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Abstract 35 

We investigated the effects of parasite-removal on various blood clinical-chemical variables (BCCVs).  36 

BCCVs are indicators of health, reflecting e.g. homeostasis of liver, kidney function and bone 37 

metabolism. The study was conducted in Norway on chicks of two predatory birds: white-tailed eagle 38 

Haliaeetus albicilla L., 1758 and northern goshawk Accipiter gentilis L., 1758.  Chicks were treated 39 

against both endoparasites (internal parasites) and ectoparasites (external parasites). We treated 40 

against ectoparasites by spraying nests with pyrethrins. Within nests, chicks were randomly treated 41 

with either an anti-helminthic medication (fenbendazole), or sterile water (controls). Treatment 42 

against either ectoparasites or endoparasites led to higher levels of the bone and liver enzyme alkaline 43 

phosphatase. Bilirubin levels were lower when treated against ectoparasites, while bile acids were 44 

higher. Anti-endoparasite treatment led to higher creatinine levels. In northern goshawks, treating 45 

against endoparasites led to higher urea levels and lower potassium levels. Treatment against 46 

ectoparasites increased uric acid and urea levels and reduced bilirubin levels and protein:creatinine 47 

ratios. In conclusion, anti-parasite treatments led to changes in several BCCVs, suggesting differences 48 

in nutrient absorption and physiological state of chicks possibly related to costs of parasitism but 49 

maybe also the parasite treatment itself. 50 

51 
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Introduction 52 

An important aspect of current ecology is to investigate the effects of various stressors on wildlife. By 53 

stressor we mean physical, chemical, and biological factors that disturbs or interferes with the normal 54 

physiological equilibrium of an organism. Parasites are significant natural stressors in wild organisms, 55 

as they use their hosts’ resources for own survival and reproduction, and because the hosts’ immune 56 

defenses against these parasites may be resource demanding (de Lope et al. 1998). Immature 57 

individuals experience high growth and increased metabolism and this, in addition to a developing 58 

immune system, leads to a high nutrient and energy demand and parasites may therefore be more 59 

detrimental to wildlife during their early life stage (Janeway et al. 1999). Parasites induce perturbations 60 

in blood biochemistry and in the homeostasis of vertebrate species in general (Schulz et al. 2000; Harr 61 

2002; Braun 2003; Richards and Proszkowiec-Weglarz 2007). Physiological homeostasis is critical for 62 

survival and growth of vertebrate species as it maintains the proper functioning of organ systems.  63 

Blood clinical-chemical variables (BCCVs) can for example reflect health and homeostasis of liver, 64 

kidney function and bone metabolism (de le Court et al. 1995; van Wyk et al. 1998; Thrall et al. 2006), 65 

and can indicate the status of energy metabolism, digestion, pancreatic diseases, electrolytic 66 

homeostasis and dehydration (Thrall et al. 2006). Measuring levels of (BCCVs) is therefore a valuable 67 

tool when assessing health and homeostasis.  68 

Parasites may be classified as either endoparasites (internal parasites) or ectoparasites (external 69 

parasites). Many of the larger endoparasites are located in the digestive tract of their host where they 70 

absorb nutrients, often attaching to their hosts’ intestinal mucosa by various hooks or spikes also 71 

leading to local lesions and inflammation (Schmid-Hempel 2011). Ectoparasites, on the other hand, are 72 

mostly arthropods that live on their hosts’ integument, feeding on their blood, hair or feathers (Price 73 

1980; Schmid-Hempel 2011). Endo- and ectoparasites may have different effects on their host as they 74 

may activate different parts of the immune system and drain the host of nutrients and energy (Schmid-75 

Hempel 2011). Experimentally manipulating either ecto- or endoparasite levels in wildlife has been 76 
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shown to affect reproductive success (Hudson 1986; Møller 1990, 1993; de Lope et al. 1998; Stien et 77 

al. 2002), chick survival (Newborn and Foster 2002; Amundson and Arnold 2010), territorial aggression 78 

levels (Fox and Hudson 2001), and adult survival (Slattery and Alisauskas 2002; Hanssen et al. 2003; 79 

Bustnes et al. 2006). While several of the abovementioned experimental studies have measured 80 

reproductive and other fitness related variables in wildlife, an assessment of the effects of 81 

experimental manipulation of parasite levels on physiological health indices, such as BCCVs seems to 82 

be relatively infrequent (but see Reiner et al. (2009) for an example on domesticated animals). 83 

Nonetheless, such health variables are a promising tool to study individual health and fitness since 84 

they reflect the proximate mechanisms underlying growth, reproduction, survival and fitness of an 85 

individual (Stearns 1992).   86 

In the present study, we investigated the cost of parasitism by treating chicks and nests of two raptor 87 

species, northern goshawk (Accipiter gentilis L., 1758) and white-tailed eagle (Haliaeetus albicilla L., 88 

