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Summary and Conclusions

The objective of this thesis is to contribute in developing frameworks and quantitative meth-

ods to support uncertainty management of engineering systems, with focus on offshore vessels.

This thesis starts out with a literature review, drawing insight from engineering, management,

product development, finance, operations research, and artificial intelligence. The review high-

lights that uncertainty is as much related to opportunities as it is to vulnerabilities, and that

an active management approach is necessary to mitigate the vulnerabilities and to exploit the

opportunities. While the engineering domain recognises designing for changeability (i.e. flex-

ibility, adaptability, robustness and agility) as means for handling uncertainty, the managerial

domain recognises strategic flexibility.

We propose the Value-Aptitude-Design-Strategy (VADS) framework as a quasi-mathematical

expression of the relationship between a stakeholder’s aptitude, a design’s configuration and

the stakeholder’s life cycle strategies, linking them to the system’s ability to deliver value (i.e.

stay successful). From this, we propose the term strategic system, comprising a specific design-

strategy configuration, defined as a set of distinct devices used to handle uncertainty. We em-

phasise the importance of having the strategic system aligned with stakeholders’ aptitude. This

extends the traditional system boundary in engineering, from solely focusing on the relation-

ship between design and its surroundings, to include the managerial dimension. Thus, while

the literature is primarily focusing on architecting value robust physical systems, this thesis em-

phasises the need for identifying value robust strategic systems.

We propose Design-Strategy Planning (DSP) as an active, structured, life cycle approach for

managing uncertainty. Building on the VADS framework, DSP focuses on developing, imple-

menting and monitoring strategic systems with the means of handling uncertainty that is aligned

with stakeholders’ aptitude. DSP highlights the importance of dealing proactively with un-

certainty by utilising real (in and on) options. The real in options are related to designing for

changeability, and the real on options are related to managerial strategies. While some of these

options are implemented in the design phase, others are prepared for in the response to various
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trigger information. The type of response is pre-defined in a contingency plan. To do so, DSP

incorporates a monitoring system to locate trigger situations over the system’s life cycle.

A Markov decision process (MDP) methodology is presented to support the design-strategy

planning framework. The methodology is based on the work of Niese and Singer (2014). To-

gether, DSP and MDP form a holistic decision analysis framework to support uncertainty man-

agement. A key benefit is that this framework can capture the dynamic interaction between the

changeable system and managerial strategies. As seen in the illustrative case, this insight can be

used to select product platforms, to identify the most promising real in options to incorporate

in the design phase, and to develop a contingency plan.

The knowledge from this thesis can be important in life cycle management of high-value, com-

plex, engineering systems, with long lifetime, facing high degree of exogenous uncertainty. Hope-

fully the proposed Value-Aptitude-Design-Strategy framework, Design-Strategy Planning and

the Markov decision process methodology will give valuable insight that enables maritime de-

cision makers to better handle uncertainty.
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Sammendrag og konklusjon

Formålet med denne oppgaven er å bidra til å utvikle rammeverk og kvantitative metoder for å

støtte usikkerhetshåndtering in den maritime industrien, med fokus på offshorefartøy.

Oppgaven starter med en litteraturstudie som gir innsikt i ingeniørvitenskap, strategisk ledelse,

produktutvikling, økonomi, operasjonsanalyse og kunstigintelligens. Litteraturstudiet viser at

usikkerhet er like mye knyttet til muligheter som den er til sårbarheter, og at en aktiv tilnærm-

ing til usikkerhetshåndtering er nødvendig for å kunne redusere sårbarhetene og dra utnytte

mulighetene. Mens ingeniørvitenskapen anerkjenner foranderlighet i designet som en måte

å håndtere usikkerhet, er strategisk fleksibilitet anerkjent som en metode innenfor strategisk

ledelse.

Vi foreslår Verdi-Evne-Design-Strategi (VEDS) som et kvasimatematisk uttrykk for forholdet mel-

lom en interessenters evne, designet (f.eks. offshorefartøy) sin konfigurasjon og interessentens

livssyklusstrategier, og knytter dem opp mot systemets evne til å levere verdi (dvs. være vel-

lykket). Fra dette foreslår vi begrepet strategisk system, som består av en bestemt design-strategi

konfigurasjon, og definerer dette som en aktiv metode for å håndtere usikkerhet. Vi legger vekt

på viktigheten av å ha det strategiske systemet i samsvar med interessenters evne til å bruke

det. Dette rammeverket utvider den tradisjonelle systemgrensen i ingeniørvitenskapen, fra kun

å fokusere på forholdet mellom design og dets omgivelser, til å inkludere den strategiske di-

mensjonen. Mens litteraturen primært fokuserer på å identifisere verdifulle tekniske systemer,

fremhever denne oppgaven behovet for å identifisere verdifulle strategiske systemer.

Vi foreslår Design-Strategi Planlegging (DSP) som en aktiv, strukturert, livssyklus tilnærming til

håndtering av usikkerhet. Med utgangspunkt i VEDS-rammeverket fokuserer DSP på å utvikle,

implementering og overvåking strategiske systemer med evnen til å håndtere usikkerhet. DSP

fremhever viktigheten av å handle proaktivt til usikkerhet ved å bruke tekniske «i» og «på» op-

sjoner. De tekniske «i» opsjonene er relatert til designet sin foranderlighet, mens de tekniske

«på» opsjonene er relatert til livssyklusstrategier for å bruke designet. Mens noen av disse op-
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sjonene bør implementert i designfasen, bør andre forbedres for å bli benyttet som en mulig

respons til ulike triggere. Hvilken respons som skal gis til ulike triggere bør forhåndsdefinert i en

beredskapsplan. En del av DSP metoden er og implementerer et overvåkingssystem for å finne

slik triggerinformasjon som krever en respons fra beredskapsplanen.

En Markov beslutningsprosess (MDP) metode presenteres for å støtte det foreslåtte Design-

Strategi Planleggings rammeverket. Metoden er basert på arbeidet til Niese and Singer (2014).

Sammen danner DSP og MDP en helhetlig beslutningsanalyserammeverk for å støtte usikker-

hetshåndtering. En viktig fordel med dette rammeverket er at det gir innsikt til det dynamiske

samspillet mellom det foranderlige tekniske systemet og ledelsesstrategiene. Som man ser i et

presenterte eksempel, så kan denne innsiktet brukes til å identifisere de mest verdifulle produk-

tplattformene, de mest verdifulle «i» og «på» opsjonene, og til å utvikle en beredskapsplan.

Kunnskapen fra denne oppgaven kan være nyttig for usikkerhetshåndtering av kostbare, kom-

plekse, tekniske systemer, med lang levetid, som står overfor høy grad av eksogen usikkerhet.

Forhåpentligvis vil de foreslåtte rammeverkene gi verdifull innsikt som gjør det mulig for mar-

itime beslutningstakere å bedre håndtere usikkerhet.
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Chapter 1

Introduction

1.1 Background

The primary objective in conceptual vessel design is to identify value robust solutions (Brown-

ing, 2005; Gaspar et al., 2016), that is, vessels able to deliver high value to key stakeholders over

its entire life cycle (Ross and Rhodes, 2008b). Unfortunately, due to the long lifetime, high sys-

tem complexity (Gaspar et al., 2012) and exogenous uncertainties (Erikstad and Rehn, 2015; Agis

et al., 2016) it is difficult, if not impossible, to identify which solutions that are in fact value ro-

bust, as the operating context, stakeholders needs, and even the design changes over time (Ross

and Rhodes, 2008b; McManus et al., 2007).

Even though exogenous uncertainty imposes considerable commercial, operational and techni-

cal vulnerabilities to engineering systems, uncertainty might as well lead to unforeseen oppor-

tunities (McManus and Hastings, 2005; de Weck et al., 2007; Lorange, 2009; Thanopoulou, H.,

Strandenes, 2015). Unfortunately, due to the high consequence of failure, the traditional focus

in engineering has almost exclusively been on the possible negative outcomes of uncertainty

(de Neufville, 2004; Lorange, 2009). Luckily, uncertainty can be managed and it is starting to be

recognised as a key for developing vessels that are able to both mitigate the vulnerabilities and

exploit the opportunities (McManus and Hastings, 2005).

Unfortunately, it seems like uncertainty management is an inherently challenging task. With

1
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over 135 offshore vessels currently [07.06.2017] in layup on the coast of Norway, one can as-

sume this is not solely due to the crack in the offshore market, but also an effect magnified of

the inability of maritime decision makers to grasp and handle uncertainty. By the findings of

Strøm and Christensen (2016), it seems like too many complex decisions in the maritime indus-

try is based on gut feeling, thereby highlighting the importance of developing rational methods

for decision support (Erikstad and Rehn, 2015; Strøm and Christensen, 2016).

This is the core of this thesis, as the objective is to contribute in developing frameworks and

quantitative methods to support uncertainty management of engineering systems, with focus

on the conceptual design phase of offshore vessels.

1.2 Research Questions

Based on the background for this thesis presented above, the following research questions were

set to be answered in the thesis:

• How does the long lifetime, system complexity and exogenous uncertainty affecting the

life cycle value of engineering systems?

• How is uncertainty currently managed, and how should it be managed?

• How can Markov Decision Processes (MDP) be used to support uncertainty management?

1.3 Literature Review

The following section presents a review on literature relevant for answering the research ques-

tions. First are aspects related to the complexity and uncertainty of engineering systems pre-

sented, before the aspect of uncertainty management is treated. Then, a special focus is given

on the concept of changeability, strategies and real options. In the end, a review on literature

related to Markov decision processes is presented. Part I in this thesis builds on this literature

review.
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Engineering System & Offshore Vessels

de Weck et al. (2011, 3) define engineering systems as a class of systems, characterised by a high

degree of technical complexity, social intricacy, and elaborate processes, aimed at fulfilling im-

portant functions in society. They further present ideas for how engineering systems can be

modelled, analyse and designed. The monograph by Moses (2004), Whitney (2004), de Neufville

(2004), Allen et al. (2004), Cutcher-gershenfeld et al. (2004) and Leveson et al. (2003) treats foun-

dational issues related to engineering systems, such as architecture, uncertainty management,

the enterprise perspective, and sustainability. Offshore Support Vessels (OSVs) are examples

of large-scale, highly complex, cost-intensive engineering systems, operating in a demanding

physical environment (Simosys, 2017).

Complexity

The literature recognises the high complexity of engineering systems, and idea rooting from the

classical works of Evans (1959). According to Kolmogorov (1983), the more information needed

to completely describe the system, the more complex it is. Magee and de Weck (2004) also con-

siders the number of (unique) elements and the nature of their interconnections, and develop

a classification scheme for complex systems. They find engineering systems to separate from

other complex systems by being human-designed, in addition to have a significant human and

technical complexity. Hubka and Eder (1988) proposes to measure the degree of complexity

in technical systems in four levels. Rhodes and Ross (2010) presents a five aspects taxonomy

of system complexity, comprising structural, behavioural, contextual, perceptual, and tempo-

ral aspects. Hagen and Grimstad (2010) emphasise the need to extend the system boundary of

ships to better understand their complexity. As a response, Gaspar et al. (2012) addresses com-

plexity in design of engineering systems, and uses the five-aspect taxonomy of Rhodes and Ross

(2010) to discuss ship design as a complex problem. Suh (1990) states that to increase the like-

lihood for the success of a system, the systems complexity should be minimised while keeping

its intended functionality.
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Uncertainty

Uncertainty can be defined as the things that are not known, or only known imprecisely (Mc-

Manus and Hastings, 2005, 2), the inability to quantify precisely; a distribution that reflects po-

tential outcomes (Walton, 2002, 20), or as inability to determine the true state of affairs of a system

(Haimes, 2009, 255). Even though uncertainty imposes considerably vulnerabilities (or risks) to

offshore vessels it may as well lead to as many opportunities (McManus and Hastings, 2005;

de Weck et al., 2007; Lorange, 2009; de Neufville and Scholtes, 2011). McManus and Hastings

(2005) classifies uncertainty as statically random variables, known unknowns, or unknown un-

knowns. de Weck et al. (2007) and Lin et al. (2013) classifies sources of uncertainty as either

exogenous, endogenous or hybrid, depending on the degree in which they can be managed.

Miller and Lessard (2000) states that the uncertainty is weak when managers have enough in-

formation to structure problems, estimate distribution, and build decision models uncertainty.

Otherwise, the uncertainty is strong. Thanopoulou, H., Strandenes (2015) deliberates the role

of uncertainty in shipping, and propose a classification of uncertainty sources based on their

nature and time horizon of their consequence. In relations to system complexity, more uncer-

tainty is imposed to the system when its complexity increases (Skinner, 2009). Further, Dixit and

Pindycke (1994), de Weck et al. (2007), Alizadeh and Nomikos (2009), Erikstad and Rehn (2015)

and Strøm and Christensen (2016) presents how uncertainty can be quantified and modelled as

an attempt to better foresee future events.

Uncertainty Management

In line with Forrester (1977), de Neufville (2004) states that the three common modes of response

to uncertainty management are to control the source of uncertainty, to passively protect or to

active protect the system against the impact of uncertainty. McManus and Hastings (2005) pro-

vides a framework for handling uncertainty, focusing on how “-ilities” can be used to mitigate

risk and exploit opportunities. “-ilities” refers to life cycle properties of engineering systems,

such as quality, reliability, safety and flexibility. In order to define this abstract concept, Mc-

Manus et al. (2007) describes the “-ilities” in terms of changes in context, needs and the system

itself. In search for better definitions, Ross and Rhodes (2008b) creates a taxonomy of change
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that consists of a change agent, a change mechanism and change effect. Beesemyer et al. (2012)

develops a framework characterising change mechanisms, giving a better understanding of the

link between design decisions as enablers for the “-ilities.” De Weck et al. (2012) investigates the

relationship and semantic sets among these life-cycle properties.

Ringland (1998) presents scenario planning as a means for managing the future by developing

scenarios of how the future might turn out to be, and making plans for how the firm should cope

with these possible futures. To support scenario planning, Ross and Rhodes (2008a) presents

Epoch-Era Analysis (EEA) as an approach to analyse system value over time by decomposing

the continuous future into several static epochs. Gaspar et al. (2012) use EEA analysis to han-

dle the temporal complexity in commercial vessels. Building on EEA, Ross et al. (2009) presents

the Responsive System Comparison (RSC) method as a stepwise process for evaluating systems

temporal performance. Pettersen et al. (2017) presents the use of the RSC method to structure

the general ill-structured offshore decision problem. Ricci et al. (2014) extended EEA by the

Systems of Systems Architecting with "-Ilities" (SAI) methods, aiming at supporting system ar-

chitects to incorporating “-ilities” in the conceptual design phase.

Miller and Lessard (2000) presents how managers should strategically manage large engineer-

ing projects. de Neufville (2000) presents Dynamic Strategic Planning (DSP) for large-scale en-

gineering systems, which incorporates real options into the plan for making it flexible. Walker

et al. (2001) presents Adaptive Policymaking (APM) as a generic approach for uncertainty man-

agement, recognising the dynamics of the world, and therefore the need to plan adaptively. Ex-

tending this, Kwakkel et al. (2010) proposes the Adaptive Strategic Planning framework, directed

towards airports. Hastings (2015) book Physical Asset Management are also relevant on this

part. Erikstad and Rehn (2015) presents the state of the state-of-the-art on uncertainty manage-

ment in marine systems design, with the primary objective of developing methods to identify

value robust systems. Extending this, Strøm and Christensen (2016) provides a literature review

on quantitative methods to support decision-making under uncertainty for ocean engineering

systems. de Neufville and Scholtes (2011) highlights the difficulty of uncertainty management,

stating the common obstacles for implementing change to be ignorance, inattention, failure to
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plan, stakeholders block and external development.

Changeability

Changeability is an umbrella term comprises four “-ilities”, namely: robustness, flexibility, agility

and adaptability, that enable the system to adapt to changes in context and needs. The idea to

design for changeability (DfC), as a principle to enable change in system through its life cycle,

was first presented by Fricke (1999), and then later extended by Schulz and Fricke (1999) and

Fricke and Schulz (2005). Niese and Singer (2014) states that the three dimensions of change-

ability are the physical performance dimension, the process dimension and the managerial di-

mension. In the literature, the word flexibility and changeability are often used interchangeably.

Saleh et al. (2007) presents a comprehensive literature review on flexibility in engineering sys-

tems, separating between flexibility is the design process and flexibility in the design, for which

changeability is related to flexibility in the design. de Neufville and Scholtes (2011) presents a

four-phase approach for developing flexible systems, and states that flexibility can improve life

cycle performance by 10-30%. Cardin et al. (2013) states that a flexible system comprises two

components: a strategy, and an enabler in the design and management, and further presents a

five-phase taxonomy of systematic procedure for supporting the design of flexible systems.

Wang (2005) discuss screening methods to identify potential sources of changeability in engi-

neering design, later, de Neufville and Scholtes (2011) argues for the same idea, and give an

overview of various screening methods. Design structure Matrix (DSM) is one of these meth-

ods, for which Eppinger and Browning (2012) provides an excellent insight into the method and

its applications. Extending the DSM, the Engineering System Matrix (ESM) not only focus on

technological relationships, but also social and system drivers (Cardin et al., 2013). Kalligeros

(2006) propose sensitivity design structure matrix (sDSM) to identify design variables that are

most sensitive to changes, this could indicate the design variables that have the most benefit

of being flexible. Pierce (2010) developed a framework, based on option theory, for identifying

and valuing alternative change options. Carding and de Neufville (2008) survey methodologies

for identifying and valuing flexibility in complex systems using option theory. Fitzgerald (2012)

focused on the development of metrics for changeability, for which the filtered outdegree (Ross,
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2006) is one method for quantifying the level of changeability utilising network theory. Based on

the idea of designing for changeability, Rehn et al. (2017a) outlines a generic method for quan-

tifying the level of changeability incorporated by their effect on change costs and time, further

stating that the level of changeability, in the same manner as design variables, is an overall de-

sign variables that should be decided in the design phase. Rehn et al. (2017b) investigates the

technical performance, cost and flexibility of changeable offshore vessels. The vessel’s perfor-

mance is measured using a generalises utility function, and filtered outdegree is used to quantify

the level of changeability.

Strategy

In the classical work on competitive strategy, Porter (1980) states that suppliers, potential en-

trants, buyers, substitutes and rivalry among existing firms are the five forces drives industry

competition. Porter (1980) then examines the way companies strategically should compete to

gain competitive advantage. Lorange (2009) present how focused strategies are enablers for

gaining competitive advantage in the volatile maritime industry. Georgzén and Palmér (2014)

analyse the interplay between managing strategy and flexibility for Swedish companies, and

Eriksson and Lutteman (2015) presents a study of strategy within shipping. In their book on

shipping and logistics management, Lun et al. (2010) devotes a chapter to business strategy in

shipping. Sharma (2010) reviews the development of flexibility related to, among other, tech-

nical, organisational, operational aspects. He states that there is a critical cap in flexibility re-

search, as flexibility is not only related to technical aspects, but also the managerial processes of

the organisation. Khatri and Ng (2010) surveyed senior managers in a variety of industries to ex-

amines the role of intuition is strategic decision-making, and find that intuition plays a vital role.

Unfortunately, intuition is flawed (Kahneman, 2011). Nemeth (2012) presents an overview of the

biases of intuition at both the individual and group level. Payne et al. (1996) goes in-depth on

decision process affected by the opportunity-cost pressure. In high-volatile markets, such as the

case or offshore shipping, Payne et al. (1996) state that decision makers should focus on generat-

ing multiple alternatives actions before deciding on a final one. Mikaelian et al. (2009) propose

the Integrated Real Option framework (IRF) to support strategy generation through identifica-

tion and valuation of real options in enterprise architecture. Cardin et al. (2013) proposes ex-
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plicit training and prompting as a procedure for understanding uncertainty drivers, identifying

strategies, and how to incorporate flexibility in design.

Real Options

As already noted, both the concept of changeability and managerial flexibility (i.e. strategies)

are related to real options theory. Quite similar as financial options, real options can be defined

as the right, but not the obligation, to exercise actions or to make specific project decisions

at a future time (Berk and DeMaro, 2014). Wang and Neufville (2004) distinguished between

real on options and real in options. While real in options concerns changes in the physical sys-

tem, and is therefore related to changeability, on options concerns managerial flexibility treating

the physical system as a black box. Recently, Christensen (2017) presented a new classification

scheme for real options, stating that real on options should be regarded as an overarching class

of option, further separated into build-in design options and design change options. Puisa (2015)

presents real option evaluation as a method of integrating market uncertainty in ship design

specifications. Trigeorgis (1997), Dixit and Pindycke (1994) and Nembhard and Aktan (2010) are

excellent books for gaining deep insight into the world of real options, the latter having a special

focus on applying real options in shipping.

Markov Decision Processes

Markov decision processes (MDPs) (Bellman, 1954) is a state-based method of modelling se-

quential decision-making under uncertainty. Puterman (2005), Mausam and Kolobov (2012)

and Hu and Yue (2008) are only some of the books devoted to this topic. Alagoz et al. (2010)

provides a tutorial for how to construct and evaluate MDPs, on a sequential medical treatment

problem. Previous research using MDP applied to vessel design included analysis of ballast wa-

ter treatment methods and design for energy efficiency design index (Niese, 2012; Niese and

Singer, 2013, 2014), and retrofitting decisions concerning engines to meet new environmental

regulations (Kana et al., 2015). Niese and Singer (2014) propose a MDO methodology that com-

bine Markov decision processes, life cycle simulation, and metrics for assessing system change-

ability.
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Backward dynamic programming (BDP) is a standard method for solving finite horizon, discrete-

time MDPs. Approximate (or adaptive) Dynamic Programming, commonly referred to as Rein-

forcement Learning (RL), is an emerging solution method overcoming the struggles BDP often

faces when applied on large scale, complex problems (Powell, 2007; Powell., 2009; Gosavi, 2009).

Powell. (2009) provides a brief overview ofwhat you should know about Approximate Dynamic

Programming, and Powell (2007) provides an extensive insight into ADP. Gosavi (2009) give a

tutorial survey ADP, aimed at uncovering its mathematical roots to gain a clearer understanding

of the core concept. In general, ADP is an umbrella term comprising numerous modelling and

algorithmic strategies for solving MDP, one of which are the well-known Q-learning algorithm

(Watkins, 1989). Watkins and Dayan (1992) presents a proof of convergence for the Q-learning

algorithm, later extending by Tsitsiklis (1994).

1.4 Expected Research Contributions

Based on the research questions and the literature review, the following points present the ex-

pected research contributions of this thesis:

• Highlight the importance of an active managerial approach, on both the operational, tac-

tical and commercial level, to handle uncertainty. Thereby expanding the traditional sys-

tem view to not only consider the engineering dimension, but also to consider the man-

agerial dimension.

• Propose a framework linking a system’s value robustness to the physical system design,

stakeholders strategies for utilising the design configuration and stakeholder’s ability to

align its design and strategy.

• Propose a framework for managing value robust systems, building on the ideas from the

two points above. This framework should consider the development of value robust sys-

tems, the implementation of the systems, and the life-long process of monitoring it.

• Present a Markov Decision Processes Methodology as a quantitative method to support

the framework presented above. This should form a holistic decision analysis framework
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to support uncertainty management.

1.5 Limitations

There are three main limitations affecting the work in this thesis. First, starting off this work in

January, the author had zero knowledge about Markov decision processes, in addition there are

none with extensive knowledge of the method at the NTNU. This affected the time and effort

spent on learning the method, also limiting the ability of peer control. Secondly, the limited

amount of relevant data available affected the case study. Since the objective of this thesis was

mainly on developing methods, little time was devoted on finding real data so the case data was

taken from the literature, mainly from Rehn et al. (2017b,a) and Pettersen et al. (2017). Finally,

the wide scope of this thesis serves as a limitation in itself as it became difficult to go in-depth

on all the relevant aspects. Further research on this topic is therefore encouraged to divide and

conquer, instead of attempting to win the entire war at once.

1.6 Structure of the Report

The report is structured in three parts.

Part I extends the literature review presented in the introduction, giving an in-depth review

on the core topics in this thesis. This is to lay the foundation for the research contributions

presented in part II.

• Chapter 2 defines engineering systems and presents their complexity, relating it to off-

shore vessels. The section on complexity builds on the work of Strøm and Christensen

(2016).

• Chapter 3 presents the uncertainty related to engineering systems, and how it can be

managed. This chapter builds on the work of Strøm and Christensen (2016).

• Chapter 4 and 5 extends the topic of uncertainty management in chapter 3, presenting the

how changeability and strategy are engineering and managerial approaches for handling
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uncertainty, respectively.

• Chapter 6 presents Markov decision processes (MDP) as a modelling and solutions tech-

nique for sequential decision problems. As MDP still is unfamiliar to most students and

professors at NTNU, the primary objective of this chapter is to work as an introduction to

this field of operations research.

Part II builds on the knowledge gained in part I, and present the key research contributions.

• Chapter 7 presents the Value-Aptitude-Design-Strategy (VADS) framework, expressing

the dynamic relationship between the stakeholders aptitude and strategy, in addition to

the design configuration, linking them to the system’s ability to deliver value.

• Chapter 8 presents the Design-Strategy Planning (DSP), as a structured life cycle approach

for managing uncertainty. The chapter also presents a Markov decision processes method-

ology for supporting DSP.

• Chapter 9 illustrates the use of Design-Strategy planning and the Markov decision process

methodology on an offshore case. The illustrative case is based on the work of Rehn et al.

(2017a), Rehn et al. (2017b) and Pettersen et al. (2017).

Part III ends off this thesis by first presenting the discussion in chapter 10, before presenting

the conclusion and recommendations for further work in chapter 11.
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Chapter 2

Engineering Systems & Offshore Vessels

2.1 Defining System & Engineering Systems

The word system originates from the Greek word sustēma meaning a unified whole1. de Weck

et al. (2011, p. 32) defines system to be a set of interacting components – technical artifacts – with

well-defined behaviour and well-defined function or purpose.

Figure 2.1: Illustration of a system hierarchy (Fet, 1997)

Figure 2.1 illustrates that a system consists of elements (or components) interacting to form sub-

systems; attributes, which are properties of the elements indicating their contribution to the

sub-system; and interconnections, which are the relationships linking resources, elements and

1https://www.merriam-webster.com/dictionary/system [20.01.17]
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subsystems together to form the total system (i.e. the unified whole) (Blanchard and Fabrycky,

2011; Fet, 1997). The total system can for instance be an offshore vessel, consisting of subsys-

tems such as engines, cranes, and pumps. These subsystems are themselves assembles by gears,

propellers, screws, shafts, bolts, tubes, plates, etc. For the system to successfully perform its in-

tended purpose, each of its subsystems and elements must properly interact (Kossiakoff et al.,

2011).

In addition to the internal interaction, the system itself interacts with its surroundings. The sur-

roundings might be stakeholders, process, social, political, economic, institutional, and other

physical systems (Fet, 1997; de Weck et al., 2011). The system affects the surroundings, and the

surroundings affect the system (Fet, 1997). Traditionally, systems engineers have had a limited

focus on this interaction. As to be discussed, this thesis emphasises the need to extend the tra-

ditional system boundary, to not only consider the physical system and its behaviour, but also

to consider its surroundings.

Figure 2.2: Illustration of the interactions between system elements, subsystems, the total total
system and its surroundings (Fet, 1997)

Engineering systems are a class of systems, characterised by a high degree of technical complex-

ity, social intricacies, and elaborate processes, aimed at fulfilling important functions in society

(de Weck et al., 2011, 31). Further, engineering systems can be characterised by their (I) ex-
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istence in the real world (II) artificiality (III) dynamic properties (IV) a hybrid state space and

(V) some degree of human control (de Weck et al., 2011). Engineering systems operating in the

ocean environment are often referred to as ocean engineering systems2. By this definition, off-

shore vessels are ocean engineering systems. They are real, human-made systems (hence, are

artificial), with changeable system configurations (hence, have dynamic properties). Further,

offshore vessels have a hybrid state space since some states are continuous (e.g. sailing and

operation), while others are discrete (e.g. a subsystem can be both on and off), and they are

influenced by human control over its entire life cycle, which is addressed in section 2.3.

2https://www.merriam-webster.com/dictionary/ocean%20engineering [20.02.2017]

https://www.merriam-webster.com/dictionary/ocean%20engineering


CHAPTER 2. ENGINEERING SYSTEMS & OFFSHORE VESSELS 16

2.2 Complexity in Engineering Systems

2.2.1 Defining Complexity

One of the key concepts in engineering systems is complexity. As stated by (Evans, 1959, 671-

672):

“Ships and aircraft are examples of extremely complex problems. Not only are they

structures, but vehicles as well. Furthermore, they are vehicles whose efficiency, or

in fact, whose very ability to perform at all, is strongly dependent on weight econ-

omy.”

Fundamentally, complexity can be related to the amount of information necessary to com-

pletely describe the system (Kolmogorov, 1983). Magee and de Weck (2004) also considered

the number of (unique) elements and the nature of their interconnections, defining complex

systems to be: a system with numerous components and interconnections, interactions or inter-

dependencies that are difficult to describe, understand, predict, manage, design, and/or change.

Increasing system complexity makes it harder to handle all relevant parameters and their in-

teractions (Fricke et al., 2000), enabling more points of failure to occur. Hence, in order to max-

imise the probability of system success, a system’s complexity should be minimised while still

providing its functionality. (Suh, 1990)3. Unfortunately, it is difficult to find this balance (Moses,

2004).

2.2.2 Level of Complexity

Hubka and Eder (1988) proposes a framework to measure the level of complexity in technical

systems in four levels (ref. table 2.1). Complexity level I represent the simplest systems, such

as the system elements that often can be produced without assembly operations. On the other

end, complexity level IV represents the most complex systems. These are highly complicated,

multifunctional systems that consists of several subsystems. In relations to figure 2.1 in section

2.1, the more complex the system is, the further up in the system hierarchy it is. Extending

3This is referred to as the information axiom
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Hubka and Eder (1988), Gaspar et al. (2012) stated that some systems can be regarded as even

more complex than level IV, as they are systems of systems.

Table 2.1: Level of Complexity in Technical Systems (Hubka and Eder, 1988)

Level of Technical Characteristics Examples
Complexity system
I (Simplest) Part, component Elementary system produced Bolt, bearning sleeve,

without assembly operations spring, washer

II Group, mechanism Simple systems that can Gear box, hydraulic
sub-assembly fulfil some higher drive, spindle head,

functions brake unit, shaft,
coupling

III Machine, apparatus, System that consists of Lathe, motor vehicle,
device sub-assemblies and parts electric motor

that perform a closed
function

IV Plant, equipment, Complicated systems that Hardening plant,
complex machine fulfils a number of functions machine transfer line,
unit and that consists of machines factory equipment

groups and parts that
constitutes a function and
spatial unity

2.2.3 Five Aspects of Complexity

Rhodes and Ross (2010) propose the five major aspects of complexity affecting engineering sys-

tems to be: structural, behavioural, contextual, temporal and perceptual. By doing so, they ex-

tended the traditional system boundary (consisting of the structural and behavioural aspects)

of engineering systems, thereby increasing the amount of information needed to completely

describe the system, hence, resulting in more complex systems (ref. Kolmogorov (1983)). Note

that table 2.1 is in line with the traditional system boundary, by only consider the structural and

behavioural aspect of complexity.
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Figure 2.3: Five Main Aspects of Complexity in Offshore Vessels (Gaspar et al., 2012)

The structural aspect of engineering systems has already been treated in section 2. The

structural aspect is related to the form of the vessel, and the interconnection and interactions

between the function and physical objectives (i.e. subsystems and components) of the vessel.

As a complete and self-contained system, all the functions of the vessel (e.g. producing propul-

sion and electricity, providing accommodation, carry food and water, firefighting, etc.) must be

provided by the vessel itself (Hagen and Erikstad, 2014). Due to the strict volume restrictions

imposes by the hull, subsystems interactions are tightly coupled. The degree of structural com-

plexity increases when considering change options in the system (Pierce, 2010).

