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3.2.5 AGDISTIS

AGDISTIS (Agnostic Disambiguation of Named Entities Using Linked Open
Data)lﬂ is another open source project concentrated around the disambigua-
tion process released in 2014, hosted by the University in Leipzig [39) [40].
Their disambiguation framework is used by a named entity recognition frame-
work called FO)@, hosted by the same university, which forms a complete
entity linking system when combined with AGDISTIS.

Architecture

Their approach consist of three main phases: retrieving all named entities
from the input text, detect candidates for each of the detected named entities,
and finally using the context to (hopefully) choose the optimal candidate (see
Figure . All used algorithms have a polynomial time complexity, making
AGDISTIS also being polynomial in time complexity.

HITS

Named Entity Choosing Candidates
Recognition candidates

Figure 3.5: Overview of AGDISTIS.

All named entities are retrieved using a named entity recognition function
(e.g., FOX [37]). After all entities are found, the search for candidate re-
sources in the knowledge base begins. This can be done by using the entities’
surface form, which are simply strings used on the Web to refer to given re-
sources. For example, the surface form ”"Washington” can be used to refer to
George Washington, Washington D.C., or Washington (U.S. state), to name
a few. Several string normalization techniques is performed before searching
for such surface forms, including eliminating plural and genitive forms.

http://agdistis.aksw.org/
Yhttp://fox.aksw.org
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Given a set of candidate nodes, the computation of the optimal assignment
is started by constructing a disambiguation graph. This graph is built in a
breadth-first manner, and keeps track of resources and their resources. The
HITS algorithm["] is used on the disambiguation graph in order to identify
the correct candidate node for a given named entity.

Web Service

Their RESTful service has one endpoint which annotates the given input text.
Since AGDISTIS is only an entity disambiguation tool, it is worth noting that
this system needs to be told where the entities are in the text. This is done by
placing the entities within pre-defined entity tags. Using the FOX framework
is an alternative, since it uses AGDISTIS for disambiguation, but also has
built in NER tools to identify entities. Being an open source project, one
can download the AGDISTIS system and run it locally as well.

To test this API, we had to format our test string by surrounding the entities
with entity-tags, like this: *(entity) Gerrard(/entity) ”. After this, the system
was ready to annotate the text. "Carragher” was correctly annotated, while
“Liverpool” was annotated to the city. Even more surprisingly, was that
"Gerrard” was suggested to the Australian musician Lisa Gerrard. No addi-
tional information like confidence or similar measures was provided. We got
the exact same annotations when testing against the FOX framework, but
then we did not have to mark the entities manually.

3.2.6 Babelfy

Babelnyg] is a graph-based approach to entity linking and word sense dis-
ambiguation written in Java, using BabelNet [33] as knowledge base. Their
Web service can disambiguate any of the languages covered in BabelNet
130, 29].

ITA graph-based link analysis algorithm that rates Web pages, not related to the system
described in Section [3.1.2| with the same name
http://babelfy.org/
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Architecture

All sequences of words of maximum length five, which contains at least one
noun and that are substrings of lexicalizations in BabelNet are identified, as
they can potentially be linked to an entity in BabelNet. Because of this loose
candidate identification, using substring matching instead of exact matching,
we can also identify entities that is only partially written.

A semantic interpretation graph is created after identifying all potential enti-
ties. The set of nodes contains all potential candidate meanings of the found
entities. Figure [3.6] shows one such graph.

(Tomds Milidn, Thomas) » (Mario Adorf, Mario)
(Thomas Miiller, Thomas) r B (Mario Basler, Mario)
\l’ (Mario Gomez, Mario)

(forward, striker) (Munich, Munich)
(striker; striker) ¢ (FC Bayern Munich, Munich)

Figure 3.6: Semantic interpretation graph Babelfy builds for the sentence
"Thomas and Mario are strikers playing in Munich”. The edges connecting
the correct meanings are in bold.

A novel densest subgraph heuristic is used in order to reduce the degree
of ambiguity while keeping the interpretation coherence as high as possible.
The main idea here is that the most suitable meanings of each text fragment
will belong to the densest area of the graph. The resulting subgraph will then
contain those semantic interpretations that are most coherent to each other.
The problem of identifying the densest subgraph of size at least k is NP-hard.
Therefore, Babelfy uses a greedy 2-approximation algorithm, meaning it will
return a subgraph of no more than twice the number of elements from the
optimal solution in linear time.

This densest subgraph might still contain multiple interpretations for the
same fragment, or even unambiguous fragments which are incorrect. There-
fore, the final step is the selection of the most suitable candidate meaning
for each fragment given a threshold value to discard semantically unrelated
candidate meanings.
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Web Service

In order to use the Babelfy API, one must first obtain an API key, which
must be sent as a parameter with the requests. This key, the input text,
and language are required for each request. Additionally, one can specify
other various parameters, such as specifying which resource to use (WordNet,
Wikipedia, or BabelNet), which entity types to annotate (named entities,
word senses, or both), or if we want a scored list of candidates or only the
top ranked, to mention a few.

When testing the API with our test sentence, “Carragher” was the only
correctly annotated entity. “Liverpool” was linked to the city, rather than the
football club. ”Play” was annotated with a link to the BabelNet dictionary
with a description of the word, while "Gerrard” was not detected at all.

Both "Carragher” and ”Liverpool” got a "coherenceScore” of 1.0 and a "glob-
alScore” of 0.5, while "play” surprisingly get 0.0 for both measures. However,
we assume this is normal when a word is just linked to the BabelNet dictio-
nary, and not an actual entity. If we use the full name for all entities, i.e.,
"Steven Gerrard”, "Jamie Carragher” and ”Liverpool F.C.”, all of them were
correctly annotated.

3.2.7 Targeted Hypernym Discovery

Targeted Hypernym Discovery (THD)H performs classification of entities,
and cross-link them to their representation in DBpedia [9]. The system
is implemented in Java, and supports German and Dutch, in addition to
English. As an end user, one may choose between multiple techniques and
methods for both entity spotting and entity linking, in addition to some other
specifications.

Architecture

THD’s documentation is not quite as well-structured as the previously men-
tioned systems. The paper they refer to for citation [9] is quite shallow when

Yhttp://entityclassifier.eu/
p y
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it comes to describing their approach, not stating much more than that they
have an entity extraction module, disambiguation module, entity classification
module, and an semantization module (see Figure . Unfortunately, they
do not supply much details of these modules. However, it is worth noting that
the same authors appear in other papers related to the same topic, but it is

not stated whether those more detailed explained methods are implemented
in THD, or not.

@ text for processing

Entity Extraction Module sormadiuntily Hypernym Discovery Process Entity Classification Module

( POS TAGGER ) prevszeszeen, candidate Disambigl_l»a_t_iglll_\l_lgtff{l_e_m_ =>|( TOKENIZER )

( JAPE TRANSDUCER ) — grammar || —— {TENTITY SEARCH | ( SENTENCE SPLITTER __ |
ﬂ Entity — { POS TAGGER )

Candidates il il NOUN PHRASE CHUNKER |
Results: o Hypernyms Wikipedia | | Wikipedia H s N
e recognized, < | T K—— live mirror Dataset JAPE TRANSDUCER J— i, !

e classifiedand  |i_ENTITYLNKING f 0 @ \Wbieer0eoeoeoeoe—e—————— o ereeeeeeeeed

e linked entities. - -
("") GATE components

Figure 3.7: Architecture overview of THD.

They do, however, have a small comparison of their implementation against
DBpedia and AIDA (see Section and [3.2.4] respectively). THD sup-
posedly perform real-time mining, i.e., once an entity is disambiguated to a
Wikipedia article, the system extracts the hypernym from the article’s free
text. This allows the system to adapt to recent changes in Wikipedia.

Since THD extracts the types from free text, it is often complementary to
the types of more semantically structured knowledge bases, such as DBpe-
dia. THD returns both the mined type, and types from DBpedia and YAGO.
The complementary character of the results can be utilized for classifier fu-
sion.

Web Service

In order to use their REST API, one must obtain a free API key. This key is
obtained by submitting a short request form on their Web site. A key will be
granted as long as the user intend to use the service for evaluation, research
and/or teaching purposes.
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The API key is the only required parameter to be sent along with a re-
quest, but also this API supports several parameters for fine-tuning the whole
process. This includes choosing language, knowledge base, linking method,
spotting method, etc. The input text is sent as POST data.

When testing the API, it managed to correctly annotate “Gerrard” with an
absolute confidence, ”Liverpool” was wrongly annotated to the city with a
confidence value of 11%, while "Carragher” was weirdly only annotated as a
named entity, without any further information.

3.2.8 Other Candidates

There are lots of other entity linking systems that seem to be quite well-
performing judging by their demos. However, many of these are commercial,
allowing only a certain amount of free API calls, and when this threshold is
exceeded the user is charged for a subscription.

Since the goal of a commercial actor is to earn money, they do not want to
share too much detailed information about their technical approach with
their competitors either. Therefore, obtaining a decent amount of well-
defined documentation of their system is often challenging.