1758), from endoparasites (chicks treated) and ectoparasites (nests treated).  The effects of 89 

antiparasite treatments on antioxidant defense, oxidant status and humoral immune function of these 90 

raptors were already previously addressed (Hanssen et al. 2013). In the previous study by Hanssen et 91 

al. (2013) we found that treating raptor chicks against ectoparasites relaxed their investment in 92 

humoral immune defence, and also that the total antioxidant capacity was strengthened in all anti-93 

parasite treated groups. Raptors were chosen because parasites often use these as definitive hosts 94 

(Crompton and Nickol 1985). Raptors are commonly infected with a variety of endoparasites, including 95 

nematodes, trematodes, cestodes, acanthocephalans and coccidiae (Rausch 1983; Upton et al. 1990; 96 

Cawthorn 1993; Smith 1993). In addition, raptors often build large nests that they use for several 97 

consecutive years, enabling ectoparasites, such as fleas and lice, to winter in the nests and be ready to 98 

infest birds when breeding commences in spring (for a review see Philips and Dindal 1977). We chose 99 

these two study species in order (i) to examine the inter-species generality of associations between 100 

parasites and BCCVs, and (ii) to evaluate how differences in sexual size dimorphism may affect the 101 
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costs of parasitism. Female northern goshawks are substantially larger than males, whereas this 102 

difference is not as pronounced in white-tailed eagles (Cramp and Simmons 1980). Conducting the 103 

same experiment in the two species may enable us to answer questions regarding the inter-species 104 

generality of how parasite load and health indices relate to each other, and how differences in sexual 105 

size dimorphism may affect the health of juveniles. We investigated the parasite-removal effects on 106 

various BCCVs. BCCVs are mostly used in veterinary medicine to assess health and to diagnose disease, 107 

thus both higher and lower levels of BCCVs than “normal” may indicate changes in physiological state 108 

or disease, including wildlife studies (e.g. Sonne et al. 2012). The challenge in wildlife studies is that 109 

different species have different “normal” levels of the different BCCVs, it may therefore be difficult to 110 

conclude on the basis of a random measurement of BCCVs if “normal” levels have not been measured 111 

for this species. We could not find other studies measuring “normal» levels of BCCVs in chicks of the 112 

two species studied here. However, we have a random group of chicks that has not been subjected to 113 

any antiparasitic treatment; these are a random subset of chicks from different nests in both species. 114 

We assume that these chicks represent a “normal” random sample from the population and thus that 115 

the levels of BCCVs in this group should be considered the reference level, and differences in levels 116 

from this group should thus be considered an effect of the experimental treatment. BCCVs reflect e.g., 117 

energy metabolism by the total concentrations of proteins, uric acid, urea, glucose, fructosamine and 118 

creatinine, and digestion and pancreatic diseases can be evaluated by amylase levels (Thrall et al., 119 

2006). Furthermore, magnesium, potassium, sodium, urea, uric acid and proteins are important 120 

parameters to reflect electrolytic homeostasis and dehydration (Thrall et al. 2006). In addition, BCCVs 121 

reflect health and homeostasis of bone and liver (alkaline phosphatase; alanine aminotransferase; bile 122 

acid; total bilirubin; albumin; total protein and cholesterol) while other reflect kidney function (urea, 123 

protein, uric acid, creatinine, uric acid:creatinine, protein:creatinine) and bone metabolism (alkaline 124 

phosphatase, total protein, inorganic phosphate and calcium) (Viñuela et al. 1991; de le Court et al. 125 

1995; van Wyk et al. 1998; Tilgar et al. 2004, 2008; Thrall et al. 2006). Endoparasites may be more 126 
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energetically costly as they absorb food in the intestines. We therefore expected levels of BCCVs that 127 

reflect nutritional status to indicate this in birds not treated against endoparasites (e.g. higher uric acid 128 

and urea levels, lower plasma creatinine levels). Ectoparasites lead to skin irritation and also drain 129 

blood from the host, we therefore predicted that BCCVs related to wound healing should be different 130 

in the ectoparasite treated chicks (e.g. lower levels of bilirubin). Furthermore, we expected birds 131 

treated against both endo- and ectoparasites to have BCCV levels indicating better overall health and 132 

reduced infection than the other treatment/control groups.  133 

 134 

METHODS 135 

Study design and sampling 136 

The study was conducted in Troms County, Northern Norway on chicks of two raptor species: white-137 

tailed eagle and northern goshawk. During the winters (February-March) prior to the breeding seasons 138 

of 2008 and 2009 all accessible known territories and nests of both species were visited. During this 139 

visit in 2008 and 2009 some nests were randomly (every other nest visited) treated with a commercially 140 

available ectoparasite removing spray SprayMax (Borregaard Industries Limited, active ingredient 141 

pyrethrin and piperonyl butoxide). Each of these nests was treated for one minute, while control nests 142 

received a visit of similar length but without any treatment. The sample sizes of the treatments during 143 

the different years were as follows: northern goshawk: 2008 (2 sprayed nests, 5 control nests), 2009 144 