The behavioural aspect is related to the function of the design. It includes the vessel’s perfor-

mance, operations and reaction. A system is said to be behavioural complex if it is difficult to

predict, analyse, describe, or manage its behaviour (de Weck et al., 2011). In general, a struc-

tural complex system is often behavioural complex, but not necessarily the other way around
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(de Weck et al., 2011). The behavioural aspect, along with the structural aspect, is of high im-

portance when considering changeable design concepts, as it tightly constraints which change

options that can be incorporated. For instance, one cannot install a larger crane than the vessels

stability support.

The contextual aspect is related to the external operating circumstance affecting the system

performance, imposing external constraints on the system. Examples of contextual aspects are

company strategy, operational profile, contract scenario, competitive factors, demand, tech-

nology, regulations and stakeholders’ preferences. The conceptual aspect closely relates to the

discussion on uncertainty presented in the section to come.

The perceptual aspect is related to how the vessel is viewed in the light of stakeholder prefer-

ences and perceptions. It is of high importance to understand the perceptions might differ from

stakeholders to stakeholders, and that a stakeholder’s perception changes over time. For off-

shore vessels, the difference between stakeholders needs and requirements at the design stage,

and those when the system is demolished, are large (Son and Savage, 2007). This can be due

to change in a vessel’s behaviour and context, but stakeholder’s perception might change even

when everything else is fixed (Gaspar et al., 2016).

The temporal aspect is related to the properties of the system over time, and how context and

needs will change. As discussed in the next section, the temporal aspects impose uncertainty to

the structural, contextual, behavioural, and perceptual aspects, resulting in both considerable

risks and opportunities for offshore vessels.
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2.3 Offshore Vessels

Offshore vessels are commonly divided into several types depending on their operations. Ex-

amples are Platform Support Vessels (PSVs), Anchor Handling Tug Supply Vessels (AHTS), Dive

Support Vessels (DVSs) and Offshore Construction Vessels (OCVs). For the reminder of this the-

sis, Offshore Construction Vessels will be used to exemplify the theory presented.

Offshore construction vessels (OCVs) are multifunctional vessels able to perform a broad range

of constructions tanks. This includes IMR operations (Inspection, Maintenance and Repair),

SURF operations (Subsea Installation, Umbilical, Risers and Flow-Lines), LWI operations (Light

Well Intervention) and DS operations (Dive support operations) (Pettersen, 2015). To perform

these operations, OCVs are typically installed with heavy heave-compensated cranes, moon-

pool, and large stores for pipes and cables, in addition to a large open deck, remotely operated

vehicles (ROV) and, in some cases, diving equipment. OCVs are often in need for large Accom-

modation spaces, not only for the ship crew but also to accommodate the construction workers

and clients. Often, OCVs have a landing pad for helicopters to support the exchange of person-

nel on board. OCVs needs high-level of position accuracy and excellent station keeping capa-

bilities to safely perform these operations. The cranes are installed with heave compensation

to ensure safe and accurate loading and offloading operations (Ritchie, 2008; Levander, 2012;

Pettersen, 2015).

Figure 2.4 presents the technical drawings in profile for the Offshore Construction and Anchor

Handling Vessel Normand installer, built in 2006 by Ulstein4 for the Norwegian offshore com-

pany Solstad Offshore5 ASA. The vessel has a length over all of 123.65 m, breadth of 28 m, dead-

weight 9511.8 t, lightship of 10 573.6t, and gross tonnage of 14 506t. Normand installer has an a

350t capacity A-frame over the stern, a 250t heave-compensated offshore crane and a helideck.

The total number of bunks are 100. The bollard pull is 308t6.

4https://ulstein.com/
5https://solstad.no/
6https://solstad.no/wp-content/uploads/2014/02/Normand-Installer.pdf

https://ulstein.com/
https://solstad.no/
https://solstad.no/wp-content/uploads/2014/02/Normand-Installer.pdf
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Figure 2.4: Technical drawings (Profile) of the OCV & AHV NORMAND INSTALLER

When analysing engineering systems, it is essential to have a holistic view and understand the

systems interconnection with its surroundings. A specific offshore construction vessel, consist-

ing of system elements and subsystem7. The ship related systems, such as structure, outfitting,

accommodation, machinery, tanks and voids, relates to the seaworthiness of the vessel enabling

it to properly function as a self-contained system. The task related systems, such as cargo spaces,

lifting, construction and diving, relates to the specific objectives of the vessel (Levander, 2012).

However, the vessel itself is also a sub-system, operating as a part of a fleet in the maritime trans-

portation system, serving a greater logistics chain.

Figure 2.5: A holistic view on Offshore Vessels (based on (Levander, 2012; Gaspar et al., 2012)
)

The life cycle of engineering systems constitutes a series of activities, stretching from its birth to

death. For offshore vessels, the life cycle generally divides into four phases (Ayyub et al., 2000):

7See appendix C
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(I) design phase (II) production phase (III) operations phase and (IV) disposal phase. Figure 2.6

presents a simple illustration of these four life cycle phases, including some of their sub-stages.

This thesis will not describe each of the four phases in detail since this would require an entire

thesis itself. However, to form the basis for later discussions, the design phase and operational

phase is briefly presented below. The reader is advised to Erikstad (1996), Fet (1997), Ayyub et al.

(2000) and Hagen and Erikstad (2014) for in-depth view in each phase.

Figure 2.6: Life cycle of Offshore Vessels (based on (Erikstad, 1996; Fet, 1997; Ayyub et al., 2000;
Hagen and Erikstad, 2014)

The Design Phase

The design process consists of all activities starting from initiation of the design project to the

contract specifications is delivered (Erikstad, 1996). Generally, the design phase is divided into

four phases, where the first phase – the conceptual design phase – is the focus in this thesis.
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The conceptual design phase is initiated by stakeholders’ needs, forming requirements which

constraints the design (or solution) space. The objective in the concept design phase is to

explore this design space to identify a set of conceptual solutions which meets stakeholders

needs (e.g. functional analysis and feasibility analysis). This process can be seen as a high-level

function-to-form mapping where the goal is to develop a sufficient functional description of

both the overall design and subsystems to meet stakeholders needs (Erikstad, 1996). After a se-

ries of analyses and sequential elimination of design concepts, a set of concepts are selected for

more detailed development in the subsequent design phases.

Figure 2.7: Illustration of the costs committed, costs incurred, design freedom and design
knowledge over a design life cycle (Karniel and Reich, 2011)

In the primary design phase, the concept design is further analysed, attempting to optimise the

life cycle performance of the system, and basic drawing is developed. These drawings highlight

the structure of the vessel and its systems. After primary design, the development team should

have sufficient information to tender. After the tender is accepted, the final details in the de-

sign (such as arrangements and systems) are specified in the contract design. After the contract

specifications are agreed upon, the design can go into production. Even during the production

phase, some post-contract design will occur. This typically includes work on detailed design of

structure and outfit. The reader is advised to Eyres (2007) and Hagen and Erikstad (2014) for
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more information about the design of offshore vessels.

Despite the brief time spent in the conceptual design phase, it is recognised as probably the

most critical phase for determining a vessel’s success. Figure 2.7 presents one of the key chal-

lenges. As seen, for engineering systems in general, 70-80 % of a system’s cost is committed

during the conceptual phases, despite little actually being incurred (Roy, 2003; Andrews, 2013).

Further, the rule-of-ten states that the cost of changing a decision already made becomes ten

times higher for each subsequent phase. Despite the high consequences of the decision made,

the knowledge of the design is at its lowest. This makes it highly important to make good deci-

sions in this phase.

The Operations Phase

The operational phase is the longest of all the four life cycle phases, typically lasting for 20-30

years. The primary mission of the OSV fleet is to support the Exploration and Production (E&

P) activities of offshore oil and gas resources. This includes, the exploration phase, consisting of

seismic examination, exploratory drilling; the installation phase, in which production platform

and subsea installations are installed; and the production phase, when maintenance, supply and

standby services are needed for the oil and gas resources to be extracted.

OSVs are important in the entire E & P process, however, most of the work is done in the op-

erations phase which stretches for decades. While upstream logistics in the production phase

is about supporting the production operations, downstream logistics is about transporting the

extracted oil and gas resources onshore. The production requires transportation of personnel

and equipment, inspection and maintenance, etc. These operations are performed by various

vessels in the offshore fleet. Normally, oil companies do not own these vessels, but charter them

from shipowners (Døsen and Langeland, 2015). The chartering cost is a major cost factor in up-

stream logistics. See Lun et al. (2010), Babicz (2015), and Olesen (2015) for more insight into the

value chain for offshore oil and gas.

In order to design successful engineering systems, it is of major importance to have a clear
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understanding of what the system will encounter in the operational phase and an indication

of how the system will perform meeting these encounters. Because E&P activities have unique

needs and requirements around the world. For instance, the environmental factors (e.g. wind

and sea state) and operational factors (e.g. depth and type of production methods) might differ

in various sectors. Figure 2.8a illustrates an operational profile for offshore construction vessels.

As seen, most of the time the vessel is spent operating on dynamic positioning. Note that the

operational profile varies a lot between vessel types. For instance, in the case of cargo vessels,

most of the time would be spent in transit. Figure 2.8b shows the geographical distribution for

offshore construction vessels. As seen, Northwest Europa has the largest share of vessels (28 %),

followed by the Gulf of Mexico (13%), South Asia (12%) and South America (11%).

(a) Operational Profile for OCVs (Agis, 2017) (b) Operating Area distribution (Remme, 2017)

Figure 2.8: Operational specific information for Offshore Construction Vessels

Table 2.2 presents some of the functional requirements for various missions offshore construc-

tion vessels undertake. Note that this only serves as a general representation, and that there are

large variations from mission to mission. In addition, a low functional requirement does not in-

dicate that it is easy to enable the specific capacity. It only serves to indicate that the functional

requirement is low compared to the other missions (Remme, 2017).
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Table 2.2: Functional specification for missions related to offshore construction vessels (Based
on (Agis, 2017; Remme, 2017)



Chapter 3

Uncertainty & Uncertainty Management

3.1 Uncertainty

3.1.1 Defining Uncertainty

Uncertainty can be defined as the things that are not known, or only known imprecisely (Mc-

Manus and Hastings, 2005, 2), the inability to quantify precisely; a distribution that reflects po-

tential outcomes (Walton, 2002, 20), or as inability to determine the true state of affairs of a system

(Haimes, 2009, 255).

Figure 3.1 illustrates one major challenge with uncertainty: it causes a gap between foreseen

and realised events. Using experience, analysis and simulation, one can anticipate and handle a

small set of events to occur over a system’s life cycle. Unfortunately, only a subset of these fore-

seen events will in fact be realised, and many unforeseen events instead will occur. As maritime

decision makers needs to consider multiple uncertainty parameters at once, the uncertainty

of the parameters forms complex interactions, leading to a wide range of potential future out-

comes. It is these unforeseen events that can make an initially good decision end up becoming a

bad one (Mao-Jones, 2007). Generally, increased system complexity imposes more uncertainty

(Skinner, 2009).

27
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Figure 3.1: Illustration of the difference between foreseen events and realised events

History has shown how large-scale failures (e.g. RMS Titanic1 (1912), MS Estonia2 (1994) and

Deepwater horizon3 (2010)), create public pressure on incorporating means to reduce the like-

lihood for failures to occur. Further, from a financial point of view, ocean engineering systems

are high-cost systems, for which its failure can have devastating impacts on the company with

possibilities for bankruptcy. These factors, among others, has resulted in an asymmetric focus

on uncertainty, where it almost entirely is associated with something negative (referred to as risk

or vulnerabilities).

However, uncertainty might as well cause unforeseen opportunities (McManus and Hastings,

2005; de Weck et al., 2007; Lorange, 2009; Thanopoulou, H., Strandenes, 2015). In the maritime

industry, some of the potential future opportunities are related to growth in demand for energy,

food, resources and transportation, operations in more challenging conditions (deeper waters

and harsher environments), emerging markets (e.g. Arctic areas), fast rate of technical inno-

vation, and increased focus on efficiency and eco-friendly solutions (Norwegian Shipowners’

Association, 2013; Amdahl et al., 2014).

On a final note, uncertainty can be quantified and modelled in an attempt to better foresee

1https://en.wikipedia.org/wiki/RMS_Titanic
2https://en.wikipedia.org/wiki/MS_Estonia
3https://no.wikipedia.org/wiki/Deepwater_Horizon

https://en.wikipedia.org/wiki/RMS_Titanic
https://en.wikipedia.org/wiki/MS_Estonia
https://no.wikipedia.org/wiki/Deepwater_Horizon
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future events. The reader is advised to Dixit and Pindycke (1994), de Weck et al. (2007), Alizadeh

and Nomikos (2009), Erikstad and Rehn (2015) and Strøm and Christensen (2016) for in depth

knowledge in these aspects.

3.1.2 Classification of Uncertainty

From the system engineer’s point of view, lack of knowledge and lack of definition are two over-

arching classes of uncertainty (McManus and Hastings, 2005). Lack of definition is defined to

be facts that are not known, or are known only imprecisely, that are needed to complete the sys-

tem architecture in a rational way. Lack of definition is defined to be things about the system in

question that have not been decided or specified. The reader is advised to Strøm and Christensen

(2016) for exemplifications.

Further, McManus and Hastings (2005) states that lack of knowledge and lack of definition can

have several characteristics. They can either be (I) statically random variables, which are un-

certain variables that can be statically characterised; (II) known unknowns, which are things

known to be unknown; or as; (III) unknown unknowns, which are things not known to be un-

known4. While statically random variables can, at least to some extent, be modelled, unknown

unknowns represent a complete lack of knowledge. Unfortunately, it is difficult to transform

class (III) uncertainty into class (II), however, brainstorming might be a method for doing so.

Schoemaker (1995)has a similar classification as McManus and Hastings (2005) for degrees of

knowledge. His classification includes known unknowns, and unknown unknowns, in addition

to known knowns, for which the latter represents a state of complete knowledge.

Sources of uncertainty might be classified as exogenous, endogenous or hybrid, depending on

the degree in which they can be managed (de Weck et al., 2007; Lin et al., 2013). In contrast

to endogenous uncertainty, the sources to exogenous uncertainty cannot actively be managed.

The sources of hybrid uncertainty can, to some extent, by influenced. While a shipowner is

in full control of the technical aspect of the project (endogenous uncertainty), and can choose

4Donald Rumsfeld, former U.S. Secretary of Defence, also distinguished between “known knowns”, “known
unknowns”, and “unknown unknowns”. See http://archive.defense.gov/Transcripts/Transcript.aspx?
TranscriptID=2636

http://archive.defense.gov/Transcripts/Transcript.aspx?TranscriptID=2636
http://archive.defense.gov/Transcripts/Transcript.aspx?TranscriptID=2636
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structural configuration of his liking, he has only partial influence on the industry dynamics (hy-

brid uncertainty), and he has no control of the forces in the nature (endogenous uncertainty).

Note that this classification is highly case specific. For example, to which degree a shipowner

can influence freight rates in the market is depending on the size of his fleet. With a (very) large

fleet, the shipowner is partially in control of the vessel supply, and can thereby benchmark the

freight rate. The focus in this thesis is on exogenous uncertainty, and how one can (despite not

being able to control the source of the uncertainty) can influence the outcome of it.

Figure 3.2: Layers of Uncertainty (de Weck et al., 2011)

Related to classification of exogenous, endogenous and hybrid uncertainty, figure 3.2 illustrates

a layered representation of uncertainty. A key aspect in this representation is that the ability to

influence the uncertainty diminishes when going from the inner to the outer layer. Thus, en-

dogenous uncertainty is mostly located in the inner circles, hybrid uncertainty is mostly located

in the middle, while exogenous uncertainty is located close to the outer boundary.

Miller and Lessard (2000) states that the uncertainty is weak when managers have adequate

information to structure problems, estimate its distribution, and build decision models. When

these conditions do not hold, the uncertainty can be said to be strong, and the outcome of a

decision is ambiguous. In the case of indeterminacy, the future outcomes are difficult to assess

due to its dependency on exogenous or endogenous events leading to the possibility of multiple



CHAPTER 3. UNCERTAINTY & UNCERTAINTY MANAGEMENT 31

outcomes.

Uncertainty can be decomposed into technical, commercial and operational aspects (Ulstein

and Brett, 2015; Agis et al., 2016). According to Ulstein and Brett (2015, 54):

• Commercial aspects are all factors/articles/systems that influence the valuation, prefer-

ences and exploitation of the vessel during its operational lifetime and increases the returns

of the investment.

• Operational aspects are all factors/articles/systems that influence the performance of dif-

ferent missions, for which the vessel is designed and set to do, improving operational condi-

tions

• Technical aspects are all factors/articles/systems that influence the intrinsic effectiveness of

the vessel over its project life cycle and that affects the design and construction process of the

vessel.

Agis et al. (2016) argues that in the case of commercial vessels, all operational and technical

aspects indirectly affects the commercial aspect since they affect the vessels cost and earning

capacity. In addition, while technical and operational uncertainties typically are related to the

vulnerabilities, the commercial aspect of uncertainty is to a large extent symmetrical, also asso-

ciated with opportunities. Alternately, Erikstad and Rehn (2015) classifies uncertainty according

to economic, technological, regulatory, and physical sources.

Table 3.1 illustrates the variety of uncertainty types in the maritime industry, their nature and

time horizon. Note that Zuellig factors are defined to be events with accidental character, lack

of periodicity, and the absence of links with economic mechanisms (Thanopoulou, H., Stran-

denes, 2015, 7). Further, figure 3.3 presents the historical development and the prediction for

the North sea brent crude oil spot price, representing one of the major uncertain factors in the

maritime industry. By 2030, EIA predicts the oil price to be $104/b in the Reference case, $49/b

in the Low Oil Price case, and $207/b in the High Oil Price case.
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Table 3.1: Types of Uncertainty in the maritime industry, their nature and time horizon
(Thanopoulou, H., Strandenes, 2015)

Type of
Uncertainty

Category Time Horizon
Short-term Medium-term Long-term

Operational

delays and
p

disruptions
bunker

p
human factors

p

Financial
Credit conditions

p p
Currency

p

Market
Freight rate

p p p
Counterparty

p
Trade restrictions

p p

Competition
Concentration

p
Technical

p p
innovation

Regulations
p p

Technical factors
p

"Zuellig
factors"

war/ embargoes
p p

terrorism/piracy
p p

epidemics
p p

Figure 3.3 illustrates that one single factor can have a wide uncertainty associated with it. As

maritime decision makers needs to consider multiple of such uncertain factors at once, their

complex interactions leading to a wide range of potential future outcomes. This make the de-

cision making process highly difficult. For more in-depth information of uncertainty directly

related to the maritime industry, the reader is advised to Stopford (2009), Lorange (2009),

Thanopoulou, H., Strandenes (2015), Erikstad and Rehn (2015).

Figure 3.3: North Sea Brent crude oil spot price, 1990-2040 (EIA, 2016)
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3.2 Uncertainty Management

As stated in the previous section, uncertainty leads to unforeseen changes disturbing the ves-

sel’s ability to deliver value (Walton, 2002; Mikaelian et al., 2009). Thus, if not properly man-

aged, uncertainty can cause vessels that initially are successful to become unsuccessful over

time. Luckily, uncertainty can be managed (de Neufville, 2004) and can in many cases be the

difference between a company staying in business or bankruptcy (Lorange, 2009). Uncertainty

management should therefore be incorporated at all levels in the firm (de Neufville, 2004).

3.2.1 Introducing Uncertainty Management

In general, management is the act or manner of managing; handling, direction, or control5.

de Neufville (2004, 3) refers to management as the active direction of the evolution of the en-

gineering project, indicating that management of engineering systems consists of planning, de-

sign and implementation of means for handling changes in context and needs for throughout

the system’s entire life cycle.

Miller and Lessard (2000) distinguishes between two broad categories for approaching to uncer-

tainty management: decisioneering and managerial approaches. Decisioneering assumes that

the future is probabilistic, and therefore deterministic analysis (e.g. NPV calculations and lin-

ear optimisation) can be used to find the expected optimal solutions. The managerial approach

recognises that the future is unpredictable, or at least, highly uncertain. In this approach, man-

agers should use analysis tools that incorporates uncertainty into the calculations (e.g. simula-

tion and stochastic optimisation), in addition to using various life cycle strategies to influence

the outcome. The managerial approach is more appropriate in indeterminate futures, in which

both exogenous and endogenous events affects its outcome making it difficult, if not impossi-

ble, to assess (Miller and Lessard, 2000).

Generally, uncertainty management can be viewed in terms of the well-known SWOT analy-

sis. This analysis gives insight into the external opportunities (O) which the company can ex-

5http://www.dictionary.com/browse/management [04.03.17]

http://www.dictionary.com/browse/management
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ploit, and the external threats (T) (or vulnerabilities) that the company must mitigate. For off-

shore vessels, these opportunities and threats can be highly uncertain. This uncertainty must

be identified, modelled and quantified in the analysis. Further, the SWOT analysis gives insight

into the company’s internal strengths (S) and weaknesses (W). Strengths are capabilities that

can be used to handle the opportunities and threats. Weaknesses are limitations making the

company vulnerable for the threats and unable to exploit the opportunities. Figure 3.4 illus-

trates the SWOT-matrix, a common way of presenting the results from a SWOT analysis, for a

hypothetical offshore shipping company evaluating the possibility to seize opportunities in the

emerging offshore aquaculture industry by retrofitting an OCV. The insight gain from such an

analysis could be used to align manager’s strengths and weaknesses with the possible opportu-

nities and threats, both current and those emerging.

Figure 3.4: Illustration of SWOT matrix for a hypothetical offshore shipping company case

Despite traditionally being designing to meet fixed specifications (Levander, 2012; Nembhard

and Aktan, 2010), uncertainty management has always been a bedrock in engineering design.

Unfortunately, due to the asymmetric view of uncertainty, the focus in uncertainty management
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has almost exclusively been on preventing the possible negative outcomes of uncertainty, espe-

cially on risk management of technical failures (Moses, 2004; de Neufville, 2004; McManus and

Hastings, 2005). Often, this results in robust designs, with high margins that are able to per-

form adequately in a broad range of future context and needs (Andrews and Erikstad, 2015; Agis

et al., 2016). As stated by Andrews and Erikstad (2015, 3): the focus on robust designs reflects a

bunker mentality, focusing on the systems survivability in the future. However, with the goal of

maximising life cycle value of the vessel, risk management fails due to the narrow view on un-

certainty as the opportunities, especially in the operational and commercial side of uncertainty,

often is forgotten (Pierce, 2010; Browning, 2005; Andrews and Erikstad, 2015; Agis et al., 2016).

Luckily, a greater attention has recently been given to the exploitation of possible opportunities

that lies in uncertainty. Designing with both risk and opportunities in mind, thereby capturing

the full extent of uncertainty, might lead to different solutions than those that only focus on the

risk. (de Neufville, 2004)6.

3.2.2 Three Modes of Response to Uncertainty

de Neufville (2004) states the three basic modes of managing uncertainty:

(I) To control the source of uncertainty

(II) To passively protect the system against the impact of uncertainty

(III) To actively protect the system against the impact of uncertainty

These are further presented below.

Mode I: Controlling the Source of Uncertainty

In relations to the classification of uncertainty, endogenous uncertainty and, to some degree,

hybrid uncertainty can be influenced and controlled. For instance, the building cost of a ves-

sel is a hybrid uncertainty that can be partially controlled by improved planning of the building

6The Systems Engineering Advancement Research Initiative (SEAri) group at MIT has been a driver in this work.
http://seari.mit.edu/research.php

http://seari.mit.edu/research.php
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process. However, despite the depth of planning, there will always be unforeseen factors affect-

ing the building cost. This is partially due to the structural complexity of engineering systems,

making it difficult to assess major cost factors, such as work hours and amount of steel needed.

Forecasting is another means of controlling the source uncertainty, as it tries to clarify how

uncertain information will develop. However, as stated by de Neufville and Scholtes (2011)

forecasts are "always wrong", a statement especially true in highly volatile markets. Despite

this, de Neufville and Scholtes (2011) emphasises the importance of having information when

making decisions, and recognises the role of forecasting in information gathering. This double-

edged sword is referred to as the forecasting paradox (Stopford, 2009), stating that it is a paradox

that demand for forecast is so high, when it is always wrong.

Mode II: Passive Protection Against the Impact of Uncertainty

The passive approach is coherent with the traditional ship design methodology, in which the

system is designed for the most likely scenario. The idea is to incorporate measures that func-

tions without significant intervention from the manager, thus the goal is often to make it insen-

sitive for industrial dynamics (Forrester, 1977) (i.e. bullet-proof the system (de Neufville, 2004)),

designing it to handle the most extreme conditions (Nembhard and Aktan, 2010). Such bullet-

proof solutions are often referred to as robust. This approach can result in two extremes, either

(Niese and Singer, 2014):

(I) An under-specified design, requiring large investments to adapt to changing operational

contexts, or

(II) An over-specified design, that easily can adapt to changing operational context, but which

needs to carry unused equipment over large parts of its life cycle.

In offshore shipping, the latter seems to currently be preferred. While it has the capacity to meet

changes in context and needs (i.e. able to take the upside in the uncertainty), it also has a large

exposure to the downside of uncertainty as the high-spec systems comes with a high-carrying

cost. The high carrying cost, in addition to the drawback of not being specialised, has made

many multifunctional vessels ending up becoming multi-useless. (Ulstein and Brett, 2015)
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For a passive system, uncertainty can lead to asymmetric returns (de Neufville et al., 2006). Be-

cause, while the passive system has a limited ability to take the upside of uncertainty, it can be

victim to the entire downside. This is often referred to as the “flaw of the averages.”7 which can

be expressed using Jensen’s Inequality (Jensen, 1906):

γ(E[X ]) ≤ E[γ(X )]

Whereγ is a convex function, X is a random variable and E[·] is the expectation of the term inside

the brackets. Jensen’s inequality states that the function of the expected value is less or equal to

the value of the convex function. Thus, a decision bases on average values are not representative

for that actual outcome. For instance, a vessel designed with a crane capacity based on the most

likely demand has a limited ability to take the upside if demand increases, as it is expensive, and

possibly impossible, to increase the crane size. On the other side, the vessel will be subject to the

entire downside of demand falls since it has expensive, unused capacity. Thus, the vessel has an

asymmetric relation to the outcome of this uncertainty. Still, the passive managerial approach

remains well suited for systems operating in relatively stable environments in which forecast

adequately predicts the future (Pierce, 2010).

Mode III: Active Protection Against the Impact of Uncertainty

McManus and Hastings (2005) proposes a framework to handle uncertainties by incorporating

"-ilities" to mitigate the vulnerabilities and exploit the opportunities. The term “-ilities”, refer-

ring to life cycle properties such as: quality, reliability, safety, flexibility and robustness (de Weck

et al., 2011). Note that they often, but not always, ends with “-ility”. These life cycle properties

extend the traditional set of properties for engineering systems, such as function, performance

and cost (Moses, 2004), and are starting to be recognised as highly important enablers for suc-

cessful engineering systems. Generally, “-ilities” are most important in systems characterised

by high complexity, long lifetime, dynamic operational context, and high cost of errors (Fricke

and Schulz, 2005). This thesis focuses on one of these "-ilities", namely changeability, presented

7http://web.stanford.edu/~savage/flaw/

http://web.stanford.edu/~savage/flaw/


CHAPTER 3. UNCERTAINTY & UNCERTAINTY MANAGEMENT 38

in the section to come. The proposed framework is presented below.

Figure 3.5: Framework for handling sources of uncertainty and their outcomes (McManus and
Hastings, 2005)

Readers can recognise the previous classifications of uncertainties. In relations to the tradi-

tional passive approach for uncertainty management, to handle unknown unknowns systems

engineer could invest in margins and redundancy to get a reliable and robust design, which is

able to mitigate the downside of uncertainty (e.g. system failure and degradation). However,

with an active approach, the systems engineer could invest in modularity to get a flexible de-

sign, able to reconfigure as a means to mitigate risk (e.g. change failed components), but also

exploit opportunities (e.g. switch functionality to operate in more favourable markets).

This approach broadens the view of uncertainty, considering the entire range of possible out-

comes (i.e. both the vulnerabilities and opportunities). Instead of designing for a given set of

specifications, this approach incorporates changeability into the system to enable redesign to

handle changes (Forrester, 1977; de Neufville, 2004). As stated by Andrews and Erikstad (2015,

3) we “design to specification” when we should “design for variation.”
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Comparing the Passive and Active Approach

Figure 3.6 illustrates the difference between an active and passive approach for managing un-

certainty. The figure presents the temporal evaluation of changes in stakeholder’s expectations

and operation context, and the performance of a vessel in each epoch. An epoch is defined as a

static representation of context and expectations (or needs).

Figure 3.6: Illustration of the temporal evaluation of a system needs and contexts change. (Mc-
Manus et al., 2007)

As seen, in Epoch 1 (comprising context 1 and expectation 1) the system’s performance exceeds

stakeholders’ expectations. In Epoch 2 (consisting of context 2 and expectation 1), the system’s

performance is reduced, however, it still meets stakeholders’ expectations. The vessels also per-

form within stakeholders’ expectations in Epochs 3 and 4. However, as Epoch 5 emerges, the

performance of the unchanged system falls below expectations, while the changeable system

can adapt to the new set of contexts and needs. Thus, while the passive approach (represented

by the robust/unchangeable system) is unsuccessful in epoch 5, the active approach (repre-

sented by the adaptable/changeable system) is able to stay successful over its entire life cycle.



Chapter 4

Changeability

4.1 Introducing Changeability

In engineering, changeability can be defined as the ability of the system to change (Fitzgerald,

2012, 23). In relation to the active approach for uncertainty management (de Neufville, 2004),

incorporating changeability in system architecture is recognised as an active method to manage

uncertainty (Fricke and Schulz, 2005).

Changeability is an umbrella term that comprises of the four life cycle properties: robustness,

flexibility, agility and adaptability (Schulz and Fricke, 1999; Fricke and Schulz, 2005). Robust-

ness is the ability to be insensitive towards changing environments; Flexibility is the ability to

be changed easily; Agility is the ability to be changed rapidly; and Adaptability is the ability to

adapt itself towards changing environments (Schulz and Fricke, 1999).

Robustness represents a passive approach for handling change, as it requires no changes from

sources outside the system boundary. Flexibility, on the other hand, is an active approach,

requiring implementation of changes from sources outside the system boundary. As with ro-

bustness, adaptability requires no changes from sources outside the system boundary, however,

an adaptable system changes itself, and is therefore recognised as an active approach. Thus,

whether a system is passive or active depends on the location of the system boundary. As with

flexibility, agility requires implementation of changes from external sources, but includes the

40



CHAPTER 4. CHANGEABILITY 41

time used to change, not only the ease of change. Note that whether a change is quick is highly

subjective, and will therefore vary between stakeholders.

Figure 4.1: Illustration of the relationships between the four aspects of changeability: robust-
ness, flexibility, adaptability and agility (Fricke and Schulz, 2005)

4.1.1 Dimensions of Changeability

Niese and Singer (2014) perceives the notation of system changeability to include three dimen-

sions: (I) the physical performance dimension (II) the process dimension, and (III) the manage-

rial dimension. The physical performance dimension concerns the physical design’s ability to

change its system state. This is related to the system’s robustness, adaptability, flexibility and

agility (the standard focus in changeability literature). The process dimension focuses on the

utilisation and the timely execution of the changeability. Niese and Singer (2014) argues that

the process dimension is related to the concept of lean-ness and just-in-time delivery. The man-

agerial dimension focuses on the managers (or more generally stakeholders) ability to manage

change. In that regard, it is important to understand that different stakeholders have different

abilities to recognise the need to change, and varying capacity to plan, implement and moni-
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tored the change. As stated by Niese and Singer (2014), the manager dimension is an area of

need-for-research in the changeability literature - and an area of focus in this thesis.

