was for the class concentrated, both for the
full set and subset classifier. The individual multiclass classifier for participant
H yielded a kappa score of 0.08 for KNN and -0.12 for SVM. This classifier was
the only out of the five participants that got a positive kappa score, and thus not
much confidence can be given to this result.

The individual binary classifier SVM-frustrated for participant D yielded a
precision of 90% for the class frustrated, 100% recall for frustrated instances and
75% recall for the class “other”. The kappa score was 0.55, which is fairly good.
The features without pulse yielded a precision of 68%, recall at 50% for both
classes and a kappa score of 0, however, which is equal to random and thus not
good. The second best kappa score was 0.36 for participant H’s KNN-frustrated
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classifier. For participant H, there were no differences between the classifiers that
used the pulse features and the ones who didn’t.

The approach taken in this research, increasing the number of features from
153 to 156, yields that the three extra pulse features were not given much weight.
Thus it was not surprising that there was not much difference in accuracy. In
fact, the pulse features might make the vectors less accurate as they have not
been adapted to participants’ resting pulse.

Will detecting a learner’s pulse yield a better classification than typing rhythm
alone? With the information presented in this thesis, it is not possible to deter-
mine if the pulse increase or decrease the classifiers accuracies. To answer this
question, steps should be taken to see how large of a factor the pulse is in de-
termining the emotional state, versus that of the keystrokes alone. Additionally,
different methods to merge the pulse data with the keystroke dynamics should be
tested, either giving those features more weight, experimenting with other pulse
features, or classify pulse features alone and merge the results, as proposed by
KM et al. [2015].

7.1.5 Is it possible to determine a learner’s emotional state
non-intrusively in a programming tutorial?

This study alone can’t give an definitive answer to this question, but the results
from this study, and the studies done by Epp [2010] and Ko lakowska [2015] show
promise for such a possibility. There seems to be information in how people
type that can be used to detect emotions. However, keystroke dynamics alone
is probably not the best solution. As mentioned by Villani et al. [2006], typing
rhythm can be affected by the environment, especially the keyboard. Thus,
keystroke dynamics are prone to large uncertainties. Teh et al. [2013] stated that
keystroke dynamics can not solely be relied on as a measure of authentication,
but combined with other methods it will create a stronger authentication system.
Hence, the researcher sees the necessity of combining this information with other
sources, such as audio and video, to correctly assess a person’s emotional state.

7.2 Contributions

In this section, the contributions from the study are summarised.
This research has tried to classify three emotional states that previously have

not been classified using keystroke dynamics. These were concentrated, confused
and delighted. The other three emotional states, bored, frustrated and surprised,
have been tested, but not in the context of a programming tutorial. Most promis-
ing was the results from the universal binary classifier, with precisions at 24%,
79% and 100% using the SVM classifier for concentrated, confused and delighted
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respectively, with kappa scores at 0, 0.57 and 1. The KNN classifier yielded a
precision of 60%, 71% and 80%, with kappa scores at 0.20, 0.43 and 0.29. The
highest score was for the class frustrated, with precision of 74% and 85% for KNN
and SVM respectively, and kappa scores of 0.45 and 0.65 respectively.

Although Ko lakowska [2016] sought to assess if a student was stressed or not
during a programming exercise, no attempt has previously been made to assess a
student’s emotional state looking at how they write code. This study has shown
that there is potential for such emotion recognition in programming.

This is the first time SVM has been used as a classification algorithm to detect
emotional states from keystroke dynamics. Using this algorithm yielded slightly
better results than those of KNN for most classes and classifiers. However, further
work is needed on feature selection.

As a part of this thesis, a tutorial web application was created, which can
be used to collect and store keystroke information. This approach differed from
those of Epp [2010] and Ko lakowska [2015], which had a background process
running. The application proved successful in collecting data, and can further be
developed to adapt to user’s emotional state.

7.3 Future work

Moving forward on the findings of this thesis, and its ultimate goal of creating an
adaptive programming tutorial, the researcher proposes these directions forward:

• Collect a large dataset from first year students learning JavaScript, or any
other programming language. A large course, e.g. IT2805 Web technologies
with its 200 students, is a suiting environment to collect large amount of
data over a longer period of time.

• Use the emotional states presented in this thesis to discover which of the
four quadrants presented in the model by Kort et al. [2001] (as seen in figure
2.3), the students are in. This can be used to give appropriate feedback
during the learning cycle.

• Integrate an automatic pulse detector, which can detect pulse e.g. for each
keystroke or key event, giving the pulse feature higher fidelity, and also
allowing the correct pulse to be assigned to a substring of the code.

• In an adaptive environment, incorporate feedback from the compiler, to-
gether with information on the user’s emotional state, to better determine
how well the learner knows a certain subject.

• Use the integrated web camera to read a user’s pulse, this must then be
able to follow the user’s head while in motion.
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• Explore other non-intrusive data sources, such as mouse movements, facial
recognition and eye tracking using the webcamera.

• Find out if the time spent by the user before typing can be used to help
detect their emotional state.

• Investigate other factors than emotional state, e.g. attention span, to see
if this give a better indication on the learner’s state.

• Account for the fact that users change their typing rhythm over time, as
partially stated by Longi et al. [2015].

• Further develop the exercises presented in this thesis to induce emotional
states, such as boredom or delight.
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Appendix A

Exercises

In the following sections are every exercise presented, as they were used in Adapt
(see section 4.1). Each exercise consists of a title (presented in the section title
after the exercise id), curriculum, exercise text, hint, error message, expected
results, and a flag indicating if the exercise was timed or not.

A.1 Exercise 0: Thank you for participating

Curriculum ”Welcome! Please read the exercise text before you start typing:)
The first thing you need to know is how to output data. In JavaScript this

is done using the function console.log(). Whatever is inside the two parentheses
will be printed to the console. Usually in this tutorial you will be asked to output
a string to the console (to the right of the code editor). A string is encapsulated
by two ””quotes””.

If you have any feedback, please write to me at thorhb@stud.ntnu.no, or use
the feedback form below the hint section.

May the odds be ever in your favour!”

Exercise text To start the tutorial, use the console.log function to print the
string ”I accept” to the console.

Doing so, you agree that I can store the keystroke dynamics provided by you
while typing in the web editor and the information you provide in the forms
presented during the tutorial.

Hint Whatever you write between the two parentheses will be printed to the
console.

97



98 APPENDIX A. EXERCISES

If you have several strings you can concatenate them by using the + operator,
or a comma. Using a comma will add a space between the two strings.

Error message In order to proceed, you have to print ”I accept” to the console.

Expected result I accept

Timed False

A.2 Exercise 1: JavaScript’s building blocks

Curriculum In JavaScript, we operate with three basic data types that make
up the fundamental building blocks in the language.

These three are:

• Strings: Any grouping of words or numbers surrounded by single ’...’ or
double ”...” quotes.

• Numbers: Any number, including decimals, without quotes, e.g. 13, 3.14.

• Boolean: Either true or false, without quotations.

We have arrays and objects also, but we will focus on the fundamentals first,
and visit them later.

Exercise text Print string ”JavaScript”, the number 42 and the boolean value
true (without quotes) to the console using one console.log statement for each data
type.

Hint Remember:

• Strings are written with single or double quotes

• Numbers are written without quotes

• Boolean values can be either true or false (no caps), and are written without
quotes.

Error message Did you write the values inside a console.log function?

Expected result Javascript 42 true
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Timed False

A.3 Exercise 2: Quoteception

Curriculum Sometimes we want to use quotes inside a string. What do we do
then? A string must start and end with the same type of quote, and it doesn’t
matter which one. So if you need to write Thomas’ bike, you can do that by
encapsulating the string in double quotes, leaving the single quote open to other
useful things. I.e.: ”Thomas’ bike”.

Exercise text Print the following string to the console : Nicholai’s name isn’t
Thea

Hint A string must start and end with the same type of quotes.

Error message That wasn’t the expected output

Expected result Nicholai’s name isn’t Thea

Timed False

A.4 Exercise 3: Concatenate strings

Curriculum It is useful to combine two strings, or a string and a number, e.g.
when you want to greet a user by their name.

To do this, you can use the + operator between two strings. Writing con-
sole.log(”Hi” + ”Thor”) would print ”HiThor” to the console.

As you see, there is no space between the two strings. You can solve this by
adding a space in one of the two strings, or use a comma between the two instead,
like this: console.log(”Hi”, ”Thor”). This will log ”Hi Thor” to the console.

Exercise text Combine and print the two strings ”Hi there, ” and ”Buffalo
Bill” to the console.

Hint You can either use the + operator or a comma (,) between two strings to
concatenate (combine) them.

Error message Did you concatenate the two strings, and did you remember
the comma?
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Expected result Hi there, Buffalo Bill

Timed False

A.5 Exercise 4: Numbers

Curriculum A quick recap on numbers: They are all integers and decimals,
and are written without quotes.

Decimal numbers are written with a period/punctuation mark (.), and not a
comma (,).

You can use arithmetic operations on them. This will be introduced in the
following exercises.

So far you only need to remember the difference between strings and numbers.

Exercise text Print the decimal 42.4 to the console.

Hint Numbers are written without quotes.
If you print ”42” to the console, you will log a string, and not a number.

Error message Decimal numbers are written with a period (.), not comma (,).

Expected result 42.4

Timed False

A.6 Exercise 5: Arithemtic operations

Curriculum Code is a language written on logic and math. But don’t worry,
math does not need to be your strong suit, basic arithmetic takes you a long way.
The most used operators are:

• + adds two numbers

• - subtracts one number from another

• / divides one number with another

• * multiplies two numbers
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Exercise text Inside four console.log statements, one for each operation, do
the following:

• * Add 10 and 3.5

• * Subtract 1977 from 2017

• * Divide 200 by 4

• * Multiply 2 with 32

Hint Numbers are written without quotes. Decimals are written with a period
(.) symbol, not comma (,).

Error message Did you know that the first Star Wars movie was released 40
years ago?!

Expected result 13.5 40 50 64

Timed False

A.7 Exercise 6: (Arithmetic + 5) / 2

Curriculum Arithmetic in JavaScript is controlled the same way as regular
arithmetic. Multiplication and division have a higher precedence than addition
and subtraction.

As with regular math, you can use parentheses to control when a calculation
is made, e.g. if you want the addition to happen before multiplication.

Exercise text Use parentheses on the calculation 4 + 2 * 100, so that the
answer becomes 600 and not 204. Print the answer to the console.

Hint The order of calculation is as follows:

• Calculate parentheses

• – Multiplication and division, calculated left to right

• – Addition and subtraction, calculated left to right.

Error message Did you encapsulate 4 + 2 in parentheses?
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Expected result 600

Timed False

A.8 Exercise 7: Concatenate strings and num-
bers

Curriculum Earlier we concatenated two strings, but you can also concatenate
a string and a number.

Perhaps you noticed that the + operator was used both in concatenation and
in adding numbers.

JavaScript is a weakly typed language, meaning that the compiler will guess
the data type. If one of the data types of either side of the + operator is a string,
the result will be a new string. E.g. ”Age: ” + 25 will yield the string ”Age:
25”.

Exercise text Concatenate the number 42 with the string ”is the answer to
life the universe and everything” and print the result to the console.

Hint If you try to add ”4” and 2, you will be given the string ”42”.

Error message Did you write the string correctly?

Expected result 42 is the answer to life the universe and everything

Timed False

A.9 Exercise 8: Boolean type

Curriculum So you remember that a boolean type can be either true or false.
At least I assume you do:) Boolean types can be used to if you need to say ”yes”
or ”no” about something, e.g. if a constraint is fulfilled E.g. If you were to write
3 ¿ 4 you would get false in return, as 3 is not greater than 4. When comparing
two numbers, you can use ¡ (less than), ¿ (greater than), or == (equal). Two
equal signs are used, as one (=) is used to assign a value to a variable.

Exercise text Check if 42 is greater than 13. Print the result to the console.
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Hint The ¿ operator means ”greater than” as it says that the value on the left
is greater than the one on the right. ¡ means ”less than”, and == means ”equal”.
The result from such an comparison will either be true or false.

The result should be either true or false.

Error message Did you use ¿ and not ¡?

Expected result True

Timed False

A.10 Exercise 9: Comparing data types

Curriculum In the previous exercise we compared two numbers with the help
of the ”greater than” operator ¿. If you were confused, here is a short recap:

• X ¿ Y means: Is X is greater than Y?

• X ¡ Y means: Is X less than Y?

• X == Y means: Is X equal to Y?

This can be used on numbers, and on strings. How, you may ask. Each
character in a string is saved as a number, thus we can add all the character’s
numbers and see which is larger. Note that upper case letters have a lower value
than their small caps letter counterparts.

Exercise text Check if the string ”AAA” is equal to ”aaa”. Print the result
to the console

Hint The ¿ operator means ”greater than” as it says that the value on the left
is greater than the one on the right. ¡ means ”less than”, and == means ”equal”.
The result from such an comparison will either be true or false.

Error message Did you use two equal signs (==)?

Expected result False

Timed False
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A.11 Exercise 10: Variables

Curriculum So far we have only printed our data directly to the console. But
what if we want to store the data for a while, so that we can reference it several
times?

Enter variables! A variable can hold data, like strings, numbers and booleans.
JavaScript have three different variable keywords:

• var: the old variable keyword, for any use case (ish)

• – let: a variable that can be changed later

• – const: a constant that can’t be changed later

ES6 (the new JavaScript standard) uses only let and const. The rule for what
to use when is: Does the value of the variable need to change? Use let. Otherwise
you should use const.

A variable is declared as this: let myVariable = ”value”.

myVariable can be any name you want to give your variable (it should describe
the value). The name must start with an underscore or a letter. The value can be
either a string, number, boolean, array, object or function (more on that later).

Exercise text Declare a constant and name it year. Give the constant the value
of 1977. Print the constant to the console. You should reference the variable,
and not simply print 1977.

Hint You reference the variable/constant by writing it’s name, without any
quotes. Adding quotes around the name would make it a string, and not a
reference. The variable name is only a reference to the value. Thus the same
value can be used several places, without specifically writing the value.

