
Visualization of Crowd Flows from
Positioning Data

Hans-Kristian Seem Koren

Master of Science in Computer Science

Supervisor: John Krogstie, IDI

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

Abstract

Positioning systems, both indoor and outdoor, regardless of technology used,
generate large amounts of data of varying quality about where different
objects are observed in space at various time instants. Such data has been
proven valuable for both commercial interests and for researchers alike.
Given the nature of positioning data, it is invaluable to have tools for
visualizing them, with maps being a natural part of the visualizations.

Various efforts have been made to generate different visualization tools for
data collected at the campus of the Norwegian University of Science and
Technology, but they have only made use of small subsets of the available
data, partly due to how it was stored. Later, work has been done on
improving the storage mechanisms, suggesting that it should be combined
with the other work.

This project investigates building a web application and a data processing
component with the goal of providing a research platform for exploring a
larger part of the data set that for example can aid in the development of
data cleaning methods. The result is a set of patterns discovered using the
platform and an evaluation of the efficency of using the web platform as
a basis for large-scale visualization applications. Experiments show that
there are certain limits to what is possible using current technologies, but
that there still is a great possibility of visualizing large datasets.

i

ii

Sammendrag

Både innendørs og utendørs posisjoneringssystemer, uavhengig av hvilken
teknologi som benyttes, genererer en stor mengde data av varierende kvalitet
om hvor ulike objekter observeres i rommet på ulike tidspunkt. Denne
dataen har vist seg nyttig for både kommersielle interessenter og forskere.
På grunn av dataens natur, er det uvurdelig med visualseringer, der kart
fremstår som et naturlig utgangspunkt.

Ulike arbeider har allerede blitt gjort når det kommer til slike verktøy
for data innsamlet på NTNU (Norges teknisk-naturvitenskapelige univer-
sitet), men bare en liten del av den tilgjengelige dataen har blitt benyttet,
delvis grunnet hvordan den var lagret. Senere arbeider har sett på ulike
databaseløsninger, som det har vært ønskelig å integrere.

Dette prosjektet undersøker hvordan en webapplikasjon med tilhørende
bakenligende systemer kan lages med mål om å lage en forskningsplattform
som kan støtte undersøkelser av datasettet, for eksemepl som hjelp til
å utvikle datarensingsmetoder. Resultatet fra prosjektet er et sett med
visualiseringer fra det utviklede programmet, og en evaluering av hvordan
de benyttede teknologiene er egnet. Ekseperimenter viser at det finnes
grenser for å hva som er praktisk mulig, men at en kan få utrettet mye.

iii

iv

Problem Description

Since 2009, MazeMap has been working on indoor navigation with our
app. An area we want to investigate further is how we can use collected
positioning data to aid building managers and other stakeholders. This
involves processing huge amounts of data in a near real-time manner to pro-
duce anonymous statistics that have easily available real-world applications.
Such a system could e.g. be used by shopping mall owners to base real
estate leasing prices on the number of people visiting areas around a store.
The task is to process position data to give a simple overview of crowd
movements in a building, in the first place based on an existing dataset on
data from the NTNU campus The task is to be done according to a design
science research model, and the report is expected to be written in English.
The application should be made available under an open source license if
not otherwise decided

v

vi

Preface

This thesis concludes my Master of Science and is the result of research
conducted in my final semesters at the Department of Computer and Infor-
mation Science (IDI) at Norwegian University of Science and Technology
(NTNU).

I would like to thank Professor John Krogstie at the Department of Com-
puter and Information Science (IDI), who have been my supervisor, and
Dirk Ahlers for providing helpful feedback and advice throughout the
project.

Hans-Kristian Seem Koren
June 2017

vii

viii

Contents

Abstract i

Sammendrag iii

Problem Description v

Preface vii

Table of Contents xii

List of Tables xiii

List of Figures xvi

Abbreviations xvii

1 Introduction 1

1.1 Background and Motivation 1

1.2 Project Definition . 2

1.3 Project Description and Contributions 2

1.4 Outline . 3

2 Background Theory 5

2.1 Related Work . 5

2.2 The Need for Visualization 7

2.3 Visualization of Movement Data 8

2.4 Indoor Positioning Systems 9

ix

x CONTENTS

2.4.1 Usages of Location Data 10

2.5 Potential Problems with Movement Data 10

2.6 Clustering Trajectories . 11

2.7 Modern Web Applications 11

2.8 Map Rendering . 12

2.8.1 Existing Map Rendering Solutions 12

2.8.2 Tile-based Rendering 13

2.8.3 Approaches . 14

2.9 Tools, Protocols and Formats 16

2.9.1 GeoJSON . 16

2.9.2 The WebSocket Protocol 16

2.9.3 Tippecanoe . 17

2.9.4 PostgreSQL and PostGIS 17

2.10 Web Application Performance 18

3 Research Methodology 19

3.1 Research Method . 19

3.2 Research Questions . 20

3.3 Evaluation Criteria and Results 21

4 Problem Elaboration and Requirements 23

4.1 Persona . 23

4.1.1 Facility Manager Mikkel 23

4.1.2 Technical Janitor Pål 24

4.1.3 Analyst Susanne . 24

4.2 Scenarios and Use Cases . 24

4.2.1 Movement Between Areas of Interest 24

CONTENTS xi

4.2.2 Detect Tracking Errors 25

4.2.3 Check If Areas Are In Use 25

4.2.4 Maintain Decent Wi-Fi Connectivity 26

4.3 Requirements . 27

4.3.1 Functional Requirements 27

4.3.2 Non-functional Requirements 29

5 The Application 31

5.1 Database . 31

5.2 Technical Design and Architecture 32

5.2.1 Web Application . 33

5.2.2 Back-end Server . 34

5.2.3 How the Tiling Works 37

5.3 Description of the User Interface 38

5.3.1 Visualization Modes 38

5.3.2 Building New Tile Sets 39

5.3.3 Adjusting the Visual Parameters 39

5.3.4 Distinguish Between Floors 40

5.3.5 Comparing Tile Sets 40

5.4 Data Processing . 42

5.4.1 Snapshots . 42

5.4.2 Movement . 42

5.4.3 Building-to-Building 44

5.4.4 Mapbox GL JS as a React Component 45

6 Results 49

6.1 Patterns and Phenomena 49

xii CONTENTS

6.2 Performance Measurements 55

6.2.1 Fetching Data From the Database 56

6.2.2 Tile Optimizations 57

7 Discussion 71

7.1 Patterns . 71

7.2 Performance . 72

7.3 MBTiles vs GeoJSON . 73

7.4 Fulfillment of Requirements 74

7.5 Usability . 74

7.6 Integrating With Other Systems 75

7.7 Feedback From Others . 75

7.8 Aggregate Dates vs. Date Ranges 75

7.9 Other Potential Usages . 76

8 Conclusion and Future Work 77

8.1 Research Questions . 77

8.2 Future Work . 79

A Screenshots of the Application 81

B Digital Attachments 87

B.1 Source Code and Figures . 87

B.2 How To Install the System 87

B.3 Database Schema . 89

B.4 Example Queries . 90

C List of Technologies 91

List of Tables

3.1 5-step process model proposed by Takeda et al.[41] 21

4.1 Movement Between Areas of Interest 25

4.2 Use Case 2: Detect Tracking Errors 26

4.3 Use Case 3: Check If Areas Are In Use 27

4.4 Use Case 4: Maintain Decent Wi-Fi Connectivity 28

5.1 Size of tables and indexes 33

5.2 Visual adjustments for each mode 40

6.1 Tile Data for Snapshot . 62

6.2 Tile Data for Buildings . 63

6.3 Tile Data for Trajectory. The row counts are smaller than
in snapshot and buildings due to the rows being grouped by
device. 64

6.4 Tippecanoe Options . 64

7.1 Fulfillment of Requirements 74

xiii

xiv LIST OF TABLES

List of Figures

2.1 Pipeline of traffic data visualization [14] 9

2.2 Illustration of a tiled map as a pyramid [15] 13

2.3 Tile grid for different zoom levels [37] 14

3.1 5-step cycle [44] . 20

5.1 Distribution of data per week day per hour 32

5.2 Tile Generation as a Sequence Diagram 35

5.3 General Overview of the System 36

5.4 Distinguish floors by painting different colors 41

5.5 The tab bar with three open tabs 42

5.6 The different visualization modes 47

6.1 Devices floating in the air outside building boundaries . . . 50

6.2 Considerable amount of devices outside F1 50

6.3 Considerable amount of devices outside P15 51

6.4 Dots in a circular grid . 52

xv

xvi LIST OF FIGURES

6.5 Circular grids in the entrance to Realfagbygget 52

6.6 Straight Lines are common in the dataset 53

6.7 Inaccurate Trajectories . 54

6.8 Known area not covered . 55

6.9 Building suddenly becoming uncovered 60

6.10 Records that are clearly outliers 61

6.11 Query Time . 61

6.12 Timings for queries run in Snapshot mode. 65

6.13 Timings for queries run in Movement mode. 66

6.14 Timings for queries run in Buildings mode. 67

6.15 Effects of using Tippecanoe Optimizations 68

6.16 Screenshot of requests made by Chrome for zoom level 16 . 68

6.17 File size of MBTiles and GeoJSON 70

7.1 Distribution of time spent at campus 76

A.1 Trajectory mode with light background map tiles 82

A.2 Snapshot mode with the floor picker and help text open . . 83

A.3 Buildings mode showing inter-building movements 84

A.4 Movement mode with the default dark background and date
picker open . 85

A.5 Snapshot mode with distinguished floors 86

Glossary

AsterixDB A a scalable, open source Big Data Management System
(BDMS). 6

DOM The Document Object Model. 45

GeoJSON A JSON based format for encoding a variety of geographic
data structures.. 16

JavaScript A general purpose programming language. 12, 15, 18

MBTiles A file format for storing large amounts of tile data. 17

PostgreSQL The world’s most advanced open source database (according
to their description). 17

xvii

xviii Glossary

Acronyms

CPU Central Processing Unit. 18

CSS Cascading Style Sheets. 33

GIS Geographic Information System. 13

GPS Global Positioning System. 9

GPU Graphics Processing Unit. 12, 18, 73

IDI Department of Computer and Information Science. vii

IS Information Systems. 19

MSE Mobility Service Engine. 10

NPM Node Package Manager. 34

NTNU Norwegian University of Science and Technology. 1, 6, 55

PNG Portable Network Graphics. 14

SQL Structured Query Language. 17, 44, 56, 75

xix

Chapter 1

Introduction

This chapter will provide a short introduction to the project and why the
research was conducted. It begins with a section explaining the background
and motivation for the project, followed by a description of the specific
problem and outline for the rest of the thesis.

1.1 Background and Motivation
In recent years, there has been an increased interest in gathering positioning
data from various venues. Such data are believed to provide great value
to both businesses and venue owners, and has therefore been found as an
interesting area of research. Examples of venues of interest include, but
is not limited to universities, hospitals, airports and shopping malls. At
Norwegian University of Science and Technology (NTNU) in Trondheim,
there has been installed equipment to track users via WLAN access points
throughout the entire campus and the recorded data have been stored for
further analysis. More than 1,800 WLAN access points spread over 350,000
square meters university area[12] contributes enough data to perform in-
teresting analysis on the whereabouts of people in this location. Prior
work has been conducted by previous students in the same area. Some
applications for exploring the datasets through visualization have been
developed, but the amount of available data were limited. This project will
extend upon their work and provide a system with a larger data foundation
incorporating research on database solutions for storing the data. The
data were automatically collected by third-party systems as single records

1

2 CHAPTER 1. INTRODUCTION

pinpointed to a place at a given time. Thus, it is not known beforehand
what large amounts of such data looks like when visualized and what kind
of patterns that can be observed. For this reason, it is valuable to have a
tool that can help digesting and make something out of the data.

1.2 Project Definition
This project has investigated if it is feasible to implement a web-based
application that can handle large amounts of location tracking data and
visualize aspects of this data such as snapshots at given time instants or
time ranges, movement trajectories over user-defined periods of time and
movement between objects of interest, particularly buildings. In addition,
the application has been used to identify and reveal patterns in the available
data that both can be actual patterns or be caused by external factors. The
work has been done in connection to Wireless Trondheim Living Lab[4].

A short literature review of the field of study to gain insight into the
problem domain, and an assessment of available tools were conducted to
provide a better foundation. The project is based on earlier work by other
students at NTNU, so some of the problems this project has tried to solve
was to some degree already identified. The project followed a design science
research approach discussed in Chapter 3.

Resulting from the project is a web-based application capable of providing
visualizations of the available dataset through a user-friendly interface. The
application was evaluated in terms of performance and what insight it could
give to a researcher. As the application is currently tailored to researchers,
it was not found useful to perform a thorough evaluation of the all the
user-friendliness aspects.

1.3 Project Description and Contributions
The main contributions of this thesis are:

• Exploration of techniques for rendering large amounts of spatio-
temporal data in a browser.

• An implementation of a web-based visualization tool for location
tracking data including a server that transfers data from the database
to the clients.

1.4. OUTLINE 3

• Evaluation of such a system focusing on the limits of how much data
it can handle and how it performs on typical personal computers with
commodity hardware.

• A discussion of patterns revealed, what could cause them and how
likely they are to be actual.

1.4 Outline
Following this introductory chapter, the thesis is structured as:

• Chapter 2: Background Theory This chapter introduces some
theoretical background for the project and reviews a few concepts
used in the project. It also serve to describe the problem awareness
part of design science research.

• Chapter 3: Research Methodology A presentation of the re-
search methodology used in this project.

• Chapter 4: Problem Elaboration and Requirements A thor-
ough elaboration of the problem domain and the requirements for the
application.

• Chapter 5: The Application This chapter presents the developed
application in detail.

• Chapter 6: Results This chapter presents the results from the
research.

• Chapter 7: Discussion This chapter discusses the results and
evaluation of the artifact.

• Chapter 8: Conclusion and Future Work The final chapter
concludes the thesis, presents the knowledge contribution and a list
of suggested future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background Theory

This chapter will provide insight into the necessary background information
to give a better understanding of prior research and the theoretical founda-
tion upon which the solution is built. This includes a recap of related work
at NTNU along with a literature study of topics touched in this research.