4.1.2 Principles of Changeability

The principles of changeability are enablers for incorporating changeability in system design.

Figure 4.2 presents the aspect-principle-correlation matrix indicating which principle influence

which aspect of changeability (e.g. robustness, flexibility, adaptability and agility). As seen, the

basic principles (ideality/simplicity, independence, modularity/encapsulation) contribute to all

four changeability aspects, while the extended principles (integrability, autonomy, scalability,

non-hierarchical integration, decentralization, redundancy) only contribute to a set of them.

These principles interact creating both harmful interactions (leading to undesired effects), or

useful interactions (leading to desired effects). It is therefore important to carefully consider

which principles to incorporate enabling the desired changeability.

Figure 4.2: The aspect-principle-correlation matrix (Fricke and Schulz, 2005)

The reader is advised to Schulz and Fricke (1999) and Fricke and Schulz (2005) for thorough pre-

sentation of both the basic and extended principles of changeability. As the basic principles are

related to all four aspects of changeability, they are briefly presented below.



CHAPTER 4. CHANGEABILITY 43

Ideality/simplicity is about minimising system complexity, for instance by reducing the num-

ber of interconnections between systems, and reducing the number of secondary functions in

a system (Fricke and Schulz, 2005). This is closely related to the information axiom (Suh, 1990)

highlighting the importance of minimising the information context in design. As seen in figure

4.2, ideality has a harmful interaction with the principle of independence.

Independence is about having a system structure in which changing one parameter does not

affect the related design parameters. According to the independence axiom (Suh, 1990), each

system function ideally should be performed by one independent design parameter. This is re-

lated to the simplification of the function-to-form mapping. As seen in figure 4.2, independence

has a useful interaction with the principle of modularity since independence between modules

is a key in architecting modular designs.

Figure 4.3: Example of Modularity: Module switching (From Fricke and Schults, 2005)

Modularity is increasingly used in shipbuilding, both in the design and in the production (Ha-

gen and Erikstad, 2014; Erikstad, 2009). In a modular design, a set of the systems functions with

strong coupling is clustered in modules. Ideally, this results in weak coupling between the mod-

ules themselves. Figure 4.3 presents the concept of having a modular design (A) that can change

its system configuration by switching between three different modules (A, B or C). As a result,

numerous different system configuration can be combined (A & A, A & B, or A & C). The modu-

lar design can be an offshore construction vessel, and the modules can be for instance different

crane suited to conduct various operations. With such a design, rather than having all three

cranes installed at all times, the cranes can be added when needed. The idea is to have distinct,

self-sufficient modules that builds up the total system, and that can be switched to change the

system’s functionality. This is closely related to portfolio theory, and product platforms (Erikstad



CHAPTER 4. CHANGEABILITY 44

and Levander, 2012).

On a final note, the principles of changeability correspond with what Ross et al. (2009) and

(Beesemyer et al., 2012) call path enablers. In contrast to design variables (e.g. length, breath,

depth), the design principles (e.g. structural reinforcement and modularity) do to not drive

value delivery, but rather enables changeability. In the section to come, it is said the path en-

ablers enable the mechanism of change.

4.2 Taxonomy of Change

McManus et al. (2007) states that change is the common concept with the “-ilities.” In general,

change can be defined as the transition over time of a system to an altered state (Ross and Hast-

ings, 2006). McManus et al. (2007) describes and distinguish the “-ilities” in terms of changes

in the system’s operating context, stakeholders need and changes in the physical system itself.

Note that change implicitly implies a four dimension, namely time.

To better clarify the definition of the abstract “-ilities,” Ross and Rhodes (2008b) creates a frame-

work to define change. In this framework, every change is defined as a transition between states

using three elements: (I) a change agent (II) a change mechanism, and (III) the effect of change.

Every change can be described using a specific agent-mechanism-effect composition, as illus-

trated in figure 4.4 for one specific change.

Figure 4.4: Illustration of the agent-mechanism-effect framework for a single change (Ross and
Rhodes, 2008b). “A” represents the system state prior to change, while “A‘” represents the state
after the change has occurred.

The change agent is the force (e.g. human or nature) initiating the change. It can either be inter-

nal or external to the system. If the change agent is internal, the change is the adaptable-type;
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if the change agent is external, the change is the flexible-type. Thus, depending on the change

under consideration, the system can both be flexible and adaptable. This coincides with the

definitions of flexibility and adaptability presented in section 4.1.

The mechanism of change represents in what way the system changes from one system state

to another, defining a particular transition path for the change. A change mechanism can for

instance be a modular configuration on a vessel, enabling it to change its configuration rela-

tively easily. The transition path includes a description of the cost committed by changing. Cost

refers to the resources needed for changing, including both monetary and non-monetary value.

In addition to the monetary cost of executing the change, there might also be some cost associ-

ated with implementing the change mechanism in the first place (e.g. in the design phase), and

cost associated with maintaining the ability to change. In addition, the time it takes to perform

the change is linked to the system’s agility. In relations to this, Rehn et al. (2017a) states that all

systems are inherently changeable, it just a matter of how much effort it will take to change.

Figure 4.5: Illustration of the effects (scale and modify) of change. A change is represented by a
change in the systems "icon." The vertical axis represents the variability in systems performance
in a specific context (McManus et al., 2007)

The effect of change is the resulting difference between the initial and ending state of the sys-

tem’s parameters after a change. Note that the effect of change can be related to the systems

form, function and operations. Figure 4.5 illustrates some of the effects of change. The circle

represents the original form of the system, while a diamond represents the form after change.

A system is scalable if the levels of the systems parameter changes (e.g. size of a vessel’s tank
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capacity). Note that a system can both be increased and reduced in size (Fricke and Schulz,

2005). A system is modifiable if the system can change the set of system parameters (e.g. switch

modules on the vessel). A system is robust if the system maintains constant system parameters

in the presence of changing forces (Ross et al., 2008; McManus et al., 2007). The vertical arrows

represent the variability in the system performance. As seen in the figure to the left, in context

2, the changed system configuration (diamond) has a higher performance, and a lower perfor-

mance variability.

The agent’s response is triggered by a perturbation, and one can therefore view change path-

ways in a perturbation-agent-mechanism-effect framework (Ross and Rhodes, 2011)1. A pertur-

bation defined as any unintended state change of a system’s form, operations, or context which

could jeopardise value delivery (Mekdeci et al., 2012, 508). Table 4.1 presents a taxonomy of per-

turbations, which can be used to help identifying potential ways that a system can lose value

(Ricci et al., 2014).

Table 4.1: The Taxonomy of Perturbation (Ricci et al., 2014)

Perturbation Type Space Origin Intentional Nature Consequence Effect
Name Disruption Design Internal Yes Nature Positive Various

Disturbance Context External No Artificial Negative
Shift Need Either Either Either

As seen, perturbation is divided into disruption, disturbance and shift. Disruption is defined as

an unintended, instantaneous, discontinuous state change of a system’s form, operation, or con-

text, which could jeopardise value delivery (Mekdeci et al., 2012, 507). Thus, a sudden failure

of the propulsion system is a disruption. A disturbance is defined as an unintended finite du-

ration, continuous state change of a system’s form, operation, or context, which could jeopardise

value delivery (Mekdeci et al., 2012, 508). Thus, going from port without a low level of fuel left is

a disturbance. If the disturbance’s duration becomes zero, it is a disruption. A shift represents

a change in context and/or need (such as changes in technology and regulations) (Ricci et al.,

2014).

1See figure 3 page 2 in Ross and Rhodes (2011).
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Figure 4.6 expands figure 4.4 by including multiple pathways of change. The number of possible

pathways of change is determined both by the number of available change mechanisms, and the

number of possible end states (Ross et al., 2008). In general, the more change paths available the

more changeable the system is. This is referred to as the systems degree of changeability (Ross

and Rhodes, 2011). The figure also illustrates how an internal (black arrow) and external (grey

arrow) change agent initiates a flexible and adaptable change-type, respectively. Notice how an

internal change agent results in an adaptable change, which can use change mechanism [2] to

either transfer the vessel to state A’ or C’ with two different costs associated with it. This would

lead to change effect A-A’ or A-C’, respectively.

Figure 4.6: Illustration of the agent-mechanism-effect framework for multiple changes (Ross
et al., 2008). A grey arrow and black arrow represents an external and internal change agent,
respectively. “A” represents the initial system state. “A’, B’ and C’” represents possible post states.

Rehn et al. (2017a) adapts the Design for Changeability (DfC) (Fricke and Schulz, 2005), stat-

ing that a system’s level of changeability is, in the same manner as design variables (e.g. length,

breath, depth), an overall system design variable to be decided in the design phase. Table 4.1

exemplifies the idea of DfC level for a vessel. As seen, the DfC level is a variable (i.e. 0, 1, 2,

3) and comprises various path-enablers (e.g. structural reinforcement, modular interfaces, ice

class capacity). In contrast to a low DfC level, a high DfC level has associated a high investment

and carrying cost, but has in the same time a lower cost associated with executing the change

option.
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Table 4.2: Exemplification of the Design for changeability (DFC) level for an offshore vessel
(Rehn et al., 2017a)

DFC level Path enablers Inv. Cost Carry Cost
0 Base case (none). - -
1 Structural reinforcement. Low Low
2 Structural reinforcement and modular interfaces. Medium Medium
3 Structural reinforcement, modular interfaces and ice class capability. High High

4.3 Changeability as Real Options

In 1984, Myer introduced the concept of real options. Quite similar as financial options23, real

options can be defined as the right, but not the obligation, to exercise actions or to make spe-

cific project decisions at a future time (Berk and DeMaro, 2014). The main difference is (as the

name indicates) that real options concern decisions regarding real assets (e.g. offshore vessels

and technology) rather than financial assets (e.g. stock and commodity). Examples of real op-

tions can be to expand the fleet by buying a new vessel in the second-hand market, or to switch

the modular configuration on a vessel. In contrast to financial options, real options are not nec-

essarily a legal contract traded over the counter (Wang, 2005; Mikaelian et al., 2011), as it can

simply be a decision affecting the real asset.

Figure 4.7: The Anatomy of a real option (Mikaelian et al., 2011)

Figure 4.7 illustrates the anatomy of real options. The mechanism is the action, decision¸ or

entity that enables the real option. The real option type refers to the action or decision that is

2Financial options were first traded in 1973 at the Chicago board of Exchange. See http://www.investopedia.
com/articles/optioninvestor/10/history-options-futures.asp [20.06.2017]

3The reader is advised to Berk and DeMaro (2014) for insight financial options

http://www.investopedia.com/articles/optioninvestor/10/history-options-futures.asp
http://www.investopedia.com/articles/optioninvestor/10/history-options-futures.asp
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enabled by the mechanism, which can be exercised at a future time. For instance, investing in a

modular design can be a mechanism for change, enabling the future flexibility by easily chang-

ing vessel functionality.

Wang and Neufville (2004) distinguishes between real options in and on the system. While real

in options concerns changes in the physical system, real on options concerns the flexible man-

agement of the system treating the physical system as a black box. Examples of on options are

shipowners right to sell or layup the vessel if the market situation is unfavourable. Examples of

in options could be to install a new crane, or to change the modular configuration in the vessel.

Since changing the modular configuration impacts the vessels stability, power requirements,

space, maintainability, etc., knowledge of the technological aspects of the real system is needed

to execute the option. In contrast to real on options which can be legal contracts, real in options

are hard to identify as there are a wide range of possibilities for architecting changeability into

the system. In addition, there is less data available to evaluate real in options than the case is for

real on options and financial options. Real on options are traditionally considered to be in the

domain of management, while in options are in the engineering domain (Mikaelian et al., 2011).

Table 4.3: Examples of "In" Real options in Shipping (Rehn, 2015)

In Options Description
Expand capacity Option to physically expand the capacity of a particular ship by retrofit,

such as midship elongation.
Switch Scope Option to switch between different modes of operation or between

different chartering contracts offer a certain level of flexibility ship
operations and charterers.

Switch fuel Option to alter or change the fuel of engine systems. This may be to
change from normal diesel (MGO) to liquefied natural gas (LNG),
which involves different fuel tanks, cryogenic systems and other
engine properties.

Capacity retrofit Option to add or change the capabilities of the ship, for example by
installation of a crane or ROV systems on an offshore construction vessel.

Christensen (2017)4 propose a new option classification system, extending the traditional real

4The author is gratefully to his classmate Carsten Christensen for collaboration on the project thesis, and all
discussions related to option theory and stochastic processes.
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in/on option view (Wang and Neufville, 2004). In this system, real on options is regarded as an

overarching option, further separated into Built-in Design Options and Design Change Options.

Figure 4.8: Classification of Options (Christensen, 2017)

Built-in Design Options representing options implemented in the design, such that the design

itself can its form, function or operations without external influence. The author sees this as

closely related to the concept of robustness and adaptability. Example of a built-in design op-

tion for an OCV is moonpool and structural reinforcement making the vessel able to perform

light well intervention (LWI) operations, which can be utilised through equipment. This option

has a cost associated with implementing the moonpool and structural reinforcement in the de-

sign phase, in addition to the exercises cost through equipment. Commonly for build-in design

options, the exercise cost is lower than the cost of implementing, and the options can often be

executed a number of times.

Design Change Options represent options for which external influence is needed for the change

to occur. The author sees this as closely related to the concept of flexibility and agility. In con-

trast to the build-in design options, these options are often only exercised once-in-a-lifetime,

with an associated exercising cost often exceeding the initial cost - if any at all.
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The redesign of Vestland Cygnus5 is an example of such a design change option. With no ini-

tial build-in design options, the platform supply vessel was retrofitted into a wind farm Service

vessel just months after being built. The retrofitting included an accommodation module for

134 people, a footpath system for transferring personnel to offshore installations, and a 100-

ton, 40-metres range offshore crane. To do so, the vessels stability had to be increased, therefore

sponsors of 1.2 metres were added on each side, in addition to reinforcing the deck where the

crane was placed. The original cost of Vestland Cygnus was around 320 mNOK.6, the retrofitting

cost around 150 mNOK.7. By rather having some of the changes incorporated at the design

phase (i.e. being a built-in design option) the cost of retrofitting the vessel would probably be

less than 150 mNOk. However this would tie up capital, which would be lost of the option was

not executed. This represents the trade-off between whether or not to build in the option.

5http://www.swzonline.nl/news/7482/vestland-Cygnus-be-converted-wind-farm-service-vessel[06.05.2017]
6http://www.skipsrevyen.no/ms-vestland-cygnus/[06.05.2017]
7https://www.tu.no/artikler/offshoreskipet-ble-levert-i-april-allerede-na-bygges-det-om-til-vindkraftservice/

275722 [06.05.2017]

http://www.swzonline.nl/news/7482/vestland-Cygnus-be-converted-wind-farm-service-vessel
http://www.skipsrevyen.no/ms-vestland-cygnus/
https://www.tu.no/artikler/offshoreskipet-ble-levert-i-april-allerede-na-bygges-det-om-til-vindkraftservice/275722
https://www.tu.no/artikler/offshoreskipet-ble-levert-i-april-allerede-na-bygges-det-om-til-vindkraftservice/275722


Chapter 5

Strategy

5.1 Introducing Strategy

Academia has many different descriptions of what strategy means. The word strategy originates

from the Greek word stratēgia, meaning a military leader1. A strategy can be defined as a co-

ordinated set of decisions (Skinner, 2009, 329). The Merriam-Webster dictionary2 defines it as

a careful plan or method: a clever stratagem (trick); the art of devising or employing plans or

stratagems towards a goal, and Mieghem and Allon (2015, 7) simply defines it as a specific plan

of action to reach a particular objective.

According to Lun et al. (2010), developing strategies involves answering the interrelated ques-

tions: what to do, when to do it, and how to do it? After being developed, the strategies need

to be implemented, and then monitored. Georgzén and Palmér (2014) highlights three funda-

mental approaches to strategy, namely: strategy as a plan, strategy as a pattern and strategy as

a practice. This thesis focuses on the approach of strategy as a plan.

Strategy as a plan is based on the ideas of Michael Porter’s classical book from 1980 on Com-

petitive Strategy. According to Porter (1980, xviii), competitive strategy (I) examines the way in

which a firm can compete more effectively to strength its market position (II) to state the goals

1https://en.oxforddictionaries.com/definition/strategy [05.05.2017]
2https://www.merriam-webster.com/dictionary/strategy [05.05.2017]
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for of the company, and (III) the means of getting there. A special focus in Porter (1980) is how

a firm can create a unique competitive advantage. Porter’s five forces model (Porter, 1980, 4)

states that the (I) suppliers (II) potential entrants (III) buyers (IV) substitutes and (V) rivalry

among existing firms are the five forces driving competition in an industry. By examining this

competitive environment, a company can understand how to gain competitive advantage.

5.2 Five Components of Strategy

Lun et al. (2010) presents (I) scope (II) goals and objectives (III) resource deployment (IV) com-

petitive advantage and (V) synergy at the five basic components that should be a part of a strat-

egy. Scope refers to the type of industry and market segment that the firm operates in or plans to

enter, and is closely related to a firm’s vision. A strategic scope could be to enter the OSVs seg-

ment in the North Sea Market. Goals deal with the aspects leading up to managing the scope,

and objectives states the desired level of accomplishment of each of the objectives. For instance,

a firm’s goals and objectives could be to have a five percent market share of the North Sea PSV

market within the next three years. Resource deployment deals with the ensuring that the firm

have the required resources to achieve the goals and objectives. This can be to invest in OSVs

with the capacities required to operate in the North Sea. The competitive advantage specifies

how the firm intents to compete in the market. As mentioned in the previous section, the goal

of Porter’s five forces is to examine how to gain such a competitive advantage. Focusing on low

day rates could be a strategy related gaining competitive advantage. Finally, Synergies are related

to which degree the various resources deployed complement and reinforces each other.

5.3 Strategic Hierarchy

In general, there are various levels of interrelated strategies that companies implement in differ-

ent levels in the organisation. The hierarchy often divides into three levels: (I) corporate strategy

(II) business strategy and (III) functional strategy (Barnes, 2008; Lun et al., 2010; Georgzén and

Palmér, 2014). Each of these strategies needs to be aligned with each other, which in itself is a

complex task (Georgzén and Palmér, 2014).
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Corporate strategies are high-level strategies, setting long-term directions and scope for the en-

tire firm. These are often expressed in vision and mission statements. A corporate strategy can

for instance state which markets a unit of the firm should enter, and how resources should be

divided in between each of the firm’s units. These strategic decisions have a long-term impact

on the firm, and some of them might even be irreversible.

Business strategies focus on what objectives a specific unit of the firm should have, how it should

compete in its market and what value-adding activities to perform. The business strategy is con-

straints by the corporate strategy. In firm of only a single unit, the business strategy is equivalent

to the corporate level strategy. In the maritime industry, such strategic decisions can for instance

be which vessel to build, and what functionalities and life cycle properties to vessel should hold.

Further, these decisions could consider which market segments to operate the vessel, which

contracts to take (short-term or long-term), and which vessel configuration to have at a specific

time. These decisions are bases on a medium-term view of the further contexts and needs. Since

it much resources (time, money and efforts) are committed when making these decisions, their

decisions can have a medium-term impact on the firm.

Functional strategies support the business strategy, focusing on how a unit’s individual func-

tions and resources should be aligned to support the business strategy. Functional strategy is

often associated with operational decisions. Operational decisions focus on immediate con-

cern, often on the day-to-day operations of the vessel. Such a decision could be how to utilise

the systems installed, such as cranes, ROVs, winches, to most effectively perform a specific off-

shore operation (DS, LWI, etc.).

5.4 Strategies as Real Options

The concept of real options has already been presented in sections 5.4. Recall that real in op-

tions are related to concepts of designing for changeability, and real on options are related to

strategic decisions made by the managers. The latter is the focus in this chapter.
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The table below presents some examples of real on options in shipping. Note that some of these

options are relevant at several levels in the organisation. For instance, on a commercial level,

one can expand the firm’s operations to new markets. On a business level, one can expand the

fleet to increase the presence in the market (an “on” option), or can expand a vessel’s size and

capacity (an “in” option). On the functional level one can abandon a contract/ operation. In

contrast to the real in options presented in section 5.4, these options do not necessarily need to

be bought upfront, such as the option to abandon an a new building project. The reader is ad-

vised to Dixit and Pindycke (1994), Wang and Neufville (2004) and Alizadeh and Nomikos (2009)

for more on the concept of real on options.

Table 5.1: Examples of real on options in shipping (Rehn (2015), based on Alizadeh and Nomikos
(2009)

On Options Description
Abondon Option to sell the assets and exit the market, which can be valuable when

the market is volatile and there is substantial uncertainty about its
future direction.

Expand fleet Option to expand in operational and investment projects introduces the
flexibility to have limited involvement initially, and to increase the
involvement once the conditions are right.

Lay-up Option to delay certain decisions and projects. For example, if local market
imbalances occur, the actors experiencing the downside from this effect
can wait for more favourable market conditions before fixing a contract.

Other Options may also be embedded in contracts, which are often used without
proper valuation. Without going in details, these can for example be time-
charter (TC) extensions, new building options, purchase options on TC
contracts or options related to debt.



Chapter 6

Markov Decision Processes (MDP)

This section presents Markov Decision Processes (MDP), a modelling and solution technique for

Sequential Decision Problems. As Markov decision rocesses still is unfamiliar to most students

and professors as NTNU, the primary objective of this chapter to introduce the reader to MDP,

hopefully motivate further studies in this area of operations research. In this thesis, MDP is used

to support the proposed Design-Strategy Planning (DSP) procedure presented in chapter 8.

The chapter is primarily based on the extensive works of Watkins (1989), Puterman (2005) and

Powell (2007) and Powell. (2009), supported by the work of Watkins and Dayan (1992), Mausam

and Kolobov (2012), Gosavi (2009), Marescot et al. (2013), and Kochenderfer et al. (2015). Since

the MDP community has not settled on a notation form, the author chooses to use the nota-

tion from operations research. This is in line with the work of Powell Powell (2007) and Powell.

(2009). On a final note, the literature seldom treats finite decision problems. Due to the tem-

poral aspect of complexity affecting the problems treated in this thesis, the author has fitted the

notation and equations to include the aspect of time (i.e. finite-horizon problems).

6.1 Sequential Decision Problems

Figure 6.1 presents the symbolic representation of sequential decision-making. For each point

in time, an decision maker finds himself in a decision epoch, where he, based on the state of

the system, chooses an decision from a set of available decisions. When making the decision,

56
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it is assumed that the current system is fully known to the decision maker. The consequence of

the decision is two folded; first: the decision maker receives an immediate contribution (which

can be both positive, negative or zero); secondly: the system transits to a new state. Afterwards,

the procedure is repeated. The action made by the decision maker is bases on a decision rule. A

sequence of decision rules is called a decision policy.

Figure 6.1: Symbolic representation of a sequential decision problem (Puterman, 2005)

The goal of sequential decision problems is to find the optimal policy (i.e. the optimal decision

to be made inn every state) which maximises (or minimises) the contribution of the system over

its lifetime1. The optimal policy is often expressed in a decision matrix (ref. figure 6.2). For the

optimal policy, the benefit of the decisions might not be immediately clear, but it is the one that

ensures the highest expected contribution over the system’s lifetime.

Depending on the nature of the problem, the sequential decision problem continues for a fi-

nite of infinite time. The state, action and time space can be discrete or continuous. The con-

tribution can be conditioned both on the current state, the chosen action, and/or the state the

system ends up in. In addition, the contribution and the transition probability can be stochastic

or deterministic. In this thesis, the focus is on stochastic, finite horizon processes, with discrete

state, decision and time space.

1Two common metric for evaluating the performance of a policy is the discounted contribution and the average
contribution. See section 6.2.2 for more on this
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Figure 6.2: Illustration of a decision matrix

Decision trees is a common way of modelling sequential decision-making problems (Phillips

et al., 1987). A decision three illustrates how the sequence of actions and outcomes unfolds.

Unfortunately, as the number of possible decisions in each decision node increases and/or the

transitions between states are stochastic, decisions trees no longer are effective in modelling the

situation. It rather ends up becoming a textitmessy bush. Markov Decision Processes (MDP) is

a method of modelling sequential decision-making under uncertainty (Puterman, 2005) that

might better handle the complexity in the problem.

6.2 Markov Decision Processes

In general, a MDP consists of a (I) Markov reward process (MRP), and (II) a decision-making

process. In a pure Markov chain, a system go through a sequence of transitions from state to

state based on a transition matrix. The probability of transition from one system state to an-

other is only dependent on the current state of the system. That is, the process is memoryless2.

In a Markov reward process, there is in addition a reward associated with each state. By includ-

ing the decision-making process, MDP extends a general MRP by allowing decisions to be made

in each state that affect the outcome of the next transition.

Figure 6.3 presents the basic structural representation of Markov decision processes, in addi-

tion to highlighting the fundamental difference between a Markov chain and a Markov decision

process. Figure 6.3a illustrates a Markov Chain where S1 and S2 are the two possible system

states, and P (Si | S j ) is the probability of transition to state Si given currently is in state S j . As-

2The first order Markov assumption
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sociate with each state is a reward for being in that state. The same goes for figure 6.3b, but the

transition probability depends both on the system state and the action taken (A1 or A2).

(a) Markov Chain (b) Markov Decision Process

Figure 6.3: Illustration of a Markov Chain (MC) and Markov Decision Process (MDP).

6.2.1 The Notation of Markov Decision Processes

More formally, in a Markov decision process the system is, at time t, in a state s ∈ St . In this

state, often referred to as decision epoch3, the decision maker has to make a decision xt ∈ X t .

When making the decision, the decision maker is assumed to have full knowledge of the current

system state4. In this thesis, it is assumed that the state space is discrete and small enough to

enumerate. After the decision is made, the system transits to a new state, St+1, in the next time

step. Which state the system enters is determined by the transition function, SM , often referred

to as the system model. The transition function is expressed as (Powell, 2007):

St+1 = SM (St , X t ,Wt+1) (6.1)

Wt+1 is the exogenous information revealed to the decision maker first after the decision is

made5. Thus, the decision maker is not fully in control of the system’s transitions6. The fact

3The decision maker only have to make a decision in a subset of the states. These states are classed as decision-
making states or decision epochs. In MDP, it is sufficient to only consider transitions from one decision-epoch to
another. Thus, in this thesis, the general term state referees to decision epochs

4There are many problems where it is not possible to precisely know the state the systems. These problems are
referred to as partially observable Markov decision processes (POMDP). In many applications, this generalisation
is important. Readers with interest are encouraged to explore the rich area of literature treating this subject.

5W is therefore indexed with t +1 to indicate that it is not known at time t , but is revealed during the interval
(t , t +1].

6Since the transition function only depends on the current state, the decision taken, and future exogenous in-
formation, and not on previous states, the transition function maintains the Markov property.
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that the decision must be made before all relevant information is known stands as the key chal-

lenged of the decision maker in the sequential decision problem under uncertainty7

In each time step, the contribution function, Ct (St , xt ), determines the cost incurred or the re-

ward received for making the decision. The contribution might for instance be expressed in

purely monetary terms, such as rewards, profits and revenues, but also non-monetary terms,

using e.g. an utility function. The probability of transition from state St to St+1 is given by the

one-step transition matrix, P(St+1 | St , X t ), depending on the system’s current state and the de-

cision made. The following figure illustrates the relationship between the components of the

Markov decision process.

Figure 6.4: Illustration of the components in a Markov Decision Process.

The policy, π ∈ Π is a function πt : St → X t that for each time step t , links all state, St to an

decision, xt . X π
t (St ) expresses the decision choose in state St under policy π. Note that every-

thing is indexed by time which is appropriate for finite-horizon problems. If the problem in

stationary, the time indexes can be neglected. In offshore shipping, non-stationary processes

are common. Changes in stakeholders perception, technical requirements, operating context,

and fuel prices are examples of factors making transitions in offshore shipping non-stationary

(Kana et al., 2015). To summarise, table 6.1 presents the notation and description of the compo-

7For deterministic problems, Wt+1 is assumed to be known when taking the decision. Thus, when taking the
decision under certainty, the decision maker knows for sure which state the system enters at the next time step.
This is similar to taking decisions under endogenous information.
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nents of the a Markov decision process presented above.

Component Notation Description
Time space t ∈ T A finite, discrete and countable time-space

where decisions are made. Often referred
to as decision epochs

System space s ∈ St A finite, discrete and countable set of all
possible system states at time step t .
The state of the system is what everything
else (e.g. decision space, transition
function, etc.) is centred around.

Decision space xt ∈ X t A finite, discrete and countable set of all
possible decision to make in the current
system state.

Contribution function Ct (St , xt ) The contribution to the system of making
a particular decision, xt , is a given state, St .

Stochastic variable Wt+1 Exogenous information revealed after
a decision is made. This represents the
source of uncertainty in the problem.

Transition function SM (St , X t ,Wt+1) Describes how the system evolves from
system state to system state under the
influence of the decisions made, X t ,
and exogenous information Wt+1.
Often referred to as the system mode.

Transition Probability P(St | St+1, X t ) The probability of transition from
system state St to system state St+1

when decision X t is made.

Table 6.1: The Notation and Description of the Components of a Markov Decision Process
(based on (Powell, 2007)

)

6.2.2 Performance Metrics & Objective Function

Performance metrics represent the performance of a policy. The goal of a decision maker is to

find the policy that maximised the value of a chosen performance metric. Generally, the value
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of a performance metric depends on the decision made, the contribution, the horizon of the

problem, and whether or not no include the time value of the contribution (i.e. discounting).

In this thesis, the performance metric chosen is the expected discounted contribution over the

problem’s time horizon. By discounting, the contribution received in the future is less worth

than the immediate contribution received from making the decision (i.e. the time value of

money). For a specific policy π starting in state i , the discounted contribution is:

ψπ
i ≡ E

{ T∑
t=0

γtCπ
t (St , X π

t (St )) | S0 = i

}
(6.2)

where γ is the discount factor. The expectation is over the uncertainty in the contribution func-

tion.

By using the discounted contribution as a metric for evaluating the performance of a policy,

the objective function can be expressed as (Powell, 2007):

max
π

E

{ T∑
t=0

γtCπ
t (St , X π

t (St ))

}
(6.3)

Thus, the objective of the decision maker is to identify the policy π ∈ Π, that maximises the

expected discounted contribution over the entire life cycle of the system. The optimal policy

manages to balance the immediate contribution of the current decisions, and the contributions

from future opportunities.

6.3 Solving Finite-Horizon Markov Decision Processes

Solving equation 6.3 can be difficult or even impossible to do (Powell, 2007). Luckily there meth-

ods for coping with this: Let Vt+1(St ) be the value of making the optimal decision, x∗
t (St ), in state

St . This function is referred to as the Value function. The value function is given by Bellmans’s

equation (in standard form) (Powell, 2007):

Vt (St ) = max
xt∈X t

(
Ct (St , xt )+γ ∑

s′∈S

P(St+1 = s′ | St , xt )Vt+1(s′)
)

(6.4)
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Mathematical equivalent, the value function can also be expressed using the expected form of

Bellman’s equation (Powell, 2007):

Vt (St ) = max
xt∈X t

(
Ct (St , xt )+γE

{
Vt+1(St+1) | St

})
(6.5)

Where the expectation is over the random variable Wt+1 in the transition function

St+1 = SM (St , X t ,Wt+1). These two forms of the value functions is the key of solving Markov

decision problems. While the standard form is typically used in the standard work on Markov

decision processes, e.g. backward dynamic programming, the expected form is more applicable

when working on approximated dynamic programming (ADP).