(5 sprayed nests, 5 control nests) white-tailed eagle: 2008 (3 sprayed nests, 2 control nests), 2009 (5 145 

sprayed nests, 7 control nests). The nests were visited again shortly after hatching in June (3-4 months 146 

after anti-ectoparasite treatment). Northern goshawk clutches contained 2-4 chicks and those of 147 

white-tailed eagle 1-2 chicks. During this visit, half of the chicks of the same nest were randomly 148 

treated orally with an antihelminthic (Panacur®, active ingredient fenbendazole (25mg/mL)) to reduce 149 

levels of endoparasites (1 mL for northern goshawk chicks and 2 mL for white-tailed-eagle chicks), the 150 
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other half of the chicks were treated with  a corresponding amount of sterile water. Hanssen et al. 151 

(2003, 2013) and Bustnes et al. (2006) present more details on this treatment in wild birds. In this way 152 

we tried to achieve a balanced split plot design with two factors: ectoparasite treatment (at the nest 153 

level), and endoparasite treatment (at the chick level). This design was not possible for white-tailed 154 

eagle nests with only one chick and we therefore randomly treated the single chick with either Panacur 155 

(treated group) or sterile water (control). The sample sizes at the chick level in the different years were 156 

as follows: northern goshawk: 2008 (5 treated chicks, 8 control chicks), 2009 (11 treated chicks, 13 157 

control chicks), white-tailed eagle: 2008 (3 treated chicks, 2 control chicks), 2009 (7 treated chicks, 9 158 

control chicks). Nests were then visited a third time (white-tailed eagle: 19 ± 2 days later; northern 159 

goshawk: 13 ± 0.6 days later) in order to obtain a blood sample, for the analysis for BCCVs, and body 160 

feathers, for DNA-based sexing. The blood was sampled from the brachial vein (0.1 - 4.0 mL; heparin-161 

coated syringe) and centrifuged the same day at 1500 G for 10 min and up to 1 mL supernatant plasma 162 

was transferred to a sterile 1.5 mL Eppendorf® tube and frozen at -20 °C until BCCV analysis. To 163 

minimize the time spent at the nest, and thus the invasiveness of the study, we did not attempt to 164 

quantify the reduction in parasite levels in relation to treatment. Nonetheless, several studies have 165 

shown that fenbendazole is effective against various intestinal parasites in birds, e.g. nematodes, 166 

lungworms and cestodes (Norton et al. 1991; Yazwinsky et al. 1992, 1993), and a study showed that 167 

one treatment with fenbendazole eliminated all nematode parasites in 221 out of 230 birds from 38 168 

species of six orders (Lawrence 1983). Treatment of nests with pyrethrin has been shown to reduce 169 

levels of ticks and fleas on chicks (Szep and Møller 1999; Fessl et al. 2006) and in nests (Dufva and 170 

Allander 1996; Christe et al. 2000, 2002). To reduce disturbance of the breeding birds and possible side 171 

effects of the pyrethrin-based anti-ectoparasite treatment, this was performed about three months 172 

before egglaying. We assumed that the treatment reduced or eliminated active and dormant stages of 173 

ectoparasites wintering in the nest material to such a degree that levels of ectoparasites in the treated 174 

nests were lower during the chick period even if some reinfection from adults may have occurred.   175 
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 176 

Analyses of BCCVs  177 

All BCCV analyses were conducted at the Central Laboratory at the Department of Veterinary Clinical 178 

and Animal Sciences (University of Copenhagen) and included 19 components. These were composed 179 

of three liver enzymes and function test compound, i.e. alkaline phosphatase (U L-1), alanine 180 

aminotransferase (U L-1), gamma glutamyltransferase (U L-1) and bile acid (µmol L-1), one specific bone 181 

enzyme i.e. alkaline phosphatase (U L-1), one digestive enzyme, i.e. amylase (U L-1), two protein groups, 182 

i.e. albumin (g L-1) and total protein (g L-1), two erythrocyte metabolism waste products, i.e. total 183 

bilirubin (µmol L-1) and bile acids (µmol L-1), cholesterol (mmol L-1), two carbohydrates, i.e. glucose 184 