Error message As I’m sure you remember, 1977 was the year the first Star
Wars movie was released, and hence a very important year to all.

Expected result 1977

Timed False
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A.12 Exercise 11: Const vs let

Curriculum The difference between const and let can be a bit confusing. Re-
member that constants can’t be changed later. You may think: Why would I
even use a constant? It might be obvious later on, but they are safer from a data
integrity perspective, as they can’t change, and will stay the same. Sometimes
you need to change the variable though, and then we have let.

If you try to give a constant another value later in your code, you will get an
error. That will not happen with let.

Exercise text Declare a let variable, and name it height. Give it the value of
153. On the next line print the height variable. Then, on the third line write
height, and give it the value of 157. It is important that you don’t write ”let”
in front of the second height, as you will try to declare a new variable, and not
change the value of the previous. Then print height to the console again. See
how the value changes?

Hint You assign a new value to an already existing variable by writing the
variable name, without ”let” or ”var” in front.

Error message Did you give the height variable a new value?

Expected result 153 157

Timed False

A.13 Exercise 12: Arrays

Curriculum So far we have talked about three data types. Now we will in-
troduce another, called array. An array is a list of elements, that can be either
strings, numbers or boolean, other arrays or objects.

An array is declared by two square brackets []. E.g. if you have an array
named birds, it would be written: const birds = [”Ducks”, ”Eagles”, ”Humming-
bird”] Each element is separated by a comma (,). Arrays can be used to store
information in a sequential way (this will be clear later on).

Exercise text Declare a constant and name it tasks. Then assign it the value
of an array, with the elements ”Complete this tutorial”, ”Cook dinner” and ”Take
out the trash”. Print the array to the console.
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Hint An array is a list of data types, which are separated by commas. The list
may contain strings, numbers, boolean values, variables, other lists and objects.
You declare a list by encapsulating the content in square brackets ([]). In the
curriculum objects were mentioned. This tutorial will as of now not cover objects,
but you’ll find more information about them at codeacademy.com.

Error message Did you add all the elements to tasks?

Expected result [”Complete this tutorial”, ”Cook dinner”, ”Take out the
trash”]

Timed False

A.14 Exercise 13: Get the nth element of an ar-
ray

Curriculum What do we do if we want the 3rd element of an array? Well,
JavaScript has a solution for that!

But first, we need to learn that arrays in JavaScript (and other programming
languages) starts at 0, not 1. So the first element in an array is the 0th element.
Say we want the 3rd element in the array birds = [”Ducks”, ”Eagles”, ”Hum-
mingbird”], meaning you want ”Hummingbird”. By typing birds[2], we will get
”Hummingbird” in return.

Exercise text Declare a constant and name it languages. Then assign it the
value of an array, with the elements ”Python”, ”Java” and ”JavaScript”. Print
the first and second element to the console. Use one console.log function per
element

Hint You print a specific element of an array by writing array[i], where array
is the name of that array, and i is the index. Remember that the array’s first
element is at index 0.

Error message Did you use the correct indexes, and did you use two con-
sole.log statements?

Expected result Python Java

Timed False



A.15. EXERCISE 14: GET THE LAST ELEMENT OF AN ARRAY 107

A.15 Exercise 14: Get the last element of an ar-
ray

Curriculum But then, what do we do when we want the last element of an
array, and we don’t know how long the array is? Arrays have a property that
returns the numbers of elements in that array. Using birds.length on birds =
[”Ducks”, ”Eagles”, ”Hummingbird”] will return 3, because there are three ele-
ments.

Of course, the last element have the index 2, so to get the last element we
have to write birds[birds.length-1], which will return ”Hummingbird”.

Exercise text Declare a constant and name it superheroes. Then assign it
the value of an array, with the elements ”Superman”, ”Wonder Woman” and
”Batman”. Print the last element to the console using the array’s length function.

Hint You can get the length of an array, i.e. the number of elements in the list,
by writing array.length, where array is the name of that array.

Remember that the array’s first element is at index 0. If you try to get the
element at array[array.length] you will get the next element after the last one,
and that one doesn’t exist.

Error message Did you use the correct index?

Expected result Batman

Timed False

A.16 Exercise 15: Loops

Curriculum Say that you want to print all the numbers from 1 to 10 to the
console. That can be done by writing 10 console.log functions. If you want to
print all numbers from 1 to 1000, that is a lot of work! Enter for loops. A for
loop is a loop that iterates until some requirement is fulfilled. For each iteration,
the index updates to progress the loop. A for loop is written: for (let i = 1; i
¡ 11; i++) ... The for loop takes three parameters, the first being the initial
index (let i = 0), the next being when the loop should end (i ¡ 11) which in this
case the loop will continue until i is less than 11, which is 10. The last parameter
is how the index should be updated. Writing ++ after a variable will update the
variable with 1.
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If we would print the index to the console with this for loop, we would get
every number from 1 to and including 10. Note that in the explanation above I
used ... to denote where the code block goes.

There is one important thing you need to know: Your loop needs to be termi-
nated, otherwise it will go on forever, eventually using up all your RAM. Make
sure that you set an condition that can be fulfilled. E.g. making the loop run
as long as i is greater than 1, and i is ever increasing, you will find yourself in
trouble.

Exercise text Using a for loop, print every other number from 2 up and to 10
to the console.

Hint In stead of using i++ to update the index by one, you need to update
it by 2 for each iteration. In order to add a number to a variable, in stead of
just replacing the value, you ned to write +=, meaning that it should take the
variable’s value, and add whatever number comes after.

The code that you want to run should be located inside the curly brackets
following the for loop.

Error message Did you update the index correctly?

Expected result 2 4 6 8 10

Timed False

A.17 Exercise 16: Factorials

Curriculum The factorial of a non-negative integer n is the product of all
positive integers less than or equal to n.

E.g.: 5! = 5 * 4 * 3 * 2 * 1 = 120.
This exercise is timed.

Exercise text Using a for loop, sum up the factorial of the number 10. Print
the result to the console.

Hint Remember to end the loop in the correct place.

Error message Did you add the products together?
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Expected result 3628800

Timed True

A.18 Exercise 17: Multiples of n

Curriculum Do you remember the multiplication table? With programming
you don’t have to!

This exercise is timed.

Exercise text Print every number from 0 (not 0) up to, and including, 60 that
is a multiple of 3.

Hint A for loop might be the correct tool for this job.

Error message Did you start at 3?

Expected result 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

Timed True

A.19 Exercise 18: Looping trough an array

Curriculum We now know how to print the index to the console. We also know
how to get the nth element of a list. If you don’t remember, here’s a refresher:

array[n] will get you the nth element of an array. We can use this knowledge
to print every element of the array to the console by writing: for (let i = 0; i ¡
array.length; i++) console.log(array[i])

Exercise text Declare a constant and name it colors. Then assign it the value
of an array, with the elements ”Red”, ”White” and ”Blue”. Using a for loop,
print each element to the console, but add an asterisk (*) in front of each element.
The result should look like a list.
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Hint Each element is this array is a list, you can thus concatenate the string
”*” and the array element. You get the value of each array element by writing
array[i], where array is the name of the array, and i is the index of that list
element.

Remember that arrays starts with index 0, and that the last element is the
array’s length minus 1.

Error message Did you concatenate the two strings correctly?

Expected result * Red * White * Blue

Timed False

A.20 Exercise 19: What if?

Curriculum Sometime we may want to do action based on a condition, e.g. if
the user’s age is above of below 18 decide if they can buy beer or not. For these
cases we have the if statement, which checks if a condition is true or false. If
statements are written as this: if (condition) ...

The condition can e.g. be age ¿= 18. If the condition evaluates to true (yes,
my age is greater than or equal to 18), then the code within the curly brackets
() will be executed, otherwise it will be skipped.

Exercise text Declare a let variable, name it weather and give it the value of
”sun”. Then create an if statement which checks if the value of weather is equal
to the string ”sun”. Inside the code block, print the string ”It’s sunny outside”
to the console.

Hint Within the two parentheses you’ll find the evaluation. When you are
evaluating two data types, you use two equal signs. If the two values are identical,
the expression evaluates to true.

Error message Did you use two equal signs (==) in the conditional?

Expected result It’s sunny outside

Timed False
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A.21 Exercise 20: What else?

Curriculum You want to check if some condition is true, but it’s not, so you
want to run your backup plan? Then you can add an else statement after the if.
If the if statement evaluates to false, the code within the else block will be run.
This is written: if (condition) code else code

Exercise text Declare a let variable and name it weather, and give it the value
of ”rain”. Then create an if statement which checks if the value of weather is
equal to the string ”sun”. Inside that code block, print the string ”It’s sunny
outside” to the console.

Then, after the if code block, add an else block, where you print ”I’m not sure
what weather it is outside” to the console. If the code is correct, ”I’m not sure
what weather it is outside” will be printed to the console.

Hint The else block catches all cases that are not covered by the preceding if
blocks. else is written after the last curly bracket of the if block.

Error message Have you written the correct expression inside the parentheses?

Expected result I’m not sure what weather it is outside

Timed False

A.22 Exercise 21: What else if?

Curriculum Of course it’s often not enough with just checking for one specific
case. In the previous exercise, we could have caught that it was rain, and printed
that to the console. To add several cases, you can add what’s called ”else if”.

Similar to if statements, they take an conditional that will evaluate to true
or false. After the initial if statement, write ”else if (conditional) ... ”. This can
then be followed by an else block, as in the previous exercise.

Exercise text Declare a let variable and name it weather, and give it the value
of ”rain”. Then create an if statement which checks if the value of weather is
equal to the string ”sun”. Inside that code block, print the string ”It’s sunny
outside” to the console.

Then, after the if code block, add an else if block that checks if the value of
weather is equal to ”rain”. Inside that block, print ”It’s raining outside” to the
console.
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Hint The else if block comes after the last curly bracket if block, and needs
a conditional (some expression that can evaluate to true or false) inside the
following parentheses.

Error message Have you written the correct expression inside the parentheses?

Expected result It’s raining outside

Timed False

A.23 Exercise 22: What if and if?

Curriculum In some cases, we only want to execute code if two or more condi-
tionals are true. One way to solve this is to nest if statements inside each other.
Another approach is to use the comparison operator &&, meaning ”and”.

When using &&, the expression will only evaluate to true if both (or all)
parameters are true. E.g. (X && Y) ... will only be true if both X and Y are
true. If one is false, the code will not be executed.

Exercise text Declare one let variable and name it weather, and give it the
value of ”rain”. Then declare another let variable and give it the name umbrella
and the value of true.

Then write an if statement that checks if weather is equal to ”rain” and
umbrella is true. Inside the if statement, print the string ”You can safely walk
outside” to the console.

Hint In the if statement, you don’t have to write ”umbrella == true”, a boolean
can only be true or false, so you can simply ask ”umbrella”, which will return
the value of the variable.

Error message Have you written the correct expression inside the parentheses?

Expected result You can safely walk outside

Timed False
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A.24 Exercise 23: What if or if?

Curriculum There are also cases where we want to execute code if one of two
requirements are true. In that case, we have the operator ——, meaning ”or”. If
you are using the or operator, only one of the parameters have to be true for the
code to be executed.

E.g. (X —— Y) ... will be executed if X is true or Y is true, or both, but
not if both are false.

Exercise text Declare one let variable and name it weather, and give it the
value of ”sun”. Then declare another let variable and give it the name umbrella,
and the value of false.

Then write an if statement that checks if weather is equal to ”sun” or if
umbrella is true. Inside the if block, print the string ”You can safely walk outside”
to the console.

Hint If you are checking if a boolean value is true, it is enough to write the
variable’s name.

Error message Have you written the correct expression inside the parentheses?

Expected result You can safely walk outside

Timed False

A.25 Exercise 24: How about no?

Curriculum Sometimes we want to execute code if a constraint is not fulfilled.
By placing a exclamation mark (!) before a parameter, you will negate the
boolean value.

E.g. if you evaluate the boolean value of the variable let name = ”Thor”,
you will get true in return. However, if you evaluate !name, you will get false in
return.

Exercise text Declare a constant, name it user and give it the value of false.
This variable plays the role of our web page’s imaginary user, and that user is
not registered.

Now write an if statement that checks if the user constant is false. If the user
is false (i.e. the user is not registered), the string ”You need to register” should
be printed to the console.
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Hint In an if statement, when we check if some variable or constant is true, we
can simply write that variable or constant’s name. When we want to check if the
variable or constant is false, we need to negate it.

Error message Have you written the correct expression inside the parentheses?

Expected result You need to register

Timed False

A.26 Exercise 25: Functions

Curriculum So far we have written our code in one big pile of fun. That works
well enough for small code blocks, but when the complexity of our application
increases, we need to structure the code into functions. A function is a block of
code that can be invoked elsewhere in your code. Using function you only have
to write code once, even though it will be used several places. Which leads to
less errors, and code that are easier to maintain.

You declare a function by writing the keyword function, followed by the func-
tion name and two parenthesis. Then you have two curly brackets, with the code
block inside.

E.g. function printAJoke()console.log(’The cat’s tie’) For a function to ble
run, it needs to be invoked. You do that by writing, outside of the function,
the functions name, followed by two parenthesis. E.g. to invoke our function
printAJoke, we would write printAJoke().

Exercise text Declare a function with the name helloFunction. Inside the
function, print the string ”Hello function”. Invoke the function.

Hint A function can also be declared as a variable, e.g. const myFunction()code
This is purely preference.

Remember to invoke your function by writing the function name followed by
two parentheses, e.g. myFunction().

Error message Did you invoke the function?

Expected result Hello function

Timed False
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A.27 Exercise 26: Functions that manipulate the
data

Curriculum Wouldn’t it be useful to do something with data inside the func-
tion? Do to so, we need to send the data to the function.

A function can take zero of more parameters, and do something with it. To
do this, inside the parenthesis following the function name, write the name of
your parameter. A parameter is like a variable, that is local to that function.

E.g.: function printNumber(number)console.log(number). printNumber(22)
would print the number 22 to the console. The 22 that we send from the function
call (where we invoke the function) is called arguments.