By knowing the value function in the previous time step for all possible transition states the

optimal decision, x∗
t (St ), can be calculated. This is done by finding the argument of the maxima

of the following equation (Powell, 2007):

x∗
t (St ) = ar g max

xt∈X t

{
Ct (St , xt )+γVt+1(St+1)

}
(6.6)

6.3.1 Backward Dynamic Programming

In backward dynamic programming (BDP) the value function, Vt (St ) (ref. eg. 6.5), is recursively

computed. The idea behind this procedure is simple: Assuming that the value function in the

previous states,Vt+1(St+1), the probability matrix,P(St+1 = s′ | St , xt ), and the contribution func-

tion, Ct (St ,t ), for all time steps are known, the values in the current states, St , can be computed

using the following algorithm (Powell, 2007):
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Step 0. Initialization:

Initialize the terminal contribution VT (ST )

Set t = T - 1

Step 1. Calculate:

Vt (St ) = max
xt∈X t

(
Ct (St , xt )+γ ∑

s′∈S

P(St+1 = s′ | St , xt )Vt+1(s′)
)

for all St ∈ S

Step 2. if t > 0, decrement and return to step 1. Else stop.

As seen, the procedure is quite simple: Start in the last time step, T , in which the value function,

VT (ST ), for all states, is assumed to be known 8. Then, one step backward in time to compute

VT−1(ST−1) using equation 6.4. By continuing this backward stepping process, the value func-

tion for all time-periods can be calculated. When this is done, the optimal decision, x∗
t can be

calculated using equation 6.6.

A drawback with backward dynamic programming is that the procedure requires the value func-

tion in a given time step to be computed for all possible transition state (Powell, 2007). This

might become computational difficult for models with large state spaces (i.e.the curse of dimen-

sionality). In addition, even small problems might be hard to solve due to the limited ability to

model the information process (i.e. the curse of modelling). This is the case when the transition

function, SM , is unknown. For more information regarding the obstacles of BDP, the reader is

advised to Powell (2007). These drawbacks motivated the author to look into newer methods,

such as approximate dynamic programming, to solve MDPs.

8Note that VT can be regarded as the sunset value. See Strøm and Christensen (2016) and Alvarez et al. (2011)
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6.3.2 Approximate Dynamic Programming

In general, the principle of approximate dynamic programming is as follows (Powell, 2007; Pow-

ell., 2009): Instead of stepping backward in time, approximate dynamic programming steps for-

ward in time9. The path the system follows is given by a sample path ω ∈ Ω which represents

a sequence of exogenous information revealed throughout the process. An illustration of such

sample paths for the oil price is presented in table 6.2. When stepping forward in time, the true

value of being in a specific state, Vt (St ), is not known, and is therefore replaced with an approx-

imation, V̄t (St ). There are many ways to estimate the value function, but the simplest way is

using a look-up table, where a estimation is known up front. The approximated value function

is estimated iteratively. Everything is therefore indexed by the iteration counter n. For instance,

V̄ n
t represents the value function at time t for iteration n, and, w n represents the sample path

for the system at iteration n.

t
Ω t = 1 t = 2 t = 3 t = 4 ... t = |T |
ω= 1 50.01 49.09 49.06 49.06 ... 60.01
ω= 1 51.04 51.01 49.09 50.00 ... 63.06
... ... ... ... ... ... ...
ω=Ω 47.01 47.03 47.04 47.04 ... 44.07

Table 6.2: Illustration of a sample path, ω, for the oil prise [$] over time.

Assuming that the system currently is in iteration n: From iteration n − 1 the value of being

in that state is approximated to be V̄ n−1
t (St ). The approximation is now used to make a de-

cision xn
t . After the decision is made three things occurs: first, an immediate contribution,

Ct (St , xt ), is received; secondly, the approximation of the value function is updated; then, ex-

ogenous information is revealed W n
t+1. Bases on this new information, the transition function,

St+1 = SM (St , X t ,Wt+1), determines the next system state. This process continuous until the

horizon of the process is met (at t = T ). At the end of the horizon, the iteration counter is up-

dated (n = n+1) and the process starts all over again (now from t = 0). The algorithm continuous

until n = N , where N is a pre-defined number of iterations to be conducted. By iteratively learn-

ing the value of being in different states by taking various actions each time the state is encoun-

tered, the algorithm learns which action that gives the highest expected contribution. Below,

9The procedure is therefore often referred to as forward dynamic programming.
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a general algorithm for ADP using the one-step transition matrix presented (Powel, 2008,97):

Step 0. Initialization:

Step 0a. Initialize V̄ 0
t for all states St

Step 0b. Choose an initial state S1
0

Step 0c. Set n = 1.

Step 1. Choose a sample path ωn

Step 2. For t = 0, 1, 2, ..., T do:

Step 2a. Solve

v̂n
t = max

xt∈X n
t

(
Ct (Sn

t , xt )+γ ∑
s′∈S

P(s′ | Sn
t , xt ))V̄ n−1

t+1 (s′))
)
. (6.7)

and let xn
t be the value of xt that solves the maximisation problem

Step 2b. Update V n−1
t (St ) using

V n
t (St ) =


v̂n

t St = Sn
t

V n−1
t (St ) other wi se,

(6.8)

Step 2c. Compute Sn
t+1 = SM (Sn

t , xn
t ,Wt+1(ωn)).

Step 3. Let n = n + 1. If n < N, go to step 1.

Note that the initial approximation (at n = 0) for the value function, V̄ 0
t is assumed known. Of-

ten, this value is put to zero. Also, notice that the approximated value function is only updated

for the states the system visits (determined by the sample path). As a result, since each system

state will be visited different number of times, this is a form of asynchronous dynamic pro-

gramming. Despite the forward stepping procedure, this algorithm is quite similar to the one

for backward induction earlier presented. This algorithm still leaves some challenges to handle.
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First, the one-step transition matrix is used. As earlier mentioned, computing the transition ma-

trix might be difficult and even impossible. Secondly, despite not visiting every state, there is a

need to know the value of the states that the procedure might visit. Thirdly, the procedure might

end up only visiting states already visited. Assuming the initial value function is set to zero, and

the states visited in the first iteration all gave a positive contribution, then the same states would

be visited in the next iteration as they look relative good (compared to all the states not visited

since they have a value of zero). It is therefore a need for a search procedure that also takes de-

cisions that currently are not optimal, to investigate if they might escape a local optimum.

There are many methods for conducting approximate dynamic programming. The reader is

directed to the reference literature to see get a grasp of the richness of this area of research litera-

ture. In this thesis, the choice fell on the Q-learning strategy, one of the fundamental algorithms

in ADP.

6.3.3 Q-learning: A form of Approximate Dynamic Programming

Q-learning10 (Watkins, 1989) is a method of coping with many of the limitations of Backward

Dynamic programming. It does so by iteratively solving the Bellman equation to find the opti-

mal policy, without initially knowing the contribution function, C (·), and the transition matrix,

P(·) (Powell, 2007). Because of this, Q-learning is classed as model-free reinforcement learning

(Watkins and Dayan, 1992).

As illustrated in figure 6.5, the Q-learning strategy creates an artificial post-decision state (S, x),

represented by Sx
t , and defines an associated post-decision value function, Q(S, x) (referred to

as Q-values or Q-functions). An illustration of the Q-states in a non-stationary context is given

in figure 6.6. As seen, the Q-states are defined by the decision space and the state space, and

must also be defined in the time space if the problem is non-stationary.

10The Q-learning algorithm can be derived via the Robbins-Monroe algorithm (Robbins and Monro, 1951) where
the transition matrix is bypassed using stochastic approximation. See Gosavi (2009). In order to do so, the bellman
equation must be expressed on the expected form of the Bellman equation(ref. eq. 6.5).
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Figure 6.5: Illustration of an decision tree, presenting the decision nodes (squares) and the out-
come nodes (circles). Solid lines represent decisions, and the dotted lines represents random
outcomes (Powell, 2007)

Figure 6.6: Illustration of the Q-states in a non-stationary context.
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The Q-value is defined as the expected discounted contribution of taking decision, xt , in

state St :

Qt (St , xt ) = E
{

Ct (St , xt )+γ max
xt+1∈X t+1

Qt+1(St+1, xt+1)

}
(6.9)

where the expectation is over the exogenous information. The first term inside the brackets is

the immediate contribution, while the second term is the Q-value in the next post-decision state

visited, (St+1, xt+1). The value function, V (St ), is then:

V (St ) = max
xt∈X t

Qt (St , xt ) (6.10)

Instead of estimating the value in the pre-decision state S, this approach estimated the value

of being in the post-decision state, Sx
t . The optimal decision is the one that maximized that

equation:

xt = ar g max
xt∈X t

Qt (St , xt ) (6.11)

In light of the approximate dynamic programming procedure, the approximation of the true

Q-value, as used in this thesis, in iteration n at time step t is expresses as:

Q̄n
t (Sn

t , xn
t )︸ ︷︷ ︸

New estimate

= (1−αn−1)Q̄n−1
t (Sn

t , xn
t )︸ ︷︷ ︸

Old estimate

+αn−1

Learned value︷ ︸︸ ︷[
Ct (Sn

t , xn
t ,Sn

t+1)+γ max
xt+1∈X t+1

Q̄n
t+1(Sn

t+1, xn
t+1)︸ ︷︷ ︸

Estimated optimal future value

]
(6.12)

Where α is the learning rate, treated in sections to come, represent how much the learned value

in iteration n should be counted for in the new estimate of the Q-function. The Q-learning strat-

egy learning the Q-value by taking subsequently (t = 0,1,2, ..., | T |) decisions, xt and learning the

consequence of them. After doing so for a sufficient amount of iterations, N , the algorithm has

learned which decisions to make in each state.
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The Q-learning algorithm used in this thesis have the following format (based on (Powell.,

2009) and (Gosavi, 2009)):

Step 0. Initialize

Step 0a. Set Q0
t (St , X t ) = 0 for all t ∈ T .

Step 0b. Set N = Max number of iterations

Step 0c. Set n = 1

Step 0d. Initialize S1
0

Step 1. Choose a sample path ωn

Step 2. For t = 0,1,2,...,T do:

Step 2a. Choose which decision,xt ,to make. Use procedure (I) with probability εn ,

otherwise use procedure (II):

(I) Select xt randomly with probability 1/|X t |

(II) xt = ar g maxxt∈X t
Qn

t (St , xt )

Step 2b. Simulate the outcome of the decision,St+1 = SM (Sn
t , xn

t ,W n
t+1)

Step 2c. Estimate the contribution, Ct (St , xt ,St+1)

Step 2d. Update the Q-value approximation, using equation 6.12.

Step 3. Increment n by 1. If n ≤ N go to Step 1. Otherwise, go to step 4.

Step 4. Create the policy, π, by finding xt = ar g maxxt∈X t
Qn

t (St , xt )

As seen, the Q-learning starts from an arbitrary initial Q-function Q0 and updates it without

requiring a model (e.g. transition probability). Instead is uses the observed transitions and

rewards of following the sample path, w . Is well known that the simulation of complex systems

is considerably easier than generating the TPs of the system. The algorithm is run iteratively,

every run indexed by n. After each transition, the approximated Q-function is updated. See
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appendix F.8 for the Matlab implementation of this algorithm used to solve the illustrative case

presented in section 9.

Selection of actions to take

As seen in the Q-learning algorithm, the selection procedure of which actions to take in each

time step is important in the ADP. This is particularly important in regards to the comment to

convergence of ADP given later, as it is important for the agent to be able to take all decisions in

every encountered state in order to have prof of convergence. Before presenting some selection

procedures, a short comment on the concept of exploration and exploiting is necessary.

Exploration strategies refer to action selection strategies which seeks to get better information

of the value of being in a particular state, regardless of whether that state appears to be the

best state to actually visit. Contrary, exploitation strategies refer to action selection strategies

which seeks to find the best action given the current information (ref. equation 6.6). In a pure

exploration strategy, one selecting a particular decision xt with probability 1/|X t | (i.e. equal

probability). With such a strategy, it is guaranteed that every state has a chance of being visited.

A problem with exploration is that many times the decision provides no important information

at all. Such a pure exploration strategy will require many iterations before converging, and will

only work in small state spaces. Thus, in order to have algorithms that works in practice, on also

need to exploit. In a pure exploiting strategy, the agent always selects the action with the high-

est expected value (i.e. ar g maxxt∈X t
Qt (St , xt )). Note that, given that the initial approximation

for the Q-values were zero (step 0a. in the Q-learning algorithm), and that the contribution for

visiting states is purely positive, the states not visited will have a value of zero. Thus, with a pure

exploitation strategy, the same states would be visited in all iterations as they would be the only

one to look favourable. This will lead the to algorithm to end up in local optimums. These draw-

backs with pure exploration and exploitation strategies implies the need to have mixed between

exploration and exploitation to guide the decisions. The trade-off between exploration and ex-

ploitation is one of important unsolved problems in ADP (Powell, 2007).

There is an vast amount of methods proposed for mixing exploration and exploitation. In this
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thesis, the author ended up selecting a simple mixing-strategy, for which the exploration rate ε

(εn ∈ (0,1) ) indicating the fraction of iterations where the action chooses is to be random (i.e.

exploration probability. While, 1−ε indicates the fraction of iterations where the action choose

is to be based on a greedy strategy (i.e. exploitation probability). While εn can be constant, the

author selected a stepwise reduction in its value. Starting with εn = 1 for n = [0,0.1∗|N |], εn = 0.9

for n = [0.1∗ |N | +1,0.2∗ |N |], εn = 0.8 for n = [0.2∗ |N | +1,0.3∗ |N |] and so on, until εn = 0.1

for n = [0.9∗ |N |+1, |N |], where N is the number of interations (e.g.10,100, 1000, 10000,....). As

seen in figure 6.7, in the beginning the algorithm follows a pure exploitation strategy, but as

times goes by the algorithm starts exploiting more and more. The author recognizes this as

an undirected exploration strategy. There are more advanced directed strategies where the ex-

ploited action selected is not selected at random, rather e.g. based on the number of previous

occurrences or its value.

Figure 6.7: Illustration of the epsilon value

Convergence of ADP

Convergence is an important aspect in ADP as it gives insight into the algorithm’s behaviour,

particular its ability to obtain optimal solutions (Gosavi, 2009). It is not in this thesis objective

to go in depth in the convergence of ADP, merely to present some aspects of it. The reader is ad-

vised to Tsitsiklis (1994) for a formal proof of convergence, and Gosavi (2009) and Powell (2007)
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for references to more literature.

In general, as n → ∞, the Q-learning asymptotically converges to the optimal Q-values if the

state and action space are discrete and finite, and under the following conditions:

1. αn−1 ≥ 0,n = 1,2, ...,. The sum
∑∞

n=0α
2
n produces a finite value (≤ ∞), whereas the sum∑∞

n=0αn produces an infinite value (=∞). αn−1 is referred to as the stepsize or learning

rate.

2. All the state-action pairs are asymptotically visited infinitely often. This condition can

be satisfied if, among other things, the agent has a non-zero probability of selecting any

action in every encountered state.

While these might prove convergence in the limit, they provide no instructions for how to assure

convergence in practice. Especially the assumption that the states must be visited infinity often

are a big weakness Powell (2007), as the state and action space is many applications becomes

very large. Often the modeller ends up using his subjective judgement to decide the adequate

number of iteration before the algorithm converges, however, this must be done with caution.

As seen in figure 6.8, the objective function for an ADP algorithm might seem to be flatting out

(i.e. to be stabilising) which is an apparent evidence of convergence, but as the iteration counter

increases the algorithm detects new opportunities which leads the objective function to new

levels.

Selection of the Stepzise

As seen in the comments above regarding the convergence of ADP, the stepsize (or learning rate),

α is an important property of the algorithm. Powell (2008, 184) states that two important issues

regarding selection of stepsizes are (I) whether the stepsie ensures a certain convergence of the

algorithm, and (II) whether the stepsize provides the fastes convergence. The first issue is mostly

of theoretical importance.
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Figure 6.8: Illustration of apparent convergence

Powell (2007, 186-187) presents, among other, the constant stepsize, the harmoning stepzise

sequence, and the stochastic stepsies as three classes of formulas useful to consider11. Below

three forms of these formulas are presented. Note thatαn−1 indicates that its value is computed

using information available at iteration n −1.

The "one-over n" stepsize rule

αn−1 = 1

n
(6.13)

The "1/n" stepsize rule is one of the rules that satisfies the criteria of convergences mentioned

in the section above. Despite working in theory, this rule tends to drop to zero to quickly re-

sulting in apparent convergence while in reality being far from optimal (ref. figure 6.8). This is a

problem with declining stepsizes in general.

Generalises Harmonic stepsize sequence

αn−1 = a

a +n −1
(6.14)

11The literature on stepsize is wide, and the author encurages the reader to start in Powell (2007) for more on this.
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a is a constant. Similarly as the "1/n" stepsize rule, this rule satisfies the condition for conver-

gence. As it is dependent on one more parameters that the "1/n" rule, it can be tuned. For

instance, increasing a slows the rate at which it drops to zero. In addition, one can experience

with changing n to nβ, where β is a number between 1 and 0.

The Constant stepsize rule

αn−1 =


1 i f n = 1

ᾱ other wi se,
(6.15)

where ᾱ is a constant stepsize choose. This rule is popular when many parameters are esti-

mated, for which no single rules works. Other advantages is that it is requires no memory, and is

easy to "tune" as it only depends on one variable. This thesis choose to apply the constant step

size rule due to this its simplicity12.

Figure 6.9: Illustration of the stepsizes for the various rules presented

12Generally, Powell (2007) recommend to initially start with a large step size, and as one get a sense of the num-
ber of iterations needed to get convergence reducing the stepsize to balance out the tradeoff between number of
iterations and rate of convergence.
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Chapter 7

The Value-Aptitude-Design-Strategy (VADS)

Framework

Bases on the knowledge gained from the literature review, the author proposes the Value-Aptitude-

Design-Strategy (VADS) framework as a quasi-mathematical expression of the relationship be-

tween a stakeholder’s aptitude, a design’s configuration and the stakeholder’s life cycle strategies

for utilising the design, linking these three factors to the system’s ability to deliver value (i.e. stay

successfully) in specific context and need.

Value = Aptitude x (Design + Strategy)

In this framework, the word system not only refers to a physical system but also to the stake-

holder’s life cycle strategies for utilising it. Stakeholders refer to individuals, groups or organ-

isations (e.g. operating managers, shipowners, classification societies, flag state, etc. ), and

the design refers to the physical system. Further, a specific design-strategy configuration is re-

ferred to as a strategic system. This notation is adapted from Miller and Lessard (2000), and is in

this thesis defined as a set of distinct devices used to handle uncertainty. The notation design-

strategy pair will also be used, a notation first1 used by Schaffner (2014). Strategic system and

design-strategy pairs will be used interchangeably.

As illustrated in table 7.1, the VADS framework expresses that both design and strategy (i.e. the

1By the authors knowledge
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strategic system) are important aspects for enhancing stakeholder value. One cannot have de-

sign or strategy without having the other. However, one can be (at least in theory) successful if

one has the optimal design for the current context and needs, while still having a sub-optimal

strategy. In the same way, one can be (at least in theory) successful by utilising a suboptimal

design with an optimal strategy for the current context and needs (therefore, the + operator).

However, the shipowner must have the aptitude to align the design and strategy towards the op-

erating context and needs (therefore, the x operator). Without aptitude, the stakeholder would

not be able to utilise either the design or the strategy. For instance, one can have a highly flexi-

ble design, but without the ability to recognise the need to adapt, or without having the required

resources (e.g. time, money, experience) to adapt, the value of this flexibility is low. This idea is

illustrated in the table below. 0 and 1 represents the minimum and maximum ability the apti-

tude, design and strategy have to contribute to the system’s total value delivery, respectively.

Table 7.1: Illustration of the dynamic relationship between Aptitude (A), Design (D) and Strategy
(S) and their contribution to the system’s ability to deliver value

Aptitude Design Strategy Value Degree of Success
0 X ( 0 + 0 ) = 0 ⇒ Low
0 X ( 1 + 1 ) = 0 ⇒ Low
1 X ( 0 + 1 ) = 1 ⇒ Medium
1 X ( 1 + 0 ) = 1 ⇒ Medium
1 X ( 1 + 1 ) = 2 ⇒ High

As seen, the total value of the strategic system can be 0 (representing an unsuccessful system)

if aptitude, design and strategy are not aligned, or it can be 2 (representing a highly successful

system) if their dynamic relationship perfectly aligned. The author emphasises the importance

of aligning the design and strategy with its aptitude, as this results in a magnifying effect and a

high degree of success.

As illustrated in figure 7.1, the VADS framework extends the traditional system boundary in engi-

neering (ref sec. 2.1), from solely focusing on the relationship between design and its surround-

ings, to add a new layer comprising the stakeholder’s role in managing the system (i.e. aptitude

and strategy).
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Figure 7.1: Illustration of the extended system boundary in the VADS framework

The idea of linking aptitude, design and strategy factors is supported by Mintzberg (1990) and

Payne et al. (1996) that emphasises the need to align the product (design), the person (apti-

tude), and strategy. The idea is also related to the notation of a flexible system design concept

proposes by Cardin et al. (2013), which comprises two components: (1) a strategy, and (2) an

enabler in the design and management. The latter is equivalent to the design and aptitude in

the VADS framework. In addition, a similar idea as the VADS is seen in literature on Operations

strategy, especially in manufacturing/process industry, where Value, Capability, Asset and Pro-

cess is linked (Mieghem and Allon, 2015).

Each of the four components in the VADS framework is further presented in the sections to

come.

7.1 (V) Value

Oxford dictionaries2 defines value to be the worth of something compared to the price paid for it.

Ross (2006) links value to the perceived benefit net of cost. This benefit is not necessarily mon-

etary. It theory, value can be any sort of desire the stakeholders has for the system (Hall, 1962).

2https://en.oxforddictionaries.com/definition/value [13.02.2017]

https://en.oxforddictionaries.com/definition/value
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Examples are the traditional aspects functionality, performance and quality, and newer aspects

as Safer, Smarter, and Greener (DNVGL3). Thus, value is a more comprehensive metric for eval-

uating systems than just profit Ross (2006); Saleh et al. (2007); Pierce (2010).

The concept of value is closely related to the concept of system success. Keeney (1992) em-

phasises that value is what stakeholders care about, and should therefore be the driving force

behind every process. Therefore, the primary goal in conceptual ship design should be to iden-

tify value robust systems (Browning and Honour, 2008; Gaspar et al., 2016) that is, systems able

to deliver high value to key stakeholders over its entire life cycle (McManus et al., 2007). Note that,

while the literature is primarily focusing on architecting value robust physical systems, this the-

sis emphasises the need for identifying value robust strategic systems.

Recognising the broad aspect of value imposes a multidimensional evaluation criteria in the

design phase, and is an important aspect enhancing complexity to the design environment. In

general, one sees that commercial firms almost solely focus on profit, while non-commercial

firms (like naval cases) have a wider view on value (Buland, 2017)4. The focus on the whole

value spectrum imposes a shift in focus from minimising Life Cycle Cost (LCC) to maximising

Life Cycle Value (LCV) (Pierce, 2010; Browning and Honour, 2008).

Stakeholders perceived value consists of articulated and unarticulated value (Ross, 2006; Ross

and Rhodes, 2008b). Articulated value comprises the explicitly communicated values of the

stakeholders, which defines the objectives, requirement and attributes of the system. The unar-

ticulated value is what might give perceived value to the stakeholder, but are not explicitly com-

municated. The lack of explicit communication might be because the stakeholder “can’t say”

(e.g. forgot, don’t know yet, intangible), “Don’t say” (e.g. assumed to be known) or “Won’t say”

(e.g. it is a secret). The unarticulated values might become articulated, changing the perceived

value of the system, such that decision makers must be aware of both the articulated and unar-

3https://www.dnvgl.com/about/
4The author is grateful to his classmate Marius Buland for all the discussions regarding value and utility through-

out the course of writing this thesis. The reader is advised to Buland (2017) for more on these highly important
topics.

https://www.dnvgl.com/about/
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ticulated values.

What stakeholders value, changes over time.The driver for change in value perception is (I) per-

sonal drift in stakeholders thinking of value (II) change in context affecting the system under

consideration, and (III) shift in needs from unarticulated to articulated value (Ross, 2006). Ross

(2006) states that personal drift in thinking is the most difficult to anticipate.McManus et al.

(2007) states that the perceived success of a system is determined by the dynamic relationship

between stakeholder’s expectations (needs), the developed and operational environment of the

system (context), and the form of the system (i.e. design). Due to the dynamic nature of value

perception, a key challenge in conceptual ship design is to identify systems that can deliver

high perceived value in the face of changes in stakeholder’s value perception (Ross and Rhodes,

2008b).

In conceptual ship design, there is more than one stakeholder preference to consider. As dif-

ferent stakeholders have different preferences, the designer must perform some sort of aggre-

gation. A common method for aggregation of stakeholders’ preferences in engineering design is

using multi-attribute utility theory (Keeney and Raiffa, 1993). In addition to Keeney and Raiffa

(1993), the reader is advised to Arrow (1963), Scott and Antonsson (2000) and Buland (2017) for

more on the aspect of utility theory.

7.2 (A) Aptitude

Stakeholder’s aptitude refers to the shipowner’s inherent ability and willingness to utilise the

strategic system to best meet current and emerging contexts and needs. This is what in the end

determine whether the strategic system excels. To do so, stakeholders must:

(I) Recognise the vulnerabilities and opportunities in the current, and emerging, context and

needs.

(II) Be aware of the options inherent in its design configuration (i.e real in options) and set of

strategies (i.e real on options) able to mitigate the vulnerabilities and exploit the opportu-

nities.
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(III) Have the ability to select the best course of action from those available in the strategic

system.

(IV) Have the required resources needed, both tangible and intangible (e.g. time, money, staff,

equipment, experience, competence), to efficiently utilise the strategic system.

Aptitude is critical both in relations to the success of the initial design configuration (i.e.

ability to incorporating the right aspects and degree of changeability), but also the life cycle

management of it (i.e. having the ability to monitor emerging context and needs, and imple-

ment corrective measures). Aptitude is closely related to the common obstacles of implement-

ing change, stated by such as (I) ignorance (II) inattention (III) failure to plan (IV) stakeholders

block, and (IV) external development (de Neufville and Scholtes, 2011).

The following table presents the relationship between a stakeholder’s strategic system and their

aptitude to ensure high stakeholder value. The word tailored indicates that the system either

meets the current environmental context or stakeholders needs, or has incorporated the right

changeability to adapt to it. As seen in table 7.1, stakeholders’ value is high if they have the

ability to utilise the strategic system which is tailored to the current context and needs. If the

strategic system does not meet the current context and needs, but stakeholders aptitude is high,

the system will still deliver some value. This can be the case when e.g. a vessel does not have

incorporated the right modularity to easily alter its form and function to the current needs. It

can still do so, but it comes at a higher cost (hence, it delivers medium value).

Table 7.2: Relationship between Strategic system and Stakeholders’ Aptitude
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7.3 (D) Design

In the VADS framework, design represents the physical aspect of the strategic system (e.g. ves-

sel). It is the design that performs the operations which result in stakeholder value. Further,

it is the design’s ability to perform those operations in a given context and to meet stakehold-

ers’ expectations (needs) that in the end determines the designs success (McManus et al., 2007).

The design is related to the Physical performance dimension of system changeability proposed

by Niese and Singer (2014), as it considers the ability of the design to change as a value-adding

process.

The design configuration can, in two extremes, either be (I) perfectly fit for the current envi-

ronmental context and stakeholders needs, or (II) not fit at all. In the first case, the design is

able to deliver value and is therefore perceived as successful. However, as the design’s fitness

reduces so does its ability to deliver value. In the worst case, the design is unable to perform

any operations under the current context and/or it is not able to meet stakeholders needs – it is

perceived as unsuccessful. Related to the concept of changeability, some designs can have the

ability to adapt to meet changes in context and needs incorporated. Thus, despite not being fit

for the current context and needs, an adaptable vessel can be changed to again deliver stake-

holder value (hence, be successful).

In the conceptual design phase, the designers are in the position to impact the design configura-

tion. In this process, the designers must decide upon the five key questions which are presented

below:

(I) Is there a need for incorporating changeability? The long life cycle, high complexity, and

exogenous uncertainty which characterise ocean engineering systems requires methods

that mitigate vulnerabilities, and exploits the opportunities, in order to stay successfully.

Changeability is recognised as an active approach for managing this uncertainty.

(II) What aspects (e.g. flexibility, robustness, adaptability, agility) of changeability should

be incorporated? Which of these that should be incorporated must be linked to best fit the

vulnerabilities and opportunities that lie in the future, as well as the manager’s aptitude to
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handle the changeability. Related questions are: What is the probability that the change

options will be exercised? What design principles/mechanisms of change should enable

the changeability? Are the solutions technically feasible?

(III) What level of changeability is needed? A design with a high level of changeability is de-

signed to have a low threshold cost (e.g. time and money) associated with executing of

future changes. However, this implies a higher initial building cost and a cost of carry-

ing the change options. On the other side, incorporating low degree of changeability is

seen as a more passive approach for management uncertainty, for which zero degree of

changeability is equivalent to having a robust design.

(IV) What is the value of incorporating changeability?. The value of changeability is difficult

to assess because it is latent (i.e. it does not provide any value when not executed). In fact,

changeability might even reduce a system’s potential performance e.g. by adding weight

and size. However, the additional cost for implementing, and carrying changeability and

the performance reduction is seen as the cost for the insurance for the future.

(V) How should changeability be managed? This is closely related to stakeholders aptitude

and life cycle strategies, since it is these that in the end determine how the design is

utilised in the current context and needs, and how it is adapted to meet emerging changes.

This is a key question to consider in the proposed Design-Strategy Planning framework

presented in the next chapter.

7.4 (S) Strategy

Specified to the VADS framework, strategy refers to a plan of actions stating how the design, and

the organisation as a whole, should be used to best handle uncertainty. Such a strategy could for

instance state which contracts to take, which market to operate in, and what design configura-

tion to have in different scenarios. In general, strategy is closely related to the process dimension

of system changeability discussed by Niese and Singer (2014). Table 7.3 presents various strate-

gic decisions that can be taken at different levels in the organisation.
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Table 7.3: Illustration of strategic decisions at different levels in the organisation (based on
de Neufville (2004))

Figure 7.2 illustrates how strategic decisions can impact the life cycle of an OCV vessel. The ves-

sels life cycle starts when the shipowners decide to expand the fleet due to positive expectations

of the future. The shipowner has several alternatives to expanding the fleet. Vessels can either

be bought in the second-hand market or be built from scratch. Assuming the shipowner de-

cides to build a new vessel, the design stage - the first phase in the vessel’s life cycle, is initiated.

Executing the real on options of initiating the project will cost. Going through the design and

production phase, the shipowner has several opportunities to alter the course of the project.

The project can be abandoned if the shipowner loses the positive expectations of market out-

comes, or decide to rather buy in the second-hand market. And the project can be deferred to

wait for more information. Also in the operation phase, the shipowner has a myriad of options

to consider. Examples are to layup the vessel if it no longer is profitable, retrofitting it to take

new opportunities, and to switch markets when other are found more favourable. The vessel

is sold or scrapped when the shipowner finds it most profitable. The reader should note that
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there are many of strategic decisions to be performed over the course of the vessel’s life cycle.

For more on these strategic decisions, see Lorange (2009), Axarloglou et al. (2013) and Shipping

(2005).

Figure 7.2: Illustration of strategic decisions impacting the vessel



Chapter 8

Design-Strategy Planning (DSP) for

Uncertainty Management

This thesis proposes Design-Strategy Planning (DSP) as a systematic framework to support the

active management of exogenous uncertainty throughout the entire life cycle of engineering

systems. DSP is based on the fundamental idea of the Value-Aptitude-Design-Strategy frame-

work, with the goal of developing value robust strategic systems with the means of handling

uncertainty.

The DSP framework combines and extends the work on Scenario planning (e.g. Ringland (1998)),

Dynamic Strategic Planning (DSP) (de Neufville, 2000), Adaptive Policymaking (AP) (Walker

et al., 2001), Adaptive Airport Strategic Planning (AASP) (Kwakkel et al., 2010), the four-phase

approach for developing flexible systems of de Neufville and Scholtes (2011), the taxonomy of

systematic procedure for supporting the design of flexible engineering systems of Cardin (2014),

the Accelerated Business Development Process (ABD) (Ulstein and Brett, 2012), and ideas from

Physical Asset Management (e.g. Hastings (2015)). Note that the main ideas are from Kwakkel

et al. (2010) and Cardin et al. (2013), whose frameworks are presented in appendix D.1 and D.2,

respectively.