(mmol L-1), fructosamine (µmol L-1), one muscle break-down product, i.e. creatinine (µmol L-1), five 185 

electrolytes/minerals, i.e. inorganic phosphate (mmol L-1), calcium (mmol L-1), magnesium (mmol L-1), 186 

sodium (mmol L-1) and potassium (mmol L-1), and two protein waste products i.e. urea (mmol L-1) and 187 

uric acid (U L-1). The latter one is also used to evaluate renal functioning. In addition, protein:creatinine 188 

was included to represent creatinine clearance reflecting filtration rates as a marker of glomerular 189 

lesions. The analyses were routinely conducted at the laboratory using an automated 190 

spectrophotometrical analyser also containing ion-selective electrodes (ADVIA 1800, Siemens). All 191 

assays were subjected to daily internal and quarterly external quality control. Only results from 192 

accepted analytical runs are reported here. Information on methods can be found at the Department 193 

of Small Animal Clinical Sciences (http://www.life.ku.dk). Further details on BCCV analysis in these 194 

raptor chicks can be found in Sonne et al. (2010, 2012). 195 

 196 

Sexing 197 

DNA was extracted from body feathers (approx. 2 mm root tip) or blood (5-10 µl) using Nexttec™ 198 

Genomic DNA Isolation Kit for Tissue and Cells. We used primers 2550F and 2718R to amplify an intron 199 
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of the CHD1 genes on the Z and W chromosomes (Fridolfsson and Ellegren 1999). For details of these 200 

methods, see Hanssen et al. (2013).  201 

 202 

Experimental design and statistical methods 203 

Sample sizes may differ slightly between analyses because not all laboratory tests could be run on all 204 

samples. Furthermore, the number of sprayed nests versus control nests were not equal because not 205 

all nests selected at the first visit would eventually produce nestlings. We therefore include the sample 206 

size used for each analysis in Table 1. The dependent variables creatinine and bile acid were log10- 207 

transformed to conform to the normality assumptions of parametric statistics. Each response variable 208 

was analyzed in a mixed analysis design (proc mixed in SAS 9.3). Nest identity was always included as 209 

a random variable to avoid pseudo-replication of chicks within nests. Selecting the models used for 210 

inference was performed within a model selection framework using Akaike’s Information Criterion 211 

(AIC) (e.g. Buckland et al. 1997; Anderson et al. 2000; Burnham and Anderson 2002) as follows: We 212 

formed a set of candidate models where models were rescaled and ranked relative to the model with 213 

the lowest AIC value (Δi denotes this difference for model i). We selected the simplest model, i.e. the 214 

model with the fewest degrees of freedom, with a Δi ≤2 (Table S2). In all the analyses we kept at least 215 

one of the key predictors (anti-endoparasite or anti-ectopararasite experimental treatment) in the 216 

models based on our a priori expectations, whereas covariates (sex and species) and the first order 217 

interactions was excluded and included in the model used for inference based on how they affected 218 

the AIC (and the Δi). (See supplement S2 for details) (Table S2). Chick body mass at the last capture 219 

was tested as covariate in the full models, however it did not significantly contribute to any of the 220 

models and was therefore not included. Mean values are presented as mean ± standard error. All 221 

analyses were performed with the statistical software SAS version 9.3. 222 

  223 
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RESULTS 224 

Sex ratio and body mass  225 

The sexing analyses showed that 15 northern goshawk chicks were females and 16 were males. The 226 

corresponding numbers for white-tailed eagles were 8 females and 12 males. As expected, there was 227 

marked size dimorphism between the sexes in goshawks and no significant size difference in white-228 

tailed sea eagles. Female goshawk chicks were heavier than males (body mass females 1101 ± 44g, 229 

males 783 ± 41g, ANOVA F = 37.40, p < 0.0001) from Hanssen et al. (2013). Body mass was not 230 

significantly different between the sexes in white-tailed sea-eagles even though female chicks tended 231 

to be heavier (body mass females 4408 ± 269g, males 4100 ± 199g, ANOVA F = 0.85, p = 0.37) from 232 

Hanssen et al. (2013). In a previous analysis of this experiment in relation to oxidative stress we 233 

showed that there was no significant differences in body mass or structural size related to the 234 

treatment groups (Hanssen et al. 2013).  235 

Combined experimental effects 236 

BCCVs: Of the 19 BCCVs measured, the analysis for effects of the experimental anti-parasite treatments 237 

did not lead to a significant final model for gamma glutamyl transferase, inorganic phosphate, albumin, 238 

alanine aminotransferase, glucose, cholesterol, fructosamine, calcium, magnesium and sodium (all 239 

P>0.05). The mean values for these BCCVs in relation to experiments and sex are presented in Table 240 

S1 for reference. Table 1 presents the results of the final models, with main effects, covariates and 241 

interactions, for the remaining BCCVs.  242 

Liver and bone enzymes: Removing ectoparasites or endoparasites led to significantly higher levels of 243 

alkaline phosphatase, in contrast to control chicks and chicks receiving both endoparasite and 244 

ectoparasite treatments (Table 1, Figure 1a). Furthermore, alkaline phosphatase levels were 245 

significantly higher in females (Table 1). In males, removing ectoparasites led to higher alkaline 246 

phosphatase levels (Table 1, Figure 1b).  247 
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Digestive enzyme: Anti-endoparasite treatment led to higher amylase levels (Table 1). Females had 248 

significantly higher levels (Table 1), and northern goshawk chicks also had significantly higher levels 249 