Exercise text Declare the function multiplyWithTwo that takes one param-
eter. The parameter name can be whatever, e.g. number. The function should
multiply the parameter with 2 and print the result to the console. Invoke the
function with the argument 16.

Hint Use the multiplication operator (*) to multiply a number with another.

Error message Did you multiply the parameter with two and print it to the
console?

Expected result 32

Timed False

A.28 Exercise 27: Taking several parameters

Curriculum As mentioned, a function can take any number of parameters. In-
side the parentheses following the function name, list all the parameters separated
by commas (,).

It is a good idea to give the parameters meaningful names, so that you know
what they mean. When you invoke the function, the arguments doesn’t need to
have the same name as the parameters, but the order is important! The first
argument will be used as the first parameter, and so on.

Exercise text Declare the function subtractTwoNumbers that takes two pa-
rameters. The parameter names can be whatever, e.g. number1 and number2.
The function should subtract the second parameter from the first and print the
result to the console. Invoke the function with the arguments 24 and 4.
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Hint You invoke a function with several parameters as such: myFunction(argument1,
argument2).

In the function: function myFunction(parameter1, parameter2) ... argu-
ment1 == parameter1, and argument2 == parameter2.

If you change the order of the arguments, argument2 == parameter1.

Error message Did you subtract the right parameter, and print the result to
the console?

Expected result 20

Timed False

A.29 Exercise 28: Returning the result from a
function

Curriculum The function doesn’t have to print the result to the console itself.
It can return the result, so that other functions can use it. Instead of writing
console.log() as we have so far, write return, followed by what you want to return.

E.g. return parameter1 * 2. You don’t need parentheses around the return
statement.

Exercise text Declare the function divideTwoNumbers that takes two param-
eters. The parameter names can be whatever, e.g. number1 and number2. The
function should divide the first number by the second and return the result.

Then invoke the function from within a console.log function with the argu-
ments 512 and 64. This will print the result to the console.

Hint The return statement doesn’t use parentheses, but you can only return
one value. If you need to return several, store them in an array (not necessary
for this exercise).

Error message Did you return the value to the console.log function?

Expected result 8

Timed False
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A.30 Exercise 29: The beginning of the end

Curriculum In the following exercises you will be tested on the skills you have
just acquired. The exercises are timed.

Exercise text Print the string ”Let’s begin” to the console to start the last
exercises

Hint You shouldn’t need a hint for this really.

Error message Did you print ”Let’s begin” to the console?

Expected result let’s begin

Timed False

A.31 Exercise 30: Find the smallest number

Curriculum You don’t need any new information to solve this exercise.

Exercise text Write a function that finds the smallest of two numbers. Invoke
the function with the arguments 102 and 534 and print the result to the console.

Hint Use the if and else statements to check if one number is smaller than the
other.

Error message Did you use the ”less than” (¡) operator?

Expected result 102

Timed True

A.32 Exercise 31: Cheesecake

Curriculum For this exercise we need to know about modulo, the % operator.
Using % between two numbers will give you the remainder of dividing the two
numbers. E.g. 5%2 will give us 1 because 5/2 is equal to 2 + 2 + 1. In this task
you will be asked to see if a number is a multiple of another, meaning that the
remainder should be 0.
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E.g. if you want to find multiple of 6, you check number%6 == 0. If the
remainder of number divided by 6 is 0, the number is a multiple of 6.

Exercise text Write a program that prints the numbers from 1 to 100. But
for multiples of three print ”cheese” instead of the number and for the multiples
of five print ”cake”. For numbers which are multiples of both three and five print
”cheesecake”.

Hint Use if, else if and else statements to handle the different cases. And use
modulo to see if a number is a multiple of another.

Error message Did you remember to print the numbers?

Expected result 1 2 cheese 4 cake cheese 7 8 cheese cake 11 cheese 13 14
cheesecake 16 17 cheese 19 cake cheese 22 23 cheese cake 26 cheese 28 29 cheese-
cake 31 32 cheese 34 cake cheese 37 38 cheese cake 41 cheese 43 44 cheesecake
46 47 cheese 49 cake cheese 52 53 cheese cake 56 cheese 58 59 cheesecake 61 62
cheese 64 cake cheese 67 68 cheese cake 71 cheese 73 74 cheesecake 76 77 cheese
79 cake cheese 82 83 cheese cake 86 cheese 88 89 cheesecake 91 92 cheese 94 cake
cheese 97 98 cheese cake

Timed True

A.33 Exercise 32: Comparing arrays

Curriculum You don’t need any new information to solve this exercise.

Exercise text Write a function that takes two array parameters and checks
if they are identical. Return true if they are, and false otherwise. Invoke the
function once with the arguments [”a”, ”b”, ”c”] and [”a”, ”b”, ”d”], and once
with the arguments [”a”, ”b”, ”c”] and [”a”, ”b”, ”c”]. Print the result to the
console.

Hint You know this!

Error message You can do this! Have faith in yourself.

Expected result false true

Timed True
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MELDESKJEMA
Meldeskjema (versjon 1.4) for forsknings- og studentprosjekt som medfører meldeplikt eller konsesjonsplikt
(jf. personopplysningsloven og helseregisterloven med forskrifter).
 

1. Intro

Samles det inn direkte
personidentifiserende

opplysninger?

Ja ○ Nei ● En person vil være direkte identifiserbar via navn,
personnummer, eller andre personentydige kjennetegn.

Les mer om hva personopplysninger.

NB! Selv om opplysningene skal anonymiseres i
oppgave/rapport, må det krysses av dersom det skal
innhentes/registreres personidentifiserende
opplysninger i forbindelse med prosjektet.

Hvis ja, hvilke? □ Navn
□ 11-sifret fødselsnummer
□ Adresse
□ E-post
□ Telefonnummer
□ Annet

Annet, spesifiser hvilke

Samles det inn
bakgrunnsopplysninger som

kan identifisere
enkeltpersoner (indirekte

personidentifiserende
opplysninger)?

Ja ○ Nei ● En person vil være indirekte identifiserbar dersom det
er mulig å identifisere vedkommende gjennom
bakgrunnsopplysninger som for eksempel
bostedskommune eller arbeidsplass/skole kombinert
med opplysninger som alder, kjønn, yrke, diagnose,
etc.

NB! For at stemme skal regnes som
personidentifiserende, må denne bli registrert i
kombinasjon med andre opplysninger, slik at personer
kan gjenkjennes.

Hvis ja, hvilke

Skal det registreres
personopplysninger

(direkte/indirekte/via IP-/epost
adresse, etc) ved hjelp av

nettbaserte spørreskjema?

Ja ● Nei ○ Les mer om nettbaserte spørreskjema.

Blir det registrert
personopplysninger på

digitale bilde- eller
videoopptak?

Ja ○ Nei ● Bilde/videoopptak av ansikter vil regnes som
personidentifiserende.

Søkes det vurdering fra REK
om hvorvidt prosjektet er

omfattet av
helseforskningsloven?

Ja ○ Nei ● NB! Dersom REK (Regional Komité for medisinsk og
helsefaglig forskningsetikk) har vurdert prosjektet som
helseforskning, er det ikke nødvendig å sende inn
meldeskjema til personvernombudet (NB! Gjelder ikke
prosjekter som skal benytte data fra pseudonyme
helseregistre).

Dersom tilbakemelding fra REK ikke foreligger,
anbefaler vi at du avventer videre utfylling til svar fra
REK foreligger.

2. Prosjekttittel

Prosjektittel Detecting emotions during coding tutorials Oppgi prosjektets tittel. NB! Dette kan ikke være
«Masteroppgave» eller liknende, navnet må beskrive
prosjektets innhold.

3. Behandlingsansvarlig institusjon

Institusjon NTNU Velg den institusjonen du er tilknyttet. Alle nivå må
oppgis. Ved studentprosjekt er det studentens
tilknytning som er avgjørende. Dersom institusjonen
ikke finnes på listen, har den ikke avtale med NSD som
personvernombud. Vennligst ta kontakt med
institusjonen.

Avdeling/Fakultet Fakultet for informasjonsteknologi og elektroteknikk (IE)

Institutt Institutt for datateknologi og informatikk

4. Daglig ansvarlig (forsker, veileder, stipendiat)

Fornavn Asbjørn Før opp navnet på den som har det daglige ansvaret for
prosjektet. Veileder er vanligvis daglig ansvarlig
ved studentprosjekt.

Daglig ansvarlig og student må i utgangspunktet være
tilknyttet samme institusjon. Dersom studenten har
ekstern veileder, kanbiveileder eller fagansvarlig ved
studiestedet stå som daglig ansvarlig.

Arbeidssted må være tilknyttet behandlingsansvarlig
institusjon, f.eks. underavdeling, institutt etc.

NB! Det er viktig at du oppgir en e-postadresse som
brukes aktivt. Vennligst gi oss beskjed dersom den
endres.

Etternavn Thomassen

Stilling Assistant Professor

Telefon 73591839

Mobil 73591839

E-post asbjorn.thomassen@ntnu.no

Alternativ e-post asbjorn.thomassen@ntnu.no

Arbeidssted NTNU/IE/IDI

Side 2



Adresse (arb.) Sem Sælands vei 9

Postnr./sted (arb.sted) 7034 Trondheim

5. Student (master, bachelor)

Studentprosjekt Ja ● Nei ○ Dersom det er flere studenter som samarbeider om et
prosjekt, skal det velges en kontaktperson som føres
opp her. Øvrige studenter kan føres opp under pkt 10.

Fornavn Thor Håkon

Etternavn Bredesen

Telefon 97629575

Mobil

E-post thorhb@stud.ntnu.no

Alternativ e-post thor.hakon.bredesen@gmail.com

Privatadresse Maristuveien 2

Postnr./sted (privatadr.) 7030 Trondheim

Type oppgave ● Masteroppgave
○ Bacheloroppgave
○ Semesteroppgave
○ Annet

6. Formålet med prosjektet

Formål Prosjektet skal se på om det er mulig å anslå en brukers
følelser mens han/hun gjør programmeringsoppgaver
vha. keystroke dynamics (tastatur) og puls (webkamera
eller pulsmåler). Formålet er å gi en tilpasset progresjon
(vanskelighetsgrad) i oppgavene til følelsene, for så å
øke mestring og læring.
Forskningsspørsmål 1: Kan emosjoner bedre detekteres
vha nøkkelord enn alle ord i koden?
Forskingsspørsmål 2: Kan deteksjon av puls forbedre
klassifisering av følelser?

Redegjør kort for prosjektets formål, problemstilling,
forskningsspørsmål e.l.

7. Hvilke personer skal det innhentes personopplysninger om (utvalg)?

Kryss av for utvalg □ Barnehagebarn
■ Skoleelever
□ Pasienter
□ Brukere/klienter/kunder
□ Ansatte
□ Barnevernsbarn
□ Lærere
□ Helsepersonell
□ Asylsøkere
□ Andre

Beskriv utvalg/deltakere Studenter/venner som er bekjente av meg Med utvalg menes dem som deltar i undersøkelsen
eller dem det innhentes opplysninger om.

Rekruttering/trekking Eget nettverk/venner på universitetet Beskriv hvordan utvalget trekkes eller rekrutteres og
oppgi hvem som foretar den. Et utvalg kan trekkes
fra registre som f.eks. Folkeregisteret, SSB-registre,
pasientregistre, eller det kan rekrutteres gjennom
f.eks. en bedrift, skole, idrettsmiljø eller eget nettverk.

Førstegangskontakt Kontakt opprettes av undertegnede, i samtale med
personen (eks.: jeg spør om en venn har lyst til å hjelpe
meg med å bygge datasettet til prosjektet)

Beskriv hvordan kontakt med utvalget blir opprettet og
av hvem.

Les mer om dette på temasidene.

Alder på utvalget □ Barn (0-15 år)
□ Ungdom (16-17 år)
■ Voksne (over 18 år)

Les om forskning som involverer barn på våre nettsider.

Omtrentlig antall personer
som inngår i utvalget

5

Samles det inn sensitive
personopplysninger?

Ja ○ Nei ● Les mer om  sensitive opplysninger.
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Hvis ja, hvilke? □ Rasemessig eller etnisk bakgrunn, eller politisk,
filosofisk eller religiøs oppfatning
□ At en person har vært mistenkt, siktet, tiltalt eller dømt
for en straffbar handling
□ Helseforhold
□ Seksuelle forhold
□ Medlemskap i fagforeninger

Inkluderes det myndige
personer med redusert eller

manglende
samtykkekompetanse?

Ja ○ Nei ● Les mer om pasienter, brukere og personer med
redusert eller manglende samtykkekompetanse.

Samles det inn
personopplysninger om

personer som selv ikke deltar
(tredjepersoner)?

Ja ○ Nei ● Med opplysninger om tredjeperson menes opplysninger
som kan spores tilbake til personer som ikke inngår i
utvalget. Eksempler på tredjeperson er kollega, elev,
klient, familiemedlem.

8. Metode for innsamling av personopplysninger

Kryss av for hvilke
datainnsamlingsmetoder og
datakilder som vil benyttes

□ Papirbasert spørreskjema
■ Elektronisk spørreskjema
□ Personlig intervju
□ Gruppeintervju
■ Observasjon
□ Deltakende observasjon
□ Blogg/sosiale medier/internett
□ Psykologiske/pedagogiske tester
□ Medisinske undersøkelser/tester
□ Journaldata (medisinske journaler)

Personopplysninger kan innhentes direkte fra den
registrerte f.eks. gjennom spørreskjema,intervju, tester,
og/eller ulike journaler (f.eks. elevmapper, NAV, PPT,
sykehus) og/eller registre (f.eks.Statistisk sentralbyrå,
sentrale helseregistre).

NB! Dersom personopplysninger innhentes fra
forskjellige personer (utvalg) og med
forskjellige metoder, må dette spesifiseres i
kommentar-boksen. Husk også å legge ved relevante
vedlegg til alle utvalgs-gruppene og metodene som skal
benyttes.

Les mer om registerstudier her.