Rosettd™] is an entity linking system which by default uses Wikipedia as
knowledge base, but also allow users to use their own custom database of
any kind. They provide up to 10,000 free calls to their API each month, but
charge money after this. This system was omitted from our selection due to
its lack of documentation regarding their approach.

Microsoft Entity Linking Intelligence Service|is a part of Microsoft’s
Cognitive Services, concentrated around multiple tasks typically within the
field of artificial intelligence. They use Wikipedia as knowledge base, and
allows 1,000 API calls per day. How to use the API is well documented, with
an easy Getting Started Guide, unfortunately there is not much information
to obtain about their technical implementation of the system, forcing us to
omit this system.

2Onttps://www.rosette.com/function/entity-linking/
2lhttps://www.microsoft.com/cognitive-services/en-us/
entity-linking-intelligence-service
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There are also other systems, which either has a slightly different purpose, or
lacks a satisfyingly documentation, such as Open Calaid?], Ontod®] and
Alchemy APIPY| by IBM.

It is also worth noting that many entity linking systems make use of some of
the systems already mentioned. For instance, Dexterf| is using an imple-
mentation of TagMe (see Section , where the only difference between
Dexter and TagMe is the spot extraction methods and Wikipedia dumps be-
ing used. Earlier we have also mentioned FOX, which uses AGDISTIS to
disambiguate entities (see Section [3.2.5).

22nttp://www.opencalais.com/
Zhttp://ontos.com/
2nttp://www.alchemyapi.com/
Phttp://www.dxtr.it/
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Chapter 4

Approach

4.1 Theoretical Solution

Many of the entity linking systems we have previously studied, have sup-
ported multiple methods, techniques and algorithms to annotate the input
text. Most systems also use their own custom algorithm for finding an entity
in the text, called Named-Entity Recognition (NER). NER is a task that
seeks to locate, and often classify, named entities in written text (see Section
2.1.1)).

It is beyond the scope of this work to implement an entity extraction module
from scratch. Instead, we use an existing NER tool to find entities for us.
Our task is to disambiguate found entities, considering the context around
their appearance. We detect how well our entity extraction module per-
forms according to the real world, and possible deviations from reality, as we
evaluate the system.

As earlier mentioned, building a platform that can fully understand unstruc-
tured written text is beyond the scope of this project. Thus, we first and
foremost use the found entities in order to disambiguate each other. This
means that our context will mainly depend on the entities found by the NER
tool, and these will be checked for relations and similarities using a knowledge
base consisting of structured information.

In order to find the best candidate for ambiguous cases, we introduce a
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scoring function telling how probable it is for each candidate to be the correct
candidate in the given context. The context consists of four neighboring
entities (or less, if there are not enough entities).

This neighborhood property is usually a symmetric relation, i.e., if entity
A is the neighbor of entity B, entity B is also be the neighbor of entity A.
However, this is not the case for the first and last couple of entities in the
text, as they do not have the necessary amount of entities on both sides
(see Figure . All entities will also be populated with a set of subjects
describing them.

— Pa—
Bulgaria,

and Turkey are all countries in
L ¥ — T

Figure 4.1: A text with four entities, here with just two neighbors. Romania
and Turkey are neighbors of Bulgaria, and so on.

Our approach is based on the assumption that similar entities usually oc-
cur together in texts, and that similar entities have similar subjects in the
knowledge base. Thus, if the mention ”Liverpool” has footballers as neigh-
bors, it is probably meant to represent the football club rather than the city.
However, if it has other cities as neighbors instead, it is probably meant
to represent the city. By checking the subjects of each entity candidate up
against each other, we hope to be able to find a theme in the text, and use
this to iteratively select the most fitting candidates.

We can split our system into three different modules: entity extraction, can-
didate extraction and entity disambiguation (see Figure . The entity
extraction module detects and extracts all entity mentions in the text, be-
fore the candidate extraction module finds all potential candidates located in
a knowledge base for each entity mention. Finally, the entity disambiguation
module decides what candidate should be used for each entity.
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Candidate extraction
Gerrard:
) E_teveGn Ger(rjard Entity disambiguation
i i :( |s)a errar Gerrard- Annotated text
Input text Entity extraction - Steven Gerrard [Gerrard | Steven Gerrard)
Gerrard used to play Gerrard Carragher: used to play alongside
alongside Carragher—>  Carragher > »Jagmie Carragher D Carragher: > [Carragher | Jamie Carragher]
for Liverpool Liverpool - () - Jamie Carragher for [Liverpool | Liverpool F.C.]
Liverpool: Liverpool:
- Liverpool (city) - Liverpool F.C.
- Liverpool F.C.
-(-)

Figure 4.2: Example use of our proposed system.

4.2 Methodology

The work described in this report is heavily based on work conducted in the
specialization project, autumn 2016. Through that work, we gathered infor-
mation about entity linking, and fields of study somewhat related to entity
linking. We especially took a deeper look at state-of-the-art approaches, and
studied different well-known and widely used entity linking systems. There-
fore, we had a clear perception of the problem before we started the work
presented in this thesis.

We perform simple initial testing as we explore our hypotheses and develop
the system, to ensure that our approach works. This step consists of annotat-
ing short custom designed text fragments, consisting of both more and less
ambiguous entity mentions, but where the correct entity candidate should
appear to be rather obvious. We think this is valuable in order to find out
if our approach is applicable as early as possible, allowing us to modify our
approach early in the development process if necessary.

Finally, we perform a more formal evaluation of our system. At this point,
we identify, retrieve and parse a publicly available dataset designed for eval-
uating entity linking systems. As a result on these experiments, we calculate
our system’s precision, recall and F measures, and compare them to those of
other systems.

43



4.3. Knowledge Base Chapter 4. Approach

4.3 Knowledge Base

We want to use a knowledge base (KB) covering a wide range of topics to
be well prepared for covering the entities we discover. However, it might
be even more important that the KB provides well-defined and structured
data, which is easy to handle for a computer. Semantically structured data
simplifies the process of finding relations between entities, since they are
already encoded as part of their object representation in the KB.

We use DBpedia as KB, which is a widely used KB with structured infor-
mation gathered from Wikipedia (see Section [2.3.2). Their system is well
documented, and having a wide user base they naturally also have a big
community available to help out if any problem should occur. DBpedia’s
close integration with Wikipedia, ease of use, and the fact that it is a very
prominent KB in the Linked Open Data cloud, are all important factors as
we choose DBpedia over other knowledge bases.

All entities in DBpedia contains a link to the Wikipedia page they originate
from, so as we assign a DBpedia article, we indirectly also assign a Wikipedia
article, since DBpedia articles and Wikipedia articles has a one-to-one rela-
tion.

4.3.1 Categorization

The knowledge stored in DBpedia can be used to help disambiguate entities,
ensuring that each entity points to the most relevant resource in DBpedia.

»o»

The entities in DBpedia are described with attributes such as “type”, “sub-
ject”, "birth place”, "population”, etc. These attributes may be of help when
we want to find relations between entities. We assume that similar entities
are described with similar attributes, thus we can quantify how similar two

entities are based only on their attributes.

What kind of attributes are present for each entity depends on what kind of
object it is representing. We use the “subject” attribute in our disambigua-
tion process, which should be present for all entities. The subject attribute
consists of a list of categories used by Wikipedia to classify and give some
general information about each entity. We believe these categories are well
suited for disambiguating entities.
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4.3.2 Erroneous Data

Figure 4.3 shows that knowledge bases such as DBpedia are not necessar-
ily flawless. The English Wikipedia page classifies Contrazt as a Swedish
band established in 1982, even though they are in fact a Norwegian band
established in 2004, as they are correctly classified as on their Norwegian
Wikipedia page. It is however worth noting that both the Norwegian and
English version have roughly the same information in plain text (Norwe-
gian band established 2004 for both), but since DBpedia use infoboxes and
metadata (e.g., categories) from the English Wikipedia page, the information
supplied by DBpedia are erroneous.

dctsubject = dbc:Musical groups established in 1982
= dbc:Dansbands

= dbc:1982 establishments in Sweden

Figure 4.3: Subjects connected to the dance band Contrazt in DBpedia.

4.3.3 Access

DBpedia serves one live SPARQL endpointﬂ representing Wikipedia with a
small delay of at most a few minutes, that is considered as the semantic web
mirror of Wikipedia [3I]. The main objective of DBpedia Live is to keep
DBpedia always in synchronization with Wikipedia. Additionally, they serve
one endpoint where the data sets are refreshed every once in a while (usually
1-2 times a year)ﬂ. As of February 20, 2017, the last data dump stems from
April 2016, meaning we risk that many entities are outdated.

The difference between the live version and the standard version becomes
apparent if we look at the page of Donald Trump, the current President of
the United States. Using the standard endpoint (with data from April, 2016)
he is classified as "United States presidential candidates 20167, but naturally
without any additional information that he in fact is the current president.
Looking at the live endpoint however, he is also classified as ”"Presidents of
the United States” and “Republican Party Presidents of the United States”.