2.1 Related Work
In a previous work conducted by Aulie [10] in his master thesis, a system for
visualizing both crowd distributions and movement based on data gathered
from on-campus WLAN access points. The system presented different views
of the positioning data, both static device locations, single user movements
around campus and how accurate the data is using a web UI where the
user could adjust the parameters. However, the system was limited as it
only had a small subset of the total data set available, due to the lack of
a proper data store. All processing and retrieval were done from a single
large JSON file. The thesis also presents some algorithms for detecting
single-user movements.

As part of the evaluation different stakeholders were interviewed, and the
general consensus was that such applications were perceived as useful. Some
of the feedback from the interviewees pointed out interesting interpretations
of the data:

• Determining which entrances and exits are being used

5

6 CHAPTER 2. BACKGROUND THEORY

• Knowing which areas were heavily crowded at particular times to
determine when to perform maintenance and cleaning

• Find out where and from which directions people entered the campus
• Automatic counting of people in a room

The results from this research showed that what one can call trivial patterns
such that traffic is larger in the middle of work days than in the weekends
confirmed. No conclusions could be drawn on non-trivial patterns due to
the data set constraints and the processing methods utilized. The researcher
suggested future work on improving the data availability to improve the
basis upon which conclusion could be drawn.

Eriksen’s master thesis[18] also revolved around exploring the positioning
data collected from the NTNU campus. His focus was mainly how such
visualizations could aid facility managers in their daily work. The artifact
developed was an application that could generate a heat map of crowd
distributions on campus. Like Aulie, only a limited set of the data provided
the foundation for visualization. Interviews with facility managers shed
light on some things the data could be used for and areas of application:

• Replacement for manually counting people in a room
• Identify how an area is used in practice
• Emergency situations such as Fire and evacuation and property

management to schedule cleaning and maintenance.
• Gain knowledge about where people are, and where they are not, to

improve utilization.

In a later work, Kongshem [28] looked into how the position data could be
stored more efficiently using different database systems for the benefit of
visualization applications to be able to improve the prototypes, as suggested
by the other researchers working on the same. He compared the three
database solutions MySQL, MongoDB and AsterixDB examined them and
proposed some queries that could possibly be answered. The databases
examined can be classified as a relational database (RDBMS), NoSQL
Document Store and a Big Data Management System (BDMS) respectively.
The results showed that there are pros and cons with each of the solutions
depending on which trade-offs being acceptable, and that none of them
presents itself as the best solution in all possible scenarios. Some databases
are very good at storing data, but fail to make retrieval queries fast. Others

2.2. THE NEED FOR VISUALIZATION 7

are good at reading, but worse at writing. Scalability differs between the
system, and some can horizontally scale over a cluster of machines, while
others are limited to a single machine but scale reasonably well vertically.

Holten [23] investigated if the dataset could be used to automatically count
the number of people in different rooms by comparing to manual counts.
The results showed that using it for this task with the current dataset was
not really viable due to inaccuracies in the data rendering it difficult to
exactly pinpoint people to specific rooms.

2.2 The Need for Visualization

McCormick et al.[11] describe visualization in these words:

“Visualization is a method of computing. It transforms the sym-
bolic into the geometric, enabling researchers to observe their
simulations and computations. Visualization offers a method for
seeing the unseen. It enriches the process of scientific discovery
and fosters profound and unexpected insights. In many fields it
is already revolutionizing the way scientists do science.”

Visualizations are important for human interpretation of data. Computers
can learn from numbers directly, whereas a few if no people can make
sense out of giant matrices of numbers without any supplementary aids. By
presenting the data graphically patterns can become more apparent, and the
combination of the capabilities of human perception and the computational
power of modern computers is a key to understand phenomenas around
us. McCormick et al. also claims that 50% of the brain’s neurons are
associated with vision, so the appeal of having visualization systems is
apparent. Most scientists and researchers use visualization as an invaluable
tool to make sense of data. Proper visualizations can help discover trends,
identify relationships and patterns, both obvious as well as non-obvious
ones.

In [3], the visualization problem is characterized using three practical
questions that are both sufficiently specific for researchers and easy to
understand for practitioners: What is presented?, Why is it presented?
and How is it presented? The what addresses the structure of the data in

8 CHAPTER 2. BACKGROUND THEORY

question, and why states the motivation of doing it, while the how answers
what particular visualization methods will be used. All of these questions
can aid the development of visualizations, and is important to have in
mind when planning and designing them. Analyzing the problem domain
and figuring out why you do something is as important here as in other
research areas. As the ultimate goal of visualization is not to create pretty
imagery or fancy animations, but to serve as a tool for humans to gain
insight into data [40]. Schneiderman[39] introduces the Visual Seeking
Mantra: “Overview first, zoom and filter, then details-on-demand”, which
serves as a guideline for how to design visualization that works in a variety
of scenarios.

2.3 Visualization of Movement Data

Following the rise of commercial tracking equipment and the number of
ways to do positional tracking, the area of visualization such data as been
a research area of interest among many researchers. Research has been
conducted at many at different scales ranging from flight data to animal
movements.

Klein et al. [27] presents novel techniques for visualizing plane trajectories
based on large data sets from Air Traffic Control in a scalable way both
considering visual space and computational complexity. Although the scale
is much larger than that of crowd movements at a university campus, similar
techniques may be applicable to both.

An investigation of aggregation methods suitable for movement data were
undertaken by Andrienko & Andrienko [5], wherein they also looked at what
visualization and interaction techniques that can be used to explore massive
movement data. They have considered different aggregation methods and
contributed a general framework. The paper neglects implementation
details, but suggest that most of the aggregations can be done using
standard database functions. In another paper, the authors suggest a
method for spatial generalization of and aggregation of movement data
by transforming trajectories in to flows between areas and a method to
spatially group the areas [9].

Chen et al. [14] presents an overview of visualization techniques in the
context of traffic data through a survey of current research and a description
of the visualization process pictured in Figure 2.1. Applications of traffic

2.4. INDOOR POSITIONING SYSTEMS 9

data visualization are classified into tasks: Visual monitoring of traffic
situations, pattern discovery and clustering, situation-aware exploration and
prediction and route planning and recommendation. For future research
they suggest extending the work to social transportation.

Figure 2.1: Pipeline of traffic data visualization [14]

The data provided by positioning systems are spatio-temporal in nature.
That is, they describe objects existing in a geographical space changing
over time. This fact makes analysis more complex, but makes the data
useful for a variety of purposes, including but not limited to studying the
different properties of a place, the dynamics of an event such as a large
festival, social gathering, or the behavior of moving objects [6].

Von Landesberger et al. [45] focus on what different spatial situations look
like at particular moments in time. They suggest different questions such
as “how big are the flows between certain areas at a certain time?”, or
“which areas has many people at a certain time moment”. Furthermore, they
state that the temporal aspect can be analyzed to illustrate how spatial
situations change over time.

2.4 Indoor Positioning Systems
In recent years, the research area of tracking people and objects have
become increasingly more popular and interesting[36]. Outdoors the Global
Positioning System (GPS) is available and provide an efficient and fairly
accurate way to pinpoint objects. However, GPS does not work very well
inside buildings or in areas packed with buildings such as in an urban
environment[12]. There exists solutions based on both WiFi and Bluetooth

10 CHAPTER 2. BACKGROUND THEORY

that can track objects inside buildings[29]. NTNU uses the Cisco Mobility
Service Engine (MSE) to provide the location analytics. The engine uses
existing network infrastructure (here: WLAN access points) to aid the
analysis. Triangulation requires the device to be within reach of at least
three different access points, a requirement that is usually satisfied to the
large amount of access points on campus.

Indoor positioning systems have a lot of potential use cases ranging from
emergency control to increased revenue for business owners[12]. Other areas
of application include, but is not limited to museums, logistics and opti-
mization, industrial robots, guiding vulnerable people and environmental
monitoring[32].

2.4.1 Usages of Location Data

Yin formulates the process of urban planning in three steps: survey, analysis,
planning [47], where the first step is a data collection step, followed by
analysis of the data and a final planning step where the results of the
analysis is used for policy making to hopefully make better cities. A similar
process can also be useful also for campus planning, as it can be seen as
smaller scale city planning. The application described in this thesis is a
tool to aid in the analysis phase by providing different views into data
collected by other systems.

2.5 Potential Problems with Movement Data

According to Andrienko et. al [7], problems existing in any kind of data
can be divided into three categories: missing data, accuracy errors and
precision errors. They further specialize this categorization for movement
data by incorporating identities of movers, spatial positions and time
references as important data components. When any of these components
are missing from a record, it can not be used for trajectory reconstruction.
Each of the components may be subject to accuracy problems, while the
position and time can have poor precision and the identifiers may be wrong.
Precision refers to random errors caused by for example converting values
into computer representations. These problems must be assessed when
analyzing movement data and reconstructing trajectories from it.

Kandel et al. review challenges and opportunities associated with addressing

2.6. CLUSTERING TRAJECTORIES 11

data quality issues. They argue that data might be wrangled more efficiently
by using interactive systems providing visualizations [26]. Datasets are
prone to data quality issues such as missing data, inconsistent values, or
unresolved duplicates, which can be a tedious process to assess. When
identified, it is also not always obvious how to deal with the erroneous
values.

2.6 Clustering Trajectories
Trajectories are a set of tuples containing spatial and temporal attributes,
that can be interpreted as the path someone has taken. When showing
many of them together they can often look intervened as objects often do
not follow the exact same path. Research has been done on clustering such
trajectories to get an aggregated view and to extract useful information
from large sets of trajectories.

Andrienko et al. describes a procedure for extracting relevant places in
trajectories to study place-related patterns and movements. The results
can be for example be used to identify where people make long stops or
where they meet and studying migration of animals [8].

Data-mining methods can be used to find frequent trajectories as studied
in [38]. They propose the CBM method which divides an area into smaller
clusters (squares), calculates the cluster count as the ratio between the num-
ber of coordinates of all trajectories passing through it and the cardinality
of the dataset, and rejects inactive clusters below a certain user-specified
threshold. The active clusters are further processed and linked to find
frequent trajectories. Ferreira et al. [19] introduces a novel clustering tech-
nique named vector-field k-means using vector fields to induce a similarity
between trajectories.

2.7 Modern Web Applications
The web as a platform has evolved rapidly in recent years and is being
used for all kinds of applications apart from traditional web sites. The
browser vendors and standards committees are working hard pushing the
web forward by defining and implementing new APIs in a rapid fashion. The
vast amount of available APIs and the ease of deployment have resulted in
more applications running in the browser. At the same time, engineers have

12 CHAPTER 2. BACKGROUND THEORY

been working hard on improving the performance of JavaScript runtimes
in the browser1, playing a vital role in the evolution.

In recent years, as a result of the browser improvements, there has been
a shift in how applications are developed. A lot of the work that has
traditionally been performed on web servers and sent to the clients on
request, have been assigned to the clients themselves. This evolution
enables rich and powerful interactive applications running directly in the
user’s browser. Technologies such as WebGL has allowed the browser’s to
utilize more of the available hardware, including the Graphics Processing
Unit (GPU) to create even faster and smoother experiences [35]. Software
that were previously exclusive to the native platforms are now running
directly in the browsers such as advanced 3D games and powerful word
processing programs.

This paradigm shift makes installing software on own computers a thing
of the past. Most software become ready for consumption directly in the
browser, making things easier not only for the end user, but also for the
developer who has better control of which versions of the software user’s
are running and can ship bug fixes and software updates more frequently
without the user noticing.

2.8 Map Rendering

2.8.1 Existing Map Rendering Solutions

There exists different solution for maps on the web, both open-source and
proprietary, libraries and ready-to-use solutions like Google Maps, CartoDB
and ArcGis. Leaflet.js is the leading open-source interactive map library
for web browsers. Mapbox is software company providing map services to
users. Originally they provided a plugin to Leaflet.js called Mapbox.js, but
now also provide Mapbox GL JS[22]. The latter is an improved library
that uses WebGL for GPU assisted rendering and Web Workers for running
processor intensive code off the main UI thread. Rendering times and
perceived performance has been proved to be better when using the GPU
[25]. Mapbox GL JS supports modern vector tiles out of the box, as
opposed to Leaflet.js. MazeMap[33] is built on top of Leaflet and provide
much better maps over the NTNU campus including rooms and other

1https://phoronix.com/scan.php?page=news_item&px=V8-JavaScript-5.4

2.8. MAP RENDERING 13

facilities, which could have been nice to have. But Leaflet does not have
adequate support for vector tiles, which was deemed necessary for this
project. Therefore Mapbox GL JS was chosen as the map library. The
static image tiles of the NTNU campus used by MazeMap can technically
be used by the Mapbox renderer if they are made available from all hosts.

2.8.2 Tile-based Rendering

Tiles used in for map rendering are typically square shaped with a fixed size
containing either compressed vector data or bitmaps, and are well-suited
for long-term caching. Mapbox has defined a specification2 for vector
tiles, which among others has been adopted by Esri, a dominant actor in
the Geographic Information System (GIS) industry3. The tiling approach
has been widely used in web mapping software for a long time to reduce
bandwidth usage when transferring data over a network, as only the tiles
for the current viewport and the current zoom level need to be obtained.
The concept of tiling is illustrated in Figure 2.2 and Figure 2.3.

Figure 2.2: Illustration of a tiled map as a pyramid [15]

Contrary to static bitmap tiles that have traditionally been used in appli-
cations such as Google Maps, the vector tiles contain vector data instead
of the raw pixels. This reduces the size of each tile, while also providing
much greater flexibility in terms of styling. The client can be responsible
for how exactly the end result should look, providing the ability to make
adjustments in real-time. With modern computing devices having large
amounts of processing power at their disposal, this is arguably a great
benefit.

2https://github.com/mapbox/vector-tile-spec
3https://www.mapbox.com/blog/vector-tile-adoption/

14 CHAPTER 2. BACKGROUND THEORY

(a) Z=16 (b) Z=17

Figure 2.3: Tile grid for different zoom levels [37]

In addition to the the vector tiles specification, there is file format called
MBTiles. The file format specification describe an efficient format for storing
millions of tiles in one SQLite database file. The output from Tippecanoe
is a MBTiles file, which is a SQLite database in disguise. Therefore, this
format can be read and understood by virtually any environment supporting
SQLite, which is the case for most popular programming environments.
MBTiles files are often referred to as tile sets [31].

2.8.3 Approaches

When rendering map data inside a web browser, there are essentially three
different approaches that are used in the real world today:

1. Send all the features (typically as GeoJSON) to the client by request,
and let the client take care of rendering them using the a rendering
engine such as Leaflet or Mapbox GL JS.

