
Entity Linking

Kjetil Møkkelgjerd

Master of Science in Computer Science

Supervisor: Herindrasana Ramampiaro, IDI

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

Abstract

Entity linking may be of help to quickly supplement a reader with further
information about entities within a text by providing links to a knowledge
base containing more information about each entity, and may thus potentially
enhance the reading experience. In this thesis, we look at existing solutions,
and implement our own deterministic entity linking system based on our
research, using our own approach to the problem.

Our system extracts all entities within the input text, and then disam-
biguates each entity considering the context. The extraction step is han-
dled by an external framework, while the disambiguation step focuses on
entity-similarities, where similarity is defined by how similar the entities’
categories are, which we measure by using data from a structured knowledge
base called DBpedia. We base this approach on the assumption that simi-
lar entities usually occur close to each other in written text, thus we select
entities that appears to be similar to other nearby entities.

Experiments show that our implementation is not as effective as some of
the existing systems we use for reference, and that our approach has some
weaknesses which should be addressed. For example, DBpedia is not an
as consistent knowledge base as we would like, and the entity extraction
framework often fail to reproduce the same entity set as the dataset we
use for evaluation. However, our solution show promising results in many
cases.

Sammendrag

Entitetlenking kan være til hjelp for å gi en leser enkel tilgang til supplerende
informasjon om entiteter in en tekst ved å oppgi lenker til en kunnskapsbase
som har mer informasjon om hver enkelt entitet, noe som potensielt kan for-
bedre leseopplevelsen. I denne avhandlingen ser vi p̊a eksisterende løsninger,
og implementerer v̊art eget deterministiske entitetlenkingssystem p̊a bak-
grunn av v̊ar forskning, ved å bruke v̊ar egen tilnærming til problemet.

Systemet v̊art henter ut alle entiteter i en gitt tekst, og utvetydiggjør hver
enkelt entitet ved å ta hensyn til konteksten. Prosessen med å hente ut entite-
ter tas h̊and om av et eksternt rammeverk, mens utvetydiggjøringsprosessen
fokuserer p̊a entitetslikheter, hvor likhet er definert etter hvor like entitete-
nes kategorier er, som vi finner ut ved å bruke informasjon fra en strukturert
kunnskapsbase kalt DBpedia. Vi baserer denne tilnærmingen p̊a antagelsen
om at like entiteter vanligvis forekommer i nærheten av hverandre i tekst,
dermed velger vi entiteter som virker lik andre entiteter i nærheten.

Eksperimenter viser at v̊ar implementasjon ikke er like effektiv som noen av
de eksisterende løsningene vi bruker som referanse, og at v̊ar tilnærming har
noen svakheter som bør bli adressert. DBpedia er for eksempel ikke en s̊a
konsekvent kunnskapsbase som vi skulle ønske. I tillegg feiler ofte rammever-
ket vi bruker for å hente ut entiteter fra teksten med å reprodusere samme
entitetsett som datasettet vi bruker for evaluering. Løsningen v̊ar viser likevel
lovende resultater i mange situasjoner.

Acknowledgements

I would first like to thank my supervisor Associate Professor Heri Ramampiaro
for his support throughout the work with this thesis. His help with forming
the research questions, and guiding me with both the writing process and
the general work flow has been invaluable to me during this work.

I would also like to thank my fellow students. Your presence have been to
my help both academically at the office and socially outside the office. You
have not just been of help during the last couple of months, but during my
whole study the last couple of years.

My friends outside study also deserve a thank, as you have been of large help
when I have needed some relaxation from the research. Especially, I want
to thank Catrine Emilie Jensen and Olav Mogstad for reading through the
thesis and correcting mistakes.

v

Contents

Abstract i

Sammendrag iii

Acknowledgements v

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Specification . 3
1.3 Project Scope . 4
1.4 Report structure . 4

2 Background and Theory 7
2.1 Information Extraction . 7

2.1.1 Named Entity Recognition 7
2.1.2 Named Entity Disambiguation 8
2.1.3 Entity Linking . 9

2.2 Semantic Web . 9
2.3 Knowledge Base . 10

2.3.1 Wikipedia . 11
2.3.2 DBpedia . 12
2.3.3 Wikidata . 13

vii

2.3.4 Freebase . 13
2.3.5 YAGO . 14

2.4 Evaluation Methods . 14

3 State of the Art 17
3.1 Related Work . 17

3.1.1 Wikify! . 17
3.1.2 Knowledge Base Population 19
3.1.3 Knowledge Base Acceleration 23

3.2 Related Technology . 25
3.2.1 Existing Systems . 26
3.2.2 TagMe . 27
3.2.3 DBpedia Spotlight . 29
3.2.4 AIDA . 31
3.2.5 AGDISTIS . 34
3.2.6 Babelfy . 35
3.2.7 Targeted Hypernym Discovery 37
3.2.8 Other Candidates . 39

4 Approach 41
4.1 Theoretical Solution . 41
4.2 Methodology . 43
4.3 Knowledge Base . 44

4.3.1 Categorization . 44
4.3.2 Erroneous Data . 45
4.3.3 Access . 45

4.4 Description of Implementation 46
4.4.1 Entity Extraction . 47
4.4.2 Candidate Extraction 48
4.4.3 Entity Disambiguation 49

4.5 Initial Testing . 53

5 Evaluation 57
5.1 Experiments . 57

5.1.1 Dataset . 57
5.1.2 Hardware . 58
5.1.3 Evaluation Metrics . 59
5.1.4 Evaluation Methodology 60

5.2 Results . 61
5.2.1 Entity Extraction . 61
5.2.2 Entity Disambiguation 62

6 Discussion 63
6.1 Dataset . 63

6.1.1 Aging Content . 64
6.1.2 System Comparison . 64

6.2 Knowledge Base . 65
6.2.1 Inconsistency . 65
6.2.2 Disambiguation Pages 66
6.2.3 Access . 67

6.3 Entity Extraction . 67
6.3.1 Multi-Word Entities 68
6.3.2 Entity Set . 68
6.3.3 Classification . 69

6.4 Entity Disambiguation . 70
6.4.1 Default Resource . 70
6.4.2 Initial Context . 71
6.4.3 Candidate Scoring . 71
6.4.4 Efficiency . 75

6.5 Research Questions Revisited 76

7 Summary 79
7.1 Conclusion . 79
7.2 Future Work . 80

A Implementation 83

Bibliography 87

List of Figures

1.1 Screenshot from Wikipedia, showing links to articles with a
more detailed explanation of different entities. 2

2.1 Snapshot of a small part of the DBpedia ontology. 12

3.1 Architecture of the Wikify! system. 18
3.2 Annotation pipeline in the TagMe system [17]. 28
3.3 Annotation process for DBpedia Spotlight. 30
3.4 Mention-entity graph example, used by AIDA. 33
3.5 Overview of AGDISTIS. 34
3.6 Semantic interpretation graph Babelfy builds for the sentence

”Thomas and Mario are strikers playing in Munich”. The
edges connecting the correct meanings are in bold. 36

3.7 Architecture overview of THD. 38

4.1 A text with four entities, here with just two neighbors. Ro-
mania and Turkey are neighbors of Bulgaria, and so on. 42

4.2 Example use of our proposed system. 43
4.3 Subjects connected to the dance band Contrazt in DBpedia. . 45
4.4 Architecture overview of our proposed system. 46
4.5 Overview of scoring process for Entity1, having Entity2 as

neighbor. All arrows indicate a string comparison that returns
a score. All these scores are summed up to a total score for
that given candidate. 49

4.6 Three entities, each with 2-4 scored candidates. Candidate1
will be chosen for Entity2 this iteration since it has the highest
winning ratio (2.5), even though both Entity1 and Entity3
have candidates with an higher individual score. 51

xi

4.7 Sequential versus parallel approach for the disambiguation
process. 53

5.1 Text fragment with corresponding annotations retrieved from
the Wiki-Annot30 dataset. 58

A.1 Class diagram of our program. 83

List of Tables

5.1 Results of our entity extraction module over 1,000 text frag-
ments. 61

5.2 Results of our entity disambiguation module over 1,000 text
fragments. 62

6.1 Our system compared to other state-of-the-art entity linking
systems. 64

6.2 Differences between linear and exponential scoring given the
length of the longest common substring (LCS). 73

xiii

Chapter 1

Introduction

1.1 Motivation

People are sharing more and more information over the Internet, where a
large amount of this information is unstructured textual information written
by and for people. In some cases, the reader may not have the necessary
background knowledge to fully comprehend the meaning of an online article,
and must therefore make an effort on their own to obtain this knowledge, e.g.,
by using a Web search engine, to truly benefit from the reading. Another
scenario may be that the reader wants more information about the subject
they have just read about, and is again led to find more information on their
own.

It would generally be beneficial if Web sites could assist the readers who
want more information. Simply writing more information for each article is
not optimal, since it may lead to impractical article lengths. Additionally, it
is a fair assumption that readers have a varying need of extra information.
Simply adding a lot of information on every article is therefore not optimal.
A better solution is to provide links to other articles with more detailed
information about certain topics that is known to be relevant for the actual
article, which simplifies the information gathering process for the user.

Consider a news article on a Web page of a newspaper about a blooming
conflict between two nations in the Middle East. A reader who is normally

1

1.1. Motivation Chapter 1. Introduction

not that interested in geography, or general information about the Middle
East, still finds the situation intriguing and wants to learn more about the two
nations. A way to satisfy this need from the newspaper’s point of view could
be to provide links to an article or a Web site with more information of the two
nations, making it easier for the reader to acquire more information.

Most newspapers today are aware of this, so the journalists writing the ar-
ticles usually supply hyperlinks to previous articles published on their Web
site about more or less the same subjects. Newspapers might have an extra
interest to keep the reader on their platform, so links to external sources are
usually only used to reference their original source for the article.

Consider an article about a recent football match. A reader might want to
read more about one of the teams. However, since newspapers normally do
not have an article about every football team (or other subjects, for that
matter) they mention, the reader is normally provided links to articles about
previous matches played by the two teams, rather than general information
about any of the two teams. Again, the reader is left to find the necessary
resources on their own.

Figure 1.1: Screenshot from Wikipedia, showing links to articles with a more
detailed explanation of different entities.

One Web site that really emphasizes on using this strategy of linking entities
in a text to another article with more information about that exact subject, is
wikipedia.org, which is the worlds largest encyclopedia. This annotation is
showed in Figure 1.1. The English version consist of approximately 5.250.000
articles of unique subjects.1 With all this data they are able to reference to
other articles to better explain the content in the actual article with clickable
hyperlinks. This makes it easy for the reader to get more information about
certain topics if that is desirable.

Wikipedia is community-driven, where every article is written by their al-
most 30 million registered users. With so many unique users, it is natural

1Statistics available at https://en.wikipedia.org/wiki/Special:Statistics

2

wikipedia.org
https://en.wikipedia.org/wiki/Special:Statistics

1.2. Problem Specification Chapter 1. Introduction

that they cover quite a lot of different topics, so that pretty much every-
thing is covered, including music, sport, politics, geography, religion, history,
literature, science, and so on.

All links in Wikipedia is manually added by the writers. A link is only added
where the writer thought it would add value to the future readers. In the said
figure, we see that ”pop music” is linked to an article with more information
about that topic, while ”1998” and ”2005” do not have any attached links,
even though Wikipedia also contains dedicated articles for both these years,
with births, deaths, and other events for those specific years. It is, however,
up to the writer to determine if it is really necessary with a link in these
cases.

Both newspapers and Wikipedia adds links to enhance the reading experi-
ence, along with several other services. Today, most of these services have in
common that all links is added manually by the writer, as mentioned for both
newspapers and Wikipedia. The task of automating this process is however
an important research field in computer science. This is called entity link-
ing, and may be split into several smaller sub-problems, such as detecting
actual entities in the text, solving ambiguous cases, and ranking possible
candidates in a knowledge base to decide what best fits the entity.

If a system with a near-human precision could be designed for entity linking,
it would mean that we could restructure all existing digital text to follow
this design pattern, where every mentioned entity with a node in a knowl-
edge base could get a direct link in the text. This may enhance the reading
experience. Also, it would no longer be necessary for the writers at news-
papers, Wikipedia, or other services, to add links manually, and they may
therefore save time and resources.

This is only one use-case for such a system, but with this in mind we see that
it would be beneficial to keep exploring possible techniques and technologies
which may help us design such a system.

1.2 Problem Specification

With this basis our main research question will be:

3

1.3. Project Scope Chapter 1. Introduction

RQ: How can we implement an entity linking system that selects
the most relevant candidate article, taking entity ambiguity
into account?

This research question can again be split into several sub-questions:

RQ1: What kind of data and methods can be used to disambiguate
ambiguous entities?

RQ2: How do today’s entity linking systems select what candidate
article should be used for each entity?

RQ3: What is the best method for selecting correct article for an
entity, and how can we maximize the efficiency for such a
system?

1.3 Project Scope

We need to set a scope for this master thesis due to time and resource limi-
tations. We will mainly focus on the entity disambiguation task, rather than
the entity extraction task within entity linking. Since we have neither time
or resources to build a platform that can fully understand unstructured writ-
ten text, this is beyond the scope of this project, and we use a third party
framework for entity extraction.

Additionally, we only consider input text in English, and ignore potential
misspellings. We also exclude rich content such as video, audio, figures,
images or tables, meaning we only consider raw text data as input.

1.4 Report structure

The remainder of this report is structured as follows:

Chapter 2: Introduction to different elements, such as research areas one
should be familiar with when working with entity linking.

Chapter 3: Presents state-of-the-art techniques within entity linking by

4

1.4. Report structure Chapter 1. Introduction

looking at several modern implementations and performing simple experi-
ments on them.

Chapter 4: Explains the design and thinking behind our implementation,
including a closer look at some especially interesting aspects.

Chapter 5: Describes the experiment design and results.

Chapter 6: Looks at the results from the experiments, and draws parallels
to the implementation.

Chapter 7: Presents a conclusion for the research, and suggests potential
future work.

5

Chapter 2

Background and Theory

2.1 Information Extraction

Information extraction (IE) is a field in computer science concentrated around
the task of automatically extracting structured information from unstruc-
tured or semi-structured machine-readable documents. IE often involves
processing natural human languages (such as text written by humans), often
referred to as natural language processing (NLP).

2.1.1 Named Entity Recognition

Named Entity Recognition (NER) represents the task of recognizing items,
or entities, in an input text which maps to proper real world names. This
might be people, places, happenings, companies, etc. In short, a NER-system
takes unstructured text as input, and outputs all recognized entities in the
text. The NER-problem is highly relevant in our case, since these named
entities in the text usually will be appropriate for entity linking (see Section
2.1.3).

For earlier systems, the most popular approach has been to use handcrafted
rule-based algorithms, often using specific features [32]. Features are descrip-
tors or characteristic attributes of words designed for algorithmic consump-
tion. This could for instance be a Boolean value representing whether a word

7

2.1. Information Extraction Chapter 2. Background and Theory

is capitalized or not, a list over defined named entities, or similar. This works
well in simple cases, but sentences in the real world tend to be quite complex.
Because of this, most of today’s systems use supervised learning, where rules
and entity lists are created from a large amount of annotated corpus.

NER is often extended to also involve classification of the found entities,
telling if the given entity is a person (PER), organization (ORG), geopolit-
ical entity (GPE), etc. This is called Named Entity Recognition and
Classification (NERC).

2.1.2 Named Entity Disambiguation

Named Entity Disambiguation (NED) represents the task of disambiguating
entities within a text, or simply said, choosing the correct article describing
an entity when multiple candidates appear to be relevant for the given en-
tity. These candidates are usually found using a knowledge base, looking for
articles matching the entity name.

Consider the following sentence as an example: ”Mickey Mouse has a pet
dog called Pluto”. Mickey Mouse is relatively straightforward, and should
point to the Disney-character. For humans, it is also quite straightforward
to see that Pluto should point to the Disney-character, which is in fact Mickey
Mouse’s pet dog. For computers however, it is not necessarily that easy. Both
google.com and wikipedia.org returns Pluto the dwarf planet as the top
hit when searching for ”Pluto”. This might lead a computer to think that the
entity mention represents the dwarf planet rather than the Disney-character.
In circumstances like these we need a method to resolve the conflicts of
multiple hits in the knowledge base, using some kind of ranking algorithm to
pick the correct candidate.

Ranking the possible nodes is not necessary a straightforward task either,
since these mentions might be highly ambiguous, making several nodes a
possible match for the given entity. There are a number of different ways to
find the best candidates. For instance, one can use some kind of machine
learning approach such as Naive Bayes or decision trees, or one can check
similarity of each candidate up against other elements of the actual text
(context-wise). We will get back to this as we take a closer look at different
systems later (see Chapter 3).