(Table 1).  250 

Protein groups: Northern goshawk chicks had lower levels of total protein when compared to white-251 

tailed eagles (Table 1).  252 

Erythrocyte metabolism waste products: Treatment against ectoparasites led to significantly reduced 253 

total bilirubin and increased bile acid levels (Table 1). Bile acid levels were also significantly higher in 254 

northern goshawk chicks (Table 1). 255 

Muscle break down product: Creatinine levels were significantly higher in chicks treated against 256 

endoparasites, and also higher in female chicks of both species (Table 1).  257 

Electrolytes/minerals: In northern goshawk chicks, potassium levels were lower in chicks treated 258 

against endoparasites (Table 1, Figure 2). In white-tailed eagle chicks, potassium levels were 259 

significantly higher than in northern goshawk chicks (Table 1). 260 

Protein waste materials: Treatment against ectoparasites significantly increased both uric acid and 261 

urea levels (Table 1). Uric acid levels tended to be higher in treated male chicks (Table 1, Figure 3). For 262 

urea, this difference was larger in northern goshawk chicks (Table 1, Figure 4). Urea levels were also 263 

significantly higher in northern goshawk chicks when compared to white-tailed eagle chicks (Table 1, 264 

Figure 4).  265 

Renal functioning: Treatment against ectoparasites led to significantly reduced protein:creatinine 266 

ratios (Table 1). 267 

 268 

           269 
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DISCUSSION 270 

Anti-parasite treatments led to changes in several BCCVs, suggesting differences in nutrient absorption 271 

and physiological and homeostatic state of chicks that may be related to the cost of parasitism.  272 

 273 

Ectoparasites 274 

Anti-ectoparasite treatment led to higher uric acid levels in chicks of both species, and tended to be 275 

higher in treated male chicks. Also urea levels where higher in chicks treated against ectoparasites, 276 

with differences larger in northern goshawk chicks than in white-tailed eagle chicks. There are differing 277 

opinions among authors on the interpretation of uric acid and urea levels in wildlife studies. High uric 278 

acid and urea levels may indicate poor nutritional condition since it reflects increased muscle 279 

degradation from energy consumption during periods of starvation (Cherel and Le Maho 1985; Robin 280 

et al. 1998; Casado et al. 2002). Alternatively, higher levels of urea and uric acid may suggest higher 281 

protein intake (Okumura and Tasaki 1969; Voss and Siems 2006). In this respect, low concentrations 282 

of urea and uric acid in herring gulls (Larus argentatus) were interpreted as signs of low diet quality 283 

(Fox et al. 2007). Also, blood urea concentration has been reported to vary greatly within short periods 284 

of time in raptors and other birds in response to fasting and dehydration (Lumeij 1987; Lumeij and 285 

Remple 1991; Liminana et al. 2009). We found that presumably having reduced levels of ectoparasites 286 

as a consequence of treatment of the nest with pyrethrin led to higher levels of uric acid and urea in 287 

raptor chicks. It is unlikely that reduced levels of external parasites should lead to increased feeding 288 

by the parents. On the other hand, perhaps better health in the treated chicks led to improved appetite 289 

and digestion of food. However, as the treated chicks did not show signs of improved growth (Hanssen 290 

et al. 2013), further and more detailed studies are necessary to explain this effect.  Treatment against 291 

ectoparasites led to reduced protein:creatinine. A lowered protein:creatinine ratio indicates renal 292 

disorders with urine loss of protein and a reduced creatinine clearance due to glomerular lesions 293 
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(Maxie 1993; Hochleithner 1994; Confer and Panciera 1995; Ettinger and Feldman 1995). Thus, it may 294 

seem that reducing ectoparasite levels led to an increased strain on the raptor chicks’ kidney function 295 

possibly caused by the SprayMax treatment. However, other factors like increased immune functioning 296 

(antibody production) and dehydration from e.g. parasite burdens may also cause such changes 297 

(Harrison and Lightfoot 2005). Total bilirubin levels were lower in raptor chicks treated against 298 

ectoparasites. Bilirubin is a powerful endogenous antioxidant and is one of the catabolites of heme 299 

oxygenases that is active during the healing process of for instance bruises and the sequestration of 300 

old erythrocytes (Kikuchi et al. 2005). Lower bilirubin levels in treated chicks may indicate a reduced 301 

wound-healing activity as a consequence of reduced levels of skin biting ectoparasites. However, 302 

during hepatic disease, infection and reduced kidney function; bilirubin increases in birds which could 303 

be a likely explanation in the present study (Harrison and Lightfoot 2005). In domestic pigs, 304 

experimental infection with the endoparasitic protozoan Sarcocystis miescheriana led to increased 305 

bilirubin levels (Reiner et al. 2009). Regarding bile acid that increased in the treatment groups; it is 306 

usually associated with liver function and disease such as hepatitis (Harrison and Lightfoot 2005). 307 