87
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8.1 The Design-Strategy Planning Procedure

Figure 8.1 presents an overview of the framework. As seen, Design-Strategy Planning is an iter-

ative four-step procedure, consisting of an (I) initialisation phase (II) development phase (III)

implementation phase, and (IV) monitoring phase. These four steps are described in the sec-

tions to come. The objective is not to go in depth on all the aspects of this framework, but rather

to highlight important aspects of it. Further, the framework is applied on the offshore case pre-

sented in the next chapter.

Figure 8.1: The Design-Strategy Planning (DSP) Framework
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8.1.1 Phase I: Initialisation

Design-Strategy Planning starts off with the initialisation phase. The initialisation phase is an

iterative, collaborative process between the designers and engineers, owners, operators and an-

alysts. The goal is to end up with a complete picture on the commercial, operational and tech-

nical aspects of the problem.

Stakeholders

First, major stakeholders should be identified, and their objectives clarified. This is in line with

the ideas of Keeney (1992), as the goal is to identify what stakeholders care about. Stakeholder

analysis, business assessment, market analysis, competitive analyses and risk assessment can

be used to support this process.

The objectives comprise stakeholders’ business concept1, requirements and expectations, and

together they define criteria(s) for the system’s life cycle success. Internal expectations can be

economic, strategic, organisational and market-oriented. External expectations can be related

to clients and stakeholders (e.g. reliability, flexibility, cost of service and quality) (Brett, 2017).

Accurately stating requirements is essential, as the system cannot be better than the require-

ments it is to meet (Suh, 1990).

It is critical to understand stakeholders’ ability, which can be established with a stakeholder

analysis and SWOT analysis. Referring to section 7.2, some of the key questions to answer in

such an analysis are: (I) are they able to recognise emerging vulnerabilities and opportunities?

(II) Are they aware of strategic options to mitigate the vulnerabilities and exploit the opportuni-

ties? (III) Are they able to select the best course of action? (IV) Have they the required resources

needed to efficiently execute the strategic options?

1http://www.businessdictionary.com/definition/business-concept.html

http://www.businessdictionary.com/definition/business-concept.html
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Uncertainty

Referring to chapter 3, uncertainty affects the life cycle success of vessels, as it might lead to un-

foreseen vulnerabilities and unforeseen opportunities. The objective of this process is to recog-

nise, identify, model and quantify the major sources of uncertainty, as it is the major uncertain-

ties that plays the most significant role in the life cycle success of the system. Both the likelihood

and consequence should be assessed. As stated by Miller and Lessard (2000), assessing and un-

derstanding uncertainty is perhaps the most difficult process in uncertainty management.

Methods supporting this phase are, among others, bayesian theory, possibility theory, proba-

bility theory, statistical analysis, binomial lattice, decision trees, diffusion models, and scenario

planning (de Weck et al., 2007; Cardin et al., 2013; Erikstad and Rehn, 2015; Strøm and Chris-

tensen, 2016).

Strategic Decisions

A key in the DSP framework is to identify the set of strategic decisions that allow stakeholders to

mitigate vulnerabilities, and exploit opportunities inherent in the uncertainty. The first question

to ask in this process is: what if? (Lorange, 2009; Gaspar et al., 2016). What if market continues

to go up? What if markets start to fall? What if new regulations impose strict environmental pro-

tections? What if today’s technology becomes obsolete? The second question to answer is: what

can we do about it?. The answers to the latter question are both related to the real on options,

such as the opportunity to lay up or sell the vessel if markets fall, and real in options, such as

the opportunity to alter the physical system to meet changing operational contexts. The reader

is advised to chapter 4 and chapter 5 for more examples of potential in and on options, respec-

tively.

Some of these real options, typically the in options, must be implemented in the production

phase, and/or be prepared in advance for it to be taken in the future. Others, typically the on

options do not need to be prepared for at all. As later seen, this is a fundamental aspect of the

implementation phase in the DSP process.
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Platform Design

From the ideas of Cardin (2014), DSP should start from an existing set of platform designs. These

platform designs serve as base designs that further will be enriched by adding adequate aspects

and degree of changeability. Starting with pre-existing designs relaxes the computational bur-

den compared to starting from scratch. The platform design is created using standard design

approaches. The reader is advised to Martin and Ishii (2002), Kalligeros (2006), Erikstad (2009),

Cardin (2014) and Rehn et al. (2017b) for more insight into platform designs.

8.1.2 Phase II: Development

The second step in the Design-Strategy Planning is the development phase, for which the objec-

tive is to develop the (I) strategic system and an (II) contingency plan. This phase is an iterative

process in which the decision makers use quantitative and qualitative methods. The reader is

further advised to Cardin et al. (2013) and Strøm and Christensen (2016) for an in-depth presen-

tation of various quantitative methods that can be used to support the development phase.

Develop Strategic System Part I: Design

The development phase must decide upon which design configuration to select. First, the plat-

form design must be selected. Secondly, as discussed in section 7.3, decision-makers must eval-

uate (I) if there is a need to incorporate changeability into to the platform design (II) what as-

pects of changeability that should be incorporated and (III) what level of changeability to in-

corporate (see figure 8.2). In general, the key in the process of selecting design configuration

is to strike the balance between implementation and carrying cost against the reduced cost of

executing the change option.

Develop Strategic System Part II: Strategy

Referring to chapter 7 life cycle strategy states how stakeholders are to best utilise the strate-

gic system. It is based on selecting a set of the real options identified in the initialisation phase,
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Figure 8.2: Illustration of the components of the selected design configuration

considering the ability stakeholders have to execute these options. The life cycle strategy should

consider both the corporate, tactical and functional level in the organisation, and should have a

long-term view rather than focusing on myopic, short-term benefits.

Develop Contingency Plan

The life cycle strategies, the real option incorporated in the physical system and trigger informa-

tion are all a part of the contingency plan. The contingency plan states which options to execute

as a result of various triggers. Triggers are critical information that should be monitored over the

system’s life cycle. This can either be information that (I) result in actions from the contingency

plan to be implemented, or (II) result in a reassessment of the DSP process as the underlying

assumptions for the development phase are changed.

8.1.3 Phase III & IV: Implementation and Monitoring

After the development phase, the plan is to be put into force. Some of the actions are imme-

diately implemented in the production phase of design in which the selected platform design

is built, incorporated with the selected principles and level of changeability. While the actions

immediately implemented results in a sunk costs, the beauty of this process is that other actions

are only committed if needed as a response to triggers identified in the monitoring phase.

After the vessel is launched, the monitoring phase monitors the surroundings of the strategic

system looking for information triggering a response. If vulnerabilities or opportunities are lo-

cated, the contingency plan states which mitigation or exploitation actions that should be im-
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plemented, respectively. Following the ideas of table 7.3 in section 7.4, these actions can be im-

plemented on a strategic, tactical and operational level in the organisation. The idea is for the

manager to constantly seek to best utilise the strategic system to meet the current market needs.

Further, if the monitoring phase locates major changes in context and needs breaching the un-

derlying assumptions of the developed phase, the DSP process should be reassessed. Examples

of such an instance could be if a shipowner has less free capital than expected in a down period

of market.As a result, the shipowner would not have the same capital strength to execute alter-

nations in the design configuration to meet new needs, as the remaining free capital is rather

used to pay down debt. Other examples could be if the planned strategic options do not work as

anticipated. Note that the DSP process would not start from the bare ground, as much of work

already done in the implementation and developing phase can be reused.

8.2 A Markov Decision Processes Methodology to Support DSP

Figure 8.3 presents the proposed Markov decision processes methodology to support the Devel-

opment phase in the Design-Strategy Planning framework. The MDP Methodology is based on

a methodology proposed by Niese and Singer (2014) for assessing system changeability, which

is presented in appendix D.3

As seen, all the knowledge gained from the initialisation phase in the DSP framework is used

as input to the MDP methodology. The MDP methodology starts off using Markov decision pro-

cess to model the decision problem. Using the notation of MDP presented in table 6.1, in section

6.2.1: The time space represents the times over the system’s life cycle when decisions are made.

The system space represents all possible states the system can encounter, consisting of both

internal and external factors of the system. Remember that the system refers to the strategic sys-

tem. The decision space consists of all decisions the stakeholders can make over the systems life

cycle, these comprise decisions related to the design (i.e. real in options) and decisions related

to managers strategies (i.e. real on options). The contribution function represents the contri-

bution gained by making a particular decision in a given state, also often dependent on which
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state the system transits into. The contribution function is a representation of stakeholders ob-

jectives identified in the implementation phase of DSP. The Stochastic variable represents the

exogenous uncertainty affecting the outcome of every decision made, and the transition func-

tion represents how the system evolves from system state to system state, which depends on the

decision made and the exogenous uncertainty.

The Markov decision model is then solved using, for instance, approximated dynamic program-

ming. The output from ADP is the decision matrix (DM) stating which decision stakeholders

should make in each state to maximise the expected life cycle contribution of the system. The

decision matrix is then used as input to the simulation model of the system’s life cycle. From the

life cycle simulation one get the expected life cycle contribution, and other insight using differ-

ent metrics. Examples of metrics suitable to support this framework are the temporal outdegree,

stating the systems changeability over time, and the horizontal activity level, stating the average

number of system changes. The reader is advised to Niese and Singer (2014) for more insight

into suitable support metrics.

The decision matrix, and the outputs from the life cycle simulation are then analysed to pro-

vide insight into the development phase in the Design-strategy planning framework. Examples

of how this can be done is given in the illustrative case.
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Figure 8.3: Proposed Markov Decision Process Methodology for supporting Design-Strategy
Planning (based on Niese and Singer (2014)



Chapter 9

Illustrative Case

This chapter presents the application of Design-Strategy planning on an illustrative offshore

case, in which a Markov decision processes methodology supports the development phase. The

illustrative case is based on the work of Rehn et al. (2017a), Rehn et al. (2017b) and Pettersen

et al. (2017).

9.1 Case Description

A shipowner has decided to invest in a new Offshore Construction Vessel to carry out a five year

Offshore Decommission Support (ODS) contract in the North Sea. The shipowner has a long-

term view of the investment, stating that his primary objective is to maximise the life cycle value

of the investment. To do so, the shipowner takes use of the Design-Strategy Planning Framework

to guide the process of developing a value robust strategic system.

9.2 DSP Phase I: Initialisation

The shipowner is assumed to have conducted the first phase in the DSP process (i.e. initialisa-

tion), for which the main points are briefly presented below.

Stakeholder(s): The shipowner serves as the only stakeholder to be considered. He has decided

to enter the offshore construction segment, to undertake a five year offshore decommissioning

96
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contract. After the initial contract ends, the vessel will continue to operate in the North Sea.

Stakeholders objective is to maximise life cycle value of the investment. This value is assumed

to be solely monetary. With an experienced firm, with strong financials, in addition to high will-

ingness to stay competitive in the dynamic north sea market, the stakeholder is assumed to have

a high aptitude for handling uncertainty.

Uncertainty: A high degree of exogenous uncertainty affects the investment. The shipowner is

particularly focused on the overall development of the economic state in the North Sea market,

and the expected increase in operational requirements. The shipowner expected the offshore

market to follow a 7-year cycle, and that operational requirements will steadily increase. There

is in addition uncertainty related to whether the shipowner wins future contracts, and the day

rates associated with various missions. The probability of winning a contract is dependent on

supply-demand ration is the market, a factor correlated with the market state. The day rates are

conditioned on the length of the contract, the mission, and the state of the market.

Strategic decision(s): There are strategic decisions to be made that are to be implemented in

the design phase, and others that serve as part of the contingency plan that can be implemented

in the operation phase. In relations to the design, the shipowner must choose a platform design,

which principles and level of changeability to incorporate. In relations to the operations phase,

the shipowner can decide which design configuration to have, which missions to take, and con-

tract duration. He can also sell or layup the vessel if he finds it desirable.

Platform design: Two platform designs are considered (I and II). Both designs have a length

of 120 metres, beam of 25 metres and a depth of 10 metres. The shipowner further can decide to

equip the design with accommodation, main crane, light well intervention, remotely operated

vehicles, cable laying equipment and moonpool. While base design I have accommodation ca-

pacity and main crane capacity of 250 persons and 400 tonnes, respectively, base design II has

nothing more than an accommodation capacity of 400 persons. The rest of the topside equip-

ment are seen as possible real in options to be executed during the life cycle if they are found

profitable.
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9.3 DSP Phase II: Development

This section presents how the Markov Decision Processes Methodology (ref. section 8.2) is used

to support the development phase of DSP.

9.3.1 Modelling the System Space

The state space of the illustrative case is modelled as a finite, discrete and countable set of all

possible states the strategic-system can encounter. Thus, system space consists of the state

variables: Design state, Strategy state, Mission state, Market state and Technical Requirement

State. In addition, due to varying market situation and changes in technical requirements, the

problem is non-stationary such that the epochs (i.e. time) must be tracked. Therefore, the full

state space description becomes:

System Space = (Design, Strategy, Mission, Market, Requirement, Epoch)

Design States

The design state represents the physical system under consideration (i.e. the vessel). It com-

prises both fixed design parameters representing the platform design, and variable design pa-

rameters representing the real in options that can be executed to alter the form and of the vessel

(i.e. changeability). The design state parameters for the illustrative case are presented in table

9.1 and 9.3.

Table 9.1: Illustrative case (discretized) fixed design state variables

Design state variable Abbr. Units Value
Length L [m] 120
Beam B [m] 25
Depth D [m] 10
Design for changeability level DFC [-] [0 1 2]

As seen in table 9.1, in addition to specifying the main dimensions of the platform vessel also its

design for changeability (DfC) level is stated. The DfC level affects the time and cost associated

with performing a change, as increasing the DfC level reduced the time and cost of changing.
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In contrast to DfC levels 1 and 2, DfC level 0 represents a robust vessel where no design effort

has been put on preparing the vessel to physically adapt its form and/or function. Contrary,

DfC level 1 can be obtained by e.g. strengthening the deck and DfC level 2 can be obtained by

having a modular design (ref. table 4.2 in section 4.2). Note that DfC level 0 does not state that

the vessel cannot change, it rather implies that it is expensive to change. Table 9.2 presents the

reduction in the switching cost by different levels of changeability. As seen, for a vessel with DfC

level 2, it is assumed that the switching cost has a 30% reduction compared to the vessel with

DfC level 0. Further, table 9.2 also states the time uses on performing a switch.

Table 9.2: Changeability Cost and Time Matrix. ACC = accommodation, MC = main crane, LWI
= light well intervention, ROV = remotely operated vehicles, PC = cable laying, MP = Moonpool

DFC level ACC MC LWI ROV PC MP Switch time [days]
0 - - - - - - 70
1 0.1 0.1 0.1 0.1 0.1 0.1 30
2 0.3 0.3 0.3 0.3 0.3 0.3 20

As seen in table 9.3, while none of the fixed design parameters are decision variables, most of

the flexible design parameters are. The flexible design parameters that are not decision vari-

ables are dependent on the decision variables

Table 9.3: Illustrative case (discretised) flexible design state variables

.

Design state variable Abbr. Units Values Variable type
Accommodation ACC persons [50,250,400]

Decision Variables
Main crane capacity MC tonnes [0, 400,800]
Light well intervention LWI tonnes [0,300,600]
Remotely operated vehicle ROV [-] [No, Yes]
Cable laying equipment PC [-] [No, Yes]
Moonpool MP [-] [No, Yes]
Deck Area DA [m]

Not decision variablesWeight W [tonnes]
GM gm [m]

Enumerating all combinations of the design variables gives 216 unique design configurations,

some of which are not feasible. In the modelling procedure, the infeasible designs are excluded

from the design space by imposing constraints based on knowledge of feasible design solutions.

These constraints are: Physical feasibility, requiring only feasible design configurations and

the available deck area to be greater or equal to 0. Stability criterion, requiring the metacentric
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height (GM) is greater or equal to 0.15 m. Freeboard criterion, requiring the freeboard (F) to

be above 1.5 m. Imposing these constraints reduced the number of unique design state con-

figurations for the initial system configurations to 12. Reducing the design space is crucial for

reducing the course of dimensionality in the model.

Two initial OCV platform designs are considered in the case, each modelled with three levels

of changeability. This results in six designs to analyse in total, all of which are presented in table

9.4. Platform design nr. I represent the high-spec version of the vessel. Platform design nr. II

represents the low-spec version of the vessel.

Table 9.4: Spesifying the design configuration for the six vessels analysed

Platform design Vessel ID DfC level ACC MC LWI ROV PC MP
I Vessel 1 0 250 400 0 No No No
I Vessel 2 1 250 400 0 No No No
I Vessel 3 2 250 400 0 No No No
II Vessel 4 0 250 0 0 No No No
II Vessel 5 1 250 0 0 No No No
II Vessel 6 2 250 0 0 No No No

Strategy States

The Strategy state represents the shipowner’s available strategic decisions . These decisions

comprises whether to utilise the vessel in the (I) spot market, operating on one-year contracts,

or in the (II) long-term market, operating on three-year contracts. The vessel owner can also

after the initial contract is performed, sell the vessel if he finds that most profitable. Note that

these three strategic alternatives represent real on options.

Mission States

As presented in table 9.5, the Mission state represents the set mission the shipowner can take

after the initial contract ends. Note that layup is modelled as a mission state.
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Table 9.5: Illustrative Case Mission States

Mission Abbr.
Subsea Installation and Construction OSC
Inspection Maintenance and Repair IMR
Light Well Intervention LWI
Field Decommission Support ODS
Offshore accommodation ACC
Offshore cable laying OCL
Offshore platform supply OPS
Offshore Aquaculture support OAS
Layup LU

It is assumed that all these nine missions are available in the market at any time. However,

which mission the shipowner undertakes depends on several factors.

• First, there are technical requirements associated with each mission. To undertake a par-

ticular mission, the vessel must meet the mission operational requirements specific for

each design parameter. These are dependent on the general requirement state in the mar-

ket. Thus, an increase in the technical requirement imposes constraints on which con-

tracts the vessel can undertake.

• Secondly, even if the vessel is able to take the mission, it competes for the contract on sim-

ilar terms as all other players in the market. Thus, the probability for winning a contract is

dependent on the supply-demand ratio of vessels, which is dependent on the state of the

market. In a low market there are an over supply of vessels and the probability of winning

a contract is reduced. As the market increases, the demand is high and the probability of

winning a contract is higher. Details are in appendix F.2

• Finally, if the shipowner is both able to take several missions, and wins several contracts,

he will always select the mission with the highest day rate. The day rate is assumed to be

normal distributed with a mean and standard deviation dependent on the market state.

The rate is also dependent on length of the contract taken, which is a strategic decision. A

positive normal distributed drift is also included to represent the long-term trend of rising

markets in the North Sea.
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Market State and Technical Requirement State

The market state and technical requirement state represents the two major sources of exoge-

nous uncertainty in the illustrative case. While there is also exogenous uncertainty related to

the day rates and the probability of winning contracts, these are dependent on state of the mar-

ket and technical requirements.

Table 9.6: Discretisation of Exogenous Information (market and technical) in the Illustrative
Case

Exogenous information Level
Market State [Low -, Low, Medium-low, Medium-high, High, High + ]
Technical Requirement state [Low, Medium, High]

Due to the cyclical nature of the offshore market, the market state is assumed to follow a sinus

function with a seven-year period. Some stochastic is added in the period and as drift to make

the market state exogenous. Figure 9.1a presents ten sample realisations of the market state. As

seen, it is generally a low market state in years 2-4, and a high market state in 5-8. The market is

expected to drift upward in the future.

The technical requirement state (TRS) is modelled as a Markov process with three levels: low,

medium and high. It is assumed that the requirement state is low when the illustrative case

begins. The probability of transition from low to low is 0.7, from low to medium is 0.3, from

medium to medium is 0.9, from medium to high is 0.1, and from high to high is 0.1. Thus, if

the requirement is increased it is assumed to never be reduced again. Therefore, the technical

requirements are modelled with the belief that there will be stronger technical requirements in

the future (figure 9.1b).



CHAPTER 9. ILLUSTRATIVE CASE 103

(a) Market State. 1-6 represents the six discretised
market states presented in table 9.6

(b) Technical requirement state. 1-3 represents the
three discretised states presented in table 9.6

Figure 9.1: 10 simulations of the market state and technical requirement state. Year 2 represents
the first year after the initial 5 year contract ends.

9.3.2 Modelling Decisions

The decision states represent decisions the shipowner can do to alter the state of the system.

Depending on the current state of the system, a decision can be made at the beginning of each

year. The decision made influences which state the system will go into (figure 9.2). The manager

can decide (i) the design configuration (ii) which strategies to follow (i.e short- or long-term

contract, and sell) and (iii) which missions to take.

9.3.3 Transition Function

The transiting function, which determines which state the system transits into, is dependent on

the current system state, decision made, and exogenous information revealed to the decision

maker after the decision is made. The transition function contains one deterministic and one

stochastic part. The probability of transitioning between design states and strategy states are

deterministic, and fully dependent on the decision made (ref. section 9.3.2). The probability of

transitioning between market states and technical requirement states are exogenous informa-

tion to the decision maker (ref. section 9.3.1), and independent on the decision chosen. The

concept behind the transition function is illustrated in figure 9.2.
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Figure 9.2: Illustration of the transition function in the illustrative case. P = probabilistic transi-
tion, D = deterministic transition

9.3.4 Model Flow

Figure 9.3 illustrates the model flow. The shipowner makes all his decisions one year prior to the

current contract ending, which are immediately implemented the year after they are made. If

the decision is to retrofit the vessel, this will result in a switching time reducing the number of

days in operations. If the decision only is about which strategy and mission to take the vessel can

immediately start operating. As previously noted, the time spent on switching is only dependent

on the level of changeability incorporated into the model. This is further treated in the section

to come.

Figure 9.3: Illustration of the model flow.
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9.3.5 Objective Function

Based on the knowledge gained from the initialisation phase, the objective should be to find

the policy that maximises net present value (NPV) of the vessel, v , over its entire life cycle (t =

[0,1,2, ...,T ]). Only monetary value is considered, and assumed to be a factor of the revenues

received from operations, subtracted the capital expenditures. The capital expenditure is as-

sumed to only include building costs and switching costs. The following equation illustrates the

NPV calculations for a specific vessel, v .

N PVv = Bui ldi ng costv −
∑
t∈T

Revenuet −Swi tchi ng costt ,v

(1+ r )t
(9.1)

In contrary to revenue, the two cost factors are assumed to be independent of time. Both cost

and revenues are assumed to incur at the beginning of each time period. The building cost, in

addition to the first year’s revenue and switching costs are therefore not discounted. Note that

a large discount rate, r , reduces the impact of future revenues and costs compared to the initial

ones. In general, an NPV greater than zero indicates that the investment is profitable. The dis-

count rate was set equal to the shipowners weighted average cost of capital (WACC) estimated to

be 8%1. This basic cost structure disregards important expenditures related to operations, voy-

age and maintenance. This would have been important to include in order to value the vessel

exactly.

Estimating building costs

The building cost is estimated using equation 9.2, in which kbui ldi ng cost is a scaling constant

expressing the cost per lightweight of platform design, set equal to 8[k$/MT ]2. W l s is the

1rW ACC = E
E+D rE + D

E+D rD , where D and E is the market value of the shipowner’s debt and equity, respectively.
Debt-equity ratio is assumed to be 60%. rE = 17.4% and rD = 2.3% is the equity cost of capital and debt costs of
capital, respectively. The calculation is presented in appendix E. This estimated was based on the assumption that
the risk of the investment is equivalent to the average market risk of the shipowner’s investment, such that the
investments cost of capital can be assessed based on the risk of shipowners firm. This assumption holds as the
vessel investment is the same line of business as the rest of the shipowner’s firm. The second major assumption
is that the Dept-Equity ratio is constant which seldom hold as firm’s increases their dept to gain advantage of tax
shields. The final major assumption is that the market is perfect, stating that there are no corporate taxes, agency
costs, financial distress. The WACC reflect the overall risk for debt and equity holders. See Berk and DeMarck (2014)
for more on this.

2Obtained from Rehn et al. (2017b)
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lightweight of the platform design without any topside equipment installed , I (v) is the set of

topside equipment installed, and Cost D f C is the additional cost to give the vessel a specific

degree of changeability. The vessels lightweight is calculated using the scaling constant 0.23

[kg /m3]3 stating the lightweight of the platform design per length × breath × depth.

Bui ldi ng costv = kbui ldi ng cost ∗wl s + ∑
i∈I (v)

Cost Inst al l
i +Cost D f C (9.2)

Estimating revenue

Function 9.3 expresses the revenue for a specific design configuration dt , at time step t .

Revenuet = (OpDay s − t i me swi tch
dt−1,dt

)∗ max
mt∈Mt ,dt

(Rate(mt ))∗ s f (st ) (9.3)

where OpDay s is the number of days in operation each year (assumed to be 300 days),t i me swi tch
dt−1,dt

is the switching time between vessel configuration dt−1 and dt . dt−1 represents the previous de-

sign configuration, while dt represents the current design configuration. If no switch occurred

between t−1 and t , the switching time is zero. Rate(m) is the day rate for operating contract m.

The rate is assumed to be normal distributed with a mean and standard deviation that generally

increases with the state of the market. s f (st ) represents the scaling factor which is dependent

on the length of the contract taken (i.e. strategy chosen at time t (st ). A long-term contract is

assumed to have 20% lower rates than a short-term contract. Note that a vessel can only take a

single contract per year.

If the vessel is sold, this is counted as revenue. The selling cost is dependent on the state of

the market and the building cost. For instance, it the market state is low (-) it is assumed that

the vessel will not be sold as any other are in need for a vessel when there are few contracts to

take. If the market is low, the shipowner gets 10% of the building cost, and if the market is high

(+) the shipowner get 70% of the building cost.

3Obtained from Rehn et al. (2017b)
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Estimating Switching costs

Equation 9.4 expresses the cost of switching from the previous design configuration, dt−1, to the

current dt , for the specific platform design under consideration v .

Swi tchi ncostt ,v = ∑
r∈R(dt−1)

f DFC (v)
r ∗Cost Remove

r + ∑
i∈I (dt )

f DFC (v)
i ∗Cost Inst al l

i (9.4)

Cost Remove
r is the cost of removing topside equipment r , and Cost Inst al l

i is the cost of purchas-

ing and installing topside equipment i . These numbers are calculated based on the purchase

price of the various topside equipment, and factors to account for installation and removal.

The numbers are based on reference vessels4. R(dt−1) and I (dt ) represents the set of topside

equipment that needs to be removed (R) from design configuration dt and installed (I) on de-

sign configuration dt for the design platform v to change from configuration d1 to d2. f DFC· is a

factor that adjusts the installation cost and removal cost based on the cost of equipment i , and

the platform vessels degree of changeability DFC (ref. table 9.2)

9.3.6 Results From the Development Phase

Following the MDP methodology presented in section 8.2: To solve the illustrative case, the Q-

learning algorithm was first run for 5 000 000 iterations for each vessel alternative to obtain their

life cycle policy. The policy indicated which action to make for each state-time configuration.

Secondly, this policy was used as an input in a life cycle simulator to analyse the outcome of the

policy. For each vessel alternative, 1000 life cycle simulations was performed. As the policy is a

matrix with dimensions 648x10 for base design I and 1512x10 for base design II, the policy is too

large to present in its whole. Therefore, an excerpt of the policy for vessel 2 is presented in table

9.7. Remember, vessel 2 represents platform design I with level of changeability 1 (ref. table 9.4).

The policy states which action to take for each state it encounters over its lifetime, represented

in table 9.8. As seen, if vessel 2, in year 4, has design configuration 2, operating on a short-term

contract in a medium-low (ML) market, with a high technical requirements (H) (i.e. it is in state

4I am thankful to Jose Jorge Garcia Agis for providing me with these numbers
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nr. 63 of 648), the policy states that the shipowner should exercise action 34. From table 9.8, one

sees that this action represents a change to design configuration 12, in addition to take short-

term contracts. Retrofitting to design nr. 12 is a large operation, for which the accommodation

is increased to 400 persons, and ROV and moonpool are installed. However, going back to table

9.7, one sees that if it rather is year 6, the shipowner should perform action 26, representing a

change to design configuration 9, in addition to take long-term contracts. Retrofitting to design

nr. 9 only includes increasing the accommodation capacity to 400 persons. Note that year 1 in

the table represents the first year a decision must be made, i.e. year 4 in the vessel’s life cycle.

Thus, year 10 in the table represents year 14 in the vessel’s life cycle. Remember, the decision is

made one year prior to its execution.

Table 9.7: Excerpt of the policy for vessel 2

Table 9.8: Presentation of the actions in the policy for vessel 2, presented in table 9.7

Following the process presented in section 8.2, the policy obtained from the Q-learning algo-
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rithm is used in the life cycle simulation for further analysis. The state entry plot5 presented

in figure 9.4a indicates the likelihood for which vessel 2 is to enter a particular state thought its

life cycle. The vessel has never encountered the states with the dark purple colour, the lighter

the colour the more times the state has been visited. The figure is quite unreadable because of

the vast number of different states the system can encounter, leading most of the figure to be

dark purple. As also seen in figure 9.4b6, most of the 648 possible states are impossible to en-

counter due to how the market and technological development is modelled, and how the policy

is formed. From the figure, on see that the vessel’s path from years 2 to 6 is to be expected with

a high likelihood. However, after that there is great uncertainty related to how the dynamics

will change. However, figure 9.4b not only states the number of alternations the vessel or the

shipowner can take, which are deterministic, but also the number of alternations in forced by

the state of the market and technology. Note that, in contrast to the tables above, these figures

starts from year 2, representing the first year affected by the decisions after the initial contract

ends (i.e year 5 in the vessel’s life cycle). Thus, year 11 in the figures represents year 15 in the

vessel’s life cycle. This is how all figures and tables to come are structured.

(a) State entry plot (b) Numbers of different states visited

Figure 9.4: The state entry plot and a plot over the number of different states visited per time
step. Output from the lifecycle simulation (1000 iterations)

Figure 9.5 presents histograms of the life cycle contribution for each of the six designs, and table

5Niese and Singer (2014)
6Note that figure 9.4b to some extent is equivalent to the filtered outdegree (Ross (2006)), as it calculates the

number of possible transitions the system can take in each time step
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9.9 present the values for the mean, standard deviation, maximum and minimum. The contri-

bution represents the present value measurement of a system costs and regards accumulated

through time. As seen, base design I have in general the best overall performance. This indicate

that installing additional crane capacity is beneficial over the system’s life cycle. Further, one

sees that base design I have a higher life cycle value that base design II. The best vessel over all

is vessel 1, followed by vessels 2 and 3. The worst is vessel 4. In addition, one sees that life cy-

cle value for vessels with changeability level 1 are higher than the ones with changeability level

2, however, the difference is negligible. It is striking that vessel 1, the robust solution of based

design I, is the one with the highest expected life cycle value. This indicated that one has found

a good design for the expected future state that is included in the model. However, also note

that vessel 2 has a higher maximum value and a lower minimum value indicating a better con-

figuration to mitigate the vulnerabilities and exploiting the opportunities. The average number

of switches7 represents the average number of simulated system changes performed during the

vessel’s lifetime. It indicates the amount of management direct involvement related to handling

uncertainty, for which a higher number indicates more management involvement requires more

resources to be committed8. This information indicates that there are now correlation between

the average number of switches and the changeability level as the model is defined.