8

google.com
wikipedia.org

2.2. Semantic Web Chapter 2. Background and Theory

2.1.3 Entity Linking

Entity linking is the general all-inclusive task for linking entities in an input
text to the correct node of a knowledge base [35]. To achieve this, one
must start by finding named entities with a NER-analyzer. After finding all
entities in the text, we must find the node in our selected knowledge base
that best fits that exact entity using a NED-system, before we produce the
actual link.

Given the input text ”Gerrard used to play alongside Carragher for Liv-
erpool”, three entities should be extracted: Gerrard, Carragher and Liver-
pool. These three entities should then be identified and point to the two
ex-footballers Steven Gerrard and Jamie Carragher, and the football club
Liverpool F.C. These entities should be highlighted, with a link to, e.g.,
Wikipedia.

If an entity linking system fails to resolve ambiguous entities, it is prone to
frustrate the reader more than helping him or her, since the provided link
might mislead the reader to an article that is actually unrelated to what is
expected. In our mentioned example, the system might incorrectly identify
Liverpool to represent the city, rather than the football club. Therefore,
it is very important to have well-working mechanisms to handle ambiguous
entities.

2.2 Semantic Web

The semantic web is an extension of the Web through standards by the
World Wide Web Consortium (W3C), making content that is meaningful
to computers [2]. Traditionally, the Web’s content has been designed for
humans to read, not for computer programs to process. The semantic web
aims to bring structure to the meaningful content of Web pages, allowing
software agents to automatically carry out tasks for users.

The use of hashtags (#) on social medias like Facebook and Twitter is one
simple example of the semantic web in practice [12]. The users tag their
posts with relatively simple words or phrases without whitespace, e.g., one
user may take a picture of a sunrise and add ”#sunrise” to the post. This

9

2.3. Knowledge Base Chapter 2. Background and Theory

enables Web programs to retrieve posts probable to contain a sunrise in a
simple manner.

People are moving towards building a semantic web where relations can be
established among any online piece of information. The data language, called
Resource Description Framework (RDF), names each item and their relations
in a way that allows computers to automatically interchange the information.
Structured knowledge bases, which we will get back to shortly, are important
contributors to the semantic web.

The entity linking task is dependent on the semantic web, as we need to
discover relations between different entities in order to disambiguate them.
By performing entity linking, we can also obtain a lot of structured informa-
tion about entities in the text, which is really the core idea for the semantic
web.

2.3 Knowledge Base

The Oxford Dictionaries defines a knowledge base (KB) as:

1. a store of information or data that is available to draw on

2. the underlying set of facts, assumptions, and rules which a computer
system has available to solve a problem1

Thus, according to the Oxford Dictionaries, a KB can be used to store struc-
tured and unstructured data, and make it available for a computer system.
This really comes in handy for entity linking, as we need to both provide
and retrieve information about entities. An entity linking system aims to
supply links to a KB, and may also use information stored about the entity
candidates in the KB in order to disambiguate entities.

Even though it would be theoretically possible to obtain information about
entities by parsing raw text from an unstructured KB, this is infeasible as
one would need an incredibly complex parser to get all the necessary in-
formation for all different kinds of entities. Therefore, it would be a great
advantage if the KB has some kind of mechanisms to keep track of relations

1https://en.oxforddictionaries.com/definition/knowledge_base

10

https://en.oxforddictionaries.com/definition/knowledge_base

2.3. Knowledge Base Chapter 2. Background and Theory

between entities. These relations might be checked up against the context
where the entity appears in the text, and thus help us find the best entity
candidate.

2.3.1 Wikipedia

Wikipedia2 might be the best known KB today, as it is the worlds largest
encyclopedia. Wikipedia is community-driven, where the users write on a
voluntarily basis and is allowed to edit (almost) any article at any time.
Since anyone can sign up, some users will enter incorrect information, either
on accident or on purpose, which may lead to the user being banned from
further writing. However, with such a large user base as Wikipedia has,
wrongly entered information usually gets fixed rather quickly.

When Wikipedia is used as KB for entity linking the process is often called
wikification. The data on Wikipedia is semi-structured, since the topics
of each page is known and relationship between the different topics is also
maintained. Infoboxes, tables, lists, and categorization data is considered as
structured data in Wikipedia articles. However, it is not fully understandable
for a computer exactly what the text for each article describes.

The English version of Wikipedia consist of over 5M articles of different
subjects, created by almost 30M users (with writing permission). With such
a wide user base, it is fair to assume that the data is quite up-to-date at
any time. This is also reflected by the statistics, saying they have almost
3,5M edits per month, which corresponds to around 80 edits per minute.3
Wikipedia has articles written in almost 300 different languages, but the
amount of articles and users for each language naturally varies. For instance,
Norwegian (Bokm̊al) consist of approximately 450.000 articles written by
370.000 users.

2www.wikipedia.org/
3https://stats.wikimedia.org/EN/SummaryEN.htm

11

www.wikipedia.org/
https://stats.wikimedia.org/EN/SummaryEN.htm

2.3. Knowledge Base Chapter 2. Background and Theory

2.3.2 DBpedia

DBpedia4 extracts structured, multilingual knowledge from Wikipedia and
make this available to its users using semantic web (see Section 2.2) and
Linked Data technologies [24]. With its strong link to Wikipedia, it also
supports many languages and the information evolves as Wikipedia changes.
Because of the structured information in DBpedia it is also possible to make
more complex queries using SPARQL, e.g., ”Give me all cities in Norway
with more than 40.000 inhabitants” or ”Give me all nations who participated
in the FIFA World Cup 2014”. Reminding more of a SQL query than a plain
word search supported by Wikipedia.

Figure 2.1: Snapshot of a small part of the DBpedia ontology.

DBpedia extracts the structured information from Wikipedia, such as in-
fobox templates, categorization information, images, geo-coordinates, links
to external Web pages, disambiguation pages, redirects between pages, and
links across different language editions. This information is then turned into
a rich knowledge base. The generated DBpedia ontology consist of 320 classes
(person, organization, place, species, etc.), which is described by 1.650 differ-
ent properties (birth date, area code, release date, etc.).5 A simple overview
is shown in Figure 2.1.

4wiki.dbpedia.org/
5http://mappings.dbpedia.org/server/ontology/classes/

12

wiki.dbpedia.org/
http://mappings.dbpedia.org/server/ontology/classes/

2.3. Knowledge Base Chapter 2. Background and Theory

DBpedia has a new release approximately twice every year, but this may
vary. These releases typically have some updates related to the used ontol-
ogy model, in addition to a ”fresh” and updated dump of Wikipedia data.
DBpedia Live is a service which ensures a continuous synchronization be-
tween DBpedia and Wikipedia, with a small delay of at most a few minutes
[31].

2.3.3 Wikidata

Wikidata6 by the Wikimedia Foundation aims to create a free KB that can
be read and edited by both humans and computers, meaning they must
structure the data making it as easy as possible for computers to understand
[41, 11]. This project intends to structure all the data of Wikimedia sister
projects as Wikipedia and others. Wikidata is an ongoing project and is still
under active development. Data can be retrieved by requesting their official
API.

Data stored in the Wikidata KB are called items and can have labels, de-
scriptions and aliases in all languages. Wikidata provides a set of statements
about something, rather than stating single truths. For instance, instead of
stating that Berlin has a population of 3.5M, Wikidata contains the state-
ment about Berlin’s population being 3.5M as of 2011 according to German
statistical office. This way, Wikidata can offer a variety of statements from
different sources and dates. These statements may again be ranked to define
their status (preferred, normal or deprecated).

2.3.4 Freebase

Freebase7 was a scalable tuple database used to structure human knowledge
powered by Google, which was thought of to be ”Wikipedia for structured
data” [5, 4]. Freebase was collaboratively created, structured and maintained,
before it was officially shut down on August 31, 2016. Their last dataset is
still available, but they will not supply any updates in the future.

6www.wikidata.org
7https://developers.google.com/freebase/

13

www.wikidata.org
https://developers.google.com/freebase/

2.4. Evaluation Methods Chapter 2. Background and Theory

Google discontinued working on the Freebase service as a standalone project
since the Wikidata project (see Section 2.3.3) was a fast growing project with
an active community and with the same objective as Freebase8. Therefore,
the Freebase team decided to help transfer the data in Freebase to Wikidata,
rather than keep competing with them.

2.3.5 YAGO

YAGO (Yet Another Great Ontology)9 builds on entities and relations, which
is automatically extracted from Wikipedia [38]. This extraction step utilizes
the fact that Wikipedia has category pages offering general details about the
entities. The YAGO model is able to express entities, facts, relations between
facts and properties of relations. YAGO enables users to browse their KB
with a graph browser, ontology browser, in addition to an available SPARQL
endpoint, all available within their demo page.

The latest version of YAGO, YAGO3, combines the information from Wikipedia
in multiple languages [25]. The multilingual information is fused with the
English version in order to build one coherent knowledge base. To achieve
this, they make use of the categories, the infoboxes, and Wikidata, and learn
the meaning of infobox attributes across languages. By doing this they aim
to represent multilingual entities in one consistent way.

2.4 Evaluation Methods

In order to evaluate a system’s performance, there is a need for an evaluation
method with corresponding scoring metrics. Some project teams implement-
ing entity linking systems decide to also invent and develop their own evalua-
tion method and data sets. Their possibility to design an evaluation method
and data sets to fit their systems actual performance perfectly, rather than
making an general and fair evaluation is a potential problem. This might
make comparisons of different systems using their own evaluation unfair,
since they might get an undeservedly good score for their evaluation, while

8https://plus.google.com/109936836907132434202/posts/bu3z2wVqcQc
9http://www.mpi-inf.mpg.de/yago

14

https://plus.google.com/109936836907132434202/posts/bu3z2wVqcQc
http://www.mpi-inf.mpg.de/yago

2.4. Evaluation Methods Chapter 2. Background and Theory

performing considerably worse for other evaluation methods and data sets
that might be more close to the real world.

Workshops or conferences where multiple project teams submit their systems
according to a common problem description are typically also evaluated using
the same methods and metrics. This is naturally the fairest way to compare
systems, since all systems have the same goal of what they want to achieve,
and on this basis they are put on the same tests to measure their actual
performance. These tests usually focus more on effectiveness, rather than
efficiency.

TAC-KBP is one example of such conference, which we will also come back
to in more detail later in this report. Their evaluation method calculates
precision and recall between gold (G), which is manually annotated, and
a system’s (S) annotations [22]. The annotations are a set of distinct tu-
ples. Values for precision (P) and recall (R) are combined as their balanced
harmonic mean (F1), which is used to compare each system:

P = |G ∩ S|
|S|

R = |G ∩ S|
|G|

F1 = 2PR

P + R

The TAC-KBP evaluation tool is open source and freely available for down-
load10, making it easy to use for testing during the development process as
well. The source collection includes 90,000 documents, where 500 documents
are selected for evaluation and manually annotated11.

The precision, recall and balanced harmonic mean scores are present in most
evaluations, without any large deviation. What varies more, however, is
how the documents used for evaluation are selected. Since different systems
typically perform unequal on the same data sets, one might be tempted to
select documents that are well fitted for your system’s strengths, as earlier
discussed.

There are a number of freely available datasets where the text is already
annotated, and each entity is marked with the ID of the article it should
point to. Considering the method for calculating precision, recall and F
measure should be similar for most systems, it should not be a big problem
to compare different systems using the same dataset.

10https://github.com/wikilinks/neleval
11http://nlp.cs.rpi.edu/kbp/2016/taskspec.pdf

15

https://github.com/wikilinks/neleval
http://nlp.cs.rpi.edu/kbp/2016/taskspec.pdf

Chapter 3

State of the Art

3.1 Related Work

A lot of work has been conducted towards entity linking the recent years,
which has resulted in several different solutions. Different approaches have
been tried, some with success, others less so. Wikify! did in many ways make
the entity linking task ”popular” with their research, leading to Knowledge
Base Population (KBP) being implemented as a track of the annual Text
Analysis Conference (TAC). It is fair to assume that all serious entity linking
systems have taken some inspiration from these two sources.

3.1.1 Wikify!

Wikify! is an early entity linking system from 2007 developed at the Univer-
sity of North Texas [27]. This system identifies important concepts in any
given input text (keyword extraction) and automatically link these concepts
to the corresponding Wikipedia pages (word sense disambiguation).

Wikify! uses a set of unsupervised keyword extraction techniques. The
problem of finding entities is done by assuming to be working under a con-
trolled vocabulary setting, where all keywords in the vocabulary are ac-
cepted phrases. This way, nonsense phrases like, e.g., ”products are” are
ignored.

17

3.1. Related Work Chapter 3. State of the Art

The unsupervised keyword extraction algorithm works in two steps: candi-
date extraction and keyword ranking (see Figure 3.1). The candidate ex-
traction step parses the input and extracts all entities that are also present
in the controlled vocabulary. The ranking step assigns a numeric value to
each candidate, based on the likelihood that a given candidate is a valuable
keyphrase. In order to decide how many links should actually be added, a
simple statistical analysis of Wikipedia was performed, finding that approx-
imately 6% of all words is annotated, which is also the default ratio used for
Wikify!.

Figure 3.1: Architecture of the Wikify! system.

Two different disambiguation algorithms were tried out. The first, a knowledge-
based approach, attempted to identify the most likely meaning for a word
in the actual context (current paragraph) based on a measure of contextual
overlap between the dictionary definitions of the ambiguous word. The sec-
ond approach was a data-driven method using a Naive Bayes classifier to find
the best candidate.

The data-driven approach generally outperformed the knowledge-based ap-
proach, but a combination of the two gave the least amount of incorrect
annotations, but it also missed out on some words it should have anno-
tated.

The system was tested by 20 users with mixed backgrounds, each evaluat-

18

3.1. Related Work Chapter 3. State of the Art

ing 10 documents and trying to determine if each document was annotated
manually by a human, or by a computer (using Wikify!). The human version
was correctly identified in 114 of the 200 cases, which gives an accuracy of
57%. This is close to the ideal accuracy, which is 50%, meaning the human
and computer would have been indistinguishable.

Not long after the research of the Wikify! team was published, another study
at the University of Waikato with some improvements of the Wikify! sys-
tem was published [28]. The central difference between this and the original
Wikify! system is that this solution finds entities in the text by using dis-
ambiguation to inform detection. A machine learning approach, using the
actual links within Wikipedia articles is used as training data. The C4.5 al-
gorithm is used to generate a decision tree. This newer system outperforms
the original system when it comes to detecting entities within the text, or
keyword extraction.

3.1.2 Knowledge Base Population

The goal of Knowledge Base Population (KBP) is to develop and evalu-
ate technologies for populating knowledge bases from unstructured text.
The Text Analysis Conference (TAC) has a series of workshops organized
to encourage research in Natural Language Processing (NLP)1. In recent
time, much focus has been put towards KBP2, currently consisting of five
tracks: Cold Start KBP, Validation/Ensembling Track, Event Track, Be-
lief/Sentiment Track, and Entity Discovery and Linking.

Cold Start KBP Aims to build a KB from scratch using a given document
collection and a predefined schema for the entities and relations that
will form the KB. In addition to an end-to-end KB Construction task,
the track also include a Slot Filling task to fill in values for predefined
attributes for a given entity.

Validation/Ensembling Track Focuses on the refinement of output from
slot filling systems by combining information from multiple slot filling
systems, or applying more intensive linguistic processing to validate
individual candidate slot fillers.

1http://tac.nist.gov/
2https://tac.nist.gov/2016/KBP/

19

http://tac.nist.gov/
https://tac.nist.gov/2016/KBP/

3.1. Related Work Chapter 3. State of the Art

Event Track Aims to extract information about events such that the infor-
mation would be suitable as input to a KB. The track includes Event
Nugget tasks to detect and link events, and Event Argument tasks to
extract event arguments and link arguments that belong to the same
event.

Belief/Sentiment Track Aims to detect belief and sentiment of an entity
towards another entity, relation, or event.

Entity Discovery and Linking (EDL) The most relevant track in our
case, as it aims to extract entity mentions from a source collection of
textual documents in multiple languages (English, Chinese, and Span-
ish), and link them to an existing KB. A system is also required to
cluster mentions for those entities that do not have any corresponding
KB entries.

KBP has been an active track of TAC every year since 2009, where the
results and work for each conference builds on the work and experiences
from previous years. In the latest conference with published results, from
2015 (building on the work from 2014 [21]), the focus of the EDL track was
towards Tri-lingual Entity Discovery and Linking [22]. I.e., given input text
in English, Spanish and Chinese, all entity mentions should be discovered
and linked to an English knowledge base. The 2016 conference is completed,
but its results are yet to be published at the time of writing.

The participants’ annotators were guided to use the context in order to con-
fidently identify the intended referent of any entity mention within the text
[10]. First, the annotators would have to find the entities and indicate their
type (person, organization, etc.), before linking to a node in the KB.