"http://live.dbpedia.org/sparql
’http://dbpedia.org/sparql
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In situations like these it is obviously an advantage to use the live endpoint,
since we otherwise would lose vital new information.

In a commercial environment, one should of course use an KB as up-to-date
as possible, but for initial testing and evaluation it is quite valuable to use
a static KB you know will not be in constant change. Knowing that the
KB does not change simplifies the testing step considerably, since we know
that our implementation is the only thing that may vary for each program
execution. Therefore, we will see what works and what does not regarding
parameter values, and minor changes for formulas and functions, etc.

4.4 Description of Implementation

As earlier mentioned, our system can roughly speaking be split into three
modules: entity extraction, candidate extraction and entity disambiguation
(see Figure . Our contribution is mainly towards the entity disambigua-
tion task, located within the entity disambiguation module.

Entity extraction Candidate extraction Entity disambiguation
N ustor]| P | Lissot | § Calculate simitarity |
Input text NLTK entities Candidate search Candida®s : scores 1
______1_\______l [ Q ——
M I__C;c:o_se_ ca;;c?a:e_s?
I Find : r Classify I ——x —s—" I______ R |
|_entties | |__entties | DBpedia Wikipedia &
Annotated text

Figure 4.4: Architecture overview of our proposed system.

We want these modules to be as independent of each other as possible, thus a
modification to one of them should not make any severe impact on the others.
We also want the system to be both effective and efficient, but without any
extreme focus on one over the other. For efficiency, we simply demand that
the system does not spend too much time annotating the text, making it
impractical for the user. Regarding effectiveness, we want the system to be
the best possible, without breaking our demands for efficiency.

For more details about our implementation, take a look at Appendix[A]
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4.4.1 Entity Extraction

As mentioned earlier, we do not implement our own analyzer to extract the
entities mentioned in the input text, but rather use an existing Named Entity
Recognition (NER) tool. We use NLTK 5.0F| [3], which contains an interface
to Stanford NER [15] for Python. NLTK is available in the Python Package
Indeafll

The input text we want to annotate is initially processed using NLTK. First,
the text is tokenized and split into single words, before part-of-speech (POS)
tagging is performed. The POS tagger processes a sequence of words, and
attaches a part-of-speech tag to each word, telling whether the given word
is a noun, verb, adjective, preposition, etc. Finally, we use a named entity
chunker, which should classify all named entities in the text.

There are several potential approaches for doing this more specifically, but
all should follow pretty much the same set of steps as mentioned. However,
minor differences may lead to slightly different results. How we choose to
classify the entities using NLTK is one example of such. We could use binary
classification, which simply tells if the given word is a named entity or not,
or we could use a multiclass classifier, which states if the entity describes a
person, organization or geo-political entity. In theory, one might assume that
both these approaches would result in the same amount of entities, however
this is apparently not necessarily the case.

To demonstrate this, we use the test sentence "Gerrard used to play alongside
Carragher for Liverpool” again. "Gerrard”, "Carragher” and ”Liverpool” are
all marked as ”person” entities when using multiclass classification. “Liver-
pool” should not have been mapped to person, but is annotated as a named
entity nonetheless. When using binary classification however, "Carragher”
is not annotated at all, even though both "Gerrard” and ”Liverpool” are
correctly annotated as named entities. Because of this, we choose to use
multiclass classification, but to ignore the actual classification and just treat
them all like any named entity.

3http://www.nltk.org/
‘https://pypi.python.org/pypi/nltk
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4.4.2 Candidate Extraction

As all named entities in the text are discovered, a list of all entity mentions
are passed over to the candidate extraction module, responsible to make and
populate the objects, in order to make them more manageable. All entity
mentions discovered by the entity extraction step will be represented by an
Entity object.

The list of candidates for an entity will typically consist of all entities men-
tioned in the correct entity’s disambiguation page we retrieve from DBpedia
using their SPARQL endpoint. For instance, Gerrard’s disambiguation pagd’|
consists of links to articles about Steven Gerrard, Lisa Gerrard, and Alfred
Gerrard, to mention a few. Even though we do not know the correct entity
at this point, it is in most cases relatively straightforward to find the correct
disambiguation page given only the entity mention.

As we retrieve all these entity candidates, we also specify that we want all
their corresponding subjects via the SPARQL query. With this informa-
tion, we make Candidate objects for each candidate. Initially all candidates’
probability score (S) are evenly distributed:

1
number of candidates

If we do not find a disambiguation page of an entity mention, we retrieve only
the page matching the entity mention (or automatic redirects of it) if it exists.
It is also worth repeating that our Candidate objects are representations of
the actual entities in DBpedia, while our Entity objects are representations
of the entity mentions in the input text.

The SPARQL request is built to return a list of candidates that could match
the entity mention, rather than returning the most probable candidate at
once. For instance, if the entity mention is “Liverpool”, we want to retrieve
all candidates that could potentially represent it, rather than the default
resource that represents Liverpool the city. It is fair to assume that the
default resource is accurate more often than not, but it is certainly not always
the case. Thus, we retrieve all potential candidates, and decide which one to
use afterwards.

Shttp://dbpedia.org/page/Gerrard
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4.4.3 Entity Disambiguation

Our main contribution is towards entity disambiguation, i.e., choosing the
correct candidates considering the context around their appearance. This
is achieved by comparing the candidates’ subjects with each other, looking
for similarities (see Figure . When we find entities that appears to be
similar, we assume that they are probable to be the correct entities in that
given context, and give the candidates a score accordingly.

P R R L LT P R L L LT R E R P R E R

" Entity1 , " Entity2 ; { Entity1 | " Entity2
| Candidate1 | | Candidate1 | i Candidate1 | | Candidate1
! Subject! l 5> Subjectt Subject! » Subject!
Subjec? =% Subject? | Subjectz | | % subject2 |
Candidate2 1 _Candidate2 Candidate2 ‘ Candidate2
Subject! % subjectt i Subject! 3 Subject! |
Subject2 | # Subject2 Subjectz <5 " Subject2 |

Figure 4.5: Overview of scoring process for Entityl, having Entity2 as neigh-
bor. All arrows indicate a string comparison that returns a score. All these
scores are summed up to a total score for that given candidate.

Our approach is to iteratively recalculate the scores of each candidate by
putting more weight on candidates we think have a higher probability of
being the correct candidate for an entity mention, a process that we will take
a closer look at in a moment.

As mentioned earlier, the candidate extraction module will evenly distribute
the probability of all candidates belonging to an entity mention, meaning
that all candidates initially have the same score (or weight) that sums up to
one. This also means that all candidates will be equally important for the
first iteration. For the remaining iterations, we scale the scoring according
to the candidate’s score.

If we are to recalculate the candidates’ scores for an entity E1, whose neigh-
boring entity £2 have the candidates C1 (score 0.8) and C2 (score 0.2), the
scoring process will put more emphasize on similarities between candidates
of F1 and C1, than C2. More specifically, the scoring function will multiply
the score obtained with C'I with 0.8, while the score obtained with C2 will
be multiplied with 0.2. This way, we ensure that we put more weight on
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candidates we believe are more probable of being the correct candidate for
its entity.

When we recalculate a candidate’s score, vi iterate through every candidate
of each neighboring entity. At this point, we compare the subjects attached to
the actual candidate whose score we are updating, and the subjects attached
to the candidates of the neighboring entities (see Algorithm . We compare
the subjects and give them a score according to the length of their longest
common substring.

/* Variables with a leading n indicate that it is a
neighbor of the entity we are currently working on */

foreach cand in candidates do

cand.score < 0.0

foreach nEntity in neighbors do

foreach nCand in nEntity.candidates do
candPair < 0.0

foreach subj in cand.subjects do

foreach nSubj in nCand.subjects do
candPair < candPair +

longestCommonSubstring (subj, nSubj)

end
end
cand.score < cand.score + candPair - nCand.score
end
end

end

Algorithm 1: Pseudocode of scoring process.

Since we may have to compute many cases of the longest common substring
(LCS) problem, this is a critical part of our implementation regarding effi-
ciency. Our algorithm is a somewhat simplified version of the longest common
subsequence algorithm using dynamic programming presented by Cormen et
al. [7]. A brute-force approach to the LCS problem would take exponential
time, which is not satisfying in our case. The running time of our algorithm
however, is ©(mn), where m and n are the lengths of the input strings we
want to compare.

We are able to simplify the algorithm since we only need to find the strictly
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common substring, i.e., the input strings "ABC” and "ABX(C"” should result
in length 2 (7AB”), not 3 ("ABC”). Additionally, we only care about the
length, and do not need to reproduce the actual sequence as suggested by
Cormen et al.