2. Pre-render static images on the server at many different zoom level
and send them as Portable Network Graphics (PNG) files to the
browser on demand. The client can display these static images on
top of the map directly.

3. Pre-render vector tiles on the server before sending the to the client.
The client takes care of the actual styling of the features contained in
the tile.

2.8. MAP RENDERING 15

The first approach works really well when the amount of data is reasonably
small. However, when the amount of data reaches a certain threshold, it
will be time consuming to transfer all the data over to the client. Thus the
client has to wait for all the data before it can even start painting something
on the map. Recent versions of Mapbox indeed supports creating vector
tiles on the fly in the browser from the JSON data, but you’ll still have to
wait for everything before anything shows up on the map.

Regarding how expensive it is to render the map, the second approach
requires the least amount of work from the client. However, by using this
inherently static approach, a lot of flexibility is lost in terms of how things
will look on the map. The style must be predetermined and it is often
hard to anticipate what would look best for different scenarios. For older
computers this approach is sound, but with modern devices having lots of
power there are better alternatives exploiting this power.

The third approach is a best of both worlds, hybrid approach. The client is
responsible for the rendering, but the points are made available only when
necessary. In Section 2.7 it was claimed that more and more processing
work was moved to the browser, but some really resource intensive tasks
such as crunching large amounts of raw numbers is still best executed
in low-level programming languages on fast servers, as JavaScript is not
optimized for this use case.

For this project, the following advantages were decisive for selecting the
initial approach:

• It uses tiling, so the client only have to request the tiles currently in
viewport and at the current zoom level. In addition, the tiles can be
rendered in parallel and rendered as they arrive. Figure 2.2 illustrates
how this works.

• The ability to adjust visual parameters are preserved, as the tiles
are not static image files. Thus one can manipulate colors and sizes
interactively in the browser without having to rebuild the tiles. This
is important as different data sets require different visuals, that must
be found through experimentation.

• The data fetched from the database will have to be cached anyway,
so one might as well cache it as pre-generated tiles.

16 CHAPTER 2. BACKGROUND THEORY

2.9 Tools, Protocols and Formats

2.9.1 GeoJSON

GeoJSON is a format for encoding a variety of geographic data structures4.
The format can encode a wide array of common geometry types. It is
has a standardized specification RFC7946[13] and is supported by many
solutions from a number of vendors. Most of the mapping software suites
that exist today has knowledge about the format and can render features
defined in GeoJSON as shapes or objects on a map. Some of the most useful
geometry types in the spec include Points (and MultiPoint), LineStrings
and Polygons

1 {
2 "type": "FeatureCollection",
3 "features": [{
4 "type": "Feature",
5 "geometry": {
6 "type": "LineString",
7 "coordinates": [
8 [10.4018111136774,63.4185854963234],
9 [10.4018111423982,63.4185834630124],

10 [10.4018111543837,63.4194081529792],
11 [10.4018111598974,63.4182065561121],
12 [10.4018111742628,63.4179988291722]
13]
14 },
15 "properties": {
16 "name": "Some Trajectory"
17 }
18 }]
19 }

Listing 2.1: Example of a GeoJSON FeatureCollection

2.9.2 The WebSocket Protocol

WebSockets is a mechanism for two-way communication on the web[20].
In the traditional web using the normal HTTP protocol, a web server
has accepted requests from clients (typically web browsers) and responded
with some payload, meaning that only clients can initiate communication.
WebSockets provide a bidirectional communication channel between clients

4http://geojson.org/

2.9. TOOLS, PROTOCOLS AND FORMATS 17

and servers by keeping a persistent connection between the two parties
where both can send messages. The WebSocket Protocol is an independent
TCP-based protocol.

A WebSocket connection is established by a client sending a regular HTTP
request with an Upgrade header indicating that it wants to establish a
WebSocket connection. This process is known as the WebSocket handshake.
Servers supporting WebSockets will respond with an agreement through at
HTTP response with status code 101 and an upgrade header. After the
handshake, the two parties can send messages back and forth without the
overhead of HTTP[46].

This mechanism is useful in many applications, for example where the
server needs to inform the client about progress on the server without the
client explicitly asking. It is also useful in chat or messaging applications
were clients continuously must be notified of new messages and people
entering and leaving.

2.9.3 Tippecanoe

Tippecanoe[30] is a program written in C++ that, given a set of points, lines
or polygons, attempts using clever algorithms to simplify these primitives
by skipping points while maintaining a similar visual output. It does so by
looking at which pixels the primitives would cover and remove overlapping
based on a z-ordering5 of the points [21]. The program output is an MBTiles
file containing data of different vector tiles at various zoom levels specified
as arguments to the program. The space savings of using this program can
in some cases be substantial.

2.9.4 PostgreSQL and PostGIS

PostgreSQL markets itself as The world’s most advanced open source
database6, and is as the name and slogan implies a Structured Query
Language (SQL) database with a large set of features. PostGIS is an
extension to PostgreSQL providing support for geographic objects, allowing
location queries to be executed in an efficient manner. PostgreSQL is
suitable for many different use cases and applications, while also being easy

5https://en.wikipedia.org/wiki/Z-order_curve
6https://www.postgresql.org/

18 CHAPTER 2. BACKGROUND THEORY

to interact with from a developer perspective through the powerful query
language SQL. Combined with PostGIS it provides a stable foundation for
building applications that handles spatio-temporal data. PostgreSQL is a
traditional RDBMS with row-based storage with good vertical scalability.

2.10 Web Application Performance
In a web application, there are basically two important factors that affects
the performance the application: Transferring code and data over the
network from the server to the client, and running code and rendering
the page on the client (run-time cost). The latter is most crucial on
mobile clients, but also worth taking into consideration on desktops. The
amount of code and data that needs to be transferred can be reduced by
using various compression methods, while execution times can improved
by writing more efficient code. For desktop computer connected to stable
high-speed networks, the data transfer is not too important until it becomes
very large. But on mobile networks where stability and speed varies, and
data plans can be costly, it is very important. The intended usage scenario
for this project is on desktop computers, so it is not the most crucial aspect
for the application code.

There are many different categories of applications. Some applications are
large by themselves having lots of JavaScript code that must be run on
startup. Other applications are smaller in sheer app size, but must load
and handle massive amounts of external data. An application visualizing
pre-processed data sets fall into the latter category. Granted, when maps
are involved, a map renderer is required. Map renderers are often extremely
complex and needs to do lots of projections and calculations. Anyway, how
fast the latter type of application is depends largely on the size of the raw
data loaded into it. Occasionally, the cardinality may be excessive and
compression can only help with the actual data transfer from A to B. When it
has arrived at the destination, the data must be decompressed (lots of CPU
cycles spent) and visualized. There is a limit to how much uncompressed
data the client can handle, but modern hardware can perform well on even
large datasets (especially when GPUs) are employed. Rendering graphics
is orders of magnitude faster on GPUs than on the Central Processing Unit
(CPU), due it is parallel nature.

Chapter 3

Research Methodology

This chapter will describe how the research leading to this thesis was
conducted, starting with a description of the research method, followed by
a presentation of the research questions guiding the research and how the
results will be evaluated.

3.1 Research Method

The research methodology used in the project resembles the Design sci-
ence research approach. Design science research is a set of techniques for
conducting research in Information Systems (IS). The ultimate goal of
design science research is to improve and understand certain aspects of
information systems. Achieving this goal involves gaining knowledge by
creating artifacts and analyze the use and performance of these. Artifacts
can come in many forms including algorithms, user interfaces and system
design methodologies[44].

Takeda et al proposed a 5-step process model illustrated in Figure 3.1.
Table 3.1 gives a description of each individual step.

The problem awareness for this project is described in Background and
Motivation section of this chapter. The suggestion phase aims to be a
creative step where possible solutions are envisioned based on previous work
and other research as described in Chapter 2. This step is closely related
to the development step, where the ideas from the preceding step is being

19

20 CHAPTER 3. RESEARCH METHODOLOGY

Figure 3.1: 5-step cycle [44]

put to life. The development step is discussed in Chapter 5. Following the
development is an evaluation step. Here the artifact should be evaluated
according to some given criteria. The criteria for this project is a set of
requirements defined in Section 4.3. The conclusion is the last step. If
the results were found satisfactory, this is typically the final step of the
cycle. Otherwise the cycle might be repeated. The conclusion should clearly
communicate the knowledge contribution of the research and any loose ends
that could possibly be topics for future work. Contribution of knowledge is
a vital part of the design science research approach for work to be accepted
as research and not only development.

3.2 Research Questions
The research investigates the adequacy of the web platform in building
visualization applications for large datasets. Further, it utilizes the devel-
oped artifact to possibly discover new patterns or confirm known ones, and
hopefully detect patterns that could occur due to flaws and anomalies in
the recorded data.

• RQ1: What are the limits of the web platform and PostGIS for

3.3. EVALUATION CRITERIA AND RESULTS 21

Step Description
Problem Awareness Finding an interesting problem in

business, society or science
Suggestion Suggesting a possible design solu-

tion in the form of an artifact
Development Implementation of the artifact
Evaluation The artifact is evaluated according

to predefined criteria
Conclusion The end of the research cycle

Table 3.1: 5-step process model proposed by Takeda et al.[41]

building data-heavy visualization applications?
• RQ2: Is it possible to build a reasonably performant visualization

using existing web maps and database technologies?
• RQ3: What kind of patterns can be revealed and confirmed by a

human research utilizing the application?
• RQ4: Can visualization methods different from the ones used in

previous work give new insights?

3.3 Evaluation Criteria and Results
The artifact will be evaluated according to measured characteristics of its
performance and its ability to provide useful visualizations to the user. This
will be measured by performing benchmarks for different usage scenarios.
The main knowledge contribution of the research will be a presentation of
some interesting patterns revealed by the systems that could for example
be of use in future work on assessing data quality and the results from the
performance evaluation.

22 CHAPTER 3. RESEARCH METHODOLOGY

Chapter 4

Problem Elaboration and
Requirements

This chapter extends the introductory motivations by giving deeper insight
into the problem area to which this application is tailored and what kind of
usage scenarios one can imagine. To aid in this elaboration, various personas
and usage scenarios are described. In the final section, the requirements of
the system are presented.

4.1 Persona

Personas for each usage scenarios are often created to gain a deeper under-
standing of the users of a system and are used to improve usability. The
persona is a fictive character with attributes and skills constructed with
the purpose of imitating a real-world scenario [34].

4.1.1 Facility Manager Mikkel

Mikkel is 40 years old and works a facility manager responsible for buildings
and allocation of space at the campus NTNU. Part of his job is to plan,
build and evaluate areas on campus dedicated to student work such as
“Drivhuset”, regular reading rooms and other co-working spaces to make
sure the students’ needs are met and that the campus is a nice place to be.

23

24CHAPTER 4. PROBLEM ELABORATION AND REQUIREMENTS

4.1.2 Technical Janitor Pål

Pål is 30 years old and works as technical janitor. A considerable part of his
daily work is to make sure there is decent Wi-Fi connectivity everywhere.
He and his colleagues maintains thousand of access points and replaces and
installs them frequently.

4.1.3 Analyst Susanne

Susanne works as a researcher with special interest in movement patterns
and how the spatial positions of different actors varies with time. Luckily
for her, modern tracking equipment installed everywhere provide her with
large datasets. She is interested in finding flows of people at a specific
place, in addition to insight into the origin and destinations of people’s
trips. Susanne is a very experienced analyst and has worked with many
different visualization tools throughout her career.

4.2 Scenarios and Use Cases
A clear vision of how and for what an application is going to be used is
often useful in the process of specifying the requirements and designing
an application. A story involving a person and a description of the task
at hand, and how the application can aid in solving the task are often
invaluable in this process.

4.2.1 Movement Between Areas of Interest

Susanne is doing research on mobility patterns and would like to find out
how people are moving through the campus during course of a day. In
this particular case, she wants to see how many people is moving from
the campus to the training center. She opens the application and chooses
Buildings in the sidebar to enable buildings mode. Next, she chooses the
desired time slots 08:00-10:00, 10:00-12:00, 12:00-14:00 in the form and click
the generate button to build the visualizations. When each visualization is
finished, she clicks the notification bubble to open the visualization in a
new tab. In each tab, she will see curved lines connecting buildings, and
circles on the buildings on which she can hover the mouse a see the number
of people moving out of it. To compare the different time slots she switches
back and forth between the tabs.

4.2. SCENARIOS AND USE CASES 25

Id 1
Name Movement Between Areas of Inter-

est
Description Visualize movement between de-

fined areas, particularly buildings.
Actors Researchers
Assumptions The application is started. Time

range and area of interest decided.
Steps 1. Select Buildings from the tab

bar
2. Select the desired time range
3.Click generate
4.Wait for the visualization
5.Interact with the visualization
and look for curves going to the
area of interest.

Table 4.1: Movement Between Areas of Interest

4.2.2 Detect Tracking Errors

Pål is suspicious of the accuracy of the tracking system installed and wants
to see if he can detect any weird patterns in the tracking data. Therefore he
opens the application and generates a collection of snapshots for arbitrarily
chosen time ranges. He opens them in different tabs and starts zooming in
and moving around on the map to see if something looks unexpected, and if
these patterns are present on many of the snapshot. After some exploration
he finds a pattern that cannot possibly be right: People seems to me flying
in the air. Following his new findings he initiates an investigation of the
tracking equipment in that area.

4.2.3 Check If Areas Are In Use

The facility manager Mikkel opened a new co-working space for students a
couple of months ago. The new student area was a prestige project for the
faculty owning it. Now he would like to evaluate if it had become a success
and people were using it by looking at usage patterns throughout a day.

Mikkel opens his web browser on the computer in his office and starts the
application. He would like to know how the usage patterns changes between

26CHAPTER 4. PROBLEM ELABORATION AND REQUIREMENTS

Id 2
Name Detect Tracking Errors
Description Try and figure out possible tracking

errors
Actors Maintenance People
Assumptions Tracking errors suspected, applica-

tion opened
Steps 1. Select a time range in the sus-

pected period
2. Generate snapshots for these.
3. Repeat 1. and 2. for different
ranges.
4.Compare and look for suspicious
patterns.

Post Condition Go and fix the faulty trackers.