Whether it could also be caused by an increased production as a result of parasite removal and 308 

coherent increased nutrient uptake is uncertain (Harrison and Lightfoot 2005). The treatments against 309 

ectoparasites were performed 2-4 months before hatching, so any toxic side-effects of pyrethrin are 310 

highly unlikely. Moreover, this substance has been used in numerous studies to remove ectoparasites 311 

in birds’ nests during breeding without any reported side effects (Møller 1990; Dufva and Allander 312 

1996; Szep and Møller 1999; Christe et al. 2000, 2002).  313 

 314 

Endoparasites 315 

Internal parasites may be more energetically costly as they absorb food in the intestines, and we 316 

therefore expected that levels of BCCVs that reflect nutritional status should be lower in birds not 317 

treated against endoparasites. Creatinine levels were lower in chicks not treated against endoparasites 318 
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(control chicks). Creatinine is a breakdown product of creatinine phosphate in muscle and is usually 319 

produced at a fairly constant rate by the liver (depending on muscle mass) (You et al. 2008). Lower 320 

plasma creatinine levels may indicate worse nutritional condition as creatinine levels have been 321 

suggested to decline with food supply which in turn is reflected in poor-growing chicks (Rosskopf et al. 322 

1982; Alonso-Alvarez and Ferrer 2001; Casado et al. 2002). However, a higher plasma creatinine level 323 

could reflect malnutrition leading to elevated muscle catabolism (Hotchleithner 1994; Casado et al. 324 

2002) or due to renal dysfunction caused by prolonged starvation (Alonso et al. 2001). The increase of 325 

amylase may indicate an increase in pancrase activity due to elevated nutrient uptake (Harrison and 326 

Lightfoot 2005).  327 

 328 

BCCVs affected by both treatments 329 

In theory, increasing plasma concentrations of liver enzymes may be a result of e.g. hypoxia, 330 

inflammation, diet, infection, neoplasia, trauma, metabolic abnormalities (storage diseases), 331 

endocrine diseases or hepatocyte regeneration (Hochleithner 1994; Ettinger and Feldman 1995; Thrall 332 

et al. 2006). In the present study, we observed that the levels of bone and liver enzymes (alkaline 333 

phosphatase) as well as amylase originating from the pancreas were affected by the anti-parasite 334 

treatments. Alkaline phosphatase levels increased in chicks treated against either endoparasites or 335 

ectoparasites, but not in the chicks receiving both treatments. Alkaline phosphatase is also associated 336 

with growth and has been found to be higher in chicks during the growth/bone formation period 337 

(Viñuela et al. 1991; Dobado-Berrios and Ferrer 1997; Tilgar et al. 2004, 2008). However, no 338 

measurable growth differences were found between the treatment groups (Hanssen et al. 2013). Low 339 

levels of alkaline phosphatase have been found to be related to parasitic infections in pigs (Sus scrofa) 340 

(Reiner et al. 2009), and as such the increased levels in treated birds are consistent with the reduced 341 

parasite levels. Such comparisons should, however, be done with great cautions as BCCVs vary greatly 342 

even between raptorial species (Sonne et al. 2010, 2012).  343 
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Interestingly, alkaline phosphatase levels were not reduced in the double-treated nestlings. If reduced 344 

alkaline phosphatase levels are an indication of reduced parasite levels, then one might speculate that 345 

being treated against only one of the parasite groups reduced parasite levels but that being treated 346 

against both parasite groups did not reduce levels of parasitic infection. This may be because the 347 

experimental removal of a wide range of parasites might have led to increased infections with other 348 

types of macroparasites or microparasites such as bacteria and fungi (Van Oers et al. 2002; Pedersen 349 

and Antonovics 2013). 350 

 351 

Sex, size and species 352 

As the sexual size dimorphism was more pronounced in northern goshawks (females are larger) 353 

compared to white-tailed eagles, we expected more pronounced differences between males and 354 

females in the former. It could also be that parasite removal is more important for female northern 355 

goshawk chicks as these grow faster than their male siblings and could thus be more sensitive to 356 

negative energetic effects of parasitic infections. The results showed that there were marked sex 357 

differences in levels of several of the measured BCCVs. Alkaline phosphatase, amylase and creatinine 358 

levels were higher in females of both species (total protein levels tended to be a lower P=0.06). There 359 

thus seems to be physiological differences between males and females that may be related to higher 360 

growth or hormonal differences. Regarding species differences, we found that amylase, bile acid, and 361 

urea levels were higher in northern goshawk chicks, while total protein and potassium levels were 362 

higher in white-tailed eagles. Higher protein levels may indicate dehydration, faster growth or a 363 

combination (Ettinger and Feldman 1995; Ferrer and Dobado-Berrios 1998; Thrall et al. 2006; Waikar 364 

and Bonventre 2008). One might therefore speculate that higher levels of total protein in white-tailed 365 

eagles may be related to faster growth in these large birds. It cannot be excluded, either, that the 366 

protein concentrations simply reflect protein dietary intake meanwhile proteins also maintain osmotic 367 
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pressure and PhD regulation (Sturkie 1976; Harrison and Lightfoot 2005). One should be cautious when 368 

interpreting these species differences as natural levels of BCCVs vary greatly between raptorial species 369 