Supervised learning usually produces better results than unsupervised learn-
ing, and state-of-the-art entity discovery and linking methods rely on entity
profiling and collective inference. For high-resource languages like English,
it is possible to use some advanced knowledge representations to effectively
select semantic neighbors for entity profiling and collaborators for collective
inference.

Nominal mentions3 is still a problem, especially when it comes to separating
specific and generic mentions. However, they can often be resolved by looking

3Entity mention that is not composed solely of a named entity or pronoun

20

3.1. Related Work Chapter 3. State of the Art

for certain keywords in the sentences, but in some cases there are also a
need for some background knowledge. When it comes to linking a nominal
mention to the KB, the most effective approach is to apply within-document
coreference resolution to resolve it to a name mention.

Several other problems are still present within entity linking as well. In
Chinese, e.g., geographical and political names are sometimes abbreviated
as single characters, which is highly ambiguous in various contexts. In these
cases, the entity linking system was better off by assigning more weight to
context similarity rather than popularity. Also, some instances get a wrong
link due to a too weak knowledge representation, as the connection between
instances in the same sentence was not discovered.

We will take a closer look at the top three entity linking systems submitted
by the participating groups: RPI, IBM and HITS.

RPI

The RPI system extract English name mentions by using a trained linear-
chain conditional random field model, while the Stanford name tagger is
used for Chinese and Spanish [20]. They also encode several regular expres-
sion based rules to extract poster name mentions in discussion forum posts.
Person nominal mentions are detected by looking for indefinite article (e.g.,
a/an) and conditional conjunctions (e.g., if).

Their entity linking system is domain and language independent. It is based
on an unsupervised collective inference approach. Given a set of English
entity mentions, they first construct a graph for all entity mentions based
on their co-occurrence within a paragraph. Then, all entity mentions are
assigned a list of entity candidates, with a computed importance score by an
entropy based approach.

Finally, the system computes similarity scores for each entity mention and
candidate pair, and selects the candidate with highest score. For Chinese
or Spanish input rather than English, the mentions are first translated into
English using name translation dictionaries.

21

3.1. Related Work Chapter 3. State of the Art

IBM

The IBM mention detection system was based on a combination of deep neu-
ral networks and conditional random fields, depending on the input language
[36]. Neural network was used for English and Spanish, while conditional
random field models was used for Chinese.

The entity linking system is based on a language independent probabilistic
disambiguation model. They partition the full set of entity mentions of an
input document into smaller sets of mentions which appear near one another.
For deciding resources to the entity mentions, they use a maximum entropy
model, resulting in probability values for each candidate.

Several feature functions are used in order to obtain the correct resource.
Local features include counting the number of mentions whose surface form
matches exactly with one of the names for the linked entity stored in Wikipedia.
Additionally, they have Boolean values representing if all mentions match a
Wikipedia article exactly, and if the mention’s surface form is an acronym
for a name of the linked entity in Wikipedia, among others.

Some of the global features include making use of Wikipedia’s category infor-
mation to find patterns of entities that commonly appear next to each other.
In order to get better results, they remove common Wikipedia categories
which are associated with most entities, like ”Living People” etc., since they
have lower discriminating power.

HITS

The core of HITS’ entity linking system is a pipeline of sieves that perform
the subtasks necessary for entity linking [18]. They first perform a high-
precision mention detection and disambiguation, used as seeds for iterative
application of subsequent sieves. This result is then used to consider the
context also in the mention detection step.

The first couple on sieves focus on identifying, almost, unambiguous men-
tions, which are then verified through information in the knowledge base. In
cases that are somewhat ambiguous, they are omitted, and evaluated again
later considering the context found in earlier sieves.

22

3.1. Related Work Chapter 3. State of the Art

Their disambiguation process fix one argument and a relation type, and then
look for a matching second argument in the input document. More concretely,
they compile a set of paths in the knowledge base graph that connects entity
types of interest. Following these paths for each linked mention of matching
entity type, they query related entities in the knowledge base, and then check
if known surface forms of any of the related entities occur in the text.

After global disambiguation, they apply several post-processing heuristics
that are mainly designed to increase linking recall. For instance, all uncertain
cases are assigned to the most frequent sense according to Wikipedia article
links.

3.1.3 Knowledge Base Acceleration

The goal of Knowledge Base Acceleration (KBA) is to help humans expand
knowledge bases by automatically recommending edits based on incoming
content streams. The Text REtrieval Conference (TREC)4 has a series of
tracks wanting to encourage research in information retrieval from large text
collections. KBA was one such track5, which aimed to develop techniques to
dramatically improve the efficiency of (human) knowledge base curators by
having the system suggest modifications or extensions to a knowledge base
based on its monitoring of the data streams.

The KBA track was running three successive years, from 2012 to 2014, before
it was succeeded by the Dynamic Domain track in 2015, which builds on the
foundations of KBA. KBA has strong connections to entity linking, as we
need to find the correct node we want to update in the knowledge base. In
the case of KBA, one must also consider if this new information is relevant,
i.e., if this new piece of information should be stored in the KB at all, also
called Vital Filtering [16].

Many large knowledge bases, such as Wikipedia, are maintained by small
workforces of humans who cannot manually monitor all relevant content
streams. This lead to most entities lagging behind current events. KBA
aims to minimize this gap, by filtering streams of text for new information
about entities, and suggest relevant updates.

4http://trec.nist.gov/
5http://trec-kba.org/

23

http://trec.nist.gov/
http://trec-kba.org/

3.1. Related Work Chapter 3. State of the Art

Vital filtering can be viewed on as a binary classification problem. However,
computing a potentially large set of features for every single document-entity
pair is not feasible, thus a more efficient solution is required. One approach
to solve this is to implement multiple binary classification steps to decide
whether a document is central/vital or not [1].

When using a 2-step approach, each document is classified as either central,
or not central. Each of these document-entity pairs are assigned a score in
the (0, 1000] range, where a higher score will indicate that the document is
more central. The non-central documents are mapped to the (0, 500] range,
while the central documents are mapped to the (500, 1000] range.

When using a 3-step approach, the documents are first classified as relevant
(range (500, 1000]), or not relevant (range (0, 500]). However, the documents
classified as relevant are classified once again with more precision, as either
central (range (750, 1000]), or not central (range 500, 750]). We take a closer
look at three of the systems submitted at the conference in 2014.

PRIS

The PRIS system uses DBpedia as external source data to do query ex-
pansion and generates directional documents to calculate similarities with
candidate worth citing documents for the Vital Filtering task [34]. The sys-
tem then utilizes a pattern learning method to do relation extraction and
slot filling.

KMG

The KMG system’s strategy for vital filtering is to first retrieve as many rel-
evant documents as possible and then apply classification and ranking meth-
ods to differentiate vital documents from non-vital documents [23]. They
first index the corpus and retrieve candidate documents by combining entity
names and their redirect names as phrase queries. The system then learn to
rank documents by leveraging four types of features: time range, temporal
feature, title/profession feature, and action pattern.

24

3.2. Related Technology Chapter 3. State of the Art

Distributed Non-Parametric Representions

One system focused on Distributed Non-Parametric Representions for vital
filtering [6]. They introduce a word embedding-based non-parametric repre-
sentation of entities. The word embeddings provide accurate and compact
summaries of observed entity contexts, further described by topic clusters
that are estimated in a non-parametric manner. Additionally, they associate
a staleness measure with each entity and topic cluster, dynamically estimat-
ing their temporal relevance.

3.2 Related Technology

There are several entity linking systems available today. So when we wanted
to take a closer look at some of them, we first had to decide which one to
use and which to omit. To get a relatively fair comparison of the systems,
we will use the following set of criteria for each of them:

Free to use The task of entity linking is a relatively hot research topic,
so finding freely available services on the Web was not a big prob-
lem. Commercial actors typically want to keep their knowledge to the
domain more to themselves, and will not necessarily give a thorough
enough description of their approach, making it hard to learn of their
work (see Documentation below).

Documentation In order to get an understanding of the systems, we need
some kind of documentation of them. Preferably, we want some docu-
mentation of each of the API endpoints, in addition to a more detailed
description of which methods and techniques is used to extract the en-
tities, and how the best candidate article for each entity is chosen. This
could, e.g., be in the form of a published scientific paper or similar.

There is no matter of course that all entity linking services is evenly
well documented, or even has any documentation at all. In order to
get a good enough insight to how each of the systems handles the
requests and learn from their approach, we will only consider services
with a sufficient documentation, considering both quality and quantity.
However, we must expect that the services we have available has not

25

3.2. Related Technology Chapter 3. State of the Art

prioritized documentation equally well.

English support To compare the services up against each other we want
to use the same test text, which should be written in English. Many
systems support multiple languages, but we only care about the support
for English, which is also the most commonly supported language.

GUI application We wanted the ability to use the application through a
GUI6 because of its simplicity when testing it. A GUI for this kind
of application typically consist of a field where the user may write or
paste the input text to be processed, and an output field with the same
text, but where the entities have a link attached to them. This makes
it easy to check if the links makes sense, and to compare the outcome
of each of the systems up against each other.

Programmatically available API We also want to see what kind of data
is returned when making a call to the API7, in order to get a better
understanding of how the request is handled, and to see what data each
of the services consider as relevant for the outcome.

Established Preferably we want systems that is established, respected and
has a solid user base. This would indicate a relatively reliable, effective
and efficient system. Of course, we must also consider newer systems
which is not yet necessarily considered an established actor, but still
serves a solid service. If the work of a project is cited in published
scientific papers, that would indicate that their work and research is
acknowledged in the scientific environment as well.

3.2.1 Existing Systems

On the basis of the points mentioned, we selected the following entity linking
systems:

• TagMe

• DBpedia Spotlight

• AIDA
6Graphical User Interface
7Application Programming Interface

26

3.2. Related Technology Chapter 3. State of the Art

• AGDISTIS

• Babelfy

• Targeted Hypernym Discovery

There is no guarantee that these are indeed the best available systems for
our purpose, but all of them complements the requirements we have set, and
will therefore be more thoroughly studied.

Additionally, all systems will be put through a simple test, by programmat-
ically sending a request to their API to annotate the following text:

”Gerrard used to play alongside Carragher for Liverpool”

This test is not by any means meant to measure the actual effectiveness
of the systems, which would be unfair since some are built for considerably
longer texts. The purpose of this test is to see what kind of additional data is
returned for each of the systems. However, it will still be interesting to see if
the annotators manage to map ”Gerrard” to Steven Gerrard, ”Carragher” to
Jamie Carragher, and ”Liverpool” to Liverpool F.C., rather than Liverpool
the city.

3.2.2 TagMe

TagMe8 is one of the most popular and well known entity linking services
on the Web. The first version of TagMe was released in 2010 [14, 13]. The
system was originally designed to process and annotate very short texts,
consisting of few tens of terms on-the-fly, using Wikipedia as knowledge base
endpoint.

Architecture

They index some useful information drawn from Wikipedia, e.g., anchors,
which is the text in an article used as a link to another article. All anchors
are stored in an anchor directory, unless it consist of only one character or
just numbers, or if the anchor is especially rare. The final dictionary consists

8https://tagme.d4science.org/tagme/

27

https://tagme.d4science.org/tagme/

3.2. Related Technology Chapter 3. State of the Art

of approximately 3M anchors. There is also created a page catalog, which
consist of every (English) Wikipedia page, except disambiguation pages, list
pages and redirection pages. This catalog consists of 2,7M pages. Finally, it is
created an in-link graph, a directed graph whose vertices are the pages in the
page catalog, and whose edges are the links among these pages. It is worth
noting that this data was originally drawn from a snapshot of Wikipedia as
of November 2009, and it is unclear whether it has ever been updated or
not.

TagMe annotates a text via three steps: (anchor) parsing, disambiguation
and pruning (see Figure 3.2). The anchors in the text are detected with
parsing, by searching for multi-word sequences (up to 6 words) in the anchor
dictionary. Disambiguation cross-reference each of these anchors with one
relevant sense from the page catalog. Pruning may discard some of these
annotations if they are not considered meaningful, using a scoring function
that takes the link probability of the anchor and the coherence of its candidate
annotation into account.

Figure 3.2: Annotation pipeline in the TagMe system [17].

On short texts TagMe’s best disambiguator got an F-measure9 of 91.2%,
beating their predecessor Wikify! (see Chapter 3.1.1) who scored 88.3%
using the same data set. Their best annotator also performed better than
the one of Wikify! (F-measure of about 78 over 69). On longer texts, the
performance of TagMe dropped down to a F-measure of about 72%, but was
still surprisingly competitive, as Wikify! reached approximately 74%.

According to their Web site, their system has also been improved since the
release: ”On August 2012, we have introduced major enhancements to the
annotation engine and new services have been made available. This improved
flexibility, precision and speed of TagMe (. . .)”. However, they do not state
any technical details about these enhancements.

9Measure of a test’s accuracy, considering its precision and recall

28

3.2. Related Technology Chapter 3. State of the Art

Web Service

TagMe serves a RESTful API, which requires a ”Service Authorization To-
ken” (free to obtain) along with the annotation request. They have three
different endpoints: one for annotating the text, one for just finding entities
in the text, and one for calculating how semantically similar two entities are.
All endpoints support multiple parameters, both required and optional, to
fine-tune the results.

In our test, TagMe annotated all three entities correctly. Liverpool F.C. has
an attached ”link probability” and ”rho”, which estimates the ”goodness” of
the annotation with respect to the other entities of the input text, of 64% and
54%, respectively. Steven Gerrard and Jamie Carragher got around 5% and
27%, respectively. The former Swedish band ”Play” was also suggested with
a probability of 0,8% and rho equal to 0,4% for the same word as their name.
The entities’ ”dbpedia categories”, e.g., ”1980 births” and ”Living people”,
were also returned, in addition to a short abstract of the given article.

3.2.3 DBpedia Spotlight

DBPedia Spotlight10 is an open source project which started in 2010 for text
annotation, naturally using DBpedia as knowledge base. The DBpedia Spot-
light distribution also includes a jQuery plugin11, in addition to a Java/Scala
API (which can also be downloaded and run locally), and a demo page for
testing.

Architecture

DBpedia Spotlight’s approach works in four stages (see Figure 3.3) [26]. The
spotting stage recognizes the phrases that may be a DBpedia resource in
a sentence. This is performed using a string matching algorithm, looking
for longest case-insensitive match. Since one often want to ignore common
words, it is possible to set a flag to ignore spots that are only composed of
verbs, adjectives and prepositions.

10http://spotlight.dbpedia.org/
11https://dbpedia-spotlight.github.io/demo/dbpedia-spotlight-0.3.js

29

http://spotlight.dbpedia.org/
https://dbpedia-spotlight.github.io/demo/dbpedia-spotlight-0.3.js

3.2. Related Technology Chapter 3. State of the Art

Figure 3.3: Annotation process for DBpedia Spotlight.

Candidate selection is performed afterwards, to map the spotted phrase to
resources that are candidate disambiguations for that phrase. This is done
using the DBpedia Lexicalization data set.

The disambiguation stage uses the context around the spotted phrase to find
the best choice of the candidates. The candidates are ranked according to the
similarity score between their context vectors and the context surrounding
the surface form, using cosine as the similarity measure.

Configuration parameters can be used to customize the process for specific
needs. This involves annotating only certain types, minimum number of
inlinks of candidates in order to be annotated, annotate only phrases that are
considered relevant to the topic, deny annotating phrases where contextual
ambiguity is high, or demand a certain degree of confidence according to
both topic and context before we annotate.

DBpedia Spotlight has later gone through some improvements making the
annotation process faster, more accurate and easier to configure [8]. The
spotting phase was improved by first generating candidates for possible an-
notations, then selecting the best candidates and discarding candidates with
a score lower than a given threshold. The disambiguation process emphasizes
a generative probabilistic model, telling how probable each of the candidates
are to be the best alternative. These new implementations, in addition to
some other minor modifications, improved the system rather drastically ac-

30

3.2. Related Technology Chapter 3. State of the Art

cording to their subsequent tests. The tests covered runtime performance,
space requirements, phrase spotting and disambiguation evaluation, where
the newer approach got better results in all cases.

Web Service

Their Web service supplies endpoints for spotting entities to annotate, dis-
ambiguating already spotted text (chooses identifier for each entity given
the context), spotting and disambiguation in one (annotation), and finding
a ranked list of candidates instead of deciding on one.

DBpedia Spotlight includes a ”percentageOfSecondRank” telling how much
the best entity ”won” over the second best candidate (lower score is more
superior), ”support” telling how prominent the entity is (number of inlinks
in Wikipedia), and a ”similarityScore” measuring the entity’s similarity to
other entities in that context.

Both Liverpool F.C. and Steven Gerrard was annotated, both with a simi-
larity score of close to 100% and a very low score for percentage of second
rank. These entities also had some attached types, such as ”Person”, ”Soccer-
Player” and ”SoccerClub”, to mention a few. The word ”play” was connected
to a resource named ”Play (activity)”, with a similarity score of 91% and a
low score for percentage of second rank. ”Carragher” was not detected as an
entity, even if we lowered the confidence parameter with the request. How-
ever, if we added his first name (”Jamie”) to the input text, it was correctly
annotated.