Table 9.9: Expected, standard deviation, maximum and minimum value of life cycle contribu-
tions [mill. USD] in the life cycle simulation (1000 iterations)

Base Vessel Mean Std Max Min Average nr. of switches
I Vessel 1 32.4 14.2 90.4 -23.6 1.22
I Vessel 2 24.5 16.8 93.3 -23.0 2.13
I Vessel 3 23.0 19.4 82.1 -49.8 1.99
II Vessel 4 7.5 19.3 85.7 - 66.2 1.79
II Vessel 5 17.1 19.7 71.5 -44.8 1.73
II Vessel 6 16.9 19.1 70.1 -60.5 1.89

7Referred to as the horizontal activity level by Niese and Singer (2014)
8This gives insight to the management dimension of changeability.
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Figure 9.5: Histogram of the life cycle contribution for vessels 1-6 [mill. USD] in the life cycle
simulation (1000 iterations)

Figure 9.6 presents frequency of occurrences for (a) market state (b) strategy state, (c) mission

state and (d) design state for vessel 2. Figure 9.6a presents the cyclical nature of the north sea

offshore market, indicating that the shipowner expects a low market when the initial contract

ends, and a high market in years 5-9 (i.e. years 8-12 in the vessel’s life cycle).This will be the same

for all vessels analysed. Figure 9.6b presents that the shipowner initially should take short-term

contracts, and then take long-term contracts as the market increases. Most long-term contracts

are taken in year 7 when the market usually is at its highest (high (+)), as this works as a hedge

for the expected low markets in the end of the analysis. Note that the option to sell the vessel

never is exercised. The life cycle strategies for vessels 1-6 are presented in appendix G, show-

ing that the life cycle strategies are more or less similar for all designs. Figure 9.6c presents that

the shipowner most often continues on a ODS contract after the initial five years ODS contract

ends. Later, OPS, ACC and OAS - the tree missions with the least requirements - usually is taken.

This might be because the technical requirements tend to increases in the end of the life cycle,

making the more high-tech requiring missions harder to take. The expected increase in techni-

cal requirements is in line with figure 9.1b. Figure 9.6d presents which design that most often

is switched to for each year. For the first three years after the initial contracts ends (years 2-4),
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(a) Market State (b) Strategy State

(c) Mission State (d) Design State

Figure 9.6: Frequency of occurrences for market state, strategy state, mission state and design state for
Vessel 2 in the lifecycle simulation (1000 iterations)

design nr. 1 is always kept. However, as the time passes by, the shipowner usually performs

reconfiguration. In declining order, the shipowner most often reconfigured to design nr. 11, 3

and 9. The specifics of these vessel configurations are found in table 9.8. Both designs nr. 11

and 3 has installed ROV capability, but design nr. 11 also has an accommodation capacity of 400

persons, in contrast to the 250-person capacity of design nr. 3. Retrofitting to design nr. 9 only

includes increasing accommodation capacity to 400 persons. This could indicate that it might

be beneficial to have ROV capacity from the beginning, and that the shipowner also could con-

sider increasing the initial accommodation capacity.
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Figure 9.79 compares the mission selected for vessels 2 and 4. As known, both vessel 2 and

vessel 4 have changeability level 1, however, while vessel 2 is from base design I, vessel 4 is

from base design II. Comparing figure 9.7a and figure 9.7b, one sees that while vessel 2 mostly

continues with ODS after the initial contract ends, vessel 4 often ends up with taking OPS and

OAS contracts. This is probably because vessel 4 has less capabilities installed than vessel 2, and

are therefore often forced to take contracts with less technical requirements. These contracts

are often associated with a lower reward.

(a) Vessel 2 (b) Vessel 4

Figure 9.7: Frequency of mission selections for vessels 2 and 4

9.4 DSP Phase III & IV: Implementation and Monitoring

From the results presented in the previous section, the shipowner decided to build a vessel with

an accommodation capacity of 250 persons, main crane capacity of 400 tonnes, in addition to

installing a ROV.

Table 9.10: Summary of design configuration for the chosen vessel

L [m] B [m] D [m] DfC [-] ACC [persons] MC [tonnes] ROV [-]
120 25 10 1 250 400 Yes

Beside the ROV installed, the chosen vessel is similar as vessel alternative 2 presented earlier.

9The same figures for all vessel alternatives are presented in appendix G. These figures are the same for vessels
with the same base design
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However, as the results in the previous section indicated a desire to install ROV capacity over

the vessels life cycle, the shipowner decided to install in right away. This increase the number

of different missions the shipowner can compete for in the future, especially as the technical

requirements are expected to increase. Even though the results section showed indicated a high

value of increasing the accommodation capacity to 400 persons, the shipowner decided not to

do so in the production phase. Instead, he decided to have the deck structure reinforced for

later having the opportunity to add this capacity more cost and time efficient. This correspond

to having changeability level 1 in the design. Even though incorporating changeability level 1 in-

creases the building cost, it also reduce the cost and time needed if the accommodation capacity

is later installed. Both installing addition ROV capacity and preparing for a further increasing in

accommodation capacity represents an active managerial approach for hedging this investment

for future uncertainty. The following table summarises the configuration of the chosen vessel.

As the life cycle policy differs for each vessel, the Markov decision process methodology was

also run for the chosen vessel alternative. The policy then obtained represent the contingency

plan the shipowner is to follow in order to maximise the investment’s expected life cycle value.

This policy was then used in the life cycle simulation to analyse how the chosen vessel would

perform for the given policy.

Table 9.11: Example of one life cycle realisation for chosen vessel alternative

Figure 9.11 presents one lifecycle realisation for the chosen vessel by following the contingency

plan (i.e. policy). This figure therefore illustrates how the shipowner would circulate in between

the implementation phase and the monitoring phase in the Design-Strategy Planning frame-
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work. Note that this table starts in year 1, which represents the first year the shipowner is to

take an action (i.e. the 4th year in the vessels lifecycle). As seen in the figure, the shipowner ex-

periences a cyclical market, and a slowly increase in technical requirements. To cope with this

dynamic, the policy obtain from the Q-learning algorithm states that the shipowner should start

off by keeping the initial design configuration (design nr. 1), before changing to design nr. 5 in

year 5. This switch represents increasing the accommodation capacity from 250 persons to 400

persons. Luckily, the shipowner has already prepared for this retrofit by initially reinforcing the

deck. This reduce the cost and time needed to perform the switch. Further, the policy states that

the shipowner should take short-term contracts in the first four years, before taking long-term

contracts for the reminder of the vessel’s life cycle. Over its life cycle, the vessel operates a num-

ber of different missions, such as offshore aquaculture support (OAS), offshore accommodation

(ACC), offshore platform supply (OPS), and offshore decommission support (ODS). In this par-

ticular life cycle realisation, the shipowner earned 44.8 [mill. USD]. Note that the contribution

is 0 in years 6 and 7, and in years 9 and 10 because the contribution obtain in these years are

accumulated to years 5 and 8, respectively.

Table 9.12: Expected, standard deviation, maximum and minimum value of life cycle contribu-
tions [mill. USD] in the life cycle simulation (1000 iterations)

Mean [mill. USD] Std [mill. USD] Max [mill. USD] Min [mill. USD]
35.0 16.3 92.4 -18.2

As seen in table 9.12, the chosen vessel design had on average, for 1000 simulations, a life cycle

contribution of 35.0 [mill. USD], with a standard deviation of 16.4 [mill. USD], a minimum value

of -18.2 [mill. USD] and a maximum value of 92.4 [mill. USD]. Comparing this to the values for

the first six vessels analyses presented in table 9.9, it seems like the chosen vessel is in fact a good

alternative. It has the highest average life cycle contribution, the highest minimum value (which

is good), and the second-best maximum value. It also has the second-best standard deviation

(16.3 [mill. USD]), indicating reliable results of the mean value.
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Chapter 10

Discussion

10.1 Discussion of Research Contributions

The objective of this thesis was to contribute in developing frameworks and quantitative meth-

ods to support uncertainty management in conceptual design of engineering systems, with the

focus on offshore vessels.

The thesis did so in four ways. First, by presenting a literature review over aspect related to

the complexity and uncertainty affecting engineering systems. The review highlighted that un-

certainty is as much related to opportunities as it is to vulnerabilities, and that an active man-

agement approach is necessary to mitigate the vulnerabilities and exploit the opportunities.

Secondly, by proposing the Value-Aptitude-Design-Strategy (VADS) framework, stating that it is

the dynamic relationship between aptitude, design and strategy that contributes to the strategic

system’s ability to deliver stakeholder value. We propose the term strategic system, comprising

a specific design-strategy configuration, as a set of distinct devices used to handle uncertainty.

Thirdly, by proposing the Design-Strategy Planning (DSP) framework, guiding the lifelong pro-

cess of initiating, developing, implementing and monitoring strategic systems. DSP highlights

the importance of dealing proactively with uncertainty for which stakeholders incorporate real

(in and on) options. The real in options are related to designing for changeability, and the real on

options are related to managerial strategies. Finally, by presenting and illustrating how a Markov

Decision processes (MDP) methodology can be used to support the Design-Strategy planning
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framework. Together, the DSP-MDP framework represents a comprehensive toolkit for manag-

ing value robust strategic systems. The following figure presents how the different aspects of

this thesis are interrelated.

Figure 10.1: Scope of Thesis and Research Contributions

10.1.1 Discussion of the Literature Review

The literature review highlights uncertainty management as an inherently challenging task. Es-

pecially the combination of high system complexity, long lifetime, in addition to the rapidly

changing commercial and operational environment makes engineering systems suffer under

uncertainty. This is supported by the 135 offshore vessels currently in layup on the coast of Nor-

way, as one can assume this is not solely due to the crack in the offshore market, but also an

effect magnified of the inability of maritime decision makers to grasp and handle uncertainty.

In line with the finding of Strøm and Christensen (2016), the author points out that too many

decisions in the maritime industry seems to be based on intuition. As intuition is flawed, a

statement especially true for the complex dynamic context of the maritime industry, the author

points of the need to continuous developing frameworks supporting maritime decision makers.

Uncertainty management has almost solely focused on preventing the likelihood of technical

failures, neglecting other aspects, such as the operational and commercial sources of uncer-

tainty. This has led to robust vessel designs, often with multi-functional capacity, aiming at
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being reliable regardless of the outcome. This represents an asymmetric view of uncertainty, in

which the focus is on the vulnerabilities while the opportunities are forgotten. It even seems

like uncertainty often is ignored, as many maritime decision makers might think that uncer-

tainty management is impossible after all. In line with McManus and Hastings (2005), the au-

thor states that to fully deal with uncertainty, managers should take an active approach, thereby

incorporate measures to both mitigate the vulnerabilities and exploit the opportunities. While

the engineering domain recognises incorporation of the lifecycle property changeability (i.e.

flexibility, adaptability, robustness and agility) as means for handling uncertainty, the manage-

rial domain recognises strategic flexibility. The proposed VADS and DSP frameworks aims at

supporting uncertainty management, by combining the ideas from both the engineering and

management literature.

10.1.2 Discussion of the Value-Aptitude-Design-Strategy Framework

The VADS framework extends the traditional system boundary in engineering, from solely fo-

cusing on the relationship between design and its surroundings, to include the managerial di-

mension comprising how stakeholders strategically utilise the design. Thus, while the literature

is primarily focusing on architecting value robust physical systems, this thesis emphasises the

need for identifying value robust strategic systems.

Enhancing stakeholder value is the key objective in the VADS framework. This is in line with

Keeney (1992), stating that value is what one care about and should therefore be the driving

force behind every decision made. Unfortunately, decision makers have too narrow view on

value. To fully grasp the value of an investment, decision makers must recognise its total util-

ity in which both tangible and intangible values are considered. This also serves as a critic to

this thesis, as the investment decision presented in the illustrative case was solely evaluated on

monetary value. This was mainly because the author has little knowledge of utility theory, and

the literature still does not provide clear procedures for how to measure utilities. Crucial factors

that are especially difficulty to incorporate are social, personal, political that are hard to quan-

tify. As the industry slowly realises that there is more than just monetary value to consider, such

as safety and environmental issues, the author believes that more investments in the future will
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be evaluated based on a more comprehensive value perspective.

A key aspect of the VADS framework is the recognition of stakeholders’ aptitude. Even though

literature recognise the concept of changeability and lifecycle strategies for managing uncer-

tainty, it often fails to recognise their dynamic interplay and stakeholders’ ability to utilise it. As

many decisions are one-of-a-kind, decision-maker lacks specific experience with taking them,

thereby drastically affecting their ability to take solid decisions. Without the ability to recognise

the emerging vulnerabilities and opportunities, without being aware of strategic options in the

design and/or strategy, without the ability to select the best course of action, or having the nec-

essary resources to do so, stakeholders fail to manage the system. If that is the case, even the

most flexible system and best strategies fail to be successful. Further, if recognises, stakehold-

ers’ aptitude is often seen as a constraint for the decision problem. However, aptitude should

rather be considered as a part of the solution to find. One of the basic questions to be answered

is: what do my organisation need of money, experience, knowledge, etc. to best be prepared to

handle the dynamic context and needs, and can it be obtained?

In the VADS framework, the design represents the physical aspect of the strategic system. Sup-

ported by literature, this thesis recognises designing for changeability as a valuable approach

handling uncertainty by enabling the system to alter its form, function and/or operations. While

a change in form and functions are direly related to alterations in the physical system (e.g. ves-

sel), changes in the operations are related to the manager’s operational strategies. Incorporating

robustness serves as a passive approach for handling uncertainty, while flexibility, adaptability

and agility are relating to the change in system form, serving as an active approach. So far, flexi-

bility has been the main topic related to changeability in the literature. However, incorporating

flexibility is not enough. To stay successful in rapidly changing context and needs, systems need

the ability rapidly and cost efficiently change. Stakeholders should therefore to a larger extent

focus on incorporating agility. Quick response in all levels of the organisation is essential to stay

competitive in a highly dynamic business environment, in which slow movers are exposed to

the entire downside of uncertainty, but is seldom able to take advantage of the upside. Thus,

it is not only necessary to focus on the agility in the physical system, but also how effective the



CHAPTER 10. DISCUSSION 121

organisation can utilise it.

The VADS framework recognises the stakeholder’s role of managing the design through its life-

time using strategies to alter its response to changing context and needs. It is an important

dynamic interplay between design and strategy (i.e. the strategic system), as an active manager

needs changeability to strategically meet changes in context and needs. Developing lifecycle

strategies should be recognised as an ongoing process, in which managers constantly search for

new ways to gain competitive advantage. Strategic plans should be incorporated in all levels

of the organisation, and aligned towards the same objectives. It is essential to understand that

having an active approach requires more management involvement. In contrast to a flexible

design, a robust design is characterised by its ability to withstand changes in context and needs

without a lot of managerial involvements. To reduce the need for managerial involvement, one

can invest in a more adaptable design which changes itself. However, this comes with a high

upfront cost and is often difficult to do in practice.

10.1.3 Discussion of Design-Strategy Planning

Throughout the project it became evident that the key for successful uncertainty management

is not only the quantitative tools supporting the decision maker, but also the frameworks in

which they are within. Based on this, the author decided to create the Design-Strategy Planning

framework, building on the VADS principles.

In contrast to the traditional approaches for uncertainty management, this framework recog-

nises that the future cannot accurately be foreseen. DSP highlights the importance of dealing

proactively with this uncertainty by incorporating the idea of planned adaptation, for which

stakeholders plans for mitigating future vulnerabilities and exploiting future opportunities by

incorporating real (in and on) options. The real in options are related to designing for change-

ability, and the real on options are related to managerial strategies. Secondly, as these future

changes in context and needs are uncertain, the contingency plan only commits some actions

in the design phase, while others are prepared in the response to various trigger information.

To do so, DSP incorporates a monitoring system to locate trigger situations which require re-
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sponse. The type of response is pre-defined in the contingency plan. The contingency plan

must be adaptable to efficiently cope with the range of scenarios that might occur. This stands

in contrast to the current practice, as the literature often only focuses on the value of the flex-

ibility itself, disregarding the fact that the organisation must plan for the adaptation and have

the ability to execute it.

Starting to recognise the managerial dimension might be a complicating process for engineers,

as engineers traditionally only have considered the technical aspects. A key is therefore infor-

mation sharing between the designers, engineers, owners, operators and analysts, with the goal

of ending up with a complete picture on the commercial, operational and technical aspects of

the problem. To do so, the owners must share their objectives, articulate what they value and

their aptitude. The operators must share their technical and operational experience, the ana-

lysts must share their projections about the future, and the designers/engineers must share their

knowledge about the physical system and what design solutions that are technically feasible and

practical.

10.1.4 Discussion of the Markov Decision Processes Methodology

One of the key objectives of this thesis was to contribute in developing quantitative methods to

support uncertainty management of engineering systems. The author therefore decided to pro-

pose Markov decision processes methodology, adapted from Niese and Singer (2014), to support

the DSP framework.

A key benefit is that this methodology can capture the dynamic interaction between the change-

able system designs and managerial strategies. With great flexibility, the framework includes

both decisions related to the physical design (i.e. real in options) and stakeholder decisions (i.e.

real on options), giving an extensive insight into the decision problem. This stands as major

benefits with MDP as a quantitative tool for supporting DSP as it is able to capture the fact that

managers use changeability to alter the system response to uncertainty.

Backward dynamic programming (BDP) is recognised as the standard form of solving MDP. Due
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to the number of disadvantages associated with this solution method, such as the course of di-

mensionality and the course of modelling, the author chose to use Q-learning, one of the basic

methods of approximate dynamic programming, instead. In general, approximated dynamic

Programming (ADP) stands as a powerful solution method able to cope with many of the draw-

back of BDP, thus more applicable real, complex problems. Particularly, the author is fond of the

fact that one gets rid of the need to have probability transition functions, as Q-learning rather

uses sample paths. Compared to BDP, a drawback with ADP is that it does not output the optimal

policy, rather an approximation. It therefore must be used with caution. However, the author

argues that the solutions always will be based on a set of weak assumptions and simplifications,

such that the optimal policy is in reality just an approximation. Thus, if the ADP satisfactory

approximated the real problem, it could in fact be more confident in the approximation.

Despite modelling flexibility, there is still a trade-off between the realism of the model and its

complexity. The methodology turns out to be a black box, for which it is hard to interpret the

results. As a policy is based on the knowledge of millions of lifecycle iterations, it is hard, if

not impossible, to fully understand why certain decisions are chosen to be incorporated into

the policy. Thus, trust in the generic model and the input parameters are of high importance

to trust the output results. Unfortunately, due to the complexity associated with ocean engi-

neering systems, it is difficult to make trustworthy models, capturing the relevant aspects of the

system, providing stakeholders with results they believe in. Uncertainty related to the model

validity could in fact make the decision harder to make.

In order to perform solid analysis, one needs extensive insight into the problem in addition to

the fact that MDP requires experience to be applied. While this thesis has highlighted the draw-

backs of forecasting, the MDP methodology still needs forecast data as input. As this input is

highly uncertain, what is then the point of making a detailed policy? This is probably one of the

greatest drawbacks of using MDP in the maritime industry. If MDP is used in other sectors, like

in finance where stochastic processes to a larger extent is able to accurately predict the future

MDP has great value, however, in the maritime industry this is not the case, and the application

of the policy itself limited.
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10.1.5 Discussion of the Illustrative Case

In relation to the illustrative case, there are a myriad of other aspects to discuss. One could for

instance probably write an entire thesis solely focusing on the invalidity of the assumptions.

However, the author chooses not to discuss the underlying assumptions as the objective was

not to make the case as realistic as possible.

The purpose of the illustrative case was two-folded. First, it served as an illustration of the appli-

cation of DSP and to make the ideas of the process more understandable, doing so by illustrating

the initialisation, developing, implementing and monitoring phase. Secondly, it served as an il-

lustration of the use of Markov decision processes. Thus, the author believes, and hopes, that

the objective of the illustrative case is met.

However, one aspect should be highlighted: From the results, the policy generated and the over-

all trends in the strategic decisions seem to be valid. However, when it seems odd that the vessel

1, the robust alternative of platform designs I, was identified as the solution with the highest

value as one could expect the more changeable options (e.g. vessels 2 and 3) to be more able

to adapt to the dynamics in the model. Further, it is also odd that there are no logical patters

indicating the value of incorporating different levels of changeability. One could expect the de-

signs with changeability level 2 to be more valuable than the design with changeability level 1,

and the design with changeability level 1 to be more valuable the robust design. However, this

is not the case, and it is hard to understand why. This highlights one of the key difficulties with

the ADP method. Its complexity, especially the temporal aspect and the tremendous number of

iterations, makes it hard to understand the output of the model, and to find mistakes if there are

any. This is probably also the case for more experiences analysts the author.

10.2 End Discussion

This thesis attempted to make a holistic quantitative model, capturing both the operational and

functional domain of changeability. This extended previous work on this field, which mostly

has considered once at the time. While real options analysis has centred around the strategic
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decision (i.e. operational domain), Epoch-Era analysis has focused on the physical domain of

changeability (i.e. the functional domain). However, the author asks whether this actually solves

the problem.

A challenge with many quantitative methods, such as Markov decision processes, is that they

are inherently advances and found hard to apply for practitioners without in-depth knowledge

of the method. It is essential to remember that a quantitative model always will remain as just a

model of the real-world problem, and therefore just a simplification. One could believe that the

higher the model fidelity the higher the model volatility, however, increasing model fidelity often

leads to a higher need on assumptions. Thus, even though the model might end up with more

detailed results, this is in fact not produce any more real insight. This is a fundamental aspect

of quantitative analysis, that often is forgotten. Further, to end up with a conclusion record-

ing the real problem one must interpret the model conclusions. This highlights the need for a

human-model interaction. In line with the conclusion of Whitecotton et al. (1998), one needs

a combined approach, for which the model objective information obtained from the model is

combined with the decision maker(s) intuition and information outside the scope of the model

to end up with a conclusion. Such a combined approach has the potential for being the most

effective Simon (1987)

In relations to this, in order to get logical results one need reliable data. This is a key challenge

with every quantitative tool attempting to model the real problem as realistic as possible, as

there seldom are reliable data to obtain. For instance, how much does it cost to change accom-

modation from 100 people to 400 people, and how much time does it take? As this information

is vital for the analysis, but cannot yet be obtained, on can never trust the model output. Fur-

ther, while the literature, and the author himself, encourage more analysis to incorporate social,

personal and political factors into the model, there are currently no procedures for doing so,

especially when the analysis is for engineering systems operating over two decades. One could

ask whether these analyses are after all useful. Because, as it is impossible capture all aspects of

the problem, it is more likely than not, the future will be different than the model foresees.
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However, most of the value of performing such analysis is not necessarily in the outputs itself,

rather the process of identifying and modelling the problem. This process forces the decision

makers to focus on what is their objectives are, what their major sources of uncertainty are, what

their aptitude are, what their strategies are, etc. Thus, despite stating that it is too complex to

model offshore cases with the adequate validity to base the decisions solely on it, it might still

give insight useful to consider when making such investment decisions. However, rather than

trying to create a holistic model that captures all the aspects of the real problem, one strategy

should rather be to divide the problem into parts, thereafter solving them with adequate solu-

tion methods.

In general, a fundamental issue with analysis engineering systems is their long lifetime that

stretches over decades. This make is difficult to evaluate the impact of early design decisions.

The authors have not seen any relevant studies which have tracked the impact of such mea-

sures, making it difficult to claim the benefit of incorporating expensive measures for handling

uncertainty in design. This stands as a key difficulty with designing for changeability, as while

the implementation cost is high, the benefit is highly speculative and, at its best, has a long pay-

back period.

The amount of information currently available for decision-makers might seem overwhelm-

ing, and new methodologies just enhance this overload. Not all this information is to the same

degree relevant, and a key aspect of a decision-making process is the selection of which informa-

tion to consider, to which degree each piece of selected information should weight, and how this

is used to decide. Supported by Forrester (1977), the author states that the difference between

a good manager and a bad manager lies in this point. Therefore, a key dilemma in developing

new methodologies is that even though the results are valid and manager is aware of the results,

he might choose not to consider it at all.
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Conclusion & Further Work

11.1 Conclusion

This thesis contributes to the research by developing frameworks and quantitative methods to

support uncertainty management in engineering systems, focusing on offshore vessels. The

proposed Value-Aptitude-Design-Strategy framework gives important insight into the dynamic

interplay between stakeholder’s aptitude, the design’s configuration and stakeholder’s strategy,

and how these factors contribute to the strategic system’s ability to deliver stakeholder value.

While the literature is primarily focusing on architecting value robust physical systems, this the-

sis emphasises the need for identifying value robust strategic systems. The proposed Design-

Strategy Planning (DSP) framework serves to support the process of developing, implementing

and monitoring strategic systems, with the means of handling uncertainty. DSP is a lifelong

process, which should be initiated in the conceptual design stage for engineering systems. Sup-

ported by the Markov decision processes methodology, DSP represents a comprehensive deci-

sion analysis framework.

While this thesis attempted to make a holistic quantitative model to handle uncertainty, that

capture both the operational and functional domain of changeability, the author must ask whether

this actually solves the problem. It seems that such as holistic model just ends up becoming too

complex to make valid results. However, most of the value of performing such analysis is not

necessarily in the outputs itself, rather the process of identifying and modelling the problem.
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Because such a model forces the decision makers to focus on what their objectives are, what

their major sources of uncertainty are, what their aptitude are, what their strategies are, etc. The

author therefore highlights the need to continuous developing frameworks to support the in-

herent challenging task of handling uncertainty.

The knowledge from this thesis can be important in life cycle management of high-value, com-

plex, engineering systems, with long lifetime, facing high degree of exogenous uncertainty. Hope-

fully the proposed Value-Aptitude-Design-Strategy framework, Design-Strategy Planning and

the Markov decision process methodology will give valuable insight that enables maritime de-

cision makers to better handle uncertainty.

11.2 Further Work

This thesis emphasises the importance of continuing developing frameworks and quantitative

methods to support uncertainty management of engineering systems. To keep developing the

proposed frameworks, further research should collaborate with industry partners, especially fo-

cusing on finding which questions to answer in every phase of Design-Strategy Planning . Ex-

amples of questions of interest are: How is the strategic planning process performed today?

Which aspects of uncertainty are the most important to consider? What strategic decisions has

previously the largest impact? In general, academia should to a large extent collaborate with

the industry, as it is the industry that in the end can determine whether the proposed meth-

ods are applicable or not. Further, the proposed VADS and Design-Strategy Planning could be

compared with other similar concepts, to determine their strengths and weaknesses for differ-

ent problems and analytical situations. The author encourages researches to focus their effort

on developing and improving one single planning approach, and building up a more detailed

description on how the process should be followed.

DSP is a framework that can be supported by a wide range of different analytical tools. Inspired

by the work of Cardin et al. (2013), future work could identify which decision-support tools that

would be most applicable. The author especially encourages future research to (I) identify which
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sources of uncertainty that have the largest impact in different decision problems and what their

probability are (II) how these bests are to be quantitative modeled. Further, there are still a lot

to be done in the concept of utility theory. So, future researches are encouraged to better un-

derstand what stakeholders value, and how to build utility functions. Both in relations to the

modelling of uncertainty and utility, the author states that future research should try to make

simple models that are easy to implementation, preferably plug-and-play models. Too often

research ends up presenting complicated formulas that are impossible to apply on real engi-

neering problems.

The author did not compare the MDP methodology to other quantitative methods for analysing

changeability, such as Epoch-Era analysis and Real option analysis. A possibility for future work

can be to make a solid comparison on the strengths and weaknesses of each method for analy-

sis changeability, to get a better understanding for which problems each method is most useful.

Further, most of the work on changeability so far has been limited in valuing the impact on a

single/few design-strategy configuration(s). The author encourages more research to dive into

more complex, realistic problems in which there are a myriad of possible options, and not nec-

essarily a well-defined alternative.

Two issues should be the focused on in relations to the Markov decision support methodol-

ogy. First, the MDP community has not yet settled on a notational form. To further strengthen

this field, the author encourages a collaborative effort to agree on one form. This would make

it easier to communicate and spread knowledge, especially for practitioners new to this field.

Secondly, most school books on MDP only concern infinite horizon problems. However, due to

the non-stationary associated with the lifecycle of engineering systems, maritime practitioners

should focus on developing methods that incorporates the aspect of time.
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Appendix A

Pre-project Report

Background

The primary objective in conceptual vessel design is to identify value robust solutions (Brown-

ing, 2005; Gaspar et al., 2016), that is, vessels able to deliver high value to key stakeholders over

its entire lifecycle (Ross and Rhodes, 2008b). Unfortunately, due to the long lifetime, high sys-

tem complexity (Gaspar et al., 2012) and exogenous uncertainties (Erikstad and Rehn, 2015; Agis

et al., 2016) it is difficult, if not impossible, to identify which solutions that are in fact value ro-

bust, as the operating context, stakeholder’s needs, and even the design changes over time (Ross

and Rhodes, 2008b; McManus et al., 2007). Luckily, uncertainty can be managed and it is start-

ing to be recognized as a key for developing vessels that are able to both mitigate the vulnera-

bilities and exploite the opportunities (McManus and Hastings, 2005). In this regard, Erikstad

and Rehn (2015) state that there is still a need for quantitative methods to support uncertainty

management in the maritime industry.

Primary Objective

The primary objective of this thesis is to investigate how exogenous uncertainty should be man-

aged for ocean engineering systems, and developing frameworks and quantitative methods to

support this process.
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Scope of Work

The candidate should presumably cover the following main points:

• Present the concept of ocean engineering systems, and the complexity and uncertainty

related to these systems. Focus on how uncertainty can be managed.

• Present ‘-ilities’ as life cycle properties for architecting value robust systems. Focus on

changeability.

• Present the topic of lifecycle strategies for handling uncertainty.

• Present the relationship between changeability and lifecycle strategies.

• Present and discuss Markov Decision Processes (MDP) as a quantitative method able to

identify value robust solutions.

• Present a illustrative case from offshore vessel conceptual design, where scenario plan-

ning and different strategies of operations of offshore vessel is discussed and quantita-

tively assessed.

• Apply MDP on the presented case to identify value robust solutions.

Modus Operandi

Professor Bjørn Egil Asbjørnslett will be the supervisor at NTNU. The work shall follow the

NTNU guidelines for Master thesis work. The workload shall correspond to 30 credits.

Bjørn Egil Asbjørnslett

Professor/ Main Supervisor



Appendix B

Implications for Naval Architecture

Education

The objective of this note is to provide some of my thoughts on how the department of Marine

technology (IMT) could draw knowledge from my work presented in my project and master’s

thesis.

The goal of my works has been on learning frameworks and quantitative methods to support

decision making and uncertainty management related to ocean engineering systems (ES), fo-

cusing on the conceptual design phase. I strongly believe in this this topic because it is evident

that too many decisions in the maritime industry still is based on gut-feeling (i.e. intuition). As

intuition is flawed, every decision-maker should feel more secure about the decision if it were

based on a more rational approach. I therefore recognize decision support and uncertainty

management as an area in need-for-research, which should motivate the department to have a

stronger focus on this key area. Especially TMR4115 – Design Methods – and TMR4135 – Special

Vessel Design – are great courses to have a strong focus on this matter.

I will first point of that Markov decision processes (MDP) is a method beneficial to learn for

students of naval architecture. As a modelling and solution technique for sequential decision

problems, MDP can model and solve problems related to the life cycle of offshore vessels. In

general, this gives comparable insight as from the well-known Net present value evaluation,
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Real options analysis, Monte Carlo simulation and linear optimization (both deterministic and

stochastic). However, from my personal experience, MDP enables a more realistic model of the

problem. This is especially the case when approximate dynamic programming (ADP) is uses as

the solution approach, as this gets writ of the need for having transition probabilities. Further,

the key strength is the the Markov decision methodology is able to both includes both decisions

related to the physical design (i.e. real in options) and stakeholder decisions (i.e. real on op-

tions), giving an extensive insight into the decision problem. Before implementing MDP into

classes, the department should encourage more students to investigate this promising fields of

research, for instance starting with their project thesis. As the literature is extensive and there is

little experience with MDP at NTNU, I encourage students to pair up to collaborate on such a

project. The following book is the palace to start:

• Gosavi, a. (2009). Reinforcement Learning: A Tutorial Survey and Recent Advances. IN-

FORMS Journal on Computing, 21(2), 178–192. https://doi.org/10.1287/ijoc.1080.