Table 4.2: Use Case 2: Detect Tracking Errors

time intervals throughout the day: 8:00-10:00, 10:00-12:00 and 12:00-14:00.
To accomplish his task Mikkel creates snapshots for each interval using the
tile set generator and waits some seconds for them to finish. Then he opens
up each interval in three different tabs and switches between them. He
notices something he doesn’t quite expect: It is barely used at all between
10:00-12:00, but it does have some usage both before and after. Intrigued
by the discovery, he repeats the process for a couple of other days as well.
However, from what he sees, it does not seem to be a recurring pattern.

4.2.4 Maintain Decent Wi-Fi Connectivity

Pål’s job is to make sure the Wi-Fi connectivity is acceptable throughout the
campus. This entails identifying bad access points and installing new ones.
One day he gets a telephone from someone claiming the Wi-Fi reception
is bad in a particular area. Knowing that there exists a tracking system
that uses the Wi-Fi access points to track devices, he can use point cloud
visualizations in the application to identify areas with weak connection.

He opens the application and generates a snapshot for the current time,
selects it and moves the map to the reported area. There he sees some
weird patterns and empty areas in what is known to be popular places,
indicating that the tracking is bad and goes out to investigate it. It turned

4.3. REQUIREMENTS 27

Id 3
Name Check If Areas Are In Use
Description Assess if new facilities are being

used as desired by the creators.
Actors Building and facility managers
Assumptions Desire to figure out if areas are used
Steps 1. Select one-hour time ranges

throughout the day.
2. Zoom in to the desired area.
3. Compare the different time
ranges and look for emptiness.4.
Repeat for new time slots.

Table 4.3: Use Case 3: Check If Areas Are In Use

out the caller was right, some of the access points in that area were indeed
broken. Thus he must replace them, so the reception can be restored to
acceptable levels.

4.3 Requirements

In order to make a system suitable for fulfilling the desired needs, some
requirements must be established up front that will guide the development.
Most of the requirements are based on suggested future work from prior
projects. The requirements were fluid and iterated upon throughout the
process, but the base requirements were fixed. The goal of the project is to
create a useful tool for doing research on positioning data and the defined
requirements are formulated with this in mind.

4.3.1 Functional Requirements

FR1 The application should provide a web-based interface with an inter-
active map to explore positioning data.

FR2 It should be possible to browse all the available data collected during
the two-month period 02.09.2014 to 02.11.2014.

FR3 It should be possible to select data from multiple continuous time
ranges such as 15 minutes, 1 hour, 2 hours, 8 hours, or a week,

28CHAPTER 4. PROBLEM ELABORATION AND REQUIREMENTS

Id 4
Name Maintain Decent Wi-Fi Connectiv-

ity
Description Use missing tracking data to con-

firm broken access points.
Actors Maintenance People, Students
Assumptions A student has reported bad Wi-Fi

connectivity
Steps 1. Select time ranges before and in

the reported period.
2. Zoom in to the reported area.
3. Look for missing data
4. Make a conclusion based on the
visualization

Post Action Replace the broken equipment

Table 4.4: Use Case 4: Maintain Decent Wi-Fi Connectivity

and aggregated time periods such as “each Monday at 12” by using
appropriate controls in the interface.

FR4 The user interface should allow the user to adjust the visual param-
eters of the map, such as blur opacity and radius to accommodate
different dataset sizes.

FR5 The application should provide insight into the data from different
angles, by having multiple modes of visualization for showing both
static positions, overall movements and movements between objects
of interest.

FR6 It should be possible to show the positioning data a point cloud on
the map to give an overview over all tracked devices. Additionally,
it should be possible to distinguish the points visually based on the
floor on which the device was tracked.

FR7 There must be a simple way to compare data from different time
periods by switching back and forth between datasets.

FR8 One should be able to see some aggregated numbers regarding the
viewed data.

FR9: The user should be informed by the system when a visualization is
finished processing and ready for use.

4.3. REQUIREMENTS 29

4.3.2 Non-functional Requirements

NFR1 The delay between requesting the generation of a tile set in the
browser and the corresponding visualizations becoming explorable
in the application should be less than a few seconds for hour-long
ranges.

NFR2 It should be ready to present even more data as it becomes available
at a later time, and not be restricted to the currently available data.

NFR3 Where possible, open standards should be used to ease integration
with other systems.

The main goal of the application itself is to provide the necessary tools
for researchers and other stakeholders who have interest in exploring and
getting more insight into the captured data.

30CHAPTER 4. PROBLEM ELABORATION AND REQUIREMENTS

Chapter 5

The Application

In this chapter the final solution is presented. First the entire system, its
architecture and how it works is thoroughly described along with design
decisions taken. Further, the user interface of the system is presented
with descriptions of how an end user interacts with the application. In
short terms, the application is a web based exploration tool that allows an
individual to explore a positioning dataset with a focus on comparability.

5.1 Database
Originally, the positioning data was available as JSON files and in an
AsterixDB instance from previous work. However, it was early on in the
project found necessary to have the data reside in a database more suited for
this application. Therefore, all the available data ranging from September to
November 2014 was copied from AsterixDB into PostgreSQL and indexed
according to the presumed data access patterns of the application. In
addition, a new column named location was added to store the geometry
representation of the (latitude, longitude) pair of the recording to take
advantage of PostGIS capabilities. After all the data was migrated over to
the new database, it was ready to be used by the application. Figure 5.1
shows how the recording is distributed over hours of the days and provides
an indication of days for which queries can yield large result sets. All the
tracking data reside in one single table. Thus, the data is not normalized
according the traditional RDBMS principles [17], but for this application
speed is crucial and JOINs are avoided as they are theoretically slower than

31

32 CHAPTER 5. THE APPLICATION

not joining.

Figure 5.1: Distribution of data per week day per hour

The indexes created are listed in Table 5.1. Running the Postgres command
EXPLAIN ANALYZE to see how the query was planned and executed by the
database engine revealed that these were actually used to speed up retrieval.
However, indexes does not come without a cost and leads to increased space
requirements due to their possibly large sizes. Table 5.1 also enumerates
the size of the current database including the size of the indexes. One can
see that they require quite a bit of space, but the trade-off was found to be
worthwhile due to increased retrieval speed.

5.2 Technical Design and Architecture

The system is designed using a Client-Server paradigm where commu-
nication is facilitated via WebSockets. This protocol enables two-way
communication where both the client and the server can send messages, as
opposed to the classical request-response cycle in the HTTP/1.1 protocol.
Being able to send messages both ways is a great ability when the server
has to take care of long-running jobs and must be able to notify the user
when something has happened, such as completing a longer task initiated

5.2. TECHNICAL DESIGN AND ARCHITECTURE 33

Name Type Size
idx_day_hour index 4195 MB
idx_device index 4517 MB
idx_device_day index 6897 MB
idx_floor index 12 GB
idx_timestamp index 5714 MB
locations table 47GB
locations_pkey index 9848 MB

Table 5.1: Size of tables and indexes

by an earlier client request. An explanation of how WebSockets protocol
works is given in Section 2.9.2.

The developed system is a full-stack implementation of a complete system
dealing with everything from an interactive web user interface, managing
network transfer, to orchestrating the fetching and processing the data
recorded by the tracking systems on campus. Therefore the system follows
a layered approach and is divided into multiple modules that communicate
using standard mechanisms. The first being a user facing web application
running in modern desktop web browsers and the second is a server back-end
responsible for handling requests from the user and keeping the client up
to date with new information from the server. Together with the database,
and the worker processes running on demand they form a complete system
for interacting with the position data. Figure 5.3 illustrates the general
architecture of the system and its components.

5.2.1 Web Application

The web application (also referred to as the client) is the user facing
part of the system. It contains all the user interface components used
for interacting with the system and a large map that is used to display
the visualizations to the user. The client is written in JavaScript using
Facebook’s open-source React1 library for declarative user interfaces along
with Cascading Style Sheets (CSS) for styling. It uses Mapbox GL JS for
map rendering as discussed in Section 2.8. The application code is written
in multiple files using ECMAScript 6 Modules and stitched together using
the module bundler Webpack (See Appendix C). When the application is

1https://facebook.github.io/react/

34 CHAPTER 5. THE APPLICATION

launched in the browser, a long lived WebSocket connection is established
with the server - opening up a channel for bi-directional communication. A
thorough walkthrough of the user interface is given in Section 5.3.

5.2.2 Back-end Server

The back-end of the system, which runs on a server separated from the
client app, consists of multiple heterogenous processes working separately
on a single responsibility. The entry point to the backend is the Node.JS
API server that is placed in front and both accepts HTTP requests and
manages WebSocket communication with the connected clients. It does
not do much raw processing on its own, but is responsible for routing
and initiating the correct child processes. In layman’s terms it acts as a
front desk manager for the rest of the system. The system is currently set
up with only one of these, but with the use of a Load Balancer in front,
multiple instances of the API server, can if deemed necessary, be launched
to handle more requests concurrently. Node.js as a technology was chosen
because of the researchers experience with it, the fact that it has a lot of
third-party libraries available via Node Package Manager (NPM) providing
great support for technologies such as WebSockets, Redis and PostgreSQL.
In addition, it has a fast development cycle making it easier to iterate on
the artifact and adapt to feedback.

Tile Generation Requests A typical task for said API front controller
is to receive Tile Generation Requests from a connected client, parse the
request messages, create a job object with the extracted parameters, and
put the object in the job queue using queue.create(). After the job is
created, it responds to the client with a message saying that the request
has been enqueued. In the event of a job being reported as either finished
or failed by the queue system, the web process will forward these messages
to the client over the WebSocket connection.

Serving Map Tiles Another obviously important task is to serve the
correct map tiles when requested by the map renderer. This is performed
by looking up the correct tiles based on the tile set name and the given
coordinates (see Section 5.2.3) from the tile sets stored on the local file
system, and send the protocol buffers2 contained in the MBTiles back to
the client.

2https://developers.google.com/protocol-buffers/

5.2. TECHNICAL DESIGN AND ARCHITECTURE 35

The API process merely puts job requests in the queue, but does not
actually execute them. Running jobs in the queue is done by a set of worker
processes that work independently of each other. These workers pops items
from the central job queue managed by Kue when they are available (i.e. not
processing another job) and the queue is not empty, figure out what type
of job it is by looking at the type attribute and processes it accordingly.
When a job is finished, the queue notifies the master process and the
worker becomes ready for new tasks. This design ensures that multiple
long running tasks can be run in parallel and even restarted on failure. The
number of concurrent tasks is limited by the number of available workers.
Running multiple workers is managed using the standard cluster module
of Node.js, and the number of processes is set to the number of cores of
the system it is running on.

The most important job in the system is arguably the make-tile job. This
job type fetches data from the PostgreSQL database based on parameters
given by the user, runs the data through the tile generation pipeline and
outputs the tile sets to the file system, where they are persisted and available
for future use without needing to re-run the same process for tiles built
with the same parameters. The last statement is an important aspect
with the current design. Even tough some visualization may take a bit of
time to generate, they will be instantly available for future use. Figure 5.2
illustrates the tile generation process as a sequence diagram.

Figure 5.2: Tile Generation as a Sequence Diagram

A job is defined as an asynchronous JavaScript function that takes a job-

36 CHAPTER 5. THE APPLICATION

Object and a done function as arguments, as required by the queue system
Kue3. The function is called by one of the worker processes. Upon finishing
whatever the function is doing, done is called to indicate completion. The
callback is called regardless of result with the first argument being an
Error-object on failure or null on success. Kue will mark the job as either
completed or failed in the Redis store accordingly.

Figure 5.3: General Overview of the System

API Written in Node.js and manages other processes. It is responsible for
client communication.

Workers Concurrent processes that executes functions based on tasks
available in the job queue. These functions are also written in Node.js,
but can spawn child processes when necessary.

Job Queue Notifies workers of available jobs. The queue stores the jobs
and their statuses in a Redis database. This ensures that jobs are
persisted and is not lost if some processes dies or must restart.

Because some of the tasks may take a rather long time to finish, it is
imperative that the system is able to notify the user when work is either

3https://github.com/Automattic/kue

5.2. TECHNICAL DESIGN AND ARCHITECTURE 37

completed or has failed. A basic user test showed that the user would have
no idea what was going on unless there was some kind of confirmation or
notification. This goal is achieved by having the server send notifications
to the client at appropriate times during the lifetime of the job, which the
web application then can show as messages popping up in the top-right
corner of the interface.

5.2.3 How the Tiling Works

The map rendering engine on the client expects that there are ready-made
tile sets in the MBTiles vector format available in order to show information
on the map. These tiles are generated per user’s request and cached on the
file system for future (re)use. Following is a description of how the process
works.

Tiles are generated for many zoom levels, but in this application it is
limited to the range 14 to 20. As the available dataset only covers a small
geographic area, the lower zoom levels is neither useful nor particularly
interesting. The tiling scheme used by common mapping software supports
zoom levels 0 to 22, where 0 covers the entire world and contains one
tile, while increasing zoom levels provide more detail and exponentially
increasing numbers of tiles given by 4z for zoom level z. Mapbox uses a
tile size of 512 × 512 pixels. Other systems may use other sizes such as
256 × 256 pixels.

The map renderer needs to know where it can obtain a single tile from the
tile sets. The URL scheme expected has parameters for z, x and y to look
up a specific tile based on zoom level and coordinates. In addition the URL
has a name parameter to know which tile set to use. The full URL format for
tile lookups is http://{d}.domain.com/{name}/{z}/{x}/{y}.pbf. The
server can be configured to treat all subdomains d as the same thing. This is
done to bypass a limitation of the number of concurrent HTTP requests the
browsers send to a single domain, so more tiles can be fetched in parallel.
When the user is interacting with the map and has chosen the tile set
named name, Mapbox GL will automatically send HTTP requests to this
URL to find the tiles matching the current browser viewport.

Lower zoom levels presents the challenge of a cluttered view where many
points are overlapping. To take advantage of this to reduce file sizes,
Tippecanoe can optimize for different zoom levels by reducing overlapping

38 CHAPTER 5. THE APPLICATION

data using different heuristics. By default, it will try to limit each tile
to 500 kB or to a maximum of 200,000 features. The impact of utilizing
such optimizations is discussed in Section 6.2.2, but in short it provides a
trade-off between resource requirements and the level of accuracy at each
individual zoom level.

5.3 Description of the User Interface
The main part of the user interface is the map view that covers most of
the viewport, and a sidebar where the user can control certain aspects of
what is shown in the main view. The user interface supports multiple tabs
similar to what is now commonly implemented in web browsers, allowing
multiple datasets to be examined at once, with instant switching between
them. The zoom and map position is synchronized between the tabs for
easier and more meaningful comparison.