3.2.4 AIDA

AIDA (Accurate Online Disambiguation of Named Entities)12 is an open
source entity linking system created by the Max Planck Institute for Infor-
matics, the same institute is the creator of YAGO, a knowledge base quite
similar to DBpedia. Thereby, AIDA naturally use YAGO as knowledge base,
in addition to Wikipedia. The backend is written in Java, using a Postgres
database.

12http://www.mpi-inf.mpg.de/yago-naga/aida/

31

http://www.mpi-inf.mpg.de/yago-naga/aida/

3.2. Related Technology Chapter 3. State of the Art

When referring to their work, they show to a scientific paper published in
2011 [19], even though they have published several papers within the same
field of study since then. Looking at their commit log at GitHub13, it seems
like most development has been towards bug fixes since the original release,
so we may assume that the documentation is still valid.

Ambiverse14 is a spin-off from the original AIDA project, which creates solu-
tions based on the AIDA technology. They have a free plan for users using
less than 1,000 API calls per month, but charge money for users who need
more. The documentation for Ambiverse mostly points to the AIDA docu-
mentation, so it is probable that most recent research goes towards improving
this commercial application, rather than the original AIDA project.

Architecture

The Stanford NER Tagger [15] is used to identify noun phrases that po-
tentially denotes named entities. All these entities are mapped to their
Wikipedia disambiguation page (via YAGO/DBpedia). For mapping a men-
tion to one exact entity candidate, the context around the mention is consid-
ered by computing similarity measures between the mention and potential
candidates, in addition to the general popularity of the candidates. The co-
herence between entities is calculated by counting the number of incoming
links their Wikipedia article have in common.

These measures for popularity, similarity and coherence is used to construct a
weighted, undirected graph with mentions and candidate entities as nodes, as
shown in Figure 3.4. The mention-entity edges are weighted with similarity
measures in combination with popularity measures. The entity-entity edges
are weighted based on their Wikipedia-link overlap, or type distance, or
similar.

Given a mention-entity graph, the goal is ideally to compute a dense subgraph
containing all mention nodes, and one mention-entity edge for each mention,
meaning all mentions is disambiguated. Solving such a problem is however
NP-hard, so an approximation algorithm is used in order to, hopefully, find
a good solution in linear time.

13https://github.com/yago-naga/aida
14https://www.ambiverse.com/

32

https://github.com/yago-naga/aida
https://www.ambiverse.com/

3.2. Related Technology Chapter 3. State of the Art

Figure 3.4: Mention-entity graph example, used by AIDA.

Web Service

The AIDA Web service consists of one single endpoint, with a required text
parameter. This text is then annotated, and the result is returned in JSON
format, with some additional information about the found entities, such as
their position in the original text, length, disambiguation score, etc. Ad-
ditionally, the endpoint accepts multiple optional parameters, that can be
used to configure the disambiguation more specifically. These parameters in-
clude specifying which techniques and algorithms to use, specifying coherence
threshold for annotation, and specifying which type of entities to annotate
(e.g., annotate only person entities).

The AIDA Web service managed to annotate both ”Gerrard” and ”Car-
ragher” correctly, both with an attached ”disambiguationScore” of over 90%.
”Liverpool” was not annotated unless we tuned the default settings, for in-
stance by setting the ”tag mode” flag to manual and manually mark the
entities in the input text with double brackets ([[entity mention]]). With
this approach ”Liverpool” was also correctly annotated, with a disambigua-
tion score of 34%. All entities were provided with a list of YAGO types
connected to them, and a link to their respective Wikipedia page.

33

3.2. Related Technology Chapter 3. State of the Art

3.2.5 AGDISTIS

AGDISTIS (Agnostic Disambiguation of Named Entities Using Linked Open
Data)15 is another open source project concentrated around the disambigua-
tion process released in 2014, hosted by the University in Leipzig [39, 40].
Their disambiguation framework is used by a named entity recognition frame-
work called FOX16, hosted by the same university, which forms a complete
entity linking system when combined with AGDISTIS.

Architecture

Their approach consist of three main phases: retrieving all named entities
from the input text, detect candidates for each of the detected named entities,
and finally using the context to (hopefully) choose the optimal candidate (see
Figure 3.5). All used algorithms have a polynomial time complexity, making
AGDISTIS also being polynomial in time complexity.

Figure 3.5: Overview of AGDISTIS.

All named entities are retrieved using a named entity recognition function
(e.g., FOX [37]). After all entities are found, the search for candidate re-
sources in the knowledge base begins. This can be done by using the entities’
surface form, which are simply strings used on the Web to refer to given re-
sources. For example, the surface form ”Washington” can be used to refer to
George Washington, Washington D.C., or Washington (U.S. state), to name
a few. Several string normalization techniques is performed before searching
for such surface forms, including eliminating plural and genitive forms.

15http://agdistis.aksw.org/
16http://fox.aksw.org

34

http://agdistis.aksw.org/
 http://fox.aksw.org

3.2. Related Technology Chapter 3. State of the Art

Given a set of candidate nodes, the computation of the optimal assignment
is started by constructing a disambiguation graph. This graph is built in a
breadth-first manner, and keeps track of resources and their resources. The
HITS algorithm17 is used on the disambiguation graph in order to identify
the correct candidate node for a given named entity.

Web Service

Their RESTful service has one endpoint which annotates the given input text.
Since AGDISTIS is only an entity disambiguation tool, it is worth noting that
this system needs to be told where the entities are in the text. This is done by
placing the entities within pre-defined entity tags. Using the FOX framework
is an alternative, since it uses AGDISTIS for disambiguation, but also has
built in NER tools to identify entities. Being an open source project, one
can download the AGDISTIS system and run it locally as well.

To test this API, we had to format our test string by surrounding the entities
with entity-tags, like this: ”〈entity〉Gerrard〈/entity〉”. After this, the system
was ready to annotate the text. ”Carragher” was correctly annotated, while
”Liverpool” was annotated to the city. Even more surprisingly, was that
”Gerrard” was suggested to the Australian musician Lisa Gerrard. No addi-
tional information like confidence or similar measures was provided. We got
the exact same annotations when testing against the FOX framework, but
then we did not have to mark the entities manually.

3.2.6 Babelfy

Babelfy18 is a graph-based approach to entity linking and word sense dis-
ambiguation written in Java, using BabelNet [33] as knowledge base. Their
Web service can disambiguate any of the languages covered in BabelNet
[30, 29].

17A graph-based link analysis algorithm that rates Web pages, not related to the system
described in Section 3.1.2 with the same name

18http://babelfy.org/

35

http://babelfy.org/

3.2. Related Technology Chapter 3. State of the Art

Architecture

All sequences of words of maximum length five, which contains at least one
noun and that are substrings of lexicalizations in BabelNet are identified, as
they can potentially be linked to an entity in BabelNet. Because of this loose
candidate identification, using substring matching instead of exact matching,
we can also identify entities that is only partially written.

A semantic interpretation graph is created after identifying all potential enti-
ties. The set of nodes contains all potential candidate meanings of the found
entities. Figure 3.6 shows one such graph.

Figure 3.6: Semantic interpretation graph Babelfy builds for the sentence
”Thomas and Mario are strikers playing in Munich”. The edges connecting
the correct meanings are in bold.

A novel densest subgraph heuristic is used in order to reduce the degree
of ambiguity while keeping the interpretation coherence as high as possible.
The main idea here is that the most suitable meanings of each text fragment
will belong to the densest area of the graph. The resulting subgraph will then
contain those semantic interpretations that are most coherent to each other.
The problem of identifying the densest subgraph of size at least k is NP-hard.
Therefore, Babelfy uses a greedy 2-approximation algorithm, meaning it will
return a subgraph of no more than twice the number of elements from the
optimal solution in linear time.

This densest subgraph might still contain multiple interpretations for the
same fragment, or even unambiguous fragments which are incorrect. There-
fore, the final step is the selection of the most suitable candidate meaning
for each fragment given a threshold value to discard semantically unrelated
candidate meanings.

36

3.2. Related Technology Chapter 3. State of the Art

Web Service

In order to use the Babelfy API, one must first obtain an API key, which
must be sent as a parameter with the requests. This key, the input text,
and language are required for each request. Additionally, one can specify
other various parameters, such as specifying which resource to use (WordNet,
Wikipedia, or BabelNet), which entity types to annotate (named entities,
word senses, or both), or if we want a scored list of candidates or only the
top ranked, to mention a few.

When testing the API with our test sentence, ”Carragher” was the only
correctly annotated entity. ”Liverpool” was linked to the city, rather than the
football club. ”Play” was annotated with a link to the BabelNet dictionary
with a description of the word, while ”Gerrard” was not detected at all.

Both ”Carragher” and ”Liverpool” got a ”coherenceScore” of 1.0 and a ”glob-
alScore” of 0.5, while ”play” surprisingly get 0.0 for both measures. However,
we assume this is normal when a word is just linked to the BabelNet dictio-
nary, and not an actual entity. If we use the full name for all entities, i.e.,
”Steven Gerrard”, ”Jamie Carragher” and ”Liverpool F.C.”, all of them were
correctly annotated.

3.2.7 Targeted Hypernym Discovery

Targeted Hypernym Discovery (THD)19 performs classification of entities,
and cross-link them to their representation in DBpedia [9]. The system
is implemented in Java, and supports German and Dutch, in addition to
English. As an end user, one may choose between multiple techniques and
methods for both entity spotting and entity linking, in addition to some other
specifications.

Architecture

THD’s documentation is not quite as well-structured as the previously men-
tioned systems. The paper they refer to for citation [9] is quite shallow when

19http://entityclassifier.eu/

37

http://entityclassifier.eu/

3.2. Related Technology Chapter 3. State of the Art

it comes to describing their approach, not stating much more than that they
have an entity extraction module, disambiguation module, entity classification
module, and an semantization module (see Figure 3.7). Unfortunately, they
do not supply much details of these modules. However, it is worth noting that
the same authors appear in other papers related to the same topic, but it is
not stated whether those more detailed explained methods are implemented
in THD, or not.

Figure 3.7: Architecture overview of THD.

They do, however, have a small comparison of their implementation against
DBpedia and AIDA (see Section 3.2.3 and 3.2.4, respectively). THD sup-
posedly perform real-time mining, i.e., once an entity is disambiguated to a
Wikipedia article, the system extracts the hypernym from the article’s free
text. This allows the system to adapt to recent changes in Wikipedia.

Since THD extracts the types from free text, it is often complementary to
the types of more semantically structured knowledge bases, such as DBpe-
dia. THD returns both the mined type, and types from DBpedia and YAGO.
The complementary character of the results can be utilized for classifier fu-
sion.

Web Service

In order to use their REST API, one must obtain a free API key. This key is
obtained by submitting a short request form on their Web site. A key will be
granted as long as the user intend to use the service for evaluation, research
and/or teaching purposes.

38

3.2. Related Technology Chapter 3. State of the Art

The API key is the only required parameter to be sent along with a re-
quest, but also this API supports several parameters for fine-tuning the whole
process. This includes choosing language, knowledge base, linking method,
spotting method, etc. The input text is sent as POST data.

When testing the API, it managed to correctly annotate ”Gerrard” with an
absolute confidence, ”Liverpool” was wrongly annotated to the city with a
confidence value of 11%, while ”Carragher” was weirdly only annotated as a
named entity, without any further information.

3.2.8 Other Candidates

There are lots of other entity linking systems that seem to be quite well-
performing judging by their demos. However, many of these are commercial,
allowing only a certain amount of free API calls, and when this threshold is
exceeded the user is charged for a subscription.

Since the goal of a commercial actor is to earn money, they do not want to
share too much detailed information about their technical approach with
their competitors either. Therefore, obtaining a decent amount of well-
defined documentation of their system is often challenging.

Rosette20 is an entity linking system which by default uses Wikipedia as
knowledge base, but also allow users to use their own custom database of
any kind. They provide up to 10,000 free calls to their API each month, but
charge money after this. This system was omitted from our selection due to
its lack of documentation regarding their approach.

Microsoft Entity Linking Intelligence Service21 is a part of Microsoft’s
Cognitive Services, concentrated around multiple tasks typically within the
field of artificial intelligence. They use Wikipedia as knowledge base, and
allows 1,000 API calls per day. How to use the API is well documented, with
an easy Getting Started Guide, unfortunately there is not much information
to obtain about their technical implementation of the system, forcing us to
omit this system.

20https://www.rosette.com/function/entity-linking/
21https://www.microsoft.com/cognitive-services/en-us/

entity-linking-intelligence-service

39

https://www.rosette.com/function/entity-linking/
https://www.microsoft.com/cognitive-services/en-us/entity-linking-intelligence-service
https://www.microsoft.com/cognitive-services/en-us/entity-linking-intelligence-service

3.2. Related Technology Chapter 3. State of the Art

There are also other systems, which either has a slightly different purpose, or
lacks a satisfyingly documentation, such as Open Calais22, Ontos23, and
Alchemy API 24 by IBM.

It is also worth noting that many entity linking systems make use of some of
the systems already mentioned. For instance, Dexter25 is using an imple-
mentation of TagMe (see Section 3.2.2), where the only difference between
Dexter and TagMe is the spot extraction methods and Wikipedia dumps be-
ing used. Earlier we have also mentioned FOX , which uses AGDISTIS to
disambiguate entities (see Section 3.2.5).

22http://www.opencalais.com/
23http://ontos.com/
24http://www.alchemyapi.com/
25http://www.dxtr.it/

40

http://www.opencalais.com/
http://ontos.com/
http://www.alchemyapi.com/
http://www.dxtr.it/

Chapter 4

Approach

4.1 Theoretical Solution

Many of the entity linking systems we have previously studied, have sup-
ported multiple methods, techniques and algorithms to annotate the input
text. Most systems also use their own custom algorithm for finding an entity
in the text, called Named-Entity Recognition (NER). NER is a task that
seeks to locate, and often classify, named entities in written text (see Section
2.1.1).

It is beyond the scope of this work to implement an entity extraction module
from scratch. Instead, we use an existing NER tool to find entities for us.
Our task is to disambiguate found entities, considering the context around
their appearance. We detect how well our entity extraction module per-
forms according to the real world, and possible deviations from reality, as we
evaluate the system.

As earlier mentioned, building a platform that can fully understand unstruc-
tured written text is beyond the scope of this project. Thus, we first and
foremost use the found entities in order to disambiguate each other. This
means that our context will mainly depend on the entities found by the NER
tool, and these will be checked for relations and similarities using a knowledge
base consisting of structured information.

In order to find the best candidate for ambiguous cases, we introduce a

41

4.1. Theoretical Solution Chapter 4. Approach

scoring function telling how probable it is for each candidate to be the correct
candidate in the given context. The context consists of four neighboring
entities (or less, if there are not enough entities).

This neighborhood property is usually a symmetric relation, i.e., if entity
A is the neighbor of entity B, entity B is also be the neighbor of entity A.
However, this is not the case for the first and last couple of entities in the
text, as they do not have the necessary amount of entities on both sides
(see Figure 4.1). All entities will also be populated with a set of subjects
describing them.

Figure 4.1: A text with four entities, here with just two neighbors. Romania
and Turkey are neighbors of Bulgaria, and so on.

Our approach is based on the assumption that similar entities usually oc-
cur together in texts, and that similar entities have similar subjects in the
knowledge base. Thus, if the mention ”Liverpool” has footballers as neigh-
bors, it is probably meant to represent the football club rather than the city.
However, if it has other cities as neighbors instead, it is probably meant
to represent the city. By checking the subjects of each entity candidate up
against each other, we hope to be able to find a theme in the text, and use
this to iteratively select the most fitting candidates.

We can split our system into three different modules: entity extraction, can-
didate extraction and entity disambiguation (see Figure 4.2). The entity
extraction module detects and extracts all entity mentions in the text, be-
fore the candidate extraction module finds all potential candidates located in
a knowledge base for each entity mention. Finally, the entity disambiguation
module decides what candidate should be used for each entity.

42

4.2. Methodology Chapter 4. Approach

Figure 4.2: Example use of our proposed system.

4.2 Methodology

The work described in this report is heavily based on work conducted in the
specialization project, autumn 2016. Through that work, we gathered infor-
mation about entity linking, and fields of study somewhat related to entity
linking. We especially took a deeper look at state-of-the-art approaches, and
studied different well-known and widely used entity linking systems. There-
fore, we had a clear perception of the problem before we started the work
presented in this thesis.

We perform simple initial testing as we explore our hypotheses and develop
the system, to ensure that our approach works. This step consists of annotat-
ing short custom designed text fragments, consisting of both more and less
ambiguous entity mentions, but where the correct entity candidate should
appear to be rather obvious. We think this is valuable in order to find out
if our approach is applicable as early as possible, allowing us to modify our
approach early in the development process if necessary.