0305

• Powell, W. B. (2007). Approximate Dynamic Programming - Solving the Curse of Dimen-

sionality (First). Hoboken, NJ: Wiley.

As stated by the Law of the instrument (Abraham Maslow): If the only tool one has is a ham-

mer, then everything looks like a nail. I therefore believe that any naval architect should have a

toolkit consisting of many quantitative methods, as each of them have different strengths and

weaknesses when applied on different problems. I therefore encourage students with interest

in this fields to consider taking the following courses outside IMT:

• TIØ4126 – Optimization and Decision Support for Industrial Business Planning

• TIØ4130 – Optimization Methods with Applications

• TIØ4150 – Industrial Optimization and Decision Support

• TIØ4145 – Corporate Finance

• TIØ4285 – Production- and Network Economics

https://doi.org/10.1287/ijoc.1080.0305
https://doi.org/10.1287/ijoc.1080.0305
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• TIØ4360 - Advanced Investment Analysis

• TMA2165 – Stochastic Processes

• TMA4285 – Time Series Models

Further, it is essential to understand that decision making is that this is an interdisciplinary

field of research. While the major focus at the department still is on the technical aspects of

engineering systems, one need to recognise the importance of the operational and commercial

aspects on the life cycle success of these systems. To capture all these aspects, students’ needs to

gain insight from literature related to finance, phycology, strategy, management etc. I consider

the following four books to be a suitable place to start:

• de Weck, O. L., Roos, D., & Magee, C. L. (2011). Engineering Systems - Meeting Human

Needs in a Complex Technological World. Cambridge, MA: The MIT Press.

• Edwards, W., Miles, R. F., and Winterfeldt, D. V. (2007). Advances in decision analysis: from

foundations to applications. Cambridge University Press

• Forrester, J. (1977). Industrial Dynamics. MIT Press, Cambridge. (Ninth). Cambridge, MA:

MIT Press.

• Khatri, N. and Ng, H. (2010). The Role of Intuition in Strategic Decision Making. Human

relations, 53(1):57–86.

• Lorange, P. (2009). Shipping Strategy - Innovating for Sucess (First). Cambridge, UK: Cam-

bridge University Press.

• Phillips, D. T., Ravindran, A., and Solberg, J. J. (1987). Operations research: principles and

practice. Wiley

• Skinner, D. C. (1999). Introduction to decision analysis: a practitioner’s guide to improving

decision quality. Probabilistic.

• Stopford, M. (2009). Maritime Economics (Third). New York, NY: Routledge.
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Illustration of the System Hierarchy for

Offshore Construction Vessels

Figure C.1: Illustration of the System Hierarchy for Offshore Construction Vessels (based on
(Levander, 2012; Ritchie, 2008; Pettersen, 2015)
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D.1 Adaptive Airport Strategic Planning

Figure D.1: Adaptive Airport Strategic Planning (Kwakkel et al., 2010)
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D.2 Taxonomy for Supporting Design of Flexible Engineering

Systems

Figure D.2: Figure presenting the five-step taxonomy for designing flexible engineering systems
(Cardin et al. (2013))
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D.3 Markov Decision Process Methodology for Assessing Sys-

tem Changeability

Figure D.3: Markov decision process methodology for assessing changeability (Niese and Singer,
2014)



Appendix E

Weighted Average Cost of Capital (WACC)

Calculations

Figure E.1: Weighted Average Cost of Capital (WACC) Calculations (Strøm and Christensen,
2016)
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F.1 Flowchart of Matlab Codes

The following figure presents the flowchart of the matlab codes and excel sheets used to form the

Markov decision process methodology. All the codes and sheets are provided in the appendix,

each containing a brief description of its use.
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F.2 Matlab - Input.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % This scrip contains and generates input data to the Q−learning Algorithm

3 % ( QLearning .m) and to L i f e Cycle Simulator ( LCSimulator .m) . Most of the

4 % date i s obtained from the excel f i l e "Case . x l s x " . The s c r i p t c a l l s upon

5 % the functions : "allcomb .m" , " Fix_Information . " and " Design_Compatibility . "

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7

8 %% Obtain Variable Design State Parameters

9 N_Var_Design = 6 ; % Number of variable design s t a t e parameters

10 N_ACC = 3 ; % Number of variable Accommodation (ACC) parameters

11 N_MC = 3 ; % Number of variable Main Crane Capacity (MC) parameters

12 N_LWI = 3 ; % Number of variable Light Well Intervention (LWI) parameters

13 N_ROV = 2 ; % Number of variable Remotely Operated Vehicles (ROV) parameters

14 N_PC = 2 ; % Number of variable Cabel laying equipment (PC) parameters

15 N_MP = 2 ; % Number of variable Moonpool (MP) parameters

16

17 %% Create Variable Design State Sets

18 Set_ACC = 1 :N_ACC; % Set ACC

19 Set_MC = 1 :N_MC; % Set MC

20 Set_LWI = 1 :N_LWI; % Set LWI

21 Set_ROV = 1 :N_ROV; % Set ROV

22 Set_PC = 1 :N_PC; % Set PC

23 Set_MP = 1 :N_MP; % Set MP

24

25 %% Fixed Design State Parameters

26 N_Fix_Design = 4 ; % Number of f ixed design s t a t e parameters

27 Length = 120; % [m]

28 Beam = 25; % [m]

29 Depth = 10; % [m]

30 DfC = [0 1 2 ] ; % Degree of Changeability (DfC) [−]

31

32 %% Specify S t a r t i n g State for Design

33 Start_Design = [2 2 1 1 1 1 ] ; % Representing base design ( I )

34 %Start_Design = [2 1 1 1 1 1 ] ; % Representing base design ( I I )
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35

36 %% General information

37 Lifetime = 10; % Length [ Years ] of l i f e t i m e considered

38 N_Design = length (DfC) ; % Number of v ess el s analysed

39 time_short = 1 ; % Length [ Years ] of short−term contract

40 time_long = 3 ; % Length [ Years ] of long−term contract

41 N_Space_Market = 6 ; % Number of possible market s t a t e s to encounter

42 N_Space_Mission = 9 ; % Number of possible missions s t a t e s to take

43 N_Strategy = 3 ; % Number of possible s t r a t e g i e s

44 OpDays = 300; % Days in operation per year

45 SDays = [70 30 2 0 ] ; % Days to perform switch based on DfC l e v e l

46 disc = 0 . 0 8 ; % Select Dissocunt Rate ( r )

47 gamma = (1/(1+ disc ) ) ; % Discount f a c t o r

48 % Probabi l i ty of wining a contract

49 probwin = [0 0.2 0 . 8 ; 0 0.3 0 . 7 ; 0 0.4 0 . 6 ; 0 0.5 0 . 5 ; 0 0.6 0 . 4 ; 0 0.7 0 . 3 ] ;

50

51 %% Physical Design State Requirements

52 N_Requirement = 3 ; % Number of l e v e l s for technical requirements

53 F_min = 1 . 5 ; % Freeboard c r i t e r i a [m]

54 GM_min = 0 . 1 5 ; % GM c r i t e r i a [m]

55 DA_min = 0 ; % Deck area c r i t a r i a [m^2]

56

57 %% Switching costs [ mil l . USD]

58 Switch_CM = c e l l ( N_Var_Design , 1 ) ;

59 Switch_CM { 1 } = xlsread ( ’ Case . x l s x ’ ,4 , ’D5: F7 ’ ) ; % ACC

60 Switch_CM { 2 } = xlsread ( ’ Case . x l s x ’ ,4 , ’D10 : F12 ’ ) ; % MC

61 Switch_CM { 3 } = xlsread ( ’ Case . x l s x ’ ,4 , ’D15 : F17 ’ ) ; % LWI

62 Switch_CM { 4 } = xlsread ( ’ Case . x l s x ’ ,4 , ’D20 : E21 ’ ) ; % ROV

63 Switch_CM { 5 } = xlsread ( ’ Case . x l s x ’ ,4 , ’D24 : E25 ’ ) ; % PC

64 Switch_CM { 6 } = xlsread ( ’ Case . x l s x ’ ,4 , ’D28 : E29 ’ ) ; % MP

65

66 %% Mission Requirements to each variable design parameter :

67 % (ACC, MC, LWI, ROV, PC, MP)

68 Requirement_Matrix = c e l l ( N_Space_Mission , 1 ) ;

69 Requirement_Matrix { 1 } = xlsread ( ’ Case . x l s x ’ ,2 , ’D5: I7 ’ ) ; % OSC

70 Requirement_Matrix { 2 } = xlsread ( ’ Case . x l s x ’ ,2 , ’D8: I10 ’ ) ; % IMR
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71 Requirement_Matrix { 3 } = xlsread ( ’ Case . x l s x ’ ,2 , ’D11 : I13 ’ ) ; % LWI

72 Requirement_Matrix { 4 } = xlsread ( ’ Case . x l s x ’ ,2 , ’D14 : I16 ’ ) ; % ODS

73 Requirement_Matrix { 5 } = xlsread ( ’ Case . x l s x ’ ,2 , ’D17 : I19 ’ ) ; % ACC

74 Requirement_Matrix { 6 } = xlsread ( ’ Case . x l s x ’ ,2 , ’D20 : I22 ’ ) ; % OCL

75 Requirement_Matrix { 7 } = xlsread ( ’ Case . x l s x ’ ,2 , ’D23 : I25 ’ ) ; % OPS

76 Requirement_Matrix { 8 } = xlsread ( ’ Case . x l s x ’ ,2 , ’D26 : I28 ’ ) ; % OAS

77 Requirement_Matrix { 9 } = xlsread ( ’ Case . x l s x ’ ,2 , ’D29 : I31 ’ ) ; % LU

78

79 %% Transition matrix for techncial requirements

80 TM_Requirement = xlsread ( ’ Case . x l s x ’ ,7 , ’B2 :D4 ’ ) ;

81

82 %% Changeability Cost Matrix .

83 Change_CM = xlsread ( ’ Case . x l s x ’ ,8 , ’B3 : G5 ’ ) ;

84

85 %% Dayrates for each mission for each market s t a t e

86 Dayrates_Data = c e l l ( 1 , N_Space_Market ) ;

87 Dayrates_Data { 1 , 1 } = xlsread ( ’ Case . x l s x ’ ,5 , ’D10 : E18 ’ ) ; % Low (−)

88 Dayrates_Data { 1 , 2 } = xlsread ( ’ Case . x l s x ’ ,5 , ’ F10 : G18 ’ ) ; % Low

89 Dayrates_Data { 1 , 3 } = xlsread ( ’ Case . x l s x ’ ,5 , ’H10 : I18 ’ ) ; % Medium−low

90 Dayrates_Data { 1 , 4 } = xlsread ( ’ Case . x l s x ’ ,5 , ’ J10 : K18 ’ ) ; % Medium−high

91 Dayrates_Data { 1 , 5 } = xlsread ( ’ Case . x l s x ’ ,5 , ’ L10 :M18 ’ ) ; % High

92 Dayrates_Data { 1 , 6 } = xlsread ( ’ Case . x l s x ’ ,5 , ’N10 : O18 ’ ) ; % High ( + )

93

94 % Difference between dayrates for short−term and long−term contracts

95 ScalingFactor = xlsread ( ’ Case . x l s x ’ ,5 , ’D5: F5 ’ ) ;

96

97 %% Create entire ( f u l l ) design space by enumerating a l l possible . . .

98 % . . . combinations of the variable design s t a t e parameters . Some of . . .

99 % . . . these designs are not f e s i a b l e .

100 % NB: [ Space_Design_Var_full ] = [ACC level , MC level , LWI level , . . .

101 % . . . PC level , MP l e v e l ]

102 [ Space_Design_Var_full ] = allcomb ( Set_ACC , Set_MC , Set_LWI , Set_ROV , Set_PC , Set_MP) ;

103 N_Space_Design_Var_full = length ( Space_Design_Var_full ) ;

104

105 %% Obtain information regarding a l l designs in " Space_Design_Var_full . "

106 % NB: [ Space_Design_Fix_full ] = [ Deck Area , Freeboard , Deadweight , GM]
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107 [ Space_Design_Fix_full , Lightweight ] = Design_Information ( Space_Design_Var_full ,

N_Space_Design_Var_full , N_Var_Design , Length , Beam, Depth , F_min) ;

108

109 %% Obtain compitabil i ty matrix

110 V = [N_ACC, N_MC, N_LWI, N_ROV, N_PC, N_MP] ;

111 Design_Compatability_Matrix = c e l l ( N_Var_Design ) ;

112 counter = 4 ;

113 for i i = 1 : N_Var_Design

114 for j j = 1 :V( i i )

115 Design_Compatability_Matrix { i i } ( j j , : , 1 ) = xlsread ( ’ Case . x l s x ’ ,1 , s t r c a t ( ’C ’ ,

num2str ( counter ) , ’ : E ’ , num2str ( counter ) ) ) ;

116 Design_Compatability_Matrix { i i } ( j j , : , 2 ) = xlsread ( ’ Case . x l s x ’ ,1 , s t r c a t ( ’F ’ ,

num2str ( counter ) , ’ :H’ , num2str ( counter ) ) ) ;

117 Design_Compatability_Matrix { i i } ( j j , : , 3 ) = xlsread ( ’ Case . x l s x ’ ,1 , s t r c a t ( ’ I ’ ,

num2str ( counter ) , ’ :K ’ , num2str ( counter ) ) ) ;

118 Design_Compatability_Matrix { i i } ( j j , : , 4 ) = xlsread ( ’ Case . x l s x ’ ,1 , s t r c a t ( ’L ’ ,

num2str ( counter ) , ’ :N’ , num2str ( counter ) ) ) ;

119 Design_Compatability_Matrix { i i } ( j j , : , 5 ) = xlsread ( ’ Case . x l s x ’ ,1 , s t r c a t ( ’O’ ,

num2str ( counter ) , ’ :Q’ , num2str ( counter ) ) ) ;

120 Design_Compatability_Matrix { i i } ( j j , : , 6 ) = xlsread ( ’ Case . x l s x ’ ,1 , s t r c a t ( ’R ’ ,

num2str ( counter ) , ’ : T ’ , num2str ( counter ) ) ) ;

121 counter = counter + 1 ;

122 end

123 end

124 %% Create the t o t a l f e s i a b l e Design Space by deleating unfesiable designs . . .

125 % . . . in [ Space_Design_Var_full ] based in Design State Requirements . . .

126 % . . . ( i . e . required deck area , GM and freeboard ) .

127 % NB: [ Space_Design ] = [ACC level , MC level , LWI level , . . .

128 % . . . PC level , MP l e v e l ]

129 [ Space_Design_New ] = Design_Compatibility ( Design_Compatability_Matrix ,

Space_Design_Var_full , Space_Design_Fix_full , N_Var_Design , F_min , GM_min, DA_min) ;

130 N_Space_Design_New = length ( Space_Design_New ) ;

131

132 %% Create the actual design space to analyse

133 % I t i s assumed that one never w i l l reduce the l e v e l of equipment on a

134 % vessel . Thus , only designs with equal or more equipment c a p a b i l i t y that
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135 % the i n i t i a l design ( Start_Design ) i s analysed

136

137 [ Space_Design ] = Create_Space_Design ( Space_Design_New , N_Space_Design_New , N_Var_Design ,

Start_Design ) ;

138 N_Space_Design = length ( Space_Design ) ;

139

140 %% I n i t i a l i z e s t a r t i n g s t a t e ( i . e . base design )

141 s t a t e _ i d x _ s t a r t = find ( Space_Design ( : , 1 ) == Start_Design ( 1 ) & Space_Design ( : , 2 ) ==

Start_Design ( 2 ) & Space_Design ( : , 3 ) == Start_Design ( 3 ) & Space_Design ( : , 4 ) ==

Start_Design ( 4 ) & Space_Design ( : , 5 ) == Start_Design ( 5 ) & Space_Design ( : , 6 ) ==

Start_Design ( 6 ) ) ;

142

143 %% Creating Sets of Desigs , Missions , Markets , Strategy and Requirements

144 Set_Design = 1 : N_Space_Design ; % Set of Design States

145 Set_Mission = 1 : N_Space_Mission ; % Set of Mission s t a t e s

146 Set_Market = 1 : N_Space_Market ; % Set of Market s t a t e s

147 Set_Strategy = 1 : N_Strategy ; % Sef of Strategy s t a t e s

148 Set_Requirement = 1 : N_Requirement ; % Set of Requirement s t a t e s

149

150 %% Create State Space by enumerating a l l combinations of . . .

151 % . . . design states , s tr at e gy states , market s t a t e s and requirement s t a t e s .

152 % NB: [ Space_State ] = [ Design nr . , Strategy nr . , Market nr . , . . .

153 % . . . Requirement nr . ]

154 [ Space_State ] = allcomb ( Set_Design , Set_Strategy , Set_Market , Set_Requirement ) ;

155 N_Space_State = length ( Space_State ) ; % Number of possible s t a t e s

156

157 %% Create Action Space by enumerating a l l . . .

158 % . . . combinations of design s t a t e s and s tr a te g y s t a t e s .

159 % NB: [ Space_Action ] = ( Design nr . , Strategy nr . )

160 Space_Action = allcomb ( Set_Design , Set_Strategy ) ;

161 N_Space_Action = length ( Space_Action ) ;

162

163 %% Generate Switchign costs

164 [ switch_cost ] = SwitchCost (Switch_CM , N_Space_Design , N_Var_Design , Space_Design , Change_CM

, N_Design ) ;

165
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166 %% Building Cost Estimation

167 FaktorCost = 8 ;

168 BuildCost = Lightweight * FaktorCost+switch_cost { 1 } ( 1 , s t a t e _ i d x _ s t a r t ) *100/1000000;

169 Sel l ingCost = [0 * BuildCost , 0 .1* BuildCost , 0 .3* BuildCost , 0 .5* BuildCost , 0 .6* BuildCost

, 0 . 7 * BuildCost ] ;
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F.3 Matlab - allcomb.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % This function returns a l l combinations of elements in an vector

3 % Retrived from : https : / / se . mathworks .com/ matlabcentral / fi leexchange / . . .

4 % . . . 10064−allcomb−varargin−
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 function [A] = allcomb ( varargin )

8

9 % ALLCOMB − A l l combinations

10 % B = ALLCOMB(A1 , A2 , A3 , . . . , AN) returns a l l combinations of the elements

11 % in the arrays A1 , A2 , . . . , and AN. B i s P−by−N matrix i s which P i s the product

12 % of the number of elements of the N inputs . This f u n c t i o n a l i t y i s also

13 % known as the Cartesian Product . The arguments can be numerical and/ or

14 % characters , or they can be c e l l arrays .

15 %

16 % Examples :

17 % allcomb ( [ 1 3 5] ,[−3 8 ] , [ 0 1 ] ) % numerical input :

18 % % −> [ 1 −3 0

19 % % 1 −3 1

20 % % 1 8 0

21 % % . . .

22 % % 5 −3 1

23 % % 5 8 1 ] ; % a 12−by−3 array

24 %

25 % allcomb ( ’ abc ’ , ’ XY ’ ) % character arrays

26 % % −> [ aX ; aY ; bX ; bY ; cX ; cY ] % a 6−by−2 character array

27 %

28 % allcomb ( ’ xy ’ , [ 6 5 66]) % a combination

29 % % −> [ ’ xA ’ ; ’xB ’ ; ’yA ’ ; ’yB ’ ] % a 4−by−2 character array

30 %

31 % allcomb ( { ’ hello ’ , ’ Bye ’ } , { ’ Joe ’ , 10:12} ,{99999 [ ] } ) % a l l c e l l arrays

32 % % −> { ’ hello ’ ’ Joe ’ [99999]

33 % % ’ hello ’ ’ Joe ’ [ ]

34 % % ’ hello ’ [1 x3 double ] [99999]
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35 % % ’ hello ’ [1 x3 double ] [ ]

36 % % ’Bye ’ ’ Joe ’ [99999]

37 % % ’Bye ’ ’ Joe ’ [ ]

38 % % ’Bye ’ [1 x3 double ] [99999]

39 % % ’Bye ’ [1 x3 double ] [ ] } ; % a 8−by−3 c e l l array

40 %

41 % ALLCOMB( . . . , ’ matlab ’ ) causes the f i r s t column to change f a s t e s t which

42 % i s consistent with matlab indexing . Example :

43 % allcomb ( 1 : 2 , 3 : 4 , 5 : 6 , ’ matlab ’ )

44 % % −> [ 1 3 5 ; 1 4 5 ; 1 3 6 ; . . . ; 2 4 6 ]

45 %

46 % I f one of the arguments i s empty , ALLCOMB returns a 0−by−N empty array .

47 %

48 % See also NCHOOSEK, PERMS, NDGRID

49 % and NCHOOSE, COMBN, KTHCOMBN ( Matlab Central FEX)

50

51 % Tested in Matlab R2015a

52 % version 4.1 ( feb 2016)

53 % ( c ) Jos van der Geest

54 % email : samelinoa@gmail .com

55

56 % History

57 % 1.1 ( feb 2006) , removed minor bug when entering empty c e l l arrays ;

58 % added option to l e t the f i r s t input run f a s t e s t ( suggestion by JD )

59 % 1.2 ( jan 2010) , using i i as an index on the l e f t −hand for the multiple

60 % output by NDGRID. Thanks to Jan Simon , for showing t h i s l i t t l e t r i c k

61 % 2.0 ( dec 2010) . Bruno Luong convinced me that an empty input should

62 % return an empty output .

63 % 2.1 ( feb 2011) . A c e l l as input argument caused the check on the l a s t

64 % argument ( specifying the order ) to crash .

65 % 2.2 ( jan 2012) . removed a superfluous l i n e of code ( ischar ( . . ) )

66 % 3.0 (may 2012) removed check for doubles so character arrays are accepted

67 % 4.0 ( feb 2014) added support for c e l l arrays

68 % 4.1 ( feb 2016) f ixed error for c e l l array input with l a s t argument being

69 % ’ matlab ’ . Thanks to Richard for pointing t h i s out .

70
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71 narginchk ( 1 , Inf ) ;

72

73 NC = nargin ;

74

75 % check i f we should f l i p the order

76 i f ischar ( varargin { end } ) && ( strcmpi ( varargin { end } , ’ matlab ’ ) | | strcmpi ( varargin { end } , ’

john ’ ) ) ,

77 % based on a suggestion by JD on the FEX

78 NC = NC−1 ;

79 i i = 1 :NC ; % now f i r s t argument w i l l change f a s t e s t

80 else

81 % default : enter arguments backwards , so l a s t one (AN) i s changing f a s t e s t

82 i i = NC:−1:1 ;

83 end

84

85 args = varargin ( 1 :NC) ;

86 % check for empty inputs

87 i f any ( c e l l f u n ( ’ isempty ’ , args ) ) ,

88 warning ( ’ALLCOMB: EmptyInput ’ , ’One of more empty inputs r e s u l t in an empty output . ’ ) ;

89 A = zeros ( 0 ,NC) ;

90 e l s e i f NC > 1

91 isCel l Input = c e l l fu n ( @iscel l , args ) ;

92 i f any ( isCel l Input )

93 i f ~ a l l ( isCel l Input )

94 error ( ’ALLCOMB: InvalidCellInput ’ , . . .

95 ’ For c e l l input , a l l arguments should be c e l l arrays . ’ ) ;

96 end

97 % for c e l l input , we use to indices to get a l l combinations

98 i x = c e l l f u n (@( c ) 1 :numel( c ) , args , ’un ’ , 0 ) ;

99

100 % f l i p using i i i f l a s t column i s changing f a s t e s t

101 [ i x { i i } ] = ndgrid ( i x { i i } ) ;

102

103 A = c e l l (numel( i x { 1 } ) ,NC) ; % pre−a l l o c a t e the output

104 for k =1:NC,

105 % combine
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106 A ( : , k ) = reshape ( args { k } ( i x { k } ) , [ ] , 1 ) ;

107 end

108 else

109 % non−c e l l input , assuming a l l numerical values or s t r i n g s

110 % f l i p using i i i f l a s t column i s changing f a s t e s t

111 [A{ i i } ] = ndgrid ( args { i i } ) ;

112 % concatenate

113 A = reshape ( cat (NC+1 ,A { : } ) , [ ] ,NC) ;

114 end

115 e l s e i f NC==1 ,

116 A = args { 1 } ( : ) ; % nothing to combine

117

118 else % NC==0 , there was only the ’ matlab ’ f l a g argument

119 A = zeros ( 0 , 0 ) ; % nothing

120 end
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F.4 Matlab - Design_Information.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % This function ca l cu l a t e s avaiable deck area , freeboard , deadweight and GM

3 % for a design .

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5

6 function [ Space_Design_Fix_full , Lightweight ] = Design_Information ( Space_Design_Var_full ,

N_Space_Design_Var_full , N_Var_Design , Length , Beam, Depth , F_min)

7

8 Space_Design_Fix_full = zeros ( N_Space_Design_Var_full , 1 ) ; %[ Deck Area , Freeboard ,

Deadweigth , GM]

9

10 %%% I n i t i a l i z e data

11 % Deck area [m2] requirement for each topside equipment

12 DeckArea_Eq ( 1 , : ) = xlsread ( ’ Case . x l s x ’ ,6 , ’B4 :D4 ’ ) ; % ACC

13 DeckArea_Eq ( 2 , : ) = xlsread ( ’ Case . x l s x ’ ,6 , ’B5 :D5 ’ ) ; % MC

14 DeckArea_Eq ( 3 , : ) = xlsread ( ’ Case . x l s x ’ ,6 , ’B6 :D6 ’ ) ; % LWI

15 DeckArea_Eq ( 4 , : ) = xlsread ( ’ Case . x l s x ’ ,6 , ’B7 :D7 ’ ) ; % ROV

16 DeckArea_Eq ( 5 , : ) = xlsread ( ’ Case . x l s x ’ ,6 , ’B8 :D8 ’ ) ; % PC

17 DeckArea_Eq ( 6 , : ) = xlsread ( ’ Case . x l s x ’ ,6 , ’B9 :D9 ’ ) ; % MP

18

19 % Weight [ tonn ] for each design parameter

20 Weigth_Eq ( 1 , : ) = xlsread ( ’ Case . x l s x ’ ,6 , ’B13 : D13 ’ ) ; % ACC

21 Weigth_Eq ( 2 , : ) = xlsread ( ’ Case . x l s x ’ ,6 , ’B14 : D14 ’ ) ; % MC

22 Weigth_Eq ( 3 , : ) = xlsread ( ’ Case . x l s x ’ ,6 , ’B15 : D15 ’ ) ; % LWI

23 Weigth_Eq ( 4 , : ) = xlsread ( ’ Case . x l s x ’ ,6 , ’B16 : D16 ’ ) ; % ROV

24 Weigth_Eq ( 5 , : ) = xlsread ( ’ Case . x l s x ’ ,6 , ’B17 : D17 ’ ) ; % PC

25 Weigth_Eq ( 6 , : ) = xlsread ( ’ Case . x l s x ’ ,6 , ’B18 : D18 ’ ) ; % MP

26

27 % Center of g r a v i t y [m] for each design parameter

28 CoG_Eq ( 1 , : ) = xlsread ( ’ Case . x l s x ’ ,6 , ’B22 : D22 ’ ) ; % ACC

29 CoG_Eq ( 2 , : ) = xlsread ( ’ Case . x l s x ’ ,6 , ’B23 : D23 ’ ) ; % MC

30 CoG_Eq ( 3 , : ) = xlsread ( ’ Case . x l s x ’ ,6 , ’B24 : D24 ’ ) ; % LWI

31 CoG_Eq ( 4 , : ) = xlsread ( ’ Case . x l s x ’ ,6 , ’B25 : D25 ’ ) ; % ROV

32 CoG_Eq ( 5 , : ) = xlsread ( ’ Case . x l s x ’ ,6 , ’B26 : D26 ’ ) ; % PC
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33 CoG_Eq ( 6 , : ) = xlsread ( ’ Case . x l s x ’ ,6 , ’B27 : D27 ’ ) ; % MP

34

35 % Scaling f a c t o r s [−]

36 Deck_Area_koefficient = xlsread ( ’ Case . x l s x ’ ,6 , ’C30 ’ ) ;

37 Lightweighth_Koefficient = xlsread ( ’ Case . x l s x ’ ,6 , ’C31 ’ ) ;

38

39 % Various constands

40 rho_water = xlsread ( ’ Case . x l s x ’ ,6 , ’C32 ’ ) ; % Sea water density [ tonn/m3]

41 Cb = xlsread ( ’ Case . x l s x ’ ,6 , ’C33 ’ ) ; % Block Coe ff i c ie nt [−]

42

43 %%% Estimating Avaiable Deck [m2] for each design configuration

44 % Estimate the avaiable Deck area for a vessel without any topside . . .

45 % equipment i n s t a l l e d :

46 Space_Design_Fix_full ( : , 1 ) = Deck_Area_koefficient * Length *Beam;

47

48 % Subtract the required deck area for each equipment i n s t a l l e d

49 for ss = 1 : N_Space_Design_Var_full

50 for vv = 1 : N_Var_Design

51 Space_Design_Fix_full ( ss , 1 ) = Space_Design_Fix_full ( ss , 1 ) − . . .

52 DeckArea_Eq ( vv , Space_Design_Var_full ( ss , vv ) ) ;

53 end

54 end

55

56 %%% Estimating l i g h t s h i p weight [ tonnes ] for each design configuration

57 % Estimate the l i g t s h i p weigth of the vessel without any topside . . .

58 % equipment i n s t a l l e d

59 Weighth_Design ( 1 : N_Space_Design_Var_full , 1 ) = . . .

60 Lightweighth_Koefficient * Length *Beam*Depth ;

61

62 Lightweight = Weighth_Design ;

63

64 % Add the weight for each equipment i n s t a l l e d

65 for ss = 1 : N_Space_Design_Var_full

66 for vv = 1 : N_Var_Design

67 Weighth_Design ( ss , 1 ) = Weighth_Design ( ss , 1 ) + . . .

68 Weigth_Eq ( vv , Space_Design_Var_full ( ss , vv ) ) ;
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69 end

70 end

71

72 %%% Estimating the Volume displacement for each vessel configuration

73 Volume_Displacement ( : , 1 ) = Weighth_Design ( : , 1 ) . / rho_water ;

74

75 %%% Estimating the draught for each vessel configuration

76 T ( : , 1 ) = Volume_Displacement ( : , 1 ) . / ( Cb. * Length . *Beam) ;

77

78 %%% Estimating the freeboard for each vessel configuration

79 Space_Design_Fix_full ( : , 2 ) = Depth − T ( : , 1 ) ;

80

81 %%% Estimating Deadweight for each design configuration

82 Space_Design_Fix_full ( : , 3 ) = rho_water . *Cb . * ( Length . *Beam) . * . . .

83 ( Depth−F_min) − Weighth_Design ( : , 1 ) ;

84

85 %%% Estimating GM for each design configuration

86 KB( : , 1 ) = T ( : , 1 ) / 2 ;

87 BM( : , 1 ) = (Beam^2) . / ( 1 2 . * T ( : , 1 ) ) ;

88 sum_Weight_CoG ( 1 : N_Space_Design_Var_full , 1 ) = ( Lightweighth_Koefficient * Length *Beam*

Depth ) * ( Depth/2) ;

89 for ss = 1 : N_Space_Design_Var_full

90 for vv = 1 : N_Var_Design

91 sum_Weight_CoG( ss , 1 ) = sum_Weight_CoG( ss , 1 ) + CoG_Eq( vv , Space_Design_Var_full ( ss ,

vv ) ) *Weigth_Eq ( vv , Space_Design_Var_full ( ss , vv ) ) ;

92 end

93 KG( ss , : ) = sum_Weight_CoG( ss , 1 ) /Weighth_Design ( ss , 1 ) ;

94 end

95

96 Space_Design_Fix_full ( : , 4 ) = KB( : , 1 ) + BM( : , 1 ) − KG( : , 1 ) ;

97 end



APPENDIX F. MATLAB CODES 170

F.5 Matlab - Design_Compatibility.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % This function enumerates the entire f e s i a b l e design space ( Space_Design )

3 % by imposing r e s t r i c t i o n (Deck Area > 0 [m2] , GM >= 0.15 [m] and Freeboard

4 % > 1.5 [m] ) on the design space enumerated by a l l combinations of the

5 % design space variables ( Space_Design_Var_full )

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7

8 function [ Space_Design ] = Design_Compatibility ( Design_Compatability_Matrix ,

Space_Design_Var_full , Space_Design_Fix_full , N_Var_Design , F_min , GM_min, DA_min)

9

10 N_Space_Design_Var_full = length ( Space_Design_Var_full ) ;

11

12 % Find i n f e s i a b l e Design configurations in Space_Design_Var_full

13 Comp( 1 : N_Space_Design_Var_full , 1 ) = 1 ; % I n i t i a l i z e a l l to be f e s i a b l e

14 for ss = 1 : N_Space_Design_Var_full

15 System_Vector_current = Space_Design_Var_full ( ss , : ) ;

16 for cc = 1 : N_Var_Design

17 for ccc = 1 : N_Var_Design

18 i f Design_Compatability_Matrix { cc } ( System_Vector_current ( cc ) ,

System_Vector_current ( ccc ) , ccc ) == 2 | | Space_Design_Fix_full ( ss , 1 ) < DA_min | |

Space_Design_Fix_full ( ss , 2 ) <= F_min | | Space_Design_Fix_full ( ss , 4 ) < GM_min

19 Comp( ss ) = 2 ; % Design ss i s i n f e s i a b l e

20 end

21 end

22 end

23 end

24

25 Space_Design = [ ] ; % Create matrix to contain f e s i a b l e designs

26 sss = 1 ; % counter

27 for ss = 1 : N_Space_Design_Var_full

28 System_Vector_current = Space_Design_Var_full ( ss , : ) ;

29 i f Comp( ss ) == 1

30 Space_Design ( sss , : ) = System_Vector_current ;

31 sss = sss + 1 ;
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32 end

33 end

34 end
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F.6 Matlab - Create_Space_Design.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % This function creates the actual design space to be analysed .