5.3.1 Visualization Modes

The application features three different visualization modes, that have their
own unique way of visualizing the data. The different modes can be chosen
by selecting the desired mode in the tab bar located at the top of the
sidebar. The visualization modes available are

Snapshot Snapshot is the default mode and shows recorded locations as
a point cloud on the map.

Movement The Movement mode shows the recorded trajectories of all
devices. Instead of painting dots at the exact locations, it paints lines
between recorded device locations.

Buildings This mode shows movements between buildings (origin-
destination matrix) as curved lines between buildings along with
numbers of devices that has been recorded when hovering over
specific buildings. The lines are colored based on the relative
frequency of movements. A red line indicates a high frequency of
movements, whereas green lines indicates a less frequent passage.

From a user’s perspective, the different modes are similar in terms of
interactions, but they have slightly different adjustments and a very distinct

5.3. DESCRIPTION OF THE USER INTERFACE 39

graphical appearance on the map. A more detailed description of how the
different modes are processed is given in Section 5.4. The system can
be extended with even more modes by implementing two modules: A
function for retrieving required data on the server and a React component
for displaying the data on the client, following the contract used by the
existing modes. Figure 5.6 illustrates the visualization output of the modes.

5.3.2 Building New Tile Sets

Below the tile selection box there is a form containing input fields for
creating new visualizations. Here one can choose time parameters, either as
a continuous time range (14.10.2014 12.00 - 14.00) or as an aggregate
over a period such as “Mondays at 12pm”. In addition, one can choose
to give the visualization a name to make it easier to find later in the list.
By submitting the form, a new tile generation request is sent over the
WebSocket to the server. If the tile set already exists based on a hash value
of the parameters, the job will not be executed and the user notified of its
existence.

The range picker is built using three components: One for choosing the
date, one for the range size (5m, 30m 1h, 2h, 4h, 8h and so on) and finally
one for picking the segments in that range (12 to 20 when the size is
8h). The reason for this design is that it should be quick to generate
consecutive ranges by clicking the arrow. An example of this is choosing
the three ranges 14.10.2014 11.45-12.00, 12.00-12.15 and 12.15-12.30 by two
consecutive clicks on the next button.

5.3.3 Adjusting the Visual Parameters

All the different visualization modes support visual adjustments, which lets
the user alter the appearance of the visualization by changing parameters
used by the renderer. The available options depend on the current context.
Due to the differing number of points in different datasets, having the ability
to adjust parameters such as opacity and radius was deemed necessary.
Otherwise, sets with less data would barely be visible, whereas larger
datasets would become too packed. By adjusting the parameters themselves,
the users are able to manually find the right balance for the dataset in
question. A reset button restoring the values back to default is also
provided. The adjustments are implemented by dynamically changing the

40 CHAPTER 5. THE APPLICATION

Table 5.2: Visual adjustments for each mode

Snapshot Circle Radius, Blur, Opacity, Color
Movement Line Width, Blur, Opacity, Color
Building Line Width

paint properties of the layers according to the Mapbox Style Specification4

in response to user interaction. These adjustments are made possible by
using vector tiles as discussed in Section 2.8.3. The available adjustment
options are enumerated in Table 5.2. It is also possible to change the
background map to have a dark-on-light visualization instead of the default
light-on-dark.

5.3.4 Distinguish Between Floors

When a tile set has been chosen by the user in the select box of the sidebar,
it will immediately show up on the large map view. Here the user can
interact with it by zooming in and out or dragging to alter the viewport
(move around on campus). On the right there is a button labeled “Floors”
that, when clicked, will open a popover panel with a floor selector and
an option to distinguish between the floors in the visualization. When
the distinguish option is enabled, data points will be grouped by the floor
in which they were captured and rendered as different colors matching
the background colors of their corresponding toggle switches. By toggling
single floors, the user is able to show or hide specific floors depending
on the current needs. To make floor management faster, there is also
buttons labeled All and None, that will enable and disable all the floors
respectively. Selecting floor is currently only implemented for the snapshot
mode, since there has not been found a good way to visualize movement
between floors. Figure 5.4 illustrates how the view changes by using the
floor picker.

5.3.5 Comparing Tile Sets

To aid in comparison of tile sets, one can open and load multiple tile sets
and once and switch between them nearly instantaneously. Figure 5.5 shows
it in action with three open tabs labelled the same as the name of the
respective tile sets. When zooming or moving the map in one tab, it will

4https://www.mapbox.com/mapbox-gl-js/style-spec/

5.3. DESCRIPTION OF THE USER INTERFACE 41

(a) All the same (b) Different colors

(c) Some floors hidden

Figure 5.4: Distinguish floors by painting different colors

42 CHAPTER 5. THE APPLICATION

be applied globally so all tabs have the same map position. New tabs can
be opened by pressing the “Open Tab” button. Each tab has its own map
instance with the necessary layers loaded into memory enabling instant
switching.

Figure 5.5: The tab bar with three open tabs

5.4 Data Processing
This section documents how the data goes from the database, through a
simple processing pipeline, and finally becomes available to the map client
for each of the supported visualization modes.

5.4.1 Snapshots

Snapshots are more or less direct representations of the recorded locations
in the dataset visualized as a point cloud. The recordings are fetched from
the database as GeoJSON directly using the powerful JSON capabilities
of PostgreSQL shown in Listing 5.1, grouped by the floor to which the
recording were assigned by the tracking system and fed directly into the
tile generator. Each floor will become a separate layer in the final vector
tiles. The layer naming is important as they need to be known by the client
code. Tippecanoe will layer the points based on the layer property of the
tippecanoe object, and the same name is used in the client to determine
which layers to show and hide when the floor toggling is used. The scheme
used is the value of the floor column prefixed with floor_: floor_1.
etasje.

5.4.2 Movement

The movement mode visualizes the trajectory of multiple devices over
a defined period of time. There is not a one-to-one mapping between
individuals and their devices, as they may have multiple devices, which
results in some trajectories possibly being boosted. The trajectories are
created by aggregating the recorded device positions for each device over the

5.4. DATA PROCESSING 43

1 SELECT row_to_json(d) as result
2 FROM (
3 SELECT 'FeatureCollection' as type,
4 (
5 SELECT array_to_json(array_agg(row_to_json(f)))
6 FROM (
7 SELECT 'Feature'::text as type, (
8 SELECT row_to_json(z)
9 FROM (

10 SELECT CONCAT('floor_', floor) as layer
11) z
12) as tippecanoe,
13 '{}'::json as properties,
14 ST_AsGeoJSON(ST_Multi(ST_Union(location)))::json as geometry
15 FROM locations
16 WHERE created_at >= $1 AND created_at < $2
17 GROUP BY floor
18) AS f
19) as features
20) AS d

Listing 5.1: Select snapshots as GeoJSON

given time period. Single devices may have been recorded multiple times
at approximately the same position, indicating lack of movement. The
final artifact uses the built-in ST_RemoveRepeatedPoints of PostGIS to
remove spatially close points. This method may not always be satisfactory
for larger time ranges, as people may have returned to the same point
after some time. Figure 6.7 shows the effect of attempting to filter points
based on time and distance differences to smoothen the trajectories and
removing similar points, which could be used in conjunction with clustering
to retrieve popular paths.

The visualization produces a rather cluttered view of the trajectories by
painting all of them using LineStrings. However, in areas with many
overlapping trajectories one can see the trends of where the movement
is happening. Between buildings devices are recorded only sporadically,
with possibly long distances between points, so it is hard to infer paths
taken. In [12], movements were map-matched to view-finding requests from
MazeMap to infer a possible path. This mode does not currently employ a
clustering technique as discussed in Section 2.6, but it can be implemented
as part of a future work. In any case, this visualization is able to provide
a view of a large set of trajectories for a selected time range. The view is
in essence similar to the snapshot view, but instead of painting the point

44 CHAPTER 5. THE APPLICATION

cloud of recorded positions, it paints the device trajectories as lines.

5.4.3 Building-to-Building

The method for extracting building to building movements relies on some
aggregation features of PostgreSQL as well as some grouping in the applica-
tion code. First, all trajectories for the given time range are selected from
the database as in Listing 5.2. The returned rows contain the device id and
its trajectory of recorded points along with the building name associated
with the recordings, ordered by the time they were sampled.

1 SELECT
2 device_id,
3 (
4 SELECT array_to_json(
5 array_agg(
6 row(longitude, latitude, building, created_at)
7 ORDER BY created_at
8)
9)

10) AS trajectory
11 FROM locations
12 GROUP BY device_id, salt_timestamp

Listing 5.2: Select trajectory of each device

Next, the rows are iterated through and each trajectory is flattened using
a simple heuristic: Only keep the records for which the next building is
not the same as the current, so if one trajectory was A B B B B C D D
E F F, it will be flattened to A B C D E F indicating that the user has
moved from A -> B -> C -> D -> E -> F. This may or may not be the
desired result, as one some times only wish to now that a user moved from
A -> F, but with this method the intermediate buildings also recorded as
a building-to-building movement.

Further, the list is reduced to a building matrix where the number of
“transitions” A -> B is the value for BuildingMatrixAB. The matrix
creation could possibly be expressed directly as SQL as well, but it was
found to be easier to implement in JavaScript. In the end a GeoJSON
feature collection of LineStrings is made for each transition, removing
those that have a value below a configurable threshold to reduce noise in the
visualization. For an enhanced visual appearance, the original LineStrings
of two points are converted to subtle bezier curves [43] containing many

5.4. DATA PROCESSING 45

points at the cost of a slight increase in file size.

5.4.4 Mapbox GL JS as a React Component

React utilizes a component based approach to user interface development
where each component is an independent highly reusable piece. Components
are defined as functions returning a representation of what the component
should look like given a set of properties, and React will go to great lengths
to try and determine how to do it using various mechanisms such as diff-ing
the output against an internal abstract representation of the DOM before
calling the real DOM altering methods[2]. This approach ensures that only
a minimal amount of changes must performed on the DOM on each update,
but does not comply well with libraries written outside this paradigm. As
a mean to interface with such libraries, React provides life cycle methods
for components that is invoked at certain times during the life cycle of a
component, for example when a component is mounted or is going to be
unmounted. Mapbox GL JS works on the DOM, so to make it play nicely
with React, a higher-order component called createMapboxContainer was
developed to let the map be controlled using the same standard React and
Redux mechanisms used by other parts of the UI, and making sure that
the map is ready before attempting to paint on it.

46 CHAPTER 5. THE APPLICATION

(a) Snapshot

(b) Movement

5.4. DATA PROCESSING 47

(c) Buildings

Figure 5.6: The different visualization modes
More screenshots of the application, including the different modes can be found in
Appendix A

48 CHAPTER 5. THE APPLICATION

Chapter 6

Results

This chapter presents results from using the application in form of patterns
and phenomena that can be discovered using it. A review of insights from
using the application the main research contribution. In addition, it gives
an evaluation of its performance characteristic and the capabilities of the
system in its current form.

6.1 Patterns and Phenomena

This section illustrates some peculiar patterns and phenomena found by
looking at the visualizations using the application developed in this project.
These images can shed light on possible errors in the dataset due to
inaccuracies, faulty trackers and other unknown reasons. Some of the
patterns have been evident also in previous work, but the new visualizations
provide a different, yet complementing view.

Outside Buildings

Figure 6.2 indicates that there are a lot of movements west of IT Vest.
However possible, it is unlikely that such a large amount of movement
should happen there and down the hill right outside. Figure 6.1 reveals a
rather impossible movement pattern. It indicates that devices have been
positioned outside the building in the upper floors of the tall Sentralbygg 1,
which is not likely due to the nature of physics. Using the distinguish floor
feature of the application, it is straightforward to conclude which floors are

49

50 CHAPTER 6. RESULTS

Figure 6.1: Devices floating in the air outside building boundaries

Figure 6.2: Considerable amount of devices outside F1

6.1. PATTERNS AND PHENOMENA 51

Figure 6.3: Considerable amount of devices outside P15

affected. Figure 6.3 reveals that may be people standing at the bus stop is
believed by the tracking system to be on the second or third floor. It also
shows many points located in the slopes down to Dødens Dal.

Circular Grids

The patterns illustrated in Figure 6.4 and Figure 6.5 reveal some form
of banding where positions are snapped to a circular grid. It is hard to
determine the cause of this phenomena, but it can probably be attributed
to either the precision of the tracking system or the renderer as discussed
in Section 2.5.

Straight Lines

Straight line artifacts are visible throughout the entire campus at any given
time, indicating that the tracking system have some issues with regards to
pin-pointing exact locations. These were seen in the previous work as well,
and the most likely cause is that the access points are positioned in a way
that makes triangulation and trilateration inaccurate. Figure 6.6 illustrates
this specifically, but the lines can also be seen in all the other figures.

52 CHAPTER 6. RESULTS

Figure 6.4: Dots in a circular grid

Figure 6.5: Circular grids in the entrance to Realfagbygget

6.1. PATTERNS AND PHENOMENA 53

Figure 6.6: Straight Lines are common in the dataset

Inaccurate Trajectories

Figure 6.7 shows the trajectory of a single device. There are some clear
fluctuations in the trace suggesting that the device is moving back and
forth, although it probably stands still. The processed version have filtered
out those segments of the trajectory where the speed from the previous was
less than 0.2 m/s and distance less than 20 meters, which can be a possible
heuristic to smoothen paths.

Uncovered Areas

Figure 6.8 illustrates a known fact regarding the tracking system. The
SINTEF buildings does not show any recorded positions, as they have their
own WLAN system separate to that of NTNU.

Areas No Longer Covered

Figure 6.9 reveals that the tracking may have stopped working in one
building at the campus after October 7th 2014. All the days leading up to
this date have numerous recordings for this particular building, but after

54 CHAPTER 6. RESULTS

(a) Original

(b) Processed

Figure 6.7: Inaccurate Trajectories

6.2. PERFORMANCE MEASUREMENTS 55

Figure 6.8: Known area not covered

this date they vanish. It shows how an application like this can be use to
detect anomalies and broken equipment.

Outliers

By using the Trajectory/Movement view as in Figure 6.10, it can be revealed
that there exists extreme outlier records. From the image one can spot
trajectories that goes through points far north-west of campus. This must
be an error since the recordings in this dataset should only be from the
NTNU Gløshaugen campus.