Finally, we perform a more formal evaluation of our system. At this point,
we identify, retrieve and parse a publicly available dataset designed for eval-
uating entity linking systems. As a result on these experiments, we calculate
our system’s precision, recall and F measures, and compare them to those of
other systems.

43

4.3. Knowledge Base Chapter 4. Approach

4.3 Knowledge Base

We want to use a knowledge base (KB) covering a wide range of topics to
be well prepared for covering the entities we discover. However, it might
be even more important that the KB provides well-defined and structured
data, which is easy to handle for a computer. Semantically structured data
simplifies the process of finding relations between entities, since they are
already encoded as part of their object representation in the KB.

We use DBpedia as KB, which is a widely used KB with structured infor-
mation gathered from Wikipedia (see Section 2.3.2). Their system is well
documented, and having a wide user base they naturally also have a big
community available to help out if any problem should occur. DBpedia’s
close integration with Wikipedia, ease of use, and the fact that it is a very
prominent KB in the Linked Open Data cloud, are all important factors as
we choose DBpedia over other knowledge bases.

All entities in DBpedia contains a link to the Wikipedia page they originate
from, so as we assign a DBpedia article, we indirectly also assign a Wikipedia
article, since DBpedia articles and Wikipedia articles has a one-to-one rela-
tion.

4.3.1 Categorization

The knowledge stored in DBpedia can be used to help disambiguate entities,
ensuring that each entity points to the most relevant resource in DBpedia.
The entities in DBpedia are described with attributes such as ”type”, ”sub-
ject”, ”birth place”, ”population”, etc. These attributes may be of help when
we want to find relations between entities. We assume that similar entities
are described with similar attributes, thus we can quantify how similar two
entities are based only on their attributes.

What kind of attributes are present for each entity depends on what kind of
object it is representing. We use the ”subject” attribute in our disambigua-
tion process, which should be present for all entities. The subject attribute
consists of a list of categories used by Wikipedia to classify and give some
general information about each entity. We believe these categories are well
suited for disambiguating entities.

44

4.3. Knowledge Base Chapter 4. Approach

4.3.2 Erroneous Data

Figure 4.3 shows that knowledge bases such as DBpedia are not necessar-
ily flawless. The English Wikipedia page classifies Contrazt as a Swedish
band established in 1982, even though they are in fact a Norwegian band
established in 2004, as they are correctly classified as on their Norwegian
Wikipedia page. It is however worth noting that both the Norwegian and
English version have roughly the same information in plain text (Norwe-
gian band established 2004 for both), but since DBpedia use infoboxes and
metadata (e.g., categories) from the English Wikipedia page, the information
supplied by DBpedia are erroneous.

Figure 4.3: Subjects connected to the dance band Contrazt in DBpedia.

4.3.3 Access

DBpedia serves one live SPARQL endpoint1 representing Wikipedia with a
small delay of at most a few minutes, that is considered as the semantic web
mirror of Wikipedia [31]. The main objective of DBpedia Live is to keep
DBpedia always in synchronization with Wikipedia. Additionally, they serve
one endpoint where the data sets are refreshed every once in a while (usually
1-2 times a year)2. As of February 20, 2017, the last data dump stems from
April 2016, meaning we risk that many entities are outdated.

The difference between the live version and the standard version becomes
apparent if we look at the page of Donald Trump, the current President of
the United States. Using the standard endpoint (with data from April, 2016)
he is classified as ”United States presidential candidates 2016”, but naturally
without any additional information that he in fact is the current president.
Looking at the live endpoint however, he is also classified as ”Presidents of
the United States” and ”Republican Party Presidents of the United States”.

1http://live.dbpedia.org/sparql
2http://dbpedia.org/sparql

45

http://live.dbpedia.org/sparql
http://dbpedia.org/sparql

4.4. Description of Implementation Chapter 4. Approach

In situations like these it is obviously an advantage to use the live endpoint,
since we otherwise would lose vital new information.

In a commercial environment, one should of course use an KB as up-to-date
as possible, but for initial testing and evaluation it is quite valuable to use
a static KB you know will not be in constant change. Knowing that the
KB does not change simplifies the testing step considerably, since we know
that our implementation is the only thing that may vary for each program
execution. Therefore, we will see what works and what does not regarding
parameter values, and minor changes for formulas and functions, etc.

4.4 Description of Implementation

As earlier mentioned, our system can roughly speaking be split into three
modules: entity extraction, candidate extraction and entity disambiguation
(see Figure 4.4). Our contribution is mainly towards the entity disambigua-
tion task, located within the entity disambiguation module.

Figure 4.4: Architecture overview of our proposed system.

We want these modules to be as independent of each other as possible, thus a
modification to one of them should not make any severe impact on the others.
We also want the system to be both effective and efficient, but without any
extreme focus on one over the other. For efficiency, we simply demand that
the system does not spend too much time annotating the text, making it
impractical for the user. Regarding effectiveness, we want the system to be
the best possible, without breaking our demands for efficiency.

For more details about our implementation, take a look at Appendix A.

46

4.4. Description of Implementation Chapter 4. Approach

4.4.1 Entity Extraction

As mentioned earlier, we do not implement our own analyzer to extract the
entities mentioned in the input text, but rather use an existing Named Entity
Recognition (NER) tool. We use NLTK 3.0 3 [3], which contains an interface
to Stanford NER [15] for Python. NLTK is available in the Python Package
Index4.

The input text we want to annotate is initially processed using NLTK. First,
the text is tokenized and split into single words, before part-of-speech (POS)
tagging is performed. The POS tagger processes a sequence of words, and
attaches a part-of-speech tag to each word, telling whether the given word
is a noun, verb, adjective, preposition, etc. Finally, we use a named entity
chunker, which should classify all named entities in the text.

There are several potential approaches for doing this more specifically, but
all should follow pretty much the same set of steps as mentioned. However,
minor differences may lead to slightly different results. How we choose to
classify the entities using NLTK is one example of such. We could use binary
classification, which simply tells if the given word is a named entity or not,
or we could use a multiclass classifier, which states if the entity describes a
person, organization or geo-political entity. In theory, one might assume that
both these approaches would result in the same amount of entities, however
this is apparently not necessarily the case.

To demonstrate this, we use the test sentence ”Gerrard used to play alongside
Carragher for Liverpool” again. ”Gerrard”, ”Carragher” and ”Liverpool” are
all marked as ”person” entities when using multiclass classification. ”Liver-
pool” should not have been mapped to person, but is annotated as a named
entity nonetheless. When using binary classification however, ”Carragher”
is not annotated at all, even though both ”Gerrard” and ”Liverpool” are
correctly annotated as named entities. Because of this, we choose to use
multiclass classification, but to ignore the actual classification and just treat
them all like any named entity.

3http://www.nltk.org/
4https://pypi.python.org/pypi/nltk

47

http://www.nltk.org/
https://pypi.python.org/pypi/nltk

4.4. Description of Implementation Chapter 4. Approach

4.4.2 Candidate Extraction

As all named entities in the text are discovered, a list of all entity mentions
are passed over to the candidate extraction module, responsible to make and
populate the objects, in order to make them more manageable. All entity
mentions discovered by the entity extraction step will be represented by an
Entity object.

The list of candidates for an entity will typically consist of all entities men-
tioned in the correct entity’s disambiguation page we retrieve from DBpedia
using their SPARQL endpoint. For instance, Gerrard’s disambiguation page5

consists of links to articles about Steven Gerrard, Lisa Gerrard, and Alfred
Gerrard, to mention a few. Even though we do not know the correct entity
at this point, it is in most cases relatively straightforward to find the correct
disambiguation page given only the entity mention.

As we retrieve all these entity candidates, we also specify that we want all
their corresponding subjects via the SPARQL query. With this informa-
tion, we make Candidate objects for each candidate. Initially all candidates’
probability score (S) are evenly distributed:

Si = 1
number of candidates

If we do not find a disambiguation page of an entity mention, we retrieve only
the page matching the entity mention (or automatic redirects of it) if it exists.
It is also worth repeating that our Candidate objects are representations of
the actual entities in DBpedia, while our Entity objects are representations
of the entity mentions in the input text.

The SPARQL request is built to return a list of candidates that could match
the entity mention, rather than returning the most probable candidate at
once. For instance, if the entity mention is ”Liverpool”, we want to retrieve
all candidates that could potentially represent it, rather than the default
resource that represents Liverpool the city. It is fair to assume that the
default resource is accurate more often than not, but it is certainly not always
the case. Thus, we retrieve all potential candidates, and decide which one to
use afterwards.

5http://dbpedia.org/page/Gerrard

48

http://dbpedia.org/page/Gerrard

4.4. Description of Implementation Chapter 4. Approach

4.4.3 Entity Disambiguation

Our main contribution is towards entity disambiguation, i.e., choosing the
correct candidates considering the context around their appearance. This
is achieved by comparing the candidates’ subjects with each other, looking
for similarities (see Figure 4.5). When we find entities that appears to be
similar, we assume that they are probable to be the correct entities in that
given context, and give the candidates a score accordingly.

Figure 4.5: Overview of scoring process for Entity1, having Entity2 as neigh-
bor. All arrows indicate a string comparison that returns a score. All these
scores are summed up to a total score for that given candidate.

Our approach is to iteratively recalculate the scores of each candidate by
putting more weight on candidates we think have a higher probability of
being the correct candidate for an entity mention, a process that we will take
a closer look at in a moment.

As mentioned earlier, the candidate extraction module will evenly distribute
the probability of all candidates belonging to an entity mention, meaning
that all candidates initially have the same score (or weight) that sums up to
one. This also means that all candidates will be equally important for the
first iteration. For the remaining iterations, we scale the scoring according
to the candidate’s score.

If we are to recalculate the candidates’ scores for an entity E1, whose neigh-
boring entity E2 have the candidates C1 (score 0.8) and C2 (score 0.2), the
scoring process will put more emphasize on similarities between candidates
of E1 and C1, than C2. More specifically, the scoring function will multiply
the score obtained with C1 with 0.8, while the score obtained with C2 will
be multiplied with 0.2. This way, we ensure that we put more weight on

49

4.4. Description of Implementation Chapter 4. Approach

candidates we believe are more probable of being the correct candidate for
its entity.

When we recalculate a candidate’s score, vi iterate through every candidate
of each neighboring entity. At this point, we compare the subjects attached to
the actual candidate whose score we are updating, and the subjects attached
to the candidates of the neighboring entities (see Algorithm 1). We compare
the subjects and give them a score according to the length of their longest
common substring.

/* Variables with a leading n indicate that it is a
neighbor of the entity we are currently working on */

foreach cand in candidates do
cand.score ← 0.0
foreach nEntity in neighbors do

foreach nCand in nEntity.candidates do
candPair ← 0.0
foreach subj in cand.subjects do

foreach nSubj in nCand.subjects do
candPair ← candPair +
longestCommonSubstring(subj, nSubj)

end
end
cand.score ← cand.score + candPair · nCand.score

end
end

end
Algorithm 1: Pseudocode of scoring process.

Since we may have to compute many cases of the longest common substring
(LCS) problem, this is a critical part of our implementation regarding effi-
ciency. Our algorithm is a somewhat simplified version of the longest common
subsequence algorithm using dynamic programming presented by Cormen et
al. [7]. A brute-force approach to the LCS problem would take exponential
time, which is not satisfying in our case. The running time of our algorithm
however, is Θ(mn), where m and n are the lengths of the input strings we
want to compare.

We are able to simplify the algorithm since we only need to find the strictly

50

4.4. Description of Implementation Chapter 4. Approach

common substring, i.e., the input strings ”ABC” and ”ABXC” should result
in length 2 (”AB”), not 3 (”ABC”). Additionally, we only care about the
length, and do not need to reproduce the actual sequence as suggested by
Cormen et al.

Candidates that have neighboring candidates with similar subjects will get
a higher score. Our implementation finds the length of the longest common
substring of two actual subject-pairs across neighboring candidates, and di-
vides this value with the product of the length of the two input subjects. We
do this to avoid giving higher scores for longer subjects than we do for shorter,
since longer texts naturally have a higher probability of having longer string
matches. Additionally, we set the score to zero if the longest common sub-
string has a length of less than five, to avoid scoring random string matches
that sometimes occur in texts.

subject pair = length of longest common substring
length of subject A · length of subject B

Since all candidates for an entity initially have equal scores, the candidates
with the most ”common” theme across all entity candidates should have the
best score after the first iteration. For each iteration, we pick a winning
candidate for exactly one entity. We choose the leading candidate that is
most superior to the second best candidate across all entities with more than
one candidate (see Figure 4.6). This process is repeated until all entities have
just one remaining candidate.

Figure 4.6: Three entities, each with 2-4 scored candidates. Candidate1 will
be chosen for Entity2 this iteration since it has the highest winning ratio
(2.5), even though both Entity1 and Entity3 have candidates with an higher
individual score.

For each iteration, we discard all candidates whose score is worse than 1
2

51

4.4. Description of Implementation Chapter 4. Approach

of the best candidate. This technique is beneficial regarding the system’s
efficiency, since we recalculate every remaining candidate for each iteration.
When discarding candidates like this, we reduce the work needed to be done
for future iterations.

By setting the discarding threshold to a higher factor, the system will execute
quicker, but risk to discard the correct candidate due to a bad score in an
early iteration, as the context is usually be most ambiguous initially. If we set
a too low threshold value however, the program will not execute considerably
faster.

When all entities have just one remaining candidate, we check if this candi-
date is the same as DBpedia’s default resource for that entity mention (e.g.,
”Liverpool (city)” is default for the mention ”Liverpool”). If one such default
resource exist, but does not match our only remaining candidate, we add it
to our candidate list and give both candidates a score of 0.5. All entities
should now have one or two candidates, and we start the iteration process
once again to find the correct candidates.

If the default resource is added again, the remaining iterations use the average
score, i.e., the score is calculated as before, but now it is divided by the
candidate’s number of subjects. This is more fair since some candidates have
very few subjects, while others have very many. It is natural that a candidate
with 20 subjects get a higher score than a candidate with 2 subjects due to
random matches. For the earlier iterations we ignore this, since candidates
with more subjects are usually more popular, and are therefore generally
more statistically probable to be the correct candidates. When we add the
default candidate again however, both candidates are considered as relatively
probable, so we want to select the candidate that has the best score per
subject.

The reason for giving the default resource two chances, is that it is often,
but not always, the correct resource. Thus, if the default resource has been
discarded in an early iteration, we want to give it a new chance at the end,
when we have a better understanding of the context. Since all entities at this
point have either one or two candidates, this is not very resource demanding
either. When all entities are down to having just one candidate again, the
disambiguation process is complete and the remaining candidates are chosen
for entity linking.

52

4.5. Initial Testing Chapter 4. Approach

This whole disambiguation process could be very resource intensive, since
a candidate often have over 20 subjects. The number of candidates for an
entity may also exceed 20. Having multiple entities as well, this could easily
become infeasible to perform in a serialized manner without exceeding time
constraints and demands for an user of the system. Therefore, we run mul-
tiple parts of the disambiguation step in parallel, in order to speed up the
process.

Figure 4.7: Sequential versus parallel approach for the disambiguation pro-
cess.

First off, we disambiguate each entity in parallel, i.e., we initiate the disam-
biguation process for all entities at once, and the processor thereby disam-
biguate as many entities as possible simultaneously (see Figure 4.7). Addi-
tionally, we calculate the score for each candidate within an entity in parallel.
These approaches enhances the execution time tremendously.

4.5 Initial Testing

As we implement the system, we also set up a couple of short texts used
for testing the system’s performance as we made minor modifications to our

53

4.5. Initial Testing Chapter 4. Approach

implementation. This way we could easily get an indication for how beneficial
the new modifications were for the system’s performance, regarding both
effectiveness and efficiency.

These texts were not necessarily meant to be representative for ”normal”
real-world text, but were written in a manner which makes them especially
interesting in the case of entity linking. I.e., we wanted ambiguous entity
mentions to see if we could annotate them correctly. Even though we wanted
ambiguous entities, we also wanted the context to make it pretty clear which
candidates should be selected, ensuring that the system was capable to cor-
rectly annotate ambiguous, but still rather obvious entities.

For these ambiguous cases, we also wanted to ensure that the system was
able to select different candidates depending on the context. E.g., we used
the sentences ”Gerrard used to play alongside Carragher for Liverpool” and
”Gerrard is a musician from Melbourne, Australia”, to see whether the sys-
tem was able to select Steven Gerrard as candidate for the first sentence,
and Lisa Gerrard for the second. Another example is the entity mention
”Pluto”, which we used to see if the system was able to select between the
dwarf planet or the Disney character considering the context.

We also tested with texts that should be rather straight forward to anno-
tate correctly, such as ”Bulgaria, Romania and Turkey are all countries in
Europe”, etc. The default resource is usually the correct candidate for the
entity mentions in these texts that are supposed to be simple. By using both
”simple” and ”complex” test sentences, we assured that the system could
annotate simple, as well as more challenging entities correctly.