Candidates that have neighboring candidates with similar subjects will get
a higher score. Our implementation finds the length of the longest common
substring of two actual subject-pairs across neighboring candidates, and di-
vides this value with the product of the length of the two input subjects. We
do this to avoid giving higher scores for longer subjects than we do for shorter,
since longer texts naturally have a higher probability of having longer string
matches. Additionally, we set the score to zero if the longest common sub-
string has a length of less than five, to avoid scoring random string matches
that sometimes occur in texts.

length of longest common substring
length of subject A - length of subject B

subject pair =

Since all candidates for an entity initially have equal scores, the candidates
with the most "common” theme across all entity candidates should have the
best score after the first iteration. For each iteration, we pick a winning
candidate for exactly one entity. We choose the leading candidate that is
most superior to the second best candidate across all entities with more than
one candidate (see Figure. This process is repeated until all entities have
just one remaining candidate.

Entity1 Entity2 Entity3
Candidate1 (0.6) Candidate1 (0.5) Candidate1 (0.6)
Candidate2 (0.4) Candidate2 (0.2) Candidate2 (0.3)

Candidated (0.2) Candidated (0.1)
Candidate4 (0.1)
rauo:azls ratio:%:l.s rauo:%:?.
e N N

Figure 4.6: Three entities, each with 2-4 scored candidates. Candidatel will
be chosen for Entity2 this iteration since it has the highest winning ratio
(2.5), even though both Entityl and Entity3 have candidates with an higher
individual score.

1

For each iteration, we discard all candidates whose score is worse than 3
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of the best candidate. This technique is beneficial regarding the system’s
efficiency, since we recalculate every remaining candidate for each iteration.
When discarding candidates like this, we reduce the work needed to be done
for future iterations.

By setting the discarding threshold to a higher factor, the system will execute
quicker, but risk to discard the correct candidate due to a bad score in an
early iteration, as the context is usually be most ambiguous initially. If we set
a too low threshold value however, the program will not execute considerably
faster.

When all entities have just one remaining candidate, we check if this candi-
date is the same as DBpedia’s default resource for that entity mention (e.g.,
"Liverpool (city)” is default for the mention ”Liverpool”). If one such default
resource exist, but does not match our only remaining candidate, we add it
to our candidate list and give both candidates a score of 0.5. All entities
should now have one or two candidates, and we start the iteration process
once again to find the correct candidates.

If the default resource is added again, the remaining iterations use the average
score, i.e., the score is calculated as before, but now it is divided by the
candidate’s number of subjects. This is more fair since some candidates have
very few subjects, while others have very many. It is natural that a candidate
with 20 subjects get a higher score than a candidate with 2 subjects due to
random matches. For the earlier iterations we ignore this, since candidates
with more subjects are usually more popular, and are therefore generally
more statistically probable to be the correct candidates. When we add the
default candidate again however, both candidates are considered as relatively
probable, so we want to select the candidate that has the best score per
subject.

The reason for giving the default resource two chances, is that it is often,
but not always, the correct resource. Thus, if the default resource has been
discarded in an early iteration, we want to give it a new chance at the end,
when we have a better understanding of the context. Since all entities at this
point have either one or two candidates, this is not very resource demanding
either. When all entities are down to having just one candidate again, the
disambiguation process is complete and the remaining candidates are chosen
for entity linking.
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This whole disambiguation process could be very resource intensive, since
a candidate often have over 20 subjects. The number of candidates for an
entity may also exceed 20. Having multiple entities as well, this could easily
become infeasible to perform in a serialized manner without exceeding time
constraints and demands for an user of the system. Therefore, we run mul-
tiple parts of the disambiguation step in parallel, in order to speed up the
process.

Entity 1 f---- Result

Parallel
Entity 1

Entity 2 Result

Entity 3

T R

| Execution time

Figure 4.7: Sequential versus parallel approach for the disambiguation pro-
cess.

First off, we disambiguate each entity in parallel, i.e., we initiate the disam-
biguation process for all entities at once, and the processor thereby disam-
biguate as many entities as possible simultaneously (see Figure . Addi-
tionally, we calculate the score for each candidate within an entity in parallel.
These approaches enhances the execution time tremendously.

4.5 Initial Testing

As we implement the system, we also set up a couple of short texts used
for testing the system’s performance as we made minor modifications to our
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implementation. This way we could easily get an indication for how beneficial
the new modifications were for the system’s performance, regarding both
effectiveness and efficiency.

These texts were not necessarily meant to be representative for "normal”
real-world text, but were written in a manner which makes them especially
interesting in the case of entity linking. I.e., we wanted ambiguous entity
mentions to see if we could annotate them correctly. Even though we wanted
ambiguous entities, we also wanted the context to make it pretty clear which
candidates should be selected, ensuring that the system was capable to cor-
rectly annotate ambiguous, but still rather obvious entities.

For these ambiguous cases, we also wanted to ensure that the system was
able to select different candidates depending on the context. E.g., we used
the sentences "Gerrard used to play alongside Carragher for Liverpool” and
"Gerrard is a musician from Melbourne, Australia”, to see whether the sys-
tem was able to select Steven Gerrard as candidate for the first sentence,
and Lisa Gerrard for the second. Another example is the entity mention
"Pluto”, which we used to see if the system was able to select between the
dwarf planet or the Disney character considering the context.

We also tested with texts that should be rather straight forward to anno-
tate correctly, such as "Bulgaria, Romania and Turkey are all countries in
Furope”, etc. The default resource is usually the correct candidate for the
entity mentions in these texts that are supposed to be simple. By using both
"simple” and "complex” test sentences, we assured that the system could
annotate simple, as well as more challenging entities correctly.

We managed to iteratively improve our system’s capability to annotate the
input texts, and discovered that small variations with the implementation
could be beneficial for some texts, while being detrimental for other texts.
Thus, we found that it would be rather optimistic to think we could find an
approach that would work ideally for all cases, and we figured we would be
better off concentrating on finding an satisfying approach for all (or as many
as possible) cases, optimizing the overall performance.

However, it is worth noting yet again that these tests were not meant to
measure the system’s performance for real-world applications, as the text in
such cases will be more rich than what was the case for our minimalistic test
sentences. We also discovered that NLTK had some problems discovering all
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entities in some texts, so we had to formulate the texts to assure that all
entities would be found, as this was essential in order to measure the effec-
tiveness. This would obviously not happen in a real world application.

The efficiency was also measured, as we instantiated a timer to see how much
time was needed to annotate our texts. This proved that implementing con-
currency when calculating scores had a very positive impact on the program’s
execution time, without any impact on the effectiveness, of course. For a test
with four entities ( "Gerrard”, "Melbourne”, ”Australia”, and "Oceania”), the
annotation process was around 20 times faster with an simple parallel ap-
proach than when doing everything in a serialized manner. It also showed
what was the better method to find the longest common substring, among
other details regarding our implementation.
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Chapter 5

Evaluation

5.1 Experiments

In order to measure our system’s capability to annotate text, we want to
evaluate its performance by automatically annotating text that is supposed to
be relatively close to a real-world domain. In order to quantify the results, we
need a fairly big amount of text to cover many scenarios, as well as a solution
for how this text ideally should be annotated. With this in place, we can
check how many annotations our system succeeds and fails to produce.

5.1.1 Dataset

We evaluate our system using the WIKI-ANNOT30 dataset]] developed by
the same team who developed the TagMe entity linking system (see Section
, and used to evaluate their system. As the dataset is publicly available,
other systems have used it for evaluation as well.

The dataset contains short text fragments drawn from Wikipedia snapshots
of November 6, 2009. The text fragments are composed by about 30 words,
and they contain about 20 non-stopwords on average. Each fragment contains
at least one ambiguous entity mention. Even though the data are somewhat
aging, it is still as relevant as before in the case of entity linking.

"http://acube.di.unipi.it/tagme-dataset/
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The WIKI-ANNOT30 dataset consists of 186K text fragments that is for-
matted with the following syntax: the first line contains the actual text, the
second line contains a list of gold standard entities, i.e., all entity mentions
present in the text, followed by numeric IDs of the articles which they are

pointing to (see Figure [5.1).

Czechoslovakia, 1982), The Trap Door (UK, 1984). Films include,
Chicken Run and The Adventures of Mark Twain. Cutout animation
is a type of stop-motion animation produced by moving 2-dimensional
czechoslovakia 5322 films 21555729 stop-motion animation 27036
the adventures of mark twain 11484373 uk 31717 2-dimensional 35248
stop-motion 27036 the trap door 1604203 cutout animation 745626
chicken run 284525

Figure 5.1: Text fragment with corresponding annotations retrieved from the
WIKI-ANNOT30 dataset.

5.1.2 Hardware

Annotating a rather large amount of the Wiki-ANNOT30 dataset with our
system would be infeasible on our aging Windows 10 laptop with limited
resources (one processor with two 1.70 GHz cores, each with four threads).
This gave us the option between annotating a very small part of the dataset,
or to obtain a more powerful computer to perform the evaluation process
on a bigger part of the dataset. The latter would obviously be the better
solution, so we requested access to a more powerful machine by NTNU IDI
Drift, which was granted.