6.2 Performance Measurements

The most important aspects in terms of performance when it comes to
an web application like Crowds, from a user’s point of view, is the time
taken to find and process the data from the storage layer, as well as
the time and resources required to transfer the tiles from the server and
actually render and interact with the visualization on the client. The
former is mostly limited by the available computing power on the server

56 CHAPTER 6. RESULTS

and how the database is indexed and the processing algorithms, while
the latter is limited by factors such as network and available hardware
on the user’s computer, which is less easily controlled than the server
resources. The hardware on the server can easily be managed and changed
to accommodate new requirements by the people responsible for technical
matters in an organization given enough funds. In this section, performance
characteristics of the application will be evaluated.

The server component of the system was running on a desktop machine
with an Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz with 16 GB of RAM
and a SSD drive. The client was tested on a 2016 MacBook Pro with a
2.0GHz dual-core Intel(R) Core(TM) i5 CPU and a Intel(R) Iris Graphics
540 GPU.

6.2.1 Fetching Data From the Database

All of the tests were performed in serial to avoid the penalty each test could
receive by running them in parallel which could invalidate comparisons.

Figure 6.11 shows that the time taken to execute a range snapshot query
scales linearly with the number of rows retrieved. Each line in the graph
represents a query for one particular day of a week run with different
range sizes yielding a different row count. The queries were run multiple
times and the median of the execution time was plotted. The execution
times were captured using the EXPLAIN ANALYZE feature of PostgreSQL.
By prepending this statement to a SQL query, the query will be planned
and actually executed returning statistics such as elapsed time and row
count. However, it does not return the rows that were found to the client.
Due to this fact, the elapsed time do not include the transfer time of data
from disk, but this can be calculated given the specification of the disk
drives installed.

The dataset used in this project can not really be classified as Big Data.
None of the three Vs of big data is fulfilled. The volume can seem large, but
it can easily fit into RAM of a well-equipped modern server as it is less than
100GB. The data is historical and static, so there is no velocity. Finally,
all the records have the same structure yielding no variety. However, once
data is collected in real-time at regular intervals, these characteristic will
be met and one can talk about it as big data [24].

Consequently, the entire dataset could fit into RAM of a decently equipped

6.2. PERFORMANCE MEASUREMENTS 57

server, which should in theory yield a speedup of orders of magnitude. This
is a question of cost / utility, but RAM is not to expensive, and if one were
to do some real analysis it may be worth it.

Timings for three different phases as a function of time range sizes are
shown in Figure 6.12, Figure 6.13 and Figure 6.14 for snapshots, movements
and buildings respectively. The Explain Analyze shows the time taken to
find the correct records minus transfer time from disk, pg2geojson shows
the time taken to produce the GeoJSON, and geojson2mbtiles the time
taken to build the MBTiles from the GeoJSON. The graph shows that it
scales linearly with the range size (which should correspond to increased
row count). Figure 6.13 show that the data processing stops for ranges over
48 hours because resources have been exhausted. The explain analyze
in the database continues confirming that the bottleneck is the processing
code.

Figure 6.17 shows how the size of the MBTiles and GeoJSON evolve for
each of the modes as a function of the data size. For snapshots both
increase linearly with different slopes, whereas the MBTiles are nearly
constant for buildings. Buildings have a theoretical maximum of N × N
lines where N is the number of buildings, so we see that the curve flats
out as expected. Most interesting is probably the results for movements.
It shows that the MBTiles get exceedingly large compared to GeoJSON
for on-disk storage. Further, one can see that the graph stops at about
at 110,000 devices meaning that processing failed when data reached this
threshold. It is suspected that the processing code runs out of RAM. Given
the large MBTiles size for movement trajectories, it might be reconsidered
to use this for this mode due to its large server resource consumption.
However, the transfer speed benefits to the client is still present.

6.2.2 Tile Optimizations

Tippecanoe can optimize the generated tiles by simplifying the geometries at
different zoom levels. Figure 6.15 illustrates how using these optimizations
affect the visual outcome. The parameter --base-zoom defines the level
at or above which all points are intact, so by setting this low, most of the
tiles will have all data. It is worth noticing that the small geographical
area in question here is only visible at high zoom levels. The options
no-skip-tiles and no-skip-features can be set to disable optimizations
altogether.

58 CHAPTER 6. RESULTS

Enabling the optimizations make the tile sets smaller in physical size by
removing data. This can be acceptable at the lower zoom levels as long
as you can get the full and authentic picture when zooming in. At lower
zoom levels, geometries tend to have a higher degree of overlap, possibly
making it visually indistinguishable. Also, it is not always desired or even
possible to get the full detail at lower zoom levels. However, these kinds
of optimizations is likely more useful when a larger geographical area is
studied.

The experimentation shows that the disk size of one MBTile is roughly the
same as the size of its gzipped GeoJSON counterpart, but approximately
30% of the uncompressed GeoJSON. Clearly, for disk storage and network
transfer the compressed version is the most important. This result shows
that there are no savings of storing the MBTiles vs GeoJSON regarding
server disk space when the GeoJSON is stored gzipped. However, when
transferring data to the browser there are considerable savings. Recall from
Section 2.8.3 that the server need not send all the tile data, only what is
currently in the viewport at a given zoom level. Thus, the net amount of
transferred data dramatically decreases when using this approach. Granted,
if the user interacts with the map in a way that the entire map becomes
visible, and thus incurs loading lots of tiles, the total amount transferred
may exceed that of loading the GeoJSON beforehand, but the perceived
performance was increased by having visualizations rendered progressively.

For example, a tile set containing 8 hours of data between October 1st 2014
at 8:00 and October 1st 2014 16:00, the gzip compressed GeoJSON has a
file size 17 MB, the entire set of MBTiles is also 17 MB, but the client only
needs to download 12 tiles (Figure 6.16) with a total size of 2.73 MB to
render the tiles needed to cover the viewport at zoom level 16.

6.2. PERFORMANCE MEASUREMENTS 59

(a) Monday 6th of October

(b) Tuesday 7th of October

60 CHAPTER 6. RESULTS

(c) Wednesday 8th of October

Figure 6.9: Building suddenly becoming uncovered

6.2. PERFORMANCE MEASUREMENTS 61

Figure 6.10: Records that are clearly outliers
Note the trajectories heading north-west

Figure 6.11: Query Time

62 CHAPTER 6. RESULTS

Hours Rows Analyze
(s)

JSON
(s)

MBTile
(s)

JSON
(MB)

MBTile
(MB)

2 46,282 0.25 2.83 2.02 11.81 4.17
4 89,895 0.45 2.77 2.00 11.81 4.16
6 133,419 0.66 5.11 3.44 20.65 6.93
8 212,442 1.00 6.50 4.41 25.89 8.54
10 585,744 2.75 7.15 4.79 28.25 9.24
12 1,089,626 5.28 7.48 4.99 29.39 9.58
14 1,504,540 7.98 7.73 5.02 30.18 9.81
16 1,504,592 10.04 8.08 5.13 30.87 10.01
18 1,856,085 11.84 8.31 5.21 31.54 10.20
20 2,092,119 12.88 8.67 5.49 32.94 10.62
22 2,223,229 13.41 11.08 6.96 41.68 13.30
24 2,296,170 13.72 14.45 9.09 54.19 17.10
26 2,350,931 13.94 18.32 11.34 68.14 21.21
28 2,401,834 14.21 22.12 13.62 81.16 25.02
30 2,452,354 14.44 24.76 14.99 89.66 27.53
32 2,536,820 14.84 26.08 15.88 94.19 28.87
34 2,900,398 16.60 26.92 16.00 96.52 29.57
36 3,414,160 19.18 27.15 16.32 97.72 29.93
38 3,974,005 22.11 27.57 16.59 98.54 30.16
40 4,508,362 24.89 27.67 16.76 98.71 30.21
42 4,879,315 26.84 28.55 16.75 99.36 30.40
44 5,110,501 27.95 28.65 17.07 100.71 30.80
46 5,248,653 28.49 31.54 18.39 108.94 33.23
48 5,332,929 28.84 34.56 20.42 120.89 36.75
56 6,998,437 42.50 46.06 26.42 157.71 47.53
64 7,344,297 44.26 47.75 27.56 162.97 49.07
72 8,320,520 50.38 54.17 30.58 183.37 54.95
80 9,953,053 60.93 65.06 37.71 219.45 65.23
88 10,265,007 62.27 68.97 38.46 223.83 66.50
96 11,126,514 67.64 72.74 43.41 240.98 71.41

Table 6.1: Tile Data for Snapshot

6.2. PERFORMANCE MEASUREMENTS 63

Hours Rows Analyze
(s)

JSON
(s)

MBTile
(s)

JSON
(MB)

MBTile
(MB)

2 46,282 0.24 2.67 0.82 8.71 0.39
4 89,895 0.45 2.60 0.80 8.71 0.38
6 133,419 0.67 4.77 1.46 15.84 0.70
8 212,442 0.99 6.16 1.80 19.74 0.90
10 585,744 2.27 6.80 2.00 21.99 0.99
12 1,089,626 4.12 7.17 2.06 22.67 1.03
14 1,504,540 6.07 7.49 2.10 22.82 1.04
16 1,504,592 10.09 7.77 2.10 23.05 1.06
18 1,856,085 12.48 8.04 2.11 23.05 1.05
20 2,092,119 13.58 8.52 2.17 23.87 1.07
22 2,223,229 14.27 14.46 2.42 26.42 1.19
24 2,296,170 14.65 17.82 2.66 29.05 1.28
26 2,350,931 14.98 21.49 2.92 31.83 1.35
28 2,401,834 15.30 25.36 3.21 35.06 1.44
30 2,452,354 15.64 28.36 3.42 36.78 1.51
32 2,536,820 16.09 29.97 3.45 37.53 1.55
34 2,900,398 17.80 30.81 3.49 38.06 1.57
36 3,414,160 21.28 31.61 3.54 38.36 1.58
38 3,974,005 24.25 32.10 3.54 38.36 1.59
40 4,508,362 27.17 32.54 3.54 38.36 1.58
42 4,879,315 29.28 32.76 3.54 38.36 1.58
44 5,110,501 31.39 33.20 3.56 38.81 1.60
46 5,248,653 31.35 35.48 3.75 40.38 1.65
48 5,332,929 31.83 39.01 3.86 42.04 1.70
56 6,998,437 46.88 51.67 4.41 47.74 1.94
64 7,344,297 49.48 54.07 4.45 48.04 1.96
72 8,320,520 55.84 61.14 4.97 50.75 2.09
80 9,953,053 68.82 74.89 5.13 54.95 2.24
88 10,265,007 70.41 77.06 5.17 55.25 2.26
96 11,126,514 76.20 82.37 5.24 56.15 2.30

Table 6.2: Tile Data for Buildings

64 CHAPTER 6. RESULTS

Hours Rows Analyze
(s)

JSON
(s)

MBTile
(s)

JSON
(MB)

MBTile
(MB)

2 1,858 0.14 2.38 32.70 3.59 124.91
4 2,050 0.26 2.32 31.97 3.59 124.94
6 2,267 0.39 4.39 33.37 5.47 134.12
8 6,044 0.58 5.78 33.79 6.50 139.20
10 16,646 1.36 6.37 33.94 7.01 141.99
12 24,290 2.45 6.74 33.82 7.27 143.28
14 29,616 4.98 7.25 37.95 7.49 158.27
16 29,616 6.85 7.55 37.89 7.60 158.51
18 33,954 8.65 7.61 37.84 7.68 158.74
20 36,208 9.42 8.25 40.09 8.31 166.76
22 37,371 9.89 14.45 100.88 10.83 394.82
24 37,901 10.15 17.69 168.33 13.20 640.94
26 38,954 10.38 21.90 202.46 15.55 775.49
28 39,155 10.55 25.99 217.04 17.67 858.58
30 39,328 10.85 29.23 218.63 19.28 866.46
32 43,024 11.19 31.31 219.86 20.28 871.39
34 54,042 12.49 32.40 221.25 20.81 887.76
36 61,254 15.10 33.00 223.41 21.09 896.67
38 67,242 17.18 33.48 228.62 21.32 918.37
40 72,190 19.19 34.56 230.41 21.35 918.53
42 75,795 20.63 35.16 230.59 21.45 918.82
44 77,881 21.61 36.77 247.67 22.12 985.89
46 79,064 22.20 38.67 293.52 24.65 1180.03
48 79,601 22.51 43.07 335.76 27.14 1355.84

Table 6.3: Tile Data for Trajectory. The row counts are smaller than in
snapshot and buildings due to the rows being grouped by device.

Option Description
no-skip-features Don’t skip features
no-skip-tiles Don’t skip tiles
base-zoom 16

Table 6.4: Tippecanoe Options

6.2. PERFORMANCE MEASUREMENTS 65

Figure 6.12: Timings for queries run in Snapshot mode.

66 CHAPTER 6. RESULTS

Figure 6.13: Timings for queries run in Movement mode.

6.2. PERFORMANCE MEASUREMENTS 67

Figure 6.14: Timings for queries run in Buildings mode.

68 CHAPTER 6. RESULTS

(a) baseZoom=16 at z=14 (b) baseZoom=14 at z=14

(c) baseZoom=16 at z=16 (d) baseZoom=14 z=16

Figure 6.15: Effects of using Tippecanoe Optimizations

Figure 6.16: Screenshot of requests made by Chrome for zoom level 16

6.2. PERFORMANCE MEASUREMENTS 69

(a) Snapshot

(b) Buildings

70 CHAPTER 6. RESULTS

(c) Movement

Figure 6.17: File size of MBTiles and GeoJSON

Chapter 7

Discussion

7.1 Patterns
The patterns visualized using the application has indicated that there are
inaccuracies in the position data, and different phenomena that occurs for
currently unknown reasons. There is no way to be absolutely certain of
reasons for these phenomena. For device trajectories possible reasons for
seemingly wrong or unusual patterns may include factors such as

• Device batteries lost: Devices may run out of batteries at some time
during a movement.

• People making unexpected turns due to some external factor such as
seeing or meeting acquaintances

• Walking at the edge of coverage. People may be wandering in areas
were there are little or no coverage, e.g. between the reach of two
access points. When people are moving between two buildings, the
position may be assigned to either of the buildings and even be
assigned to both in a single movement.

• People turning off Wi-Fi on their devices for battery saving purposes.
• People wanting to explore new paths on campus different from what

is considered the “best” path.