Dersom du skal anvende registerdata, må variabelliste
lastes opp under pkt. 15

□ Registerdata

□ Annen innsamlingsmetode

Tilleggsopplysninger

9. Informasjon og samtykke

Oppgi hvordan
utvalget/deltakerne informeres

■ Skriftlig
□ Muntlig
□ Informeres ikke

Dersom utvalget ikke skal informeres om behandlingen
av personopplysninger må det begrunnes.

Les mer her.

Vennligst send inn mal for skriftlig eller muntlig
informasjon til deltakerne sammen med meldeskjema.

 Last ned en veiledende mal her.

NB! Vedlegg lastes opp til sist i meldeskjemaet, se
punkt 15 Vedlegg.

Samtykker utvalget til
deltakelse?

● Ja
○ Nei
○ Flere utvalg, ikke samtykke fra alle

For at et samtykke til deltakelse i forskning skal være
gyldig, må det være frivillig, uttrykkelig og informert.

Samtykke kan gis skriftlig, muntlig eller gjennom en
aktiv handling. For eksempel vil et besvart
spørreskjema være å regne som et aktivt samtykke.

Dersom det ikke skal innhentes samtykke, må det
begrunnes.

10. Informasjonssikkerhet

Hvordan registreres og
oppbevares

personopplysningene?

□ På server i virksomhetens nettverk
□ Fysisk isolert PC tilhørende virksomheten (dvs. ingen
tilknytning til andre datamaskiner eller nettverk, interne
eller eksterne)
■ Datamaskin i nettverkssystem tilknyttet Internett
tilhørende virksomheten
■ Privat datamaskin
□ Videoopptak/fotografi
□ Lydopptak
□ Notater/papir
□ Mobile lagringsenheter (bærbar datamaskin,
minnepenn, minnekort, cd, ekstern harddisk,
mobiltelefon)
□ Annen registreringsmetode

Merk av for hvilke hjelpemidler som benyttes for
registrering og analyse av opplysninger.

Sett flere kryss dersom opplysningene registreres på
flere måter.

Med «virksomhet» menes her behandlingsansvarlig
institusjon.

NB! Som hovedregel bør data som inneholder
personopplysninger lagres på behandlingsansvarlig sin
forskningsserver.

Lagring på andre medier - som privat pc, mobiltelefon,
minnepinne, server på annet arbeidssted - er mindre
sikkert, og må derfor begrunnes. Slik lagring må
avklares med behandlingsansvarlig institusjon, og
personopplysningene bør krypteres.

Annen registreringsmetode
beskriv
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Hvordan er datamaterialet
beskyttet mot at

uvedkommende får innsyn?

Det skal brukes private datamaskiner. Informasjonen
innhentes via en nettside. Informasjonen lagres i en
database kun undertegnede har tilgang til.

Er f.eks. datamaskintilgangen beskyttet med
brukernavn og passord, står datamaskinen i et låsbart
rom, og hvordan sikres bærbare enheter, utskrifter og
opptak?

Samles opplysningene
inn/behandles av en

databehandler (ekstern
aktør)?

Ja ○ Nei ● Dersom det benyttes eksterne til helt eller delvis å
behandle personopplysninger, f.eks. Questback,
transkriberingsassistent eller tolk, er dette å betrakte
som en databehandler. Slike oppdrag må
kontraktsreguleres.

Hvis ja, hvilken

Overføres personopplysninger
ved hjelp av e-post/Internett?

Ja ○ Nei ● F.eks. ved overføring av data til samarbeidspartner,
databehandler mm.

Dersom personopplysninger skal sendes via internett,
bør de krypteres tilstrekkelig.

Vi anbefaler for ikke lagring av personopplysninger på
nettskytjenester.

Dersom nettskytjeneste benyttes, skal det inngås
skriftlig databehandleravtale med leverandøren av
tjenesten.

Hvis ja, beskriv?

Skal andre personer enn
daglig ansvarlig/student ha

tilgang til datamaterialet med
personopplysninger?

Ja ○ Nei ●

Hvis ja, hvem (oppgi navn og
arbeidssted)?

Utleveres/deles
personopplysninger med

andre institusjoner eller land?

● Nei
○ Andre institusjoner
○ Institusjoner i andre land

F.eks. ved nasjonale samarbeidsprosjekter der
personopplysninger utveksles eller ved internasjonale
samarbeidsprosjekter der personopplysninger
utveksles.

11. Vurdering/godkjenning fra andre instanser

Søkes det om dispensasjon
fra taushetsplikten for å få

tilgang til data?

Ja ○ Nei ● For å få tilgang til taushetsbelagte opplysninger fra
f.eks. NAV, PPT, sykehus, må det søkes om
dispensasjon fra taushetsplikten. Dispensasjon søkes
vanligvis fra aktuelt departement.

Hvis ja, hvilke

Søkes det godkjenning fra
andre instanser?

Ja ○ Nei ● F.eks. søke registereier om tilgang til data, en ledelse
om tilgang til forskning i virksomhet, skole.

Hvis ja, hvilken

12. Periode for behandling av personopplysninger

Prosjektstart

Planlagt dato for prosjektslutt

15.03.2017

15.05.2017

Prosjektstart Vennligst oppgi tidspunktet for når kontakt
med utvalget skal gjøres/datainnsamlingen starter.

Prosjektslutt: Vennligst oppgi tidspunktet for når
datamaterialet enten skalanonymiseres/slettes, eller
arkiveres i påvente av oppfølgingsstudier eller annet.

Skal personopplysninger
publiseres (direkte eller

indirekte)?

□ Ja, direkte (navn e.l.)
□ Ja, indirekte (bakgrunnsopplysninger)
■ Nei, publiseres anonymt

NB! Dersom personopplysninger skal publiseres, må
det vanligvis innhentes eksplisitt samtykke til dette fra
den
enkelte, og deltakere bør gis anledning til å lese
gjennom og godkjenne sitater.

Hva skal skje med
datamaterialet ved

prosjektslutt?

■ Datamaterialet anonymiseres
□ Datamaterialet oppbevares med personidentifikasjon

NB! Her menes  datamaterialet, ikke publikasjon. Selv
om data publiseres med personidentifikasjon skal som
regel øvrig data anonymiseres.Med anonymisering
menes at datamaterialet bearbeides slik at det ikke
lenger er mulig å føre opplysningene tilbake til
enkeltpersoner.

Les mer om anonymisering.

13. Finansiering

Hvordan finansieres
prosjektet?

Ingen finansiering, kun masterprosjekt

14. Tilleggsopplysninger

Side 5



Tilleggsopplysninger Puls fra webkamera registreres kun som et tall sammen
med annen data. Ingen bilder/video vil bli lagret.
Keystroke dynamics er en betegnelse på hvordan noen
skriver på tastaturet (når en tast trykkes ned og slippes
opp, og hvilken tast det gjelder). Dette er tidligere brukt
til å gjenkjenne personer (biometrics) og detektere
følelser. Systemet funger slik at brukeren får en
programmeringsoppgave som brukeren løser i et
nettleservindu. Etter at brukeren har valgt å kjøre koden
blir han/hun spurt om å beskrive sin følelse (bored,
confused, delighted, concentrated, frustrated, surprised)
og hvilket nivå han/hun er på i programmering
(beginner, intermediate, professional). Tastetrykk fra
kodeskriving registreres sammen med de to andre
attributtene. Det antas at hvordan noen bruker et
tastatur varierer, slik som å skrive for hånd. Det blir
derfor lagret en ID sammen med dataen fra den
brukeren (f.eks.: bruker_id: 2). Navn/IP-adresse/andre
personopplysninger blir ikke registrert eller lagret.

Side 6
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Forespørsel om deltakelse i forskningsprosjektet 

 
Detecting emotions during coding tutorials 

 
Bakgrunn og formål 
Masteroppgaven skal utforske muligheten for å registrere følelser til en bruker som gjør 
programmeringsoppgaver. Formålet er å gi en tilpasset progresjon og vanskelighetsgrad, og på sikt gi 
bedre læring, motivasjon og mestringsfølelse. 
 
Forskningsspørsmål 1: Kan emosjoner bedre detekteres vha nøkkelord enn alle ord i koden? 
Forskingsspørsmål 2: Kan deteksjon av puls forbedre klassifisering av følelser? 
 
Prosjektet er en masteroppgave ved NTNU/IE/IDI. Veileder er Asbjørn Thomassen v/IDI. Resultatet 
av masteroppgaven vil være et proof of concept, der det blir studert om K nearest-neighbour er en god 
klassifiseringsmetode for følelser. 
 
Deltakere til studien kontaktes direkte av masterstudenten. 
 
Hva innebærer deltakelse i studien? 
Ved å delta i studien vil du bli bedt om å gjennomføre programmeringsoppgaver i nettleseren. Mens 
du skriver kode vil alle tastetrykk registreres og lagres. Informasjonen som blir lagret er hvilken tast 
du trykket på, når den ble trykket ned, og når den ble sluppet opp igjen. Dette kalles keystroke 
dynamics. Etter at du har kjørt koden vil du bli spurt om hvilken følelse som best representerer din 
nåværende emosjonelle tilstand (kjedsomhet, forvirret, glad, konsentrert, frustrert eller overrasket), og 
på hvilket nivå innen programmering du er (nybegynner, viderekommen eller profesjonell). 
 
Dataen du sender inn vil bli knyttet til deg ved et tilfeldig id-nummer, slik at det er mulig å finne igjen 
alle tastetrykkene for én bruker. 
 
Du vil bli spurt om følgende for å kunne kategorisere deg: 
- Hvilket kjønn er du (mann/kvinne)? 
- Hvilken erfaring har du med programmering (fra 1 – 7)? 
- Hvilke programmeringsspråk kjenner du til? 
- Hvor mange år har du praktisert programmering totalt? 
- Hvor mange år har du praktisk programmering før du startet på universitetet? 
- Når lærte du først å programmere (dette er første gang, på egenhånd, før ungdomsskolen, 

ungdomsskolen, videregående, universitet/høgskole)?  
 
Det vil også bli benyttet webkamera for å registrere pulsen til brukeren (du kan lese mer om hvordan 
her: https://github.com/thearn/webcam-pulse-detector). Ingen video/bilder blir lagret. Resultatet fra 
pulsmålingen er et tall som definerer pulsen din, som lagres sammen med dataen om tastetrykk. 
 
 
 
 
 



   

Hva skjer med informasjonen om deg?  
Alle personopplysninger vil bli behandlet konfidensielt. Kun masterstudenten (Thor Håkon Bredesen) 
vil ha tilgang til informasjonen som er registrert. Det vil ikke være mulig for en deltaker å kjenne igjen 
seg selv i den ferdige masteroppgaven. Resultatet vil kun bli presentert som hvor suksessfullt det var å 
bruke AI-metoden K nearest neighbour til å klassifisere følelser. 
  
Prosjektet skal etter planen avsluttes 15. mai. Etter dette vil dataen bli anonymisert og lagret på 
ubestemt tid. Kun masterstudenten vil ha tilgang til dataen. Formålet med å fortsatt ha dataen er for å 
kunne videreutvikle produktet senere. 
 
Frivillig deltakelse 
Det er frivillig å delta i studien, og du kan når som helst trekke ditt samtykke uten å oppgi noen grunn. 
Dersom du trekker deg, vil alle opplysninger om deg bli anonymisert.  
 
Dersom du ønsker å delta eller har spørsmål til studien, ta kontakt med masterstudent Thor Håkon 
Bredesen (976 29 575) eller veileder Asbjørn Thomassen (73 59 18 39). 
 
Studien er meldt til Personvernombudet for forskning, NSD - Norsk senter for forskningsdata AS. 
 
Samtykke til deltakelse i studien 
 
 
Jeg har mottatt informasjon om studien, og er villig til å delta  
 
 
---------------------------------------------------------------------------------------------------------------- 
(Signert av prosjektdeltaker, dato) 
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Asbjørn Thomassen
Institutt for datateknologi og informatikk NTNU
Sem Sælandsvei 7-9
7491 TRONDHEIM
 
Vår dato: 03.04.2017                         Vår ref: 53027 / 3 / AH                         Deres dato:                          Deres ref: 
 
 
TILBAKEMELDING PÅ MELDING OM BEHANDLING AV PERSONOPPLYSNINGER
 
Vi viser til melding om behandling av personopplysninger, mottatt 15.02.2017. Meldingen gjelder
prosjektet:

Personvernombudet har vurdert prosjektet og finner at behandlingen av personopplysninger er
meldepliktig i henhold til personopplysningsloven § 31. Behandlingen tilfredsstiller kravene i
personopplysningsloven.
 
Personvernombudets vurdering forutsetter at prosjektet gjennomføres i tråd med opplysningene gitt i
meldeskjemaet, korrespondanse med ombudet, ombudets kommentarer samt
personopplysningsloven og helseregisterloven med forskrifter. Behandlingen av personopplysninger
kan settes i gang.
 
Det gjøres oppmerksom på at det skal gis ny melding dersom behandlingen endres i forhold til de
opplysninger som ligger til grunn for personvernombudets vurdering. Endringsmeldinger gis via et
eget skjema, http://www.nsd.uib.no/personvernombud/meld_prosjekt/meld_endringer.html. Det skal
også gis melding etter tre år dersom prosjektet fortsatt pågår. Meldinger skal skje skriftlig til ombudet.
 
Personvernombudet har lagt ut opplysninger om prosjektet i en offentlig database,
http://pvo.nsd.no/prosjekt. 
 
Personvernombudet vil ved prosjektets avslutning, 15.05.2017, rette en henvendelse angående
status for behandlingen av personopplysninger.
 
Vennlig hilsen

Kontaktperson: Åsne Halskau tlf: 55 58 21 88
Vedlegg: Prosjektvurdering

53027 Detecting emotions during coding tutorials
Behandlingsansvarlig NTNU, ved institusjonens øverste leder
Daglig ansvarlig Asbjørn Thomassen
Student Thor Håkon Bredesen

Kjersti Haugstvedt
Åsne Halskau



Personvernombudet for forskning
 
Prosjektvurdering - Kommentar                                                                                          

Prosjektnr: 53027
 
Rekrutteringen skjer via eget nettverk. Ved rekruttering via eget nettverk er det spesielt viktig at forespørsel
rettes på en slik måte at frivilligheten ved deltagelse ivaretas.
 