We connect to this computer using PuTTyf| and Secure Shell (SSH). This
computer runs on Ubuntu 16.04, and consists of twelve processors, each with
six cores with a clock rate of 3.50 GHz, and each core has two threads. This
computer is obviously superior to our laptop when it comes to computational
power. Even though this machine may have several users simultaneously, it
is fair to assume it will perform considerably better than our laptop.

Zhttp://www.putty.org/
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In order to get an idea of how different the two machines perform, we conduct
a very simple experiment where we iterate through a loop 100M times. For
each iteration, we increment a numerical variable defined to be zero before
the loop. We measure the time needed for both our laptop and the server to
complete the task. Our laptop needs 342 seconds (almost 6 minutes), while
the server only needs 6 seconds. This is a very simple serialized test, and
does not take into consideration how the two machines would perform with
parallellized approaches, but it is no secret that our laptop is inferior in most
situations, if not all.

5.1.3 Evaluation Metrics

We measure our system’s effectiveness by calculating its precision, recall
and F measures. The precision measure tells how many of the annotated
entities are in fact correctly annotated. Recall is used to measure our system’s
performance against the gold standard, i.e., how many entities in the gold
standard are also correctly annotated. Finally, we find the F measure, that
represents the harmonic mean of precision and recall.

# of correctly annotated entities

Precision =
# of all annotated entities
# of correctly annotated entities
Recall = "
# of gold standard entities
F_o. precision - recall

preciston + recall

We believe that our system will produce better results for precision than for
recall, considering we have put more effort into entity disambiguation than
entity extraction. Additionally, the gold standard consists of entities beyond
just named entities, which we focus on, and thus consists of considerably
more entities than what we expect to extract. With this in mind, our system
would probably be better off using the F{ 5 measure, which puts more weight
on precision than recall. However, we stick to the F; measure, since that
is most used, and is generally more fair. This also simplifies the process of
comparing our system against others.
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5.1.4 Evaluation Methodology

First, the dataset consisting of all the texts we want to annotate must be
parsed. Each text fragment is put into an Annotated Text object, alongside
a dictionary consisting of all entities in the text, and their Wikipedia IDs,
like this: *{gerrard: 547384, carragher: 1012020} ”. Thereby, we have an
understanding of how a perfect system should annotate the text according
to the gold standard.

We now begin to annotate the text we have parsed from the dataset. This
is simply achieved by looping through all AnnotatedText objects, and per-
forming our entity extraction and disambiguation algorithm on each object’s
text property. When the disambiguation process is complete, and our system
have annotated all found entities in the input text, we compare our findings
with the suggestions encoded in the dataset.

Since the entities in the dataset are manually annotated (as it is a Wikipedia
snapshot), while we use NLTK for entity extraction, our entity set is often
different from that of the dataset, as we would expect. Many entities are
simply not found, and some are slightly different. E.g., the dataset has an
entity named “The Trap Door”, while our system finds the entity “Trap
Door” instead. Sometimes, what is actually one entity is split into multiple
entities, e.g., "United States of America” might be split into "United States”
and “"America”. These kinds of errors may not always have a significant
meaning, but we risk losing important information when errors such as these
occur.

Because of this, it would be unfair to demand that the string representations
for the entities we find matches the string representations in the dataset.
Instead, we check how many of our found Wikipedia article IDs are also
encoded in the gold standard for the same text fragment. If the same ID
is present both places, our system gets one correct annotation, otherwise it
does not.

Additionally, we keep track of how many entities are present in the gold
standard, how many entities our system finds, how many of the entities
we found are exact string matches from the gold standard, and how many
candidates we retrieve overall.

These values are used to calculate our system’s score for precision, recall and
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F measures (see Section [5.1.3)). We use these measures to obtain an overview
over the system’s effectiveness. This also allow us to compare our solution to
other existing systems that has been tested on the same dataset, using the
same evaluation metrics.

We perform the experiments by connecting to the machine we got access to
through NTNU Drift, which is considerable more computationally powerful
than our laptop, using SSH. We set up our program on this computer in order
to evaluate a large (but still practically feasible) part of the WiK1-ANNOT30
dataset we have selected for evaluation in a feasible manner.

5.2 Results

We evaluate our system by running the first 1,000 text fragments from the
WIKI-ANNOT30 dataset through our algorithm and see how many of our
annotations matches the suggested annotations in the dataset, also referred to
as the gold standard. Even though we use a powerful computer, we still need
over an hour to automatically annotate all the texts with our system.

5.2.1 Entity Extraction

The gold standard suggests that there are 5,874 entities in the first 1,000
texts. Our system ends up identifying 3,762 entities, where 1,500 are exact
string matches to the gold standard (see Table . These 1,500 entities that
are completely correctly extracted, makes out 25.5% of the gold standard
entity set, and 39.9% of our extracted entity set.

Entities in gold standard | Extracted entities | Exact matches
5,874 3,762 1,500

Table 5.1: Results of our entity extraction module over 1,000 text fragments.

Altogether, we extracted 65,626 candidates for our 3,762 entities, meaning
the entities in average have about 17 candidates each initially.
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5.2.2 Entity Disambiguation

Our system manages to annotate 1,694 entities similar to the annotations
in the gold standard, meaning that 2,068 annotations are considered to be
erroneous (see Table [5.2). This also means that we are able to correctly
annotate several entities that are solely not string matches of those listed in
the gold standard as well, since only 1,500 of our entity mentions are identical
to those of the gold standard.

Entities in gold standard | Extr. entities | Correct annotations
0,874 3,762 1,694

Table 5.2: Results of our entity disambiguation module over 1,000 text frag-
ments.

With these numbers, we obtain a precision score of 45.0%, recall score of
28.8%, and F score of 35.1%, using the formulas presented in Section [5.1.3|
It is worth noting that our system extracts and correctly annotate an unde-
fined number of entities that are not suggested in the gold standard as well.
However, these occurrences are only found by manual inspection, and are
therefore not counted towards correctly annotations in this evaluation.
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Discussion

6.1 Dataset

The WIKI-ANNOT30 dataset consists of 186K text fragments drawn from
Wikipedia, each composed by about 30 words. Each text fragment consists
of approximately six entities, while our experiments show that we on average
manage to extract almost four entities per text fragment. Since our system
supports four neighbors per entity, we would prefer longer texts, with more
entities. This would give us a better view of the context in each case.

Some text fragments consist of very few entities (e.g., 2), therefore we risk
ending up with none, or very few entities in some cases. If we do not find
any entities there is nothing for us to do, if we find one entity there is no
context to consider, as we need to find at least two entities in order to use
our disambiguation process. We could choose to ignore text fragments where
we find very few entities, but we do not, as we want to see how our system
perform in ”all” kinds of situations.

One might as well argue for selecting a dataset that have used the same entity
extraction techniques as we use, ensuring that we would find the exact same
set of entities. An alternative could be to use a dataset with pre-defined
entities, where all entities would be explicitly marked as entities beforehand.
Using the latter method, we would solely focus on the disambiguation process
when evaluating, as the entities we want to extract would already be encoded
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in the dataset.

However, we found it more desirable to test our system in a more realistic
domain, which is closer to a real-world application. We think the WIKI-
ANNOT30 dataset is well suited for such experiments, and therefore a good
selection, even though somewhat longer texts would be preferable.

6.1.1 Aging Content

The dataset is a snapshot from Wikipedia as of November 6, 2009. Being
over eight years old, Wikipedia has naturally evolved with a lot of new data
over the years, meaning that the Wikipedia version used for the dataset and
the one we use are quite different. During this eight year time span, some
Wikipedia articles may have been deleted, moved, added to other articles,
gotten a new ID, etc. Changes such as these might make it harder, or even
impossible, for us to produce the same link again today in some cases.

6.1.2 System Comparison

The WiKi-ANNOT30 dataset has been used for evaluating other entity link-
ing systems as well, giving us the possibility to compare the effectiveness of
our system with other systems. We compare our scores with the scores of

Wikify! (see Section |3.1.1)) and TagMe (see Section [3.2.2)), their scores are
illustrated in Table [6.1]

Precision | Recall | F-Measure
TagMe 76.3 76.1 76.2
Wikify! 69.3 69.5 69.4
Our System | 45.0 28.8 35.1

Table 6.1: Our system compared to other state-of-the-art entity linking sys-
tems.

Our approach is not especially designed to be used with this dataset, or vice
versa. Much of our problems are due to our method for entity extraction, as
we often end up with a different entity set than what is the case for the gold
standard. Our disambiguation process heavily depends on which entities are
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extracted, thus any deviations between our entity set and the one of the
gold standard will have a severe impact on our capability to achieve correct
annotations.

Thus, if we are able to improve the entity extraction step, it would also have
a positive impact on the disambiguation process, resulting in more correct
annotations, and better scores for precision, recall and F-measure.