These also apply in the general case, along with the possibility that there
is an inherent inaccuracy in the positioning hardware or that its it mis-
calculating. It is not easy to determine the root cause of these patterns,

71

72 CHAPTER 7. DISCUSSION

and some patterns may be unusual, yet in fact real. The equipment do
not have extreme accuracy (around 10 meters), and to figure out to which
degree a pattern is wrong or right, one must compare with data from
different equipment to increase the certainty of either possibility. One
could imagine trying to apply machine learning on the dataset to determine
correct positions, but it would need correct training data impossible to get
if one does not have a perfect tracking system. The patterns found using
the application can aid in future development of cleaning data cleaning
methods, and the application itself can be used to test such methods.

7.2 Performance
The perceived performance is the performance experienced by the user
interacting with the systems. By focusing on perceived performance one can
increase a users’ productivity [42]. Having fluid transitions and responsive
user interface elements are vital in this manner. Some metrics to measure
perceived performance include:

• First Paint The first time something actually becomes visible on
screen. It does not imply that everything is available, only that
something is present. In this project, it is not really an interesting
metric apart from confirming that loading is actually in progress and
the server is not down.

• Time to Interactive The time taken from opening a web page until
the user can interact with it. A very important metric for applications
relying heavily on user interaction, but less important for read-only
content.

• Frames Per Seconds Measure the number of frames rendered by
second, 60 FPS is considered a requirement for a 100% fluid experience
in games and animations, but less FPS may be acceptable in selected
cases.

An important factor for great perceived performance is that the UI thread is
not blocked. Traditionally, heavy CPU computations on the main browser
thread has penalized performance and rendered apps virtually useless during
these computations due to an unresponsive interface. However, with the
advent of Web Workers, processor intensive work can be run in background

7.3. MBTILES VS GEOJSON 73

threads, leaving the UI responsive and open to user interaction. In this
application, computing map projections are done in Web Workers and
rendering is done by the GPU, so the user interface is not blocked during
these operations. Users can therefore continue using the application while
maps are rendering.

When the time range exceeds 48 hours, the panning interaction begins to
feel sluggish on the MacBook and the perceived performance decreased.
However, it is still to be considered usable. This range corresponds to over
5 million points as shown in Table 6.1. 72 hours worth of data can also be
rendered, albeit with even slower interactions. For data corresponding to
time ranges above this the performance starts to suffer and loading times
increase due to large tile sizes.

7.3 MBTiles vs GeoJSON

The results has shown that using the tiling approach facilitated by MBTiles
can give a gain compared to sending raw GeoJSON. The gain will become
even more prominent when the geographical area in question is larger,
and thus less of the entire space is visible in the viewport at once. Using
MBTiles, smaller chunks of data can be loaded progressively and rendering
can start immediately. With raw JSON on the other hand, everything must
be loaded upfront [1]. Although, in the end the total amount of data to
be rendered will be the same, resulting in the same limits for how much
data the rendering engine can practically deal with. The experiments also
revealed that the MBTiles got exceedingly large for line trajectories, and
that for this particular application, they may not be the best fit despite
their benefits when it comes to loading features onto the client map.

In any event, the research shows that it would require large amount of disk
space to run this application. Not only is the database itself rather large,
but with all the cached tiles that accumulate after using the application for
a period of time, the disk requirements will continue to increase. But in the
current iteration of the application, it was found necessary as it would take
too long time to wait for the database on every request for a particular
slice of the dataset.

74 CHAPTER 7. DISCUSSION

7.4 Fulfillment of Requirements
Section 4.3 defined a set of requirements for the application. Table 7.1
shows to which degree these were considered fulfilled.

Requirement Fulfilled Comment
FR1 Yes
FR2 Yes Everything can be explored, but not at

once
FR3 Yes There are limits to how large the ranges

can be
FR4 Yes
FR5 Yes Object of interests currently include only

buildings
FR6 Yes
FR7 No
FR8 Yes
FR9 Partially Only for the buildings mode
NRF1 Yes
NRF2 Partially Depends on the system to integrate with
NRF3 Yes Standards have been used where applicable

Table 7.1: Fulfillment of Requirements

7.5 Usability
A thorough usability test on different user groups has not been carried out
in this project, as it was suspected that the feedback would most likely
coincide with data gathered in previous work. The application in its current
state is more of a research platform, than tailored to a specific business case.
The usability is therefore not measured in terms of factors such as perceived
usefulness or perceived ease of use [16], but rather in terms of achievable
performance and how it can be used to shed new light on presented data.

Although evaluating the usability using standard methods has not been a
primary focus, making the system easy and fairly intuitive to use has been
a goal and being iterated on through the lifetime of the project. Initially,
the prototype focused more on backend systems with a very basic user
interface, but later iterations have been incorporating new usability features
suggested by people casually testing the application.

7.6. INTEGRATING WITH OTHER SYSTEMS 75

7.6 Integrating With Other Systems
Most of the data used by this platform uses standardized formats such
as GeoJSON and Vector Tiles. By using standardized techniques it will
most likely be easier to integrate with other platforms, as suggested by the
feedback received in Aulie’s work[10]. Vector tiles are supported by multiple
web map solutions, with increasing support, meaning that it should be
possible to interchange the underlying technologies without making already
processed data unusable. Since the raw data reside in a database universally
supported on many platforms, it is also easy to use the same data in other
applications where requirements are different. For example, if a researcher
only needs to aggregate numbers of the data, writing a SQL query is
straightforward.

7.7 Feedback From Others
The system was presented in a meeting with Morten Hatling from SINTEF
and he provided some feedback on the prototype and what kind of tasks it
could be used for in selected contexts. In the meeting a few specific areas
were concretized. It was mentioned that it would be useful to specialize
the application to an even smaller scale. For some stakeholders only one
building is of interest, and it could be useful to focus the application around
specific buildings. This would in turn decrease the amount of data necessary
for a visualization, increasing the performance of the system.

7.8 Aggregate Dates vs. Date Ranges
As discussed in Section 5.3.2, the application currently supports two different
modes of slicing data at date boundaries. Range mode selects contiguous
data between two given timestamps. Aggregate on the other hand takes
an array of days and and array of hours, and uses the day_of_week and
hour_of_day columns to find matching entries. This allows the user to
request data from “Mondays at 12” or “Saturdays and Sundays between 10
and 12”. These kinds of queries are fairly straightforward to express using
SQL. However, data sizes can quickly escalate when using the aggregates,
so with the current approach is must be used with care. Ideally, this feature
could give the user the possibility of comparing weekdays to weekends and
even holidays to regular days, but for the largest of the aggregates this is
not really feasible in the current state due to the number of points.

76 CHAPTER 7. DISCUSSION

7.9 Other Potential Usages

Figure 7.1: Distribution of time spent at campus

Figure 7.1 shows an approximate distribution of how long people stay
at campus for four given days. Each bar represents one hour up to the
next, meaning that the second bar shows number of people who have been
assumed to be at campus between one and two hours, whereas the first
shows people who have been there for less than an hour. There are of
course some inherent faults with these results. It only measures people
whose devices have been recorded more than one time, and will not take
into account devices that have lost battery or people who have left and
come back one or more times. The actual count could therefore be much
less or much larger. Nevertheless, it illustrates a possible use case using an
aggregation of tracking data, and also states the usefulness of a structured
query language for analyzing data. Having a database with great query
capabilities makes it easier to ask different questions about the data than
having it in e.g. JSON files, as was done before.

Chapter 8

Conclusion and Future Work

This project has investigated how an improved web application can be
developed to help visualizing considerable amounts of positioning data in a
performant manner, to aid in the process of discovering or confirming known
and unknown patterns in the data. At the same time it has demonstrated
the capabilities of the web platform and PostGIS for such applications. The
application has been built using popular industry standard tools and is to
be considered usable for further research tasks. The results from exploration
using the tool provide both new and confirms previously seen patterns in
the available dataset, and can be a valuable tool for when reasoning about
the dataset and developing data cleaning methods. The performance of
the artifact has been evaluated and patterns from the dataset have been
presented. The research shows that PostgreSQL with PostGIS and Mapbox
provide a good foundation for building position data visualization apps
that can be run in a browser. The knowledge contribution from this Design
Science Research project (see Section 3) is images of various phenomena in
the dataset and an evaluation of the fruitfulness of using web technologies
for building the tools to create them.

8.1 Research Questions

RQ1: What are the limits of the web platform and PostGIS for building
data-heavy visualization applications?

The results show that rendering performance starts to suffer in the browser

77

78 CHAPTER 8. CONCLUSION AND FUTURE WORK

when the amount of features to be rendered exceeds roughly 8 millions. It
was expected that there would be a limit as to how much it could handle,
but it nevertheless shows that the browser is capable of handling fairly
large quantities. PostGIS was found to be a useful tool when dealing with
geographical data, it provides an easy mean of querying the data and can
also support more intricate queries than what has been used here.

RQ2: Is it possible to build a reasonably performant visualization using
existing web maps and database technologies?

The research concludes that it is possible to build reasonably performant
visualizations with a large amount of feature using Mapbox and Postgis.
Even though the queries took some time to execute on the testing machine,
the performance can theoretically be increased by installing better hardware.
By caching the results as tiles they can be transferred and loaded fast on
the client on subsequent runs.

RQ3: What kind of patterns can be revealed and confirmed by a human
research utilizing the application?

Visualizations made by the application reveal known and unknown patterns
in the datasets, and more can likely be discovered by more extensive usage
and investigation. The patterns are naturally similar to the previous, as
they are based on the same data, but a slightly different detail is provided.
The visualizations reveal patterns that are very likely to be erroneous, but
only can be confirmed through further experiments. Consequently, the
application can be used as a tool when developing methods for cleaning
the datasets.

RQ4: Can visualization methods different from the ones used in previous
work give new insights?

Different methods of visualizations can provide new insights. Earlier work
have used heat maps which are very good at giving the overall picture, but
by using point clouds and trajectories one can get an even more fine-grained
and detailed picture where it may be easier to detect low-level issues.

8.2. FUTURE WORK 79

8.2 Future Work
Investigate movements recorded between floors where a trajectory starts in
one floor and continues in another. The floors on campus are not necessarily
at the same level physically. The first floor of one building may for instance
align better with the second floor of another due to inherent geographical
phenomena like slopes. In this, it also lies a possibility to find better
visualizations of trajectories between floors.

Simpler aggregates for larger time ranges. The results from this work has
shown that it is not feasible to provide a snapshot dot map for datasets
much larger than up to 10 million points. To provide for such a use case,
the points could be clustered into smaller areas and for example colored
based on number of points using either squares, circles or hexagons binning
approaches. This removes the ability to do fine-grained pattern discovery,
but could paint a broader picture of for example seasonal differences or
differences between weekdays and weekends. An example query utilizing
clustering with PostGIS is given in Appendix B.4.

The origin-destination matrix could be extended from only taking buildings
into account, to accept multiple user-defined “objects of interest” such as
specific rooms, cafés or other similar points of interest.

In a meeting with potential interested parties it came up that it would
be useful to tailor this application for specific buildings with specialized
features, as building managers were often responsible for a single building,
or that their main line of work revolved around a particular building.

Compare patterns resulting for the old tracking equipment with results
from newer equipment to spot differences and see if there are improvements.
This project has presented some patterns from the older equipment and
possible reasons, but there should be conducted experiments to compare
and thereby increase the trustworthiness of the data.

Finally, it could probably be interesting to tailor the application to real-time
use cases where you not only use the historical data, but can visualize data
captured in nearly real-time to allow to watch movement patterns around
campus in real-time. This would entail building a pipeline for processing
new data on the fly and make an adapter for displaying it in the application.

80 CHAPTER 8. CONCLUSION AND FUTURE WORK

Appendix A

Screenshots of the
Application

81

82 APPENDIX A. SCREENSHOTS OF THE APPLICATION

Figure
A
.1:

Trajectory
m
ode

w
ith

light
background

m
ap

tiles

83

Fi
gu

re
A
.2
:
Sn

ap
sh
ot

m
od

e
w
ith

th
e
flo

or
pi
ck
er

an
d
he

lp
te
xt

op
en

84 APPENDIX A. SCREENSHOTS OF THE APPLICATION

Figure
A
.3:

B
uildings

m
ode

show
ing

inter-building
m
ovem

ents

85

Fi
gu

re
A
.4
:
M
ov
em

en
t
m
od

e
w
ith

th
e
de

fa
ul
t
da

rk
ba

ck
gr
ou

nd
an

d
da

te
pi
ck
er

op
en

86 APPENDIX A. SCREENSHOTS OF THE APPLICATION

Figure
A
.5:

Snapshot
m
ode

w
ith

distinguished
floors

Appendix B

Digital Attachments

B.1 Source Code and Figures

The source code for the application and high resolution screenshots are
attached as a Zip-file: attachments.zip.

B.2 How To Install the System

The following instructions show how to install the system with its depen-
dencies on Ubuntu.