3 % I t i s assumes that one never w i l l reduce the l e v e l of equipment on a

4 % vessel . Thus , only designs with equal or more equipment c a p a b i l i t y that

5 % the i n i t i a l design ( Start_Design ) i s analysed

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7

8 function [ Space_Design ] = Create_Space_Design ( Space_Design_New , N_Space_Design_New ,

N_Var_Design , Start_Design )

9

10 for nn = 1 : N_Space_Design_New

11 for vv = 1 : N_Var_Design

12 i f Space_Design_New (nn, vv ) < Start_Design ( 1 , vv )

13 Delete (nn) = 1 ; % Design nn does not hold the assumption

14 break

15 else

16 Delete (nn) = 0 ; % Design nn holds the assumption

17 end

18 end

19 end

20

21 A = find ( Delete == 0) ; % Find those vessel numbers that holds the assumption

22 [~ , N_A] = s i z e (A) ; % Find the number of vessel that holds the assumption

23

24 % Create design space to analyse ( i . e . Space_Design )

25 counter = 1 ; % Counter

26 Space_Design = zeros (N_A, N_Var_Design ) ;

27 for aa = 1 :N_A

28 Space_Design ( counter , : ) = Space_Design_New (A( aa ) , : ) ;

29 counter = counter + 1 ;

30 end
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F.7 Matlab - SwitchCost.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % This function ca l cu l a t e s the cost of switching from one design ( ss )

3 % configuration to another ( sss ) for each design analysed ( i i ) .

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5

6 function [ switch_cost ] = SwitchCost (Switch_CM , N_Space_Design , N_Var_Design , Space_Design ,

Change_CM, N_Design )

7

8 % Create matrix for analysis

9 S_cost = c e l l ( N_Design , 1 ) ;

10 for i i = 1 : N_Design

11 S_cost { i i , 1 } = zeros ( N_Space_Design ) ;

12 end

13

14 % Calculate switching cost for each design i i , switching between design

15 % configuration ss to sss .

16 for i i = 1 : N_Design

17 for ss = 1 : N_Space_Design

18 SystemVector_curr = Space_Design ( ss , : ) ;

19 for sss = 1 : N_Space_Design

20 SystemVector_next = Space_Design ( sss , : ) ;

21 for sv = 1 : N_Var_Design

22 S_cost { i i } ( ss , sss ) = S_cost { i i } ( ss , sss ) + Change_CM( i i , sv ) . * Switch_CM { sv

} ( SystemVector_curr ( sv ) , SystemVector_next ( sv ) ) ;

23 end

24 end

25 end

26 end

27

28 % Prepear output

29 switch_cost = S_cost ;

30 end
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F.8 Matlab - QLearning.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Q−Learning Algorithm . The s c r i p t follows the generic Q−learning a l g o r i t h

3 % presented in the t h e s i s . The output of t h i s algorithm i s the Policy

4 % indicating which action to take for each state−time combination .

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 % Max number of i n t e r a t i o n s ( Step . 0b in generic algorithm )

8 N_Interations_Q = 500000;

9

10 % I n i t i a l i z e Matrixs for Further analysis

11 Q_SumSum = c e l l ( N_Design , 1 ) ; % Sum of Q−Matrix

12

13 con_total_Q = c e l l ( N_Design , 1 ) ; % Life−cycle contribution

14 for nn = 1 : N_Design

15 for i i = 1 : N_Interations_Q

16 con_total_Q {nn } ( i i , 1 ) = 0 ;

17 end

18 end

19

20 for i i = 1 : N_Design % Spesify which design ( s ) to analyse

21

22 % I n i t i a l i z e Q−Matrix ( Step . 0a in generic algorithm )

23 Q = c e l l ( 1 , Lifetime + 2) ;

24 for t t = 1 : Lifetime + 2

25 Q{ 1 , t t } = zeros ( N_Space_State , N_Space_Action ) ;

26 end

27

28 % Calculate Switching time

29 SwitchDays = SDays ( i i ) ;

30

31 i t e r = 1 ; % Set interat ion counter ( Step 0c . in generic algorithm )

32

33 while i t e r <= N_Interations_Q

34
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35 % Output information

36 f p r i n t f ( ’ Design nr . %d , Interat ion nr . %d\n ’ , i i , i t e r ) ;

37

38 % I n i t i a l i e S t a r t i n g State ( Step 0d . in generic algorithm )

39 state_idx_action = s t a t e _ i d x _ s t a r t ;

40

41 % Sample market s t a t e and requirement s t a t e for the given interat ion ( Step . 1 in

generic algorithm )

42 [ Sample_Market , Sample_Requirement ] = Sample_Path ( Lifetime , TM_Requirement ) ;

43

44 % Sample dayrates for the given interat ion ( Step . 1 cont . in generic algorithm )

45 [ Sample_DayRates ] = Sample_Dayrates ( Sample_Market , Lifetime , N_Strategy ,

N_Space_Mission , ScalingFactor , Dayrates_Data ) ;

46

47 % Select Learnign Rate

48 i f i t e r == 1

49 alpha = 1 ;

50 else

51 alpha = 0 . 7 ;

52 end

53

54 % Simulate the vessel ’ s l i f e t i m e ( Step 2 in generic algorithm )

55 t t_current = 2 ; % 2 represents year 5 , 3 represents year 6 , etc .

56 while tt_current < Lifetime + 2

57

58 %%% Select action ( Step 2a . in generic algorithm )

59 t t _ a ct i o n = tt_current − 1 ; % Time when action i s taken

60 [ action_idx , t t_next ] = ActionSelection ( tt_action ,Q, i t e r , N_Interations_Q ,

tt_current , Lifetime , time_long , time_short , state_idx_action , Space_Action ,

N_Space_Action ) ;

61

62 %%% Simulate outcome of action ( Step 2b . in generic algorithm )

63 % I . e . find current s t a t e ( stochast ic parameter )

64 state_idx_current = find ( Space_State ( : , 1 ) == Space_Action ( action_idx , 1 ) &

Space_State ( : , 2 ) == Space_Action ( action_idx , 2 ) & Space_State ( : , 3 ) == Sample_Market (

t t_current ) & Space_State ( : , 4 ) == Sample_Requirement ( tt_current ) ) ;
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65

66 % Obtain information of previous and current s t a t e s

67 design_previous = Space_State ( state_idx_action , 1 ) ;

68 design_current = Space_State ( state_idx_current , 1 ) ;

69 strategy_current = Space_State ( state_idx_current , 2 ) ;

70 market_current = Space_State ( state_idx_current , 3 ) ;

71 requirement_current = Space_State ( state_idx_current , 4 ) ;

72

73 % Estimate immediate Contribution ( Step . 2c ) .

74 [Comp] = Mission_Compatability ( N_Space_Mission , N_Var_Design , Space_Design ,

Requirement_Matrix , requirement_current , design_current ) ;

75 [ contribution , rew , miss ] = Contri ( probwin , Sell ingCost , market_current , OpDays,

SwitchDays , i i , Comp, N_Space_Mission , Sample_DayRates , strategy_current , tt_current ,

switch_cost , design_previous , design_current , disc ) ;

76 con_total_Q { i i } ( i t e r , 1 ) = con_total_Q { i i } ( i t e r , 1 ) + contribution ;

77

78 % Q learning

79 Q{ 1 , t t_ a c t i o n } ( state_idx_action , action_idx ) = (1−alpha ) *Q{ 1 , t t_ a c t i o n } (

state_idx_action , action_idx ) + alpha * ( contribution + gamma*max(Q{ 1 , t t_current } (

state_idx_current , : ) ) ) ;

80

81 % Prepeare next step

82 state_idx_action = state_idx_current ;

83

84 % Change time step

85 t t_current = tt_current + tt_next ;

86

87 end % while t t < Lifetime

88

89 % Update information

90 for t t = 2 : Lifetime + 2

91 Q_SumSum{ i i } ( i t e r , t t ) = sum(sum(Q{ 1 , t t } ) ) ;

92 end

93

94 % Update interat ion counter ( Step 3 . in generic algorithm )

95 i t e r = i t e r + 1 ;
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96 end

97 % Store information

98 i f i i == 1

99 Q_Design_1 = Q; % Changeability l e v e l 0

100 e l s e i f i i == 2

101 Q_Design_2 = Q; % Changeability l e v e l 1

102 else % i i == 3

103 Q_Design_3 = Q; % Changeability l e v e l 2

104 end

105 end

106

107 % Extract Policy and Value Function ( Step 4 . in generic algrithm ) ,

108 % in addition to design and st r a te g y for further analysis

109 Policy = c e l l ( N_Design , 1 ) ;

110 Value_function = c e l l ( N_Design , 1 ) ;

111 Design = c e l l ( N_Design , 1 ) ;

112 Strategy = c e l l ( N_Design , 1 ) ;

113

114 for i i = 1 : N_Design

115 i f i i == 1

116 Q_post = Q_Design_1 ;

117 e l s e i f i i == 2

118 Q_post = Q_Design_2 ;

119 else % i i == 3

120 Q_post = Q_Design_3 ;

121 end

122 for t t _ a c t = 1 : Lifetime

123 for ss = 1 : N_Space_State

124 [ Value_function { i i } ( t t_act , ss ) , Policy { i i } ( ss , t t _ a c t ) ] = max( Q_post { 1 , t t _ a c t

} ( ss , : ) ) ;

125 Design { i i } ( ss , t t _ a c t +1) = Space_Action ( Policy { i i } ( ss , t t _ a c t ) , 1) ;

126 Strategy { i i } ( ss , t t _ a c t +1) = Space_Action ( Policy { i i } ( ss , t t _ a c t ) , 2) ;

127 end

128 end

129 end
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F.9 Matlab - Sample_Path.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % This function samples one l i f e cycle path for the market s t a t e

3 % ( Sample_market )and one for the technical requirement s t a t e

4 % ( Sample_Requirement ) .

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 function [ Sample_Market , Sample_Requirement ] = Sample_Path ( Lifetime , P_Requirement )

8

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 %%% Sample Market State

11 Sample_Market = zeros ( 1 , Lifetime + 2) ; % Create Vector for MarketSample

12

13 % Obtain paramters for the market simulation ( modeled as a sinus

14 % function )

15 A = 1 ; % Amplitude of sinus function

16 P = normrnd( 7 , 1 ) ; % Period of sinus function

17 B = (2* pi ) /P ;

18 S h i f t = −pi ; % Phase s h i f t in sinus function

19 C = −( S h i f t ) *B ;

20 D = 10; % V e r t i c a l s h i f t in sinus function

21

22 % Simulate market s t a t e ( continous function )

23 t = 0 : Lifetime +2;

24 d r i f t = 0 ;

25 for x = 1 : ( Lifetime + 2)

26 MarketRate_Base ( 1 , x ) = A* sin (B* t ( x ) +C) + normrnd(D, 0 . 2 ) + d r i f t ;

27 d r i f t = d r i f t + 0.01 + normrnd( 0 , 0.005*D) ; % d r i f t in market s t a t e

28 end

29

30 % D i s c r e t i z i s e the continous market function into 6 l e v e l s

31 for t t = 1 : ( Lifetime + 2)

32 i f MarketRate_Base ( 1 , t t ) <= D − (2*A/3)

33 Sample_Market ( 1 , t t ) = 1 ; % Market s t a t e : low (−)

34 e l s e i f MarketRate_Base ( 1 , t t ) <= D − (A/3)
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35 Sample_Market ( 1 , t t ) = 2 ; % Market s t a t e : low

36 e l s e i f MarketRate_Base ( 1 , t t ) <= D

37 Sample_Market ( 1 , t t ) = 3 ; % Market s t a t e : medium−low

38 e l s e i f MarketRate_Base ( 1 , t t ) <= D + (A/3)

39 Sample_Market ( 1 , t t ) = 4 ; % Market s t a t e : medium−high

40 e l s e i f MarketRate_Base ( 1 , t t ) <= D + (2*A/3)

41 Sample_Market ( 1 , t t ) = 5 ; % Market s t a t e : high

42 else %MarketRate_Base ( 1 , t t ) <= D + A

43 Sample_Market ( 1 , t t ) = 6 ; % Market s t a t e : high ( + )

44 end

45 end

46

47 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

48 %%% Sample Requirement State

49 Sample_Requirement = zeros ( 1 , Lifetime + 2) ; % Create Vector for Technical

Requirements

50 Sample_Requirement ( 1 ) = 1 ; % Know the market s t a t e when the v esse ls f i r s t operates

51

52 for t t = 2 : Lifetime + 2

53 i f Sample_Requirement ( t t −1) == 1 && t t > 9

54 Sample_Requirement ( t t ) = 2 ; % Medium technical requirements

55 else

56 r = rand ; % Pick a random number in [ 0 , 1 ]

57 Sample_Requirement ( t t ) = sum( r >= cumsum( [ 0 , P_Requirement ( Sample_Requirement (

t t −1) , 1 ) , P_Requirement ( Sample_Requirement ( t t −1) , 2 ) , P_Requirement ( Sample_Requirement (

t t −1) , 3 ) ] ) ) ; % Find next market s t a t e

58 end

59 end

60 end



APPENDIX F. MATLAB CODES 180

F.10 Matlab - Sample_Dayrates.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % This function samples the day rates for one r e a l i s a t i o n of a v esse ls l i f e

3 % cycle

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5

6 function [ Sample_DayRates ] = Sample_Dayrates ( Sample_Market , Lifetime , N_Strategy ,

N_Space_Mission , ScalingFactor , Dayrates_Data )

7

8 % Collect simulation of market s t a t e

9 Market_state = Sample_Market ;

10

11 SampleDayRates = c e l l ( 1 , N_Strategy ) ;

12

13 for kk = 1 : N_Strategy

14 for mm = 1 : N_Space_Mission

15 d r i f t = 0 ;

16 for t t = 2 : Lifetime + 2

17 d r i f t = d r i f t + normrnd ( 0 . 0 5 , 0 . 0 5 ) ;

18 % for short and long−term strategy , kk )

19 SF = ScalingFactor ( kk ) ;

20 % mean of normal d i s t r i b u t i o n

21 Mean = Dayrates_Data { 1 , Market_state ( t t ) } (mm, 1 ) ;

22 % standard deviation of normal d i s t r i b u t i o n

23 Std = Dayrates_Data { 1 , Market_state ( t t ) } (mm, 2 ) ;

24 % dayrate sample

25 SampleDayRates { 1 , kk } (mm, t t ) = d r i f t * ScalingFactor ( kk ) *normrnd(Mean, Std ) ;

26 end

27 end

28 end

29

30 Sample_DayRates = SampleDayRates ; % Output

31

32 end
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F.11 Matlab - ActionSelection.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % This function s e l e c t s which action to take . This conserns both which

3 % design configuration and s tr a te g y to take .

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5

6 function [ action_idx , t t_next ] = ActionSelection ( TT_action , QMatrix , ITER , N_ITERATIONS_Q,

TT_current , LIFETIME , TIME_long , TIME_short , STATE_idx_action , SPACE_Action ,

NN_Space_Action )

7

8 % Select epsilon s t a t i n the p r o b a b i l l i t y of exploration .

9 % Epsilon = 1 −> always pick randon action . Epsilon = 0 −> always pick

10 % best option .

11

12 i f ITER <= 0.1*N_ITERATIONS_Q

13 epsilon = 1 ;

14 e l s e i f ITER <= 0.2*N_ITERATIONS_Q

15 epsilon = 0 . 9 ;

16 e l s e i f ITER <= 0.3*N_ITERATIONS_Q

17 epsilon = 0 . 8 ;

18 e l s e i f ITER <= 0.4*N_ITERATIONS_Q

19 epsilon = 0 . 7 ;

20 e l s e i f ITER <= 0.5*N_ITERATIONS_Q

21 epsilon = 0 . 6 ;

22 e l s e i f ITER <= 0.6*N_ITERATIONS_Q

23 epsilon = 0 . 5 ;

24 e l s e i f ITER <= 0.7*N_ITERATIONS_Q

25 epsilon = 0 . 4 ;

26 e l s e i f ITER <= 0.8*N_ITERATIONS_Q

27 epsilon = 0 . 3 ;

28 e l s e i f ITER <= 0.9*N_ITERATIONS_Q

29 epsilon = 0 . 2 ;

30 else %i t e r <= 1* N_Interations_Q

31 epsilon = 0 . 1 ;

32 end
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33

34 % Select action

35 r = rand ; % Pick a random number in [ 0 , 1 ]

36 x = sum( r >= cumsum([0 ,1− epsilon , epsilon ] ) ) ; %[ 0 , prob ( Exploit ) , prob ( Explore )

37 i f x == 1 % Model s h a l l e x p l o i t i f r l i e s in the i n t e r v a l l [ 0 ; 1−epsilon ]

38 i f TT_current <= (LIFETIME +2 − TIME_long ) % A l l actions can be taken

39 [~ , action_idx ] = max( QMatrix { 1 , TT_action } ( STATE_idx_action , [ 1 : 1 :

NN_Space_Action ] ) ) ;% Find the action that maximized Q

40 else % Can only s e l e c t short−term contract or s e l l

41 x = [ 1 : 3 : NN_Space_Action ] ; % Sjort−term actions

42 y = [ 3 : 3 : NN_Space_Action ] ; % Scraping actions

43 H = [ x ; y ] ;

44 H = H( : ) ;

45 [~ ,pos_H ] = max( QMatrix { 1 , TT_action } ( STATE_idx_action ,H) ) ;% Find the action

that maximized Q

46 action_idx = H(pos_H) ;

47 end

48 else % Model s h a l l explore i f r l i e s in the i n t e v a l l [1− epsilon , epsilon ]

49 i f TT_current <= (LIFETIME +2 − TIME_long )

50 action_idx = randsample ( NN_Space_Action , 1 ) ;

51 else % Can only s e l e c t short−term contract or s e l l

52 action_idx = randsample ( find ( SPACE_Action ( : , 2 ) == 1 | SPACE_Action ( : , 2 ) == 3

) , 1 ) ;

53 end

54 end

55

56 % Time to next select ion epoch

57 i f SPACE_Action ( action_idx , 2 ) == 1 % Short−term contract

58 t t_next = TIME_short ;

59 e l s e i f SPACE_Action ( action_idx , 2 ) == 2 % Long−term contract

60 t t_next = TIME_long ;

61 else % scrap / s e l l

62 t t_next = i n f ; % The i nterat ion w i l l end

63 end

64 end % Function
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F.12 Matlab - Mission_Compatability.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % This function creates a compatability matrix , consist ing of 1 and −i n f

3 % representign wether or not the vessel i s able to undertake a p a r t i c u l a r

4 % mission

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 function [Comp] = Mission_Compatability ( N_Space_Mission , N_Var_Design , Space_System ,

Requirement_Matrix , market_requirement , system_current )

8

9 NotValid = [ ] ;

10 for mi = 1 : N_Space_Mission

11 for vs = 1 : N_Var_Design

12 i f Space_System ( system_current , vs ) < Requirement_Matrix {mi } ( market_requirement , vs

)

13 NotValid (mi) = 1 ; % Do not hold requirement

14 break

15 else

16 NotValid (mi) = 0 ; % Do hold requirement

17 end

18 end

19

20 i f NotValid == 1 % Design do not hold requirements

21 Comp(mi) = −i n f ; % Not compatible

22 else % Design holds requirements

23 Comp(mi) = 1 ; % Compatible

24 end

25 end
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F.13 Matlab - Contri.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % This function ca l cu l a t e s the contribution [ mil l . USD] of taking a

3 % p a r t i c u l a r action . The contribution i s based on the mission selected

4 % ( depending of the ve ssel s technical c a p a b i l i t i e s ) , the lengt of the

5 % contract ( i . e . s t r a te g y ) , and the s t a t e of the market

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7

8

9 function [ contribution , con_reward , mission_current ] = Contri ( probwin , Sell ingCost ,

market_current , OpDays, SwitchDays , i i , Comp, NN_Space_Mission , Sample_DayRates ,

strategy_current , tt_current , switch_cost , design_previous , design_current , disc )

10

11 i f strategy_current == 3 % S e l l

12 con_reward = Sel l ingCost ( market_current ) ; % Reward

13 con_switch = 0 ; % Switching costs

14 mission_current = 0 ; % Mission taken

15 % Estimate contribution

16 contribution = ( con_reward − con_switch ) *(1/(1+ disc ) ^( tt_current −0) ) ;

17

18 else

19

20 % Find out i f the contracts are won or l o s t

21 win = zeros ( 1 , NN_Space_Mission ) ;

22 for mm = 1 : ( NN_Space_Mission − 1)

23 r = rand ; % Pick a random number in [ 0 , 1 ]

24 p = sum( r >= cumsum( probwin ( market_current , : ) ) ) ;

25 i f p == 1

26 win ( 1 ,mm) = 1 ; % Contract i s won

27 else

28 win ( 1 ,mm) = 0 ; % Contract i s l o s t

29 end

30 end

31 win ( 1 , 9 ) = 1 ; % Lay−up i s always an option

32
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33 % Calculate the reward for each mission

34 Days = OpDays − SwitchDays ;

35 Reward = [ ] ;

36 for mm = 1 : NN_Space_Mission

37 i f strategy_current == 1 % Short−term contract

38 % I f design i s not compitable with mission (mm) and the Dayrate i s negatice

39 i f Comp(mm) == −Inf && Sample_DayRates { 1 , strategy_current } (mm, tt_current ) < 0

40 Reward(mm) = −(win ( 1 ,mm) *Comp(mm) *Days*Sample_DayRates { 1 , strategy_current

} (mm, tt_current ) ) ;

41 else % dayrate i s p o s i t i v e

42 Reward(mm) = win ( 1 ,mm) *Comp(mm) *Days*Sample_DayRates { 1 , strategy_current } (

mm, tt_current ) ;

43 end

44 else % Long−term contract

45 % I f design i s not compitable with mission (mm) and the Dayrate i s negatice

46 i f Comp(mm) == −Inf && Sample_DayRates { 1 , strategy_current } (mm, tt_current ) < 0

47 Reward(mm) = −(win ( 1 ,mm) *Comp(mm) *Days*Sample_DayRates { 1 , strategy_current

} (mm, tt_current ) +Comp(mm) *OpDays*Sample_DayRates { 1 , strategy_current } (mm, tt_current )

*(1/(1+ disc ) ^1)+Comp(mm) *OpDays*Sample_DayRates { 1 , strategy_current } (mm, tt_current )

*(1/(1+ disc ) ^2) ) ;

48 else

49 Reward(mm) = win ( 1 ,mm) *Comp(mm) *Days*Sample_DayRates { 1 , strategy_current } (

mm, tt_current ) +Comp(mm) *OpDays*Sample_DayRates { 1 , strategy_current } (mm, tt_current )

*(1/(1+ disc ) ^1)+Comp(mm) *OpDays*Sample_DayRates { 1 , strategy_current } (mm, tt_current )

*(1/(1+ disc ) ^2) ;

50 end

51 end

52 end

53

54 % Find and take the avaiable mission with highest reward

55 [ con_reward , mission_current ] = max( Reward ) ;

56

57 % Fint the contribution of being in that p a r t i c u l a r statee ( Step 2 . c )

58 con_switch = switch_cost { i i } ( design_previous , design_current ) ; % Switching cost

59

60 % I f the l a s t time−step i s reached , the sunset value i s calculated
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61 i f ( t t_current == 11 && strategy_current == 1) | | ( t t_current == 8 &&

strategy_current == 2)

62 SellC = Sel l ingCost ( market_current ) ;

63 else

64 SellC = 0 ;

65 end

66

67 contribution = ( con_reward − con_switch + SellC ) *(1/(1+ disc ) ^( tt_current −0) ) ;

68 end

69 end
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F.14 Matlab -LCSimulator.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % L i f e Cycle Simulator

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4

5 % Max number of i n t e r a t i o n s

6 N_Interations_sim = 1000;

7

8 % Life−cycle contribution

9 con_total_sim = c e l l ( N_Design , 1 ) ;

10 for nn = 1 : N_Design

11 for i i = 1 : N_Interations_sim

12 con_total_sim {nn } ( i i , 1 ) = 0 ;

13 end

14 end

15

16 % Prepear matrixes for simulation

17 action = c e l l ( N_Design , 1 ) ;

18 design = c e l l ( N_Design , 1 ) ;

19 s tr a te g y = c e l l ( N_Design , 1 ) ;

20 market = c e l l ( N_Design , 1 ) ;

21 requirement = c e l l ( N_Design , 1 ) ;

22 comp_tracker = c e l l ( N_Interations_sim , 1 ) ;

23 con = c e l l ( N_Design , 1 ) ;

24 mission = c e l l ( N_Design , 1 ) ;

25

26 for i i = 1 : N_Design % Specify which design ( s ) to analyse

27 i t e r = 1 ;

28

29 while i t e r <= N_Interations_sim

30

31 % I n i t i a l i e S t a r t i n g State

32 state_design = s t a t e _ i d x _ s t a r t ;

33 s t a t e _ s t r a t e g y = 2 ;

34
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35 % Output information

36 f p r i n t f ( ’ Design nr . %d , Interat ion nr . %d\n ’ , i i , i t e r ) ;

37

38 % Sample market and requirement for the given interat ion ( Step . 1)

39 [ Sample_Market_sim , Sample_Requirement_sim ] = Sample_Path ( Lifetime ,

TM_Requirement ) ;

40

41 % Sample dayrates for the given interat ion ( Step . 1 cont . )

42 [ Sample_DayRates_sim ] = Sample_Dayrates ( Sample_Market_sim , Lifetime , N_Strategy ,

N_Space_Mission , ScalingFactor , Dayrates_Data ) ;

43

44 % Track information

45 market { i i } ( i t e r , : ) = Sample_Market_sim ; % Market State

46 requirement { i i } ( i t e r , : ) = Sample_Requirement_sim ; % Technical Requirement State

47

48 % Simulate the vessel ’ s l i f e t i m e ( Step 2 in generic algorithm )

49 t t_current = 2 ; % 2 represents year 5 , 3 represents year 6 , etc

50 while tt_current < Lifetime + 2

51

52 t t _ a ct i o n = tt_current − 1 ; % Time when action i s taken

53 s ta t e _ i d x = find ( Space_State ( : , 1 ) == state_design & Space_State ( : , 2 ) ==

s t a t e _ s t r a t e g y & Space_State ( : , 3 ) == Sample_Market_sim ( tt_ a c t i o n ) & Space_State ( : , 4 )

== Sample_Requirement_sim ( tt _ ac t i o n ) ) ;

54

55 % Take action based on Policy

56 i f Policy { i i } ( state_idx , t t_ a c t i o n ) == 0

57 action { i i } ( i t e r , t t _a c t i o n ) = randsample ( [ 1 : N_Space_Action ] , 1 ) ;

58 else

59 action { i i } ( i t e r , t t _a c t i o n ) = Policy { i i } ( state_idx , t t _ ac t i o n ) ;

60 end

61

62 design { i i } ( i t e r , t t_current ) = Space_Action ( action { i i } ( i t e r , t t_ a c t i o n ) , 1 ) ;

63 s tr a te gy { i i } ( i t e r , t t_current ) = Space_Action ( action { i i } ( i t e r , t t_ a ct i o n )

, 2 ) ;

64

65 % Calculate Switching time
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66 SwitchDays = SDays ( i i ) ;

67

68 % Estimate immediate Contribution

69 [Comp] = Mission_Compatability ( N_Space_Mission , N_Var_Design , Space_Design ,

Requirement_Matrix , requirement { i i } ( i t e r , t t_current ) , design { i i } ( i t e r , t t_current ) ) ;

70 comp_tracker { i t e r } ( tt_current , : ) = Comp;

71 [ contribution , rew , miss ] = Contri ( probwin , Sell ingCost , Sample_Market_sim (

tt _ ac t i o n ) ,OpDays, SwitchDays , i i , Comp, N_Space_Mission , Sample_DayRates_sim ,

s tr a te gy { i i } ( i t e r , t t_current ) , tt_current , switch_cost , state_design , design { i i } ( i t e r

, t t_current ) , disc ) ;

72 con { i i } ( i t e r , t t_current ) = contribution ;

73 con_total_sim { i i } ( i t e r , 1 ) = con_total_sim { i i } ( i t e r , 1 ) + contribution ;

74 mission { i i } ( i t e r , t t_current ) = miss ;

75

76 % Update information

77 state_design = design { i i } ( i t e r , t t_current ) ;

78

79 % Update time

80 i f s t r at e gy { i i } ( i t e r , t t_current ) == 1 % Short−term contract

81 t t_current = tt_current + time_short ;

82 e l s e i f s t r a te g y { i i } ( i t e r , t t_current ) == 2 % Long−term contract

83 t t_current = tt_current + time_long ;

84 else % Vessel i s sold

85 t t_current = i n f ;

86 end

87 end

88

89 % Update interat ion counter

90 i t e r = i t e r + 1 ;

91 end

92 end
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Results From the Illustrative Case

(a) Market state (b) Mission state (c) strategy state

Figure G.1: Market state, mission state and strategy state for vessel alternative 1

(a) Market state (b) Mission state (c) Strategy state

Figure G.2: i Market state, mission state and strategy state for vessel alternative 2
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(a) Market state (b) Mission state (c) Strategy state

Figure G.3: Market state, mission state and strategy state for vessel alternative 3

(a) Market state (b) Mission state (c) Strategy state

Figure G.4: Market state, mission state and strategy state for vessel alternative 4

(a) Market state (b) Mission state (c) Strategy state

Figure G.5: Market state, mission state and strategy state for vessel alternative 5
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(a) Market state (b) Mission state (c) Strategy state

Figure G.6: Market state, mission state and strategy state for vessel alternative 6

(a) Vessel 2 (b) Vessel 4

Figure G.7: Design alterations over the vessels lifecycle - vessel 2 and 4.

Figure G.8: Empirical CDF DfC 0 1 2.
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