6.2 Knowledge Base

There are several knowledge bases open for free use today, some of whom
we have studied earlier (see Section [2.3). We selected DBpedia, due to its
large amount of structured data, freshness, and easy accessibility through
SPARQL. Even though it was of great use as we disambiguate the entities,
we did experience some problems regarding inconsistency, etc.

6.2.1 Inconsistency

The lack of up-to-date data is a problem that quickly arises as we use the
static endpoint. E.g., at the time of writing, Donald Trump, the current
president of the United States of America, does not have any data stating that
he in fact is the president of the U.S. This only goes for the static endpoint,
as the live endpoint is updated with more accurate information.

It is not therefore said that the live endpoint is always correct, as erroneous
data can be found several places for different reasons. Some data are simply
wrongly entered from the start, e.g., Contrazt is stated to be a Swedish band
established in 1982, while it actually is a Norwegian band established in 2004.
Errors such as these will be present until someone update their classifications
in Wikipedia, and DBpedia update their static dataset.

There are also some inconsistency in how the entities are described in DB-
pedia. We expect similar entities to be described in similar manners, but
this is not necessarily always the case. Norway has a property “Countries in
Furope” among its subjects, and we expect that all other countries mention
their continent among their subjects as well. However, Australia does not
have any subject stating what continent it belongs to.
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Inconsistencies such as these makes the disambiguation process more com-
plex, since not all entities are described in a similar manner, even though we
want to evaluate them in a similar way. What kind of subjects are connected
to each entity decides the outcome of our disambiguation process, so we would
strongly prefer a knowledge base with a pre-defined standard with strict rules
for what kind of subjects that should be used for each situation.

6.2.2 Disambiguation Pages

Our implementation is based on initially ignoring the "obvious” solution,
but rather fetch all possible solutions. This is achieved by looking for the
entity mentions’ disambiguation pages, rather than pages that is exact string
matches. In many cases, this lead to an impractical large set of candidates.
Many of these are in reality rather obscure and unlikely to occur, but are
nonetheless evaluated in the same manner as more "normal” and regularly
used candidates.

As we lack any measure of the candidates’ general popularity, our system
sometimes tend to select obscure candidates, which is so obscure that they
could just as well have been left out from the start. As mentioned, how-
ever, we do not have any measure for general popularity to each candidate,
meaning we have to include all, including the obscure and in reality unlikely
candidates.

DBpedia’s disambiguation pages are also somewhat inconsistent in some sit-
uations. Using Donald Trump as an example again, his DBpedia article
lists "Donald” and “Donald_Trump_(disambiguation)” as his disambiguation
pages. We expected that also "Trump” would be a disambiguation page, but
this is apparently not the case. However, "Trump_(disambiguation)” is listed
as a disambiguation of "Trump”, and “Donald_Trump_(disambiguation)” is
listed as a disambiguation of ”Trump_(disambiguation)”, meaning there is a
path from "Trump” to the actual page about Donald Trump, even though it
is not very obvious.

These sometimes inconsistent and complex structures of disambiguation pages
aggravates the problem of finding all candidates for an entity mention, as we
need to prepare for alternative paths as well, rather than consequently using
the standard name followed by ”_(disambiguation)”.
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6.2.3 Access

For each entity we find in the text, we need to send a request to DBpedia’s
SPARQL endpoint. When we have very many entities, we also have to send
a large amount of SPARQL requests, which might be a problem as we also
have to wait for a response to all of them.

Experiments show that sending and receiving a response takes approximately
0.1 seconds, with some small deviation. The live SPARQL endpoint is some-
what slower than the static endpoint, but both use about 0.1 seconds on
average. This means that during our experiments, where we found 3,762
entities, we grossly calculated used 6 minutes just by sending and receiving
SPARQL requests.

Even though 6 minutes is not very much, considering the whole entity linking
process takes over one hour, it would be beneficial to shrink it even more.
This could be done by setting up a local DBpedia mirror using Virtuoso,
a scalable cross-platform server that combines Relational, Graph, and Doc-
ument Data Management with Web Application Server and Web Services
Platform functionality{'}

If we set up our own DBpedia mirror locally, we can retrieve data from this
local SPARQL endpoint, which is obviously time saving versus the option to
request data from the official SPARQL endpoint. Considering we would need
to serve the whole DBpedia dataset, we would need a very powerful machine
in order to get a decent enough performance.

Even though we believe the external computer we used for evaluation is
powerful enough for hosting our own local DBpedia mirror, we have not
implemented this, as the current solution with using the official endpoint is
not a big problem. Even though we could save some time, it is certainly not
the current bottleneck regarding efficiency.

6.3 Entity Extraction

Since we did not implement our own entity extraction algorithm, much of
the outcome from the entity extraction module was out of our hands. We

"https://github.com/openlink /virtuoso-opensource
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chose to use NLTK (Natural Language Toolkit), a very popular platform for
building Python programs to work with human language data. NLTK has
the full responsibility of identifying and extracting entities from the input
text. Even though NLTK was easy in use, and did pretty much what we
wanted, it also had some flaws.

We experienced that the entity extraction step is a big problem regarding
our system’s effectiveness, as it is a big challenge not only to find entities,
but also to group multiple words that should represent one entity, which we
will get back to soon. In many cases, picking capitalized words is a good
indication when looking for entities, but real world text is (unfortunately)
way more complex than it would have to be in order for using only this
technique to find entities with a satisfying outcome.

6.3.1 Multi-Word Entities

One reason for our entity extractions not matching the ones in the gold stan-
dard, might be due to our sometimes lacking capability of grouping mentions
that consist of multiple words together. E.g., the dataset mentions an entity
"The Adventures of Mark Twain”, which is a movie from 198Eﬂ However,
our system ends up with two entities: "The Adventures” and "Mark Twain”.
Even though "Mark Twain” is linked to an article describing the person Mark
Twain, which is sensible enough, our system do not get any correct annota-
tions in this case, since "The Adventures of Mark Twain” is not annotated as
expected by the dataset. We suspect that errors such as these appear quite
often, and therefore have a severe impact on the system’s effectiveness. In
some cases we might also group more words than we should.

6.3.2 Entity Set

The annotations in the WIKI-ANNOT30 dataset are manually created by the
users who contribute towards Wikipedia. Hence, it is humans deciding what
are entity mentions and not in the text. In our case, we need to reproduce
these results in a generative way programmatically, which is obviously a

2http://www.imdb.com/title/tt0088678/
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challenge due to our lack of subjective judgment. This often leads to different
entity mention sets for our system versus the gold standard.

While we focus on named entities in our entity extraction algorithm, many
of the annotations in the dataset are more "loose” concepts, like “motion
capture”, “stop-motion”, “cutout animation”, etc. We do not look for entities
like these, thus we naturally often end up with fewer entity mentions than
what is the case for the gold standard. This also shows when we look at our
recall score, which is 28.8%. We find 3,762 entities, while there is supposed
to be 5,874. Of these 3,762 entities we extract, 1,500 (approximately 40%)

are exact string matches of the suggested entities in the gold standard.

The other roughly 60% of entities we find, may not match the mentions in
the gold standard for a number of ways. We end up annotating some entities
which the dataset do not, e.g., our system correctly annotate the mention
"Philippine Revolution”, which is not annotated in the gold standard. Cases
such as these are only found by manual inspection of the results, thus our sys-
tem do not get a point for a correct annotation in these situations. However,
the entity mention is still valid, so these occurrences will have a negative
influence when we evaluate our system. Even though errors such as these
occur, we do not believe they appear very frequently.

6.3.3 Classification

NLTK allows us to extract entities with binary classification, just telling
whether we have a named entity or not, or multiclass classification telling
whether the entity is describing a person, organization or geo-political en-
tity. We did however experience some problems when using only binary
classification, as some entities weirdly were not annotated as named enti-
ties, even though they were annotated with multiclass classification. Thus,
we use multiclass classification, but treat all classifications as any named
entity.
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6.4 Entity Disambiguation

Our main contribution is towards entity disambiguation, so we naturally ex-
plored several approaches especially for this. We experienced problems find-
ing an approach that generally outperformed the rest, as their performance
too a large degree were depending on the input text. If we managed to tweak
our implementation to better annotate some texts, it often had detrimental
effects on other texts.

6.4.1 Default Resource

As mentioned earlier, our approach is to evaluate all possible candidates on
the same level, ignoring aspects such as popularity, title similarity, etc. Al-
ternatively, we could pick the default resource where one such is present.
In that case, the entity mention “Liverpool” would be linked to the article
about Liverpool city, while "Gerrard” would still consist of a list of all can-
didates listed by its disambiguation page, since it does not have any default
resource.

The good thing about this alternative approach, is that the default DBpe-
dia is very often the correct one. Therefore, we avoid using much time on
candidates that in the first place are rather unlikely to be correct. However,
with this approach we certainly know that we will not be correct every time,
e.g., the mention ”Liverpool” will never be linked to anything else than an
article describing the city, no matter what the context may be. This goes for
all entity mentions that have a default resource in DBpedia.