Utvalget informeres skriftlig om prosjektet og samtykker til deltakelse. Informasjonsskrivet er godt utformet,
men personvernombudet anbefaler at det presiseres at det er et anonymt datasett som skal lagres videre etter
prosjektslutt. Vi anbefaler også at tilleggspørsmålene som skal stilles i spørreundersøkelsen taes inn i
informasjonsskrivet, jf. tlf. samtale med student 03.04.2017.
 
Personvernombudet legger til grunn at forsker etterfølger NTNU sine interne rutiner for datasikkerhet. Dersom
personopplysninger skal lagres på privat pc/mobile enheter, bør opplysningene krypteres tilstrekkelig.
 
Forventet prosjektslutt er 15.05.2017. Ifølge prosjektmeldingen skal innsamlede opplysninger da anonymiseres.
Anonymisering innebærer å bearbeide datamaterialet slik at ingen enkeltpersoner kan gjenkjennes. Det gjøres
ved å:
- slette direkte personopplysninger (som navn/koblingsnøkkel)
- slette/omskrive indirekte personopplysninger (identifiserende sammenstilling av bakgrunnsopplysninger som
f.eks. bosted/arbeidssted, alder og kjønn)
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Appendix E

Aggregated feature vectors
by class

In these tables, the lowest and highest value for each feature, and the mean value,
are presented. The values have not been normalised. The content of these tables
have been used to create the graphs visible in figures 7.1, 7.2 (table E.1), 7.3
(table E.2), 7.4 (table E.3), 7.5 (table E.4), 7.6 (table E.5) and 7.7 (table E.6).

The feature’s name is found in the left most column, in the second column
to the left are the keys used to derive the values. The keys are ordered by their
occurrence, meaning that the first key is also the first in a digraph or trigraph.
Mean, min and max values are expressed as milliseconds.

Table E.1: Mean, min and max values for aggregated bored feature vectors

Feature Keys Bored
Mean Min Max

number of misses 5.90 0.00 44.00
avg dwell 151.86 71.00 568.68
avg flight 45.58 -400.04 327.68
avg keystrokes 333.36 129.42 580.36
first key down second key down time c, o 161.86 16.65 1550.00
first key dwell time c 109.64 32.00 211.62
first key up second key down time c, o 52.22 -122.60 1411.46
second key dwell time c, o 144.16 47.00 244.49
digraph duration c, o 306.02 127.90 1731.15
first key down second key down time o, n 186.08 50.89 1026.05
first key dwell time o 144.16 47.00 244.49
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Table E.1: Mean, min and max values for aggregated bored feature vectors

Feature Keys Bored
Mean Min Max

first key up second key down time o, n 41.92 -127.97 961.38
second key dwell time o, n 117.04 47.00 197.16
digraph duration o, n 303.12 144.02 1112.47
first key down second key down time n, s 236.09 40.03 2719.89
first key dwell time n 117.04 47.00 197.16
first key up second key down time n, s 119.05 -93.19 2603.58
second key dwell time n, s 117.05 39.55 213.21
digraph duration n, s 353.13 112.01 2831.76
first key down second key down time s, o 164.12 40.11 2063.88
first key dwell time s 117.05 39.55 213.21
first key up second key down time s, o 47.07 -122.71 2024.32
second key dwell time s, o 97.82 47.00 159.35
digraph duration s, o 261.94 110.00 2190.46
first key down second key down time o, l 186.98 96.14 297.00
first key dwell time o 97.82 47.00 159.35
first key up second key down time o, l 89.15 15.92 219.00
second key dwell time o, l 107.80 32.00 200.81
digraph duration o, l 294.77 203.00 426.30
first key down second key down time l, e 134.46 63.00 399.90
first key dwell time l 107.80 32.00 200.81
first key up second key down time l, e 26.67 -58.62 311.91
second key dwell time l, e 110.46 47.99 212.75
digraph duration l, e 244.93 135.90 471.99
first key down second key down time e, . 224.18 62.00 1184.49
first key dwell time e 110.46 47.99 212.75
first key up second key down time e, . 113.72 -90.10 1068.36
second key dwell time e, . 107.84 47.00 164.72
digraph duration e, . 332.02 125.00 1267.63
first key down second key down time ., l 309.40 140.00 882.25
first key dwell time . 107.84 47.00 164.72
first key up second key down time ., l 201.56 40.23 792.00
second key dwell time ., l 81.49 31.70 168.58
digraph duration ., l 390.89 187.00 961.60
first key down second key down time l, o 194.89 86.90 728.02
first key dwell time l 81.49 31.70 168.58
first key up second key down time l, o 113.40 -23.71 696.02
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Table E.1: Mean, min and max values for aggregated bored feature vectors

Feature Keys Bored
Mean Min Max

second key dwell time l, o 107.01 55.98 181.26
digraph duration l, o 301.89 174.27 856.14
first key down second key down time o, g 168.31 58.60 1094.01
first key dwell time o 107.01 55.98 181.26
first key up second key down time o, g 61.30 -95.94 1025.67
second key dwell time o, g 99.32 47.00 170.53
digraph duration o, g 267.62 143.83 1194.33
first key down second key down time g, Shift 315.11 68.04 1000.09
first key dwell time g 99.32 47.00 170.53
first key up second key down time g, Shift 215.79 -27.93 903.89
second key dwell time g, Shift 657.00 172.00 5631.10
digraph duration g, Shift 972.10 297.00 6040.21
first key down second key down time Shift, ( 167.62 32.06 751.98
first key dwell time Shift 657.00 172.00 5631.10
first key up second key down time Shift, ( -489.38 -5350.87 -69.07
second key dwell time Shift, ( 117.51 48.00 197.16
digraph duration Shift, ( 285.13 120.08 871.97
first key down second key down time c, o 161.86 16.65 1550.00
first key dwell time c 109.64 32.00 211.62
first key up second key down time c, o 52.22 -122.60 1411.46
second key down third key down time o, n 186.08 50.89 1026.05
second key dwell time o 144.16 47.00 244.49
second key up third key down time o, n 41.92 -127.97 961.38
third key dwell time n 117.04 47.00 197.16
trigraph duration c, o, n 464.98 240.00 1784.55
first key down second key down time o, n 186.08 50.89 1026.05
first key dwell time o 144.16 47.00 244.49
first key up second key down time o, n 41.92 -127.97 961.38
second key down third key down time n, s 236.09 40.03 2719.89
second key dwell time n 117.04 47.00 197.16
second key up third key down time n, s 119.05 -93.19 2603.58
third key dwell time s 117.05 39.55 213.21
trigraph duration o, n, s 539.22 215.99 2996.68
first key down second key down time n, s 236.09 40.03 2719.89
first key dwell time n 117.04 47.00 197.16
first key up second key down time n, s 119.05 -93.19 2603.58
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Table E.1: Mean, min and max values for aggregated bored feature vectors

Feature Keys Bored
Mean Min Max

second key down third key down time s, o 164.12 40.11 2063.88
second key dwell time s 117.05 39.55 213.21
second key up third key down time s, o 47.07 -122.71 2024.32
third key dwell time o 97.82 47.00 159.35
trigraph duration n, s, o 498.03 219.00 2944.21
first key down second key down time s, o 164.12 40.11 2063.88
first key dwell time s 117.05 39.55 213.21
first key up second key down time s, o 47.07 -122.71 2024.32
second key down third key down time o, l 186.98 96.14 297.00
second key dwell time o 97.82 47.00 159.35
second key up third key down time o, l 89.15 15.92 219.00
third key dwell time l 107.80 32.00 200.81
trigraph duration s, o, l 458.89 266.00 2360.95
first key down second key down time o, l 186.98 96.14 297.00
first key dwell time o 97.82 47.00 159.35
first key up second key down time o, l 89.15 15.92 219.00
second key down third key down time l, e 134.46 63.00 399.90
second key dwell time l 107.80 32.00 200.81
second key up third key down time l, e 26.67 -58.62 311.91
third key dwell time e 110.46 47.99 212.75
trigraph duration o, l, e 431.90 303.94 672.00
first key down second key down time l, e 134.46 63.00 399.90
first key dwell time l 107.80 32.00 200.81
first key up second key down time l, e 26.67 -58.62 311.91
second key down third key down time e, . 224.18 62.00 1184.49
second key dwell time e 110.46 47.99 212.75
second key up third key down time e, . 113.72 -90.10 1068.36
third key dwell time . 107.84 47.00 164.72
trigraph duration l, e, . 466.49 219.00 1351.25
first key down second key down time e, . 224.18 62.00 1184.49
first key dwell time e 110.46 47.99 212.75
first key up second key down time e, . 113.72 -90.10 1068.36
second key down third key down time ., l 309.40 140.00 882.25
second key dwell time . 107.84 47.00 164.72
second key up third key down time ., l 201.56 40.23 792.00
third key dwell time l 81.49 31.70 168.58
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Table E.1: Mean, min and max values for aggregated bored feature vectors

Feature Keys Bored
Mean Min Max

trigraph duration e, ., l 615.07 265.00 1444.04
first key down second key down time ., l 309.40 140.00 882.25
first key dwell time . 107.84 47.00 164.72
first key up second key down time ., l 201.56 40.23 792.00
second key down third key down time l, o 194.89 86.90 728.02
second key dwell time l 81.49 31.70 168.58
second key up third key down time l, o 113.40 -23.71 696.02
third key dwell time o 107.01 55.98 181.26
trigraph duration ., l, o 611.29 343.00 1319.96
first key down second key down time l, o 194.89 86.90 728.02
first key dwell time l 81.49 31.70 168.58
first key up second key down time l, o 113.40 -23.71 696.02
second key down third key down time o, g 168.31 58.60 1094.01
second key dwell time o 107.01 55.98 181.26
second key up third key down time o, g 61.30 -95.94 1025.67
third key dwell time g 99.32 47.00 170.53
trigraph duration l, o, g 462.51 287.97 1402.40
first key down second key down time o, g 168.31 58.60 1094.01
first key dwell time o 107.01 55.98 181.26
first key up second key down time o, g 61.30 -95.94 1025.67
second key down third key down time g, Shift 315.11 68.04 1000.09
second key dwell time g 99.32 47.00 170.53
second key up third key down time g, Shift 215.79 -27.93 903.89
third key dwell time Shift 657.00 172.00 5631.10
trigraph duration o, g, Shift 1140.41 406.00 6130.87
first key down second key down time g, Shift 315.11 68.04 1000.09
first key dwell time g 99.32 47.00 170.53
first key up second key down time g, Shift 215.79 -27.93 903.89
second key down third key down time Shift, ( 167.62 32.06 751.98
second key dwell time Shift 657.00 172.00 5631.10
second key up third key down time Shift, ( -489.38 -5350.87 -69.07
third key dwell time ( 117.51 48.00 197.16
trigraph duration g, Shift, ( 600.24 234.00 1176.04
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Table E.2: Mean, min and max values for aggregated concentrated feature vectors

Feature Keys Concentrated
Mean Min Max

number of misses 7.51 0.00 88.00
avg dwell 128.48 71.92 341.48
avg flight 69.45 -199.13 797.61
avg keystrokes 355.75 65.13 665.53
first key down second key down time c, o 141.27 15.93 1610.85
first key dwell time c 102.61 13.71 226.94
first key up second key down time c, o 38.66 -117.16 1477.91
second key dwell time c, o 121.58 39.88 364.76
digraph duration c, o 262.85 87.86 1823.86
first key down second key down time o, n 143.37 19.12 2719.34
first key dwell time o 121.58 39.88 364.76
first key up second key down time o, n 21.79 -175.01 2628.34
second key dwell time o, n 104.47 48.02 208.67
digraph duration o, n 247.83 112.01 2815.64
first key down second key down time n, s 190.37 23.91 3006.76
first key dwell time n 104.47 48.02 208.67
first key up second key down time n, s 85.90 -130.88 2905.28
second key dwell time n, s 106.74 46.33 202.43
digraph duration n, s 297.12 119.72 3114.60
first key down second key down time s, o 124.64 31.89 1707.31
first key dwell time s 106.74 46.33 202.43
first key up second key down time s, o 17.89 -106.42 1559.20
second key dwell time s, o 90.24 32.70 163.89
digraph duration s, o 214.87 74.34 1805.53
first key down second key down time o, l 209.70 103.91 1928.64
first key dwell time o 90.24 32.70 163.89
first key up second key down time o, l 119.46 7.92 1821.80
second key dwell time o, l 96.94 40.00 176.03
digraph duration o, l 306.63 184.09 2026.35
first key down second key down time l, e 170.02 32.05 1928.21
first key dwell time l 96.94 40.00 176.03
first key up second key down time l, e 73.09 -72.06 1774.73
second key dwell time l, e 97.31 39.30 207.90
digraph duration l, e 267.33 104.10 2104.38
first key down second key down time e, . 365.52 47.98 9712.00
first key dwell time e 97.31 39.30 207.90
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Table E.2: Mean, min and max values for aggregated concentrated feature vectors