Install Node.js
curl -sL https://deb.nodesource.com/setup_8.x | sudo -E bash -
curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg \
| sudo apt-key add -

echo "deb https://dl.yarnpkg.com/debian/ stable main" \
| sudo tee /etc/apt/sources.list.d/yarn.list

sudo apt-get update
sudo apt-get install -y build-essential nodejs yarn

Install Redis and Postgres
sudo apt-get install -y python-software-properties

87

88 APPENDIX B. DIGITAL ATTACHMENTS

sudo add-apt-repository -y ppa:chris-lea/redis
sudo apt-get update
sudo apt-get install -y redis-server
sudo apt-get install -y postgresql postgresql-contrib
sudo -u postgres -i
createuser crowds

Install Tippecanoe (https://github.com/mapbox/tippecanoe)
sudo apt-get install build-essential libsqlite3-dev zlib1g-dev
git clone git@github.com:mapbox/tippecanoe.git
cd tippecanoe
make
make install

Download and install dependencies
cd path/to/crowds
yarn

Create a config file named .env
cat <<EOF > .env
export PGUSER=crowds
export PGDATABASE=posdata_with_acc
export PGPASSWORD=""
export PGHOST=localhost
export PGPORT=5432
export REACT_APP_API_URL=http://localhost:3000
export REACT_APP_MAPBOX_TOKEN="mapbox token from mapbox.com"

EOF

export NODE_ENV=production
source .env

Build the JS and CSS assets
yarn run build

Run the system (server + workers)
Could also use http://supervisord.org to run as a daemon.
NODE_ENV=production PORT=3000 yarn start

B.3. DATABASE SCHEMA 89

B.3 Database Schema

--- Must enable the PostGIS extension
CREATE EXTENSION postgis;

--- Table structure for our recordings
CREATE TABLE locations(

id bigserial primary key,
device_id varchar(100),
location geometry(POINT),
latitude float,
longitude float,
accuracy float,
campus varchar(100),
building varchar(100),
floor varchar(50),
hour_of_day smallint,
day_of_week smallint,
created_at bigint,
salt_timestamp bigint

);

--- Add indices for faster queries
CREATE INDEX idx_date ON locations (created_at);
CREATE INDEX idx_floor ON locations (floor);
CREATE INDEX idx_hour_day ON locations(hour_of_day, day_of_week);
CREATE INDEX idx_device ON locations (device_id);
CREATE INDEX idx_building ON locations (building);
CREATE INDEX idx_device_day ON locations(device_id, salt_timestamp);
CREATE INDEX idx_day_hour ON locations(day_of_week, hour_of_day);

--- Clean up some data
UPDATE locations SET floor = '12. etasje' WHERE floor = '12. etasjen'
UPDATE locations SET floor = '1. etasje' WHERE floor = '1. Etasje'

-- This should be run after data is imported to create the PostGIS
-- point geometry from the (lat,lng) tuple.
UPDATE locations SET location = ST_MakePoint(longitude, latitude)
WHERE location IS NULL

90 APPENDIX B. DIGITAL ATTACHMENTS

B.4 Example Queries
-- Simple clustering
WITH less_data AS (

SELECT * FROM locations LIMIT 10000
)
SELECT

COUNT(location) AS count,
ST_AsGeoJSON(

ST_Expand(
ST_Centroid(ST_Collect(location)

), 0.001)
) AS center

FROM less_data
GROUP BY ST_SnapToGrid(location, 0.001)

-- Weekends at 12:00
SELECT *
FROM locations
WHERE day_of_week IN (6,7) AND hour_of_day = 12;

Appendix C

List of Technologies

This chapter enumerates all the important frameworks and technologies
used in this project along with a short description.

Node.js JavaScript runtime for servers.

PostgreSQL Relational Database System.

Mapbox GL JS JavaScript library using WebGL to render interactive
maps.

Webpack Module Bundler for JavaScript and CSS.

React Declarative UI Library for JavaScript applications.

Kue A job queue based on Redis for Node.js.

Redis An in-memory data structure store.

Tippecanoe Build vector tiles from small and large sets of GeoJSON
features.

91

92 APPENDIX C. LIST OF TECHNOLOGIES

Bibliography

[1] How web maps work. https://www.mapbox.com/help/
how-web-maps-work/, Last accessed: 29.05.2017.

[2] React reconciliation. https://facebook.github.io/react/docs/
reconciliation.html, Last Accessed: 18.04.2017.

[3] Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, and Christian
Tominski. Visualization of Time-Oriented Data. Human-Computer
Interaction Series. Springer, 2011.

[4] S.H. Andresen, J. Krogstie, and T. Jelle. Lab and research activities
at wireless trondheim.

[5] G. Andrienko and N. Andrienko. Spatio-temporal aggregation for
visual analysis of movements. In 2008 IEEE Symposium on Visual
Analytics Science and Technology, pages 51–58, Oct 2008.

[6] G. Andrienko, N. Andrienko, P. Bak, D. Keim, S. Kisilevich, and
S. Wrobel. A conceptual framework and taxonomy of techniques for
analyzing movement. J. Vis. Lang. Comput., 22(3):213–232, June
2011.

[7] Gennady Andrienko, Natalia Andrienko, and Georg Fuchs. Under-
standing movement data quality. Journal of Location Based Services,
10(1):31–46, 2016.

[8] Gennady Andrienko, Natalia Andrienko, Christophe Hurter, Salvatore
Rinzivillo, and Stefan Wrobel. Scalable analysis of movement data
for extracting and exploring significant places. IEEE Transactions on
Visualization and Computer Graphics, 19(7):1078–1094, July 2013.

93

https://www.mapbox.com/help/how-web-maps-work/
https://www.mapbox.com/help/how-web-maps-work/
https://facebook.github.io/react/docs/reconciliation.html
https://facebook.github.io/react/docs/reconciliation.html

94 BIBLIOGRAPHY

[9] Natalia V. Andrienko and Gennady L. Andrienko. Spatial generaliza-
tion and aggregation of massive movement data. IEEE Trans. Vis.
Comput. Graph., 17(2):205–219, 2011.

[10] Kristoffer Gebuhr Aulie. Human mobility patterns from indoor posi-
tioning systems. Master’s thesis, NTNU, 2015.

[11] T.A. DeFanti B.H. McCormick and M.D. Brown. Visualization in
scientific computing. 21(6), 1987.

[12] Gergely Biczók, Santiago Diez Martinez, Thomas Jelle, and John
Krogstie. Navigating mazemap: indoor human mobility, spatio-logical
ties and future potential. CoRR, abs/1401.5297, 2014.

[13] H. Butler, M. Daly, A. Doyle, Sean Gillies, T. Schaub, and T. Schaub.
The GeoJSON Format. RFC 7946, August 2016.

[14] W. Chen, F. Guo, and F. Y. Wang. A survey of traffic data visualization.
IEEE Transactions on Intelligent Transportation Systems, 16(6):2970–
2984, Dec 2015.

[15] CubeWerx. Figure of tiled map. http://www.cubewerx.com/
technology/wmts/, Last Accessed: 27.02.2017.

[16] Fred D. Davis. Perceived usefulness, perceived ease of use, and user ac-
ceptance of information technology. MIS Q., 13(3):319–340, September
1989.

[17] Ramez A. Elmasri and Shankrant B. Navathe. Fundamentals of
Database Systems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 3rd edition, 1999.

[18] Jeppe Benterud Eriksen. Visualization of crowds from indoor position-
ing data. Master’s thesis, NTNU, 2015.

[19] Nivan Ferreira, James T. Klosowski, Carlos Eduardo Scheidegger, and
Cláudio T. Silva. Vector field k-means: Clustering trajectories by
fitting multiple vector fields. CoRR, abs/1208.5801, 2012.

[20] I. Fette and A. Melnikov. The websocket protocol. RFC 6455, RFC Ed-
itor, December 2011. http://www.rfc-editor.org/rfc/rfc6455.
txt.

http://www.cubewerx.com/technology/wmts/
http://www.cubewerx.com/technology/wmts/
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt

BIBLIOGRAPHY 95

[21] Eric Fischer. Mapping extremely dense point data with vector
tiles. https://www.mapbox.com/blog/vector-density/, Last Ac-
cessed: 20.03.2017.

[22] Eric Gundersen. Announcing mapbox gl js. https://www.mapbox.
com/blog/mapbox-gl-js/, Last Accessed: 20.01.2017.

[23] Tor Arne Lyngstad Holten. Evaluation of the accuracy of positioning
data for representing room usage. Master’s thesis, NTNU, 2016.

[24] H. V. Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis
Papakonstantinou, Jignesh M. Patel, Raghu Ramakrishnan, and Cyrus
Shahabi. Big data and its technical challenges. Commun. ACM,
57(7):86–94, July 2014.

[25] Jan Ježek, Karel Jedlička, Tomáš Mildorf, Jáchym Kellar, and Daniel
Beran. Design and Evaluation of WebGL-Based Heat Map Visualization
for Big Point Data, pages 13–26. Springer International Publishing,
Cham, 2017.

[26] Sean Kandel, Jeffrey Heer, Catherine Plaisant, Jessie Kennedy, Frank
van Ham, Nathalie Henry Riche, Chris Weaver, Bongshin Lee, Do-
minique Brodbeck, and Paolo Buono. Research directions in data
wrangling: Visuatizations and transformations for usable and credible
data. Information Visualization, 10(4):271–288, October 2011.

[27] Tijmen R. Klein, Matthew van der Zwan, and Alexandru Telea. Dy-
namic multiscale visualization of flight data. In Sebastiano Battiato
and José Braz, editors, VISAPP (1), pages 104–114. SciTePress, 2014.

[28] Magnus Alderslyst Kongshem. Scalable database architecture for
human indoor mobility systems. Master’s thesis, NTNU, 2016.

[29] Thomas Liebig, Gennady Andrienko, and Natalia Andrienko. Methods
for analysis of spatio-temporal bluetooth tracking data. Journal of
Urban Technology, 21(2):27–37, 2014.

[30] Mapbox. Tippecanoe (software). https://github.com/mapbox/
tippecanoe/, Last Accessed: 31.05.2017.

[31] Mapbox. Mbtiles specification. https://github.com/mapbox/
mbtiles-spec, Last Accessed: 24.04.2017, 2017.

https://www.mapbox.com/blog/vector-density/
https://www.mapbox.com/blog/mapbox-gl-js/
https://www.mapbox.com/blog/mapbox-gl-js/
https://github.com/mapbox/tippecanoe/
https://github.com/mapbox/tippecanoe/
https://github.com/mapbox/mbtiles-spec
https://github.com/mapbox/mbtiles-spec

96 BIBLIOGRAPHY

[32] R. Mautz. Indoor Positioning Technologies. Geodätisch-
geophysikalische Arbeiten in der Schweiz. ETH Zurich, Department of
Civil, Environmental and Geomatic Engineering, Institute of Geodesy
and Photogrammetry, 2012.

[33] MazeMap. Mazemap js api docs. http://api.mazemap.com/js/v1.
2.1/docs/, Last Accessed: 20.01.2017.

[34] Granville Miller and Laurie Williams. Personas: Moving beyond
role-based requirements engineering, 2006.

[35] Rovshen Nazarov and John Galletly. Native browser support for 3d
rendering and physics using webgl, html5 and javascript. In Christos K.
Georgiadis, Petros Kefalas, and Demosthenes Stamatis, editors, BCI
(Local), volume 1036 of CEUR Workshop Proceedings, page 21. CEUR-
WS.org, 2013.

[36] K. Al Nuaimi and H. Kamel. A survey of indoor positioning systems
and algorithms. In 2011 International Conference on Innovations in
Information Technology, pages 185–190, April 2011.

[37] Klokan Petr Přidal. Tiles à la google maps: Coordi-
nates, tile bounds and projection. http://www.maptiler.org/
google-maps-coordinates-tile-bounds-projection/, Last Ac-
cessed: 20.05.2017.

[38] Arthur A. Shaw and N.P. Gopalan. Finding frequent trajectories
by clustering and sequential pattern mining. Journal of Traffic and
Transportation Engineering (English Edition), 1(6):393 – 403, 2014.

[39] Ben Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Proceedings of the 1996 IEEE Symposium
on Visual Languages, VL ’96, pages 336–, Washington, DC, USA, 1996.
IEEE Computer Society.

[40] Ben Shneiderman. Extreme visualization: Squeezing a billion records
into a million pixels. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’08, pages
3–12, New York, NY, USA, 2008. ACM.

[41] Hideaki Takeda, Paul Veerkamp, Tetsuo Tomiyama, and Hiroyuki
Yoshikawa. Modeling design processes. AI Mag., 11(4):37–48, October
1990.

http://api.mazemap.com/js/v1.2.1/docs/
http://api.mazemap.com/js/v1.2.1/docs/
http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/
http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/

BIBLIOGRAPHY 97

[42] TMurgent Technologies. White paper: Perceived performance tuning
a system for what really matters. 2003.

[43] T. Theoharis, G. Papaioannou, N. Platis, and N. M. Patrikalakis.
Graphics and Visualization: Principles & Algorithms. A. K. Peters,
Ltd., Natick, MA, USA, 2007.

[44] V. Vaishnavi and W. Kuechler. Design research
in information systems. http://desrist.org/
design-research-in-information-systems/, 2004.

[45] Tatiana von Landesberger, Felix Brodkorb, Philipp Roskosch, Na-
talia V. Andrienko, Gennady L. Andrienko, and Andreas Kerren.
Mobilitygraphs: Visual analysis of mass mobility dynamics via spatio-
temporal graphs and clustering. IEEE Trans. Vis. Comput. Graph.,
22(1):11–20, 2016.

[46] Vanessa Wang, Frank Salim, and Peter Moskovits. The Definitive
Guide to HTML5 WebSocket. Apress, Berkely, CA, USA, 1st edition,
2013.

[47] Shi Yin. The state-of-the-art of geographic visualization in urban
planning. 2015.

http://desrist.org/design-research-in-information-systems/
http://desrist.org/design-research-in-information-systems/

	Abstract
	Sammendrag
	Problem Description
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background and Motivation
	Project Definition
	Project Description and Contributions
	Outline

	Background Theory
	Related Work
	The Need for Visualization
	Visualization of Movement Data
	Indoor Positioning Systems
	Usages of Location Data

	Potential Problems with Movement Data
	Clustering Trajectories
	Modern Web Applications
	Map Rendering
	Existing Map Rendering Solutions
	Tile-based Rendering
	Approaches

	Tools, Protocols and Formats
	GeoJSON
	The WebSocket Protocol
	Tippecanoe
	PostgreSQL and PostGIS

	Web Application Performance

	Research Methodology
	Research Method
	Research Questions
	Evaluation Criteria and Results

	Problem Elaboration and Requirements
	Persona
	Facility Manager Mikkel
	Technical Janitor Pål
	Analyst Susanne

	Scenarios and Use Cases
	Movement Between Areas of Interest
	Detect Tracking Errors
	Check If Areas Are In Use
	Maintain Decent Wi-Fi Connectivity

	Requirements
	Functional Requirements
	Non-functional Requirements

	The Application
	Database
	Technical Design and Architecture
	Web Application
	Back-end Server
	How the Tiling Works

	Description of the User Interface
	Visualization Modes
	Building New Tile Sets
	Adjusting the Visual Parameters
	Distinguish Between Floors
	Comparing Tile Sets

	Data Processing
	Snapshots
	Movement
	Building-to-Building
	Mapbox GL JS as a React Component

	Results
	Patterns and Phenomena
	Performance Measurements
	Fetching Data From the Database
	Tile Optimizations

	Discussion
	Patterns
	Performance
	MBTiles vs GeoJSON
	Fulfillment of Requirements
	Usability
	Integrating With Other Systems
	Feedback From Others
	Aggregate Dates vs. Date Ranges
	Other Potential Usages

	Conclusion and Future Work
	Research Questions
	Future Work

	Screenshots of the Application
	Digital Attachments
	Source Code and Figures
	How To Install the System
	Database Schema
	Example Queries

	List of Technologies