(Sonne et al. 2010, 2012).  370 

 371 

Considerations 372 

The therapeutic use of fenbendazole is rarely associated with side effects. The primary mechanism is 373 

binding to parasite tubulin and interfering with microtubule assembly, which is necessary for cell 374 

division (Zajac 1993). Fenbendazole is poorly absorbed by the host animal and selectively absorbed by 375 

the parasite due to its strong specificity for invertebrate tubulin (Weiss and Adams 1987). However, 376 

some studies have indicated adverse effects of fenbendazole in birds (e.g. Howard et al. 2002; Gozalo 377 

et al. 2006). These reported effects seem to be related to food intake and lead to weight loss and even 378 

reduced survival (Gozalo et al. 2006). Pigeons and doves (family Columbidae) are more frequently 379 

affected (Howard et al. 2002; Gozalo et al. 2006), while studies on other bird orders report no adverse 380 

effects (Lawrence 1983; Kirsh 1984; Yazwinski et al. 1986). The therapeutic treatment with 381 

fenbendazole reported in the studies above also requires the dose to be repeated 2-6 times, whereas 382 

in this study we only administered one dose. We do however suggest that more studies are done 383 

regarding possible negative effects of fenbendazole in birds.  384 

 385 

CONCLUSIONS 386 

The results showed that treating against the different types of parasites (fenbendazole against 387 

endoparasites and pyrethrin against ectoparasites) had effects on different BCCVs. Treatment against 388 

ectoparasites affected biomarkers related to energy metabolism (uric acid), bone metabolism (alkaline 389 

phosphatase, uric acid), fat metabolism (bile acid), diet or protein consumption (urea) in addition to 390 

the antioxidant bilirubin. In contrast, treatment against endoparasites affected biomarkers related to 391 
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energy metabolism and kidney function (creatinine), and digestion/liver function (potassium, 392 

amylase). The only group of BCCVs that was affected by both experimental treatments was liver and 393 

bone enzyme alkaline phosphatase levels. A decreased protein:creatinine ratio may indicate an effect 394 

on the glomerular function from the parasite treatment. In conclusion, anti-parasite treatments led to 395 

changes in several BCCVs, suggesting differences in nutrient absorption and physiological state of 396 

chicks including growth that may be related to costs of parasitism. Thus, parasites but maybe also the 397 

treatment seem to have multifaceted effects on the homeostasis and physiological condition in chicks 398 

of the two raptor species. Future studies should examine further the effects of infectious organisms 399 

via physiological homeostasis on fitness (survival and reproduction) in wildlife, and aim at quantifying 400 

the parasite load. 401 
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Table 1 Effects of reducing ectoparasitic (ecto) and endoparasitic (endo) burdens on different blood clinical-chemical variables (BCCVs) in chicks of northern goshawk Accipiter 
gentilis L., 1758 and white-tailed eagle Haliaeetus albicilla L., 1758 in Northern Norway in the breeding seasons 2008 and 2009. All variables presented are from the final 
mixed models, analysed with restricted maximum likelihood estimation method. Estimates (±SE) are presented for variables with P-values less than 0.10 and are least square 
means from the presented final models. C=control group, T=treated group, NG=northern goshawk, WTE=white-tailed eagle. 

 

Dependent variable 

 

n 

 

Main effects 

 

F-value/ 

P-value 

 

Estimates  

(± standard error) 

 

Covariates 

 

F-Value/ 

P-value 

 

Estimates  

(± standard error) 
 

 

Interaction effects 

 