Feature Keys Concentrated
Mean Min Max

first key up second key down time e, . 268.21 -90.32 9608.05
second key dwell time e, . 91.88 31.00 173.06
digraph duration e, . 457.40 127.94 9807.96
first key down second key down time ., l 289.12 125.00 2453.36
first key dwell time . 91.88 31.00 173.06
first key up second key down time ., l 197.24 44.23 2320.76
second key dwell time ., l 84.22 10.31 193.77
digraph duration ., l 373.34 188.00 2518.72
first key down second key down time l, o 181.51 64.13 840.02
first key dwell time l 84.22 10.31 193.77
first key up second key down time l, o 97.30 -65.48 803.74
second key dwell time l, o 94.53 24.01 181.20
digraph duration l, o 276.04 128.13 912.00
first key down second key down time o, g 126.38 23.74 1176.03
first key dwell time o 94.53 24.01 181.20
first key up second key down time o, g 31.85 -102.54 1072.03
second key dwell time o, g 93.82 28.82 179.30
digraph duration o, g 220.20 113.08 1263.89
first key down second key down time g, Shift 369.71 85.33 8479.75
first key dwell time g 93.82 28.82 179.30
first key up second key down time g, Shift 275.89 -42.59 8359.74
second key dwell time g, Shift 482.18 149.99 2898.16
digraph duration g, Shift 851.89 250.00 8679.85
first key down second key down time Shift, ( 157.74 0.00 1015.00
first key dwell time Shift 482.18 149.99 2898.16
first key up second key down time Shift, ( -324.44 -2771.33 -37.80
second key dwell time Shift, ( 103.78 44.10 216.01
digraph duration Shift, ( 261.52 63.83 1078.00
first key down second key down time c, o 141.27 15.93 1610.85
first key dwell time c 102.61 13.71 226.94
first key up second key down time c, o 38.66 -117.16 1477.91
second key down third key down time o, n 143.37 19.12 2719.34
second key dwell time o 121.58 39.88 364.76
second key up third key down time o, n 21.79 -175.01 2628.34
third key dwell time n 104.47 48.02 208.67
trigraph duration c, o, n 389.11 196.56 2931.40
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Table E.2: Mean, min and max values for aggregated concentrated feature vectors

Feature Keys Concentrated
Mean Min Max

first key down second key down time o, n 143.37 19.12 2719.34
first key dwell time o 121.58 39.88 364.76
first key up second key down time o, n 21.79 -175.01 2628.34
second key down third key down time n, s 190.37 23.91 3006.76
second key dwell time n 104.47 48.02 208.67
second key up third key down time n, s 85.90 -130.88 2905.28
third key dwell time s 106.74 46.33 202.43
trigraph duration o, n, s 440.48 183.80 3332.88
first key down second key down time n, s 190.37 23.91 3006.76
first key dwell time n 104.47 48.02 208.67
first key up second key down time n, s 85.90 -130.88 2905.28
second key down third key down time s, o 124.64 31.89 1707.31
second key dwell time s 106.74 46.33 202.43
second key up third key down time s, o 17.89 -106.42 1559.20
third key dwell time o 90.24 32.70 163.89
trigraph duration n, s, o 405.25 177.32 4035.71
first key down second key down time s, o 124.64 31.89 1707.31
first key dwell time s 106.74 46.33 202.43
first key up second key down time s, o 17.89 -106.42 1559.20
second key down third key down time o, l 209.70 103.91 1928.64
second key dwell time o 90.24 32.70 163.89
second key up third key down time o, l 119.46 7.92 1821.80
third key dwell time l 96.94 40.00 176.03
trigraph duration s, o, l 431.27 239.81 2094.71
first key down second key down time o, l 209.70 103.91 1928.64
first key dwell time o 90.24 32.70 163.89
first key up second key down time o, l 119.46 7.92 1821.80
second key down third key down time l, e 170.02 32.05 1928.21
second key dwell time l 96.94 40.00 176.03
second key up third key down time l, e 73.09 -72.06 1774.73
third key dwell time e 97.31 39.30 207.90
trigraph duration o, l, e 477.03 272.01 2296.29
first key down second key down time l, e 170.02 32.05 1928.21
first key dwell time l 96.94 40.00 176.03
first key up second key down time l, e 73.09 -72.06 1774.73
second key down third key down time e, . 365.52 47.98 9712.00
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Table E.2: Mean, min and max values for aggregated concentrated feature vectors

Feature Keys Concentrated
Mean Min Max

second key dwell time e 97.31 39.30 207.90
second key up third key down time e, . 268.21 -90.32 9608.05
third key dwell time . 91.88 31.00 173.06
trigraph duration l, e, . 627.42 218.00 9919.85
first key down second key down time e, . 365.52 47.98 9712.00
first key dwell time e 97.31 39.30 207.90
first key up second key down time e, . 268.21 -90.32 9608.05
second key down third key down time ., l 289.12 125.00 2453.36
second key dwell time . 91.88 31.00 173.06
second key up third key down time ., l 197.24 44.23 2320.76
third key dwell time l 84.22 10.31 193.77
trigraph duration e, ., l 738.86 272.36 10039.93
first key down second key down time ., l 289.12 125.00 2453.36
first key dwell time . 91.88 31.00 173.06
first key up second key down time ., l 197.24 44.23 2320.76
second key down third key down time l, o 181.51 64.13 840.02
second key dwell time l 84.22 10.31 193.77
second key up third key down time l, o 97.30 -65.48 803.74
third key dwell time o 94.53 24.01 181.20
trigraph duration ., l, o 565.17 285.67 2758.57
first key down second key down time l, o 181.51 64.13 840.02
first key dwell time l 84.22 10.31 193.77
first key up second key down time l, o 97.30 -65.48 803.74
second key down third key down time o, g 126.38 23.74 1176.03
second key dwell time o 94.53 24.01 181.20
second key up third key down time o, g 31.85 -102.54 1072.03
third key dwell time g 93.82 28.82 179.30
trigraph duration l, o, g 401.71 232.62 1391.84
first key down second key down time o, g 126.38 23.74 1176.03
first key dwell time o 94.53 24.01 181.20
first key up second key down time o, g 31.85 -102.54 1072.03
second key down third key down time g, Shift 369.71 85.33 8479.75
second key dwell time g 93.82 28.82 179.30
second key up third key down time g, Shift 275.89 -42.59 8359.74
third key dwell time Shift 482.18 149.99 2898.16
trigraph duration o, g, Shift 978.27 306.98 8759.84
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Table E.2: Mean, min and max values for aggregated concentrated feature vectors

Feature Keys Concentrated
Mean Min Max

first key down second key down time g, Shift 369.71 85.33 8479.75
first key dwell time g 93.82 28.82 179.30
first key up second key down time g, Shift 275.89 -42.59 8359.74
second key down third key down time Shift, ( 157.74 0.00 1015.00
second key dwell time Shift 482.18 149.99 2898.16
second key up third key down time Shift, ( -324.44 -2771.33 -37.80
third key dwell time ( 103.78 44.10 216.01
trigraph duration g, Shift, ( 631.24 234.00 8655.84

Table E.3: Mean, min and max values for aggregated confused feature vectors

Feature Keys Confused
Mean Min Max

number of misses 9.48 0.00 105.00
avg dwell 124.08 77.08 222.58
avg flight 262.06 -17.86 4806.74
avg keystrokes 357.64 12.20 557.11
first key down second key down time c, o 121.15 5.04 484.00
first key dwell time c 102.19 63.00 145.82
first key up second key down time c, o 18.97 -122.65 375.00
second key dwell time c, o 114.78 47.00 203.00
digraph duration c, o 235.94 112.00 687.00
first key down second key down time o, n 134.37 47.99 877.75
first key dwell time o 114.78 47.00 203.00
first key up second key down time o, n 19.58 -79.99 785.29
second key dwell time o, n 107.31 47.00 171.00
digraph duration o, n 241.68 148.02 952.26
first key down second key down time n, s 164.99 31.75 1156.00
first key dwell time n 107.31 47.00 171.00
first key up second key down time n, s 57.68 -71.86 985.00
second key dwell time n, s 97.28 70.62 143.88
digraph duration n, s 262.27 119.78 1265.00
first key down second key down time s, o 112.02 44.13 204.00
first key dwell time s 97.28 70.62 143.88
first key up second key down time s, o 14.74 -86.05 94.00
second key dwell time s, o 84.03 55.99 143.89
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Table E.3: Mean, min and max values for aggregated confused feature vectors

Feature Keys Confused
Mean Min Max

digraph duration s, o 196.06 131.08 344.00
first key down second key down time o, l 178.83 79.99 272.21
first key dwell time o 84.03 55.99 143.89
first key up second key down time o, l 94.80 16.08 184.10
second key dwell time o, l 96.81 41.18 144.01
digraph duration o, l 275.64 199.97 407.96
first key down second key down time l, e 282.75 80.02 3576.61
first key dwell time l 96.81 41.18 144.01
first key up second key down time l, e 185.94 -40.07 3470.02
second key dwell time l, e 94.92 64.03 197.20
digraph duration l, e 377.66 160.01 3773.81
first key down second key down time e, . 374.11 78.00 2471.95
first key dwell time e 94.92 64.03 197.20
first key up second key down time e, . 279.19 -8.02 2384.00
second key dwell time e, . 91.03 61.37 154.56
digraph duration e, . 465.14 141.00 2543.95
first key down second key down time ., l 249.13 156.00 807.83
first key dwell time . 91.03 61.37 154.56
first key up second key down time ., l 158.09 70.25 727.99
second key dwell time ., l 81.69 40.06 150.99
digraph duration ., l 330.81 219.00 847.89
first key down second key down time l, o 171.96 105.50 235.00
first key dwell time l 81.69 40.06 150.99
first key up second key down time l, o 90.27 -45.49 151.96
second key dwell time l, o 90.88 64.06 164.93
digraph duration l, o 262.84 173.26 385.12
first key down second key down time o, g 105.46 64.01 187.83
first key dwell time o 90.88 64.06 164.93
first key up second key down time o, g 14.58 -69.23 105.32
second key dwell time o, g 90.38 56.11 191.85
digraph duration o, g 195.84 127.99 287.55
first key down second key down time g, Shift 2833.62 80.15 62399.42
first key dwell time g 90.38 56.11 191.85
first key up second key down time g, Shift 2743.25 15.95 62319.50
second key dwell time g, Shift 467.78 191.73 1188.00
digraph duration g, Shift 3301.40 271.88 62831.62
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Table E.3: Mean, min and max values for aggregated confused feature vectors

Feature Keys Confused
Mean Min Max

first key down second key down time Shift, ( 197.54 23.79 543.74
first key dwell time Shift 467.78 191.73 1188.00
first key up second key down time Shift, ( -270.24 -797.00 -55.68
second key dwell time Shift, ( 93.94 40.02 192.01
digraph duration Shift, ( 291.48 119.77 703.91
first key down second key down time c, o 121.15 5.04 484.00
first key dwell time c 102.19 63.00 145.82
first key up second key down time c, o 18.97 -122.65 375.00
second key down third key down time o, n 134.37 47.99 877.75
second key dwell time o 114.78 47.00 203.00
second key up third key down time o, n 19.58 -79.99 785.29
third key dwell time n 107.31 47.00 171.00
trigraph duration c, o, n 362.83 240.00 1079.22
first key down second key down time o, n 134.37 47.99 877.75
first key dwell time o 114.78 47.00 203.00
first key up second key down time o, n 19.58 -79.99 785.29
second key down third key down time n, s 164.99 31.75 1156.00
second key dwell time n 107.31 47.00 171.00
second key up third key down time n, s 57.68 -71.86 985.00
third key dwell time s 97.28 70.62 143.88
trigraph duration o, n, s 396.64 224.20 1406.00
first key down second key down time n, s 164.99 31.75 1156.00
first key dwell time n 107.31 47.00 171.00
first key up second key down time n, s 57.68 -71.86 985.00
second key down third key down time s, o 112.02 44.13 204.00
second key dwell time s 97.28 70.62 143.88
second key up third key down time s, o 14.74 -86.05 94.00
third key dwell time o 84.03 55.99 143.89
trigraph duration n, s, o 361.04 234.00 1390.00
first key down second key down time s, o 112.02 44.13 204.00
first key dwell time s 97.28 70.62 143.88
first key up second key down time s, o 14.74 -86.05 94.00
second key down third key down time o, l 178.83 79.99 272.21
second key dwell time o 84.03 55.99 143.89
second key up third key down time o, l 94.80 16.08 184.10
third key dwell time l 96.81 41.18 144.01
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Table E.3: Mean, min and max values for aggregated confused feature vectors

Feature Keys Confused
Mean Min Max

trigraph duration s, o, l 387.66 300.54 567.83
first key down second key down time o, l 178.83 79.99 272.21
first key dwell time o 84.03 55.99 143.89
first key up second key down time o, l 94.80 16.08 184.10
second key down third key down time l, e 282.75 80.02 3576.61
second key dwell time l 96.81 41.18 144.01
second key up third key down time l, e 185.94 -40.07 3470.02
third key dwell time e 94.92 64.03 197.20
trigraph duration o, l, e 556.50 255.99 4020.02
first key down second key down time l, e 282.75 80.02 3576.61
first key dwell time l 96.81 41.18 144.01
first key up second key down time l, e 185.94 -40.07 3470.02
second key down third key down time e, . 374.11 78.00 2471.95
second key dwell time e 94.92 64.03 197.20
second key up third key down time e, . 279.19 -8.02 2384.00
third key dwell time . 91.03 61.37 154.56
trigraph duration l, e, . 747.89 250.00 4170.29
first key down second key down time e, . 374.11 78.00 2471.95
first key dwell time e 94.92 64.03 197.20
first key up second key down time e, . 279.19 -8.02 2384.00
second key down third key down time ., l 249.13 156.00 807.83
second key dwell time . 91.03 61.37 154.56
second key up third key down time ., l 158.09 70.25 727.99
third key dwell time l 81.69 40.06 150.99
trigraph duration e, ., l 704.92 297.00 2776.01
first key down second key down time ., l 249.13 156.00 807.83
first key dwell time . 91.03 61.37 154.56
first key up second key down time ., l 158.09 70.25 727.99
second key down third key down time l, o 171.96 105.50 235.00
second key dwell time l 81.69 40.06 150.99
second key up third key down time l, o 90.27 -45.49 151.96
third key dwell time o 90.88 64.06 164.93
trigraph duration ., l, o 511.97 391.00 1111.98
first key down second key down time l, o 171.96 105.50 235.00
first key dwell time l 81.69 40.06 150.99
first key up second key down time l, o 90.27 -45.49 151.96
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Table E.3: Mean, min and max values for aggregated confused feature vectors