We managed to iteratively improve our system’s capability to annotate the
input texts, and discovered that small variations with the implementation
could be beneficial for some texts, while being detrimental for other texts.
Thus, we found that it would be rather optimistic to think we could find an
approach that would work ideally for all cases, and we figured we would be
better off concentrating on finding an satisfying approach for all (or as many
as possible) cases, optimizing the overall performance.

However, it is worth noting yet again that these tests were not meant to
measure the system’s performance for real-world applications, as the text in
such cases will be more rich than what was the case for our minimalistic test
sentences. We also discovered that NLTK had some problems discovering all

54

4.5. Initial Testing Chapter 4. Approach

entities in some texts, so we had to formulate the texts to assure that all
entities would be found, as this was essential in order to measure the effec-
tiveness. This would obviously not happen in a real world application.

The efficiency was also measured, as we instantiated a timer to see how much
time was needed to annotate our texts. This proved that implementing con-
currency when calculating scores had a very positive impact on the program’s
execution time, without any impact on the effectiveness, of course. For a test
with four entities (”Gerrard”, ”Melbourne”, ”Australia”, and ”Oceania”), the
annotation process was around 20 times faster with an simple parallel ap-
proach than when doing everything in a serialized manner. It also showed
what was the better method to find the longest common substring, among
other details regarding our implementation.

55

Chapter 5

Evaluation

5.1 Experiments

In order to measure our system’s capability to annotate text, we want to
evaluate its performance by automatically annotating text that is supposed to
be relatively close to a real-world domain. In order to quantify the results, we
need a fairly big amount of text to cover many scenarios, as well as a solution
for how this text ideally should be annotated. With this in place, we can
check how many annotations our system succeeds and fails to produce.

5.1.1 Dataset

We evaluate our system using the Wiki-Annot30 dataset1, developed by
the same team who developed the TagMe entity linking system (see Section
3.2.2), and used to evaluate their system. As the dataset is publicly available,
other systems have used it for evaluation as well.

The dataset contains short text fragments drawn from Wikipedia snapshots
of November 6, 2009. The text fragments are composed by about 30 words,
and they contain about 20 non-stopwords on average. Each fragment contains
at least one ambiguous entity mention. Even though the data are somewhat
aging, it is still as relevant as before in the case of entity linking.

1http://acube.di.unipi.it/tagme-dataset/

57

http://acube.di.unipi.it/tagme-dataset/

5.1. Experiments Chapter 5. Evaluation

The Wiki-Annot30 dataset consists of 186K text fragments that is for-
matted with the following syntax: the first line contains the actual text, the
second line contains a list of gold standard entities, i.e., all entity mentions
present in the text, followed by numeric IDs of the articles which they are
pointing to (see Figure 5.1).

Czechoslovakia, 1982), The Trap Door (UK, 1984). Films include,
Chicken Run and The Adventures of Mark Twain. Cutout animation
is a type of stop-motion animation produced by moving 2-dimensional
czechoslovakia 5322 films 21555729 stop-motion animation 27036
the adventures of mark twain 11484373 uk 31717 2-dimensional 35248
stop-motion 27036 the trap door 1604203 cutout animation 745626
chicken run 284525

Figure 5.1: Text fragment with corresponding annotations retrieved from the
Wiki-Annot30 dataset.

5.1.2 Hardware

Annotating a rather large amount of the Wiki-Annot30 dataset with our
system would be infeasible on our aging Windows 10 laptop with limited
resources (one processor with two 1.70 GHz cores, each with four threads).
This gave us the option between annotating a very small part of the dataset,
or to obtain a more powerful computer to perform the evaluation process
on a bigger part of the dataset. The latter would obviously be the better
solution, so we requested access to a more powerful machine by NTNU IDI
Drift, which was granted.

We connect to this computer using PuTTy2 and Secure Shell (SSH). This
computer runs on Ubuntu 16.04, and consists of twelve processors, each with
six cores with a clock rate of 3.50 GHz, and each core has two threads. This
computer is obviously superior to our laptop when it comes to computational
power. Even though this machine may have several users simultaneously, it
is fair to assume it will perform considerably better than our laptop.

2http://www.putty.org/

58

http://www.putty.org/

5.1. Experiments Chapter 5. Evaluation

In order to get an idea of how different the two machines perform, we conduct
a very simple experiment where we iterate through a loop 100M times. For
each iteration, we increment a numerical variable defined to be zero before
the loop. We measure the time needed for both our laptop and the server to
complete the task. Our laptop needs 342 seconds (almost 6 minutes), while
the server only needs 6 seconds. This is a very simple serialized test, and
does not take into consideration how the two machines would perform with
parallellized approaches, but it is no secret that our laptop is inferior in most
situations, if not all.

5.1.3 Evaluation Metrics

We measure our system’s effectiveness by calculating its precision, recall
and F measures. The precision measure tells how many of the annotated
entities are in fact correctly annotated. Recall is used to measure our system’s
performance against the gold standard, i.e., how many entities in the gold
standard are also correctly annotated. Finally, we find the F measure, that
represents the harmonic mean of precision and recall.

Precision = # of correctly annotated entities
of all annotated entities

Recall = # of correctly annotated entities
of gold standard entities

F = 2 · precision · recall

precision + recall

We believe that our system will produce better results for precision than for
recall, considering we have put more effort into entity disambiguation than
entity extraction. Additionally, the gold standard consists of entities beyond
just named entities, which we focus on, and thus consists of considerably
more entities than what we expect to extract. With this in mind, our system
would probably be better off using the F0.5 measure, which puts more weight
on precision than recall. However, we stick to the F1 measure, since that
is most used, and is generally more fair. This also simplifies the process of
comparing our system against others.

59

5.1. Experiments Chapter 5. Evaluation

5.1.4 Evaluation Methodology

First, the dataset consisting of all the texts we want to annotate must be
parsed. Each text fragment is put into an AnnotatedText object, alongside
a dictionary consisting of all entities in the text, and their Wikipedia IDs,
like this: ”{gerrard: 547384, carragher: 1012020}”. Thereby, we have an
understanding of how a perfect system should annotate the text according
to the gold standard.

We now begin to annotate the text we have parsed from the dataset. This
is simply achieved by looping through all AnnotatedText objects, and per-
forming our entity extraction and disambiguation algorithm on each object’s
text property. When the disambiguation process is complete, and our system
have annotated all found entities in the input text, we compare our findings
with the suggestions encoded in the dataset.

Since the entities in the dataset are manually annotated (as it is a Wikipedia
snapshot), while we use NLTK for entity extraction, our entity set is often
different from that of the dataset, as we would expect. Many entities are
simply not found, and some are slightly different. E.g., the dataset has an
entity named ”The Trap Door”, while our system finds the entity ”Trap
Door” instead. Sometimes, what is actually one entity is split into multiple
entities, e.g., ”United States of America” might be split into ”United States”
and ”America”. These kinds of errors may not always have a significant
meaning, but we risk losing important information when errors such as these
occur.

Because of this, it would be unfair to demand that the string representations
for the entities we find matches the string representations in the dataset.
Instead, we check how many of our found Wikipedia article IDs are also
encoded in the gold standard for the same text fragment. If the same ID
is present both places, our system gets one correct annotation, otherwise it
does not.

Additionally, we keep track of how many entities are present in the gold
standard, how many entities our system finds, how many of the entities
we found are exact string matches from the gold standard, and how many
candidates we retrieve overall.

These values are used to calculate our system’s score for precision, recall and

60

5.2. Results Chapter 5. Evaluation

F measures (see Section 5.1.3). We use these measures to obtain an overview
over the system’s effectiveness. This also allow us to compare our solution to
other existing systems that has been tested on the same dataset, using the
same evaluation metrics.

We perform the experiments by connecting to the machine we got access to
through NTNU Drift, which is considerable more computationally powerful
than our laptop, using SSH. We set up our program on this computer in order
to evaluate a large (but still practically feasible) part of the Wiki-Annot30
dataset we have selected for evaluation in a feasible manner.

5.2 Results

We evaluate our system by running the first 1,000 text fragments from the
Wiki-Annot30 dataset through our algorithm and see how many of our
annotations matches the suggested annotations in the dataset, also referred to
as the gold standard. Even though we use a powerful computer, we still need
over an hour to automatically annotate all the texts with our system.

5.2.1 Entity Extraction

The gold standard suggests that there are 5,874 entities in the first 1,000
texts. Our system ends up identifying 3,762 entities, where 1,500 are exact
string matches to the gold standard (see Table 5.1). These 1,500 entities that
are completely correctly extracted, makes out 25.5% of the gold standard
entity set, and 39.9% of our extracted entity set.

Entities in gold standard Extracted entities Exact matches
5,874 3,762 1,500

Table 5.1: Results of our entity extraction module over 1,000 text fragments.

Altogether, we extracted 65,626 candidates for our 3,762 entities, meaning
the entities in average have about 17 candidates each initially.

61

5.2. Results Chapter 5. Evaluation

5.2.2 Entity Disambiguation

Our system manages to annotate 1,694 entities similar to the annotations
in the gold standard, meaning that 2,068 annotations are considered to be
erroneous (see Table 5.2). This also means that we are able to correctly
annotate several entities that are solely not string matches of those listed in
the gold standard as well, since only 1,500 of our entity mentions are identical
to those of the gold standard.

Entities in gold standard Extr. entities Correct annotations
5,874 3,762 1,694

Table 5.2: Results of our entity disambiguation module over 1,000 text frag-
ments.

With these numbers, we obtain a precision score of 45.0%, recall score of
28.8%, and F score of 35.1%, using the formulas presented in Section 5.1.3.
It is worth noting that our system extracts and correctly annotate an unde-
fined number of entities that are not suggested in the gold standard as well.
However, these occurrences are only found by manual inspection, and are
therefore not counted towards correctly annotations in this evaluation.

62

Chapter 6

Discussion

6.1 Dataset

The Wiki-Annot30 dataset consists of 186K text fragments drawn from
Wikipedia, each composed by about 30 words. Each text fragment consists
of approximately six entities, while our experiments show that we on average
manage to extract almost four entities per text fragment. Since our system
supports four neighbors per entity, we would prefer longer texts, with more
entities. This would give us a better view of the context in each case.

Some text fragments consist of very few entities (e.g., 2), therefore we risk
ending up with none, or very few entities in some cases. If we do not find
any entities there is nothing for us to do, if we find one entity there is no
context to consider, as we need to find at least two entities in order to use
our disambiguation process. We could choose to ignore text fragments where
we find very few entities, but we do not, as we want to see how our system
perform in ”all” kinds of situations.

One might as well argue for selecting a dataset that have used the same entity
extraction techniques as we use, ensuring that we would find the exact same
set of entities. An alternative could be to use a dataset with pre-defined
entities, where all entities would be explicitly marked as entities beforehand.
Using the latter method, we would solely focus on the disambiguation process
when evaluating, as the entities we want to extract would already be encoded

63

6.1. Dataset Chapter 6. Discussion

in the dataset.

However, we found it more desirable to test our system in a more realistic
domain, which is closer to a real-world application. We think the Wiki-
Annot30 dataset is well suited for such experiments, and therefore a good
selection, even though somewhat longer texts would be preferable.

6.1.1 Aging Content

The dataset is a snapshot from Wikipedia as of November 6, 2009. Being
over eight years old, Wikipedia has naturally evolved with a lot of new data
over the years, meaning that the Wikipedia version used for the dataset and
the one we use are quite different. During this eight year time span, some
Wikipedia articles may have been deleted, moved, added to other articles,
gotten a new ID, etc. Changes such as these might make it harder, or even
impossible, for us to produce the same link again today in some cases.

6.1.2 System Comparison

The Wiki-Annot30 dataset has been used for evaluating other entity link-
ing systems as well, giving us the possibility to compare the effectiveness of
our system with other systems. We compare our scores with the scores of
Wikify! (see Section 3.1.1) and TagMe (see Section 3.2.2), their scores are
illustrated in Table 6.1.

Precision Recall F-Measure
TagMe 76.3 76.1 76.2
Wikify! 69.3 69.5 69.4
Our System 45.0 28.8 35.1

Table 6.1: Our system compared to other state-of-the-art entity linking sys-
tems.

Our approach is not especially designed to be used with this dataset, or vice
versa. Much of our problems are due to our method for entity extraction, as
we often end up with a different entity set than what is the case for the gold
standard. Our disambiguation process heavily depends on which entities are

64

6.2. Knowledge Base Chapter 6. Discussion

extracted, thus any deviations between our entity set and the one of the
gold standard will have a severe impact on our capability to achieve correct
annotations.

Thus, if we are able to improve the entity extraction step, it would also have
a positive impact on the disambiguation process, resulting in more correct
annotations, and better scores for precision, recall and F-measure.

6.2 Knowledge Base

There are several knowledge bases open for free use today, some of whom
we have studied earlier (see Section 2.3). We selected DBpedia, due to its
large amount of structured data, freshness, and easy accessibility through
SPARQL. Even though it was of great use as we disambiguate the entities,
we did experience some problems regarding inconsistency, etc.

6.2.1 Inconsistency

The lack of up-to-date data is a problem that quickly arises as we use the
static endpoint. E.g., at the time of writing, Donald Trump, the current
president of the United States of America, does not have any data stating that
he in fact is the president of the U.S. This only goes for the static endpoint,
as the live endpoint is updated with more accurate information.

It is not therefore said that the live endpoint is always correct, as erroneous
data can be found several places for different reasons. Some data are simply
wrongly entered from the start, e.g., Contrazt is stated to be a Swedish band
established in 1982, while it actually is a Norwegian band established in 2004.
Errors such as these will be present until someone update their classifications
in Wikipedia, and DBpedia update their static dataset.

There are also some inconsistency in how the entities are described in DB-
pedia. We expect similar entities to be described in similar manners, but
this is not necessarily always the case. Norway has a property ”Countries in
Europe” among its subjects, and we expect that all other countries mention
their continent among their subjects as well. However, Australia does not
have any subject stating what continent it belongs to.

65

6.2. Knowledge Base Chapter 6. Discussion

Inconsistencies such as these makes the disambiguation process more com-
plex, since not all entities are described in a similar manner, even though we
want to evaluate them in a similar way. What kind of subjects are connected
to each entity decides the outcome of our disambiguation process, so we would
strongly prefer a knowledge base with a pre-defined standard with strict rules
for what kind of subjects that should be used for each situation.

6.2.2 Disambiguation Pages

Our implementation is based on initially ignoring the ”obvious” solution,
but rather fetch all possible solutions. This is achieved by looking for the
entity mentions’ disambiguation pages, rather than pages that is exact string
matches. In many cases, this lead to an impractical large set of candidates.
Many of these are in reality rather obscure and unlikely to occur, but are
nonetheless evaluated in the same manner as more ”normal” and regularly
used candidates.

As we lack any measure of the candidates’ general popularity, our system
sometimes tend to select obscure candidates, which is so obscure that they
could just as well have been left out from the start. As mentioned, how-
ever, we do not have any measure for general popularity to each candidate,
meaning we have to include all, including the obscure and in reality unlikely
candidates.

DBpedia’s disambiguation pages are also somewhat inconsistent in some sit-
uations. Using Donald Trump as an example again, his DBpedia article
lists ”Donald” and ”Donald Trump (disambiguation)” as his disambiguation
pages. We expected that also ”Trump” would be a disambiguation page, but
this is apparently not the case. However, ”Trump (disambiguation)” is listed
as a disambiguation of ”Trump”, and ”Donald Trump (disambiguation)” is
listed as a disambiguation of ”Trump (disambiguation)”, meaning there is a
path from ”Trump” to the actual page about Donald Trump, even though it
is not very obvious.

These sometimes inconsistent and complex structures of disambiguation pages
aggravates the problem of finding all candidates for an entity mention, as we
need to prepare for alternative paths as well, rather than consequently using
the standard name followed by ” (disambiguation)”.

66

6.3. Entity Extraction Chapter 6. Discussion

6.2.3 Access

For each entity we find in the text, we need to send a request to DBpedia’s
SPARQL endpoint. When we have very many entities, we also have to send
a large amount of SPARQL requests, which might be a problem as we also
have to wait for a response to all of them.

Experiments show that sending and receiving a response takes approximately
0.1 seconds, with some small deviation. The live SPARQL endpoint is some-
what slower than the static endpoint, but both use about 0.1 seconds on
average. This means that during our experiments, where we found 3,762
entities, we grossly calculated used 6 minutes just by sending and receiving
SPARQL requests.

Even though 6 minutes is not very much, considering the whole entity linking
process takes over one hour, it would be beneficial to shrink it even more.
This could be done by setting up a local DBpedia mirror using Virtuoso,
a scalable cross-platform server that combines Relational, Graph, and Doc-
ument Data Management with Web Application Server and Web Services
Platform functionality1.