When re-running the experiments we did earlier, but using this alterna-
tive approach with selecting the default DBpedia resources where they are
present, our system’s performance clearly improved. We were now able to
annotate 1,892 entities correctly, over the original 1,694 we had. Our can-
didates set now consist of 42,702, considerably less than the original 65,626.
Since we now have less candidates to handle, the execution time was also
halved, to approximately 40 minutes. This gives precision, recall, and F
scores of 50.3%, 32.2%, and 39.3%, respectively.

Even though this approach seems to be superior regarding both efficiency
and effectiveness, the fact that we simply know it will fail a number of times

70



6.4. Entity Disambiguation Chapter 6. Discussion

is a big drawback. Thus, we prefer to stick to our original approach, since
we believe that this approach have a better potential, even though there are
some problems with the current implementation.

6.4.2 Initial Context

Our problem is greatest initially, as we usually have very little information
about the context from the start. Some entities may have only one candidate
from the start, meaning we can use it to get a better understanding of the
context, but this is not necessarily the case in all situations.

The lack of knowledge about the context initially, makes it hard to select
a reasonable candidate. As soon as we select a wrong candidate, the lack
of knowledge about the context will propagate as the system will put more
emphasize on the unknowingly wrongly selected candidate. When the harm
is done, there is not really any way back, as the selected candidates will form
our understanding of the context, and will play a big role when deciding
which candidates to select next.

The problem of lacking a decent understanding of the initial context is un-
avoidable. However, we did try to minimize the inconvenience by not select-
ing a candidate for the first iteration, but rather just give all candidates a
score. For the second iteration, we could then put more emphasize on the
candidates considered to be most probable in the first iteration, and hope-
fully be more competent to make a good decision when actually deciding for
a candidate.

Experiments showed that this approach with avoiding to select candidate for
the first iteration did not have much influence on the outcome. Naturally,
the system’s execution time was extended, since we wait longer to discard
candidates. Because of this, and that it did not improve our effectiveness
notably, discarding this alternative approach was an easy decision.

6.4.3 Candidate Scoring

How the candidate scoring algorithm is implemented is a key aspect of our
solution, as this in reality is the part deciding which candidates should be
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selected for linking. There are numerous ways to implement this in detail,
where our approach is described in detail earlier (see Section . There
are however some aspects that deserves some extra attention, which we will
now take a closer look at.

Candidate Similarity

The key aspect of our disambiguation process is how we score similarity be-
tween candidates, giving us an almost unlimited amount of options. We went
with a solution where we quantify the similarities between two candidates
as how similar their subjects are according to a string matching algorithm.
There are a number of aspects to consider as we implement one such algo-
rithm, e.g., length of subject strings, and linear vs exponential scoring, which
we will get back to in a moment.

First of all, the length of the subject strings vary, which is something we must
consider when we score each instance, since longer strings obviously have a
higher probability of getting longer common string matches and thereby a
better score than shorter strings. In order to avoid this disproportionality,
we divide the score given by our longest common string algorithm with the
product of the lengths of the two subject strings. We thereby keep the ratio
similar no matter how long the two subject strings are, and differently sized
subject strings can be compared fairly. As expected, experiments showed
that omitting this setting had deteriorating effects on the system’s effective-
ness.

Regarding how we find the longest common substring, i.e., the value we want
to divide by the product of the lengths of the subject strings, we also have
several potential approaches. We went with a simple linear approach, where
the score simply reflects the actual length of the longest common substring of
the two subject string. E.g., "ABCDE” and "ABXC” gives the value 2, since
the longest common string ( "AB”) is of length 2. In that given example, the
following score is computed:

0.1

S = — =
core 5.4

An alternative to this linear approach of scoring longest common substring,
is to use an exponential function. By using an exponential function, longer
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string matches will be much more important than shorter. The logic for
using this approach is that longer string matches will typically indicate a
more precise similarity than shorter common strings, and should thereby get
a considerably higher score, in contrast to the linear approach where there
is a smaller difference between the two. In detail, the alternative scoring
function would look like this:

base(length of LCS)

length of subject A - length of subject B

Exp. Score =

An important element to consider when using exponential scoring is what the
base value should be. If it is too low, most cases will result in basically the
same score. If it is set too high, longer string matches will quickly be very
dominant, completely neglecting the impact from shorter string matches.
Finding this sweet spot for the base value is a challenge. However, experi-
ments showed that a base value of 1.15 worked well, and outperformed our
linear approach marginally, as we managed to annotate 1,710 entities cor-
rectly, versus the original 1,694 with the linear approach.

We thought the ideal base value would be slightly higher than 1.15, which
would cause a bigger increase of score as the length of the longest common
substring increases. How the different functions influence the score is illus-
trated in Table . We notice that for the exponential approach (with base
1.15), the score stably increases with a factor of about 1.3 when the length
of the LCS increases by two. For the linear approach however, the increase
factor will converge towards one, i.e., the factor will decrease as the length
of the LCS increases.

Length of LCS
5 7 9 11 13
Linear 5 7 9 11 13
Exponential (base 1.15) | 2.01 | 2.66 | 3.52 | 4.65 | 6.15

Table 6.2: Differences between linear and exponential scoring given the length
of the longest common substring (LCS).
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Common Words

No matter if we choose to use linear or exponential scoring, the candidates’
subjects are pivotal for the outcome. E.g., if one candidate has a word occur-
ring many times among its subjects, and some of the candidate’s neighboring
candidates have the same word occurring many times as well, these candi-
dates will get a high score. This is really what we aim for, but sometimes
this might be misleading. This could for instance happen if two neighboring
candidates have the word “american” mentioned many times among their
subjects. These candidates are then very probable to be picked by our dis-
ambiguation algorithm, even though this word might be the only word they
have in common.

In such situations, one single word will have an unnatural big influence on
which candidates are chosen. There are indeed a big chance that both candi-
dates have some relation to America, but it would be preferable to find other
similarities as well. A possible solution to this possible problem could be
to use an reduction factor for words, or string sequences, that have already
occurred, certainly if they have occurred a number of times. However, this
technique is yet to be tested in practice, even though we believe it would
have an positive impact on our solution.

Average Scoring

Our implementation initially calculates the score for each candidate without
taking their amount of subjects into account. This means that a candidate’s
chance of getting a high score improves the more subjects it has. Our thinking
behind allowing this, is that more popular candidates usually have more
attached subjects as well, meaning our approach in practice actually will
prioritize more "popular” candidates in many situations, in contrast to what
we have earlier stated.

The assumption that often used candidates have more subjects than less
used candidates are not necessarily always true, which may cause confusion
sometimes. It is also worth noting that if we reintroduce DBpedia’s default
candidate for an entity in the end, we calculate the candidates’ average score,
i.e., their score per subject. This is because we then consider both candidates
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to be probable, and therefore do not want to give any of the candidates any
kind of handicap.

Experiments show that this approach outperforms approaches based on al-
ways or never calculating the average score, which is as expected. Something
more surprising however, is that never calculating the average score outper-
forms the option of always taking the number of subjects into account. This
is not quite what we expected, but is again an indication that the most
"popular” candidate is usually the correct one.

6.4.4 Efficiency

Our system is not really as fast as we would wish, as the whole entity linking
process on average needs around one second per entity on the quite powerful
machine we used. How much time is needed obviously heavily depends on
how many entities, candidates and subjects are present in the input text, as
these are the factors deciding our program’s execution time.

Longest Common Substring

The longest common substring, or longest common subsequence (LCS), is a
problem we encounter very many times during our disambiguation process.
This also means that it has massive influence regarding our efficiency, which
also became clear as we experimented with different implementations for
solving the LCS problem. Our current solution is a slightly simplified version
of the state-of-the-art solution we have described earlier (see Section [4.4.3)),
which indicates that there are not an easy way to speed up solving this task
considerably.

Parallelization

We have introduced a concurrent design in order speed up the disambiguation
process. First of all, we branch out all entities, and start the disambiguation
process on all of them in parallel. Secondly, we start the scoring process for
each candidate for each entity in parallel as well (see Section . These
steps improved our execution time tremendously. How much these steps
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improve the efficiency will of course depend on the machine used, and its
architecture.

These parallelization steps do however have one weakness with the current
implementation, namely that we end up calculating the scores twice for each
candidate. This is because each entity operate by their own, independently
of the others. Consider two neighboring entities; A and B. Both entities’
candidates’ scores are calculated independently, meaning that candidates of
entity A calculates their similarity with candidates of entity B, while the
candidates of entity B do the same with the candidates of entity A.

The optimal solution would obviously be to perform the calculations only
once, allowing both sides to use the same result, rather than having both
sides calculating the same thing simultaneously. Even though we currently
have this disadvantage, parallelization is still of considerably more help than
harm regarding efficiency. Fixing this problem would however improve the
efficiency further.

6.5 Research Questions Revisited

We evaluate the work by revisiting the research questions introduced in Sec-
tion and discuss our findings in hindsight.