Feature Keys Confused
Mean Min Max

second key down third key down time o, g 105.46 64.01 187.83
second key dwell time o 90.88 64.06 164.93
second key up third key down time o, g 14.58 -69.23 105.32
third key dwell time g 90.38 56.11 191.85
trigraph duration l, o, g 367.80 244.57 507.73
first key down second key down time o, g 105.46 64.01 187.83
first key dwell time o 90.88 64.06 164.93
first key up second key down time o, g 14.58 -69.23 105.32
second key down third key down time g, Shift 2833.62 80.15 62399.42
second key dwell time g 90.38 56.11 191.85
second key up third key down time g, Shift 2743.25 15.95 62319.50
third key dwell time Shift 467.78 191.73 1188.00
trigraph duration o, g, Shift 3406.87 383.66 62935.71
first key down second key down time g, Shift 2833.62 80.15 62399.42
first key dwell time g 90.38 56.11 191.85
first key up second key down time g, Shift 2743.25 15.95 62319.50
second key down third key down time Shift, ( 197.54 23.79 543.74
second key dwell time Shift 467.78 191.73 1188.00
second key up third key down time Shift, ( -270.24 -797.00 -55.68
third key dwell time ( 93.94 40.02 192.01
trigraph duration g, Shift, ( 3125.11 263.92 62711.18

Table E.4: Mean, min and max values for aggregated delighted feature vectors

Feature Keys Delighted
Mean Min Max

number of misses 3.20 0.00 29.00
avg dwell 119.63 72.62 339.08
avg flight 40.56 -155.40 315.40
avg keystrokes 410.56 130.44 548.52
first key down second key down time c, o 108.75 24.01 783.85
first key dwell time c 97.72 48.18 175.89
first key up second key down time c, o 11.04 -85.33 639.87
second key dwell time c, o 118.16 31.00 227.90
digraph duration c, o 226.91 88.00 919.85
first key down second key down time o, n 110.61 31.82 529.50
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Table E.4: Mean, min and max values for aggregated delighted feature vectors

Feature Keys Delighted
Mean Min Max

first key dwell time o 118.16 31.00 227.90
first key up second key down time o, n -7.55 -143.10 438.52
second key dwell time o, n 104.96 47.00 169.73
digraph duration o, n 215.57 120.00 611.33
first key down second key down time n, s 113.80 15.98 326.54
first key dwell time n 104.96 47.00 169.73
first key up second key down time n, s 8.84 -63.99 244.54
second key dwell time n, s 94.84 45.26 180.26
digraph duration n, s 208.64 111.98 405.55
first key down second key down time s, o 118.67 32.16 935.98
first key dwell time s 94.84 45.26 180.26
first key up second key down time s, o 23.84 -106.55 839.99
second key dwell time s, o 84.25 46.00 127.89
digraph duration s, o 202.92 122.62 1023.97
first key down second key down time o, l 193.62 95.99 1274.48
first key dwell time o 84.25 46.00 127.89
first key up second key down time o, l 109.37 8.01 1167.94
second key dwell time o, l 92.12 31.95 183.98
digraph duration o, l 285.74 203.00 1365.44
first key down second key down time l, e 152.84 56.08 2272.10
first key dwell time l 92.12 31.95 183.98
first key up second key down time l, e 60.72 -80.02 2160.00
second key dwell time l, e 87.24 48.01 174.84
digraph duration l, e 240.08 144.04 2344.07
first key down second key down time e, . 216.18 63.00 1626.79
first key dwell time e 87.24 48.01 174.84
first key up second key down time e, . 128.94 -68.42 1548.05
second key dwell time e, . 82.44 31.00 157.95
digraph duration e, . 298.62 109.00 1706.35
first key down second key down time ., l 238.53 140.00 981.98
first key dwell time . 82.44 31.00 157.95
first key up second key down time ., l 156.09 46.34 865.48
second key dwell time ., l 70.67 31.81 152.00
digraph duration ., l 309.20 187.00 1040.20
first key down second key down time l, o 186.06 87.03 1040.00
first key dwell time l 70.67 31.81 152.00
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Table E.4: Mean, min and max values for aggregated delighted feature vectors

Feature Keys Delighted
Mean Min Max

first key up second key down time l, o 115.39 -62.97 960.15
second key dwell time l, o 84.70 32.05 165.42
digraph duration l, o 270.76 170.89 1127.85
first key down second key down time o, g 137.66 31.65 1232.02
first key dwell time o 84.70 32.05 165.42
first key up second key down time o, g 52.96 -79.87 1151.89
second key dwell time o, g 81.60 46.00 135.98
digraph duration o, g 219.26 136.00 1352.04
first key down second key down time g, Shift 216.04 88.10 1456.00
first key dwell time g 81.60 46.00 135.98
first key up second key down time g, Shift 134.45 0.85 1376.00
second key dwell time g, Shift 461.29 136.68 2702.68
digraph duration g, Shift 677.33 250.00 2948.62
first key down second key down time Shift, ( 194.47 26.52 2359.94
first key dwell time Shift 461.29 136.68 2702.68
first key up second key down time Shift, ( -266.82 -2676.16 -40.16
second key dwell time Shift, ( 95.26 31.00 192.09
digraph duration Shift, ( 289.73 94.00 2511.97
first key down second key down time c, o 108.75 24.01 783.85
first key dwell time c 97.72 48.18 175.89
first key up second key down time c, o 11.04 -85.33 639.87
second key down third key down time o, n 110.61 31.82 529.50
second key dwell time o 118.16 31.00 227.90
second key up third key down time o, n -7.55 -143.10 438.52
third key dwell time n 104.96 47.00 169.73
trigraph duration c, o, n 324.32 224.00 1167.91
first key down second key down time o, n 110.61 31.82 529.50
first key dwell time o 118.16 31.00 227.90
first key up second key down time o, n -7.55 -143.10 438.52
second key down third key down time n, s 113.80 15.98 326.54
second key dwell time n 104.96 47.00 169.73
second key up third key down time n, s 8.84 -63.99 244.54
third key dwell time s 94.84 45.26 180.26
trigraph duration o, n, s 319.25 192.00 935.05
first key down second key down time n, s 113.80 15.98 326.54
first key dwell time n 104.96 47.00 169.73
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Table E.4: Mean, min and max values for aggregated delighted feature vectors

Feature Keys Delighted
Mean Min Max

first key up second key down time n, s 8.84 -63.99 244.54
second key down third key down time s, o 118.67 32.16 935.98
second key dwell time s 94.84 45.26 180.26
second key up third key down time s, o 23.84 -106.55 839.99
third key dwell time o 84.25 46.00 127.89
trigraph duration n, s, o 316.73 234.00 1047.98
first key down second key down time s, o 118.67 32.16 935.98
first key dwell time s 94.84 45.26 180.26
first key up second key down time s, o 23.84 -106.55 839.99
second key down third key down time o, l 193.62 95.99 1274.48
second key dwell time o 84.25 46.00 127.89
second key up third key down time o, l 109.37 8.01 1167.94
third key dwell time l 92.12 31.95 183.98
trigraph duration s, o, l 404.41 281.00 1509.25
first key down second key down time o, l 193.62 95.99 1274.48
first key dwell time o 84.25 46.00 127.89
first key up second key down time o, l 109.37 8.01 1167.94
second key down third key down time l, e 152.84 56.08 2272.10
second key dwell time l 92.12 31.95 183.98
second key up third key down time l, e 60.72 -80.02 2160.00
third key dwell time e 87.24 48.01 174.84
trigraph duration o, l, e 433.70 272.01 2503.98
first key down second key down time l, e 152.84 56.08 2272.10
first key dwell time l 92.12 31.95 183.98
first key up second key down time l, e 60.72 -80.02 2160.00
second key down third key down time e, . 216.18 63.00 1626.79
second key dwell time e 87.24 48.01 174.84
second key up third key down time e, . 128.94 -68.42 1548.05
third key dwell time . 82.44 31.00 157.95
trigraph duration l, e, . 451.46 219.00 2488.09
first key down second key down time e, . 216.18 63.00 1626.79
first key dwell time e 87.24 48.01 174.84
first key up second key down time e, . 128.94 -68.42 1548.05
second key down third key down time ., l 238.53 140.00 981.98
second key dwell time . 82.44 31.00 157.95
second key up third key down time ., l 156.09 46.34 865.48
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Table E.4: Mean, min and max values for aggregated delighted feature vectors

Feature Keys Delighted
Mean Min Max

third key dwell time l 70.67 31.81 152.00
trigraph duration e, ., l 525.37 265.00 1960.85
first key down second key down time ., l 238.53 140.00 981.98
first key dwell time . 82.44 31.00 157.95
first key up second key down time ., l 156.09 46.34 865.48
second key down third key down time l, o 186.06 87.03 1040.00
second key dwell time l 70.67 31.81 152.00
second key up third key down time l, o 115.39 -62.97 960.15
third key dwell time o 84.70 32.05 165.42
trigraph duration ., l, o 509.29 343.00 1416.04
first key down second key down time l, o 186.06 87.03 1040.00
first key dwell time l 70.67 31.81 152.00
first key up second key down time l, o 115.39 -62.97 960.15
second key down third key down time o, g 137.66 31.65 1232.02
second key dwell time o 84.70 32.05 165.42
second key up third key down time o, g 52.96 -79.87 1151.89
third key dwell time g 81.60 46.00 135.98
trigraph duration l, o, g 405.32 289.07 1511.93
first key down second key down time o, g 137.66 31.65 1232.02
first key dwell time o 84.70 32.05 165.42
first key up second key down time o, g 52.96 -79.87 1151.89
second key down third key down time g, Shift 216.04 88.10 1456.00
second key dwell time g 81.60 46.00 135.98
second key up third key down time g, Shift 134.45 0.85 1376.00
third key dwell time Shift 461.29 136.68 2702.68
trigraph duration o, g, Shift 814.99 344.00 3039.23
first key down second key down time g, Shift 216.04 88.10 1456.00
first key dwell time g 81.60 46.00 135.98
first key up second key down time g, Shift 134.45 0.85 1376.00
second key down third key down time Shift, ( 194.47 26.52 2359.94
second key dwell time Shift 461.29 136.68 2702.68
second key up third key down time Shift, ( -266.82 -2676.16 -40.16
third key dwell time ( 95.26 31.00 192.09
trigraph duration g, Shift, ( 505.77 219.00 2784.23
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Table E.5: Mean, min and max values for aggregated frustrated feature vectors

Feature Keys Frustrated
Mean Min Max

number of misses 16.79 0.00 81.00
avg dwell 129.24 75.77 269.54
avg flight 44.84 -108.31 609.46
avg keystrokes 377.42 78.25 573.53
first key down second key down time c, o 117.34 21.25 906.79
first key dwell time c 110.39 63.00 190.07
first key up second key down time c, o 6.95 -122.59 832.35
second key dwell time c, o 130.44 31.00 248.87
digraph duration c, o 247.78 119.96 998.68
first key down second key down time o, n 117.56 46.00 528.17
first key dwell time o 130.44 31.00 248.87
first key up second key down time o, n -12.88 -137.96 448.00
second key dwell time o, n 110.11 40.20 175.72
digraph duration o, n 227.67 152.03 632.15
first key down second key down time n, s 128.49 40.20 880.01
first key dwell time n 110.11 40.20 175.72
first key up second key down time n, s 18.38 -69.09 784.01
second key dwell time n, s 109.40 47.85 207.78
digraph duration n, s 237.89 112.10 960.00
first key down second key down time s, o 143.65 43.08 1295.99
first key dwell time s 109.40 47.85 207.78
first key up second key down time s, o 34.25 -149.29 1208.17
second key dwell time s, o 94.04 23.67 144.00
digraph duration s, o 237.69 125.00 1367.93
first key down second key down time o, l 197.84 134.90 567.97
first key dwell time o 94.04 23.67 144.00
first key up second key down time o, l 103.80 16.00 432.28
second key dwell time o, l 93.53 39.67 151.99
digraph duration o, l 291.37 191.68 639.70
first key down second key down time l, e 143.00 74.48 639.90
first key dwell time l 93.53 39.67 151.99
first key up second key down time l, e 49.47 -56.33 600.23
second key dwell time l, e 100.73 31.33 175.77
digraph duration l, e 243.73 143.90 711.67
first key down second key down time e, . 193.32 55.97 1096.00
first key dwell time e 100.73 31.33 175.77
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Table E.5: Mean, min and max values for aggregated frustrated feature vectors

Feature Keys Frustrated
Mean Min Max

first key up second key down time e, . 92.59 -67.76 1008.03
second key dwell time e, . 100.15 31.79 181.19
digraph duration e, . 293.47 141.00 1168.00
first key down second key down time ., l 255.58 140.00 1199.95
first key dwell time . 100.15 31.79 181.19
first key up second key down time ., l 155.42 50.02 1120.00
second key dwell time ., l 75.02 47.00 154.59
digraph duration ., l 330.60 203.00 1272.03
first key down second key down time l, o 194.36 124.80 1063.98
first key dwell time l 75.02 47.00 154.59
first key up second key down time l, o 119.34 31.19 1000.02
second key dwell time l, o 96.75 55.82 175.79
digraph duration l, o 291.11 208.07 1143.80
first key down second key down time o, g 105.69 39.96 208.14
first key dwell time o 96.75 55.82 175.79
first key up second key down time o, g 8.94 -90.48 136.12
second key dwell time o, g 95.46 31.00 172.34
digraph duration o, g 201.15 112.07 334.77
first key down second key down time g, Shift 395.47 80.07 7609.00
first key dwell time g 95.46 31.00 172.34
first key up second key down time g, Shift 300.01 -15.80 7578.00
second key dwell time g, Shift 455.30 143.99 2320.07
digraph duration g, Shift 850.77 240.48 8359.00
first key down second key down time Shift, ( 161.96 26.63 599.99
first key dwell time Shift 455.30 143.99 2320.07
first key up second key down time Shift, ( -293.34 -2224.00 -32.60
second key dwell time Shift, ( 108.75 48.00 191.80
digraph duration Shift, ( 270.71 110.00 712.00
first key down second key down time c, o 117.34 21.25 906.79
first key dwell time c 110.39 63.00 190.07
first key up second key down time c, o 6.95 -122.59 832.35
second key down third key down time o, n 117.56 46.00 528.17
second key dwell time o 130.44 31.00 248.87
second key up third key down time o, n -12.88 -137.96 448.00
third key dwell time n 110.11 40.20 175.72
trigraph duration c, o, n 345.00 231.10 1166.22
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Table E.5: Mean, min and max values for aggregated frustrated feature vectors