F-Value 

P-value 

Alkaline phosphatase                    51 Anti-ectoparasite F1,16=0.02 

P=0.88 

 Sex F1,16=5.60 

P=0.03 

♂ 1135±43 U L-1,  

♀ 1274±48 U L-1 

ecto×endo (Fig 1a)  F1,16=5.49 

P=0.03 

  Anti-endoparasite F1,16=0.46 
P=0.51 

 Species F1,16=1.89 
P=0.19 

 ecto×sex (Fig 1b) F1,16=5.86 

P=0.03 

Amylase 50 Anti-endoparasite F1,17=5.00 

P=0.04 

C: 635.2±24 U L-1 

T: 707.5±26 U L-1 

Sex F1,17=16.65 

P=0.0008 

♂ 602±24 U L-1,  

♀ 741±26 U L-1 

ecto×endo F1,17=0.02 

P=0.90 
  Anti-ectoparasite F1,17=0.74 

P=0.4 

 Species F1,17=82.36 

P<0.0001 

NG: 848±26 U L-1,  

WTE: 494±28 U L-1 

ecto×species F1,17=2.00 

P=0.18 

Total protein 50 Anti-endoparasite F1,17=1.02 

P=0.41 

 Sex F1,17=4.01 

P=0.06 

♂ 26.3±0.4 g L-1,  

♀ 27.3±0.4 g L-1 

endo×species  F1,17=2.09 

P=0.17 
  Anti-ectoparasite F1,17=2.78 

P=0.11 

 Species F1,17=21.96 

P=0.0002 

NG: 25.3±0.4 g L-1  

WTE: 28.3±0.5 g L-1 

  

Total bilirubin 50 Anti-ectoparasite F1,16=7.47 

P=0.02 

C: 17.0±0.9 μmol L-1 
T: 13.4±0.9 μmol L-1 

Sex F1,16=0.22 
P=0.65 

 ecto×endo F1,16=0.02 
P=0.88 

  Anti-endoparasite F1,16=0.09 

P=0.76 

 Species F1,16=0.07 

P=0.79 

 endo×sex F1,16=2.01 

P=0.18 

Bile acid 51 Anti-ectoparasite F1,20=4.86 

P=0.04 

C: 1.6±0.1 μmol L-1  

T: 2.0±0.1 μmol L-1 

Species F1,20=17.11 

P=0.0005 

NG: 2.2±0.1 μmol L-1, 

WTE: 1.4±0.1 μmol L-1 

  

Creatinine 51 Anti-endoparasite F1,18=4.47 

P=0.05 

C: 0.04±0.01 μmol L-1 

T: 0.07±0.01 μmol L-1 

Sex F1,18=4.35 

P=0.05 

♂ 0.03±0.01 μmol L-1,  

♀ 0.07±0.01 μmol L-1 

  

Potassium 45 Anti-endoparasite F1,13=0.75 

P=0.40 

 Species F1,13=20.58 

P=0.0006 

NG: 1.9±0.1 mmol L-1 

WTE: 2.7±0.1 mmol L-1 

endo×species (Fig 2) F1,13=5.89 

P=0.03 

Uric acid 50 Anti-ectoparasite F1,15=5.51 

P=0.03 

C: 666±53 U L-1    

T: 847±56 U L-1 

Sex F1,15=0.00 

P=0.96 

 ecto×sex (Fig 3) F1,15=4.11 

P=0.06 
  Anti-endoparasite F1,15=1.89 

P=0.19 

 Species F1,15=2.45 

P=0.14 

 ecto×endo F1,15=0.26 

P=0.61 

Urea 50 Anti-ectoparasite F1,20=19.63

P=0.0003 

C: 2.21±0.09 mmol L-1 

T: 2.83±0.10 mmol L-1 
Species F1,20=158.85 

P<0.0001  

NG: 3.41±0.09 mmol L-1 
WTE: 1.64±0.11 mmol L-1 

ecto×species (Fig 4) F1,20=3.92 

P=0.06 

Protein:creatinine  50 Anti-ectoparasite F1,18=5.05 

P=0.04 

C:2.3±0.1 

T:1.8±0.1 

Species F1,18=2.16 

P=0.16 

 ecto×sex F1,18=2.19 

P=0.16 

     Sex F1,18=2.94 
P=0.10 
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Figure legends  

Figure 1. a) Combined effects from removing ecto- and endoparasites on plasma concentrations of alkaline phosphatase in northern goshawk Accipiter gentilis L., 1758 and 

white-tailed eagle Haliaeetus albicilla L., 1758 chicks. b) Effects of treatment against ectoparasites on plasma concentrations of alkaline phosphatase in female and male 

northern goshawk Accipiter gentilis L., 1758 and white-tailed eagle Haliaeetus albicilla L., 1758 chicks. Values are predicted least square means values (with standard error 

bars) from the models presented in Table 1.  

Figure 2. Effects of treatment against endoparasites on plasma concentrations of potassium in northern goshawk Accipiter gentilis L., 1758 and white-tailed eagle Haliaeetus 

albicilla L., 1758 chicks. Values are predicted least square means values (with standard error bars) from the model presented in Table 1.      

Figure 3. Effects of treatment against ectoparasites on plasma concentrations of uric acid in female and male northern goshawk Accipiter gentilis L., 1758 and white-tailed 

eagle Haliaeetus albicilla L., 1758 chicks. Values are predicted least square means values (with standard error bars) from the model presented in Table 1.   

Figure 4. Effects of treatment against ectoparasites on plasma concentrations of urea in northern goshawk Accipiter gentilis L., 1758 and white-tailed eagle Haliaeetus albicilla 

L., 1758 chicks.  

 