RQ: How can we implement an entity linking system that selects
the most relevant candidate article, taking entity ambiguity
into account?

In Section we analyzed several state-of-the-art systems, and their ap-
proaches. We learned that they mainly emphasize data stored in a knowl-
edge base in order to decide for the correct article when the entities are
ambiguous.

We implemented a new entity linking system, using our own approach to
the problem on the basis of the conducted research. We used data from a
structured knowledge base in order to detect relations between entities in
the input text, and selected candidates who seemed similar to each other for
each entity. Our approach is described in detail in Chapter
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RQ1: What kind of data and methods can be used to disambiguate
ambiguous entities?

The simplest method to decide for an entity candidate, is to select the most
common candidate, meaning we will get correct result in many cases, but
certainly not all. This is not a satisfying approach, because of all the cases
we simply know we will fail to annotate correctly.

Instead, one might retrieve the entities from a structured knowledge base,
and find similarities between them. These similarities could be defined by
common in/out-links, common categories, etc. This approach of measuring
similarities between entities assumes that similar entities usually are men-
tioned close to each other. Thus, the most similar entities should be chosen
across all entity mentions.

RQ2: How do today’s entity linking systems select what candidate
article should be used for each entity?

Several modern state-of-the-art systems were analyzed in Section [3.2] show-
ing that they retrieve information from a structured knowledge base, such as
DBpedia, YAGO, or Wikidata. Even though the systems have minor differ-
ences, their approach is to discover relations and similarities across different
entity mentions, usually in a similar manner to one of the methods mentioned

for RQ1 above.

RQ3: What is the best method for selecting correct article for an
entity, and how can we maximize the efficiency for such a
system?

There is not necessarily one method that is superior to all others. Some
systems specialize in annotating short texts, while others perform better for
longer texts. Which approach is best will heavily depend on how the system
will be used. What is certain however, is that a system should consider the
context around every ambiguous entity mention, usually based on surround-
ing entity mentions, in order to decide which is the best candidate.

Regarding efficiency, it is beneficial to minimize the initial set of potential
candidates, or at least minimize it early in the process by removing candidates
considered unlikely to be correct anyway. Additionally, an awareness of which
processes are possible and beneficial to do in parallel is a big advantage, as
concurrency can speed up the program execution considerably.
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Chapter 7

Summary

7.1 Conclusion

The entity linking task poses challenges in several research fields, which we
have investigated in this thesis. On the basis of this research, we have de-
signed and implemented an entity linking system from scratch, evaluated
it, and compared its performance with other state-of-the-art entity linking
systems.

We have used DBpedia in order to populate and disambiguate the entities
within an input text. First, we found all entities in the input text, and
represented them with a list of possible DBpedia articles about them, which
we call candidates. Next, we used data from DBpedia to look for relations and
similarities between different candidates across the entities considering the
context, which consisted of nearby entities. We then selected the candidates
we believed were similar to each other for each entity.

As we evaluated our system, we soon discovered some challenges with the
entity extraction task. We did not end up with the ideal entity set as often
as we would prefer. Wrongly identified entities propagated errors further
down the line, as this also affected the context for the entities we actually
extracted correctly. Regarding our solution for the entity disambiguation
task, its effectiveness was satisfying considering our challenges with entity
extraction, even though it was not as efficient as we anticipated.
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It is also worth mentioning that there were some aspects of DBpedia which
made the disambiguation process harder than it had be. For instance, DB-
pedia turned out to be more inconsistent than we initially thought, which
obviously had a negative influence on our results. These inconsistencies in-
cludes the fact that similar entities do not always have the same kind of
subjects, e.g., some countries lack a subject telling which continent it be-
longs to, which is present for the vast majority of countries.

We experienced that the WIKI-ANNOT30 dataset was not perfectly designed
for our system, or vice versa. Ideally, we would like to use a dataset without
any text fragments consisting of as little as down to two entities. Considering
our context consists of four entities, we would prefer that each text fragment
has at least five entities.

Experiments showed that our system was not as good as the systems we used
as reference, such as Wikify! and TagMe when using the WIKI-ANNOT30
dataset. Our precision score showed that we managed to correctly annotate
45.0% of the entities we found, and our recall score showed that we managed
to correctly annotate 28.8% of the entities according to the gold standard.
This gives an F score of 35.1%.

Through experiments, we also found that each entity on average has about 17
potential candidates in DBpedia initially, meaning we have approximately 6%
chance of selecting the correct candidate by random. Thus, we have certainly
done something right, considering we achieved a 45% hit rate. however, there
is still a way to go before our solution is effective enough to compete with
the best entity linking systems out there.

Experiments have showed that candidate ranking methods based on ma-
chine learning often outperforms those using plain classification methods [42].
Thus, the future will probably bring more focus on developing sophisticated
and intelligent systems using machine learning in order to disambiguate en-
tities.

7.2 Future Work

There are multiple aspects that may be worth some more exploration, and
serves as reasonable starting points for any future work.
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e DBpedia is not a perfect knowledge base, which led to several prob-
lems for our disambiguation process. It could be beneficial to explore
the possibility of replacing DBpedia with a knowledge base with more
strict rules for how data is added, rather than just being a mirror of
Wikipedia which anyone can edit, like DBpedia is. Even though we
initially explored the possibility of using other knowledge bases as well,
including the likes of Wikidata and YAGO, we believe it would be a
good idea to revisit this decision once again.

e In order to resolve our problems with extracting entities from text,
it might be preferable to use multiple named-entity extraction frame-
works. Thereby, we can combine their results in order to find the out-
comes it seems to be most agreement of between the different parsers.

e Our system’s efficiency could be enhanced by avoiding multiple can-
didates computing the same calculations simultaneously, which is the
case with the current implementation.

e We experienced that common words among the subjects sometimes had
a large impact as we calculated the similarities between two candidates.
This could possibly be avoided by using a discount factor for words, or
string sequences, that have already been encountered.

e An approach where we consider multiple entities as one selection of mul-
tiple candidates at once might be favorable over our current approach.
Currently, we pick the one candidate we think is most probable at any
given time. However, in situations where we do not have one very
superior candidate, it might be better to focus on which multiple can-
didates across the entities are most probable to occur together. This
obviously complicates the process a bit, but will probably give a better
reflection of the context and increase our chance of selecting the correct
candidates, and is thus worth further investigation.

e If we enter a subject’s page in DBpedia, we are presented with more
information about the given subject. Especially the “broader” attribute
which is present for some subjects may be of interest in our case. If
we visit the “Australia” subject connected to the page of Australia,
the “broader” attribute lists elements such as "Countries in Oceania”,
“Former British colonies”, etc. By involving these subjects as well as
the original, we can potentially avoid the problem we mentioned earlier,
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where the page for Australia does not mention “Oceania” among its
primary subjects. However, it is worth noting that this would magnify
the amount of processing needed in order to disambiguate entities.
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Implementation

Our implementation use two classes: Entity and Candidate (see Figure .
The Entity objects represents the entity mentions in the text, while the Can-
didate objects represents DBpedia resources. Additionally, we have some
separate files with code responsible for populating objects, parsing evalua-
tion dataset, and organizing the general program flow. We present a short

description of the Entity and Candidate classes.

Entity

name: string

neighbors: Entity(]
candidates: Candidate]]
winner_ratio: float

dbpedia_default: Candidate

Candidate

name: string

subjects: string[]

calculate_scores(entity_queue)
scale_scores()

longest_common_substring(s1, 52)

F Y

score: float

wiki_id- string

Figure A.1: Class diagram of our program.
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Entity Class

An Entity object has the following set of variables:
name: A string value equivalent to the entity mention in the input text.

neighbors: A list of all entities defined as neighbors of the actual entity.
All elements are other Entity objects.

candidates: A list of all resources the entity could represent in DBpedia.
All elements are Candidate objects.

winner_ratio: A float value telling how superior the best candidate is. The
value is set to zero if we have only one candidate, otherwise:

. . score of best candidate
winner_ratio =

score of 2nd best candidate

dbpedia_default: A copy of the Candidate object used as default value for
this entity mention by DBpedia. Initially, the list of all candidates will
also contain this object.

And the following set of methods:

calculate_scores(entity_queue): This method recomputes the score for
the given candidate. Takes a Queue object used for concurrency as
input. When the new scores are calculated, the whole Entity object is
stored to the entity_queue.

scale_scores(): This method ensures that all the candidates’ scores sums
up to 1, and still keep their weights relative to each other. This way,
their score can be seen as the probability of them being the correct
candidate.

longest_common _substring(sl, s2): Takes two strings as input, and re-
turns a score for how similar they are, based on their longest common
substring.

Candidate Class

A Candidate object has the following set of variables:
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name: A string value equivalent to the name of the DBpedia resource it
represents.

subjects: A list of subjects connected to this candidate. The subjects are
represented by strings.

score: Probability of this candidate being the correct one in its given con-
text.

wiki_id: Unique ID of the Wikipedia article representing the actual candi-
date.
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