Feature Keys Frustrated
Mean Min Max

first key down second key down time o, n 117.56 46.00 528.17
first key dwell time o 130.44 31.00 248.87
first key up second key down time o, n -12.88 -137.96 448.00
second key down third key down time n, s 128.49 40.20 880.01
second key dwell time n 110.11 40.20 175.72
second key up third key down time n, s 18.38 -69.09 784.01
third key dwell time s 109.40 47.85 207.78
trigraph duration o, n, s 355.45 205.48 1111.98
first key down second key down time n, s 128.49 40.20 880.01
first key dwell time n 110.11 40.20 175.72
first key up second key down time n, s 18.38 -69.09 784.01
second key down third key down time s, o 143.65 43.08 1295.99
second key dwell time s 109.40 47.85 207.78
second key up third key down time s, o 34.25 -149.29 1208.17
third key dwell time o 94.04 23.67 144.00
trigraph duration n, s, o 366.18 209.36 1439.88
first key down second key down time s, o 143.65 43.08 1295.99
first key dwell time s 109.40 47.85 207.78
first key up second key down time s, o 34.25 -149.29 1208.17
second key down third key down time o, l 197.84 134.90 567.97
second key dwell time o 94.04 23.67 144.00
second key up third key down time o, l 103.80 16.00 432.28
third key dwell time l 93.53 39.67 151.99
trigraph duration s, o, l 435.02 279.87 1576.11
first key down second key down time o, l 197.84 134.90 567.97
first key dwell time o 94.04 23.67 144.00
first key up second key down time o, l 103.80 16.00 432.28
second key down third key down time l, e 143.00 74.48 639.90
second key dwell time l 93.53 39.67 151.99
second key up third key down time l, e 49.47 -56.33 600.23
third key dwell time e 100.73 31.33 175.77
trigraph duration o, l, e 441.57 296.67 863.68
first key down second key down time l, e 143.00 74.48 639.90
first key dwell time l 93.53 39.67 151.99
first key up second key down time l, e 49.47 -56.33 600.23
second key down third key down time e, . 193.32 55.97 1096.00
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Table E.5: Mean, min and max values for aggregated frustrated feature vectors

Feature Keys Frustrated
Mean Min Max

second key dwell time e 100.73 31.33 175.77
second key up third key down time e, . 92.59 -67.76 1008.03
third key dwell time . 100.15 31.79 181.19
trigraph duration l, e, . 436.47 234.00 1296.03
first key down second key down time e, . 193.32 55.97 1096.00
first key dwell time e 100.73 31.33 175.77
first key up second key down time e, . 92.59 -67.76 1008.03
second key down third key down time ., l 255.58 140.00 1199.95
second key dwell time . 100.15 31.79 181.19
second key up third key down time ., l 155.42 50.02 1120.00
third key dwell time l 75.02 47.00 154.59
trigraph duration e, ., l 523.91 288.02 1776.08
first key down second key down time ., l 255.58 140.00 1199.95
first key dwell time . 100.15 31.79 181.19
first key up second key down time ., l 155.42 50.02 1120.00
second key down third key down time l, o 194.36 124.80 1063.98
second key dwell time l 75.02 47.00 154.59
second key up third key down time l, o 119.34 31.19 1000.02
third key dwell time o 96.75 55.82 175.79
trigraph duration ., l, o 546.68 359.00 1439.94
first key down second key down time l, o 194.36 124.80 1063.98
first key dwell time l 75.02 47.00 154.59
first key up second key down time l, o 119.34 31.19 1000.02
second key down third key down time o, g 105.69 39.96 208.14
second key dwell time o 96.75 55.82 175.79
second key up third key down time o, g 8.94 -90.48 136.12
third key dwell time g 95.46 31.00 172.34
trigraph duration l, o, g 395.51 296.00 1248.11
first key down second key down time o, g 105.69 39.96 208.14
first key dwell time o 96.75 55.82 175.79
first key up second key down time o, g 8.94 -90.48 136.12
second key down third key down time g, Shift 395.47 80.07 7609.00
second key dwell time g 95.46 31.00 172.34
second key up third key down time g, Shift 300.01 -15.80 7578.00
third key dwell time Shift 455.30 143.99 2320.07
trigraph duration o, g, Shift 956.46 344.59 8516.00
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Table E.5: Mean, min and max values for aggregated frustrated feature vectors

Feature Keys Frustrated
Mean Min Max

first key down second key down time g, Shift 395.47 80.07 7609.00
first key dwell time g 95.46 31.00 172.34
first key up second key down time g, Shift 300.01 -15.80 7578.00
second key down third key down time Shift, ( 161.96 26.63 599.99
second key dwell time Shift 455.30 143.99 2320.07
second key up third key down time Shift, ( -293.34 -2224.00 -32.60
third key dwell time ( 108.75 48.00 191.80
trigraph duration g, Shift, ( 666.18 203.00 7968.00

Table E.6: Mean, min and max values for aggregated surprised feature vectors

Feature Keys Surprised
Mean Min Max

number of misses 6.57 0.00 15.00
avg dwell 129.67 75.69 211.27
avg flight 91.91 0.84 411.36
avg keystrokes 343.51 110.26 520.00
first key down second key down time c, o 86.36 26.72 225.23
first key dwell time c 116.89 78.00 202.30
first key up second key down time c, o -30.53 -121.59 113.36
second key dwell time c, o 106.15 62.00 174.88
digraph duration c, o 192.51 120.02 342.84
first key down second key down time o, n 620.05 96.02 3438.89
first key dwell time o 106.15 62.00 174.88
first key up second key down time o, n 513.90 -74.65 3321.28
second key dwell time o, n 90.90 29.67 159.75
digraph duration o, n 710.95 176.02 3547.40
first key down second key down time n, s 105.32 48.02 221.81
first key dwell time n 90.90 29.67 159.75
first key up second key down time n, s 14.43 -63.86 73.91
second key dwell time n, s 121.22 61.40 191.55
digraph duration n, s 226.54 143.99 413.36
first key down second key down time s, o 294.79 64.43 1387.11
first key dwell time s 121.22 61.40 191.55
first key up second key down time s, o 173.58 -85.33 1248.29
second key dwell time s, o 83.99 56.06 122.48
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Table E.6: Mean, min and max values for aggregated surprised feature vectors

Feature Keys Surprised
Mean Min Max

digraph duration s, o 378.78 122.79 1499.12
first key down second key down time o, l 164.43 80.02 242.05
first key dwell time o 83.99 56.06 122.48
first key up second key down time o, l 80.44 23.96 125.90
second key dwell time o, l 107.94 62.00 133.65
digraph duration o, l 272.37 199.98 364.54
first key down second key down time l, e 186.10 94.00 557.15
first key dwell time l 107.94 62.00 133.65
first key up second key down time l, e 78.15 -31.82 434.67
second key dwell time l, e 104.28 62.00 175.54
digraph duration l, e 290.38 156.00 732.70
first key down second key down time e, . 162.99 93.00 292.26
first key dwell time e 104.28 62.00 175.54
first key up second key down time e, . 58.71 5.34 159.05
second key dwell time e, . 92.86 47.00 138.42
digraph duration e, . 255.84 140.00 388.53
first key down second key down time ., l 205.36 185.78 253.02
first key dwell time . 92.86 47.00 138.42
first key up second key down time ., l 112.51 66.18 162.44
second key dwell time ., l 74.68 40.01 95.94
digraph duration ., l 280.04 247.91 332.81
first key down second key down time l, o 170.81 150.95 203.00
first key dwell time l 74.68 40.01 95.94
first key up second key down time l, o 96.13 55.02 141.00
second key dwell time l, o 100.83 48.09 154.57
digraph duration l, o 271.64 208.01 310.29
first key down second key down time o, g 148.85 74.69 224.08
first key dwell time o 100.83 48.09 154.57
first key up second key down time o, g 48.01 -79.89 175.98
second key dwell time o, g 101.56 71.13 165.12
digraph duration o, g 250.40 188.00 320.12
first key down second key down time g, Shift 420.35 125.00 632.02
first key dwell time g 101.56 71.13 165.12
first key up second key down time g, Shift 318.79 46.00 560.89
second key dwell time g, Shift 480.71 157.00 1017.15
digraph duration g, Shift 901.06 282.00 1539.21
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Table E.6: Mean, min and max values for aggregated surprised feature vectors

Feature Keys Surprised
Mean Min Max

first key down second key down time Shift, ( 211.47 23.91 555.26
first key dwell time Shift 480.71 157.00 1017.15
first key up second key down time Shift, ( -269.25 -692.42 -110.00
second key dwell time Shift, ( 103.66 55.58 154.42
digraph duration Shift, ( 315.12 110.00 610.83
first key down second key down time c, o 86.36 26.72 225.23
first key dwell time c 116.89 78.00 202.30
first key up second key down time c, o -30.53 -121.59 113.36
second key down third key down time o, n 620.05 96.02 3438.89
second key dwell time o 106.15 62.00 174.88
second key up third key down time o, n 513.90 -74.65 3321.28
third key dwell time n 90.90 29.67 159.75
trigraph duration c, o, n 797.31 224.01 3772.63
first key down second key down time o, n 620.05 96.02 3438.89
first key dwell time o 106.15 62.00 174.88
first key up second key down time o, n 513.90 -74.65 3321.28
second key down third key down time n, s 105.32 48.02 221.81
second key dwell time n 90.90 29.67 159.75
second key up third key down time n, s 14.43 -63.86 73.91
third key dwell time s 121.22 61.40 191.55
trigraph duration o, n, s 846.59 240.00 3679.42
first key down second key down time n, s 105.32 48.02 221.81
first key dwell time n 90.90 29.67 159.75
first key up second key down time n, s 14.43 -63.86 73.91
second key down third key down time s, o 294.79 64.43 1387.11
second key dwell time s 121.22 61.40 191.55
second key up third key down time s, o 173.58 -85.33 1248.29
third key dwell time o 83.99 56.06 122.48
trigraph duration n, s, o 484.10 240.08 1600.82
first key down second key down time s, o 294.79 64.43 1387.11
first key dwell time s 121.22 61.40 191.55
first key up second key down time s, o 173.58 -85.33 1248.29
second key down third key down time o, l 164.43 80.02 242.05
second key dwell time o 83.99 56.06 122.48
second key up third key down time o, l 80.44 23.96 125.90
third key dwell time l 107.94 62.00 133.65
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Table E.6: Mean, min and max values for aggregated surprised feature vectors

Feature Keys Surprised
Mean Min Max

trigraph duration s, o, l 567.16 320.01 1656.85
first key down second key down time o, l 164.43 80.02 242.05
first key dwell time o 83.99 56.06 122.48
first key up second key down time o, l 80.44 23.96 125.90
second key down third key down time l, e 186.10 94.00 557.15
second key dwell time l 107.94 62.00 133.65
second key up third key down time l, e 78.15 -31.82 434.67
third key dwell time e 104.28 62.00 175.54
trigraph duration o, l, e 454.80 272.01 974.75
first key down second key down time l, e 186.10 94.00 557.15
first key dwell time l 107.94 62.00 133.65
first key up second key down time l, e 78.15 -31.82 434.67
second key down third key down time e, . 162.99 93.00 292.26
second key dwell time e 104.28 62.00 175.54
second key up third key down time e, . 58.71 5.34 159.05
third key dwell time . 92.86 47.00 138.42
trigraph duration l, e, . 441.94 234.00 918.15
first key down second key down time e, . 162.99 93.00 292.26
first key dwell time e 104.28 62.00 175.54
first key up second key down time e, . 58.71 5.34 159.05
second key down third key down time ., l 205.36 185.78 253.02
second key dwell time . 92.86 47.00 138.42
second key up third key down time ., l 112.51 66.18 162.44
third key dwell time l 74.68 40.01 95.94
trigraph duration e, ., l 443.02 343.00 603.23
first key down second key down time ., l 205.36 185.78 253.02
first key dwell time . 92.86 47.00 138.42
first key up second key down time ., l 112.51 66.18 162.44
second key down third key down time l, o 170.81 150.95 203.00
second key dwell time l 74.68 40.01 95.94
second key up third key down time l, o 96.13 55.02 141.00
third key dwell time o 100.83 48.09 154.57
trigraph duration ., l, o 477.00 415.91 538.07
first key down second key down time l, o 170.81 150.95 203.00
first key dwell time l 74.68 40.01 95.94
first key up second key down time l, o 96.13 55.02 141.00
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Table E.6: Mean, min and max values for aggregated surprised feature vectors

Feature Keys Surprised
Mean Min Max

second key down third key down time o, g 148.85 74.69 224.08
second key dwell time o 100.83 48.09 154.57
second key up third key down time o, g 48.01 -79.89 175.98
third key dwell time g 101.56 71.13 165.12
trigraph duration l, o, g 421.21 348.19 514.66
first key down second key down time o, g 148.85 74.69 224.08
first key dwell time o 100.83 48.09 154.57
first key up second key down time o, g 48.01 -79.89 175.98
second key down third key down time g, Shift 420.35 125.00 632.02
second key dwell time g 101.56 71.13 165.12
second key up third key down time g, Shift 318.79 46.00 560.89
third key dwell time Shift 480.71 157.00 1017.15
trigraph duration o, g, Shift 1049.91 391.00 1673.63
first key down second key down time g, Shift 420.35 125.00 632.02
first key dwell time g 101.56 71.13 165.12
first key up second key down time g, Shift 318.79 46.00 560.89
second key down third key down time Shift, ( 211.47 23.91 555.26
second key dwell time Shift 480.71 157.00 1017.15
second key up third key down time Shift, ( -269.25 -692.42 -110.00
third key dwell time ( 103.66 55.58 154.42
trigraph duration g, Shift, ( 735.47 235.00 1242.85
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