If we set up our own DBpedia mirror locally, we can retrieve data from this
local SPARQL endpoint, which is obviously time saving versus the option to
request data from the official SPARQL endpoint. Considering we would need
to serve the whole DBpedia dataset, we would need a very powerful machine
in order to get a decent enough performance.

Even though we believe the external computer we used for evaluation is
powerful enough for hosting our own local DBpedia mirror, we have not
implemented this, as the current solution with using the official endpoint is
not a big problem. Even though we could save some time, it is certainly not
the current bottleneck regarding efficiency.

6.3 Entity Extraction

Since we did not implement our own entity extraction algorithm, much of
the outcome from the entity extraction module was out of our hands. We

1https://github.com/openlink/virtuoso-opensource

67

6.3. Entity Extraction Chapter 6. Discussion

chose to use NLTK (Natural Language Toolkit), a very popular platform for
building Python programs to work with human language data. NLTK has
the full responsibility of identifying and extracting entities from the input
text. Even though NLTK was easy in use, and did pretty much what we
wanted, it also had some flaws.

We experienced that the entity extraction step is a big problem regarding
our system’s effectiveness, as it is a big challenge not only to find entities,
but also to group multiple words that should represent one entity, which we
will get back to soon. In many cases, picking capitalized words is a good
indication when looking for entities, but real world text is (unfortunately)
way more complex than it would have to be in order for using only this
technique to find entities with a satisfying outcome.

6.3.1 Multi-Word Entities

One reason for our entity extractions not matching the ones in the gold stan-
dard, might be due to our sometimes lacking capability of grouping mentions
that consist of multiple words together. E.g., the dataset mentions an entity
”The Adventures of Mark Twain”, which is a movie from 19852. However,
our system ends up with two entities: ”The Adventures” and ”Mark Twain”.
Even though ”Mark Twain” is linked to an article describing the person Mark
Twain, which is sensible enough, our system do not get any correct annota-
tions in this case, since ”The Adventures of Mark Twain” is not annotated as
expected by the dataset. We suspect that errors such as these appear quite
often, and therefore have a severe impact on the system’s effectiveness. In
some cases we might also group more words than we should.

6.3.2 Entity Set

The annotations in the Wiki-Annot30 dataset are manually created by the
users who contribute towards Wikipedia. Hence, it is humans deciding what
are entity mentions and not in the text. In our case, we need to reproduce
these results in a generative way programmatically, which is obviously a

2http://www.imdb.com/title/tt0088678/

68

http://www.imdb.com/title/tt0088678/

6.3. Entity Extraction Chapter 6. Discussion

challenge due to our lack of subjective judgment. This often leads to different
entity mention sets for our system versus the gold standard.

While we focus on named entities in our entity extraction algorithm, many
of the annotations in the dataset are more ”loose” concepts, like ”motion
capture”, ”stop-motion”, ”cutout animation”, etc. We do not look for entities
like these, thus we naturally often end up with fewer entity mentions than
what is the case for the gold standard. This also shows when we look at our
recall score, which is 28.8%. We find 3,762 entities, while there is supposed
to be 5,874. Of these 3,762 entities we extract, 1,500 (approximately 40%)
are exact string matches of the suggested entities in the gold standard.

The other roughly 60% of entities we find, may not match the mentions in
the gold standard for a number of ways. We end up annotating some entities
which the dataset do not, e.g., our system correctly annotate the mention
”Philippine Revolution”, which is not annotated in the gold standard. Cases
such as these are only found by manual inspection of the results, thus our sys-
tem do not get a point for a correct annotation in these situations. However,
the entity mention is still valid, so these occurrences will have a negative
influence when we evaluate our system. Even though errors such as these
occur, we do not believe they appear very frequently.

6.3.3 Classification

NLTK allows us to extract entities with binary classification, just telling
whether we have a named entity or not, or multiclass classification telling
whether the entity is describing a person, organization or geo-political en-
tity. We did however experience some problems when using only binary
classification, as some entities weirdly were not annotated as named enti-
ties, even though they were annotated with multiclass classification. Thus,
we use multiclass classification, but treat all classifications as any named
entity.

69

6.4. Entity Disambiguation Chapter 6. Discussion

6.4 Entity Disambiguation

Our main contribution is towards entity disambiguation, so we naturally ex-
plored several approaches especially for this. We experienced problems find-
ing an approach that generally outperformed the rest, as their performance
too a large degree were depending on the input text. If we managed to tweak
our implementation to better annotate some texts, it often had detrimental
effects on other texts.

6.4.1 Default Resource

As mentioned earlier, our approach is to evaluate all possible candidates on
the same level, ignoring aspects such as popularity, title similarity, etc. Al-
ternatively, we could pick the default resource where one such is present.
In that case, the entity mention ”Liverpool” would be linked to the article
about Liverpool city, while ”Gerrard” would still consist of a list of all can-
didates listed by its disambiguation page, since it does not have any default
resource.

The good thing about this alternative approach, is that the default DBpe-
dia is very often the correct one. Therefore, we avoid using much time on
candidates that in the first place are rather unlikely to be correct. However,
with this approach we certainly know that we will not be correct every time,
e.g., the mention ”Liverpool” will never be linked to anything else than an
article describing the city, no matter what the context may be. This goes for
all entity mentions that have a default resource in DBpedia.

When re-running the experiments we did earlier, but using this alterna-
tive approach with selecting the default DBpedia resources where they are
present, our system’s performance clearly improved. We were now able to
annotate 1,892 entities correctly, over the original 1,694 we had. Our can-
didates set now consist of 42,702, considerably less than the original 65,626.
Since we now have less candidates to handle, the execution time was also
halved, to approximately 40 minutes. This gives precision, recall, and F
scores of 50.3%, 32.2%, and 39.3%, respectively.

Even though this approach seems to be superior regarding both efficiency
and effectiveness, the fact that we simply know it will fail a number of times

70

6.4. Entity Disambiguation Chapter 6. Discussion

is a big drawback. Thus, we prefer to stick to our original approach, since
we believe that this approach have a better potential, even though there are
some problems with the current implementation.

6.4.2 Initial Context

Our problem is greatest initially, as we usually have very little information
about the context from the start. Some entities may have only one candidate
from the start, meaning we can use it to get a better understanding of the
context, but this is not necessarily the case in all situations.

The lack of knowledge about the context initially, makes it hard to select
a reasonable candidate. As soon as we select a wrong candidate, the lack
of knowledge about the context will propagate as the system will put more
emphasize on the unknowingly wrongly selected candidate. When the harm
is done, there is not really any way back, as the selected candidates will form
our understanding of the context, and will play a big role when deciding
which candidates to select next.

The problem of lacking a decent understanding of the initial context is un-
avoidable. However, we did try to minimize the inconvenience by not select-
ing a candidate for the first iteration, but rather just give all candidates a
score. For the second iteration, we could then put more emphasize on the
candidates considered to be most probable in the first iteration, and hope-
fully be more competent to make a good decision when actually deciding for
a candidate.

Experiments showed that this approach with avoiding to select candidate for
the first iteration did not have much influence on the outcome. Naturally,
the system’s execution time was extended, since we wait longer to discard
candidates. Because of this, and that it did not improve our effectiveness
notably, discarding this alternative approach was an easy decision.

6.4.3 Candidate Scoring

How the candidate scoring algorithm is implemented is a key aspect of our
solution, as this in reality is the part deciding which candidates should be

71

6.4. Entity Disambiguation Chapter 6. Discussion

selected for linking. There are numerous ways to implement this in detail,
where our approach is described in detail earlier (see Section 4.4.3). There
are however some aspects that deserves some extra attention, which we will
now take a closer look at.

Candidate Similarity

The key aspect of our disambiguation process is how we score similarity be-
tween candidates, giving us an almost unlimited amount of options. We went
with a solution where we quantify the similarities between two candidates
as how similar their subjects are according to a string matching algorithm.
There are a number of aspects to consider as we implement one such algo-
rithm, e.g., length of subject strings, and linear vs exponential scoring, which
we will get back to in a moment.

First of all, the length of the subject strings vary, which is something we must
consider when we score each instance, since longer strings obviously have a
higher probability of getting longer common string matches and thereby a
better score than shorter strings. In order to avoid this disproportionality,
we divide the score given by our longest common string algorithm with the
product of the lengths of the two subject strings. We thereby keep the ratio
similar no matter how long the two subject strings are, and differently sized
subject strings can be compared fairly. As expected, experiments showed
that omitting this setting had deteriorating effects on the system’s effective-
ness.

Regarding how we find the longest common substring, i.e., the value we want
to divide by the product of the lengths of the subject strings, we also have
several potential approaches. We went with a simple linear approach, where
the score simply reflects the actual length of the longest common substring of
the two subject string. E.g., ”ABCDE” and ”ABXC” gives the value 2, since
the longest common string (”AB”) is of length 2. In that given example, the
following score is computed:

Score = 2
5 · 4 = 0.1

An alternative to this linear approach of scoring longest common substring,
is to use an exponential function. By using an exponential function, longer

72

6.4. Entity Disambiguation Chapter 6. Discussion

string matches will be much more important than shorter. The logic for
using this approach is that longer string matches will typically indicate a
more precise similarity than shorter common strings, and should thereby get
a considerably higher score, in contrast to the linear approach where there
is a smaller difference between the two. In detail, the alternative scoring
function would look like this:

Exp. Score = base(length of LCS)

length of subject A · length of subject B

An important element to consider when using exponential scoring is what the
base value should be. If it is too low, most cases will result in basically the
same score. If it is set too high, longer string matches will quickly be very
dominant, completely neglecting the impact from shorter string matches.
Finding this sweet spot for the base value is a challenge. However, experi-
ments showed that a base value of 1.15 worked well, and outperformed our
linear approach marginally, as we managed to annotate 1,710 entities cor-
rectly, versus the original 1,694 with the linear approach.

We thought the ideal base value would be slightly higher than 1.15, which
would cause a bigger increase of score as the length of the longest common
substring increases. How the different functions influence the score is illus-
trated in Table 6.2. We notice that for the exponential approach (with base
1.15), the score stably increases with a factor of about 1.3 when the length
of the LCS increases by two. For the linear approach however, the increase
factor will converge towards one, i.e., the factor will decrease as the length
of the LCS increases.

Length of LCS
5 7 9 11 13

Linear 5 7 9 11 13
Exponential (base 1.15) 2.01 2.66 3.52 4.65 6.15

Table 6.2: Differences between linear and exponential scoring given the length
of the longest common substring (LCS).

73

6.4. Entity Disambiguation Chapter 6. Discussion

Common Words

No matter if we choose to use linear or exponential scoring, the candidates’
subjects are pivotal for the outcome. E.g., if one candidate has a word occur-
ring many times among its subjects, and some of the candidate’s neighboring
candidates have the same word occurring many times as well, these candi-
dates will get a high score. This is really what we aim for, but sometimes
this might be misleading. This could for instance happen if two neighboring
candidates have the word ”american” mentioned many times among their
subjects. These candidates are then very probable to be picked by our dis-
ambiguation algorithm, even though this word might be the only word they
have in common.

In such situations, one single word will have an unnatural big influence on
which candidates are chosen. There are indeed a big chance that both candi-
dates have some relation to America, but it would be preferable to find other
similarities as well. A possible solution to this possible problem could be
to use an reduction factor for words, or string sequences, that have already
occurred, certainly if they have occurred a number of times. However, this
technique is yet to be tested in practice, even though we believe it would
have an positive impact on our solution.

Average Scoring

Our implementation initially calculates the score for each candidate without
taking their amount of subjects into account. This means that a candidate’s
chance of getting a high score improves the more subjects it has. Our thinking
behind allowing this, is that more popular candidates usually have more
attached subjects as well, meaning our approach in practice actually will
prioritize more ”popular” candidates in many situations, in contrast to what
we have earlier stated.

The assumption that often used candidates have more subjects than less
used candidates are not necessarily always true, which may cause confusion
sometimes. It is also worth noting that if we reintroduce DBpedia’s default
candidate for an entity in the end, we calculate the candidates’ average score,
i.e., their score per subject. This is because we then consider both candidates

74

6.4. Entity Disambiguation Chapter 6. Discussion

to be probable, and therefore do not want to give any of the candidates any
kind of handicap.

Experiments show that this approach outperforms approaches based on al-
ways or never calculating the average score, which is as expected. Something
more surprising however, is that never calculating the average score outper-
forms the option of always taking the number of subjects into account. This
is not quite what we expected, but is again an indication that the most
”popular” candidate is usually the correct one.

6.4.4 Efficiency

Our system is not really as fast as we would wish, as the whole entity linking
process on average needs around one second per entity on the quite powerful
machine we used. How much time is needed obviously heavily depends on
how many entities, candidates and subjects are present in the input text, as
these are the factors deciding our program’s execution time.

Longest Common Substring

The longest common substring, or longest common subsequence (LCS), is a
problem we encounter very many times during our disambiguation process.
This also means that it has massive influence regarding our efficiency, which
also became clear as we experimented with different implementations for
solving the LCS problem. Our current solution is a slightly simplified version
of the state-of-the-art solution we have described earlier (see Section 4.4.3),
which indicates that there are not an easy way to speed up solving this task
considerably.

Parallelization

We have introduced a concurrent design in order speed up the disambiguation
process. First of all, we branch out all entities, and start the disambiguation
process on all of them in parallel. Secondly, we start the scoring process for
each candidate for each entity in parallel as well (see Section 4.4.3). These
steps improved our execution time tremendously. How much these steps

75

6.5. Research Questions Revisited Chapter 6. Discussion

improve the efficiency will of course depend on the machine used, and its
architecture.

These parallelization steps do however have one weakness with the current
implementation, namely that we end up calculating the scores twice for each
candidate. This is because each entity operate by their own, independently
of the others. Consider two neighboring entities; A and B. Both entities’
candidates’ scores are calculated independently, meaning that candidates of
entity A calculates their similarity with candidates of entity B, while the
candidates of entity B do the same with the candidates of entity A.

The optimal solution would obviously be to perform the calculations only
once, allowing both sides to use the same result, rather than having both
sides calculating the same thing simultaneously. Even though we currently
have this disadvantage, parallelization is still of considerably more help than
harm regarding efficiency. Fixing this problem would however improve the
efficiency further.

6.5 Research Questions Revisited

We evaluate the work by revisiting the research questions introduced in Sec-
tion 1.2, and discuss our findings in hindsight.

RQ: How can we implement an entity linking system that selects
the most relevant candidate article, taking entity ambiguity
into account?

In Section 3.2 we analyzed several state-of-the-art systems, and their ap-
proaches. We learned that they mainly emphasize data stored in a knowl-
edge base in order to decide for the correct article when the entities are
ambiguous.

We implemented a new entity linking system, using our own approach to
the problem on the basis of the conducted research. We used data from a
structured knowledge base in order to detect relations between entities in
the input text, and selected candidates who seemed similar to each other for
each entity. Our approach is described in detail in Chapter 4.

76

6.5. Research Questions Revisited Chapter 6. Discussion

RQ1: What kind of data and methods can be used to disambiguate
ambiguous entities?

The simplest method to decide for an entity candidate, is to select the most
common candidate, meaning we will get correct result in many cases, but
certainly not all. This is not a satisfying approach, because of all the cases
we simply know we will fail to annotate correctly.

Instead, one might retrieve the entities from a structured knowledge base,
and find similarities between them. These similarities could be defined by
common in/out-links, common categories, etc. This approach of measuring
similarities between entities assumes that similar entities usually are men-
tioned close to each other. Thus, the most similar entities should be chosen
across all entity mentions.

RQ2: How do today’s entity linking systems select what candidate
article should be used for each entity?

Several modern state-of-the-art systems were analyzed in Section 3.2, show-
ing that they retrieve information from a structured knowledge base, such as
DBpedia, YAGO, or Wikidata. Even though the systems have minor differ-
ences, their approach is to discover relations and similarities across different
entity mentions, usually in a similar manner to one of the methods mentioned
for RQ1 above.

RQ3: What is the best method for selecting correct article for an
entity, and how can we maximize the efficiency for such a
system?

There is not necessarily one method that is superior to all others. Some
systems specialize in annotating short texts, while others perform better for
longer texts. Which approach is best will heavily depend on how the system
will be used. What is certain however, is that a system should consider the
context around every ambiguous entity mention, usually based on surround-
ing entity mentions, in order to decide which is the best candidate.

Regarding efficiency, it is beneficial to minimize the initial set of potential
candidates, or at least minimize it early in the process by removing candidates
considered unlikely to be correct anyway. Additionally, an awareness of which
processes are possible and beneficial to do in parallel is a big advantage, as
concurrency can speed up the program execution considerably.

77

Chapter 7

Summary

7.1 Conclusion

The entity linking task poses challenges in several research fields, which we
have investigated in this thesis. On the basis of this research, we have de-
signed and implemented an entity linking system from scratch, evaluated
it, and compared its performance with other state-of-the-art entity linking
systems.

We have used DBpedia in order to populate and disambiguate the entities
within an input text. First, we found all entities in the input text, and
represented them with a list of possible DBpedia articles about them, which
we call candidates. Next, we used data from DBpedia to look for relations and
similarities between different candidates across the entities considering the
context, which consisted of nearby entities. We then selected the candidates
we believed were similar to each other for each entity.

As we evaluated our system, we soon discovered some challenges with the
entity extraction task. We did not end up with the ideal entity set as often
as we would prefer. Wrongly identified entities propagated errors further
down the line, as this also affected the context for the entities we actually
extracted correctly. Regarding our solution for the entity disambiguation
task, its effectiveness was satisfying considering our challenges with entity
extraction, even though it was not as efficient as we anticipated.

79

7.2. Future Work Chapter 7. Summary

It is also worth mentioning that there were some aspects of DBpedia which
made the disambiguation process harder than it had be. For instance, DB-
pedia turned out to be more inconsistent than we initially thought, which
obviously had a negative influence on our results. These inconsistencies in-
cludes the fact that similar entities do not always have the same kind of
subjects, e.g., some countries lack a subject telling which continent it be-
longs to, which is present for the vast majority of countries.

We experienced that the Wiki-Annot30 dataset was not perfectly designed
for our system, or vice versa. Ideally, we would like to use a dataset without
any text fragments consisting of as little as down to two entities. Considering
our context consists of four entities, we would prefer that each text fragment
has at least five entities.

Experiments showed that our system was not as good as the systems we used
as reference, such as Wikify! and TagMe when using the Wiki-Annot30
dataset. Our precision score showed that we managed to correctly annotate
45.0% of the entities we found, and our recall score showed that we managed
to correctly annotate 28.8% of the entities according to the gold standard.
This gives an F score of 35.1%.

Through experiments, we also found that each entity on average has about 17
potential candidates in DBpedia initially, meaning we have approximately 6%
chance of selecting the correct candidate by random. Thus, we have certainly
done something right, considering we achieved a 45% hit rate. however, there
is still a way to go before our solution is effective enough to compete with
the best entity linking systems out there.

Experiments have showed that candidate ranking methods based on ma-
chine learning often outperforms those using plain classification methods [42].
Thus, the future will probably bring more focus on developing sophisticated
and intelligent systems using machine learning in order to disambiguate en-
tities.

7.2 Future Work

There are multiple aspects that may be worth some more exploration, and
serves as reasonable starting points for any future work.

80

7.2. Future Work Chapter 7. Summary

• DBpedia is not a perfect knowledge base, which led to several prob-
lems for our disambiguation process. It could be beneficial to explore
the possibility of replacing DBpedia with a knowledge base with more
strict rules for how data is added, rather than just being a mirror of
Wikipedia which anyone can edit, like DBpedia is. Even though we
initially explored the possibility of using other knowledge bases as well,
including the likes of Wikidata and YAGO, we believe it would be a
good idea to revisit this decision once again.

• In order to resolve our problems with extracting entities from text,
it might be preferable to use multiple named-entity extraction frame-
works. Thereby, we can combine their results in order to find the out-
comes it seems to be most agreement of between the different parsers.

• Our system’s efficiency could be enhanced by avoiding multiple can-
didates computing the same calculations simultaneously, which is the
case with the current implementation.

• We experienced that common words among the subjects sometimes had
a large impact as we calculated the similarities between two candidates.
This could possibly be avoided by using a discount factor for words, or
string sequences, that have already been encountered.

• An approach where we consider multiple entities as one selection of mul-
tiple candidates at once might be favorable over our current approach.
Currently, we pick the one candidate we think is most probable at any
given time. However, in situations where we do not have one very
superior candidate, it might be better to focus on which multiple can-
didates across the entities are most probable to occur together. This
obviously complicates the process a bit, but will probably give a better
reflection of the context and increase our chance of selecting the correct
candidates, and is thus worth further investigation.

• If we enter a subject’s page in DBpedia, we are presented with more
information about the given subject. Especially the ”broader” attribute
which is present for some subjects may be of interest in our case. If
we visit the ”Australia” subject connected to the page of Australia,
the ”broader” attribute lists elements such as ”Countries in Oceania”,
”Former British colonies”, etc. By involving these subjects as well as
the original, we can potentially avoid the problem we mentioned earlier,

81

7.2. Future Work Chapter 7. Summary

where the page for Australia does not mention ”Oceania” among its
primary subjects. However, it is worth noting that this would magnify
the amount of processing needed in order to disambiguate entities.

82

Appendix A

Implementation

Our implementation use two classes: Entity and Candidate (see Figure A.1).
The Entity objects represents the entity mentions in the text, while the Can-
didate objects represents DBpedia resources. Additionally, we have some
separate files with code responsible for populating objects, parsing evalua-
tion dataset, and organizing the general program flow. We present a short
description of the Entity and Candidate classes.

Figure A.1: Class diagram of our program.

83

Appendix A. Implementation

Entity Class

An Entity object has the following set of variables:

name: A string value equivalent to the entity mention in the input text.

neighbors: A list of all entities defined as neighbors of the actual entity.
All elements are other Entity objects.

candidates: A list of all resources the entity could represent in DBpedia.
All elements are Candidate objects.

winner ratio: A float value telling how superior the best candidate is. The
value is set to zero if we have only one candidate, otherwise:

winner ratio = score of best candidate
score of 2nd best candidate

dbpedia default: A copy of the Candidate object used as default value for
this entity mention by DBpedia. Initially, the list of all candidates will
also contain this object.

And the following set of methods:

calculate scores(entity queue): This method recomputes the score for
the given candidate. Takes a Queue object used for concurrency as
input. When the new scores are calculated, the whole Entity object is
stored to the entity queue.

scale scores(): This method ensures that all the candidates’ scores sums
up to 1, and still keep their weights relative to each other. This way,
their score can be seen as the probability of them being the correct
candidate.

longest common substring(s1, s2): Takes two strings as input, and re-
turns a score for how similar they are, based on their longest common
substring.

Candidate Class

A Candidate object has the following set of variables:

84

Appendix A. Implementation

name: A string value equivalent to the name of the DBpedia resource it
represents.

subjects: A list of subjects connected to this candidate. The subjects are
represented by strings.

score: Probability of this candidate being the correct one in its given con-
text.

wiki id: Unique ID of the Wikipedia article representing the actual candi-
date.

85

Bibliography

[1] Krisztian Balog, Heri Ramampiaro, Naimdjon Takhirov, and Kjetil
Nørv̊ag. Multi-step classification approaches to cumulative citation
recommendation. In Proceedings of the 10th Conference on Open Re-
search Areas in Information Retrieval, pages 121–128. LE CENTRE DE
HAUTES ETUDES INTERNATIONALES D’INFORMATIQUE DOC-
UMENTAIRE, 2013.

[2] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web.
Scientific american, 284(5):28–37, 2001.

[3] Steven Bird, Ewan Klein, and Edward Loper. Natural language process-
ing with Python. ” O’Reilly Media, Inc.”, 2009.

[4] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie
Taylor. Freebase: a collaboratively created graph database for structur-
ing human knowledge. In Proceedings of the 2008 ACM SIGMOD in-
ternational conference on Management of data, pages 1247–1250. AcM,
2008.

[5] Kurt Bollacker, Patrick Tufts, Tomi Pierce, and Robert Cook. A plat-
form for scalable, collaborative, structured information integration. In
Intl. Workshop on Information Integration on the Web (IIWeb’07), 2007.

[6] Ignacio Cano, Sameer Singh, and Carlos Guestrin. Distributed non-
parametric representations for vital filtering: Uw at trec kba 2014. Tech-
nical report, DTIC Document, 2014.

[7] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Introduction to algorithms. MIT press, 3rd edition, 2009.

87

Appendix A. Bibliography

[8] Joachim Daiber, Max Jakob, Chris Hokamp, and Pablo N. Mendes.
Improving efficiency and accuracy in multilingual entity extraction. In
Proceedings of the 9th International Conference on Semantic Systems
(I-Semantics), 2013.

[9] Milan Dojchinovski and Tomáš Kliegr. Entityclassifier. eu: real-time
classification of entities in text with wikipedia. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases,
pages 654–658. Springer, 2013.

[10] Joe Ellis, Jeremy Getman, Dana Fore, Neil Kuster, Zhiyi Song, Ann
Bies, and Stephanie Strassel. Overview of linguistic resources for the
tac kbp 2015 evaluations: Methodologies and results. In Proc. Text
Analysis Conference (TAC2015), 2015.

[11] Michael Färber, Basil Ell, Carsten Menne, and Achim Rettinger. A
comparative survey of dbpedia, freebase, opencyc, wikidata, and yago.
Semantic Web Journal, July, 2015.

[12] Lee Feigenbaum, Ivan Herman, Tonya Hongsermeier, Eric Neumann,
and Susie Stephens. The semantic web in action. Scientific American,
297(6):90–97, 2007.

[13] Paolo Ferragina and Ugo Scaiella. Fast and accurate annotation of short
texts with wikipedia pages. arXiv preprint arXiv:1006.3498, 2010.

[14] Paolo Ferragina and Ugo Scaiella. Tagme: on-the-fly annotation of short
text fragments (by wikipedia entities). In Proceedings of the 19th ACM
international conference on Information and knowledge management,
pages 1625–1628. ACM, 2010.

[15] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incor-
porating non-local information into information extraction systems by
gibbs sampling. In Proceedings of the 43rd Annual Meeting on Asso-
ciation for Computational Linguistics, pages 363–370. Association for
Computational Linguistics, 2005.

[16] John R Frank, Max Kleiman-Weiner, Daniel A Roberts, Ellen M
Voorhees, and Ian Soboroff. Evaluating stream filtering for entity profile
updates in trec 2012, 2013, and 2014. In TREC, 2014.

88

Appendix A. Bibliography

[17] Faegheh Hasibi, Krisztian Balog, and Svein Erik Bratsberg. On the re-
producibility of the tagme entity linking system. In European Conference
on Information Retrieval, pages 436–449. Springer, 2016.

[18] Benjamin Heinzerling, Alex Judea, and Michael Strube. Hits at tac kbp
2015: Entity discovery and linking, and event nugget detection. In Proc.
Text Analysis Conference (TAC2015), 2015.

[19] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürste-
nau, Manfred Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater, and
Gerhard Weikum. Robust disambiguation of named entities in text. In
Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing, pages 782–792. Association for Computational Lin-
guistics, 2011.

[20] Yu Hong, Di Lu, Dian Yu, Xiaoman Pan, Xiaobin Wang, Yadong Chen,
Lifu Huang, and Heng Ji. Rpi blender tac-kbp2015 system description.
In Proc. Text Analysis Conference (TAC2015), 2015.

[21] Heng Ji, Joel Nothman, and Ben Hachey. Overview of tac-kbp2014
entity discovery and linking tasks. In Proc. Text Analysis Conference
(TAC2014), 2014.

[22] Heng Ji, Joel Nothman, Ben Hachey, and Radu Florian. Overview of
tac-kbp2015 tri-lingual entity discovery and linking. In Text Analysis
Conference, 2015.

[23] Jingtian Jiang, Chin-Yew Lin, and Yong Rui. Msr kmg at trec 2014 kba
track vital filtering task. The Twenty-Third TREC Proceedings, 2014.

[24] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kon-
tokostas, Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey,
Patrick van Kleef, Sören Auer, et al. Dbpedia–a large-scale, multilingual
knowledge base extracted from wikipedia. Semantic Web, 6(2):167–195,
2015.

[25] Farzaneh Mahdisoltani, Joanna Biega, and Fabian Suchanek. Yago3: A
knowledge base from multilingual wikipedias. In 7th Biennial Confer-
ence on Innovative Data Systems Research. CIDR Conference, 2014.

89

Appendix A. Bibliography

[26] Pablo N Mendes, Max Jakob, Andrés Garćıa-Silva, and Christian Bizer.
Dbpedia spotlight: shedding light on the web of documents. In Proceed-
ings of the 7th international conference on semantic systems, pages 1–8.
ACM, 2011.

[27] Rada Mihalcea and Andras Csomai. Wikify!: linking documents to
encyclopedic knowledge. In Proceedings of the sixteenth ACM conference
on Conference on information and knowledge management, pages 233–
242. ACM, 2007.

[28] David Milne and Ian H Witten. Learning to link with wikipedia. In
Proceedings of the 17th ACM conference on Information and knowledge
management, pages 509–518. ACM, 2008.

[29] Andrea Moro, Francesco Cecconi, and Roberto Navigli. Multilingual
word sense disambiguation and entity linking for everybody. In Proceed-
ings of the 2014 International Conference on Posters & Demonstrations
Track-Volume 1272, pages 25–28. CEUR-WS. org, 2014.

[30] Andrea Moro, Alessandro Raganato, and Roberto Navigli. Entity linking
meets word sense disambiguation: a unified approach. Transactions of
the Association for Computational Linguistics, 2:231–244, 2014.

[31] Mohamed Morsey, Jens Lehmann, Sören Auer, Claus Stadler, and Se-
bastian Hellmann. Dbpedia and the live extraction of structured data
from wikipedia. Program, 46(2):157–181, 2012.

[32] David Nadeau and Satoshi Sekine. A survey of named entity recognition
and classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

[33] Roberto Navigli and Simone Paolo Ponzetto. Babelnet: The automatic
construction, evaluation and application of a wide-coverage multilingual
semantic network. Artificial Intelligence, 193:217–250, 2012.

[34] Yuanyuan Qi, Ye Xu, Dongxu Zhang, and Weiran Xu. Bupt pris at
trec 2014 knowledge base acceleration track. Technical report, DTIC
Document, 2014.

[35] Wei Shen, Jianyong Wang, and Jiawei Han. Entity linking with a knowl-
edge base: Issues, techniques, and solutions. IEEE Transactions on
Knowledge and Data Engineering, 27(2):443–460, 2015.

90

Appendix A. Bibliography

[36] Avirup Sil, Georgiana Dinu, and Radu Florian. The ibm systems for
trilingual entity discovery and linking at tac 2015. In Proceedings of the
Eighth Text Analysis Conference (TAC2015), 2015.

[37] René Speck and Axel-Cyrille Ngonga Ngomo. Ensemble learning for
named entity recognition. In International Semantic Web Conference,
pages 519–534. Springer, 2014.

[38] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a
core of semantic knowledge. In Proceedings of the 16th international
conference on World Wide Web, pages 697–706. ACM, 2007.

[39] Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Michael Röder, Daniel
Gerber, Sandro Athaide Coelho, Sören Auer, and Andreas Both.
Agdistis-agnostic disambiguation of named entities using linked open
data. In ECAI, pages 1113–1114. Citeseer, 2014.

[40] Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Michael Röder, Daniel
Gerber, Sandro Athaide Coelho, Sören Auer, and Andreas Both.
Agdistis-graph-based disambiguation of named entities using linked
data. In International Semantic Web Conference, pages 457–471.
Springer, 2014.

[41] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative
knowledgebase. Communications of the ACM, 57(10):78–85, 2014.

[42] Zhicheng Zheng, Fangtao Li, Minlie Huang, and Xiaoyan Zhu. Learning
to link entities with knowledge base. In Human Language Technologies:
The 2010 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pages 483–491. Association
for Computational Linguistics, 2010.

91

	Abstract
	Sammendrag
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Specification
	Project Scope
	Report structure

	Background and Theory
	Information Extraction
	Named Entity Recognition
	Named Entity Disambiguation
	Entity Linking

	Semantic Web
	Knowledge Base
	Wikipedia
	DBpedia
	Wikidata
	Freebase
	YAGO

	Evaluation Methods

	State of the Art
	Related Work
	Wikify!
	Knowledge Base Population
	Knowledge Base Acceleration

	Related Technology
	Existing Systems
	TagMe
	DBpedia Spotlight
	AIDA
	AGDISTIS
	Babelfy
	Targeted Hypernym Discovery
	Other Candidates

	Approach
	Theoretical Solution
	Methodology
	Knowledge Base
	Categorization
	Erroneous Data
	Access

	Description of Implementation
	Entity Extraction
	Candidate Extraction
	Entity Disambiguation

	Initial Testing

	Evaluation
	Experiments
	Dataset
	Hardware
	Evaluation Metrics
	Evaluation Methodology

	Results
	Entity Extraction
	Entity Disambiguation

	Discussion
	Dataset
	Aging Content
	System Comparison

	Knowledge Base
	Inconsistency
	Disambiguation Pages
	Access

	Entity Extraction
	Multi-Word Entities
	Entity Set
	Classification

	Entity Disambiguation
	Default Resource
	Initial Context
	Candidate Scoring
	Efficiency

	Research Questions Revisited

	Summary
	Conclusion
	Future Work

	Implementation
	Bibliography

